WO2023135746A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2023135746A1
WO2023135746A1 PCT/JP2022/001139 JP2022001139W WO2023135746A1 WO 2023135746 A1 WO2023135746 A1 WO 2023135746A1 JP 2022001139 W JP2022001139 W JP 2022001139W WO 2023135746 A1 WO2023135746 A1 WO 2023135746A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
measurement
information
resources
reference signal
Prior art date
Application number
PCT/JP2022/001139
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 原田
大輔 栗田
真由子 岡野
康介 島
真哉 岡村
知也 小原
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/001139 priority Critical patent/WO2023135746A1/en
Publication of WO2023135746A1 publication Critical patent/WO2023135746A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • uplink (UL) resources will be insufficient compared to downlink (DL) resources.
  • one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that improve resource utilization efficiency.
  • a terminal provides resource configuration information for which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed, and information about time resources of DL reference signals for measurement. Based on at least one of the receiving unit to receive, the resource configuration information, the information on the time resource, and a report of capability information on measurement of the DL reference signal for measurement, the DL reference signal for measurement and a control unit for controlling the measurement based on.
  • DL downlink
  • UL uplink
  • resource utilization efficiency can be improved.
  • FIG. 1A and 1B are diagrams showing an example of slot configuration settings.
  • FIG. 2 is a diagram illustrating an example of the configuration of XDD.
  • 3A and 3B are diagrams illustrating an example of time domain and frequency domain resource configuration for XDD operation.
  • FIG. 4 is a diagram illustrating an example of measurements in XDD resources.
  • 5A and 5B are diagrams illustrating an example of XDD resource settings according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a combination of DL reception and UL transmission that allows simultaneous transmission and reception according to the second embodiment.
  • 7A and 7B are diagrams illustrating an example of XDD resource settings according to the third embodiment.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • FIG. 12 is a diagram illustrating an example of a vehicle according to one embodiment;
  • unlicensed band In unlicensed bands (eg, 2.4 GHz band, 5 GHz band, 6 GHz band, etc., may be called unlicensed spectrum, shared spectrum), for example, Wi-Fi system, Licensed-Assisted Access (LAA) is supported Since it is assumed that a plurality of systems such as a system (LAA system) coexist, transmission collision avoidance and/or interference control among the plurality of systems is considered necessary.
  • LAA Licensed-Assisted Access
  • LAA the data transmission device, before transmitting data in the unlicensed band, other devices (eg, base stations, user terminals, Wi-Fi devices, etc.) of Perform listening to check for transmission.
  • the listening includes Listen Before Talk (LBT), Clear Channel Assessment (CCA), carrier sense, channel sensing, sensing, channel access procedure, shared spectrum channel access procedure, energy It may be called detection (Energy Detection (ED)) or the like.
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • carrier sense channel sensing, sensing, channel access procedure, shared spectrum channel access procedure, energy It may be called detection (Energy Detection (ED)) or the like.
  • the transmitting device may be, for example, a base station (eg, gNodeB (gNB), may also be referred to as a network (NW)) on the downlink (DL) and a user terminal (UE) on the uplink (UL). good.
  • the receiving device that receives data from the transmitting device may be, for example, a user terminal in DL and a base station (NW) in UL.
  • the transmitting device is detected that there is no transmission of other devices in the LBT (idle state) for a predetermined period (eg, immediately after or backoff period) after starting data transmission .
  • Future wireless communication systems for example, 5G, 5G+, New Radio (NR), 3GPP Rel. 15 and later are also considering the use of unlicensed bands.
  • An NR system using an unlicensed band may be called an NR-Unlicensed (U) system, an NR LAA system, or the like.
  • NR-U may also include dual connectivity (DC) between licensed and unlicensed bands, stand-alone (SA) for unlicensed bands, and the like.
  • DC dual connectivity
  • SA stand-alone
  • a node eg, base station, UE
  • the base station eg, gNB
  • the base station acquires a transmission opportunity (TxOP) and transmits when the LBT result is idle.
  • TxOP transmission opportunity
  • the base station or UE does not transmit if the LBT result is busy (LBT-busy).
  • the time of transmission opportunity may be referred to as the Channel Occupancy Time (COT).
  • COT Channel Occupancy Time
  • LBT-idle may be read as LBT success.
  • LBT-busy may be read as LBT failure.
  • XDD frequency division duplex
  • TDD time division duplex
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • FDD Frequency Division Duplex
  • DL reception and UL transmission can be performed simultaneously, which is preferable from the viewpoint of delay reduction.
  • the DL and UL resource ratio is fixed (eg, 1:1).
  • TDD Time Division Duplex
  • DL and UL resources for example, in a general environment where DL traffic is relatively large, it is possible to increase the amount of DL resources and improve DL throughput. It is possible.
  • Rel Considering the time ratio of transmission and reception with TDD up to 16, there may be cases where the transmission opportunities for UL signals/channels are less than the reception opportunities for DL signals/channels. In such a case, the UE may not be able to transmit UL signals/channels frequently, which may cause delays in transmission of critical UL signals/channels. Signal/channel congestion at UL transmission opportunities is also a concern, as there are fewer UL transmission opportunities compared to DL reception opportunities. Furthermore, in TDD, the time resource for transmitting UL signals/channels is limited, so the application of UL coverage extension technology by, for example, repetition transmission (Repetition) is also limited.
  • the division duplex method may be called XDD (Cross Division Duplex).
  • XDD may refer to a duplexing method that frequency division multiplexes the DL and UL within one component carrier (CC) of the TDD band or on multiple CCs (DL and UL can be used simultaneously). If the duplexing method is applied to multiple CCs, it may mean that UL is available on another CC in time resources where DL is available on another CC.
  • the plurality of CCs may be CCs in the same band.
  • Fig. 1A shows the Rel. 16 is a diagram showing an example of setting of TDD defined up to 16.
  • FIG. 1A a UE is configured with TDD slots/symbols in the bandwidth of one component carrier (CC) (cell, which may also be called a serving cell).
  • CC component carrier
  • the time ratio between DL slots and UL slots is 4:1.
  • FIG. 1B is a diagram showing an example of the configuration of XDD.
  • resources used for DL reception and resources used for UL transmission overlap in time within one component carrier (CC).
  • CC component carrier
  • both ends of the frequency domain in one CC are configured as DL, and by configuring the DL to sandwich the UL resource, cross-link interference with neighboring carriers (Cross It is possible to avoid and mitigate the occurrence of Link Interference (CLI). Also, a guard area may be set at the boundary between the DL resource and the UL resource.
  • FIG. 2 is a diagram showing an example of the configuration of XDD.
  • a part of the DL resource of the TDD band is used as the UL resource, and the DL and the UL are partially overlapped in terms of time.
  • each of the multiple UEs receives the DL channel/signal during the DL-only period.
  • a certain UE performs reception of the DL channel / signal, and another UE (UE # 2 in the example of FIG. 2 ) carries out the transmission of the UL channels/signals.
  • the base station performs simultaneous DL and UL transmission and reception.
  • each of the multiple UEs transmits UL channels/signals.
  • the DL frequency resource and UL frequency resource in the UE carrier are set as DL bandwidth part (BWP) and UL BWP, respectively. be.
  • BWP DL bandwidth part
  • UL BWP UL bandwidth part
  • the time resource in the TDD carrier for UE is configured as at least one of DL, UL and flexible (FL) in TDD configuration.
  • time domain and frequency domain resources for XDD operation are being considered. For example, for UE #1 in FIG. 2, by setting the XDD resource (the period in which DL and UL overlap) in the same way as the existing DL resource (for example, using frequency domain resource allocation (FDRA) (while avoiding using part of the UL resource for the UE), the impact on the specification/UE can be minimized (see Figure 3A).
  • FDRA frequency domain resource allocation
  • XDD resources are configured in the same way as existing UL resources (for example, frequency domain resource allocation (FDRA) is used to use the DL resource part (while avoiding FDRA).
  • FDRA frequency domain resource allocation
  • the terminal performs measurement (which may also be referred to as measurement or measurement operation).
  • a resource on which a DL reference signal eg, at least one of a synchronization signal block (SSB) and a channel state information reference signal (CSI-RS)
  • CSI-RS channel state information reference signal
  • a received signal strength eg, a Received Signal Strength Indicator (RSSI )
  • RSSI Received Signal Strength Indicator
  • the UE performs measurements in the DL resources. be able to.
  • FIG. 4 is a diagram showing an example of measurements in XDD resources.
  • XDD resources are configured for multiple UEs (UE#1 and UE#2) as shown in FIG.
  • UE#1 performs DL reception
  • UE#2 performs UL transmission in the XDD resource of FIG.
  • UE#1 and UE#2 use different time resources for making measurements. In such a case, sufficient consideration has not been given as to how to implement the measurement operation.
  • UEs are considering performing (supporting) DL reception and UL transmission in the same time resource.
  • DL reception and UL transmission in the same time resource transmission and reception in which DL reception resource and UL transmission resource are frequency division multiplexed (FDM), simultaneous transmission and reception operation, simultaneous transmission and reception, full duplex (FD) communication , subband non-overlapping full duplex, subband non-overlapping full duplex communication, XDD, XDD communication, XDD operation, time frequency division multiplexing, time frequency division multiplexing communication, time frequency division multiplexing operation , may be read interchangeably.
  • FDM frequency division multiplexed
  • FD full duplex
  • FD full duplex
  • subband non-overlapping full duplex subband non-overlapping full duplex
  • subband non-overlapping full duplex communication subband non-overlapping full duplex communication
  • XDD XDD communication
  • XDD operation time frequency division multiplexing
  • time frequency division multiplexing communication time frequency division multiplexing operation
  • Sub-band non-overlapping full-duplex communication may be performed on the XDD resources described above.
  • the UE performs at least one of reception of data / control information from any cell and measurement operation targeting a plurality of cells including neighboring cells. can be considered.
  • the UE can transmit data/control information to any cell, and UL reference signals (eg, for measurements) and It is conceivable to perform at least one of transmission of PRACH and
  • the functions required of the UE are common or different. Insufficient consideration of whether In addition, whether or not it is possible to simultaneously perform transmission and DL reception operations of the UL reference signal/random access channel for measurement, which uses a beam different from the data, and simultaneous transmission and reception of data with the serving cell can be performed. Regarding whether or not it is possible, there is not sufficient consideration of whether the functions required of the UE are the same or different.
  • the band (TDD band) in which the XDD configuration is used includes the unlicensed band (unlicensed band, unlicensed TDD band, NR-Unlicensed (U) system, or shared spectrum) frequency.
  • the inclusion of obi is being considered.
  • the following problems may occur if the UE starts UL transmission in some bands (frequency resources) There is: - If the UL transmission is started without LBT, interference will occur. • The received power of the DL channel/signal impacts the LBT band including XDD resources, and the LBT for UL transmission fails. - Setting the guard period (time resource) / guard subcarrier (frequency resource) to avoid the above interference / LBT failure suppresses the efficiency of resource utilization.
  • ... in the present disclosure may mean any one of ... or a combination thereof (that is, ... may be read as either one or a combination thereof).
  • A/B and “at least one of A and B” may be read interchangeably. Also, in the present disclosure, “A/B/C” may mean “at least one of A, B and C.”
  • activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
  • supporting, controlling, controllable, operating, capable of operating, etc. may be read interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters
  • information elements IEs
  • settings etc.
  • MAC Control Element CE
  • update command activation/deactivation command, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), and the like.
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), or the like.
  • DCI downlink control information
  • UCI uplink control information
  • indices, identifiers (ID), indicators, resource IDs, etc. may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • channel, signal, reference signal, and channel/signal may be read interchangeably.
  • reception of DL channels/signals, DL reception, and DL transmission may be read interchangeably.
  • UL channel/signal transmission, UL transmission, and UL reception may be read interchangeably.
  • XDD resources may be configured/indicated to the UE using higher layer signaling (RRC signaling/MAC CE) and/or physical layer signaling (DCI).
  • RRC signaling/MAC CE higher layer signaling
  • DCI physical layer signaling
  • the higher layer signaling may be a specific RRC parameter/MAC CE field.
  • the specific RRC parameter/MAC CE field may be an XDD-configured parameter or a TDD-configured parameter.
  • an XDD resource may mean a resource in which a DL resource and a UL resource overlap (FDM) in time.
  • the duplication of the DL resource and the UL resource may mean that all of the DL resource and the UL resource are duplicated, or that some of the DL resource and the UL resource are duplicated.
  • measurements / measurements are Radio Resource Management (RRM) measurements, CLI measurements, measurements of system frame number and frame timing difference (System Frame Number (SFN) and Frame Timing Difference), received power / received It may mean at least one of quality (eg, L1-RSRP/SINR) measurement, channel state information (CSI) measurement, and positioning measurement.
  • RRM Radio Resource Management
  • CLI CLI measurements
  • SFN System Frame Number
  • SFN System Frame Number
  • CSI channel state information
  • the UE may assume/expect that XDD resources are not configured in specific time resources associated with DL reference signals (eg, DL reference signals for measurement). Also, the UE may not assume/expect that the XDD resource will be configured in a specific time resource associated with the DL reference signal (eg, DL reference signal for measurement).
  • a specific time resource associated with the DL reference signal is, for example, a time resource (e.g., symbol) to which the DL reference signal is mapped, a specific number of temporally before/after including the time resource to which the DL reference signal is mapped. (eg, 1) time resources (eg, symbols) and/or time resources (eg, slots) including DL reference signals.
  • the DL reference signal may be at least one of SSB, CSI-RS, CSI-RS for mobility, RSSI measurement resource, and PRS.
  • the time resource of the DL reference signal may be configured by a higher layer parameter/DCI.
  • the UE for the time resources of the configured DL reference signal (or a specific number of temporally forward / backward time resources including the time resources, slots including the time resources), the XDD resource is It may be assumed that it is not set.
  • the UE may assume/expect that the XDD resource will be configured in a specific time resource associated with the DL reference signal.
  • the UE does not need to perform measurements based on DL reference signals that overlap in the time domain with XDD resources (or report measurements based on DL reference signals). Also, the UE may not receive the DL reference signal. Also, the UE may ignore the configuration/instruction regarding reception of DL reference signals.
  • the time resources/XDD resources of the DL reference signal may be configured separately by higher layer parameters/DCI.
  • the UE does not need to perform measurements based on the DL reference signal (or report measurements based on the DL reference signal).
  • the UE may perform measurements based on some resources of the DL reference signal that do not overlap with the XDD resources (or report measurements based on the part of the resources).
  • the UE may report UE Capability Information regarding measurements in XDD resources.
  • the UE capability information may be defined by whether or not the UE can perform measurements on XDD resources.
  • the UE When the UE reports the UE capability information (for example, information indicating that the XDD resource can be measured), the UE assumes/expects that the XDD resource is configured in a specific time resource related to the DL reference signal. You may
  • a specific time resource associated with the DL reference signal is, for example, a time resource (e.g., symbol) to which the DL reference signal is mapped, a specific number of temporally before/after including the time resource to which the DL reference signal is mapped. (eg, 1) time resources (eg, symbols) and/or time resources (eg, slots) including DL reference signals.
  • the DL reference signal may be at least one of SSB, CSI-RS, CSI-RS for mobility, RSSI measurement resource, and PRS.
  • the UE may determine whether to ignore the configuration of XDD resources that overlap with the DL reference signal based on specific higher layer signaling. The UE may decide to ignore the configuration of XDD resources that overlap with the DL reference signal if certain higher layer parameters are received.
  • the UE capability information may be defined for a specific frequency range (eg, FR2) or defined separately for each frequency range (eg, FR1/FR2 (FR2-1/FR2-2)). may be
  • FIGS. 5A and 5B are diagrams showing an example of XDD resource settings according to the first embodiment.
  • XDD resources are not configured in symbols to which DL reference signals are mapped.
  • XDD resources can be configured in resources other than symbols to which DL reference signals are mapped.
  • XDD resources are not configured in slots to which DL reference signals are mapped.
  • XDD resources can be configured in resources other than slots to which DL reference signals are mapped.
  • UE capability information for subband non-overlapping full duplex is described.
  • the UE may report UE capability information regarding subband non-overlapping full duplex to the network (eg, base station).
  • the network eg, base station
  • the UE capability information may be defined by whether or not subband non-overlapping full-duplex is supported.
  • Subband non-overlapping full duplex may be performed on XDD resources.
  • the UE/base station may follow at least one of embodiments 2-1 to 2-3 below.
  • the DL reception may include reception of DL reception for measurement (DL reference signal for measurement).
  • the UE may simultaneously perform DL reception and UL transmission for predefined DL reception and UL transmission combinations.
  • UE capability information for subband non-overlapping full-duplex, a combination of DL reception and UL transmission capable of simultaneous transmission and reception may be defined.
  • the DL reception may not include reception of DL reception for measurement (DL reference signal for measurement).
  • the first capability information may not indicate that DL reception and UL transmission for measurement can be performed simultaneously.
  • the UE may simultaneously perform DL reception and UL transmission for predefined DL reception and UL transmission combinations.
  • UE capability information (second capability information) regarding subband non-overlapping full-duplex may be defined separately from the first capability information.
  • the second capability information may indicate that DL reception including DL reception for measurement and UL transmission can be performed simultaneously.
  • the UE may report on the UE capability information for subband non-overlapping full-duplex whether or not it supports predefined DL reception and UL transmission combinations.
  • the UE may report which combination of predefined DL reception and UL transmission combinations it supports for UE capability information regarding subband non-overlapping full-duplex.
  • the UE capability information for subband non-overlapping full-duplex may be defined by which combination of predefined DL reception and UL transmission combinations is supported.
  • a combination of DL reception and UL transmission may include a combination including reception of DL reference signals for measurements.
  • a combination of DL reception and UL transmission may include a combination including transmission of UL reference signals (which may include PRACH) for measurement.
  • capability information about whether to support simultaneous transmission and reception of a combination including reception of DL reference signals for measurement, and support for simultaneous transmission and reception of combinations including transmission of UL reference signals for measurement (which may include PRACH)
  • the capability information regarding whether or not to perform may be specified as separate capability information or may be specified as common capability information.
  • FIG. 6 is a diagram showing an example of a combination of DL reception and UL transmission capable of simultaneous transmission and reception according to the second embodiment.
  • a UE reporting UE capability information for subband non-overlapping full duplex may support all combinations defined in the specification.
  • a UE reporting UE capability information (eg, first capability information) for subband non-overlapping full-duplex uses DL for measurement out of all combinations specified in the specification.
  • a combination that does not include reception/transmission of /UL reference signals may be supported.
  • the UE reporting UE capability information (eg, first capability information) for subband non-overlapping full duplex selects a specific combination among all combinations specified in the specification. may support.
  • DL data reception, DL control reception, measurement DL reference signal reception, and non-measurement DL reference signal reception are defined as DL reception
  • UL transmission is defined as UL data transmission, UL control transmission, and measurement.
  • UL reference signal transmission for non-measurement and UL reference signal transmission for non-measurement are defined.
  • DL data reception may be interchanged with DL data, PDSCH, and signals transmitted using PDSCH.
  • DL control reception may be interchanged with DL control information, PDCCH, CORESET, search space set, DCI, and signals transmitted using PDCCH.
  • the measurement DL reference signal reception includes measurement DL reference signals, synchronization signals, synchronization signal blocks, cell-specific reference signals (CRS), channel state information reference signals (Channel State Information Reference signal (CSI-RS)), CSI-RS for mobility, demodulation reference signal (DMRS), positioning reference signal (PRS), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), Tracking Reference Signal (TRS)), and at least one of RSSI measurement resources.
  • CRS cell-specific reference signals
  • CSI-RS Channel State Information Reference signal
  • CSI-RS Channel State Information Reference signal
  • DMRS demodulation reference signal
  • PRS positioning reference signal
  • phase tracking reference signal Phase Tracking Reference Signal
  • TRS Tracking Reference Signal
  • non-measurement DL reference signal reception includes non-measurement DL reference signals, synchronization signals, synchronization signal blocks, CRS, CSI-RS, CSI-RS for mobility, DMRS, PRS, PTRS, and TRS. , may be interchanged with at least one of
  • UL data transmission may be interchanged with UL data, PUSCH, and a signal transmitted using PUSCH.
  • UL control transmission may be interchanged with UL control information, PUCCH, a signal transmitted using PUCCH, and UCI.
  • the measurement UL reference signal transmission includes a measurement UL reference signal, a measurement reference signal (SRS), a PRS, a demodulation reference signal (DMRS), a PRACH, a random access channel, and a random PUSCH for the access response.
  • SRS measurement reference signal
  • PRS measurement reference signal
  • DMRS demodulation reference signal
  • non-measurement UL reference signal transmission may be interchanged with at least one of SRS, PRS, DMRS, PRACH, random access channel, and PUSCH for random access response.
  • a UE may not support a combination including reception of DL reference signals for measurement, even when reporting UE capability information. Also, for example, a UE may not support a combination including UL reference signal transmission for measurement even when reporting UE capability information.
  • the UE may report UE capability information regarding whether transmission and reception in the serving cell are possible during the measurement gap.
  • the capability information may be included in the UE capability information regarding subband non-overlapping full-duplex described above, or may be defined as separate capability information from the UE capability information regarding sub-band non-overlapping full-duplex.
  • the third embodiment describes the operation of XDD using unlicensed bands (shared spectrum).
  • the UE may receive information that configures/instructs use of unlicensed bands.
  • the third embodiment is subdivided into embodiments 3-1 and 3-2 described below.
  • the UE may follow at least one method described in Embodiment 3-1 or 3-2.
  • XDD resources may not be configured in the unlicensed TDD band.
  • the unlicensed TDD band may not be used in XDD resources.
  • a UE may assume that unlicensed TDD bands are not utilized in XDD resources.
  • XDD resources may not be configured in the unlicensed TDD band.
  • the UE may receive information about performing LBT (sensing) in the unlicensed TDD band.
  • the information may be information instructing to perform LBT, may be information instructing not to perform LBT.
  • XDD resources may be configured in the unlicensed TDD band.
  • the UE may decide not to perform LBT (sensing) and any UL transmissions in the unlicensed TDD band.
  • XDD resources may be configured in the unlicensed TDD band.
  • the UE may comply with at least one of embodiments 3-2-1 to 3-2-3 described below.
  • FDM of DL/UL resources may be performed using specific frequency resource widths.
  • a specific resource may be defined as the width of the frequency resource of the DL resource/UL resource (see FIG. 7A).
  • the UE may assume/expect/judgment to use a specific resource as the frequency resource width of the DL resource/UL resource for the XDD resource in the unlicensed TDD band.
  • the specific resource may be the bandwidth (eg, 20 MHz width) where LBT (sensing) is performed.
  • the specific resource may be called a resource block set (RB set).
  • a guard band may be set at the boundary between the DL resource and the UL resource in the XDD resource (see FIG. 7B).
  • the bandwidth of the frequency resource of the guard band may be specified in advance, or may be notified to the UE by higher layer signaling.
  • guard bands guard frequencies, guard subcarriers, and frequency resources (bands/subcarriers) for which resources are not configured may be read interchangeably.
  • FDM of DL/UL resources may be performed using specific frequency resource widths.
  • a specific resource may be defined as the width of the frequency resource of the DL resource/UL resource.
  • the UE may assume/expect/judgment to use a specific resource as the frequency resource width of the DL resource/UL resource for the XDD resource in the unlicensed TDD band.
  • the specific resource may have a bandwidth smaller than the bandwidth in which LBT (sensing) is performed (eg, 20 MHz width).
  • the particular resource may have a smaller bandwidth than a resource block set (RB set).
  • DL resources and DL resources may be FDMed within a bandwidth (eg, 20 MHz width) where LBT (sensing) is performed.
  • At least one of the above embodiments 3-1 and 3-2 includes a first unlicensed band (eg, 60 GHz band unlicensed band) and a second unlicensed band (eg, 5/6 GHz band unlicensed band ) and may be commonly applied to
  • a first unlicensed band eg, 60 GHz band unlicensed band
  • a second unlicensed band eg, 5/6 GHz band unlicensed band
  • At least one of the above embodiments 3-1 and 3-2 includes a first unlicensed band (eg, 60 GHz band unlicensed band) and a second unlicensed band (eg, 5/6 GHz band unlicensed band ) and may be applied separately to .
  • a first unlicensed band eg, 60 GHz band unlicensed band
  • a second unlicensed band eg, 5/6 GHz band unlicensed band
  • XDD resource configuration may be allowed in the case of channel access without LBT (sensing).
  • any of the above embodiments 3-1 and 3-2 based on whether the UE supports simultaneous transmission and reception (eg, whether to report UE capability information for subband non-overlapping full duplex) may apply. For example, if the UE supports simultaneous transmission and reception, Embodiment 3-2 above may be applied.
  • the third embodiment it is possible to prevent inappropriate interference from occurring in unlicensed bands due to XDD operation.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
  • Transmitting/receiving section 120 transmits configuration information of resources (XDD resources) in which downlink (DL) resources and uplink (UL) resources can be frequency-division multiplexed, and information on time resources of DL reference signals for measurement.
  • XDD resources configuration information of resources
  • DL downlink
  • UL uplink
  • Control section 110 uses at least one of the configuration information of the resource, the information on the time resource, and the report of capability information on measurement of the DL reference signal for measurement, to the DL reference signal for measurement. Based measurement may be set (first embodiment).
  • the transmitting/receiving unit 120 may receive capability information indicating whether simultaneous transmission/reception of a specific downlink (DL) signal and a specific uplink (UL) signal is possible.
  • the control unit 110 may control simultaneous transmission and reception of the specific DL signal and the specific UL signal in resources (XDD resources) in which DL resources and UL resources can be frequency division multiplexed (second embodiment ).
  • Transmitting/receiving section 120 stores first configuration information regarding the use of frequencies to which shared spectrum channel access is applied, and resources (XDD resources) in which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed. and second setting information to be set may be transmitted.
  • the control unit 110 may use the first setting information and the second setting information to set the use of resources capable of frequency division multiplexing in the frequencies to which the shared spectrum channel access is applied (third embodiment).
  • FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
  • RLC layer processing eg, RLC retransmission control
  • MAC layer processing eg, HARQ retransmission control
  • the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 receives configuration information of resources (XDD resources) in which downlink (DL) resources and uplink (UL) resources can be frequency-division-multiplexed, and information on time resources of DL reference signals for measurement.
  • XDD resources configuration information of resources
  • DL downlink
  • UL uplink
  • the control unit 210 may assume that the resource capable of frequency division multiplexing is not set in the measurement DL reference signal resource (first embodiment).
  • control section 210 When the resource of the DL reference signal for measurement and the resource that can be frequency-division multiplexed overlap in the time domain, control section 210 performs measurement based on the resource of the DL reference signal for measurement in the overlapping time domain. may be controlled not to perform (first embodiment).
  • the control unit 210 When reporting the capability information related to the measurement of the DL reference signal for measurement, the control unit 210 assumes that the resource capable of frequency division multiplexing can be configured in the time resource of the DL reference signal for measurement. Good (first embodiment).
  • the transmitting/receiving unit 220 may transmit capability information indicating whether simultaneous transmission/reception of a specific downlink (DL) signal and a specific uplink (UL) signal is possible.
  • the control unit 210 may control simultaneous transmission and reception of the specific DL signal and the specific UL signal in a resource (XDD resource) in which the DL resource and the UL resource can be frequency division multiplexed (second implementation form).
  • the specific DL signal may be any DL signal, and the specific UL signal may be any UL signal (second embodiment).
  • the specific DL signal may be a DL signal that does not include a DL reference signal for measurement
  • the specific UL signal may be a UL signal that does not include a UL reference signal for measurement (second embodiment).
  • Transmitting/receiving unit 220 may transmit other capability information indicating whether at least one of the reception of the specific DL signal and the transmission of the specific UL signal is possible in the serving cell during the period of the measurement gap (the second embodiment).
  • Transmitting/receiving section 220 stores first configuration information regarding the use of frequencies to which shared spectrum channel access is applied, and resources (XDD resources) in which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed. Second setting information to be set may be received. Based on the first configuration information and the second configuration information, the control unit 210 may control utilization of resources capable of frequency division multiplexing in frequencies to which the shared spectrum channel access is applied (third embodiment).
  • the control unit 210 may assume that the frequency division multiplexable resource is not set in the resource (unlicensed TDD band) set by the first setting information (third embodiment).
  • the control unit 210 may assume that the frequency division multiplexable resource is set in the resource set by the first setting information.
  • the DL resource and the UL resource may have a common specific bandwidth (third embodiment).
  • the control unit 210 may assume that the frequency division multiplexable resource is set in the resource set by the first setting information.
  • the DL resource and the UL resource may have a common specific bandwidth, and a guard frequency resource may be configured at the boundary between the DL resource and the UL resource (third embodiment).
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots, and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
  • the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
  • Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
  • the mobile body may be a mobile body that autonomously travels based on an operation command.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • a vehicle e.g., car, airplane, etc.
  • an unmanned mobile object e.g., drone, self-driving car, etc.
  • a robot manned or unmanned .
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 12 is a diagram showing an example of a vehicle according to one embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60.
  • various sensors current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58
  • information service unit 59 and communication module 60.
  • the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
  • the electronic control unit 49 may be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
  • air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
  • the information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
  • an input device e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.
  • an output device e.g., display, speaker, LED lamp, touch panel, etc.
  • the driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU.
  • the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
  • the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 60 may be internal or external to electronic control 49 .
  • the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by communication module 60 may include information based on the above inputs.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
  • the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and "downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or a decimal number
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one aspect of the present disclosure comprises: a reception unit that receives setting information on a resource that allows frequency-division multiplexing for a downlink (DL) resource and an uplink (UL) resource and information on time resource of a DL reference signal for measurement; and a control unit that controls the measurement based on the DL reference signal for measurement on the basis of at least one of the setting information on the resource, the information on the time resource, and a report of capability information regarding the measurement of the DL reference signal for measurement. According to one aspect of the present disclosure, resource utilization efficiency can be increased.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 LTE successor systems (for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later) are also being considered. .
 将来の無線通信システム(例えば、NR)において、複数の端末(ユーザ端末(user terminal)、User Equipment(UE))が、超高密度かつ高トラヒックな環境下で通信を行うことが想定される。 In future wireless communication systems (for example, NR), it is assumed that multiple terminals (user terminals, user equipment (UE)) will communicate in an ultra-high-density and high-traffic environment.
 このような環境下において、下りリンク(DL)のリソースと比較し、上りリンク(UL)のリソースが不足することが想定される。 Under such an environment, it is assumed that uplink (UL) resources will be insufficient compared to downlink (DL) resources.
 しかしながら、これまでのNR仕様においては、上りリンクのリソースを増大させる方法について、十分検討がなされていない。当該方法を適切に制御できなければ、遅延の増大やカバレッジ性能の低下など、システム性能が低下するおそれがある。 However, in the NR specifications so far, sufficient consideration has not been given to methods for increasing uplink resources. Failure to properly control the method may result in degraded system performance, such as increased delay and reduced coverage performance.
 そこで、本開示は、リソースの利用効率を高める端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that improve resource utilization efficiency.
 本開示の一態様に係る端末は、下りリンク(DL)リソースと上りリンク(UL)リソースとが周波数分割多重可能なリソースの設定情報と、測定用のDL参照信号の時間リソースに関する情報と、を受信する受信部と、前記リソースの設定情報、前記時間リソースに関する情報、及び、前記測定用のDL参照信号の測定に関する能力情報の報告、の少なくとも1つに基づいて、前記測定用のDL参照信号に基づく測定を制御する制御部と、を有する。 A terminal according to an aspect of the present disclosure provides resource configuration information for which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed, and information about time resources of DL reference signals for measurement. Based on at least one of the receiving unit to receive, the resource configuration information, the information on the time resource, and a report of capability information on measurement of the DL reference signal for measurement, the DL reference signal for measurement and a control unit for controlling the measurement based on.
 本開示の一態様によれば、リソースの利用効率を高めることができる。 According to one aspect of the present disclosure, resource utilization efficiency can be improved.
図1A及び図1Bは、スロット構成の設定の一例を示す図である。1A and 1B are diagrams showing an example of slot configuration settings. 図2は、XDDの構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of XDD. 図3A及び図3Bは、XDD動作に対する時間ドメイン及び周波数ドメインのリソースの設定の一例を示す図である。3A and 3B are diagrams illustrating an example of time domain and frequency domain resource configuration for XDD operation. 図4は、XDDリソースにおけるメジャメントの一例を示す図である。FIG. 4 is a diagram illustrating an example of measurements in XDD resources. 図5A及び図5Bは、第1の実施形態に係るXDDリソースの設定の一例を示す図である。5A and 5B are diagrams illustrating an example of XDD resource settings according to the first embodiment. 図6は、第2の実施形態に係る同時送受信が可能なDL受信及びUL送信の組み合わせの一例を示す図である。FIG. 6 is a diagram illustrating an example of a combination of DL reception and UL transmission that allows simultaneous transmission and reception according to the second embodiment. 図7A及び図7Bは、第3の実施形態に係るXDDリソースの設定の一例を示す図である。7A and 7B are diagrams illustrating an example of XDD resource settings according to the third embodiment. 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment. 図9は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment. 図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. 図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment. 図12は、一実施形態に係る車両の一例を示す図である。FIG. 12 is a diagram illustrating an example of a vehicle according to one embodiment;
(アンライセンスバンド)
 アンライセンスバンド(例えば、2.4GHz帯、5GHz帯、6GHz帯など、アンライセンススペクトラム、シェアードスペクトラムと呼ばれてもよい)では、例えば、Wi-Fiシステム、Licensed-Assisted Access(LAA)をサポートするシステム(LAAシステム)等の複数のシステムが共存することが想定されるため、当該複数のシステム間での送信の衝突回避及び/又は干渉制御が必要となると考えられる。
(unlicensed band)
In unlicensed bands (eg, 2.4 GHz band, 5 GHz band, 6 GHz band, etc., may be called unlicensed spectrum, shared spectrum), for example, Wi-Fi system, Licensed-Assisted Access (LAA) is supported Since it is assumed that a plurality of systems such as a system (LAA system) coexist, transmission collision avoidance and/or interference control among the plurality of systems is considered necessary.
 既存のLTEシステム(例えば、Rel.13)のLAAでは、データの送信装置は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、基地局、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するリスニングを行う。当該リスニングは、Listen Before Talk(LBT)、Clear Channel Assessment(CCA)、キャリアセンス、チャネルのセンシング、センシング、チャネルアクセス動作(channel access procedure)、共有スペクトルチャネルアクセス動作(shared spectrum channel access procedure)、エネルギー検出(Energy Detection(ED))などと呼ばれてもよい。 In LAA of the existing LTE system (eg, Rel.13), the data transmission device, before transmitting data in the unlicensed band, other devices (eg, base stations, user terminals, Wi-Fi devices, etc.) of Perform listening to check for transmission. The listening includes Listen Before Talk (LBT), Clear Channel Assessment (CCA), carrier sense, channel sensing, sensing, channel access procedure, shared spectrum channel access procedure, energy It may be called detection (Energy Detection (ED)) or the like.
 当該送信装置は、例えば、下りリンク(DL)では基地局(例えば、gNodeB(gNB)、ネットワーク(NW)と呼ばれてもよい)、上りリンク(UL)ではユーザ端末(UE)であってもよい。また、送信装置からのデータを受信する受信装置は、例えば、DLではユーザ端末、ULでは基地局(NW)であってもよい。 The transmitting device may be, for example, a base station (eg, gNodeB (gNB), may also be referred to as a network (NW)) on the downlink (DL) and a user terminal (UE) on the uplink (UL). good. Also, the receiving device that receives data from the transmitting device may be, for example, a user terminal in DL and a base station (NW) in UL.
 既存のLTEシステムのLAAでは、当該送信装置は、LBTにおいて他の装置の送信がないこと(アイドル状態)が検出されてから所定期間(例えば、直後又はバックオフの期間)後にデータ送信を開始する。 In the LAA of the existing LTE system, the transmitting device is detected that there is no transmission of other devices in the LBT (idle state) for a predetermined period (eg, immediately after or backoff period) after starting data transmission .
 将来の無線通信システム(例えば、5G、5G+、New Radio(NR)、3GPP Rel.15以降などともいう)でもアンライセンスバンドの利用が検討されている。アンライセンスバンドを用いるNRシステムは、NR-Unlicensed(U)システム、NR LAAシステムなどと呼ばれてもよい。 Future wireless communication systems (for example, 5G, 5G+, New Radio (NR), 3GPP Rel. 15 and later) are also considering the use of unlicensed bands. An NR system using an unlicensed band may be called an NR-Unlicensed (U) system, an NR LAA system, or the like.
 ライセンスバンドとアンライセンスバンドとのデュアルコネクティビティ(Dual Connectivity(DC))、アンライセンスバンドのスタンドアローン(Stand-Alone(SA))なども、NR-Uに含まれてもよい。 NR-U may also include dual connectivity (DC) between licensed and unlicensed bands, stand-alone (SA) for unlicensed bands, and the like.
 NR-Uにおけるノード(例えば、基地局、UE)は、他システム又は他オペレータとの共存のため、LBTによりチャネルが空いていること(idle)を確認してから、送信を開始する。 A node (eg, base station, UE) in NR-U starts transmission after confirming that the channel is idle by LBT for coexistence with other systems or operators.
 NR-Uにおいて、基地局(例えば、gNB)又はUEは、LBT結果がアイドルである場合に送信機会(Transmission Opportunity(TxOP))を獲得し、送信を行う。基地局又はUEは、LBT結果がビジーである場合(LBT-busy)に、送信を行わない。送信機会の時間は、チャネル占有時間(Channel Occupancy Time(COT))と呼ばれてもよい。 In NR-U, the base station (eg, gNB) or UE acquires a transmission opportunity (TxOP) and transmits when the LBT result is idle. The base station or UE does not transmit if the LBT result is busy (LBT-busy). The time of transmission opportunity may be referred to as the Channel Occupancy Time (COT).
 なお、LBT-idleは、LBTの成功(LBT success)で読み替えられてもよい。LBT-busyは、LBTの失敗(LBT failure)で読み替えられてもよい。 It should be noted that LBT-idle may be read as LBT success. LBT-busy may be read as LBT failure.
(XDD)
 Rel.14までのLTEにおいては、周波数分割複信(Frequency Division Duplex(FDD))をメインに実用化され、時分割複信(Time Division Duplex(TDD))にも対応した。
(XDD)
Rel. In LTE up to 14, frequency division duplex (FDD) was mainly put into practical use, and time division duplex (TDD) was also supported.
 一方、Rel.15からのNRにおいては、TDDがメインに検討され、同時にFDDにも対応(例えば、LTEバンドのマイグレーション等)した。 On the other hand, Rel. In NR from 15, TDD was mainly considered, and at the same time, FDD was also supported (for example, LTE band migration, etc.).
 FDDにおいては、DL受信及びUL送信を同時に行うことができ、遅延削減の観点で好ましい。一方で、FDDにおいては、DL及びULのリソース比は固定(例えば、1対1)である。 In FDD, DL reception and UL transmission can be performed simultaneously, which is preferable from the viewpoint of delay reduction. On the other hand, in FDD, the DL and UL resource ratio is fixed (eg, 1:1).
 TDDにおいては、DL及びULリソースの比率を変更することが可能であり、例えば、DLのトラヒックが相対的に大きい一般的な環境において、DLリソース量を増加させ、DLのスループット向上を図ることが可能である。 In TDD, it is possible to change the ratio of DL and UL resources, for example, in a general environment where DL traffic is relatively large, it is possible to increase the amount of DL resources and improve DL throughput. It is possible.
 一方で、Rel.16までのTDDによる送受信の時間比を考慮すると、UL信号/チャネルの送信機会が、DL信号/チャネルの受信機会に対して少なくなるケースが考えられる。このようなケースだと、UEは頻繁なUL信号/チャネルの送信を行うことができず、重要なUL信号/チャネルの送信の遅延が発生することが懸念される。また、DL受信機会と比較してUL送信機会が少なくなるため、UL送信機会における信号/チャネルの混雑も懸念される。さらに、TDDではUL信号/チャネルの送信を行うことができる時間リソースが限定されるため、例えば繰り返し送信(Repetition)によるULカバレッジ拡張技術の適用も限定的となってしまう。 On the other hand, Rel. Considering the time ratio of transmission and reception with TDD up to 16, there may be cases where the transmission opportunities for UL signals/channels are less than the reception opportunities for DL signals/channels. In such a case, the UE may not be able to transmit UL signals/channels frequently, which may cause delays in transmission of critical UL signals/channels. Signal/channel congestion at UL transmission opportunities is also a concern, as there are fewer UL transmission opportunities compared to DL reception opportunities. Furthermore, in TDD, the time resource for transmitting UL signals/channels is limited, so the application of UL coverage extension technology by, for example, repetition transmission (Repetition) is also limited.
 将来の無線通信システム(例えば、Rel.17/18以降)において、UL及びDLに対してTDDと周波数分割複信(Frequency Division Duplex(FDD))とを組み合わせた分割複信方法が導入されることが検討されている。 In future wireless communication systems (eg, Rel.17/18 and later), a division duplex method that combines TDD and Frequency Division Duplex (FDD) for UL and DL will be introduced. is being considered.
 当該分割複信方法は、XDD(Cross Division Duplex)と呼ばれてもよい。XDDは、TDDバンドの1コンポーネントキャリア(CC)内における、又は、複数のCCにおける、DL及びULを周波数分割多重する(DL及びULを同時に利用可能な)複信方法を意味してもよい。当該複信方法が複数のCCに適用される場合、あるCCでDLを利用可能である時間リソースにおいて、別のCCではULを利用可能であることを意味してもよい。当該複数のCCは、同一バンドにおけるCCであってもよい。 The division duplex method may be called XDD (Cross Division Duplex). XDD may refer to a duplexing method that frequency division multiplexes the DL and UL within one component carrier (CC) of the TDD band or on multiple CCs (DL and UL can be used simultaneously). If the duplexing method is applied to multiple CCs, it may mean that UL is available on another CC in time resources where DL is available on another CC. The plurality of CCs may be CCs in the same band.
 図1Aは、Rel.16までに規定されるTDDの設定の一例を示す図である。図1Aに示す例において、UEに対し、1つのコンポーネントキャリア(CC)(セル、サービングセルと呼ばれてもよい)の帯域幅で、TDDのスロット/シンボルの設定が行われる。 Fig. 1A shows the Rel. 16 is a diagram showing an example of setting of TDD defined up to 16. FIG. In the example shown in FIG. 1A, a UE is configured with TDD slots/symbols in the bandwidth of one component carrier (CC) (cell, which may also be called a serving cell).
 図1Aに示す例では、DLスロットとULスロットの時間比は、4:1である。このような従来のTDDにおけるスロット/シンボルの設定では、UL時間リソースを十分に確保できず、UL送信遅延の発生やカバレッジ性能低下の恐れがある。 In the example shown in FIG. 1A, the time ratio between DL slots and UL slots is 4:1. With such a conventional TDD slot/symbol setting, sufficient UL time resources cannot be secured, and there is a risk of occurrence of UL transmission delay and degradation of coverage performance.
 図1Bは、XDDの構成の一例を示す図である。図1Bの例では、1コンポーネントキャリア(CC)内で、DLの受信に用いられるリソースと、ULの送信に用いられるリソースと、が時間的に重複する。このようなリソースの構成によれば、ULリソースを確保することができ、リソースの利用効率の向上を図ることができる。 FIG. 1B is a diagram showing an example of the configuration of XDD. In the example of FIG. 1B, resources used for DL reception and resources used for UL transmission overlap in time within one component carrier (CC). According to such a resource configuration, it is possible to secure UL resources and improve the utilization efficiency of resources.
 例えば、図1Bに示す例のように、1CCにおける周波数領域のうち、両端をDLに構成し、そのDLでULリソースを挟むような構成とすることで、近隣のキャリアとのクロスリンク干渉(Cross Link Interference(CLI))の発生を回避及び緩和することができる。また、DLリソースとULリソースとの境界には、ガードのための領域が設定されてもよい。 For example, as in the example shown in FIG. 1B , both ends of the frequency domain in one CC are configured as DL, and by configuring the DL to sandwich the UL resource, cross-link interference with neighboring carriers (Cross It is possible to avoid and mitigate the occurrence of Link Interference (CLI). Also, a guard area may be set at the boundary between the DL resource and the UL resource.
 自己干渉の処理の複雑さを考慮すると、基地局のみがDLリソース及びULリソースを同時に使用することが考えられる。つまり、DL及びULが時間的に重複しているリソースでは、あるUEがDLリソースを使用し、別のUEがULリソースを使用する構成としてもよい。 Considering the complexity of self-interference processing, it is conceivable that only the base station uses DL resources and UL resources at the same time. That is, in resources where DL and UL temporally overlap, a configuration may be adopted in which one UE uses DL resources and another UE uses UL resources.
 図2は、XDDの構成の一例を示す図である。図2に示す例では、TDDバンドのDLリソースの一部をULリソースとし、DLとULとが一部時間的に重複する構成としている。 FIG. 2 is a diagram showing an example of the configuration of XDD. In the example shown in FIG. 2, a part of the DL resource of the TDD band is used as the UL resource, and the DL and the UL are partially overlapped in terms of time.
 図2に示す例において、DLのみの期間は、複数のUE(図2では、UE#1及びUE#2)のそれぞれがDLチャネル/信号を受信する。 In the example shown in FIG. 2, each of the multiple UEs (UE#1 and UE#2 in FIG. 2) receives the DL channel/signal during the DL-only period.
 また、DL及びULが時間的に重複する期間では、あるUE(図2の例では、UE#1)がDLチャネル/信号の受信を行い、別のUE(図2の例では、UE#2)がULチャネル/信号の送信を行う。この期間では、基地局は、DL及びULの同時送受信を行う。 Also, in the period when the DL and UL temporally overlap, a certain UE (UE # 1 in the example of FIG. 2) performs reception of the DL channel / signal, and another UE (UE # 2 in the example of FIG. 2 ) carries out the transmission of the UL channels/signals. During this period, the base station performs simultaneous DL and UL transmission and reception.
 さらに、ULのみの期間は、複数のUEのそれぞれがULチャネル/信号を送信する。 Furthermore, during UL-only periods, each of the multiple UEs transmits UL channels/signals.
 既存の(例えば、Rel.15/16までに規定される)NRでは、UE用キャリアにおけるDL周波数リソース及びUL周波数リソースは、それぞれDL帯域幅部分(Bandwidth Part(BWP))及びUL BWPとして設定される。DL/ULの周波数リソースを別のDL/ULの周波数リソースに切り替えるためには、複数のBWPの設定とBWPのアダプテーションのメカニズムとが必要である。 In the existing NR (for example, defined by Rel.15/16), the DL frequency resource and UL frequency resource in the UE carrier are set as DL bandwidth part (BWP) and UL BWP, respectively. be. In order to switch a DL/UL frequency resource to another DL/UL frequency resource, multiple BWP configurations and a BWP adaptation mechanism are required.
 また、既存のNRでは、UE用TDDキャリアにおける時間リソースは、TDD設定において、DL、UL及びフレキシブル(FL)の少なくとも1つとして設定される。 Also, in the existing NR, the time resource in the TDD carrier for UE is configured as at least one of DL, UL and flexible (FL) in TDD configuration.
 XDD動作に対する時間ドメイン及び周波数ドメインのリソースの設定方法が、検討されている。例えば、図2のUE#1に対しては、XDDのリソース(DL及びULが重複する期間)を、既存のDLリソースと同様に設定することで(例えば、周波数ドメインリソース割り当て(FDRA)を用いてULリソースの部分の使用を避けた上で)、仕様/UEへの影響を最小限に抑えることができる(図3A参照)。 How to configure time domain and frequency domain resources for XDD operation is being considered. For example, for UE #1 in FIG. 2, by setting the XDD resource (the period in which DL and UL overlap) in the same way as the existing DL resource (for example, using frequency domain resource allocation (FDRA) (while avoiding using part of the UL resource for the UE), the impact on the specification/UE can be minimized (see Figure 3A).
 また、例えば、図2のUE#2に対しては、XDDのリソースを、既存のULリソースと同様に設定することで(例えば、周波数ドメインリソース割り当て(FDRA)を用いてDLリソースの部分の使用を避けた上で)、仕様/UEへの影響を最小限に抑えることができる(図3B参照)。 Further, for example, for UE #2 in FIG. 2, XDD resources are configured in the same way as existing UL resources (for example, frequency domain resource allocation (FDRA) is used to use the DL resource part (while avoiding
 ところで、上記XDD構成において、端末が測定(メジャメント(Measurement)、メジャメント動作と呼ばれてもよい)を行うことが考えられる。 By the way, in the above XDD configuration, it is conceivable that the terminal performs measurement (which may also be referred to as measurement or measurement operation).
 しかしながら、XDD構成においてメジャメント動作を行う場合、リソースの管理に問題が生じる恐れがある。例えば、DL参照信号(例えば、同期信号ブロック(SSB)及チャネル状態情報参照信号(CSI-RS)の少なくとも一方など)が送信されるリソース、及び、受信信号強度(例えば、Received Signal Strength Indicator(RSSI))の測定が行われるリソース、の少なくとも1つがXDD構成におけるリソース(特に、ULリソース)に設定/指示される場合、UEは、メジャメント動作及びUL送信の動作を同時に行うことができない。 However, when performing measurement operations in the XDD configuration, there is a risk of resource management problems. For example, a resource on which a DL reference signal (eg, at least one of a synchronization signal block (SSB) and a channel state information reference signal (CSI-RS)) is transmitted, and a received signal strength (eg, a Received Signal Strength Indicator (RSSI )) resource on which the measurement is performed, at least one of is set / indicated to the resource in the XDD configuration (in particular, the UL resource), the UE can not perform the measurement operation and the UL transmission operation at the same time.
 既存の仕様(Rel.16まで)においても、UEがメジャメントを行うシンボル上では、UL送信が行われないことが規定されている。 Even in existing specifications (up to Rel. 16), it is stipulated that UL transmission is not performed on symbols on which the UE measures.
 一方、DL参照信号が送信されるリソース、及び、受信信号強度の測定が行われるリソース、の少なくとも1つがXDD構成におけるDLリソースに設定/指示される場合、UEは、当該DLリソースにおいてメジャメントを行うことができる。 On the other hand, if at least one of the resources in which the DL reference signal is transmitted and the resources in which the received signal strength is measured is set/instructed to the DL resources in the XDD configuration, the UE performs measurements in the DL resources. be able to.
 しかしながら、この場合、XDD構成におけるDLリソースにおける測定は、近傍のUEからのUL送信/電力から影響を受けることが懸念される。 However, in this case there is concern that measurements on DL resources in XDD configuration will be affected by UL transmission/power from nearby UEs.
 図4は、XDDリソースにおけるメジャメントの一例を示す図である。図4に示す例では、図2に示したような複数のUE(UE#1及びUE#2)に対するXDDリソースが設定される。図2に示したように、図4のXDDリソースにおいてUE#1はDL受信を行い、UE#2はUL送信を行う。 FIG. 4 is a diagram showing an example of measurements in XDD resources. In the example shown in FIG. 4, XDD resources are configured for multiple UEs (UE#1 and UE#2) as shown in FIG. As shown in FIG. 2, UE#1 performs DL reception and UE#2 performs UL transmission in the XDD resource of FIG.
 図4に示す例では、UE#1及びUE#2のそれぞれがメジャメントを行う時間リソースが異なる。このようなケースにおいて、どのようにメジャメント動作を実現するかについて検討が十分でない。 In the example shown in FIG. 4, UE#1 and UE#2 use different time resources for making measurements. In such a case, sufficient consideration has not been given as to how to implement the measurement operation.
 また、将来の無線通信システム(例えば、Rel.18/19以降)において、UEにおいて、同じ時間リソースにおけるDL受信及びUL送信を行うこと(サポートされること)も検討されている。 Also, in future wireless communication systems (for example, Rel.18/19 and later), UEs are considering performing (supporting) DL reception and UL transmission in the same time resource.
 本開示において、同じ時間リソースにおけるDL受信及びUL送信、DL受信リソース及びUL送信リソースが周波数分割多重(FDM)される送受信、同時送受信動作、同時送受信、全二重(Full Duplex(FD))通信、サブバンド非重複全二重(Subband non-overlapping full duplex)、サブバンド非重複全二重通信、XDD、XDD通信、XDD動作、時間周波数分割多重、時間周波数分割多重通信、時間周波数分割多重動作、は互いに読み替えられてもよい。 In the present disclosure, DL reception and UL transmission in the same time resource, transmission and reception in which DL reception resource and UL transmission resource are frequency division multiplexed (FDM), simultaneous transmission and reception operation, simultaneous transmission and reception, full duplex (FD) communication , subband non-overlapping full duplex, subband non-overlapping full duplex communication, XDD, XDD communication, XDD operation, time frequency division multiplexing, time frequency division multiplexing communication, time frequency division multiplexing operation , may be read interchangeably.
 サブバンド非重複全二重通信は、上述のXDDリソースにおいて行われてもよい。 Sub-band non-overlapping full-duplex communication may be performed on the XDD resources described above.
 サブバンド非重複全二重通信におけるDLリソースでは、UEは、任意のセルからのデータ/制御情報の受信と、周辺セルを含む複数のセルを対象とするメジャメント動作と、の少なくとも1つを行うことが考えられる。 In the DL resource in subband non-overlapping full-duplex communication, the UE performs at least one of reception of data / control information from any cell and measurement operation targeting a plurality of cells including neighboring cells. can be considered.
 サブバンド非重複全二重通信におけるULリソースでは、UEは、任意のセルへのデータ/制御情報の送信と、(例えば、メジャメントのための)UL参照信号及び(例えば、ランダムアクセスのための)PRACHの送信と、の少なくとも1つを行うことが考えられる。 For UL resources in sub-band non-overlapping full-duplex communication, the UE can transmit data/control information to any cell, and UL reference signals (eg, for measurements) and It is conceivable to perform at least one of transmission of PRACH and
 このようなサブバンド非重複全二重通信において、UEが同時送受信できる信号/チャネルに関する検討が十分でない。 In such subband non-overlapping full-duplex communication, there is not enough consideration of signals/channels that UEs can simultaneously transmit and receive.
 例えば、メジャメントのためのDL受信動作及びUL送信動作を同時に行うことができるか否かと、サービングセルとのデータの同時送受信を行うことができるか否かとについて、UEに要求される機能が共通か異なるかについて検討が十分でない。また、データとは異なるビームを利用する、メジャメントのためのUL参照信号/ランダムアクセスチャネルのの送信及びDL受信動作を同時に行うことができるか否かと、サービングセルとのデータの同時送受信を行うことができるか否かとについて、UEに要求される機能が共通か異なるかについて検討が十分でない。 For example, whether the DL reception operation and UL transmission operation for measurement can be performed at the same time, and whether it is possible to perform simultaneous transmission and reception of data with the serving cell, the functions required of the UE are common or different. Insufficient consideration of whether In addition, whether or not it is possible to simultaneously perform transmission and DL reception operations of the UL reference signal/random access channel for measurement, which uses a beam different from the data, and simultaneous transmission and reception of data with the serving cell can be performed. Regarding whether or not it is possible, there is not sufficient consideration of whether the functions required of the UE are the same or different.
 また、XDD構成が利用されるバンド(TDDバンド)には、アンライセンスバンド(アンライセンスドバンド、アンライセンスTDDバンド、NR-Unlicensed(U)システム、又は、シェアードスペクトラムと呼ばれてもよい)の周波数帯が含まれることが検討されている。 In addition, the band (TDD band) in which the XDD configuration is used includes the unlicensed band (unlicensed band, unlicensed TDD band, NR-Unlicensed (U) system, or shared spectrum) frequency. The inclusion of obi is being considered.
 しかしながら、アンライセンスバンドの周波数においてXDDを利用する方法について検討が十分でない。 However, there is not enough research on how to use XDD in unlicensed band frequencies.
 例えば、アンライセンスバンドの周波数においてXDDを利用する際に、基地局のDL送信中に、UEが一部の帯域(周波数リソース)においてUL送信を開始する場合に以下のような問題が発生する恐れがある:
 ・LBTを行わずに当該UL送信を開始する場合、干渉が発生する。
 ・DLチャネル/信号の受信電力が、XDDのリソースを含むLBTを行う帯域に影響を与え、UL送信のためのLBTが失敗する。
 ・上記干渉/LBTの失敗を避けるためにガード期間(時間リソース)/ガードサブキャリア(周波数リソース)を設定することは、リソース利用の効率化を抑制する。
For example, when using XDD in the frequency of the unlicensed band, during the DL transmission of the base station, the following problems may occur if the UE starts UL transmission in some bands (frequency resources) There is:
- If the UL transmission is started without LBT, interference will occur.
• The received power of the DL channel/signal impacts the LBT band including XDD resources, and the LBT for UL transmission fails.
- Setting the guard period (time resource) / guard subcarrier (frequency resource) to avoid the above interference / LBT failure suppresses the efficiency of resource utilization.
 これらの検討が十分でない場合、リソース利用効率を適切に向上させることができず、システム性能が低下するおそれがある。 If these considerations are not sufficient, resource utilization efficiency may not be improved appropriately, and system performance may decline.
 そこで本発明者らは、上記問題を解決する方法を着想した。 Therefore, the inventors came up with a method to solve the above problem.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently, or may be applied in combination.
 以下、本開示における「特定のタイプ」は、…を前提として説明するが、これに限られない。本開示の…は、…のいずれか又はこれらの組み合わせを意味してもよい(つまり、…は、これらのいずれか又は組み合わせで読み替えられてもよい)。 Hereinafter, the "specific type" in the present disclosure will be described on the premise that, but it is not limited to this. … in the present disclosure may mean any one of … or a combination thereof (that is, … may be read as either one or a combination thereof).
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Also, in the present disclosure, "A/B/C" may mean "at least one of A, B and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably. In the present disclosure, supporting, controlling, controllable, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, information elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, Medium Access Control control element (MAC Control Element (CE)), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), and the like. Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), or the like.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In the present disclosure, indices, identifiers (ID), indicators, resource IDs, etc. may be read interchangeably. In the present disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
 本開示において、チャネル、信号、参照信号、チャネル/信号、は互いに読み替えられてもよい。また、本開示において、DLチャネル/信号の受信、DL受信、DL送信、は互いに読み替えられてもよい。また、本開示において、ULチャネル/信号の送信、UL送信、UL受信、は互いに読み替えられてもよい。 In the present disclosure, channel, signal, reference signal, and channel/signal may be read interchangeably. Also, in the present disclosure, reception of DL channels/signals, DL reception, and DL transmission may be read interchangeably. Also, in the present disclosure, UL channel/signal transmission, UL transmission, and UL reception may be read interchangeably.
 本開示において、サポートする、サポートされる、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。 In the present disclosure, "to support", "to be supported", "to control", "to be able to control", "to operate", and "to be operable" may be read interchangeably.
 本開示において、「A」でないことを想定(assume)/期待(expect)する、は、「A」であることを想定(assume)/期待(expect)しない、と互いに読み替えられてもよい。 In the present disclosure, "assume/expect" to be "A" may be read interchangeably as "assume/not to expect" to be "A".
(無線通信方法)
 UEに対し、上位レイヤシグナリング(RRCシグナリング/MAC CE)及び物理レイヤシグナリング(DCI)の少なくとも1つを利用して、XDDリソースが設定/指示されてもよい。
(Wireless communication method)
XDD resources may be configured/indicated to the UE using higher layer signaling (RRC signaling/MAC CE) and/or physical layer signaling (DCI).
 当該上位レイヤシグナリングは、特定のRRCパラメータ/MAC CEフィールドであってもよい。当該特定のRRCパラメータ/MAC CEフィールドは、XDD設定のパラメータであってもよいし、TDD設定のパラメータであってもよい。 The higher layer signaling may be a specific RRC parameter/MAC CE field. The specific RRC parameter/MAC CE field may be an XDD-configured parameter or a TDD-configured parameter.
 本開示において、XDDリソースは、DLリソース及びULリソースが時間的に重複する(FDMされる)リソース、を意味してもよい。当該DLリソース及びULリソースの重複は、DLリソース及びULリソースの全てが重複することを意味してもよいし、DLリソース及びULリソースの一部が重複することを意味してもよい。 In the present disclosure, an XDD resource may mean a resource in which a DL resource and a UL resource overlap (FDM) in time. The duplication of the DL resource and the UL resource may mean that all of the DL resource and the UL resource are duplicated, or that some of the DL resource and the UL resource are duplicated.
 本開示の各実施形態において、測定/メジャメントは、Radio Resource Management(RRM)メジャメント、CLIメジャメント、システムフレーム番号及びフレームタイミング差(System Frame Number(SFN) and Frame Timing Difference)のメジャメント、受信電力/受信品質(例えば、L1-RSRP/SINR)メジャメント、チャネル状態情報(CSI)メジャメント、測位(Positioning)用メジャメントの少なくとも1つを意味してもよい。 In each embodiment of the present disclosure, measurements / measurements are Radio Resource Management (RRM) measurements, CLI measurements, measurements of system frame number and frame timing difference (System Frame Number (SFN) and Frame Timing Difference), received power / received It may mean at least one of quality (eg, L1-RSRP/SINR) measurement, channel state information (CSI) measurement, and positioning measurement.
<第1の実施形態>
 第1の実施形態では、XDDリソースにおけるメジャメント動作について説明する。
<First embodiment>
In the first embodiment, a measurement operation in XDD resources will be described.
 UEは、DL参照信号(例えば、測定用のDL参照信号)に関連する特定の時間リソースにおいて、XDDリソースが設定されないと想定(assume)/期待(expect)してもよい。また、UEは、DL参照信号(例えば、測定用のDL参照信号)に関連する特定の時間リソースにおいて、XDDリソースが設定されると想定(assume)/期待(expect)しなくてもよい。 The UE may assume/expect that XDD resources are not configured in specific time resources associated with DL reference signals (eg, DL reference signals for measurement). Also, the UE may not assume/expect that the XDD resource will be configured in a specific time resource associated with the DL reference signal (eg, DL reference signal for measurement).
 当該DL参照信号に関連する特定の時間リソースは、例えば、DL参照信号がマップされる時間リソース(例えば、シンボル)、DL参照信号のマッピングされる時間リソースを含む時間的に前/後の特定数(例えば、1)の時間リソース(例えば、シンボル)、及び、DL参照信号を含む時間リソース(例えば、スロット)、の少なくとも1つであってもよい。 A specific time resource associated with the DL reference signal is, for example, a time resource (e.g., symbol) to which the DL reference signal is mapped, a specific number of temporally before/after including the time resource to which the DL reference signal is mapped. (eg, 1) time resources (eg, symbols) and/or time resources (eg, slots) including DL reference signals.
 当該DL参照信号は、SSB、CSI-RS、モビリティのためのCSI-RS、RSSI測定用リソース、及び、PRSの少なくとも1つであってもよい。 The DL reference signal may be at least one of SSB, CSI-RS, CSI-RS for mobility, RSSI measurement resource, and PRS.
 例えば、DL参照信号の時間リソースが上位レイヤパラメータ/DCIにより設定されてもよい。この場合、UEは、設定されたDL参照信号の時間リソース(又は、当該時間リソースを含む時間的に前/後の特定数の時間リソース、当該時間リソースを含むスロット)に対して、XDDリソースが設定されないと想定してもよい。 For example, the time resource of the DL reference signal may be configured by a higher layer parameter/DCI. In this case, the UE, for the time resources of the configured DL reference signal (or a specific number of temporally forward / backward time resources including the time resources, slots including the time resources), the XDD resource is It may be assumed that it is not set.
 また、UEは、DL参照信号に関連する特定の時間リソースにおいて、XDDリソースが設定されると想定/期待してもよい。 Also, the UE may assume/expect that the XDD resource will be configured in a specific time resource associated with the DL reference signal.
 このとき、UEは、XDDリソースと時間領域で重複するDL参照信号に基づくメジャメント(又は、DL参照信号に基づくメジャメントの報告)を行わなくてもよい。また、UEは、当該DL参照信号の受信を行わなくてもよい。また、UEは、DL参照信号の受信に関する設定/指示を無視してもよい。 At this time, the UE does not need to perform measurements based on DL reference signals that overlap in the time domain with XDD resources (or report measurements based on DL reference signals). Also, the UE may not receive the DL reference signal. Also, the UE may ignore the configuration/instruction regarding reception of DL reference signals.
 DL参照信号の時間リソース/XDDリソースは、上位レイヤパラメータ/DCIによりそれぞれ別々に設定されてもよい。DL参照信号の時間リソースの一部がXDDリソースと重複する場合、UEは、当該DL参照信号に基づくメジャメント(又は、DL参照信号に基づくメジャメントの報告)を行わなくてもよい。あるいは、UEは、XDDリソースと重複しないDL参照信号の一部のリソースに基づくメジャメント(又は、当該一部のリソースに基づくメジャメントの報告)を行ってもよい。 The time resources/XDD resources of the DL reference signal may be configured separately by higher layer parameters/DCI. When part of the time resource of the DL reference signal overlaps with the XDD resource, the UE does not need to perform measurements based on the DL reference signal (or report measurements based on the DL reference signal). Alternatively, the UE may perform measurements based on some resources of the DL reference signal that do not overlap with the XDD resources (or report measurements based on the part of the resources).
 また、UEは、XDDリソースにおけるメジャメントに関するUE能力情報(UE Capability Information)を報告してもよい。当該UE能力情報は、UEが、XDDリソースにおいてメジャメントを行うことが可能か否かで定義されてもよい。 Also, the UE may report UE Capability Information regarding measurements in XDD resources. The UE capability information may be defined by whether or not the UE can perform measurements on XDD resources.
 UEは、当該UE能力情報(例えば、XDDリソースにおけるメジャメントが可能であることを示す情報)を報告した場合、DL参照信号に関連する特定の時間リソースにおいて、XDDリソースが設定されると想定/期待してもよい。 When the UE reports the UE capability information (for example, information indicating that the XDD resource can be measured), the UE assumes/expects that the XDD resource is configured in a specific time resource related to the DL reference signal. You may
 当該DL参照信号に関連する特定の時間リソースは、例えば、DL参照信号がマップされる時間リソース(例えば、シンボル)、DL参照信号のマッピングされる時間リソースを含む時間的に前/後の特定数(例えば、1)の時間リソース(例えば、シンボル)、及び、DL参照信号を含む時間リソース(例えば、スロット)、の少なくとも1つであってもよい。 A specific time resource associated with the DL reference signal is, for example, a time resource (e.g., symbol) to which the DL reference signal is mapped, a specific number of temporally before/after including the time resource to which the DL reference signal is mapped. (eg, 1) time resources (eg, symbols) and/or time resources (eg, slots) including DL reference signals.
 当該DL参照信号は、SSB、CSI-RS、モビリティのためのCSI-RS、RSSI測定用リソース、及び、PRSの少なくとも1つであってもよい。 The DL reference signal may be at least one of SSB, CSI-RS, CSI-RS for mobility, RSSI measurement resource, and PRS.
 また、UEは、特定の上位レイヤシグナリングに基づいて、DL参照信号と重複するXDDリソースの設定を無視するかを判断してもよい。UEは、特定の上位レイヤパラメータを受信した場合、DL参照信号と重複するXDDリソースの設定を無視すると判断してもよい。 Also, the UE may determine whether to ignore the configuration of XDD resources that overlap with the DL reference signal based on specific higher layer signaling. The UE may decide to ignore the configuration of XDD resources that overlap with the DL reference signal if certain higher layer parameters are received.
 なお、当該UE能力情報は、特定の周波数レンジ(例えば、FR2)向けに規定されてもよいし、各周波数レンジ(例えば、FR1/FR2(FR2-1/FR2-2))向けに別々に規定されてもよい。 Note that the UE capability information may be defined for a specific frequency range (eg, FR2) or defined separately for each frequency range (eg, FR1/FR2 (FR2-1/FR2-2)). may be
 図5A及び図5Bは、第1の実施形態に係るXDDリソースの設定の一例を示す図である。図5Aに示す例では、DL参照信号がマッピングされるシンボルにおいてXDDリソースが設定されない。図5Aに示す例では、DL参照信号がマッピングされるシンボル以外のリソースにおいて、XDDリソースの設定が可能である。 FIGS. 5A and 5B are diagrams showing an example of XDD resource settings according to the first embodiment. In the example shown in FIG. 5A, XDD resources are not configured in symbols to which DL reference signals are mapped. In the example shown in FIG. 5A, XDD resources can be configured in resources other than symbols to which DL reference signals are mapped.
 図5Bに示す例では、DL参照信号がマッピングされるスロットにおいてXDDリソースが設定されない。図5Bに示す例では、DL参照信号がマッピングされるスロット以外のリソースにおいて、XDDリソースの設定が可能である。 In the example shown in FIG. 5B, XDD resources are not configured in slots to which DL reference signals are mapped. In the example shown in FIG. 5B, XDD resources can be configured in resources other than slots to which DL reference signals are mapped.
 以上第1の実施形態によれば、XDDリソースを利用する場合であっても、適切にメジャメントの動作を行うことが可能になる。 As described above, according to the first embodiment, it is possible to appropriately perform the measurement operation even when using the XDD resource.
<第2の実施形態>
 第2の実施形態では、サブバンド非重複全二重に関するUE能力情報について説明する。
<Second embodiment>
In the second embodiment, UE capability information for subband non-overlapping full duplex is described.
 UEは、サブバンド非重複全二重に関するUE能力情報をネットワーク(例えば、基地局)に報告してもよい。 The UE may report UE capability information regarding subband non-overlapping full duplex to the network (eg, base station).
 当該UE能力情報は、サブバンド非重複全二重をサポートするか否かで定義されてもよい。 The UE capability information may be defined by whether or not subband non-overlapping full-duplex is supported.
 サブバンド非重複全二重は、XDDリソースにおいて行われてもよい。 Subband non-overlapping full duplex may be performed on XDD resources.
 UE/基地局は、以下の実施形態2-1から2-3の少なくとも1つに従ってもよい。 The UE/base station may follow at least one of embodiments 2-1 to 2-3 below.
《実施形態2-1》
 サブバンド非重複全二重に関するUE能力情報について、同時送受信が可能なDL受信及びUL送信の組み合わせが規定されてもよい。
<<Embodiment 2-1>>
For UE capability information for sub-band non-overlapping full-duplex, combinations of DL reception and UL transmission that can be transmitted and received simultaneously may be specified.
 当該DL受信には、メジャメントのためのDL受信(測定用DL参照信号)の受信が含まれてもよい。 The DL reception may include reception of DL reception for measurement (DL reference signal for measurement).
 UEは、サブバンド非重複全二重に関するUE能力情報を報告した場合、予め規定されるDL受信及びUL送信の組み合わせについて、DL受信及びUL送信を同時に行ってもよい。 If the UE reports UE capability information for sub-band non-overlapping full-duplex, it may simultaneously perform DL reception and UL transmission for predefined DL reception and UL transmission combinations.
《実施形態2-2》
 サブバンド非重複全二重に関するUE能力情報(第1の能力情報)について、同時送受信が可能なDL受信及びUL送信の組み合わせが規定されてもよい。
<<Embodiment 2-2>>
For UE capability information (first capability information) for subband non-overlapping full-duplex, a combination of DL reception and UL transmission capable of simultaneous transmission and reception may be defined.
 当該DL受信には、メジャメントのためのDL受信(測定用DL参照信号)の受信が含まれなくてもよい。言い換えれば、第1の能力情報は、メジャメントのためのDL受信と、UL送信と、を同時に行うことができることを示さなくてもよい。 The DL reception may not include reception of DL reception for measurement (DL reference signal for measurement). In other words, the first capability information may not indicate that DL reception and UL transmission for measurement can be performed simultaneously.
 UEは、サブバンド非重複全二重に関するUE能力情報を報告した場合、予め規定されるDL受信及びUL送信の組み合わせについて、DL受信及びUL送信を同時に行ってもよい。 If the UE reports UE capability information for sub-band non-overlapping full-duplex, it may simultaneously perform DL reception and UL transmission for predefined DL reception and UL transmission combinations.
 実施形態2-2において、第1の能力情報とは別に、サブバンド非重複全二重に関するUE能力情報(第2の能力情報)が規定されてもよい。当該第2の能力情報は、メジャメントのためのDL受信を含むDL受信と、UL送信と、を同時に行うことができること示してもよい。 In Embodiment 2-2, UE capability information (second capability information) regarding subband non-overlapping full-duplex may be defined separately from the first capability information. The second capability information may indicate that DL reception including DL reception for measurement and UL transmission can be performed simultaneously.
《実施形態2-3》
 UEは、サブバンド非重複全二重に関するUE能力情報について、予め規定されるDL受信及びUL送信の組み合わせをサポートするか否かを報告してもよい。
<<Embodiment 2-3>>
The UE may report on the UE capability information for subband non-overlapping full-duplex whether or not it supports predefined DL reception and UL transmission combinations.
 例えば、UEは、サブバンド非重複全二重に関するUE能力情報について、予め規定されるDL受信及びUL送信の組み合わせのうち、どの組み合わせをサポートするかを報告してもよい。言い換えれば、サブバンド非重複全二重に関するUE能力情報は、予め規定されるDL受信及びUL送信の組み合わせのうち、どの組み合わせをサポートするかで定義されてもよい。 For example, the UE may report which combination of predefined DL reception and UL transmission combinations it supports for UE capability information regarding subband non-overlapping full-duplex. In other words, the UE capability information for subband non-overlapping full-duplex may be defined by which combination of predefined DL reception and UL transmission combinations is supported.
 例えば、DL受信及びUL送信の組み合わせは、測定用のDL参照信号の受信を含む組み合わせを含んでもよい。また、例えば、DL受信及びUL送信の組み合わせは、測定用のUL参照信号(PRACHを含んでもよい)の送信を含む組み合わせを含んでもよい。 For example, a combination of DL reception and UL transmission may include a combination including reception of DL reference signals for measurements. Also, for example, a combination of DL reception and UL transmission may include a combination including transmission of UL reference signals (which may include PRACH) for measurement.
 例えば、測定用のDL参照信号の受信を含む組み合わせの同時送受信をサポートするか否かに関する能力情報と、測定用のUL参照信号(PRACHを含んでもよい)の送信を含む組み合わせの同時送受信をサポートするか否かに関する能力情報とは、別々の能力情報として規定されてもよいし、共通の能力情報として規定されてもよい。 For example, capability information about whether to support simultaneous transmission and reception of a combination including reception of DL reference signals for measurement, and support for simultaneous transmission and reception of combinations including transmission of UL reference signals for measurement (which may include PRACH) The capability information regarding whether or not to perform may be specified as separate capability information or may be specified as common capability information.
 図6は、第2の実施形態に係る同時送受信が可能なDL受信及びUL送信の組み合わせの一例を示す図である。 FIG. 6 is a diagram showing an example of a combination of DL reception and UL transmission capable of simultaneous transmission and reception according to the second embodiment.
 上述の実施形態2-1では、サブバンド非重複全二重に関するUE能力情報を報告するUEは、仕様において規定された全ての組み合わせをサポートしてもよい。 In embodiment 2-1 above, a UE reporting UE capability information for subband non-overlapping full duplex may support all combinations defined in the specification.
 上述の実施形態2-2では、サブバンド非重複全二重に関するUE能力情報(例えば、第1の能力情報)を報告するUEは、仕様において規定された全ての組み合わせのうち、測定用のDL/UL参照信号の受信/送信を含まない組み合わせをサポートしてもよい。 In the above embodiment 2-2, a UE reporting UE capability information (eg, first capability information) for subband non-overlapping full-duplex uses DL for measurement out of all combinations specified in the specification. A combination that does not include reception/transmission of /UL reference signals may be supported.
 上述の実施形態2-3では、サブバンド非重複全二重に関するUE能力情報(例えば、第1の能力情報)を報告するUEは、仕様において規定された全ての組み合わせのうち、特定の組み合わせをサポートしてもよい。 In the above-described embodiment 2-3, the UE reporting UE capability information (eg, first capability information) for subband non-overlapping full duplex selects a specific combination among all combinations specified in the specification. may support.
 図6に示す例において、DL受信として、DLデータ受信、DL制御受信、測定用DL参照信号受信、非測定用DL参照信号受信が定義され、UL送信として、ULデータ送信、UL制御送信、測定用UL参照信号送信、非測定用UL参照信号送信が定義される。 In the example shown in FIG. 6, DL data reception, DL control reception, measurement DL reference signal reception, and non-measurement DL reference signal reception are defined as DL reception, and UL transmission is defined as UL data transmission, UL control transmission, and measurement. UL reference signal transmission for non-measurement and UL reference signal transmission for non-measurement are defined.
 本開示において、DLデータ受信は、DLデータ、PDSCH、PDSCHを利用して送信される信号、と互いに読み替えられてもよい。 In the present disclosure, DL data reception may be interchanged with DL data, PDSCH, and signals transmitted using PDSCH.
 本開示において、DL制御受信は、DL制御情報、PDCCH、CORESET、サーチスペースセット、DCI、PDCCHを利用して送信される信号、と互いに読み替えられてもよい。 In the present disclosure, DL control reception may be interchanged with DL control information, PDCCH, CORESET, search space set, DCI, and signals transmitted using PDCCH.
 本開示において、測定用DL参照信号受信は、測定用DL参照信号、同期信号、同期信号ブロック、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、モビリティのためのCSI-RS、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))、トラッキング用参照信号(Tracking Reference Signal(TRS))、及び、RSSI測定用リソースの少なくとも1つと互いに読み替えられてもよい。 In the present disclosure, the measurement DL reference signal reception includes measurement DL reference signals, synchronization signals, synchronization signal blocks, cell-specific reference signals (CRS), channel state information reference signals (Channel State Information Reference signal (CSI-RS)), CSI-RS for mobility, demodulation reference signal (DMRS), positioning reference signal (PRS), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), Tracking Reference Signal (TRS)), and at least one of RSSI measurement resources.
 本開示において、非測定用DL参照信号受信は、非測定用DL参照信号、同期信号、同期信号ブロック、CRS、CSI-RS、モビリティのためのCSI-RS、DMRS、PRS、PTRS、及び、TRS、の少なくとも1つと互いに読み替えられてもよい。 In the present disclosure, non-measurement DL reference signal reception includes non-measurement DL reference signals, synchronization signals, synchronization signal blocks, CRS, CSI-RS, CSI-RS for mobility, DMRS, PRS, PTRS, and TRS. , may be interchanged with at least one of
 本開示において、ULデータ送信は、ULデータ、PUSCH、PUSCHを利用して送信される信号、と互いに読み替えられてもよい。 In the present disclosure, UL data transmission may be interchanged with UL data, PUSCH, and a signal transmitted using PUSCH.
 本開示において、UL制御送信は、UL制御情報、PUCCH、PUCCHを利用して送信される信号、UCI、と互いに読み替えられてもよい。 In the present disclosure, UL control transmission may be interchanged with UL control information, PUCCH, a signal transmitted using PUCCH, and UCI.
 本開示において、測定用UL参照信号送信は、測定用UL参照信号、測定用参照信号(Sounding Reference Signal(SRS))、PRS、復調用参照信号(DMRS)、PRACH、ランダムアクセスチャネル、及び、ランダムアクセスレスポンスに対するPUSCH、の少なくとも1つと互いに読み替えられてもよい。 In the present disclosure, the measurement UL reference signal transmission includes a measurement UL reference signal, a measurement reference signal (SRS), a PRS, a demodulation reference signal (DMRS), a PRACH, a random access channel, and a random PUSCH for the access response.
 本開示において、非測定用UL参照信号送信は、SRS、PRS、DMRS、PRACH、ランダムアクセスチャネル、及び、ランダムアクセスレスポンスに対するPUSCH、の少なくとも1つと互いに読み替えられてもよい。 In the present disclosure, non-measurement UL reference signal transmission may be interchanged with at least one of SRS, PRS, DMRS, PRACH, random access channel, and PUSCH for random access response.
 図6に示す例では、記号「〇」がサポートされることを示し、記号「×」がサポートされないことを示す。 In the example shown in FIG. 6, the symbol "O" indicates support, and the symbol "X" indicates non-support.
 図6に示す例では、上述の実施形態2-1について、任意のDL受信及びUL送信の同時送受信がサポートされる。 In the example shown in FIG. 6, simultaneous transmission and reception of arbitrary DL reception and UL transmission are supported for embodiment 2-1 described above.
 図6に示す例では、上述の実施形態2-2について、測定用DL参照信号受信/測定用UL参照信号送信を含む組み合わせ以外の組み合わせの同時送受信がサポートされる。 In the example shown in FIG. 6, simultaneous transmission and reception of a combination other than the combination including DL reference signal reception for measurement/UL reference signal transmission for measurement is supported for the above-described embodiment 2-2.
 なお、上述の実施形態2-3のように、図6に示す組み合わせのうち、任意の組み合わせがサポートされてもよいし、サポートされなくてもよい。 It should be noted that any combination of the combinations shown in FIG. 6 may or may not be supported, as in Embodiments 2-3 described above.
 例えば、UEは、UE能力情報を報告した場合であっても、測定用DL参照信号受信を含む組み合わせをサポートしなくてもよい。また、例えば、UEは、UE能力情報を報告した場合であっても、測定用UL参照信号送信を含む組み合わせをサポートしなくてもよい。 For example, a UE may not support a combination including reception of DL reference signals for measurement, even when reporting UE capability information. Also, for example, a UE may not support a combination including UL reference signal transmission for measurement even when reporting UE capability information.
 UEは、メジャメントギャップ中にサービングセルにおける送受信ができるか否かに関するUE能力情報を報告してもよい。当該能力情報は、上述のサブバンド非重複全二重に関するUE能力情報に含まれてもよいし、サブバンド非重複全二重に関するUE能力情報と別々の能力情報として規定されてもよい。 The UE may report UE capability information regarding whether transmission and reception in the serving cell are possible during the measurement gap. The capability information may be included in the UE capability information regarding subband non-overlapping full-duplex described above, or may be defined as separate capability information from the UE capability information regarding sub-band non-overlapping full-duplex.
 以上第2の実施形態によれば、サブバンド非重複全二重を利用する場合であっても、適切にメジャメントの動作を制御することができる。 According to the second embodiment described above, it is possible to appropriately control the measurement operation even when subband non-overlapping full-duplex is used.
<第3の実施形態>
 第3の実施形態は、アンライセンスバンド(シェアードスペクトラム)を利用するXDDの運用について説明する。
<Third Embodiment>
The third embodiment describes the operation of XDD using unlicensed bands (shared spectrum).
 UEは、アンライセンスバンドの利用を設定/指示する情報を受信してもよい。 The UE may receive information that configures/instructs use of unlicensed bands.
 第3の実施形態は、以下に記載する実施形態3-1及び3-2に細分化される。UEは、実施形態3-1又は3-2に記載される少なくとも1つの方法に従ってもよい。 The third embodiment is subdivided into embodiments 3-1 and 3-2 described below. The UE may follow at least one method described in Embodiment 3-1 or 3-2.
《実施形態3-1》
 アンライセンスTDDバンドにおいて、XDDリソースが設定されなくてもよい。言い換えれば、XDDリソースにおいてアンライセンスTDDバンドが利用されなくてもよい。
<<Embodiment 3-1>>
XDD resources may not be configured in the unlicensed TDD band. In other words, the unlicensed TDD band may not be used in XDD resources.
 UEは、XDDリソースにおいてアンライセンスTDDバンドが利用されないと想定してもよい。 A UE may assume that unlicensed TDD bands are not utilized in XDD resources.
 アンライセンスTDDバンドにおいてXDDリソースが設定されなくてもよい。このとき、UEは、当該アンライセンスTDDバンドにおいてLBT(センシング)の実行に関する情報を受信してもよい。当該情報は、LBTを実行することを指示する情報であってもよいし、LBTを実行しないことを指示する情報であってもよい。  XDD resources may not be configured in the unlicensed TDD band. At this time, the UE may receive information about performing LBT (sensing) in the unlicensed TDD band. The information may be information instructing to perform LBT, may be information instructing not to perform LBT.
 アンライセンスTDDバンドにおいてXDDリソースが設定されてもよい。このとき、UEは、アンライセンスTDDバンドにおいて、LBT(センシング)、及び、任意のUL送信を行わないと判断してもよい。  XDD resources may be configured in the unlicensed TDD band. At this time, the UE may decide not to perform LBT (sensing) and any UL transmissions in the unlicensed TDD band.
《実施形態3-2》
 アンライセンスTDDバンドにおいて、XDDリソースが設定されてもよい。
<<Embodiment 3-2>>
XDD resources may be configured in the unlicensed TDD band.
 UEは、以下に記載する実施形態3-2-1から3-2-3の少なくとも1つに従ってもよい。 The UE may comply with at least one of embodiments 3-2-1 to 3-2-3 described below.
[実施形態3-2-1]
 アンライセンスTDDバンドにおけるXDDリソースについて、特定の周波数リソースの幅を利用して、DLリソース/ULリソースのFDMが行われてもよい。
[Embodiment 3-2-1]
For XDD resources in the unlicensed TDD band, FDM of DL/UL resources may be performed using specific frequency resource widths.
 アンライセンスTDDバンドにおけるXDDリソースについて、DLリソース/ULリソースの周波数リソースの幅として、特定のリソースが規定されてもよい(図7A参照)。 For the XDD resource in the unlicensed TDD band, a specific resource may be defined as the width of the frequency resource of the DL resource/UL resource (see FIG. 7A).
 UEは、アンライセンスTDDバンドにおけるXDDリソースについて、DLリソース/ULリソースの周波数リソースの幅として、特定のリソースを利用することを想定/期待/判断してもよい。 The UE may assume/expect/judgment to use a specific resource as the frequency resource width of the DL resource/UL resource for the XDD resource in the unlicensed TDD band.
 当該特定のリソースは、LBT(センシング)が行われる帯域幅(例えば、20MHz幅)であってもよい。当該特定のリソースは、リソースブロックセット(RBセット)と呼ばれてもよい。 The specific resource may be the bandwidth (eg, 20 MHz width) where LBT (sensing) is performed. The specific resource may be called a resource block set (RB set).
[実施形態3-2-2]
 上記実施形態3-2-1に加えて、XDDリソースにおけるDLリソース及びULリソースの境界に、ガードバンドが設定されてもよい(図7B参照)。
[Embodiment 3-2-2]
In addition to the embodiment 3-2-1 above, a guard band may be set at the boundary between the DL resource and the UL resource in the XDD resource (see FIG. 7B).
 当該ガードバンドの周波数リソースの帯域幅は、予め仕様で規定されてもよいし、上位レイヤシグナリングでUEに通知されてもよい。 The bandwidth of the frequency resource of the guard band may be specified in advance, or may be notified to the UE by higher layer signaling.
 なお、本開示において、ガードバンド、ガード周波数、ガードサブキャリア、リソースが設定されない周波数リソース(バンド/サブキャリア)、は互いに読み替えられてもよい。 In the present disclosure, guard bands, guard frequencies, guard subcarriers, and frequency resources (bands/subcarriers) for which resources are not configured may be read interchangeably.
[実施形態3-2-3]
 アンライセンスTDDバンドにおけるXDDリソースについて、特定の周波数リソースの幅を利用して、DLリソース/ULリソースのFDMが行われてもよい。
[Embodiment 3-2-3]
For XDD resources in the unlicensed TDD band, FDM of DL/UL resources may be performed using specific frequency resource widths.
 アンライセンスTDDバンドにおけるXDDリソースについて、DLリソース/ULリソースの周波数リソースの幅として、特定のリソースが規定されてもよい。 For the XDD resource in the unlicensed TDD band, a specific resource may be defined as the width of the frequency resource of the DL resource/UL resource.
 UEは、アンライセンスTDDバンドにおけるXDDリソースについて、DLリソース/ULリソースの周波数リソースの幅として、特定のリソースを利用することを想定/期待/判断してもよい。 The UE may assume/expect/judgment to use a specific resource as the frequency resource width of the DL resource/UL resource for the XDD resource in the unlicensed TDD band.
 当該特定のリソースは、LBT(センシング)が行われる帯域幅(例えば、20MHz幅)より小さい帯域幅であってもよい。当該特定のリソースは、リソースブロックセット(RBセット)より小さい帯域幅であってもよい。言い換えれば、LBT(センシング)が行われる帯域幅(例えば、20MHz幅)内において、DLリソース及びDLリソースがFDMされてもよい。 The specific resource may have a bandwidth smaller than the bandwidth in which LBT (sensing) is performed (eg, 20 MHz width). The particular resource may have a smaller bandwidth than a resource block set (RB set). In other words, DL resources and DL resources may be FDMed within a bandwidth (eg, 20 MHz width) where LBT (sensing) is performed.
 上記実施形態3-1及び3-2の少なくとも1つが、第1のアンライセンスバンド(例えば、60GHz帯のアンライセンスバンド)と、第2のアンライセンスバンド(例えば、5/6GHz帯のアンライセンスバンド)と、に共通に適用されてもよい。 At least one of the above embodiments 3-1 and 3-2 includes a first unlicensed band (eg, 60 GHz band unlicensed band) and a second unlicensed band (eg, 5/6 GHz band unlicensed band ) and may be commonly applied to
 上記実施形態3-1及び3-2の少なくとも1つが、第1のアンライセンスバンド(例えば、60GHz帯のアンライセンスバンド)と、第2のアンライセンスバンド(例えば、5/6GHz帯のアンライセンスバンド)と、に別々に適用されてもよい。 At least one of the above embodiments 3-1 and 3-2 includes a first unlicensed band (eg, 60 GHz band unlicensed band) and a second unlicensed band (eg, 5/6 GHz band unlicensed band ) and may be applied separately to .
 例えば、第1のアンライセンスバンドにおいて、LBT(センシング)を行わないチャネルアクセスの場合に、XDDリソースの設定が許容されてもよい。 For example, in the first unlicensed band, XDD resource configuration may be allowed in the case of channel access without LBT (sensing).
 また、UEが同時送受信をサポートするか否か(例えば、サブバンド非重複全二重に関するUE能力情報を報告するか否か)に基づいて、上記実施形態3-1及び3-2のいずれかが適用されてもよい。例えば、UEが同時送受信をサポートする場合、上記実施形態3-2が適用されてもよい。 Also, any of the above embodiments 3-1 and 3-2, based on whether the UE supports simultaneous transmission and reception (eg, whether to report UE capability information for subband non-overlapping full duplex) may apply. For example, if the UE supports simultaneous transmission and reception, Embodiment 3-2 above may be applied.
 以上第3の実施形態によれば、XDD運用によるアンライセンスバンドにおける不適切な干渉の発生を防ぐことができる。 According to the third embodiment, it is possible to prevent inappropriate interference from occurring in unlicensed bands due to XDD operation.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this radio communication system, communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc. may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 A wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare. A user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure. Hereinafter, the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may connect to at least one of the multiple base stations 10 . The user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)). Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Also, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 A plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10 . The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the radio communication system 1, a radio access scheme based on orthogonal frequency division multiplexing (OFDM) may be used. For example, in at least one of Downlink (DL) and Uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A radio access method may be called a waveform. Note that in the radio communication system 1, other radio access schemes (for example, other single-carrier transmission schemes and other multi-carrier transmission schemes) may be used as the UL and DL radio access schemes.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the radio communication system 1, as downlink channels, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by PUSCH. Also, a Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection. CORESET corresponds to a resource searching for DCI. The search space corresponds to the search area and search method of PDCCH candidates. A CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, channel state information (CSI), acknowledgment information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.) and scheduling request (Scheduling Request ( SR)) may be transmitted. A random access preamble for connection establishment with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In addition, in the present disclosure, downlink, uplink, etc. may be expressed without adding "link". Also, various channels may be expressed without adding "Physical" to the head.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, synchronization signals (SS), downlink reference signals (DL-RS), etc. may be transmitted. In the radio communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on. Note that SS, SSB, etc. may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Also, in the radio communication system 1, even if measurement reference signals (SRS), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS), good. Note that DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図9は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment. The base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 . One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the base station 10 as a whole. The control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like. The control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 . The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 . The control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 . The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 . The transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of the transmission processing section 1211 and the RF section 122 . The receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may measure the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to control section 110 .
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
 送受信部120は、下りリンク(DL)リソースと上りリンク(UL)リソースとが周波数分割多重可能なリソース(XDDリソース)の設定情報と、測定用のDL参照信号の時間リソースに関する情報と、を送信してもよい。制御部110は、前記リソースの設定情報、前記時間リソースに関する情報、及び、前記測定用のDL参照信号の測定に関する能力情報の報告、の少なくとも1つを用いて、前記測定用のDL参照信号に基づく測定を設定してもよい(第1の実施形態)。 Transmitting/receiving section 120 transmits configuration information of resources (XDD resources) in which downlink (DL) resources and uplink (UL) resources can be frequency-division multiplexed, and information on time resources of DL reference signals for measurement. You may Control section 110 uses at least one of the configuration information of the resource, the information on the time resource, and the report of capability information on measurement of the DL reference signal for measurement, to the DL reference signal for measurement. Based measurement may be set (first embodiment).
 送受信部120は、特定の下りリンク(DL)信号と特定の上りリンク(UL)信号との同時送受信が可能であるかを示す能力情報を受信してもよい。制御部110は、DLリソースとULリソースとが周波数分割多重可能なリソース(XDDリソース)において、前記特定のDL信号及び前記特定のUL信号の同時送受信を制御してもよい(第2の実施形態)。 The transmitting/receiving unit 120 may receive capability information indicating whether simultaneous transmission/reception of a specific downlink (DL) signal and a specific uplink (UL) signal is possible. The control unit 110 may control simultaneous transmission and reception of the specific DL signal and the specific UL signal in resources (XDD resources) in which DL resources and UL resources can be frequency division multiplexed (second embodiment ).
 送受信部120は、シェアードスペクトラムチャネルアクセスが適用される周波数の利用に関する第1の設定情報と、下りリンク(DL)リソースと上りリンク(UL)リソースとが周波数分割多重可能なリソース(XDDリソース)を設定する第2の設定情報と、を送信してもよい。制御部110は、前記第1の設定情報及び前記第2の設定情報を用いて、前記シェアードスペクトラムチャネルアクセスが適用される周波数における周波数分割多重可能なリソースの利用を設定してもよい(第3の実施形態)。 Transmitting/receiving section 120 stores first configuration information regarding the use of frequencies to which shared spectrum channel access is applied, and resources (XDD resources) in which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed. and second setting information to be set may be transmitted. The control unit 110 may use the first setting information and the second setting information to set the use of resources capable of frequency division multiplexing in the frequencies to which the shared spectrum channel access is applied (third embodiment).
(ユーザ端末)
 図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. The user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 . One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the user terminal 20 as a whole. The control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 . The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 . The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 . The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of a transmission processing section 2211 and an RF section 222 . The receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform The DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving section 220 (measuring section 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like. The measurement result may be output to control section 210 .
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
 送受信部220は、下りリンク(DL)リソースと上りリンク(UL)リソースとが周波数分割多重可能なリソース(XDDリソース)の設定情報と、測定用のDL参照信号の時間リソースに関する情報と、を受信してもよい。制御部210は、前記リソースの設定情報、前記時間リソースに関する情報、及び、前記測定用のDL参照信号の測定に関する能力情報の報告、の少なくとも1つに基づいて、前記測定用のDL参照信号に基づく測定を制御してもよい(第1の実施形態)。 The transmitting/receiving unit 220 receives configuration information of resources (XDD resources) in which downlink (DL) resources and uplink (UL) resources can be frequency-division-multiplexed, and information on time resources of DL reference signals for measurement. You may Control section 210, based on at least one of the configuration information of the resource, the information on the time resource, and the report of the capability information on the measurement of the DL reference signal for measurement, the DL reference signal for measurement You may control the measurement based on (first embodiment).
 制御部210は、前記測定用のDL参照信号のリソースにおいて、前記周波数分割多重可能なリソースが設定されないと想定してもよい(第1の実施形態)。 The control unit 210 may assume that the resource capable of frequency division multiplexing is not set in the measurement DL reference signal resource (first embodiment).
 制御部210は、前記測定用のDL参照信号のリソースと、前記周波数分割多重可能なリソースと、が時間領域において重複する場合、重複する時間領域において前記測定用のDL参照信号のリソースに基づく測定を行わないように制御してもよい(第1の実施形態)。 When the resource of the DL reference signal for measurement and the resource that can be frequency-division multiplexed overlap in the time domain, control section 210 performs measurement based on the resource of the DL reference signal for measurement in the overlapping time domain. may be controlled not to perform (first embodiment).
 前記測定用のDL参照信号の測定に関する能力情報を報告する場合、制御部210は、前記測定用のDL参照信号の時間リソースにおいて、前記周波数分割多重可能なリソースが設定され得ると想定してもよい(第1の実施形態)。 When reporting the capability information related to the measurement of the DL reference signal for measurement, the control unit 210 assumes that the resource capable of frequency division multiplexing can be configured in the time resource of the DL reference signal for measurement. Good (first embodiment).
 送受信部220は、特定の下りリンク(DL)信号と特定の上りリンク(UL)信号との同時送受信が可能であるかを示す能力情報を送信してもよい。制御部210は、DLリソースとULリソースとが周波数分割多重可能なリソース(XDDリソース)において、前記特定のDL信号及び前記特定のUL信号との同時送受信を制御してもよい(第2の実施形態)。 The transmitting/receiving unit 220 may transmit capability information indicating whether simultaneous transmission/reception of a specific downlink (DL) signal and a specific uplink (UL) signal is possible. The control unit 210 may control simultaneous transmission and reception of the specific DL signal and the specific UL signal in a resource (XDD resource) in which the DL resource and the UL resource can be frequency division multiplexed (second implementation form).
 前記特定のDL信号は、任意のDL信号であってもよく、前記特定のUL信号は、任意のUL信号であってもよい(第2の実施形態)。 The specific DL signal may be any DL signal, and the specific UL signal may be any UL signal (second embodiment).
 前記特定のDL信号は、測定用のDL参照信号を含まないDL信号であってもよく、前記特定のUL信号は、測定用のUL参照信号を含まないUL信号であってもよい(第2の実施形態)。 The specific DL signal may be a DL signal that does not include a DL reference signal for measurement, and the specific UL signal may be a UL signal that does not include a UL reference signal for measurement (second embodiment).
 送受信部220は、メジャメントギャップの期間中のサービングセルにおいて前記特定のDL信号の受信及び前記特定のUL信号の送信の少なくとも1つが可能かを示す他の能力情報を送信してもよい(第2の実施形態)。 Transmitting/receiving unit 220 may transmit other capability information indicating whether at least one of the reception of the specific DL signal and the transmission of the specific UL signal is possible in the serving cell during the period of the measurement gap (the second embodiment).
 送受信部220は、シェアードスペクトラムチャネルアクセスが適用される周波数の利用に関する第1の設定情報と、下りリンク(DL)リソースと上りリンク(UL)リソースとが周波数分割多重可能なリソース(XDDリソース)を設定する第2の設定情報と、を受信してもよい。制御部210は、前記第1の設定情報及び前記第2の設定情報に基づいて、前記シェアードスペクトラムチャネルアクセスが適用される周波数における周波数分割多重可能なリソースの利用を制御してもよい(第3の実施形態)。 Transmitting/receiving section 220 stores first configuration information regarding the use of frequencies to which shared spectrum channel access is applied, and resources (XDD resources) in which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed. Second setting information to be set may be received. Based on the first configuration information and the second configuration information, the control unit 210 may control utilization of resources capable of frequency division multiplexing in frequencies to which the shared spectrum channel access is applied (third embodiment).
 制御部210は、前記第1の設定情報によって設定されるリソース(アンライセンスTDDバンド)において、前記周波数分割多重可能なリソースが設定されないと想定してもよい(第3の実施形態)。 The control unit 210 may assume that the frequency division multiplexable resource is not set in the resource (unlicensed TDD band) set by the first setting information (third embodiment).
 制御部210は、前記第1の設定情報によって設定されるリソースにおいて、前記周波数分割多重可能なリソースが設定されると想定してもよい。前記DLリソース及び前記ULリソースは、共通の特定の帯域幅を有してもよい(第3の実施形態)。 The control unit 210 may assume that the frequency division multiplexable resource is set in the resource set by the first setting information. The DL resource and the UL resource may have a common specific bandwidth (third embodiment).
 制御部210は、前記第1の設定情報によって設定されるリソースにおいて、前記周波数分割多重可能なリソースが設定されると想定してもよい。前記DLリソース及び前記ULリソースは、共通の特定の帯域幅を有し、かつ、前記DLリソース及び前記ULリソースの境界にガード周波数リソースが設定されてもよい(第3の実施形態)。 The control unit 210 may assume that the frequency division multiplexable resource is set in the resource set by the first setting information. The DL resource and the UL resource may have a common specific bandwidth, and a guard frequency resource may be configured at the boundary between the DL resource and the UL resource (third embodiment).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are implemented by any combination of at least one of hardware and software. Also, the method of realizing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 where function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, terms such as apparatus, circuit, device, section, and unit can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, processing may be performed by one processor, or processing may be performed by two or more processors concurrently, serially, or otherwise. Note that processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as a processor 1001 and a memory 1002, the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, at least part of the above-described control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001. FIG.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one. The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include For example, the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004. FIG. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms explained in this disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal (signal or signaling) may be interchanged. A signal may also be a message. A reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may consist of one or more periods (frames) in the time domain. Each of the one or more periods (frames) that make up a radio frame may be called a subframe. Furthermore, a subframe may consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. A slot may also be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots, and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element (RE)). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good too. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 It should be noted that the structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not restrictive names in any respect. Further, the formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names, the various names assigned to these various channels and information elements are not limiting names in any way. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input and output through multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (e.g., Downlink Control Information (DCI)), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or combinations thereof may be performed by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like. Also, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. A “network” may refer to devices (eg, base stations) included in a network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable. can be used as intended.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , “cell,” “sector,” “cell group,” “carrier,” “component carrier,” etc. may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services. The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" are used interchangeably. can be
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary. Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them. Further, the mobile body may be a mobile body that autonomously travels based on an operation command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 図12は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 12 is a diagram showing an example of a vehicle according to one embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60. Prepare.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 . The electronic control unit 49 may be called an Electronic Control Unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52. air pressure signal of front wheels 46/rear wheels 47, vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor The brake pedal 44 depression amount signal obtained by 56, the operation signal of the shift lever 45 obtained by the shift lever sensor 57, and the detection for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 58. There are signals.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU. In addition, the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 . For example, the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication. Communication module 60 may be internal or external to electronic control 49 . The external device may be, for example, the above-described base station 10, user terminal 20, or the like. Also, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication. The electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by communication module 60 may include information based on the above inputs.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 Also, the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) For the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions of the base station 10 described above. In addition, words such as "uplink" and "downlink" may be replaced with words corresponding to communication between terminals (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be read as sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, operations that are assumed to be performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes with a base station, various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or a decimal number)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi®), IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these. Also, multiple systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determination" includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, "determining (deciding)" includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, "determining" is considered to be "determining" resolving, selecting, choosing, establishing, comparing, etc. good too. That is, "determining (determining)" may be regarded as "determining (determining)" some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment (decision)" may be read as "assuming", "expecting", or "considering".
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms “connected”, “coupled”, or any variation thereof, as used in this disclosure, refer to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the disclosure may include that nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not impose any limitation on the invention according to the present disclosure.

Claims (6)

  1.  下りリンク(DL)リソースと上りリンク(UL)リソースとが周波数分割多重可能なリソースの設定情報と、測定用のDL参照信号の時間リソースに関する情報と、を受信する受信部と、
     前記リソースの設定情報、前記時間リソースに関する情報、及び、前記測定用のDL参照信号の測定に関する能力情報の報告、の少なくとも1つに基づいて、前記測定用のDL参照信号に基づく測定を制御する制御部と、を有する端末。
    a receiving unit that receives configuration information of resources in which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed, and information on time resources of DL reference signals for measurement;
    Control the measurement based on the DL reference signal for measurement based on at least one of the resource configuration information, the information on the time resource, and a report of capability information on the measurement of the DL reference signal for measurement. A terminal having a control unit.
  2.  前記制御部は、前記測定用のDL参照信号のリソースにおいて、前記周波数分割多重可能なリソースが設定されないと想定する、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit assumes that the frequency division multiplexable resource is not set in the measurement DL reference signal resource.
  3.  前記制御部は、前記測定用のDL参照信号のリソースと、前記周波数分割多重可能なリソースと、が時間領域において重複する場合、重複する時間領域において前記測定用のDL参照信号のリソースに基づく測定を行わないように制御する請求項1に記載の端末。 When the resource of the DL reference signal for measurement and the resource that can be frequency-division multiplexed overlap in the time domain, the control unit performs measurement based on the resource of the DL reference signal for measurement in the overlapping time domain. 2. The terminal according to claim 1, wherein the terminal is controlled so as not to perform
  4.  前記測定用のDL参照信号の測定に関する能力情報を報告する場合、前記制御部は、前記測定用のDL参照信号の時間リソースにおいて、前記周波数分割多重可能なリソースが設定され得ると想定する、請求項1に記載の端末。 When reporting the capability information about the measurement of the DL reference signal for measurement, the control unit assumes that the frequency division multiplexable resource can be configured in the time resource of the DL reference signal for measurement, Claims The terminal according to Item 1.
  5.  下りリンク(DL)リソースと上りリンク(UL)リソースとが周波数分割多重可能なリソースの設定情報と、測定用のDL参照信号の時間リソースに関する情報と、を受信するステップと、
     前記リソースの設定情報、前記時間リソースに関する情報、及び、前記測定用のDL参照信号の測定に関する能力情報の報告、の少なくとも1つに基づいて、前記測定用のDL参照信号に基づく測定を制御するステップと、を有する端末の無線通信方法。
    Receiving configuration information of resources on which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed, and information on time resources of DL reference signals for measurement;
    Control the measurement based on the DL reference signal for measurement based on at least one of the resource configuration information, the information on the time resource, and a report of capability information on the measurement of the DL reference signal for measurement. A wireless communication method for a terminal, comprising the steps of:
  6.  下りリンク(DL)リソースと上りリンク(UL)リソースとが周波数分割多重可能なリソースの設定情報と、測定用のDL参照信号の時間リソースに関する情報と、を送信する送信部と、
     前記リソースの設定情報、前記時間リソースに関する情報、及び、前記測定用のDL参照信号の測定に関する能力情報の報告、の少なくとも1つを用いて、前記測定用のDL参照信号に基づく測定を設定する制御部と、を有する基地局。
    a transmission unit that transmits configuration information of resources in which downlink (DL) resources and uplink (UL) resources can be frequency division multiplexed, and information on time resources of DL reference signals for measurement;
    Configuring a measurement based on the DL reference signal for measurement using at least one of the resource configuration information, the information about the time resource, and the reporting of capability information about the measurement of the DL reference signal for measurement. and a base station.
PCT/JP2022/001139 2022-01-14 2022-01-14 Terminal, wireless communication method, and base station WO2023135746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001139 WO2023135746A1 (en) 2022-01-14 2022-01-14 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001139 WO2023135746A1 (en) 2022-01-14 2022-01-14 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2023135746A1 true WO2023135746A1 (en) 2023-07-20

Family

ID=87278758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001139 WO2023135746A1 (en) 2022-01-14 2022-01-14 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2023135746A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016824A (en) * 2015-11-27 2019-01-31 シャープ株式会社 Terminal device, base station device, and communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016824A (en) * 2015-11-27 2019-01-31 シャープ株式会社 Terminal device, base station device, and communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on flexible duplex mode", 3GPP DRAFT; RWS-210042, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210628 - 20210702, 7 June 2021 (2021-06-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052025607 *
SAMSUNG: "Email discussion summary for [RAN-R18-WS-eMBB-Samsung]", 3GPP DRAFT; RWS-210541, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Electronic Meeting; 20210628 - 20210702, 25 June 2021 (2021-06-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052029015 *

Similar Documents

Publication Publication Date Title
WO2023135799A1 (en) Terminal, wireless communication method, and base station
WO2023135746A1 (en) Terminal, wireless communication method, and base station
WO2023135747A1 (en) Terminal, wireless communication metho, and base station
WO2023135748A1 (en) Terminal, wireless comemunication method, and base station
WO2023073908A1 (en) Terminal, wireless communication method, and base station
WO2023058236A1 (en) Terminal, wireless communication method, and base station
WO2023058235A1 (en) Terminal, wireless communication method, and base station
WO2023063233A1 (en) Terminal, wireless communication method and base station
WO2023152849A1 (en) Terminal, wireless communication method, and base station
WO2023090341A1 (en) Terminal, radio communication method, and base station
WO2023162725A1 (en) Terminal, radio communication method, and base station
WO2023079633A1 (en) Terminal, wireless communication method, and base station
WO2023053391A1 (en) Terminal, wireless communication method and base station
WO2023053388A1 (en) Terminal, wireless communication method, and base station
WO2023053390A1 (en) Terminal, wireless communication method, and base station
WO2023085354A1 (en) Terminal, wireless communication method, and base station
WO2023100317A1 (en) Terminal, wireless communication method, and base station
WO2023166717A1 (en) Terminal, wireless communication method, and base station
WO2023053392A1 (en) Terminal, wireless communication method and base station
WO2023053389A1 (en) Terminal, radio communication method, and base station
WO2023166716A1 (en) Terminal, wireless communication method, and base station
WO2023166718A1 (en) Terminal, wireless communication method, and base station
WO2023073915A1 (en) Terminal, radio communication method, and base station
WO2023162726A1 (en) Terminal, wireless communication method, and base station
WO2023209875A1 (en) Wireless communication device and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920271

Country of ref document: EP

Kind code of ref document: A1