WO2023136161A1 - Liquid-sending mechanism, liquid control device, and liquid control method - Google Patents

Liquid-sending mechanism, liquid control device, and liquid control method Download PDF

Info

Publication number
WO2023136161A1
WO2023136161A1 PCT/JP2022/048499 JP2022048499W WO2023136161A1 WO 2023136161 A1 WO2023136161 A1 WO 2023136161A1 JP 2022048499 W JP2022048499 W JP 2022048499W WO 2023136161 A1 WO2023136161 A1 WO 2023136161A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
unit
storage chamber
protective film
supply port
Prior art date
Application number
PCT/JP2022/048499
Other languages
French (fr)
Japanese (ja)
Inventor
輝 舩橋
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Publication of WO2023136161A1 publication Critical patent/WO2023136161A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to technology for controlling liquids such as reagents.
  • Patent Literature 1 discloses a liquid feeding mechanism in which a liquid tank filled with liquid and a capillary communicating with the liquid tank are formed. A diaphragm membrane is installed in the opening of the liquid bath. By pressing the diaphragm membrane, the liquid in the liquid tank is supplied to the capillary.
  • one aspect of the present disclosure aims to enable a user to store a desired liquid in a storage chamber at any time.
  • a liquid feeding mechanism is a feeding mechanism for supplying a liquid to a channel unit including an installation surface, a supply port formed in the installation surface, and a channel communicating with the supply port.
  • a liquid mechanism comprising a storage unit and a pressurizing unit which are separate from each other, and the storage unit has a first surface joined to the installation surface and a side opposite to the first surface. a storage chamber for storing liquid between the first surface and the second surface; and a first communication passage formed in the first surface and communicating with the supply port and the storage chamber.
  • a second communication passage formed on the second surface and communicating with the storage chamber, wherein the pressure unit includes a tubular support portion having a third surface joined to the second surface as an end surface; a movable part installed inside the support part and movable in the axial direction of the support part.
  • a liquid control device includes a channel unit, and a storage unit and a pressurizing unit which are configured separately from each other. and a flow path communicating with the supply port, and the storage unit has a first surface joined to the installation surface and a second surface opposite to the first surface. a storage chamber for storing liquid between the first surface and the second surface; a first communication passage formed in the first surface and communicating with the supply port and the storage chamber; and the second surface. and a second communication passage formed in and communicating with the storage chamber, wherein the pressurizing unit includes a tubular support portion having a third surface joined to the second surface as an end surface, and an inner side of the support portion. and a movable portion installed in the support portion and movable in the axial direction of the support portion.
  • a liquid control method includes a flow channel unit including an installation surface, a supply port formed in the installation surface, and a flow channel communicating with the supply port; a second surface opposite to the first surface; a storage chamber for storing liquid between the first surface and the second surface; a preparation step of preparing a storage unit including a first communication passage communicating with the supply port and the storage chamber, and a second communication passage formed on the second surface and communicating with the storage chamber; After execution, a storage step of supplying liquid from a supply device to the second communication path to store the liquid in the storage chamber; after the storage step, a tubular support portion having a third surface as an end surface; a bonding step of bonding the third surface of a pressure unit including a movable portion installed inside the support portion and movable in an axial direction of the support portion to the second surface; and performing the bonding step.
  • a liquid feeding step of supplying the liquid in the storage chamber to the channel of the channel unit through the first communication channel and the supply port by pressing the movable
  • the desired liquid can be stored in the storage chamber at any time by the user.
  • FIG. 1 is an exploded perspective view illustrating the configuration of a liquid control device;
  • FIG. 1 is a cross-sectional view of a liquid control device;
  • FIG. 4 is a cross-sectional view of the storage unit; It is a sectional view of a pressurization unit.
  • It is explanatory drawing of the preparation process among the usage methods of a liquid control apparatus.
  • It is explanatory drawing of the storage process among the usage methods of a liquid control apparatus.
  • FIG. 4 is an explanatory diagram of a liquid transfer step in the method of using the liquid control device; It is a cross-sectional view of a storage unit according to a modification.
  • FIG. 11 is a cross-sectional view of a pressurizing unit according to a modified example;
  • FIG. 11 is a cross-sectional view of a pressurizing unit according to a modified example;
  • FIG. 11 is a cross-sectional view of a pressurizing unit according to a modified example;
  • FIG. 1 is an exploded perspective view illustrating the configuration of a liquid control device 100 according to one embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of the liquid control device 100.
  • the liquid control device 100 is a mechanism that controls the flow of various liquids such as reagents.
  • the Z-axis is assumed in the following description.
  • the Z-axis is, for example, an axis along the vertical direction.
  • Z1 direction one direction along the Z axis
  • Z2 direction the other direction
  • the Z1 direction corresponds to vertically downward
  • the Z2 direction corresponds to vertically upward.
  • planear view Observing an object with a line of sight along the Z-axis.
  • the liquid control device 100 includes a channel unit 10, a reservoir unit 20, and a pressurization unit 30.
  • the channel unit 10 is a plate-like structure in which fine channels 11 through which liquid flows are formed.
  • the channel unit 10 is also expressed as a microfluidic device.
  • a supply port 12 is formed on a surface 13 of the channel unit 10 facing the Z2 direction (hereinafter referred to as "installation surface").
  • the supply port 12 is a small circular hole that communicates with the flow path 11 .
  • the channel unit 10 is configured by laminating a plurality of plate members, for example.
  • the storage unit 20 and the pressurization unit 30 constitute a liquid transfer mechanism 200 for supplying liquid to the channel unit 10 . That is, the liquid control device 100 includes the channel unit 10 and the liquid transfer mechanism 200 .
  • the storage unit 20 and the pressurization unit 30 are configured separately from each other.
  • the reservoir unit 20 is installed on the installation surface 13 of the channel unit 10 and the pressure unit 30 is installed on the reservoir unit 20 . That is, the storage unit 20 is located between the channel unit 10 and the pressure unit 30 .
  • the storage unit 20 stores liquid to be supplied to the channel unit 10 .
  • the pressurization unit 30 pressurizes the liquid stored in the storage unit 20 .
  • the liquid stored in the storage unit 20 is supplied to the supply port 12 of the channel unit 10 by pressurization from the pressurization unit 30 .
  • Each of the reservoir unit 20 and the pressurization unit 30 will be described in detail below.
  • FIG. 3 is a cross-sectional view of the storage unit 20.
  • the storage unit 20 is a cylindrical structure including a first surface F1 and a second surface F2.
  • the first surface F1 and the second surface F2 are end surfaces of the storage unit 20 in the Z-axis direction.
  • the first surface F1 and the second surface F2 are located on opposite sides of each other along the Z-axis.
  • the first surface F1 is an end surface of the storage unit 20 facing the Z1 direction.
  • the second surface F2 is an end surface of the storage unit 20 facing the Z2 direction.
  • the central axis of storage unit 20 is parallel to the Z-axis. Therefore, the direction of the Z-axis (Z1, Z2) can also be called the axial direction of the storage unit 20.
  • the storage unit 20 is configured by stacking a first member 21 and a second member 22 .
  • Each of the first member 21 and the second member 22 is a light-transmitting plate-shaped member formed by injection molding of a resin material such as acrylic resin.
  • the materials of the first member 21 and the second member 22 are not limited to the above examples.
  • one or both of the first member 21 and the second member 22 may be made of a material such as glass or polydimethylsiloxane (silicone rubber).
  • the surface of the first member 21 opposite to the second member 22 (Z1 direction) is the first surface F1
  • the surface of the second member 22 opposite to the first member 21 (Z2 direction) is the first surface F1. It is two faces F2.
  • the first member 21 is a disk-shaped member including a first surface F1 and a joint surface Q1.
  • the joint surface Q1 is the surface of the first member 21 opposite to the first surface F1.
  • the second member 22 is a disk-shaped member including a second surface F2 and a joint surface Q2.
  • the joint surface Q2 is the surface of the second member 22 opposite to the second surface F2.
  • the bonding surface Q1 of the first member 21 and the bonding surface Q2 of the second member 22 are bonded to each other with the adhesive layer 23 interposed therebetween.
  • the adhesive layer 23 is formed of various types of adhesive such as epoxy or acrylic.
  • a concave portion 24 is formed in the joint surface Q1 of the first member 21 .
  • a storage chamber 25 corresponding to the recess 24 is formed inside the storage unit 20 .
  • the storage chamber 25 is a space surrounded by the inner wall surface 25 a of the recess 24 in the first member 21 and the joint surface Q 2 of the second member 22 .
  • the storage chamber 25 stores liquid.
  • the storage chamber 25 is located between the first plane F1 and the second plane F2 in the Z-axis direction.
  • the adhesive layer 23 is formed in an annular shape with an opening corresponding to the storage chamber 25 . From the viewpoint of preventing the liquid stored in the storage chamber 25 from leaking out, a hard resin material such as an acrylic resin is suitable as a material for the first member 21 and the second member 22 .
  • a first communication passage 26 is formed in the first member 21 .
  • the first communication path 26 is formed in the center of the first member 21 in plan view.
  • the first communication path 26 is a circular through hole that opens to the first surface F1.
  • the first communication path 26 penetrates the first member 21 across the first surface F1 and the bottom of the recess 24 . Therefore, the first communication passage 26 communicates with the storage chamber 25 .
  • the first communication path 26 is also expressed as a flow path extending in the Z1 direction from the storage chamber 25 to the first surface F1.
  • a second communication passage 27 is formed in the second member 22 .
  • the second communication path 27 is formed in the center of the second member 22 in plan view.
  • the second communication path 27 is a circular through hole that opens to the second surface F2.
  • the second communication path 27 penetrates the second member 22 over the second surface F2 and the joint surface Q2. Therefore, the second communication path 27 communicates with the storage chamber 25 .
  • the second communication path 27 is also expressed as a flow path extending in the Z2 direction from the storage chamber 25 to the second surface F2.
  • a storage chamber 25 is positioned between the first communication path 26 and the second communication path 27 .
  • the first surface F1 is joined to the installation surface 13 of the channel unit 10 when the liquid control device 100 is used.
  • the storage unit 20 is fixed to the channel unit 10 by joining the installation surface 13 and the first surface F1.
  • the installation surface 13 and the first surface F1 are bonded to each other with an adhesive layer 28 interposed therebetween.
  • the adhesive layer 28 is made of various adhesives such as epoxy or acrylic. Openings corresponding to the first communication path 26 and the supply port 12 are formed in the adhesive layer 28 .
  • the supply port 12 of the installation surface 13 and the first communication passage 26 of the first surface F1 communicate with each other. That is, the storage chamber 25 inside the storage unit 20 communicates with the channel 11 inside the channel unit 10 via the first communication path 26 and the supply port 12 .
  • the inner wall surface 25a of the storage chamber 25 is an inclined surface that is inclined with respect to the Z axis.
  • the inner wall surface 25a of the storage chamber 25 is a tapered curved surface whose inner diameter continuously expands in the Z2 direction.
  • FIG. 2 shows positions P1 and P2 on the Z-axis. The position P2 is closer to the second surface F2 than the position P1 on the Z axis.
  • the inner wall surface 25a of the storage chamber 25 is inclined with respect to the Z axis so that the cross-sectional area C1 at position P1 is smaller than the cross-sectional area C2 at position P2.
  • the storage chamber 25 is also expressed as an inverted conical or inverted truncated conical space.
  • the liquid in the storage chamber 25 does not leak into the channel 11 in the channel unit 10 through the first communication path 26 in the state where the liquid is stored in the storage chamber 25 .
  • the diameter of the first communication passage 26 is selected so that the liquid in the storage chamber 25 does not leak into the channel 11 .
  • the inventor of the present application formed through holes with different diameters in a rubber sheet, and a predetermined amount (for example, 100 ⁇ L) of pure water supplied onto the rubber sheet. It was tested whether it passed through each through-hole. As a result of the above test, most of the pure water passed through the through holes with a diameter of 4 mm, and the entire amount remained on the rubber sheet in the through holes with a diameter of 1.5 mm. Considering the above test results, the diameter of the first communication path 26 is preferably about 1.5 mm.
  • the relationship between the diameter of the first communication path 26 and the diameter of the second communication path 27 is arbitrary. That is, the first communication path 26 has a larger diameter than the second communication path 27, the second communication path 27 has a larger diameter than the first communication path 26, or the first communication path 26 and the second communication path 26 have a larger diameter than the second communication path 26. A configuration in which the communication path 27 has the same diameter is assumed.
  • FIG. 4 is a cross-sectional view of the pressure unit 30. As shown in FIG. FIG. 4 shows the pressurizing unit 30 in a state before it is installed in the storage unit 20 (hereinafter referred to as "separated state").
  • the pressure unit 30 is an elastic body including a support portion 31, a movable portion 32, and a connecting portion 33.
  • the support portion 31, the movable portion 32, and the connecting portion 33 are integrally formed by injection molding of a resin material.
  • the pressure unit 30 is made of a resin material such as polydimethylsiloxane (silicone rubber).
  • the material of the pressurizing unit 30 is not limited to the above examples, and is appropriately selected according to the properties of the liquid or required specifications.
  • a resin material having a high gas barrier property is suitable as the material of the pressurization unit 30, for example.
  • the material of the pressurizing unit 30 is preferably a resin material having high gas permeability, for example.
  • the support part 31 is a cylindrical structure formed to have the same diameter as the outer diameter of the storage unit 20 .
  • the support portion 31 includes a third surface F3 and a fourth surface F4.
  • the third surface F3 and the fourth surface F4 are end surfaces of the support portion 31 in the Z-axis direction.
  • the third surface F3 and the fourth surface F4 are located on opposite sides of each other along the Z axis.
  • the third surface F3 is an annular end surface of the pressure unit 30 facing the Z1 direction.
  • the fourth surface F4 is an annular end surface of the pressure unit 30 facing the Z2 direction.
  • a central axis of the support portion 31 is parallel to the Z-axis. Therefore, the Z-axis direction (Z1, Z2) can also be called the axial direction of the support portion 31.
  • the movable part 32 is a disk-shaped part including a pressure surface D1 and an operation surface D2.
  • the pressure surface D1 and the operation surface D2 are located on opposite sides of each other along the Z axis. Specifically, the pressure surface D1 is the surface of the movable portion 32 facing the Z1 direction.
  • the operation surface D2 is the surface of the movable portion 32 facing the Z2 direction.
  • the movable part 32 is installed inside the support part 31 .
  • a central axis of the movable portion 32 is parallel to the Z-axis. That is, the pressure surface D1 and the operation surface D2 are orthogonal to the Z-axis.
  • the movable portion 32 is installed concentrically with the support portion 31 .
  • the outer diameter of the movable portion 32 is smaller than the inner diameter of the support portion 31 .
  • the connecting portion 33 is an annular portion that connects the inner peripheral surface of the support portion 31 and the outer peripheral surface of the movable portion 32 . As understood from the above description, the space inside the support portion 31 is closed by the movable portion 32 and the connecting portion 33 .
  • the thickness of the connecting portion 33 is less than the thickness of the movable portion 32. That is, the connecting portion 33 has a lower rigidity than the movable portion 32 and is easily deformed or expanded. Therefore, when an external force along the Z-axis acts on the movable portion 32 , the deformation or expansion and contraction of the connecting portion 33 causes the movable portion 32 to move in the Z-axis direction.
  • the movable portion 32 is movable inside the support portion 31 in the Z1 direction or the Z2 direction. That is, the supporting portion 31 and the connecting portion 33 support the movable portion 32 so as to be movable along the Z axis.
  • the movable portion 32 is positioned between the third surface F3 and the fourth surface F4 in the Z-axis direction. That is, in the Z-axis direction, the pressing surface D1 of the movable portion 32 is positioned in the Z2 direction with respect to the third surface F3. In addition, in the Z-axis direction, the operation surface D2 of the movable portion 32 is positioned in the Z1 direction with respect to the fourth surface F4.
  • the movable portion 32 functions as a partition wall (diaphragm) that divides the space inside the support portion 31 into the space R1 and the space R2 along the Z axis.
  • the space R1 is a cylindrical space positioned in the Z1 direction with respect to the pressurizing surface D1.
  • the space R2 is a cylindrical space located in the Z2 direction with respect to the operation surface D2.
  • FIG. 4 shows the pressure unit 30 in a separated state.
  • the separated pressurizing unit 30 includes an adhesive layer 34, a first protective film 35, and a second protective film 36 in addition to the above-described elements (supporting portion 31, movable portion 32, connecting portion 33). .
  • the adhesive layer 34 is formed on the third surface F3.
  • the adhesive layer 34 is formed of various adhesives such as epoxy or acrylic and covers the third surface F3. Therefore, the adhesive layer 34 is formed in an annular shape having the same shape as the third surface F3.
  • the first protective film 35 is a flexible film attached to the adhesive layer 34. That is, the adhesive layer 34 is interposed between the third surface F3 and the first protective film 35. As shown in FIG.
  • the first protective film 35 is made of, for example, a light-transmissive resin material such as acrylic or epoxy.
  • the first protective film 35 is formed in an annular shape having the same shape as the adhesive layer 34 and the third surface F3, and adheres to the adhesive layer 34 so as to cover the entire adhesive layer 34 .
  • the first protective film 35 can be peeled off from the adhesive layer 34. As illustrated in FIG. 2, the first protective film 35 is peeled off from the adhesive layer 34 when the liquid control device 100 is used. That is, the adhesive layer 34 formed on the third surface F3 is exposed.
  • the third surface F3 of the pressurizing unit 30 and the second surface F2 of the storage unit 20 are bonded to each other with an adhesive layer 34 interposed therebetween.
  • the storage unit 20 and the pressure unit 30 are fixed to each other by joining the second surface F2 and the third surface F3. Specifically, the storage unit 20 and the pressure unit 30 are fixed to each other so that the outer circumference of the second surface F2 and the outer circumference of the third surface F3 overlap in plan view.
  • the opening (space R1) of the third surface F3 of the support portion 31 is closed by the second surface F2. That is, the space R1 is in a sealed state.
  • the pressure surface D1 and the second surface F2 of the movable portion 32 face each other with a gap corresponding to the height of the space R1.
  • the second protective film 36 is a flexible film attached to the fourth surface F4.
  • the second protective film 36 is formed in a circular shape having the same diameter as the outer diameter of the support portion 31 .
  • the second protective film 36 is attached to the fourth surface F4 so that the outer circumference of the support portion 31 and the outer circumference of the second protective film 36 overlap in plan view. Therefore, the opening (space R2) of the fourth surface F4 of the supporting portion 31 is closed by the second protective film 36. As shown in FIG. That is, the space R2 is in a sealed state.
  • the second protective film 36 is attached to the fourth surface F4 by being in close contact with the fourth surface F4. Therefore, the second protective film 36 can be peeled off from the fourth surface F4. As illustrated in FIG. 2, when the liquid control device 100 is used, the second protective film 36 is peeled off from the fourth surface F4.
  • the second protective film 36 may be detachably attached to the fourth surface F4 with a bonding material such as an adhesive.
  • the movable part 32 and the second protective film 36 face each other with a gap corresponding to the height of the space R2.
  • the second protective film 36 is made of, for example, a light-transmissive resin material such as acrylic or epoxy. Therefore, the user of the liquid control device 100 can visually recognize the movable portion 32 through the second protective film 36 .
  • Method of Using Liquid Control Device 100 A method of using the above-described liquid control device 100 will be described with reference to FIGS. 5 to 10 .
  • the usage method exemplified below is a method of controlling liquid using the liquid control device 100 (liquid control method).
  • the channel unit 10 and the storage unit 20 are prepared. Specifically, the first surface F 1 of the storage unit 20 is joined to the installation surface 13 of the channel unit 10 via the adhesive layer 28 . As described above, in the state where the installation surface 13 and the first surface F1 are joined, the storage chamber 25 inside the storage unit 20 is connected to the passage unit 10 via the first communication passage 26 and the supply port 12. It communicates with the internal channel 11 .
  • the liquid is supplied from the supply device 300 to the second communication path 27 in the storage process P2 (FIG. 6) after the preparation process P1 is executed.
  • the liquid that has passed through the second communication path 27 is stored in the storage chamber 25 .
  • the supply device 300 is, for example, a syringe filled with liquid.
  • the internal space of the supply device 300 is communicated with the second communication path 27 by bringing the nozzle (cylinder tip) 301 of the supply device 300 into close contact with the second surface F2.
  • the liquid flowing out from the nozzle 301 of the supply device 300 is supplied to the storage chamber 25 through the second communication passage 27 .
  • the liquid supplied from the supply device 300 is stored in the storage chamber 25, the possibility of the liquid inadvertently flowing into the channel unit 10 due to capillary action or the like is reduced.
  • the first member 21 and the second member 22 of the storage unit 20 are made of a light-transmitting resin material. Therefore, the user can visually recognize the liquid stored in the storage chamber 25 in the storage step P2 from the outside.
  • the nozzle 301 of the supply device 300 is in close contact with the second surface F2. good.
  • the first peeling process P3 (FIG. 7) after the storage process P2 is executed, the first protective film 35 of the pressure unit 30 is peeled off. By peeling off the first protective film 35, the adhesive layer 34 is exposed.
  • the first peeling process P3 is performed at an arbitrary time before the bonding process P4 is performed. That is, the first peeling process P3 may be performed before the preparation process P1 or the storage process P2 is performed. Also, the first peeling process P3 may be performed in parallel with the preparation process P1 or the storage process P2.
  • the third surface F3 of the pressure unit 30 is bonded to the second surface F2 of the storage unit 20 by the adhesive layer . Specifically, by pressing the pressure unit 30 in the Z1 direction with the adhesive layer 34 sandwiched between the second surface F2 and the third surface F3, the pressure unit 30 is retained by the adhesive layer 34. It is fixed to the unit 20 .
  • the adhesive layer 34 exposed by peeling the first protective film 35 is used for joining the second surface F2 and the third surface F3. Therefore, the trouble of applying the adhesive to the second surface F2 or the third surface F3 can be reduced.
  • the liquid is stored in the storage chamber 25 of the storage unit 20 at the stage of the bonding process P4. Therefore, when various objects such as the user's body or working equipment (hereinafter referred to as “external elements") inadvertently come into contact with the movable portion 32 during or after the joining step P4, the movable portion 32 is pressed in the Z1 direction, and as a result, the liquid in the storage chamber 25 may be unintentionally supplied to the channel unit 10.
  • the second protective film 36 is attached to the fourth surface F4 of the pressure unit 30 at the stage of the bonding process P4.
  • the movable portion 32 is protected by the second protective film 36 . Therefore, the possibility that the movable portion 32 moves in the Z1 direction due to an inadvertent contact with an external element is reduced. That is, it is possible to reduce the possibility that the liquid in the storage chamber 25 is unintentionally supplied to the channel unit 10 .
  • the second protective film 36 is attached to the fourth surface F4, there is also the advantage that the pressurizing unit 30 can be easily pressed against the storage unit 20 in the joining step P4.
  • the second protective film 36 is peeled off.
  • the movable portion 32 is exposed inside the support portion 31 by peeling the second protective film 36 .
  • the movable portion 32 is positioned between the third surface F3 and the fourth surface F4. That is, the movable portion 32 is at a recessed position with respect to the fourth surface F4. Therefore, compared to a configuration in which the movable portion 32 is positioned at the same height as the fourth surface F4, the movable portion 32 may be affected by inadvertent contact with an external element even after the peeling of the second protective film 36 as well as before the peeling of the second protective film 36. is less likely to be pressed.
  • the liquid in the storage chamber 25 is supplied to the channel 11 of the channel unit 10 via the first communication path 26 and the supply port 12. be done.
  • the operation surface D2 of the movable portion 32 is pressed in the Z1 direction (that is, toward the storage unit 20).
  • the finger of the user of the liquid control device 100 or various actuators presses the operation surface D2 in the Z1 direction.
  • the space R1 is sealed by joining the second surface F2 and the third surface F3 in the joining step P4.
  • the liquid feeding step P6 is a step of supplying the liquid in the storage chamber 25 to the flow path 11 by pressing the movable portion 32 .
  • FIG. 11 a configuration in which a cylindrical storage chamber 25 is formed inside the storage unit 20 is also assumed.
  • the liquid may remain in the corner ⁇ of the storage chamber 25 positioned vertically downward in the liquid transfer step P6.
  • the inner wall surface 25a of the storage chamber 25 is an inclined surface. flow smoothly towards Therefore, according to the present embodiment, liquid remaining in the storage chamber 25 can be suppressed as compared with the configuration of FIG. 11 .
  • the storage unit 20 and the pressurization unit 30 are configured separately from each other, so that the desired liquid can be stored in the storage chamber 25 at any time by the user. That is, the liquid desired by the user can be supplied to the channel unit 10 . Further, since the liquid is stored in the storage chamber 25 of the storage unit 20, the possibility that the liquid supplied from the supply device 300 unintentionally flows into the channel unit 10 due to capillary action or the like can be reduced.
  • the shape of the storage chamber 25 is not limited to the shape illustrated in FIG.
  • the storage unit 20 may be formed with the cylindrical storage chamber 25 illustrated in FIG. 11 . That is, the configuration of FIG. 11 is included within the scope of the present invention.
  • the configuration of FIG. 11 has the advantage that it is easy to secure the capacity of the storage chamber 25 .
  • the first member 21 and the second member 22 of the storage unit 20 are joined by the adhesive layer 23, but the bonding between the first member 21 and the second member 22
  • the method is not limited to the above examples.
  • the joint surface Q1 and the joint surface Q2 may be joined by surface treatment of one or both of the joint surface Q1 of the first member 21 and the joint surface Q2 of the second member 22 .
  • Plasma treatment is exemplified as the surface treatment.
  • the first member 21 and the second member 22 can be joined without using an adhesive. Therefore, the adhesive layer 23 may be omitted.
  • the pressurizing unit 30 in which the supporting portion 31, the movable portion 32, and the connecting portion 33 are integrally formed was exemplified, but the configuration of the pressurizing unit 30 is not limited to the above example. .
  • the movable portion 32 and the connecting portion 33 are formed as separate elements from the supporting portion 31, and the outer peripheral surface of the connecting portion 33 and the inner peripheral surface of the supporting portion 31 are interconnected.
  • the supporting portion 31 may be made of a material different from that of the movable portion 32 and the connecting portion 33 .
  • the support part 31 does not have to be an elastic body, and may be composed of a hard body.
  • the pressurizing unit 30 may be configured by stacking a first layer L1, a second layer L2, and a third layer L3.
  • the second layer L2 is located between the first layer L1 and the third layer L3.
  • the support portion 31 is configured by stacking a first layer L1, a second layer L2, and a third layer L3.
  • the movable portion 32 and the connecting portion 33 are composed of the second layer L2.
  • the connecting part 33 may be omitted.
  • the outer circumference of the disk-shaped movable portion 32 is directly connected to the inner circumference of the support portion 31 . That is, the space inside the support portion 31 is closed by the movable portion 32 .
  • the configuration of FIG. 14 can also be rephrased as a configuration in which the step between the movable portion 32 and the connecting portion 33 in the above-described embodiment is omitted.
  • the central portion of the operation surface D2 is pressed in the Z1 direction, so that the movable portion 32 is elastically deformed as shown by the dashed line in FIG. That is, the central portion of the movable portion 32 moves in the Z1 direction.
  • the movement of the movable portion 32 in the liquid feeding step P6 may be the movement of the entire movable portion 32 exemplified in the above embodiment, or the movement of a part of the movable portion 32 .
  • the connecting portion 33 may be omitted.
  • the first protective film 35 may be omitted.
  • an adhesive adheresive layer 28
  • the second protective film 36 may be omitted.
  • the space R2 is sealed by attaching the second protective film 36 to the fourth surface F4. Therefore, when the second protective film 36 is pressed from the outside and the second protective film 36 is deformed in the Z1 direction, the air in the space R2 is compressed, and as a result the movable part 32 is pressed and moved in the Z1 direction. may move. From the viewpoint of suppressing unintended movement of the movable portion 32, the second protective film 36 may be formed with a through hole that communicates the space R2 with the atmosphere. According to the above configuration, even if the second protective film 36 is deformed in the Z1 direction, the movable portion 32 does not move. be done.
  • SYMBOLS 100... Liquid control apparatus, 200... Liquid sending mechanism, 10... Channel unit, 11... Channel, 12... Supply port, 13... Installation surface, 20... Storage unit, 21... First member, 22... Second member, 23 Adhesive layer 24 Recessed portion 25 Storage chamber 25a Inner wall surface 26 First communicating path 27 Second communicating path 28 Adhesive layer 30 Pressure unit 31 Support part 32 Movable portion 33 Connecting portion 34 Adhesive layer 35 First protective film 36 Second protective film.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ink Jet (AREA)

Abstract

This liquid control device comprises a flow path unit, and a retention unit and pressurization unit that are configured to be mutually separate units. The flow path unit includes a placement surface, a supply opening formed in the placement surface, and a flow path that communicates with the supply opening. The retention unit includes a first surface joined to the placement surface, a second surface on the side opposite from the first surface, a retention chamber for retaining a liquid between the first and second surfaces, a first communication path that is formed in the first surface and communicates with the supply opening and the retention chamber, and a second communication path that is formed in the second surface and communicates with the retention chamber. The pressurization unit includes a tubular support part in which a third surface joined to the second surface serves as an end surface, and a movable part that is installed inside the support part and is capable of moving in the axial direction of the support part.

Description

送液機構、液体制御装置および液体制御方法Liquid sending mechanism, liquid control device and liquid control method
 本発明は、例えば試薬等の液体を制御する技術に関する。 The present invention relates to technology for controlling liquids such as reagents.
 微細な流路における液体の流動を制御することで、当該液体の反応または分析等を実現するマイクロ流体デバイスが、従来から提案されている。例えば特許文献1には、液体が充填された液体槽と、液体槽に連通するキャピラリとが形成された送液機構が開示されている。液体槽の開口部にはダイアフラム膜が設置される。ダイアフラム膜を押圧することで、液体槽内の液体がキャピラリに供給される。 Conventionally, microfluidic devices have been proposed that realize reaction or analysis of liquids by controlling the flow of liquids in fine channels. For example, Patent Literature 1 discloses a liquid feeding mechanism in which a liquid tank filled with liquid and a capillary communicating with the liquid tank are formed. A diaphragm membrane is installed in the opening of the liquid bath. By pressing the diaphragm membrane, the liquid in the liquid tank is supplied to the capillary.
特開2003-166910号公報Japanese Patent Application Laid-Open No. 2003-166910
 しかし、特許文献1の技術においては、液体槽に事前に充填された液体の流動が制御される。すなわち、使用者が任意の時点において所望の液体を液体槽に充填することはできない。以上の事情を考慮して、本開示のひとつの態様は、使用者の任意の時点において所望の液体を貯留室に貯留できるようにすることを目的とする。 However, in the technique of Patent Document 1, the flow of the liquid prefilled in the liquid tank is controlled. That is, the user cannot fill the liquid reservoir with the desired liquid at any time. In view of the above circumstances, one aspect of the present disclosure aims to enable a user to store a desired liquid in a storage chamber at any time.
 本発明のひとつの態様に係る送液機構は、設置面と、前記設置面に形成された供給口と、前記供給口に連通する流路とを含む流路ユニットに液体を供給するための送液機構であって、相互に別体で構成された貯留ユニットと加圧ユニットとを具備し、前記貯留ユニットは、前記設置面に接合される第1面と、前記第1面とは反対側の第2面と、前記第1面と前記第2面との間において液体を貯留する貯留室と、前記第1面に形成されて前記供給口および前記貯留室に連通する第1連通路と、前記第2面に形成されて前記貯留室に連通する第2連通路とを含み、前記加圧ユニットは、前記第2面に接合される第3面を端面とする管状の支持部と、前記支持部の内側に設置されて当該支持部の軸方向に移動可能な可動部とを含む。 A liquid feeding mechanism according to one aspect of the present invention is a feeding mechanism for supplying a liquid to a channel unit including an installation surface, a supply port formed in the installation surface, and a channel communicating with the supply port. A liquid mechanism comprising a storage unit and a pressurizing unit which are separate from each other, and the storage unit has a first surface joined to the installation surface and a side opposite to the first surface. a storage chamber for storing liquid between the first surface and the second surface; and a first communication passage formed in the first surface and communicating with the supply port and the storage chamber. , a second communication passage formed on the second surface and communicating with the storage chamber, wherein the pressure unit includes a tubular support portion having a third surface joined to the second surface as an end surface; a movable part installed inside the support part and movable in the axial direction of the support part.
 本発明のひとつの態様に係る液体制御装置は、流路ユニットと、相互に別体で構成された貯留ユニットおよび加圧ユニットとを具備し、前記流路ユニットは、設置面と、前記設置面に形成された供給口と、前記供給口に連通する流路とを含み、前記貯留ユニットは、前記設置面に接合される第1面と、前記第1面とは反対側の第2面と、前記第1面と前記第2面との間において液体を貯留する貯留室と、前記第1面に形成されて前記供給口および前記貯留室に連通する第1連通路と、前記第2面に形成されて前記貯留室に連通する第2連通路とを含み、前記加圧ユニットは、前記第2面に接合される第3面を端面とする管状の支持部と、前記支持部の内側に設置されて当該支持部の軸方向に移動可能な可動部とを含む。 A liquid control device according to one aspect of the present invention includes a channel unit, and a storage unit and a pressurizing unit which are configured separately from each other. and a flow path communicating with the supply port, and the storage unit has a first surface joined to the installation surface and a second surface opposite to the first surface. a storage chamber for storing liquid between the first surface and the second surface; a first communication passage formed in the first surface and communicating with the supply port and the storage chamber; and the second surface. and a second communication passage formed in and communicating with the storage chamber, wherein the pressurizing unit includes a tubular support portion having a third surface joined to the second surface as an end surface, and an inner side of the support portion. and a movable portion installed in the support portion and movable in the axial direction of the support portion.
 本発明のひとつの態様に係る液体制御方法は、設置面と、前記設置面に形成された供給口と、前記供給口に連通する流路とを含む流路ユニットと、前記設置面に接合された第1面と、前記第1面とは反対側の第2面と、前記第1面と前記第2面との間において液体を貯留する貯留室と、前記第1面に形成されて前記供給口および前記貯留室に連通する第1連通路と、前記第2面に形成されて前記貯留室に連通する第2連通路とを含む貯留ユニットとを準備する準備工程と、前記準備工程の実行後に、供給装置から第2連通路に液体を供給することで当該液体を前記貯留室に貯留する貯留工程と、前記貯留工程の実行後に、第3面を端面とする管状の支持部と、前記支持部の内側に設置されて当該支持部の軸方向に移動可能な可動部とを含む加圧ユニットの前記第3面を、前記第2面に接合する接合工程と、前記接合工程の実行後に、前記可動部を前記貯留ユニット側に押圧することで、前記貯留室内の液体を前記第1連通路と前記供給口とを介して前記流路ユニットの前記流路に供給する送液工程とを含む。 A liquid control method according to one aspect of the present invention includes a flow channel unit including an installation surface, a supply port formed in the installation surface, and a flow channel communicating with the supply port; a second surface opposite to the first surface; a storage chamber for storing liquid between the first surface and the second surface; a preparation step of preparing a storage unit including a first communication passage communicating with the supply port and the storage chamber, and a second communication passage formed on the second surface and communicating with the storage chamber; After execution, a storage step of supplying liquid from a supply device to the second communication path to store the liquid in the storage chamber; after the storage step, a tubular support portion having a third surface as an end surface; a bonding step of bonding the third surface of a pressure unit including a movable portion installed inside the support portion and movable in an axial direction of the support portion to the second surface; and performing the bonding step. a liquid feeding step of supplying the liquid in the storage chamber to the channel of the channel unit through the first communication channel and the supply port by pressing the movable portion toward the storage unit; including.
 本発明によれば、使用者の任意の時点において所望の液体を貯留室に貯留できる。 According to the present invention, the desired liquid can be stored in the storage chamber at any time by the user.
液体制御装置の構成を例示する分解斜視図である。1 is an exploded perspective view illustrating the configuration of a liquid control device; FIG. 液体制御装置の断面図である。1 is a cross-sectional view of a liquid control device; FIG. 貯留ユニットの断面図である。FIG. 4 is a cross-sectional view of the storage unit; 加圧ユニットの断面図である。It is a sectional view of a pressurization unit. 液体制御装置の使用方法のうち準備工程の説明図である。It is explanatory drawing of the preparation process among the usage methods of a liquid control apparatus. 液体制御装置の使用方法のうち貯留工程の説明図である。It is explanatory drawing of the storage process among the usage methods of a liquid control apparatus. 液体制御装置の使用方法のうち第1剥離工程の説明図である。It is explanatory drawing of the 1st peeling process among the usage methods of a liquid control apparatus. 液体制御装置の使用方法のうち接合工程の説明図である。It is explanatory drawing of the joining process among the usage methods of a liquid control apparatus. 液体制御装置の使用方法のうち第2剥離工程の説明図である。It is explanatory drawing of the 2nd peeling process among the usage methods of a liquid control apparatus. 液体制御装置の使用方法のうち送液工程の説明図である。FIG. 4 is an explanatory diagram of a liquid transfer step in the method of using the liquid control device; 変形例に係る貯留ユニットの断面図である。It is a cross-sectional view of a storage unit according to a modification. 変形例に係る加圧ユニットの断面図である。FIG. 11 is a cross-sectional view of a pressurizing unit according to a modified example; 変形例に係る加圧ユニットの断面図である。FIG. 11 is a cross-sectional view of a pressurizing unit according to a modified example; 変形例に係る加圧ユニットの断面図である。FIG. 11 is a cross-sectional view of a pressurizing unit according to a modified example;
A.液体制御装置100
 図1は、本開示のひとつの形態に係る液体制御装置100の構成を例示する分解斜視図であり、図2は、液体制御装置100の断面図である。液体制御装置100は、例えば試薬等の各種の液体の流動を制御する機構である。なお、以下の説明においてはZ軸を想定する。Z軸は、例えば鉛直方向に沿う軸線である。以下の説明においては、Z軸に沿う一方向を「Z1方向」と表記し、他方向を「Z2方向」と表記する。Z1方向は鉛直方向の下方に相当し、Z2方向は鉛直方向の上方に相当する。また、Z軸に沿う視線により対象を観察することを、以下では「平面視」と表記する。
A. Liquid control device 100
FIG. 1 is an exploded perspective view illustrating the configuration of a liquid control device 100 according to one embodiment of the present disclosure, and FIG. 2 is a cross-sectional view of the liquid control device 100. As shown in FIG. The liquid control device 100 is a mechanism that controls the flow of various liquids such as reagents. Note that the Z-axis is assumed in the following description. The Z-axis is, for example, an axis along the vertical direction. In the following description, one direction along the Z axis will be referred to as "Z1 direction" and the other direction will be referred to as "Z2 direction". The Z1 direction corresponds to vertically downward, and the Z2 direction corresponds to vertically upward. Observing an object with a line of sight along the Z-axis is hereinafter referred to as “planar view”.
 図1および図2に例示される通り、液体制御装置100は、流路ユニット10と貯留ユニット20と加圧ユニット30とを具備する。流路ユニット10は、液体が流動する微細な流路11が内部に形成された平板状の構造体である。流路ユニット10は、マイクロ流体デバイスとも表現される。流路ユニット10のうちZ2方向を向く表面(以下「設置面」という)13には供給口12が形成される。供給口12は、流路11に連通する円形の小孔である。流路ユニット10は、例えば複数の板状部材の積層により構成される。 As illustrated in FIGS. 1 and 2, the liquid control device 100 includes a channel unit 10, a reservoir unit 20, and a pressurization unit 30. The channel unit 10 is a plate-like structure in which fine channels 11 through which liquid flows are formed. The channel unit 10 is also expressed as a microfluidic device. A supply port 12 is formed on a surface 13 of the channel unit 10 facing the Z2 direction (hereinafter referred to as "installation surface"). The supply port 12 is a small circular hole that communicates with the flow path 11 . The channel unit 10 is configured by laminating a plurality of plate members, for example.
 貯留ユニット20および加圧ユニット30は、流路ユニット10に液体を供給するための送液機構200を構成する。すなわち、液体制御装置100は、流路ユニット10と送液機構200とを具備する。貯留ユニット20と加圧ユニット30とは、相互に別体で構成される。液体制御装置100が実際に使用されるときには、貯留ユニット20が流路ユニット10の設置面13に設置され、加圧ユニット30が貯留ユニット20上に設置される。すなわち、貯留ユニット20は流路ユニット10と加圧ユニット30との間に位置する。貯留ユニット20は、流路ユニット10に供給されるべき液体を貯留する。加圧ユニット30は、貯留ユニット20が貯留する液体を加圧する。加圧ユニット30からの加圧により、貯留ユニット20に貯留された液体が流路ユニット10の供給口12に供給される。貯留ユニット20および加圧ユニット30の各々について以下に詳述する。 The storage unit 20 and the pressurization unit 30 constitute a liquid transfer mechanism 200 for supplying liquid to the channel unit 10 . That is, the liquid control device 100 includes the channel unit 10 and the liquid transfer mechanism 200 . The storage unit 20 and the pressurization unit 30 are configured separately from each other. When the liquid control device 100 is actually used, the reservoir unit 20 is installed on the installation surface 13 of the channel unit 10 and the pressure unit 30 is installed on the reservoir unit 20 . That is, the storage unit 20 is located between the channel unit 10 and the pressure unit 30 . The storage unit 20 stores liquid to be supplied to the channel unit 10 . The pressurization unit 30 pressurizes the liquid stored in the storage unit 20 . The liquid stored in the storage unit 20 is supplied to the supply port 12 of the channel unit 10 by pressurization from the pressurization unit 30 . Each of the reservoir unit 20 and the pressurization unit 30 will be described in detail below.
[貯留ユニット20]
 図3は、貯留ユニット20の断面図である。図2に例示される通り、貯留ユニット20は、第1面F1と第2面F2とを含む円柱状の構造体である。第1面F1および第2面F2は、Z軸の方向における貯留ユニット20の端面である。第1面F1と第2面F2とは、Z軸に沿って相互に反対側に位置する。具体的には、第1面F1は、貯留ユニット20のうちZ1方向を向く端面である。第2面F2は、貯留ユニット20のうちZ2方向を向く端面である。貯留ユニット20の中心軸は、Z軸に平行である。したがって、Z軸の方向(Z1,Z2)は、貯留ユニット20の軸方向とも換言される。
[Storage unit 20]
FIG. 3 is a cross-sectional view of the storage unit 20. As shown in FIG. As illustrated in FIG. 2, the storage unit 20 is a cylindrical structure including a first surface F1 and a second surface F2. The first surface F1 and the second surface F2 are end surfaces of the storage unit 20 in the Z-axis direction. The first surface F1 and the second surface F2 are located on opposite sides of each other along the Z-axis. Specifically, the first surface F1 is an end surface of the storage unit 20 facing the Z1 direction. The second surface F2 is an end surface of the storage unit 20 facing the Z2 direction. The central axis of storage unit 20 is parallel to the Z-axis. Therefore, the direction of the Z-axis (Z1, Z2) can also be called the axial direction of the storage unit 20. FIG.
 貯留ユニット20は、第1部材21と第2部材22との積層により構成される。第1部材21および第2部材22の各々は、例えばアクリル系等の樹脂材料の射出成形により形成された光透過性の板状部材である。ただし、第1部材21および第2部材22の材料は以上の例示に限定されない。例えば、ガラスまたはポリジメチルシロキサン(シリコーンゴム)等の材料により、第1部材21および第2部材22の一方または双方が形成されてもよい。第1部材21のうち第2部材22とは反対側(Z1方向)の表面が第1面F1であり、第2部材22のうち第1部材21とは反対側(Z2方向)の表面が第2面F2である。 The storage unit 20 is configured by stacking a first member 21 and a second member 22 . Each of the first member 21 and the second member 22 is a light-transmitting plate-shaped member formed by injection molding of a resin material such as acrylic resin. However, the materials of the first member 21 and the second member 22 are not limited to the above examples. For example, one or both of the first member 21 and the second member 22 may be made of a material such as glass or polydimethylsiloxane (silicone rubber). The surface of the first member 21 opposite to the second member 22 (Z1 direction) is the first surface F1, and the surface of the second member 22 opposite to the first member 21 (Z2 direction) is the first surface F1. It is two faces F2.
 第1部材21は、第1面F1と接合面Q1とを含む円板状の部材である。接合面Q1は、第1部材21のうち第1面F1とは反対側の表面である。第2部材22は、第2面F2と接合面Q2とを含む円板状の部材である。接合面Q2は、第2部材22のうち第2面F2とは反対側の表面である。第1部材21の接合面Q1と第2部材22の接合面Q2とが、接着層23を介して相互に接合される。接着層23は、例えばエポキシ系またはアクリル系等の各種の接着剤により形成される。 The first member 21 is a disk-shaped member including a first surface F1 and a joint surface Q1. The joint surface Q1 is the surface of the first member 21 opposite to the first surface F1. The second member 22 is a disk-shaped member including a second surface F2 and a joint surface Q2. The joint surface Q2 is the surface of the second member 22 opposite to the second surface F2. The bonding surface Q1 of the first member 21 and the bonding surface Q2 of the second member 22 are bonded to each other with the adhesive layer 23 interposed therebetween. The adhesive layer 23 is formed of various types of adhesive such as epoxy or acrylic.
 第1部材21の接合面Q1には凹部24が形成される。貯留ユニット20の内部には、凹部24に対応する貯留室25が形成される。貯留室25は、第1部材21における凹部24の内壁面25aと第2部材22の接合面Q2とにより包囲された空間である。貯留室25は、液体を貯留する。図3から理解される通り、貯留室25は、Z軸の方向において第1面F1と第2面F2との間に位置する。接着層23は、貯留室25に対応する開口が形成された円環状に形成される。なお、貯留室25に貯留された液体の漏出を防止する観点からは、例えばアクリル系等の硬質な樹脂材料が、第1部材21および第2部材22の材料として好適である。 A concave portion 24 is formed in the joint surface Q1 of the first member 21 . A storage chamber 25 corresponding to the recess 24 is formed inside the storage unit 20 . The storage chamber 25 is a space surrounded by the inner wall surface 25 a of the recess 24 in the first member 21 and the joint surface Q 2 of the second member 22 . The storage chamber 25 stores liquid. As understood from FIG. 3, the storage chamber 25 is located between the first plane F1 and the second plane F2 in the Z-axis direction. The adhesive layer 23 is formed in an annular shape with an opening corresponding to the storage chamber 25 . From the viewpoint of preventing the liquid stored in the storage chamber 25 from leaking out, a hard resin material such as an acrylic resin is suitable as a material for the first member 21 and the second member 22 .
 第1部材21には第1連通路26が形成される。具体的には、平面視において第1部材21の中心に第1連通路26が形成される。第1連通路26は、第1面F1に開口する円形の貫通孔である。具体的には、第1連通路26は、第1面F1と凹部24の底部とにわたり第1部材21を貫通する。したがって、第1連通路26は、貯留室25に連通する。第1連通路26は、貯留室25から第1面F1までZ1方向に延在する流路とも表現される。 A first communication passage 26 is formed in the first member 21 . Specifically, the first communication path 26 is formed in the center of the first member 21 in plan view. The first communication path 26 is a circular through hole that opens to the first surface F1. Specifically, the first communication path 26 penetrates the first member 21 across the first surface F1 and the bottom of the recess 24 . Therefore, the first communication passage 26 communicates with the storage chamber 25 . The first communication path 26 is also expressed as a flow path extending in the Z1 direction from the storage chamber 25 to the first surface F1.
 第2部材22には第2連通路27が形成される。具体的には、平面視において第2部材22の中心に第2連通路27が形成される。第2連通路27は、第2面F2に開口する円形の貫通孔である。具体的には、第2連通路27は、第2面F2と接合面Q2とにわたり第2部材22を貫通する。したがって、第2連通路27は、貯留室25に連通する。第2連通路27は、貯留室25から第2面F2までZ2方向に延在する流路とも表現される。第1連通路26と第2連通路27との間に貯留室25が位置する。 A second communication passage 27 is formed in the second member 22 . Specifically, the second communication path 27 is formed in the center of the second member 22 in plan view. The second communication path 27 is a circular through hole that opens to the second surface F2. Specifically, the second communication path 27 penetrates the second member 22 over the second surface F2 and the joint surface Q2. Therefore, the second communication path 27 communicates with the storage chamber 25 . The second communication path 27 is also expressed as a flow path extending in the Z2 direction from the storage chamber 25 to the second surface F2. A storage chamber 25 is positioned between the first communication path 26 and the second communication path 27 .
 図2に例示される通り、液体制御装置100の使用時においては、流路ユニット10の設置面13に第1面F1が接合される。設置面13と第1面F1との接合により、貯留ユニット20は流路ユニット10に固定される。設置面13と第1面F1とは、接着層28を介して相互に接合される。接着層28は、例えばエポキシ系またはアクリル系等の各種の接着剤により形成される。接着層28には、第1連通路26および供給口12に対応する開口が形成される。設置面13と第1面F1とが接合された状態においては、設置面13の供給口12と第1面F1の第1連通路26とが相互に連通する。すなわち、貯留ユニット20の内部の貯留室25は、第1連通路26と供給口12とを介して流路ユニット10の内部の流路11に連通する。 As illustrated in FIG. 2, the first surface F1 is joined to the installation surface 13 of the channel unit 10 when the liquid control device 100 is used. The storage unit 20 is fixed to the channel unit 10 by joining the installation surface 13 and the first surface F1. The installation surface 13 and the first surface F1 are bonded to each other with an adhesive layer 28 interposed therebetween. The adhesive layer 28 is made of various adhesives such as epoxy or acrylic. Openings corresponding to the first communication path 26 and the supply port 12 are formed in the adhesive layer 28 . When the installation surface 13 and the first surface F1 are joined together, the supply port 12 of the installation surface 13 and the first communication passage 26 of the first surface F1 communicate with each other. That is, the storage chamber 25 inside the storage unit 20 communicates with the channel 11 inside the channel unit 10 via the first communication path 26 and the supply port 12 .
 貯留室25の内壁面25aは、Z軸に対して傾斜した傾斜面である。具体的には、貯留室25の内壁面25aは、Z2方向に向けて内径が連続的に拡大するテーパー状の曲面である。図2には、Z軸上の位置P1および位置P2が図示されている。位置P2は、Z軸上において位置P1よりも第2面F2に近い位置である。図2から理解される通り、貯留室25の内壁面25aは、位置P1における断面積C1が位置P2における断面積C2を下回るように、Z軸に対して傾斜する。以上の説明から理解される通り、貯留室25は、逆円錐状または逆円錐台状の空間とも表現される。 The inner wall surface 25a of the storage chamber 25 is an inclined surface that is inclined with respect to the Z axis. Specifically, the inner wall surface 25a of the storage chamber 25 is a tapered curved surface whose inner diameter continuously expands in the Z2 direction. FIG. 2 shows positions P1 and P2 on the Z-axis. The position P2 is closer to the second surface F2 than the position P1 on the Z axis. As understood from FIG. 2, the inner wall surface 25a of the storage chamber 25 is inclined with respect to the Z axis so that the cross-sectional area C1 at position P1 is smaller than the cross-sectional area C2 at position P2. As understood from the above description, the storage chamber 25 is also expressed as an inverted conical or inverted truncated conical space.
 なお、貯留室25に液体が貯留された状態において、貯留室25内の液体が第1連通路26を介して流路ユニット10内の流路11に漏出しないことが要求される。本実施形態においては、貯留室25内の液体が流路11に漏出しないように第1連通路26の直径が選定される。 In addition, it is required that the liquid in the storage chamber 25 does not leak into the channel 11 in the channel unit 10 through the first communication path 26 in the state where the liquid is stored in the storage chamber 25 . In this embodiment, the diameter of the first communication passage 26 is selected so that the liquid in the storage chamber 25 does not leak into the channel 11 .
 本願発明者は、第1連通路26の最適な直径を選定するため、相異なる直径の貫通孔をゴムシートに形成し、当該ゴムシート上に供給された所定量(例えば100μL)の純水が各貫通孔を通過するか否かを試験した。以上の試験の結果、直径を4mmとした貫通孔は純水の殆どが通過し、直径を1.5mmとした貫通孔は全量がゴムシート上に残留した。以上の試験の結果を考慮すると、第1連通路26の直径は、1.5mm程度とすることが好ましい。 In order to select the optimum diameter of the first communication path 26, the inventor of the present application formed through holes with different diameters in a rubber sheet, and a predetermined amount (for example, 100 μL) of pure water supplied onto the rubber sheet. It was tested whether it passed through each through-hole. As a result of the above test, most of the pure water passed through the through holes with a diameter of 4 mm, and the entire amount remained on the rubber sheet in the through holes with a diameter of 1.5 mm. Considering the above test results, the diameter of the first communication path 26 is preferably about 1.5 mm.
 なお、第1連通路26の直径と第2連通路27の直径との関係は任意である。すなわち、第1連通路26が第2連通路27よりも大径である構成、第2連通路27が第1連通路26よりも大径である構成、または、第1連通路26と第2連通路27とが同径である構成が想定される。 The relationship between the diameter of the first communication path 26 and the diameter of the second communication path 27 is arbitrary. That is, the first communication path 26 has a larger diameter than the second communication path 27, the second communication path 27 has a larger diameter than the first communication path 26, or the first communication path 26 and the second communication path 26 have a larger diameter than the second communication path 26. A configuration in which the communication path 27 has the same diameter is assumed.
[加圧ユニット30]
 図4は、加圧ユニット30の断面図である。図4においては、貯留ユニット20に設置される以前の状態(以下「分離状態」という)にある加圧ユニット30が図示されている。
[Pressure unit 30]
FIG. 4 is a cross-sectional view of the pressure unit 30. As shown in FIG. FIG. 4 shows the pressurizing unit 30 in a state before it is installed in the storage unit 20 (hereinafter referred to as "separated state").
 図4に例示される通り、加圧ユニット30は、支持部31と可動部32と連結部33とを含む弾性体である。支持部31と可動部32と連結部33とは、樹脂材料の射出成形により一体的に形成される。加圧ユニット30は、例えばポリジメチルシロキサン(シリコーンゴム)等の樹脂材料により形成される。ただし、加圧ユニット30の材料は以上の例示に限定されず、液体の性質または要求される仕様に応じて適宜に選定される。例えば、貯留室25に貯留された液体の揮発を抑制することが要求される場合、加圧ユニット30の材料としては、例えばガスバリア性が高い樹脂材料が好適である。他方、液体内の細胞の呼吸を確保することが要求される場合、加圧ユニット30の材料としては、例えばガス透過性が高い樹脂材料が好適である。 As illustrated in FIG. 4, the pressure unit 30 is an elastic body including a support portion 31, a movable portion 32, and a connecting portion 33. The support portion 31, the movable portion 32, and the connecting portion 33 are integrally formed by injection molding of a resin material. The pressure unit 30 is made of a resin material such as polydimethylsiloxane (silicone rubber). However, the material of the pressurizing unit 30 is not limited to the above examples, and is appropriately selected according to the properties of the liquid or required specifications. For example, when it is required to suppress volatilization of the liquid stored in the storage chamber 25, a resin material having a high gas barrier property is suitable as the material of the pressurization unit 30, for example. On the other hand, when it is required to ensure the respiration of cells in the liquid, the material of the pressurizing unit 30 is preferably a resin material having high gas permeability, for example.
 支持部31は、貯留ユニット20の外径と同径に形成された円筒状の構造体である。支持部31は、第3面F3と第4面F4とを含む。第3面F3および第4面F4は、Z軸の方向における支持部31の端面である。第3面F3と第4面F4とは、Z軸に沿って相互に反対側に位置する。具体的には、第3面F3は、加圧ユニット30のうちZ1方向を向く円環状の端面である。第4面F4は、加圧ユニット30のうちZ2方向を向く円環状の端面である。支持部31の中心軸は、Z軸に平行である。したがって、Z軸の方向(Z1,Z2)は、支持部31の軸方向とも換言される。 The support part 31 is a cylindrical structure formed to have the same diameter as the outer diameter of the storage unit 20 . The support portion 31 includes a third surface F3 and a fourth surface F4. The third surface F3 and the fourth surface F4 are end surfaces of the support portion 31 in the Z-axis direction. The third surface F3 and the fourth surface F4 are located on opposite sides of each other along the Z axis. Specifically, the third surface F3 is an annular end surface of the pressure unit 30 facing the Z1 direction. The fourth surface F4 is an annular end surface of the pressure unit 30 facing the Z2 direction. A central axis of the support portion 31 is parallel to the Z-axis. Therefore, the Z-axis direction (Z1, Z2) can also be called the axial direction of the support portion 31. FIG.
 可動部32は、加圧面D1と操作面D2とを含む円板状の部分である。加圧面D1と操作面D2とは、Z軸に沿って相互に反対側に位置する。具体的には、加圧面D1は、可動部32のうちZ1方向を向く表面である。操作面D2は、可動部32のうちZ2方向を向く表面である。 The movable part 32 is a disk-shaped part including a pressure surface D1 and an operation surface D2. The pressure surface D1 and the operation surface D2 are located on opposite sides of each other along the Z axis. Specifically, the pressure surface D1 is the surface of the movable portion 32 facing the Z1 direction. The operation surface D2 is the surface of the movable portion 32 facing the Z2 direction.
 可動部32は、支持部31の内側に設置される。可動部32の中心軸は、Z軸に平行である。すなわち、加圧面D1および操作面D2はZ軸に直交する。具体的には、可動部32は支持部31と同心に設置される。可動部32の外径は、支持部31の内径を下回る。連結部33は、支持部31の内周面と可動部32の外周面とを連結する円環状の部分である。以上の説明から理解される通り、支持部31の内側の空間は、可動部32と連結部33とにより閉塞される。 The movable part 32 is installed inside the support part 31 . A central axis of the movable portion 32 is parallel to the Z-axis. That is, the pressure surface D1 and the operation surface D2 are orthogonal to the Z-axis. Specifically, the movable portion 32 is installed concentrically with the support portion 31 . The outer diameter of the movable portion 32 is smaller than the inner diameter of the support portion 31 . The connecting portion 33 is an annular portion that connects the inner peripheral surface of the support portion 31 and the outer peripheral surface of the movable portion 32 . As understood from the above description, the space inside the support portion 31 is closed by the movable portion 32 and the connecting portion 33 .
 連結部33の厚さは可動部32の厚さを下回る。すなわち、連結部33は、可動部32と比較して低剛性であり変形または伸縮し易い。したがって、Z軸に沿う外力が可動部32に作用した場合、連結部33の変形または伸縮により、可動部32はZ軸の方向に移動する。具体的には、可動部32は、支持部31の内側においてZ1方向またはZ2方向に移動可能である。すなわち、支持部31および連結部33は、可動部32をZ軸に沿って移動可能に支持する。 The thickness of the connecting portion 33 is less than the thickness of the movable portion 32. That is, the connecting portion 33 has a lower rigidity than the movable portion 32 and is easily deformed or expanded. Therefore, when an external force along the Z-axis acts on the movable portion 32 , the deformation or expansion and contraction of the connecting portion 33 causes the movable portion 32 to move in the Z-axis direction. Specifically, the movable portion 32 is movable inside the support portion 31 in the Z1 direction or the Z2 direction. That is, the supporting portion 31 and the connecting portion 33 support the movable portion 32 so as to be movable along the Z axis.
 可動部32は、Z軸の方向において第3面F3と第4面F4との間に位置する。すなわち、Z軸の方向において、可動部32の加圧面D1は、第3面F3に対してZ2方向に位置する。また、Z軸の方向において、可動部32の操作面D2は、第4面F4に対してZ1方向に位置する。以上の説明から理解される通り、可動部32は、支持部31の内側の空間を、Z軸に沿って空間R1と空間R2とに仕切る隔壁(ダイアフラム)として機能する。空間R1は、加圧面D1に対してZ1方向に位置する円柱状の空間である。空間R2は、操作面D2に対してZ2方向に位置する円柱状の空間である。 The movable portion 32 is positioned between the third surface F3 and the fourth surface F4 in the Z-axis direction. That is, in the Z-axis direction, the pressing surface D1 of the movable portion 32 is positioned in the Z2 direction with respect to the third surface F3. In addition, in the Z-axis direction, the operation surface D2 of the movable portion 32 is positioned in the Z1 direction with respect to the fourth surface F4. As can be understood from the above description, the movable portion 32 functions as a partition wall (diaphragm) that divides the space inside the support portion 31 into the space R1 and the space R2 along the Z axis. The space R1 is a cylindrical space positioned in the Z1 direction with respect to the pressurizing surface D1. The space R2 is a cylindrical space located in the Z2 direction with respect to the operation surface D2.
 前述の通り、図4には、分離状態の加圧ユニット30が図示されている。分離状態の加圧ユニット30は、以上に例示した要素(支持部31、可動部32、連結部33)に加えて、接着層34と第1保護フィルム35と第2保護フィルム36とを具備する。 As described above, FIG. 4 shows the pressure unit 30 in a separated state. The separated pressurizing unit 30 includes an adhesive layer 34, a first protective film 35, and a second protective film 36 in addition to the above-described elements (supporting portion 31, movable portion 32, connecting portion 33). .
 接着層34は、第3面F3に形成される。接着層34は、例えばエポキシ系またはアクリル系等の各種の接着剤により形成されて第3面F3を被覆する。したがって、接着層34は、第3面F3と同形状の円環状に形成される。 The adhesive layer 34 is formed on the third surface F3. The adhesive layer 34 is formed of various adhesives such as epoxy or acrylic and covers the third surface F3. Therefore, the adhesive layer 34 is formed in an annular shape having the same shape as the third surface F3.
 第1保護フィルム35は、接着層34に装着された可撓性フィルムである。すなわち、第3面F3と第1保護フィルム35との間に接着層34が介在する。第1保護フィルム35は、例えばアクリル系またはエポキシ系等の光透過性の樹脂材料により形成される。第1保護フィルム35は、接着層34および第3面F3と同形状の円環状に形成され、接着層34の全体を被覆するように接着層34に密着する。 The first protective film 35 is a flexible film attached to the adhesive layer 34. That is, the adhesive layer 34 is interposed between the third surface F3 and the first protective film 35. As shown in FIG. The first protective film 35 is made of, for example, a light-transmissive resin material such as acrylic or epoxy. The first protective film 35 is formed in an annular shape having the same shape as the adhesive layer 34 and the third surface F3, and adheres to the adhesive layer 34 so as to cover the entire adhesive layer 34 .
 第1保護フィルム35は、接着層34から剥離可能である。図2に例示される通り、液体制御装置100の使用時においては、第1保護フィルム35が接着層34から剥離される。すなわち、第3面F3に形成された接着層34が露出する。加圧ユニット30の第3面F3と貯留ユニット20の第2面F2とが接着層34を介して相互に接合される。第2面F2と第3面F3との接合により貯留ユニット20と加圧ユニット30とが相互に固定される。具体的には、第2面F2の外周と第3面F3の外周とが平面視で重複するように、貯留ユニット20と加圧ユニット30とが相互に固定される。 The first protective film 35 can be peeled off from the adhesive layer 34. As illustrated in FIG. 2, the first protective film 35 is peeled off from the adhesive layer 34 when the liquid control device 100 is used. That is, the adhesive layer 34 formed on the third surface F3 is exposed. The third surface F3 of the pressurizing unit 30 and the second surface F2 of the storage unit 20 are bonded to each other with an adhesive layer 34 interposed therebetween. The storage unit 20 and the pressure unit 30 are fixed to each other by joining the second surface F2 and the third surface F3. Specifically, the storage unit 20 and the pressure unit 30 are fixed to each other so that the outer circumference of the second surface F2 and the outer circumference of the third surface F3 overlap in plan view.
 図2に例示される通り、加圧ユニット30が貯留ユニット20に固定された状態においては、支持部31の第3面F3の開口(空間R1)が第2面F2により閉塞される。すなわち、空間R1は密閉された状態となる。以上の状態においては、可動部32の加圧面D1と第2面F2とが、空間R1の高さに相当する間隔をあけて相互に対向する。 As illustrated in FIG. 2, when the pressure unit 30 is fixed to the storage unit 20, the opening (space R1) of the third surface F3 of the support portion 31 is closed by the second surface F2. That is, the space R1 is in a sealed state. In the above state, the pressure surface D1 and the second surface F2 of the movable portion 32 face each other with a gap corresponding to the height of the space R1.
 図4に例示される通り、第2保護フィルム36は、第4面F4に装着された可撓性フィルムである。第2保護フィルム36は、支持部31の外径と同径の円形に形成される。支持部31の外周と第2保護フィルム36の外周とが平面視で重複するように、第2保護フィルム36は第4面F4に装着される。したがって、支持部31の第4面F4の開口(空間R2)は、第2保護フィルム36により閉塞される。すなわち、空間R2は密閉された状態となる。 As illustrated in FIG. 4, the second protective film 36 is a flexible film attached to the fourth surface F4. The second protective film 36 is formed in a circular shape having the same diameter as the outer diameter of the support portion 31 . The second protective film 36 is attached to the fourth surface F4 so that the outer circumference of the support portion 31 and the outer circumference of the second protective film 36 overlap in plan view. Therefore, the opening (space R2) of the fourth surface F4 of the supporting portion 31 is closed by the second protective film 36. As shown in FIG. That is, the space R2 is in a sealed state.
 第2保護フィルム36は、第4面F4に密着することで当該第4面F4に装着される。したがって、第2保護フィルム36は第4面F4から剥離可能である。図2に例示される通り、液体制御装置100の使用時においては、第2保護フィルム36が第4面F4から剥離される。なお、第2保護フィルム36は、接着剤等の接合材により第4面F4に対して剥離可能に装着されてもよい。 The second protective film 36 is attached to the fourth surface F4 by being in close contact with the fourth surface F4. Therefore, the second protective film 36 can be peeled off from the fourth surface F4. As illustrated in FIG. 2, when the liquid control device 100 is used, the second protective film 36 is peeled off from the fourth surface F4. The second protective film 36 may be detachably attached to the fourth surface F4 with a bonding material such as an adhesive.
 図4から理解される通り、可動部32と第2保護フィルム36とは、空間R2の高さに相当する間隔をあけて相互に対向する。第2保護フィルム36は、例えばアクリル系またはエポキシ系等の光透過性の樹脂材料により形成される。したがって、液体制御装置100の使用者は、第2保護フィルム36を介して可動部32を視認できる。 As can be understood from FIG. 4, the movable part 32 and the second protective film 36 face each other with a gap corresponding to the height of the space R2. The second protective film 36 is made of, for example, a light-transmissive resin material such as acrylic or epoxy. Therefore, the user of the liquid control device 100 can visually recognize the movable portion 32 through the second protective film 36 .
B.液体制御装置100の使用方法
 図5から図10を参照して、以上に説明した液体制御装置100の使用方法を説明する。以下に例示する使用方法は、液体制御装置100を使用して液体を制御する方法(液体制御方法)である。
B. Method of Using Liquid Control Device 100 A method of using the above-described liquid control device 100 will be described with reference to FIGS. 5 to 10 . The usage method exemplified below is a method of controlling liquid using the liquid control device 100 (liquid control method).
 まず、準備工程P1(図5)において、流路ユニット10と貯留ユニット20とが準備される。具体的には、貯留ユニット20の第1面F1が、接着層28を介して流路ユニット10の設置面13に接合される。前述の通り、設置面13と第1面F1とが接合された状態においては、貯留ユニット20の内部の貯留室25が、第1連通路26と供給口12とを介して流路ユニット10の内部の流路11に連通する。 First, in the preparation step P1 (Fig. 5), the channel unit 10 and the storage unit 20 are prepared. Specifically, the first surface F 1 of the storage unit 20 is joined to the installation surface 13 of the channel unit 10 via the adhesive layer 28 . As described above, in the state where the installation surface 13 and the first surface F1 are joined, the storage chamber 25 inside the storage unit 20 is connected to the passage unit 10 via the first communication passage 26 and the supply port 12. It communicates with the internal channel 11 .
 準備工程P1の実行後の貯留工程P2(図6)において、供給装置300から第2連通路27に液体が供給される。第2連通路27を通過した液体は貯留室25に貯留される。供給装置300は、例えば、液体が充填されたシリンジである。貯留工程P2においては、供給装置300のノズル(筒先)301を第2面F2に密着させることで、供給装置300の内部空間を第2連通路27に連通させる。以上の状態において、供給装置300のノズル301から流出した液体が、第2連通路27を介して貯留室25に供給される。以上に説明した通り、供給装置300から供給された液体は貯留室25に貯留されるから、例えば毛管現象等により液体が不用意に流路ユニット10に流入する可能性が低減される。なお、前述の通り、貯留ユニット20の第1部材21および第2部材22は光透過性の樹脂材料で形成される。したがって、使用者は、貯留工程P2により貯留室25に貯留された液体を、外部から視認できる。なお、図6においては供給装置300のノズル301を第2面F2に密着させたが、第2連通路27にノズル301を挿入した状態で供給装置300から貯留室25に液体が供給されてもよい。 The liquid is supplied from the supply device 300 to the second communication path 27 in the storage process P2 (FIG. 6) after the preparation process P1 is executed. The liquid that has passed through the second communication path 27 is stored in the storage chamber 25 . The supply device 300 is, for example, a syringe filled with liquid. In the storage step P2, the internal space of the supply device 300 is communicated with the second communication path 27 by bringing the nozzle (cylinder tip) 301 of the supply device 300 into close contact with the second surface F2. In the above state, the liquid flowing out from the nozzle 301 of the supply device 300 is supplied to the storage chamber 25 through the second communication passage 27 . As described above, since the liquid supplied from the supply device 300 is stored in the storage chamber 25, the possibility of the liquid inadvertently flowing into the channel unit 10 due to capillary action or the like is reduced. In addition, as described above, the first member 21 and the second member 22 of the storage unit 20 are made of a light-transmitting resin material. Therefore, the user can visually recognize the liquid stored in the storage chamber 25 in the storage step P2 from the outside. In FIG. 6, the nozzle 301 of the supply device 300 is in close contact with the second surface F2. good.
 貯留工程P2の実行後の第1剥離工程P3(図7)において、加圧ユニット30の第1保護フィルム35が剥離される。第1保護フィルム35の剥離により接着層34が露出する。なお、第1剥離工程P3は、接合工程P4の実行前の任意の時点で実行される。すなわち、準備工程P1または貯留工程P2の実行前に第1剥離工程P3が実行されてもよい。また、準備工程P1または貯留工程P2に並行して第1剥離工程P3が実行されてもよい。 In the first peeling process P3 (FIG. 7) after the storage process P2 is executed, the first protective film 35 of the pressure unit 30 is peeled off. By peeling off the first protective film 35, the adhesive layer 34 is exposed. Note that the first peeling process P3 is performed at an arbitrary time before the bonding process P4 is performed. That is, the first peeling process P3 may be performed before the preparation process P1 or the storage process P2 is performed. Also, the first peeling process P3 may be performed in parallel with the preparation process P1 or the storage process P2.
 第1剥離工程P3の実行後の接合工程P4(図8)において、加圧ユニット30の第3面F3が接着層34により貯留ユニット20の第2面F2に接合される。具体的には、第2面F2と第3面F3との間に接着層34を挟んだ状態で加圧ユニット30をZ1方向に押圧することで、当該加圧ユニット30が接着層34により貯留ユニット20に固定される。以上の通り、本実施形態においては、第1保護フィルム35の剥離により露出する接着層34が、第2面F2と第3面F3との接合に利用される。したがって、第2面F2または第3面F3に接着剤を塗布する手間が削減される。 In the bonding step P4 (FIG. 8) after the first peeling step P3 is performed, the third surface F3 of the pressure unit 30 is bonded to the second surface F2 of the storage unit 20 by the adhesive layer . Specifically, by pressing the pressure unit 30 in the Z1 direction with the adhesive layer 34 sandwiched between the second surface F2 and the third surface F3, the pressure unit 30 is retained by the adhesive layer 34. It is fixed to the unit 20 . As described above, in the present embodiment, the adhesive layer 34 exposed by peeling the first protective film 35 is used for joining the second surface F2 and the third surface F3. Therefore, the trouble of applying the adhesive to the second surface F2 or the third surface F3 can be reduced.
 ところで、接合工程P4の段階では貯留ユニット20の貯留室25に液体が貯留されている。したがって、接合工程P4の実行中または実行後に、例えば使用者の身体または作業機具等の各種の物体(以下「外部要素」という)が可動部32に不用意に接触した場合には、可動部32がZ1方向に押圧され、結果的に貯留室25内の液体が意図せず流路ユニット10に供給される可能性がある。 By the way, the liquid is stored in the storage chamber 25 of the storage unit 20 at the stage of the bonding process P4. Therefore, when various objects such as the user's body or working equipment (hereinafter referred to as "external elements") inadvertently come into contact with the movable portion 32 during or after the joining step P4, the movable portion 32 is pressed in the Z1 direction, and as a result, the liquid in the storage chamber 25 may be unintentionally supplied to the channel unit 10.
 第1実施形態においては、接合工程P4の段階では加圧ユニット30の第4面F4に第2保護フィルム36が装着されている。すなわち、可動部32が第2保護フィルム36により保護された状態にある。したがって、外部要素の不用意な接触により可動部32がZ1方向に移動する可能性が低減される。すなわち、貯留室25内の液体が意図せず流路ユニット10に供給される可能性を低減できる。また、第4面F4に第2保護フィルム36が装着された状態にあるから、接合工程P4において加圧ユニット30を貯留ユニット20に押圧し易いという利点もある。 In the first embodiment, the second protective film 36 is attached to the fourth surface F4 of the pressure unit 30 at the stage of the bonding process P4. In other words, the movable portion 32 is protected by the second protective film 36 . Therefore, the possibility that the movable portion 32 moves in the Z1 direction due to an inadvertent contact with an external element is reduced. That is, it is possible to reduce the possibility that the liquid in the storage chamber 25 is unintentionally supplied to the channel unit 10 . Moreover, since the second protective film 36 is attached to the fourth surface F4, there is also the advantage that the pressurizing unit 30 can be easily pressed against the storage unit 20 in the joining step P4.
 接合工程P4の実行後の第2剥離工程P5(図9)において、第2保護フィルム36が剥離される。第2保護フィルム36の剥離により支持部31の内側に可動部32が露出する。前述の通り、第1実施形態においては、可動部32が第3面F3と第4面F4との間に位置する。すなわち、可動部32は、第4面F4に対して窪んだ位置にある。したがって、可動部32が第4面F4と同等の高さに位置する構成と比較すると、第2保護フィルム36の剥離前に加えて剥離後においても、外部要素の不用意な接触により可動部32が押圧される可能性が低減される。 In the second peeling process P5 (Fig. 9) after the bonding process P4 is performed, the second protective film 36 is peeled off. The movable portion 32 is exposed inside the support portion 31 by peeling the second protective film 36 . As described above, in the first embodiment, the movable portion 32 is positioned between the third surface F3 and the fourth surface F4. That is, the movable portion 32 is at a recessed position with respect to the fourth surface F4. Therefore, compared to a configuration in which the movable portion 32 is positioned at the same height as the fourth surface F4, the movable portion 32 may be affected by inadvertent contact with an external element even after the peeling of the second protective film 36 as well as before the peeling of the second protective film 36. is less likely to be pressed.
 第2剥離工程P5の実行後の送液工程P6(図10)において、貯留室25内の液体が、第1連通路26と供給口12とを介して流路ユニット10の流路11に供給される。具体的には、送液工程P6においては、可動部32の操作面D2がZ1方向(すなわち貯留ユニット20側)に押圧される。例えば、液体制御装置100の使用者の手指または各種のアクチュエータにより、操作面D2がZ1方向に押圧される。接合工程P4において第2面F2と第3面F3とが接合されることで空間R1は密閉されている。したがって、可動部32が押圧によりZ1方向に移動すると、空間R1内の空気が加圧面D1により圧縮され、貯留室25内の液体が第2連通路27を介して加圧される。以上に説明した加圧により、貯留室25内の液体は、第1連通路26と供給口12とを通過して流路11に供給される。すなわち、送液工程P6は、可動部32の押圧により貯留室25内の液体を流路11に供給する工程である。 In the liquid transfer step P6 (FIG. 10) after execution of the second peeling step P5, the liquid in the storage chamber 25 is supplied to the channel 11 of the channel unit 10 via the first communication path 26 and the supply port 12. be done. Specifically, in the liquid feeding step P6, the operation surface D2 of the movable portion 32 is pressed in the Z1 direction (that is, toward the storage unit 20). For example, the finger of the user of the liquid control device 100 or various actuators presses the operation surface D2 in the Z1 direction. The space R1 is sealed by joining the second surface F2 and the third surface F3 in the joining step P4. Therefore, when the movable portion 32 is pressed to move in the Z1 direction, the air in the space R1 is compressed by the pressure surface D1, and the liquid in the storage chamber 25 is pressurized through the second communication passage 27. FIG. Due to the pressurization described above, the liquid in the storage chamber 25 is supplied to the flow path 11 through the first communication path 26 and the supply port 12 . That is, the liquid feeding step P6 is a step of supplying the liquid in the storage chamber 25 to the flow path 11 by pressing the movable portion 32 .
 ところで、図11に例示される通り、円柱状の貯留室25が貯留ユニット20の内部に形成された構成も想定される。しかし、図11の構成では、送液工程P6において、貯留室25のうち鉛直方向の下方に位置する隅部αに、液体が残留する可能性がある。図11の構成とは対照的に、本実施形態においては、貯留室25の内壁面25aが傾斜面であるから、送液工程P6においては、貯留室25内の液体が第1連通路26に向かって円滑に流動する。したがって、本実施形態によれば、図11の構成と比較して貯留室25内の液体の残留を抑制できる。 By the way, as illustrated in FIG. 11, a configuration in which a cylindrical storage chamber 25 is formed inside the storage unit 20 is also assumed. However, in the configuration of FIG. 11, the liquid may remain in the corner α of the storage chamber 25 positioned vertically downward in the liquid transfer step P6. In contrast to the configuration of FIG. 11, in this embodiment, the inner wall surface 25a of the storage chamber 25 is an inclined surface. flow smoothly towards Therefore, according to the present embodiment, liquid remaining in the storage chamber 25 can be suppressed as compared with the configuration of FIG. 11 .
 以上に説明した通り、本実施形態においては、貯留ユニット20と加圧ユニット30とが相互に別体で構成されるから、使用者の任意の時点において所望の液体を貯留室25に貯留できる。すなわち、使用者の所望の液体を流路ユニット10に供給できる。また、貯留ユニット20の貯留室25に液体が貯留されるから、供給装置300から供給される液体が毛細管現象等により意図せず流路ユニット10に流入する可能性を低減できる。 As described above, in this embodiment, the storage unit 20 and the pressurization unit 30 are configured separately from each other, so that the desired liquid can be stored in the storage chamber 25 at any time by the user. That is, the liquid desired by the user can be supplied to the channel unit 10 . Further, since the liquid is stored in the storage chamber 25 of the storage unit 20, the possibility that the liquid supplied from the supply device 300 unintentionally flows into the channel unit 10 due to capillary action or the like can be reduced.
C:変形例
 以上に例示した各態様に付加される具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を、相互に矛盾しない範囲で適宜に併合してもよい。
C: Modifications Examples of specific modifications added to the above-exemplified embodiments are given below. Two or more aspects arbitrarily selected from the following examples may be combined as appropriate within a mutually consistent range.
(1)貯留室25の形状は、図3に例示した形状に限定されない。例えば、貯留室25内の液体の残留が特段の問題とならない場合には、図11に例示した円柱状の貯留室25が貯留ユニット20に形成されてもよい。すなわち、図11の構成は、本発明の範囲に包含される。なお、図11の構成によれば、貯留室25の容量を確保し易いという利点がある。 (1) The shape of the storage chamber 25 is not limited to the shape illustrated in FIG. For example, if liquid remaining in the storage chamber 25 does not pose a particular problem, the storage unit 20 may be formed with the cylindrical storage chamber 25 illustrated in FIG. 11 . That is, the configuration of FIG. 11 is included within the scope of the present invention. The configuration of FIG. 11 has the advantage that it is easy to secure the capacity of the storage chamber 25 .
(2)前述の形態においては、貯留ユニット20の第1部材21と第2部材22とが接着層23により接合される形態を例示したが、第1部材21と第2部材22との接合の方法は以上の例示に限定されない。第1部材21の接合面Q1および第2部材22の接合面Q2の一方または双方に対する表面処理により、接合面Q1と接合面Q2とが接合されてもよい。表面処理としては、例えばプラズマ処理が例示される。接合面Q1または接合面Q2の表面処理を実行する形態によれば、接着剤を使用せずに第1部材21と第2部材22とを接合可能である。したがって、接着層23は省略されてもよい。 (2) In the above embodiment, the first member 21 and the second member 22 of the storage unit 20 are joined by the adhesive layer 23, but the bonding between the first member 21 and the second member 22 The method is not limited to the above examples. The joint surface Q1 and the joint surface Q2 may be joined by surface treatment of one or both of the joint surface Q1 of the first member 21 and the joint surface Q2 of the second member 22 . Plasma treatment is exemplified as the surface treatment. According to the embodiment in which the joint surface Q1 or the joint surface Q2 is surface-treated, the first member 21 and the second member 22 can be joined without using an adhesive. Therefore, the adhesive layer 23 may be omitted.
(3)前述の形態においては、支持部31と可動部32と連結部33とが一体的に形成された加圧ユニット30を例示したが、加圧ユニット30の構成は以上の例示に限定されない。例えば、図12に例示される通り、可動部32および連結部33が支持部31とは別体の要素として形成され、連結部33の外周面と支持部31の内周面とが相互に連結されてもよい。図12の構成において、支持部31は、可動部32および連結部33とは別の材料で形成されてよい。例えば、支持部31は、弾性体である必要はなく、硬質体で構成されてもよい。 (3) In the above embodiment, the pressurizing unit 30 in which the supporting portion 31, the movable portion 32, and the connecting portion 33 are integrally formed was exemplified, but the configuration of the pressurizing unit 30 is not limited to the above example. . For example, as illustrated in FIG. 12, the movable portion 32 and the connecting portion 33 are formed as separate elements from the supporting portion 31, and the outer peripheral surface of the connecting portion 33 and the inner peripheral surface of the supporting portion 31 are interconnected. may be In the configuration of FIG. 12 , the supporting portion 31 may be made of a material different from that of the movable portion 32 and the connecting portion 33 . For example, the support part 31 does not have to be an elastic body, and may be composed of a hard body.
 また、図13に例示される通り、加圧ユニット30が第1層L1と第2層L2と第3層L3との積層により構成されてもよい。第2層L2は第1層L1と第3層L3との間に位置する。支持部31は、第1層L1と第2層L2と第3層L3との積層により構成される。可動部32および連結部33は、第2層L2により構成される。 Also, as illustrated in FIG. 13, the pressurizing unit 30 may be configured by stacking a first layer L1, a second layer L2, and a third layer L3. The second layer L2 is located between the first layer L1 and the third layer L3. The support portion 31 is configured by stacking a first layer L1, a second layer L2, and a third layer L3. The movable portion 32 and the connecting portion 33 are composed of the second layer L2.
 また、前述の形態においては、支持部31と可動部32との間に連結部33が介在する形態を例示したが、図14に例示される通り、連結部33は省略されてもよい。図14の構成においては、円板状の可動部32の外周が支持部31の内周面に直接的に連結される。すなわち、支持部31の内側の空間が可動部32により閉塞される。図14の構成は、前述の形態における可動部32と連結部33との段差が省略された構成とも換言される。送液工程P6においては、操作面D2の中央部がZ1方向に押圧されることで、図14に破線で図示されるように可動部32が弾性的に変形する。すなわち、可動部32の中央部がZ1方向に移動する。以上の説明から理解される通り、送液工程P6における可動部32の移動は、前述の形態に例示した可動部32全体の移動のほか、可動部32の一部の移動でもよい。なお、図12または図13の構成においても同様に、連結部33は省略されてよい。 Further, in the above-described embodiment, the form in which the connecting part 33 is interposed between the supporting part 31 and the movable part 32 is exemplified, but as illustrated in FIG. 14, the connecting part 33 may be omitted. In the configuration of FIG. 14 , the outer circumference of the disk-shaped movable portion 32 is directly connected to the inner circumference of the support portion 31 . That is, the space inside the support portion 31 is closed by the movable portion 32 . The configuration of FIG. 14 can also be rephrased as a configuration in which the step between the movable portion 32 and the connecting portion 33 in the above-described embodiment is omitted. In the liquid transfer step P6, the central portion of the operation surface D2 is pressed in the Z1 direction, so that the movable portion 32 is elastically deformed as shown by the dashed line in FIG. That is, the central portion of the movable portion 32 moves in the Z1 direction. As can be understood from the above description, the movement of the movable portion 32 in the liquid feeding step P6 may be the movement of the entire movable portion 32 exemplified in the above embodiment, or the movement of a part of the movable portion 32 . Incidentally, in the configuration of FIG. 12 or 13 as well, the connecting portion 33 may be omitted.
(4)第1保護フィルム35は省略されてよい。第1保護フィルム35が省略された形態においては、接合工程P4において第2面F2または第3面F3に接着剤(接着層28)が塗布される。また、第2保護フィルム36も省略されてよい。 (4) The first protective film 35 may be omitted. In the form in which the first protective film 35 is omitted, an adhesive (adhesive layer 28) is applied to the second surface F2 or the third surface F3 in the bonding step P4. Also, the second protective film 36 may be omitted.
(5)前述の通り、第4面F4に第2保護フィルム36が装着されることで、空間R2が密閉される。したがって、第2保護フィルム36が外部から押圧されることで当該第2保護フィルム36がZ1方向に変形すると、空間R2内の空気が圧縮され、結果的に可動部32が押圧されてZ1方向に移動する可能性がある。意図しない可動部32の移動を抑制する観点から、空間R2を大気に連通させる貫通孔が第2保護フィルム36に形成されてもよい。以上の構成によれば、第2保護フィルム36がZ1方向に変形しても可動部32は移動しないから、貯留室25内の液体が意図せず流路ユニット10に供給される可能性が低減される。なお、第2保護フィルム36と第4面F4との間に隙間が形成され易い構成においては、第2保護フィルム36に貫通孔を形成しなくても、第2保護フィルム36の変形に起因した可動部32の移動を抑制できる。 (5) As described above, the space R2 is sealed by attaching the second protective film 36 to the fourth surface F4. Therefore, when the second protective film 36 is pressed from the outside and the second protective film 36 is deformed in the Z1 direction, the air in the space R2 is compressed, and as a result the movable part 32 is pressed and moved in the Z1 direction. may move. From the viewpoint of suppressing unintended movement of the movable portion 32, the second protective film 36 may be formed with a through hole that communicates the space R2 with the atmosphere. According to the above configuration, even if the second protective film 36 is deformed in the Z1 direction, the movable portion 32 does not move. be done. In addition, in a configuration in which a gap is likely to be formed between the second protective film 36 and the fourth surface F4, even if the through holes are not formed in the second protective film 36, deformation of the second protective film 36 may cause Movement of the movable portion 32 can be suppressed.
100…液体制御装置、200…送液機構、10…流路ユニット、11…流路、12…供給口、13…設置面、20…貯留ユニット、21…第1部材、22…第2部材、23…接着層、24…凹部、25…貯留室、25a…内壁面、26…第1連通路、27…第2連通路、28…接着層、30…加圧ユニット、31…支持部、32…可動部、33…連結部、34…接着層、35…第1保護フィルム、36…第2保護フィルム。 DESCRIPTION OF SYMBOLS 100... Liquid control apparatus, 200... Liquid sending mechanism, 10... Channel unit, 11... Channel, 12... Supply port, 13... Installation surface, 20... Storage unit, 21... First member, 22... Second member, 23 Adhesive layer 24 Recessed portion 25 Storage chamber 25a Inner wall surface 26 First communicating path 27 Second communicating path 28 Adhesive layer 30 Pressure unit 31 Support part 32 Movable portion 33 Connecting portion 34 Adhesive layer 35 First protective film 36 Second protective film.

Claims (9)

  1.  設置面と、前記設置面に形成された供給口と、前記供給口に連通する流路とを含む流路ユニットに液体を供給するための送液機構であって、
     相互に別体で構成された貯留ユニットと加圧ユニットとを具備し、
     前記貯留ユニットは、
     前記設置面に接合される第1面と、
     前記第1面とは反対側の第2面と、
     前記第1面と前記第2面との間において液体を貯留する貯留室と、
     前記第1面に形成されて前記供給口および前記貯留室に連通する第1連通路と、
     前記第2面に形成されて前記貯留室に連通する第2連通路とを含み、
     前記加圧ユニットは、
     前記第2面に接合される第3面を端面とする管状の支持部と、
     前記支持部の内側に設置されて当該支持部の軸方向に移動可能な可動部とを含む
     送液機構。
    A liquid feeding mechanism for supplying a liquid to a channel unit including an installation surface, a supply port formed in the installation surface, and a channel communicating with the supply port,
    Equipped with a storage unit and a pressurization unit configured separately from each other,
    The storage unit is
    a first surface joined to the installation surface;
    a second surface opposite to the first surface;
    a storage chamber for storing liquid between the first surface and the second surface;
    a first communication passage formed in the first surface and communicating with the supply port and the storage chamber;
    a second communication path formed in the second surface and communicating with the storage chamber;
    The pressure unit is
    a tubular support having a third surface joined to the second surface as an end surface;
    and a movable part installed inside the support part and movable in an axial direction of the support part.
  2.  前記貯留室の内壁面は、前記軸方向の第1位置における当該貯留室の断面積が、前記軸方向において前記第1位置よりも前記第2面に近い第2位置における前記貯留室の断面積を下回るように、前記軸方向に対して傾斜した傾斜面である
     請求項1の送液機構。
    The inner wall surface of the storage chamber is such that the cross-sectional area of the storage chamber at the first position in the axial direction is the cross-sectional area of the storage chamber at the second position that is closer to the second surface than the first position in the axial direction. 2 . The liquid feeding mechanism according to claim 1 , wherein the inclined surface is inclined with respect to the axial direction so as to be less than .
  3.  前記加圧ユニットは、
     前記第3面に形成された接着層と、
     前記接着層に対して剥離可能に装着された第1保護フィルムとをさらに含む
     請求項1または請求項2の送液機構。
    The pressure unit is
    an adhesive layer formed on the third surface;
    3. The liquid feeding mechanism according to claim 1, further comprising a first protective film detachably attached to said adhesive layer.
  4.  前記支持部は、前記第3面とは反対側の第4面を含み、
     前記可動部は、前記軸方向において前記第3面と前記第4面との間に位置する
     請求項1の送液機構。
    The support includes a fourth surface opposite to the third surface,
    The liquid feeding mechanism according to claim 1, wherein the movable portion is positioned between the third surface and the fourth surface in the axial direction.
  5.  前記加圧ユニットは、
     前記第4面に剥離可能に装着された第2保護フィルムを含み、
     前記可動部と前記第2保護フィルムとは相互に間隔をあけて対向する
     請求項4の送液機構。
    The pressure unit is
    including a second protective film releasably attached to the fourth surface;
    5. The liquid feeding mechanism according to claim 4, wherein the movable portion and the second protective film face each other with a space therebetween.
  6.  流路ユニットと、
     相互に別体で構成された貯留ユニットおよび加圧ユニットとを具備し、
     前記流路ユニットは、
     設置面と、
     前記設置面に形成された供給口と、
     前記供給口に連通する流路とを含み、
     前記貯留ユニットは、
     前記設置面に接合される第1面と、
     前記第1面とは反対側の第2面と、
     前記第1面と前記第2面との間において液体を貯留する貯留室と、
     前記第1面に形成されて前記供給口および前記貯留室に連通する第1連通路と、
     前記第2面に形成されて前記貯留室に連通する第2連通路とを含み、
     前記加圧ユニットは、
     前記第2面に接合される第3面を端面とする管状の支持部と、
     前記支持部の内側に設置されて当該支持部の軸方向に移動可能な可動部とを含む
     液体制御装置。
    a channel unit;
    Equipped with a storage unit and a pressurization unit configured separately from each other,
    The channel unit is
    installation surface;
    a supply port formed on the installation surface;
    a channel communicating with the supply port,
    The storage unit is
    a first surface joined to the installation surface;
    a second surface opposite to the first surface;
    a storage chamber for storing liquid between the first surface and the second surface;
    a first communication passage formed in the first surface and communicating with the supply port and the storage chamber;
    a second communication path formed in the second surface and communicating with the storage chamber;
    The pressure unit is
    a tubular support having a third surface joined to the second surface as an end surface;
    and a movable portion installed inside the support portion and movable in an axial direction of the support portion.
  7.  設置面と、前記設置面に形成された供給口と、前記供給口に連通する流路とを含む流路ユニットと、
     前記設置面に接合された第1面と、前記第1面とは反対側の第2面と、前記第1面と前記第2面との間において液体を貯留する貯留室と、前記第1面に形成されて前記供給口および前記貯留室に連通する第1連通路と、前記第2面に形成されて前記貯留室に連通する第2連通路とを含む貯留ユニットと
     を準備する準備工程と、
     前記準備工程の実行後に、供給装置から第2連通路に液体を供給することで当該液体を前記貯留室に貯留する貯留工程と、
     前記貯留工程の実行後に、第3面を端面とする管状の支持部と、前記支持部の内側に設置されて当該支持部の軸方向に移動可能な可動部とを含む加圧ユニットの前記第3面を、前記第2面に接合する接合工程と、
     前記接合工程の実行後に、前記可動部を前記貯留ユニット側に押圧することで、前記貯留室内の液体を前記第1連通路と前記供給口とを介して前記流路ユニットの前記流路に供給する送液工程と
     を含む液体制御方法。
    a channel unit including an installation surface, a supply port formed in the installation surface, and a channel communicating with the supply port;
    a first surface joined to the installation surface; a second surface opposite to the first surface; a storage chamber for storing liquid between the first surface and the second surface; a preparatory step of preparing a storage unit including a first communication passage formed on the surface and communicating with the supply port and the storage chamber, and a second communication passage formed on the second surface and communicating with the storage chamber; and,
    a storing step of storing the liquid in the storing chamber by supplying the liquid from a supply device to the second communication passage after the execution of the preparing step;
    After the storing step is performed, the pressure unit includes a tubular support portion having a third surface as an end surface, and a movable portion installed inside the support portion and movable in the axial direction of the support portion. a bonding step of bonding three surfaces to the second surface;
    By pressing the movable portion toward the storage unit after performing the bonding step, the liquid in the storage chamber is supplied to the flow path of the flow path unit through the first communication path and the supply port. and a liquid control method.
  8.  前記加圧ユニットは、前記第3面に形成された接着層と、前記接着層に対して剥離可能に装着された第1保護フィルムとをさらに含み、
     前記接合工程の実行前に、前記第1保護フィルムを剥離する第1剥離工程をさらに含み、
     前記接合工程においては、前記第1保護フィルムの剥離により露出した前記接着層を利用して、前記第3面を前記第2面に接合する
     請求項7の液体制御方法。
    The pressure unit further includes an adhesive layer formed on the third surface and a first protective film detachably attached to the adhesive layer,
    Further comprising a first peeling step of peeling the first protective film before performing the bonding step,
    8. The liquid control method according to claim 7, wherein in the bonding step, the third surface is bonded to the second surface using the adhesive layer exposed by peeling the first protective film.
  9.  前記加圧ユニットは、前記支持部のうち前記第3面とは反対側の第4面に剥離可能に装着された第2保護フィルムを含み、
     前記接合工程と前記送液工程との間に、前記第2保護フィルムを剥離する第2剥離工程をさらに含む
     請求項7または請求項8の液体制御方法。
    The pressurizing unit includes a second protective film detachably attached to a fourth surface of the support section opposite to the third surface,
    9. The liquid control method according to claim 7, further comprising a second peeling step of peeling off said second protective film between said bonding step and said liquid feeding step.
PCT/JP2022/048499 2022-01-11 2022-12-28 Liquid-sending mechanism, liquid control device, and liquid control method WO2023136161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-002210 2022-01-11
JP2022002210 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023136161A1 true WO2023136161A1 (en) 2023-07-20

Family

ID=87279134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048499 WO2023136161A1 (en) 2022-01-11 2022-12-28 Liquid-sending mechanism, liquid control device, and liquid control method

Country Status (1)

Country Link
WO (1) WO2023136161A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098050A (en) * 2001-09-26 2003-04-03 Matsushita Electric Ind Co Ltd Dispenser
JP2004026206A (en) * 2002-06-25 2004-01-29 Tatsue Seiko Kk Spout structure of beverage container, beverage container and lid for the same
JP2010271304A (en) * 2009-04-20 2010-12-02 Sony Corp Sample solution introducing kit and sample solution injector
JP2017132538A (en) * 2016-01-29 2017-08-03 サッポロビール株式会社 Foam adding device and foam adding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098050A (en) * 2001-09-26 2003-04-03 Matsushita Electric Ind Co Ltd Dispenser
JP2004026206A (en) * 2002-06-25 2004-01-29 Tatsue Seiko Kk Spout structure of beverage container, beverage container and lid for the same
JP2010271304A (en) * 2009-04-20 2010-12-02 Sony Corp Sample solution introducing kit and sample solution injector
JP2017132538A (en) * 2016-01-29 2017-08-03 サッポロビール株式会社 Foam adding device and foam adding method

Similar Documents

Publication Publication Date Title
US4848722A (en) Valve with flexible sheet member
US4858883A (en) Valve with flexible sheet member
US9574674B2 (en) Valve, fluidic apparatus, and fluid-supplying apparatus
US4852851A (en) Valve with flexible sheet member
KR100507593B1 (en) Liquid supply apparatus
US7090093B2 (en) Pressure compensation device for a two-part container
US9168524B2 (en) Microfluidic storage device for pre-storing of fluid, method for its production and a use thereof
JP6265987B2 (en) Pressure measuring unit for determining fluid pressure in a medical fluid dispensing device
JP2009137287A (en) Ink storing container
US20140322100A1 (en) Method and Device for Producing a Microfluidic Analysis Cartridge
EP1835213A1 (en) Valve and actuator employing capillary electrowetting phenomenon
WO2023136161A1 (en) Liquid-sending mechanism, liquid control device, and liquid control method
JP5175778B2 (en) Liquid feeding device
JP2011149801A (en) Cartridge for chemical reaction
CN111946897B (en) Film deformation micro-fluidic device
WO2013075032A1 (en) Perimeter coupling for planar fuel cell and related methods
US20190099777A1 (en) Compressible media applicator, application system and methods for same
JP2008143171A (en) Ink storage container
WO2019130558A1 (en) Fluid device and flow path supply system
WO2019230814A1 (en) Liquid agent applying device
JP2023119929A (en) Cartridge and liquid handling device
US20190348683A1 (en) Flow path chip and manufacturing method for flow path chip
WO2019230809A1 (en) Liquid agent coating device
JP2019093377A (en) Fluid chip, fluid device and method for manufacturing therefor
JPWO2019230805A1 (en) Liquid agent application device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920676

Country of ref document: EP

Kind code of ref document: A1