WO2023135982A1 - めっき鋼板 - Google Patents

めっき鋼板 Download PDF

Info

Publication number
WO2023135982A1
WO2023135982A1 PCT/JP2022/044893 JP2022044893W WO2023135982A1 WO 2023135982 A1 WO2023135982 A1 WO 2023135982A1 JP 2022044893 W JP2022044893 W JP 2022044893W WO 2023135982 A1 WO2023135982 A1 WO 2023135982A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
plating layer
content
plated steel
Prior art date
Application number
PCT/JP2022/044893
Other languages
English (en)
French (fr)
Inventor
将汰 林田
卓哉 光延
浩史 竹林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023135982A1 publication Critical patent/WO2023135982A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment

Definitions

  • the present invention relates to plated steel sheets. This application claims priority based on Japanese Patent Application No. 2022-003724 filed in Japan on January 13, 2022, the content of which is incorporated herein.
  • hot press method hot stamp method, high temperature press method, die quench method
  • the material to be molded is once heated to a high temperature, and the material softened by heating is pressed and molded, and then cooled at the same time as the molding.
  • the material is once heated to a high temperature to be softened, and the material is pressed in the softened state, so the material can be easily pressed. Therefore, by this hot pressing, it is possible to obtain a press-formed article having both good shape fixability and high mechanical strength.
  • the mechanical strength of the press-formed product can be enhanced by the quenching effect of cooling after forming.
  • a coating such as plating
  • various materials such as organic materials and inorganic materials are used as coatings on steel sheets.
  • zinc-based plating which has a sacrificial anticorrosion action, is often applied to steel sheets from the viewpoint of anticorrosion performance and steel sheet production technology.
  • Patent Literature 1 discloses a hot press steel plate member in which, in mass%, C: 0.30% or more and less than 0.50%, Si: 0.01% or more and 2.0% or less, Mn: 0 .5% or more and 3.5% or less, Sb: 0.001% or more and 0.020% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.01% or more and 1.00% and N: 0.01% or less, the balance being Fe and inevitable impurities, the average crystal grain size of the prior austenite grains is 8 ⁇ m or less, and the martensite volume fraction is 90 % or more, has a microstructure in which the amount of solid solution C is 25% or less of the total amount of C, has a tensile strength of 1780 MPa or more, and further has an Al-based plating layer or a Zn-based plating layer on the surface
  • Patent Document 1 discloses that by applying a plating layer to the surface of a steel sheet
  • the object of the present invention is to provide a plated steel sheet that can ensure excellent red rust resistance even when exposed to high temperatures such as hot stamping and welding, on the premise of a plated steel sheet having a plating layer containing Zn.
  • the inventors conducted a study to obtain a plated steel sheet that can ensure excellent red rust resistance even when exposed to high temperatures such as hot stamping and welding. As a result, it was found that even a plated layer containing Zn can be improved in red rust resistance by containing a predetermined amount of Sc and forming an intermetallic compound containing Sc.
  • a plated steel sheet according to one aspect of the present invention includes a base steel sheet, a plating layer formed on the surface of the base steel sheet, and an oxide film formed on the surface of the plating layer,
  • the chemical composition of the plating layer is, in mass%, Sc: 0.000010 to 4.0%, Al: 0 to 93.0%, Fe: 0 to 15.0%, Si: 0 to 20.0%, Mg : 0-3.0%, Ca: 0-3.0%, La: 0-0.5%, Ce: 0-0.5%, Y: 0-0.5%, Cr: 0-1.
  • the thickness of the oxide film is 10 nm or more.
  • the chemical composition of the plating layer contains, by mass%, Al: 19.0 to 93.0% and Sc: 0.00050 to 0.30%. You may [3] In the plated steel sheet according to [1], the chemical composition of the plating layer contains, by mass%, Al: 19.0 to 93.0% and Sc: 0.010 to 0.30%. Further, the area ratio of the intermetallic compound phase may be 1.0 to 10.0% in a cross section in the thickness direction of the plating layer.
  • a plated steel sheet having a Zn-containing plating layer which can ensure excellent red rust resistance even when exposed to high temperatures such as hot stamping and welding. be able to.
  • a plated steel sheet according to one embodiment of the present invention (a plated steel sheet according to the present embodiment) will be described.
  • the plated steel sheet 1 according to the present embodiment as shown in FIG. And prepare.
  • the chemical composition of the plating layer 20 contains Sc: 0.000010 to 4.0% by mass, and if necessary, Al, Fe, and Si. You may Furthermore, if necessary, Mg, Ca, La, Ce, Y, Cr, Ti, Ni, Co, V, Nb, Cu, Mn, Sr, Sb, Pb, B, Li, Zr, Mo, W, Ag , P, Sn, Bi, and In in a total amount of 5.0% or less.
  • the remainder of the chemical composition consists of Zn and impurities.
  • the intermetallic compound phase 21 containing Sc and having an equivalent circle diameter of 5.0 ⁇ m or less exists in a predetermined area ratio in the cross section of the plated layer 20 in the thickness direction.
  • the thickness of the oxide film 30 is 10 nm or more.
  • the plating layer 20 is important for the plated steel sheet 1 according to the present embodiment, and the type of the base steel sheet 10 is not particularly limited, and may be determined according to the product to be applied, the required strength, the thickness, and the like.
  • the base steel plate for example, a hot-rolled mild steel plate described in JIS G3131:2018 or a cold-rolled steel plate described in JIS G3141:2021 can be used.
  • the plated layer 20 is provided on at least part of the surface of the base steel sheet 10 .
  • the plating layer 20 is formed on one side of the base steel plate 10 in FIG. 1, it may be formed on both sides.
  • ⁇ Chemical composition> The chemical composition of the plating layer 20 of the plated steel sheet 1 according to this embodiment will be described.
  • % regarding the content of each element means % by mass.
  • Sc 0.000010 to 4.0% Sc is an important element in the plating layer 20 of the plated steel sheet 1 according to this embodiment.
  • a plated steel sheet having a zinc-based plating layer is heated to a high temperature by hot stamping, welding, or the like, part of Zn evaporates.
  • the plating layer 20 contains 0.000010% or more of Sc, evaporation of Zn at high temperatures is suppressed.
  • the decrease in the Zn content in the Zn—Fe alloy formed on the surface by heating to high temperature is suppressed, and the red rust resistance is improved after high temperature heating.
  • Sc was removed by refining even if it was contained in a trace amount as an impurity in raw materials.
  • the Sc content in the plating layer is less than 0.000010%, the above effect cannot be obtained. Therefore, the Sc content is made 0.000010% or more.
  • the Sc content is preferably 0.000050% or more, 0.00010% or more, 0.00025% or more, or 0.00050% or more, and more preferably 0.010% or more, or 0.025% or more, or 0.025% or more. 050% or more.
  • the Sc content is set to 4.0% or less.
  • the Sc content may be 2.0% or less, 1.00% or less, or 0.60% or less. If the Sc content exceeds 0.30%, it may become difficult to prepare the plating bath, so the Sc content may be 0.30% or less. The above effect is remarkable when most of Sc exists as an intermetallic compound phase having a predetermined equivalent circle diameter, as will be described later.
  • Al 0-93.0%
  • Al is an element effective for improving corrosion resistance in a plating layer containing aluminum (Al) and zinc (Zn).
  • Al is also an element that contributes to the formation of an alloy layer (Al—Fe alloy layer) and is effective in improving plating adhesion.
  • the Al content may be 0%, Al may be contained in order to sufficiently obtain the above effects. To obtain the above effects, the Al content is preferably 5.0% or more, more preferably 10.0% or more, or 15.0% or more.
  • Al is also an element that forms a strong oxide film on the surface of the plating layer and at the same time has the effect of suppressing the evaporation of Zn when Sc is included.
  • the Al content is preferably 19.0% or more, 25.0% or more, or 30.0% or more.
  • the Al content is set to 93.0% or less.
  • the Al content is preferably 90.0% or less, 85.0% or less, 80.0% or less, 75.0% or less, or 70.0% or less.
  • Al content is more preferably 65.0% or less, 60.0% or less, or 55.0% or less.
  • Fe 0-15.0% Fe may be contained in the plating layer by diffusing from the original plating sheet into the plating layer during production. Especially in the case of hot-dip plating, the Fe content may be up to 15.0% at most, but if the Fe content is 15.0% or less, the effect on red rust resistance is small. Therefore, the Fe content is set to 15.0% or less.
  • the Fe content is preferably 12.0% or less, 10.0% or less, 8.0% or less, 6.0% or less, 4.0% or less or 2.0% or less.
  • Si: 0-20.0% Si suppresses the formation of an excessively thick alloy layer between the steel sheet and the coating layer when forming the coating layer on the steel sheet, and has the effect of increasing the adhesion between the steel sheet and the coating layer.
  • the Si content may be 0%, it is preferable to set the Si content to 0.05% or more in order to obtain the above effect.
  • the Si content is more preferably 0.5% or more, still more preferably 1.0% or more.
  • the Si content is set to 20.0% or less. From the viewpoint of workability of the plating layer, the Si content is 17.0% or less, 13% or less, 10.0% or less, 8.0% or less, 6.0% or less, 4.0% or less, or 2.5% % or less.
  • the chemical composition of the plating layer of the plated steel sheet 1 according to the present embodiment may be Zn and impurities other than the above elements.
  • impurities Mg, Ca, La, Ce, Y, Cr, Ti, Ni, Co, V, Nb, Cu, Mn, Sr, Sb, Pb, B, Li , Zr, Mo, W, Ag, P, Sn, Bi, and one or more selected from the group consisting of In, each in the following ranges and in total 5.0% or less. good. Since these elements do not have to be contained, the lower limit of the content of these elements is 0%.
  • the Zn content is 7.0% or more as a range in which the effect of improving red rust resistance is clearly obtained.
  • the Zn content is preferably 8.0% or more, 10.0% or less, 15.0% or more, 18.0% or more, 21.0% or more, 25.0%, 30.0% or more, or 35.0% or more. 0% or more.
  • the upper limit of Zn content is 100%. If necessary, the Zn content is 95.0% or less, 90.0% or less, 85.0% or less, 81.0% or less, 75.0% or less, 70.0% or less, 65.0% Below, it is good also as 60.0% or less or 55.0% or less.
  • Mg 0-3.0% Mg is an element that has the effect of increasing the corrosion resistance of the plating layer. Therefore, it may be contained. On the other hand, if the Mg content exceeds 3.0%, the workability of the plating layer is lowered. In addition, production problems arise, such as an increase in the amount of dross generated in the plating bath. Therefore, the Mg content is set to 3.0% or less. The Mg content may be 2.0% or less, 1.0% or less, 0.5% or less, or 0.2% or less.
  • Ca 0-3.0% Ca is an element that, when contained in a plating layer, reduces the amount of dross that is likely to be formed during plating operation with an increase in the Mg content, thereby improving plating manufacturability. Therefore, Ca may be contained.
  • the Ca content when the Ca content is high, Ca-based intermetallic compounds such as the CaZn 11 phase are formed in the plating layer, resulting in a decrease in corrosion resistance. Therefore, the Ca content is set to 3.0% or less.
  • the Ca content may be 2.0% or less, 1.0% or less, 0.5% or less, or 0.2% or less.
  • the contents of Cr, Ti, Ni, Nb, Cu, Mn, Li, Zr, Mo and Ag are each 1.0% or less
  • the contents of Co and V are each 0.25% or less
  • Sr, Sb the contents of Pb, B, W and P are each set to 0.5% or less.
  • the contents of Cr, Ti, Ni, Nb, Cu, Mn, Li, Zr, Mo, and Ag may each be 0.5% or less, 0.3% or less, or 0.2% or less.
  • the contents of Co and V may each be 0.10% or less, 0.05% or less, or 0.03% or less.
  • the contents of Sr, Sb, Pb, B, W and P may each be 0.2% or less or 0.1% or less.
  • Sn 0-1.0% Sn is an element that increases the Mg elution rate in a plating layer containing Zn, Al, and Mg. It is also an element that forms an intermetallic compound that greatly improves the acid/alkali corrosion resistance of the plating. Therefore, it may be contained. On the other hand, when the elution rate of Mg increases, the corrosion resistance of flat parts deteriorates. Also, the corrosion resistance on the acid side is remarkably deteriorated. Therefore, the Sn content is set to 1.0% or less. The Sn content may be 0.5% or less, 0.3% or less, or 0.2% or less.
  • Bi 0-1.0% In: 0-1.0% Bi and In are elements that form an intermetallic compound that improves alkali corrosion resistance. Therefore, it may be contained. On the other hand, when the Bi content and the In content each exceed 1.0%, the corrosion resistance on the acid side is significantly deteriorated. Therefore, the Bi content and the In content are each set to 1.0% or less.
  • the Bi content and In content may be 0.5% or less, 0.3% or less, or 0.2% or less, respectively.
  • the chemical composition of plating layer 20 is measured by the following method. First, the plating layer is coated with an acid containing an inhibitor that suppresses the corrosion of the base iron (steel material) (for example, an acid obtained by adding 1% Hibilon (A-6) (manufactured by Sugimura Chemical Industry Co., Ltd.) to 10% hydrochloric acid). An acid solution is obtained by exfoliating and dissolving. Next, the chemical composition of the plating layer 20 can be obtained by measuring the obtained acid solution by ICP analysis.
  • an acid containing an inhibitor that suppresses the corrosion of the base iron (steel material) for example, an acid obtained by adding 1% Hibilon (A-6) (manufactured by Sugimura Chemical Industry Co., Ltd.) to 10% hydrochloric acid).
  • An acid solution is obtained by exfoliating and dissolving.
  • the chemical composition of the plating layer 20 can be obtained by measuring the obtained acid solution by ICP analysis.
  • the plating layer 20 of the plated steel sheet 1 has an area ratio of an intermetallic compound phase containing Sc having an equivalent circle diameter (equivalent circle diameter) of 5.0 ⁇ m or less in the cross section in the thickness direction of the plating layer. 0.1 to 10.0%.
  • the intermetallic compound phase with an equivalent circle diameter of 5.0 ⁇ m or less can come into contact with the surrounding ⁇ -Zn phase, compared to when it is dissolved in the ⁇ -Al phase or when the equivalent circle diameter is large. , more effectively suppresses the evaporation of Zn.
  • the area ratio of the intermetallic compound phase containing Sc and having an equivalent circle diameter of 5.0 ⁇ m or less is 0.1% or more, the above effects can be sufficiently obtained, and red rust resistance is improved.
  • the area ratio of the intermetallic compound phase containing Sc and having an equivalent circle diameter of 5.0 ⁇ m or less is more preferably 1.0% or more.
  • the lower limit of the equivalent circle diameter of the target intermetallic compound phase is not limited, it is preferable to target the intermetallic compound phase of 0.1 ⁇ m or more from the viewpoint of measurement accuracy.
  • the area ratio of the intermetallic compound phase containing Sc and having an equivalent circle diameter of 5.0 ⁇ m or less is set to 10.0% or less.
  • the area ratio of the intermetallic compound phase containing Sc and having an equivalent circle diameter of 5.0 ⁇ m or less can be controlled by the Sc content and the cooling conditions after plating, which will be described later.
  • the area of the intermetallic compound phase containing Sc in the cross section and having an equivalent circle diameter of 5.0 ⁇ m or less (a region where the equivalent circle diameter is 5.0 ⁇ m or less and Sc is 3.0% by mass or more)
  • the rate can be obtained by the following method. Five samples are taken so that a cross section in the thickness direction of the plating layer can be observed. For these samples, a rectangular range of 100 ⁇ m in the thickness direction and 500 ⁇ m in the direction perpendicular to the thickness direction was taken as one field of view, and a total of 5 fields of view were photographed at a magnification of 1500 using EDS, and a mapping image was obtained. obtain.
  • the spot diameter should be 1 to 10 nm, the voltage should be 15 kV, and the current should be 10 nA.
  • the area ratio for the observation field is obtained.
  • the average of 5 fields of view is calculated and taken as the area ratio of the intermetallic compound phase containing Sc having an equivalent circle diameter of 5.0 ⁇ m or less.
  • the adhesion amount per one side of the plating layer (hereinafter referred to simply as the adhesion amount means the adhesion amount per one side) is preferably 20 to 160 g/m 2 . If the coating weight of the plating layer is less than 20 g/m 2 , sufficient corrosion resistance may not be obtained. On the other hand, if the adhesion amount is more than 160 g/m 2 , the adhesion of the plating layer may deteriorate, and the plating may peel off.
  • the coating amount of the plating layer may be 30 g/m 2 or more, 40 g/m 2 or more, 50 g/m 2 or more, or 60 g/m 2 or more, and may be 140 g/m 2 or less, 120 g/m 2 or less, or 100 g/m 2 . or less, or 90 g/m 2 or less.
  • the adhesion amount can be measured by the following method.
  • a sample of 30 mm ⁇ 30 mm is taken from the plated steel sheet, and an acid containing an inhibitor that suppresses the corrosion of the base iron (steel) is applied to this sample (for example, 1% Hibiron (A-6) in 10% hydrochloric acid (Sugimura Chemical Industry Co., Ltd.) is added to the plated layer is peeled and dissolved, the change in weight of the plated steel sheet after peeling and dissolving is measured, and the amount of adhesion is calculated from the result.
  • an oxide film exists on the surface of the plating layer and has a thickness of 10 nm or more.
  • the oxide film can suppress the evaporation of Zn when the plated steel sheet becomes hot such as during hot stamping. If the thickness of the oxide film is less than 10 nm, Zn evaporation cannot be suppressed, resulting in a decrease in red rust resistance.
  • the thickness of the oxide film is preferably 11 nm or more, more preferably 12 nm or more. Although the upper limit of the thickness of the oxide film is not limited, the thickness of the oxide film may be 50 nm or less, 30 nm or less, or 20 nm or less.
  • This oxide film is an oxide containing Zn oxide (and Al oxide if Al is contained) formed by exposing the plated layer after plating to an environment containing oxygen such as the atmosphere. It is a film.
  • the thickness of the oxide film is obtained by a method using a high-frequency glow discharge optical emission spectrometer (GDS). Specifically, the surface of the test piece is made into an Ar atmosphere and analyzed in the depth direction while sputtering the surface in a state in which glow plasma is generated. Elements are identified from the element-specific emission spectrum wavelengths emitted when atoms are excited in glow plasma, and the emission intensity of the identified elements is estimated. Data in the depth direction are estimated from the sputtering time. The sputter time is converted into the sputter depth by obtaining the relationship between the sputter time and the sputter depth in advance using a standard sample. The sputter depth converted from the sputter time is defined as the depth from the surface.
  • GDS high-frequency glow discharge optical emission spectrometer
  • the obtained emission intensity is converted to % by mass by preparing a calibration curve.
  • the depth thus measured from the outermost surface to the position where the O content is 5% by mass is measured. This is performed at three locations, and the average of the depths of the three locations to the position where the O content is 5% by mass is taken as the thickness of the oxide film.
  • the plate thickness of the plated steel sheet according to the present embodiment is not limited, it is preferably 0.5 to 3.0 mm in consideration of the intended use.
  • the plated steel sheet according to this embodiment has the above-described characteristics, and as a result, it has excellent red rust resistance even when heated to high temperatures by welding, hot stamping, or the like.
  • the plated steel sheet according to the present embodiment can obtain the effect as long as it has the above characteristics regardless of the manufacturing method. can be manufactured. Preferred conditions are described below.
  • ⁇ Plating layer forming process> Although the method of forming the plated layer is not limited, hot dip plating is exemplified. If it is a hot-dip plating method, methods including (I) to (III) can be adopted. (I) A steel plate (plating base plate) is immersed in a hot-dip plating bath containing Sc, (II) Pull up the steel plate from the plating bath, control the amount of adhesion with wiping gas or the like, (III) Cool to room temperature.
  • (I) Immersion in Plating Bath By immersing the steel sheet in a hot-dip plating bath containing Sc, a coating layer is formed on the surface of the steel sheet.
  • the chemical composition of the plating bath contains, for example, 0.000010 to 4.0% Sc, and further Al, Si, Mg, Ca, La, Ce, Y, Cr, Ti, Ni, Co, V, Nb, Cu, Mn, Sr, Sb, Pb, B, Li, Zr, Mo, W, Ag, P, Sn, Bi, In, the balance being Zn and impurities
  • a certain chemical composition may be used.
  • the steel sheet before being immersed in the plating bath may be subjected to heat reduction treatment.
  • the steel plate before immersion in the plating bath is heat-reduced at 800 ° C. in an N 2 -5% H 2 gas atmosphere in a furnace with an oxygen concentration of 20 ppm or less, and is air-cooled with N 2 gas and immersed. After the plate temperature reaches the bath temperature +20°C, it is immersed in the plating bath.
  • the immersion time in the plating bath is preferably about 1 to 10 seconds.
  • the average cooling rate from the bath temperature to (bath temperature -50°C) is set to 5°C/sec or less so that Sc does not dissolve in the ⁇ -Al phase.
  • the bath temperature is cooled to (bath temperature -50 ° C.)
  • Sc that did not dissolve in the ⁇ -Al phase is concentrated in the Zn-based liquid phase, and (bath temperature -50 ° C.)
  • the average cooling rate from (bath temperature -50 ° C.) to 100 ° C. is less than 20 ° C./sec, coarse intermetallic compounds crystallize, and the number density of Sc-containing intermetallic compounds with an equivalent circle diameter of 5.0 ⁇ m or less. decreases.
  • the steel sheet to be subjected to the coating layer forming process is not limited, and may be a known hot-rolled steel sheet or cold-rolled steel sheet.
  • a hot-stamped article can be obtained by hot-stamping the plated steel sheet according to the present embodiment thus obtained.
  • This hot stamped product has excellent red rust resistance.
  • the conditions for obtaining the hot stamped product may be known conditions, for example, the plated steel sheet according to the present embodiment may be heated to 900 ° C., held for 100 seconds, and rapidly cooled at the same time as being molded in a mold. .
  • a steel plate containing 0.2% by mass of C and 1.3% by mass of Mn and having a thickness of 1.6 mm was used as the base sheet for plating. After cutting the original plate to 100 mm ⁇ 200 mm, it was plated with a batch-type hot-dip plating tester. When forming the plating layer, the surface of the plating stock sheet before immersion in the plating bath is heat-reduced at 800 ° C. in a N 2 -5% H 2 gas atmosphere in a furnace with an oxygen concentration of 20 ppm or less. After air-cooling with gas and the immersion plate temperature reaching the bath temperature +20°C, the plate was immersed in the plating bath having the bath temperature shown in Table 1 for about 3 seconds.
  • a 30 mm x 30 mm sample was taken from the resulting plated steel sheet, and the sample was immersed in a 10% HCl aqueous solution to which 1% of Hibilon (A-6) was added to pickle and remove the plating layer. After that, the chemical composition of the plating layer was measured by ICP analysis of the elements eluted in the aqueous solution.
  • the chemical composition of the plating layer was as shown in Table 1.
  • a values in Table 1 are Mg, Ca, La, Ce, Y, Cr, Ti, Ni, Co, V, Nb, Cu, Mn, Sr, Sb, Pb, B, Li, Zr, Mo, W , Ag, P, Sn, Bi, and In.
  • the intermetallic compound phase containing Sc having an equivalent circle diameter of 5.0 ⁇ m or less (with an equivalent circle diameter of 5.0 ⁇ m or less and Sc of 3.0 % or more) were measured.
  • the thickness of the oxide film was measured using GDS by the method described above.
  • the resulting plated steel sheet was subjected to heat treatment assuming hot stamping. Specifically, the plated steel sheet is heated by inserting it into a heating furnace in which the furnace temperature is set to 900 ° C., and after the temperature of the plated steel plate reaches the furnace temperature of -10 ° C., it is held at that temperature for 100 seconds. After that, the plated steel sheet was taken out from the furnace, and the plated steel sheet was quenched to near room temperature by sandwiching the plated steel sheet between flat plate molds at a temperature of about room temperature.
  • the red rust resistance of the plated steel sheet after heating and quenching was evaluated by the following method. That is, from the plated steel sheet after heating and quenching, a sample with a size of 50 ⁇ 100 mm was taken, and Zn phosphate treatment was performed according to the SD5350 system (manufactured by Nippon Paint Industrial Coatings Co., Ltd.). After that, electrodeposition coating (PN110 Powernics Gray: standard manufactured by Nippon Paint Industrial Coatings Co., Ltd.) was applied to a thickness of 20 ⁇ m, and baking was performed at a baking temperature of 150° C. for 20 minutes.
  • the chemical composition of the plating layer, the area ratio of the intermetallic compound phase containing Sc having an equivalent circle diameter of 5.0 ⁇ m or less, and the thickness of the oxide film are within the scope of the present invention. , and had excellent red rust resistance.
  • the plating layer does not contain Sc (No. 1) and when the Sc content is small (No. 7), the intermetallic compound phase containing Sc having an equivalent circle diameter of 5.0 ⁇ m or less The area ratio was low and the red rust resistance was not sufficient.
  • the Al content in the plating layer is excessive (No.
  • the area ratio of the intermetallic compound phase containing Sc having an equivalent circle diameter of 5.0 ⁇ m or less is low, and the red rust resistance is not sufficient. rice field.
  • the Si content in the plating layer was excessive (No. 28), the red rust resistance was not sufficient. This is because a large amount of Si is contained in the intermetallic compound containing Sc, so that the melting point of the intermetallic compound phase containing Sc increases, and even when the plated steel sheet is exposed to high temperatures, the intermetallic compound containing Sc was not melted, and the effect of suppressing Zn evaporation was not sufficiently exhibited.
  • the equivalent circle diameter containing Sc is The area ratio of the intermetallic compound phase of 5.0 ⁇ m or less was low, and the red rust resistance was not sufficient.
  • a plated steel sheet having a plating layer containing Zn which can ensure excellent red rust resistance even when exposed to high temperatures such as hot stamping and welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

このめっき鋼板は、母材鋼板と、前記母材鋼板の表面に形成されためっき層と、前記めっき層の表面に形成された酸化皮膜と、を備え、前記めっき層の化学組成が、質量%で、Sc:0.000010~4.0%を含み、前記めっき層の厚さ方向の断面において、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率が0.1~10.0%であり、前記酸化皮膜の厚みが10nm以上である。

Description

めっき鋼板
 本発明はめっき鋼板に関する。
 本願は、2022年01月13日に、日本に出願された特願2022-003724号に基づき優先権を主張し、その内容をここに援用する。
 近年、環境保護及び地球温暖化の防止のために、化学燃料の消費を抑制することが要請されている。このような要請は、例えば、移動手段として日々の生活や活動に欠かせない自動車についても例外ではない。このような要請に対し、自動車では、車体の軽量化などによる燃費の向上等が検討されている。自動車の構造の多くは、鉄、特に鋼板により形成されているので、この鋼板を薄くして重量を低減することが、車体の軽量化にとって効果が大きい。しかしながら、単純に鋼板の厚みを薄くして鋼板の重量を低減すると、構造物としての強度が低下し、安全性が低下することが懸念される。そのため、鋼板の厚みを薄くするためには、構造物の強度を低下させないように、使用される鋼板の機械的強度を高くすることが求められる。
 よって、鋼板の機械的強度を高めることにより、以前使用されていた鋼板より薄くしても機械的強度を維持又は高めることが可能な鋼板について、研究開発が行われている。このような鋼板に対する要請は、自動車製造業のみならず、様々な製造業でも同様になされている。
 一般的に、高い機械的強度を有する材料は、曲げ加工等の成形加工において、形状凍結性が低い傾向にあり、複雑な形状に加工する場合、加工そのものが困難となる。この成形性についての問題を解決する手段の一つとして、いわゆる「熱間プレス法(ホットスタンプ法、高温プレス法、ダイクエンチ法)」が挙げられる。この熱間プレス法では、成形対象である材料を一旦高温に加熱して、加熱により軟化した材料に対してプレス加工を行って成形した後に、または成形と同時に、冷却する。
 この熱間プレス法によれば、材料を一旦高温に加熱して軟化させ、材料が軟化した状態でプレス加工するので、材料を容易にプレス加工することができる。従って、この熱間プレス加工により、良好な形状凍結性と高い機械的強度とを両立したプレス成形品が得られる。特に材料が鋼の場合、成形後の冷却による焼入れ効果により、プレス成形品の機械的強度を高めることができる。
 しかしながら、この熱間プレス法を鋼板に適用した場合、例えば800℃以上の高温に加熱することにより、表面の鉄などが酸化してスケール(酸化物)が発生する。従って、熱間プレス加工を行った後に、このスケールを除去する工程(デスケーリング工程)が必要となり、生産性が低下する。また、耐食性を必要とする部材等では、加工後に部材表面へ防錆処理や金属被覆を行う必要があるので、表面清浄化工程、表面処理工程が必要となり、やはり生産性が低下する。
 このような生産性の低下を抑制する方法の例として、ホットスタンプ前の鋼板にめっき等の被覆を施すことで、耐食性を高めるとともに、デスケーリング工程を省略することが考えられている。一般に、鋼板上の被覆としては、有機系材料や無機系材料など様々な材料が使用される。なかでも鋼板に対しては、その防食性能と鋼板生産技術との観点から、犠牲防食作用のある亜鉛系めっきが、多く適用されている。
 例えば、特許文献1には、熱間プレス鋼板部材であって、質量%で、C:0.30%以上0.50%未満、Si:0.01%以上2.0%以下、Mn:0.5%以上3.5%以下、Sb:0.001%以上0.020%以下、P:0.05%以下、S:0.01%以下、Al:0.01%以上1.00%以下、およびN:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる化学組成を有し、旧オーステナイト粒の平均結晶粒径が8μm以下であり、マルテンサイトの体積率が90%以上であり、かつ、固溶C量が全C量の25%以下であるミクロ組織を有し、引張強さが1780MPa以上であり、表面に、Al系めっき層またはZn系めっき層をさらに有する熱間プレス鋼板部材が開示されている。特許文献1では、めっき層を鋼板の表面に付与することにより、熱間プレスによる鋼板表面の酸化を防止し、さらに、熱間プレス鋼板部材の耐食性を向上させることができることが開示されている。
国際公開第2019/093384号
 上述の通り、鋼板の表面にZnを含むめっき層(亜鉛系めっき層)を形成することにより、熱間プレスによる鋼板表面の酸化を防止し、さらに、熱間プレス後の鋼部材の耐食性を向上させることは行われてきた。
 このような、亜鉛系めっき層を有するめっき鋼板は、ホットスタンプや溶接等、高温に加熱されることで、Znの一部が蒸発するとともに、残存するZn(亜鉛)が基材となる鋼板から拡散するFeと合金化する。このような状態で合金化によって形成されたFe-Zn合金は、腐食早期に赤錆を生じやすい。
 しかしながら、特許文献1では赤錆に対する検討は行われていない。
 そのため、本発明は、Zn含有するめっき層を有するめっき鋼板を前提として、ホットスタンプや溶接等、高温に曝された場合にも、優れた耐赤錆性を確保できるめっき鋼板を提供することを課題とする。
 本発明者らはホットスタンプや溶接等、高温に曝された場合にも、優れた耐赤錆性を確保できるめっき鋼板を得るために検討を行った。その結果、Znを含むめっき層であっても、所定量のScを含有させ、Scを含む金属間化合物を形成することで、耐赤錆性が向上することを見出した。
 本発明は、上記の知見に鑑みてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係るめっき鋼板は、母材鋼板と、前記母材鋼板の表面に形成されためっき層と、前記めっき層の表面に形成された酸化皮膜と、を備え、前記めっき層の化学組成が、質量%で、Sc:0.000010~4.0%、Al:0~93.0%、Fe:0~15.0%、Si:0~20.0%、Mg:0~3.0%、Ca:0~3.0%、La:0~0.5%、Ce:0~0.5%、Y:0~0.5%、Cr:0~1.0%、Ti:0~1.0%、Ni:0~1.0%、Co:0~0.25%、V:0~0.25%、Nb:0~1.0%、Cu:0~1.0%、Mn:0~1.0%、Sr:0~0.5%、Sb:0~0.5%、Pb:0~0.5%、B:0~0.5%、Li:0~1.0%、Zr:0~1.0%、Mo:0~1.0%、W:0~0.5%、Ag:0~1.0%、P:0~0.5%、Sn:0~1.0%、Bi:0~1.0%、In:0~1.0%、及び残部:7.0%以上のZn、および不純物であり、Mg、Ca、La、Ce、Y、Cr、Ti、Ni、Co、V、Nb、Cu、Mn、Sr、Sb、Pb、B、Li、Zr、Mo、W、Ag、P、Sn、Bi、及びInの含有量の合計が0~5.0%であり、前記めっき層の厚さ方向の断面において、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率が0.1~10.0%であり、前記酸化皮膜の厚みが10nm以上である。
[2][1]に記載のめっき鋼板は、前記めっき層の前記化学組成が、質量%で、Al:19.0~93.0%、及びSc:0.00050~0.30%を含有してもよい。
[3][1]に記載のめっき鋼板は、前記めっき層の前記化学組成が、質量%で、Al:19.0~93.0%、及びSc:0.010~0.30%を含有し、前記めっき層の厚さ方向の断面において、前記金属間化合物相の面積率が1.0~10.0%であってもよい。
 本発明の上記態様によれば、Zn含有するめっき層を有するめっき鋼板であって、ホットスタンプや溶接等、高温に曝された場合にも、優れた耐赤錆性を確保できるめっき鋼板を提供することができる。
本実施形態に係るめっき鋼板の厚さ方向の断面の一例を示す模式図である。
 本発明の一実施形態に係るめっき鋼板(本実施形態に係るめっき鋼板)について説明する。
 本実施形態に係るめっき鋼板1は、図1に示すように、母材鋼板10と、母材鋼板10の表面に形成されためっき層20と、前記めっき層の表面に形成された酸化皮膜30と、を備える。また、本実施形態に係るめっき鋼板1は、めっき層20の化学組成が、質量%で、Sc:0.000010~4.0%を含有し、必要に応じて、Al、Fe、Siを含有してもよい。さらに、必要に応じて、Mg、Ca、La、Ce、Y、Cr、Ti、Ni、Co、V、Nb、Cu、Mn、Sr、Sb、Pb、B、Li、Zr、Mo、W、Ag、P、Sn、Bi、及びInからなる群から選択される1種以上を合計で5.0%以下の範囲でさらに含有してもよい。化学組成の残部は、Znおよび不純物からなる。
 また、本実施形態に係るめっき鋼板1は、めっき層20の、厚さ方向の断面において、Scを含有する円相当径が5.0μm以下の金属間化合物相21が所定の面積率で存在する。また、酸化皮膜30の厚みは10nm以上である。
 以下、それぞれの限定理由について説明する。
[母材鋼板]
 本実施形態に係るめっき鋼板1はめっき層20が重要であり、母材鋼板10の種類については特に限定されず、適用される製品や要求される強度や板厚等によって決定すればよい。母材鋼板として、例えば、JIS G3131:2018に記載された熱間圧延軟鋼板やJIS G3141:2021に記載された冷間圧延鋼板を用いることができる。
[めっき層]
 本実施形態に係るめっき鋼板1では、母材鋼板10の表面の少なくとも一部にめっき層20を備える。図1ではめっき層20は母材鋼板10の片面に形成されているが、両面に形成されていてもよい。
<化学組成>
 本実施形態に係るめっき鋼板1のめっき層20の化学組成について説明する。以下、各元素の含有量に関する%は、質量%を意味する。
Sc:0.000010~4.0%
 Scは本実施形態に係るめっき鋼板1のめっき層20において、重要な元素である。
 亜鉛系めっき層を有するめっき鋼板は、ホットスタンプや溶接等、高温に加熱されることで、Znの一部が蒸発する。しかしながら、めっき層20が、0.000010%以上のScを含有することで、高温でのZnの蒸発が抑制される。Znの蒸発が抑制されることで、高温に加熱されることによって表面に形成されるZn-Fe合金におけるZn含有量の低下が抑制され、高温加熱後において、耐赤錆性が向上する。
 従来Scは、原料に不純物として微量に含有されていたとしても、精錬によって除去されていた。そのため、従来のめっき鋼板のめっき層中には、Scはほとんど含有されていない。まれに、不純物として混入する場合であっても、Sc含有量は0.000004%(0.04ppm)以下であることが確認された。これに対し、本発明者らは、0.000010%(0.10ppm)以上のScの含有によって、Znの蒸発が抑制されるとの知見を新たに見出した。
 Scの含有によって、高温に加熱された場合のZnの蒸発が抑制されるメカニズムはまだ明確ではないものの、めっき後のめっき層の表面には、大気などの酸素を含む環境であればZn酸化物(及び、Alが含まれている場合にはAl酸化物)を含む薄い酸化皮膜が形成される。Scは、加熱などで温度が上昇する際に、この酸化皮膜中へ移動し、酸化皮膜を改質することで、Znの蒸発を抑制すると想定される。
 めっき層中のSc含有量が、0.000010%未満では、上記の効果が得られない。そのため、Sc含有量は、0.000010%以上とする。Sc含有量は、好ましくは0.000050%以上、0.00010%以上、0.00025%以上又は0.00050%以上であり、より好ましくは0.010%以上又は0.025%以上又は0.050%以上である。
 一方、Sc含有量が4.0%を超えてもその効果は飽和する上、コストが上昇する。そのため、Sc含有量は、4.0%以下とする。必要に応じて、Sc含有量を2.0%以下、1.00%以下又は0.60%以下としてもよい。また、Sc含有量を0.30%超にしようとすると、めっき浴の建浴が困難になる場合があるので、Sc含有量を0.30%以下としてもよい。
 上記効果は、後述するように、Scの多くが所定の円相当径を有する金属間化合物相として存在する場合に顕著である。
Al:0~93.0%
 Alは、アルミニウム(Al)、亜鉛(Zn)を含むめっき層において、耐食性を向上させるために有効な元素である。また、Alは、合金層(Al-Fe合金層)の形成に寄与し、めっき密着性の向上に有効な元素でもある。Al含有量は0%でもよいが、上記効果を十分に得るため、Alを含有させてもよい。上記効果を得る場合、Al含有量を5.0%以上とすることが好ましく、10.0%以上または15.0%以上とすることがより好ましい。また、Alは、めっき層の表面に強固な酸化皮膜を形成し、同時にScが含まれる場合にはZnの蒸発を抑制する効果を有する元素でもある。この効果を得る場合、Al含有量は19.0%以上、25.0%以上または30.0%以上とすることが好ましい。
 一方、Al含有量が93.0%超であると、Zn含有量が過少になり、耐赤錆性が低下する。そのため、Al含有量を93.0%以下とする。Al含有量は好ましくは、90.0%以下、85.0%以下、80.0%以下、75.0%以下又は70.0%以下である。Al含有量はより好ましくは、65.0%以下、60.0%以下又は55.0%以下である。
Fe:0~15.0%
 Feは、製造時にめっき原板からめっき層に拡散することで、めっき層に含まれる場合がある。特に溶融めっきの場合には、最大15.0%まで含有することがあるが、Fe含有量が15.0%以下であれば、耐赤錆性への影響は小さい。そのため、Fe含有量を15.0%以下とする。Fe含有量は好ましくは、12.0%以下、10.0%以下、8.0%以下、6.0%以下、4.0%以下又は2.0%以下である。
Si:0~20.0%
 Siは、鋼板上にめっき層を形成するにあたり、鋼板とめっき層との間に形成される合金層が過剰に厚く形成されることを抑制して、鋼板とめっき層との密着性を高める効果を有する元素である。また、Mgとともに含有される場合には、Mgと化合物を形成して、塗装後耐食性の向上に寄与する元素でもある。そのため、含有させてもよい。
 Si含有量は0%でもよいが、上記効果を得る場合、Si含有量を0.05%以上とすることが好ましい。Si含有量は、より好ましくは0.5%以上、さらに好ましくは1.0%以上である。
 一方、Si含有量が20.0%を超えると、SiがScを含む金属間化合物に多量に含まれることで、Scを含む金属間化合物相の融点が上昇する。この場合、めっき鋼板が高温に曝された場合にも、Scを含む金属間化合物が溶融しない。その結果、ScによるZn蒸発抑制効果が十分に得られなくなる。そのため、Si含有量を20.0%以下とする。めっき層の加工性の観点で、Si含有量を17.0%以下、13%以下、10.0%以下、8.0%以下、6.0%以下、4.0%以下又は2.5%以下としてもよい。
 本実施形態に係るめっき鋼板1のめっき層の化学組成は、上記の元素以外は、Zn及び不純物であってもよい。しかしながら、各種特性の向上などを目的として、または不純物として、Mg、Ca、La、Ce、Y、Cr、Ti、Ni、Co、V、Nb、Cu、Mn、Sr、Sb、Pb、B、Li、Zr、Mo、W、Ag、P、Sn、Bi、及びInからなる群から選択される1種以上を、それぞれ以下の範囲で、かつ合計で5.0%以下の範囲で含有してもよい。これらの元素は含有しなくてもよいので、これらの元素の含有量の下限は0%である。
 本実施形態に係るめっき鋼板は、耐赤錆性の向上効果が明確に得られる範囲として、Zn含有量は、7.0%以上である。Zn含有量は好ましくは、8.0%以上、10.0%以下、15.0%以上、18.0%以上、21.0%以上、25.0%、30.0%以上又は35.0%以上である。Zn含有量の上限は、100%である。必要に応じて、Zn含有量を、95.0%以下、90.0%以下、85.0以下%、81.0%以下、75.0%以下、70.0%以下、65.0%以下、60.0%以下又は55.0%以下としてもよい。
Mg:0~3.0%
 Mgは、めっき層の耐食性を高める効果を有する元素である。そのため、含有させてもよい。
 一方、Mg含有量が3.0%超であると、めっき層の加工性が低下する。また、めっき浴のドロス発生量が増大する等、製造上の問題が生じる。そのため、Mg含有量を3.0%以下とする。Mg含有量は、2.0%以下、1.0%以下、0.5%以下又は0.2%以下としてもよい。
Ca:0~3.0%
 Caは、めっき層中に含有されると、Mg含有量の増加に伴ってめっき操業時に形成されやすいドロスの形成量を減少させ、めっき製造性を向上させる元素である。そのため、Caを含有させてもよい。
 一方、Ca含有量が多いとめっき層中にCaZn11相をはじめとしたCa系金属間化合物が生成し、耐食性が低下する。そのため、Ca含有量は3.0%以下とする。Ca含有量は、2.0%以下、1.0%以下、0.5%以下又は0.2%以下としてもよい。
La:0~0.5%
Ce:0~0.5%
Y :0~0.5%
 La含有量、Ce含有量、Y含有量が過剰になると、めっき浴の粘性が上昇し、めっき浴の建浴そのものが困難となる場合がある。そのため、La含有量、Ce含有量、Y含有量を、それぞれ0.5%以下とする。La含有量、Ce含有量、Y含有量は、それぞれ0.2%以下又は0.1%以下としてもよい。
Cr:0~1.0%
Ti:0~1.0%
Ni:0~1.0%
Co:0~0.25%
V :0~0.25%
Nb:0~1.0%
Cu:0~1.0%
Mn:0~1.0%
Sr:0~0.5%
Sb:0~0.5%
Pb:0~0.5%
B :0~0.5%
Li:0~1.0%
Zr:0~1.0%
Mo:0~1.0%
W :0~0.5%
Ag:0~1.0%
P :0~0.5%
 これらの元素は、めっき層中でAl、Znなどと置換し、電位を貴に移動させることで、酸側の耐食性を改善する効果を有する元素である。そのため、含有させてもよい。
 一方、これらの元素が過剰になると、これらの元素からなる金属間化合物が形成され、酸側及び/またはアルカリ側の耐食性が悪化することが懸念される。そのため、Cr、Ti、Ni、Nb、Cu、Mn、Li、Zr、Mo、Agの含有量はそれぞれ1.0%以下、Co、Vの含有量はそれぞれ0.25%以下、Sr、Sb、Pb、B、W、Pの含有量はそれぞれ0.5%以下とする。Cr、Ti、Ni、Nb、Cu、Mn、Li、Zr、Mo、Agの含有量はそれぞれ0.5%以下、0.3%以下又は0.2%以下としてもよい。Co、Vの含有量はそれぞれ0.10%以下、0.05%以下又は0.03%以下としてもよい。Sr、Sb、Pb、B、W、Pの含有量はそれぞれ0.2%以下又は0.1%以下としてもよい。
Sn:0~1.0%
 Snは、Zn、Al、Mgを含むめっき層において、Mg溶出速度を上昇させる元素である。また、めっきの酸・アルカリ耐食性を大幅に向上させる金属間化合物を形成する元素である。そのため、含有させてもよい。
 一方、Mgの溶出速度が上昇すると、平面部耐食性が悪化する。また、酸側の耐食性が著しく悪化する。そのため、Sn含有量を1.0%以下とする。Sn含有量は0.5%以下、0.3%以下又は0.2%以下としてもよい。
Bi:0~1.0%
In:0~1.0%
 Bi、Inは、アルカリ耐食性を向上させる金属間化合物を形成する元素である。そのため、含有させてもよい。
 一方、Bi含有量、In含有量がそれぞれ1.0%を超えると、酸側の耐食性が著しく悪化する。そのため、Bi含有量、In含有量は、それぞれ1.0%以下とする。Bi含有量、In含有量はそれぞれ0.5%以下、0.3%以下又は0.2%以下としてもよい。
 上述したMg、Ca、La、Ce、Y、Cr、Ti、Ni、Co、V、Nb、Cu、Mn、Sr、Sb、Pb、B、Li、Zr、Mo、W、Ag、P、Sn、Bi、Inは、各元素の含有量は上述した範囲であっても、合計含有量が5.0%を超えると、酸側及び/またはアルカリ側の耐食性が悪化する、もしくは、めっき浴の粘性が上昇し、めっき浴の建浴そのものが困難となる場合がある。そのため、これらの元素の合計含有量は、0~5.0%とする。
 めっき層20の化学組成は、次の方法により測定する。
 まず、地鉄(鋼材)の腐食を抑制するインヒビターを含有した酸(例えば10%の塩酸に1%のヒビロン(A-6)(スギムラ化学工業株式会社製)を加えた酸)でめっき層を剥離溶解した酸液を得る。次に、得られた酸液をICP分析で測定することで、めっき層20の化学組成を得ることができる。
<組織>
 本実施形態に係るめっき鋼板1のめっき層20は、めっき層の厚さ方向の断面において、Scを含有する円相当径(円相当直径)が5.0μm以下の金属間化合物相の面積率が0.1~10.0%である。
 円相当径が5.0μm以下の金属間化合物相は、周囲のη-Zn相と接触することができ、α-Al相に固溶されている場合や、円相当径が大きい場合に比べて、より効果的にZnの蒸発の抑制に作用する。Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率が、0.1%以上であれば、上記効果が十分に得られ、耐赤錆性が向上する。Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率は、より好ましくは1.0%以上である。対象とする金属間化合物相の円相当径の下限は、限定されないが、測定精度の観点から、0.1μm以上の金属間化合物相を対象とすることが好ましい。
 一方、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率を10.0%超とするには、4.0%超のScの含有が必要となり、コストが上昇する。そのため、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率を10.0%以下とする。
 Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率は、Sc含有量と、後述するめっき後の冷却条件とによって制御することができる。
 めっき層中の断面のScを含有する円相当径が5.0μm以下の金属間化合物相(円相当径が5.0μm以下の範囲でかつScが3.0質量%以上である領域)の面積率は、以下の方法で求めることができる。
 めっき層の厚さ方向の断面が観察できるように、5つのサンプルを採取する。これらのサンプルについて、厚さ方向に100μm、厚さ方向と直角方向に500μmの矩形の範囲を1視野として、合計で5視野について、EDSを用いて1500倍の倍率で、撮影し、マッピング像を得る。その際、スポット径は1~10nm、電圧は15kV、電流は10nAとすればよい。
 得られたマッピング像のSc元素分布像から、画像解析ソフト「ImageJ」の「Analyze」機能を用いて円相当径が5.0μm以下の範囲でかつScが3.0質量%以上である領域の、観察視野に対する面積率をそれぞれ得る。5視野の平均を算出し、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率とする。
<付着量>
 めっき層の片面当たりの付着量(以下単に付着量と言う場合には、片面当たりの付着量である)は、20~160g/mが好ましい。
 めっき層の付着量が、20g/m未満であると、十分な耐食性が得られない可能性がある。一方、付着量が、160g/m超であると、めっき層の密着性が低下し、めっきが剥離するおそれがある。めっき層の付着量は、30g/m以上、40g/m以上、50g/m以上又は60g/m以上としてもよく、140g/m以下、120g/m以下、100g/m以下又は90g/m以下としてもよい。
 付着量は、以下の方法で測定することができる。
 めっき鋼板から30mm×30mmのサンプルを採取し、このサンプルに対し、地鉄(鋼材)の腐食を抑制するインヒビターを含有した酸(例えば10%の塩酸に1%のヒビロン(A-6)(スギムラ化学工業株式会社製)を加えた酸)でめっき層を剥離溶解し、剥離溶解後のめっき鋼板の重量変化測定し、その結果から、付着量を算出する。
[酸化皮膜]
 本実施形態に係るめっき鋼板では、めっき層の表面に、酸化皮膜が存在し、その厚みが10nm以上である。酸化皮膜はホットスタンプ時などめっき鋼板が高温となった際にZnの蒸発を抑制することができる。
 酸化皮膜の厚みが10nm未満であると、Zn蒸発を抑制することができず、その結果耐赤錆性が低下する。酸化皮膜の厚みは、好ましくは11nm以上、より好ましくは12nm以上である。
 酸化皮膜の厚みの上限は限定されないが、酸化皮膜の厚みは、50nm以下、30nm以下、20nm以下であってもよい。
 この酸化皮膜は、めっき後のめっき層が、大気などの酸素を含む環境に曝されることで形成されるZn酸化物(及び、Alが含まれている場合にはAl酸化物)を含む酸化皮膜である。
 酸化皮膜の厚みは、高周波グロー放電発光分析装置(GDS)を用いた方法で求める。
 具体的には、試験片表面をAr雰囲気にし、グロープラズマを発生させた状態で、表面をスパッタリングしながら深さ方向に分析する。グロープラズマ中で原子が励起されて発せられる元素特有の発光スペクトル波長から、元素を同定し、同定した元素の発光強度を見積もる。
 深さ方向のデータは、スパッタ時間から見積もる。予め標準サンプルを用いてスパッタ時間とスパッタ深さとの関係を求めておくことで、スパッタ時間をスパッタ深さに変換する。スパッタ時間から変換したスパッタ深さを、表面からの深さと定義する。得られた発光強度は検量線を作製することで質量%に換算する。
 このようにして測定した、最表面からO含有量が5質量%となる位置までの深さを測定する。これを3カ所について行い、O含有量が5質量%となる位置までの深さの3カ所の平均を、酸化皮膜の厚さとする。
 本実施形態に係るめっき鋼板の板厚は限定されないが、適用される用途等を考慮し、0.5~3.0mmであることが好ましい。
 本実施形態に係るめっき鋼板は、上述の特徴を有しており、その結果、溶接やホットスタンプなどで高温に加熱された場合にも、耐赤錆性に優れる。
[製造方法]
 本実施形態に係るめっき鋼板は、製造方法に依らず、上記の特徴を有していればその効果は得られるが、Scを含むめっき層を形成する工程(めっき層形成工程)を経ることで製造できる。
 以下、好ましい条件について説明する。
<めっき層形成工程>
 めっき層の形成方法は限定されないが、溶融めっき法が例示される。
 溶融めっき法であれば、(I)~(III)を含む方法を採用できる。
(I)Scを含む溶融めっき浴に、鋼板(めっき原板)を浸漬し、
(II)鋼板をめっき浴から引き上げ、ワイピングガス等で付着量を制御し、
(III)室温まで冷却する。
(I)めっき浴への浸漬
 鋼板を、Scを含有する溶融めっき浴へ浸漬することで、鋼板の表面にめっき層を形成する。めっき浴の化学組成は、例えば、Scを0.000010~4.0%含み、最終的に得たいめっき層の化学組成に応じてさらに、Al、Si、Mg、Ca、La、Ce、Y、Cr、Ti、Ni、Co、V、Nb、Cu、Mn、Sr、Sb、Pb、B、Li、Zr、Mo、W、Ag、P、Sn、Bi、Inを含み、残部がZn及び不純物である化学組成とすればよい。
 めっき浴へ浸漬する前の鋼板は、加熱還元処理を行ってもよい。例えば、めっき浴浸漬前の鋼板を、酸素濃度20ppm以下の炉内においてN-5%Hガス雰囲気にて800℃でめっき原板の表面を加熱還元処理し、Nガスで空冷して浸漬板温度が浴温+20℃に到達した後、めっき浴に浸漬する。めっき浴への浸漬時間は、1~10秒程度が好ましい。
(II)引き上げ
 (I)でめっき浴に浸漬した後の鋼板を、めっき浴から引き上げ、Nガスなどのワイピングガスでめっき付着量を制御する。
(III)冷却
 めっき層の付着量を制御した鋼板を、室温まで冷却する。この冷却によって、微細なScを含有する微細な金属間化合物相を晶出させる。
 具体的には、浴温~(浴温-50℃)までの平均冷却速度を5℃/秒以下とし、(浴温-50℃)~100℃の平均冷却速度を20℃/秒以上とすることで、Scを含む円相当径が5.0μm以下の金属間化合物の形成を促進する。
 浴温~(浴温-50℃)までの平均冷却速度が5℃/秒超であると、Scがα-Al相中に固溶した状態となる。α-Al相中に固溶したScは、金属間化合物相として晶出しない。そのため、Scをα-Al相中に固溶させないように、浴温~(浴温-50℃)までの平均冷却速度を5℃/秒以下とする。
 その後、浴温~(浴温-50℃)までの冷却の際に、α-Al相に固溶しなかったScはZn主体の液相へ濃化しており、(浴温-50℃)~100℃の平均冷却速度を20℃/秒以上で冷却することで、微細な金属間化合物相として晶出する。(浴温-50℃)~100℃の平均冷却速度が20℃/秒未満であると、粗大な金属間化合物が晶出し、円相当径が5.0μm以下のSc含有金属間化合物の個数密度が低下する。
 従来、めっき鋼板に対しては、パターン部を形成するために表面に酸性溶液を付着させる技術も提案されている。詳細なメカニズムは不明だが、本実施形態に係るめっき鋼板では、酸性溶液を塗布すると、表面の酸化皮膜が溶解し、Zn蒸発を防げなくなるので、酸性溶液は付着させない。
 めっき層形成工程に供する鋼板は、限定されず、公知の熱延鋼板または冷延鋼板であればよい。
 このようにして得られる本実施形態に係るめっき鋼板を、ホットスタンプすることで、ホットスタンプ成形品を得ることができる。このホットスタンプ成形品は、耐赤錆性に優れる。
 ホットスタンプ成形品を得る際の条件は、公知の条件でよく、例えば、本実施形態に係るめっき鋼板を900℃に加熱し、100秒保定してから、金型で成形と同時に急冷すればよい。
 以下に本発明の実施例を示す。以下に示す実施例は本発明の一例であり、本発明は以下に説明する実施例に制限されるものではない。
 めっき原板として、C:0.2質量%、Mn:1.3質量%を含む、板厚が1.6mmの鋼板を用いた。
 めっき原板を100mm×200mmに切断した後、バッチ式の溶融めっき試験装置でめっきを施した。
 めっき層の形成に際しては、めっき浴浸漬前のめっき原板を、酸素濃度20ppm以下の炉内においてN-5%Hガス雰囲気にて800℃でめっき原板の表面を加熱還元処理し、Nガスで空冷して浸漬板温度が浴温+20℃に到達した後、表1に記載の浴温のめっき浴に約3秒浸漬した。
 めっき浴浸漬後、引上速度20~200mm/秒で引上げた。引き抜き時、Nワイピングガスでめっき付着量を表1に示す値に制御した。
 めっき浴から鋼板を引き抜いた後、表2に示す条件でめっき浴温から室温まで冷却した。これにより、No.1~34のめっき鋼板を製造した。No.34は酸性溶液を塗布した。
 各工程において、板温はめっき原板の中心部にスポット溶接した熱電対を用いて測定した。
 得られためっき鋼板から、30mm×30mmのサイズのサンプルを採取し、このサンプルを、ヒビロン(A-6)を1%添加した10%HCl水溶液に浸漬して、めっき層を酸洗剥離した。その後、水溶液中に溶出した元素をICP分析することで、めっき層の化学組成を測定した。めっき層の化学組成は表1に示す通りであった。表1の中のA値は、Mg、Ca、La、Ce、Y、Cr、Ti、Ni、Co、V、Nb、Cu、Mn、Sr、Sb、Pb、B、Li、Zr、Mo、W、Ag、P、Sn、Bi、Inの含有量の合計である。
 まためっき鋼板に対し、上述した方法でめっき層断面の、Scを含有する円相当径が5.0μm以下の金属間化合物相(円相当径が5.0μm以下の範囲でかつScが3.0質量%以上である領域)の面積率を測定した。
 また、上述した方法で、GDSを用いて酸化皮膜の厚みを測定した。
 次いで、得られためっき鋼板に、ホットスタンプを想定した熱処理を行った。具体的には、炉内温度が900℃に設定された加熱炉内に挿入してめっき鋼板を加熱し、めっき鋼板の温度が炉内温度-10℃に到達してから100秒間その温度に保定し、その後、炉から取り出し、室温程度の温度にある平板金型でめっき鋼板を挟み込んで室温付近までめっき鋼板を急冷した。
 以下の方法で加熱、急冷後(ホットスタンプ後)のめっき鋼板の耐赤錆性を評価した。
 すなわち、加熱及び急冷した後のめっき鋼板から、50×100mmのサイズのサンプルを採取し、りん酸Zn処理を、SD5350システム(日本ペイント・インダストリアルコーティングス社製規格)に従い実施した。その後、電着塗装(PN110パワーニクスグレー:日本ペイント・インダストリアルコーティングス社製規格)を、厚みが20μmになるように実施し、焼き付け温度150℃、20分で焼き付けを行った。
 その後、サンプル中央に地鉄へ到達するカットを導入し、JIS H 8502:1999の8.1 中性塩水噴霧サイクル試験方法に準じた複合サイクル腐食試験に供して、カット部から赤錆が発生するサイクル数を測定した。
 赤錆発生サイクルが180サイクル超の場合「AAA」、180サイクル以下120サイクル超の場合は「AA」、60~120サイクルの場合は「A」、60サイクル未満の場合は、「B」とし、[AAA]、「AA」または「A」であれば、耐赤錆性に優れると判断した。
 表1及び表2から分かるように、めっき層の化学組成、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率、酸化皮膜の厚みが本発明範囲にある発明例では、耐赤錆性に優れていた。
 一方、めっき層にScが含有されていない場合(No.1)、Sc含有量が少ない場合(No.7)には、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率が低く、耐赤錆性が十分ではなかった。
 また、めっき層中のAl含有量が過剰の場合(No.6)は、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率が低く、耐赤錆性が十分ではなかった。
 また、めっき層中のSi含有量が過剰の場合(No.28)は、耐赤錆性が十分ではなかった。これは、SiがScを含む金属間化合物に多量に含まれることで、Scを含む金属間化合物相の融点が上昇し、めっき鋼板が高温に曝された場合にも、Scを含む金属間化合物が溶融せず、Zn蒸発抑制効果が十分に発揮されなかったためと考えられる。
 また、めっき層の化学組成は好ましい範囲であっても、めっき浴浸漬後の冷却条件が好ましい条件でない場合(No.15、No.24、No.31)では、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率が低く、耐赤錆性が十分ではなかった。
 また、酸性溶液の塗布を受けた場合(No.34)は、酸化皮膜の厚みが薄く、耐赤錆性が十分ではなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、Zn含有するめっき層を有するめっき鋼板であって、ホットスタンプや溶接等、高温に曝された場合にも、優れた耐赤錆性を確保できるめっき鋼板を提供することができる。
 1  めっき鋼板
 10  鋼板
 20  めっき層
 21  Sc含有金属間化合物相
 30  酸化皮膜
 

Claims (3)

  1.  母材鋼板と、
     前記母材鋼板の表面に形成されためっき層と、
     前記めっき層の表面に形成された酸化皮膜と、
    を備え、
     前記めっき層の化学組成が、質量%で、
     Sc:0.000010~4.0%、
     Al:0~93.0%、
     Fe:0~15.0%、
     Si:0~20.0%、
     Mg:0~3.0%、
     Ca:0~3.0%、
     La:0~0.5%、
     Ce:0~0.5%、
     Y:0~0.5%、
     Cr:0~1.0%、
     Ti:0~1.0%、
     Ni:0~1.0%、
     Co:0~0.25%、
     V:0~0.25%、
     Nb:0~1.0%、
     Cu:0~1.0%、
     Mn:0~1.0%、
     Sr:0~0.5%、
     Sb:0~0.5%、
     Pb:0~0.5%、
     B:0~0.5%、
     Li:0~1.0%、
     Zr:0~1.0%、
     Mo:0~1.0%、
     W:0~0.5%、
     Ag:0~1.0%、
     P:0~0.5%、
     Sn:0~1.0%、
     Bi:0~1.0%、
     In:0~1.0%、及び
     残部:7.0%以上のZn、および不純物であり、
     Mg、Ca、La、Ce、Y、Cr、Ti、Ni、Co、V、Nb、Cu、Mn、Sr、Sb、Pb、B、Li、Zr、Mo、W、Ag、P、Sn、Bi、及びInの含有量の合計が0~5.0%であり、
     前記めっき層の厚さ方向の断面において、Scを含有する円相当径が5.0μm以下の金属間化合物相の面積率が0.1~10.0%であり、
     前記酸化皮膜の厚みが10nm以上である、
    ことを特徴とするめっき鋼板。
  2.  前記めっき層の前記化学組成が、質量%で、
     Al:19.0~93.0%、及び
     Sc:0.00050~0.30%、
    を含有する
    ことを特徴とする請求項1に記載のめっき鋼板。
  3.  前記めっき層の前記化学組成が、質量%で、
     Al:19.0~93.0%、及び
     Sc:0.010~0.30%、
    を含有し、
     前記めっき層の厚さ方向の断面において、前記金属間化合物相の面積率が1.0~10.0%である、
    ことを特徴とする請求項1に記載のめっき鋼板。
PCT/JP2022/044893 2022-01-13 2022-12-06 めっき鋼板 WO2023135982A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022003724 2022-01-13
JP2022-003724 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023135982A1 true WO2023135982A1 (ja) 2023-07-20

Family

ID=87278790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044893 WO2023135982A1 (ja) 2022-01-13 2022-12-06 めっき鋼板

Country Status (1)

Country Link
WO (1) WO2023135982A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221738A1 (ja) * 2017-06-02 2018-12-06 新日鐵住金株式会社 ホットスタンプ部材
WO2020111230A1 (ja) * 2018-11-30 2020-06-04 日本製鉄株式会社 アルミめっき鋼板、ホットスタンプ部材及びホットスタンプ部材の製造方法
WO2021106178A1 (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 ホットスタンプ用めっき鋼板およびホットスタンプ部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221738A1 (ja) * 2017-06-02 2018-12-06 新日鐵住金株式会社 ホットスタンプ部材
WO2020111230A1 (ja) * 2018-11-30 2020-06-04 日本製鉄株式会社 アルミめっき鋼板、ホットスタンプ部材及びホットスタンプ部材の製造方法
WO2021106178A1 (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 ホットスタンプ用めっき鋼板およびホットスタンプ部材

Similar Documents

Publication Publication Date Title
KR102518795B1 (ko) 알루미늄 도금 강판, 핫 스탬프 부재 및 핫 스탬프 부재의 제조 방법
TWI682066B (zh) Fe-Al系鍍敷熱壓印構件及Fe-Al系鍍敷熱壓印構件的製造方法
JPWO2018221738A1 (ja) ホットスタンプ部材
CN114717502A (zh) 设置有提供牺牲阴极保护的含镧涂层的钢板
JP7248930B2 (ja) ホットスタンプ成形体
JP7332943B2 (ja) ホットスタンプ成形体
CN111511942B (zh) 镀铝系钢板、镀铝系钢板的制造方法及汽车用部件的制造方法
KR102168599B1 (ko) 코팅된 금속 기판 및 제조 방법
JP6414387B2 (ja) 自動車部材の製造方法
WO2023135982A1 (ja) めっき鋼板
JP7453583B2 (ja) Alめっきホットスタンプ鋼材
JPH08277453A (ja) 耐食性、耐熱性に優れた溶融アルミニウムめっき鋼板及びその製造法
JP3383119B2 (ja) 光沢保持性、耐食性に優れた溶融アルミめっき鋼板及びその製造法
WO2023135981A1 (ja) ホットスタンプ成形品
JP3383125B2 (ja) 耐食性、耐熱性に優れた溶融アルミめっき鋼板及びその製造法
JP3383121B2 (ja) 耐食性、耐熱性に優れたステンレス系溶融アルミめっき鋼板及びその製造法
WO2024122124A1 (ja) ホットスタンプ成形体
WO2022154081A1 (ja) ホットスタンプ部材
JPH0953187A (ja) 優れた加工性・耐食性を有する溶融アルミ系めっき鋼板
CN117836461A (zh) 热冲压成形体
KR20230100741A (ko) 도금 강재
JP3383126B2 (ja) 耐熱性、耐食性に優れた溶融アルミめっき鋼板及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023573902

Country of ref document: JP

Kind code of ref document: A