WO2023134741A1 - 准直器装置以及运动控制方法 - Google Patents

准直器装置以及运动控制方法 Download PDF

Info

Publication number
WO2023134741A1
WO2023134741A1 PCT/CN2023/072061 CN2023072061W WO2023134741A1 WO 2023134741 A1 WO2023134741 A1 WO 2023134741A1 CN 2023072061 W CN2023072061 W CN 2023072061W WO 2023134741 A1 WO2023134741 A1 WO 2023134741A1
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
assembly
motor
preset
feedback mechanism
Prior art date
Application number
PCT/CN2023/072061
Other languages
English (en)
French (fr)
Inventor
付东山
曹学国
张福
张晶贤
赵晶晶
Original Assignee
江苏瑞尔医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210045978.4A external-priority patent/CN114452549B/zh
Priority claimed from CN202211580708.XA external-priority patent/CN115933770B/zh
Application filed by 江苏瑞尔医疗科技有限公司 filed Critical 江苏瑞尔医疗科技有限公司
Priority to EP23740082.5A priority Critical patent/EP4344737A1/en
Publication of WO2023134741A1 publication Critical patent/WO2023134741A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods

Definitions

  • the present application relates to the technical field of radiosurgery robotic equipment, for example, to a secondary collimator device capable of automatic and fast switching and a motion control method.
  • Image-guided radiation therapy (Image Guided Radiation Therapy, IGRT) is a new technology for tumor radiation therapy that has been gradually developed. It uses advanced imaging equipment and image processing methods to accurately detect, delineate and treat patients in the treatment planning stage. Beam distribution planning, dose distribution calculation, precise target positioning before treatment irradiation, and target movement tracking during treatment can achieve precise radiation therapy for tumors and reduce damage to normal tissues and key organs around the tumor.
  • Image-guided technology is the basis of modern emerging precision radiation therapy, such as head and neck stereotactic radiosurgery (Stereotactic Radio Surgery, SRS) surgery, stereotactic body radiation therapy (Stereotactic Body Radiation Therapy, SBRT). Precision radiation therapy SRS and SBRT are also collectively referred to as radiosurgery.
  • the radiosurgery robot system is a special equipment for radiosurgery treatment. It is mainly used in precise radiotherapy for whole body solid tumors. Combining with advanced technologies such as multi-modal image guidance, modern robots and miniaturized linear accelerators, it realizes precise radiotherapy under precise image guidance, with High-dose, low-fractionation (1 to 5 fractions) treats tumors of different sizes.
  • the radiosurgery robot system adopts multi-beam non-coplanar high-dose small field irradiation in the spherical treatment space, so that the accelerator treatment beam can be projected to the target area of the patient at different positions and directions on the spherical surface, so as to achieve the optimal treatment dose distribution. Get the best treatment results.
  • a sphere is defined with the treatment center of the radiosurgery system as the center of the sphere and the Source-Axis Distanc (SAD) as the radius.
  • SAD Source-Axis Distanc
  • a number of nodes (up to thousands) evenly distributed on the sphere are called treatment nodes, and the collection of all treatment nodes on the sphere is the spherical treatment space.
  • the treatment planning system selects the optimal treatment nodes (tens to hundreds) for patients from the spherical treatment space to meet the clinical requirements for optimal dose distribution.
  • Each fractionation usually requires the use of multiple fields of different apertures to achieve the dose distribution planned for the treatment.
  • Each fractional treatment needs to be irradiated with multiple radiation fields with different apertures, which is realized by replacing the secondary collimators with different apertures in the linear accelerator.
  • the robotic radiosurgery accelerator system mainly performs stereotactic radiation therapy, and usually requires the use of multiple collimators with different apertures to complete its treatment plan. During the treatment process, even if the robot automatically replaces the collimator, it will delay time and reduce work efficiency.
  • patent CN201711349474.7 discloses a collimator, including: a slide plate mounted on a fixed plate; a collimator wheel mounted on a slide plate and a rotary drive In the device, the rotating drive device drives the collimator wheel to rotate, and the collimator wheel is provided with at least two holes of different sizes along the circumferential direction, and the center of the circle where the holes are located is located on the rotation axis of the collimator wheel.
  • the purpose of this patent is to quickly realize the replacement of openings of different sizes.
  • the collimator wall needs to have a certain thickness to prevent leakage, so setting at least two openings of different sizes on a collimator will lead to a large design volume, excessive weight of the collimator, and potential safety hazards , which is inconvenient during robot movement.
  • the motor is equipped with a synchronous belt to move.
  • the synchronous belt has low transmission accuracy, is easy to age, has a large amount of deformation, and has poor positioning accuracy, which does not meet the needs of clinical use.
  • Patent CN94247384.1 also discloses a scheme similar to CN201711349474.7.
  • the collimating hole is docked with the ray channel to realize the transformation of the ray beam diameter.
  • the above-mentioned design also has the problem that the volume is very huge and the driving of the transmission device is complicated.
  • CN200780044846.3 patent discloses an automatic collimator replacement device, which uses a plug-in replacement method to automatically replace one or more collimators of a radiotherapy system by means of a manipulator.
  • the automatic collimator replacement system needs to rely on the manipulator. Every time the manipulator needs to leave the treatment position, it will take a certain amount of time to move, grab the collimator, and tighten the process. After the collimator is replaced, it will return to the treatment position. It will lead to poor repeat positioning accuracy and prolong the treatment time of each fractionation. At the same time, the manipulator will also cause certain safety hazards to the patient during the movement process.
  • the magnetron has been outputting microwaves, which will accelerate the stray electrons in the accelerating tube, resulting in the generation of low-energy rays, which are dark currents.
  • Dark current is an objective phenomenon.
  • the accelerator has no protective measures against dark current, and dark current will directly irradiate the patient's body, resulting in radiation beyond the treatment plan.
  • the application discloses a secondary collimator device and a motion control method that can realize automatic and fast switching. Install at least two collimators on the treatment head at the same time, and the treatment head can quickly switch the collimators according to the treatment plan during the treatment process. In most cases, the collimator can be replaced without suspending the treatment, which overcomes the disadvantage of delaying time in the replacement of the collimator in the related art.
  • the application provides a collimator device, including a transmission assembly and at least two collimators, the transmission The assembly is connected with the collimator, and the transmission assembly is configured to realize automatic switching of different collimators by rotating.
  • each set of assembly components is provided with a collimator, the transmission assembly is connected with each set of assembly components, and the transmission assembly is configured to drive different assembly components by rotation to achieve different alignments. Automatic switching of straighteners;
  • the transmission assembly includes a rotating seat assembly, a fixed seat, a motor assembly and an electromagnetic pin assembly, the motor assembly is connected to the fixed seat and the rotating seat assembly, the fixed seat is provided with a beam hole, and the The rotating seat assembly is set to drive the assembly assembly to move under the drive of the motor assembly so that the designated collimator rotates to a position opposite to the beam hole;
  • the electromagnetic pin assembly is set to automatically locate, identify and lock the rotating seat assembly, and the electromagnetic pin assembly includes: an electromagnetic pin, a mounting ring and a first micro switch; the electromagnetic pin is fixed on the On the rotating base assembly, as the rotating base assembly rotates, when the motor assembly drives the rotating base assembly to rotate, the electromagnetic pin is energized, and the metal rod of the electromagnetic pin retracts into the electromagnetic pin.
  • the electromagnetic pin when the motor assembly drives the rotating seat assembly to the required position, the electromagnetic pin is de-energized, and the metal rod extends out of the electromagnetic pin and is inserted into the fixed seat.
  • the first micro switch In the tapered hole, so that the swivel seat assembly cannot rotate; and the metal rod is in contact with the first micro switch at the corresponding position, the first micro switch is triggered, and when the first micro switch is activated When triggered, the first microswitch is configured to send an electrical signal causing the system to identify the type of collimator that is opposite the center of the beam aperture.
  • the adjustment frame assembly includes a connecting plate, a screw and a nut, and the connecting plate is configured to connect the transmission assembly with the end of the primary collimator; between the screw and the When the nut is adjusted, the screw and the nut are set to adjust the distance from the collimator set on the assembly assembly to the target point, wherein the collimator set on the assembly assembly is two level collimator.
  • the swivel seat assembly includes: a swivel seat, a bearing inner ring end cover, two thin-walled bearings and a bearing outer ring end cover;
  • the two thin-walled bearings are installed between the rotating seat and the fixed seat, the outer walls of the two thin-walled bearings are provided with the bearing outer ring end cover and the bearing inner ring end cover, the The rotating seat is configured to rotate under the action of the motor assembly through the thin-walled bearing;
  • the bearing outer ring end cover is set to bear the gravity of the collimator;
  • the collimator is located at the upper end of the collimator device In the case of the bearing inner ring end cover set Set to withstand the gravity of the collimator, which is a secondary collimator.
  • At least one blind hole collimator and at least two round holes are arranged on the rotating seat assembly, the blind hole collimator is installed on the rotating seat, and the at least two round holes Equally distributed, set to fixedly connect the at least two groups of assembly components; the blind hole collimator is located in the middle of two circular holes, on the same circumference as the assembly components, and the motor assembly is also set to In this state, the swivel seat assembly is driven to rotate to control the blind hole collimator to switch to a position opposite to the beam hole.
  • the electromagnetic pin is a push-pull type electromagnetic pin, which is in a normally closed state; when the electromagnetic pin is de-energized, the metal rod remains protruding from the electromagnetic pin; When the pin is energized, the metal rod retracts into the electromagnetic pin; the number of the first micro switch is equal to the sum of the number of blind hole collimators and the number of round holes, and the first micro switch is fixed On the fixing seat, each blind hole collimator and each round hole corresponds to a first micro switch.
  • the motor assembly includes: a motor bracket, a stepping motor and a coupling; the stepping motor is mounted on the motor bracket and connected to the coupling, and the coupling is connected to the rotating seat assembly connect.
  • the assembly assembly further includes: a collimator identification assembly and a locking assembly;
  • the locking assembly includes a spring, an outer sleeve, an inner tapered sleeve and a ball, and the outer sleeve is fixed to the inner tapered sleeve , the inner tapered sleeve is in contact with the ball, the ball is in contact with the ball groove of the collimator, and the spring is located below the inner tapered sleeve and connected with the inner tapered sleeve;
  • the inner tapered sleeve has three tapered surface parts, which are respectively the first tapered surface, the second tapered surface and the third tapered surface, the part where the first tapered surface is located, and the inner tapered sleeve
  • the cross-sectional area gradually decreases along the direction from top to bottom;
  • the cross-sectional area of the inner tapered sleeve gradually increases along the direction from top to bottom where the second tapered surface is located;
  • the third tapered surface The part where the cross-sectional area of the inner tapered sleeve decreases gradually from top to bottom;
  • the first tapered surface and the second tapered surface are both tangent to the balls respectively, and the balls are tangent to two cone angles of the ball groove of the collimator.
  • the locking assembly has three levels of locking, including two levels of mechanical locking and one level of locking verification protection;
  • the first-level mechanical locking method is that when the spring is in a normal working state, the spring is set to apply pressure to the inner tapered sleeve so that the ball is in contact with the first inner tapered sleeve.
  • the conical surface is in effective contact, and the first conical surface is pressed against the ball to lock the collimator;
  • the secondary mechanical locking method is that when the spring loses the tension on the inner conical sleeve, the The outer sleeve of the collimator and the inner tapered sleeve move upward, the ball no longer presses the collimator, and the collimator moves down a certain distance until the second cone of the inner tapered sleeve The shape surface re-presses the outermost ball, and the ball re-presses the ball groove of the collimator to realize the secondary mechanical locking of the collimator, so that the collimator does not come off fall;
  • the collimator device also includes a position sensor, the position sensor is spaced apart from the metal sheet on the outer casing, and the first-level locking inspection protection mode is when the collimator is locked and the outer casing is locked in a preset direction.
  • the metal sheet on the outer jacket is close to the position sensor, and the position sensor is configured to detect the metal sheet so that the collimator is installed and locked in place; wherein the collimator It is a secondary collimator, and the preset direction is the direction in which the collimator is separated from the assembly assembly;
  • the installation and locking method of the collimator is as follows: install the collimator into the assembly assembly, pull down the outer cover by hand, make the inner tapered sleeve press the ball, and make the ball press
  • the groove of the collimator locks the collimator; in the case of replacing the collimator, first hold the collimator by hand, push up the outer cover, and move the ball, The locking state is released so that the collimator is detached from the assembly assembly.
  • the collimator identification component includes: a concave portion and a convex portion arranged on the top surface of the collimator, a spring-expandable probe and a coding identification circuit;
  • the identification of the collimator adopts a physical coding method.
  • a concave part or a convex part is set.
  • the concave portion corresponds to the convex portion and is configured to detect corresponding electrical signals; in the case of the concave portion below the probe, the probe is not in contact with the collimator, and no current passes through the Probe, the voltage signal is 1, in the case of a convex portion below the probe, the probe is in contact with the collimator, a current flows through the probe, the voltage signal is 0, and the collimator is Secondary collimator.
  • a certain number of concaves and convexes are machined, and the certain number of concaves and convexes are configured to be identified to form a set of binary codes
  • the collimator of the model adopts different codes; the probe is arranged on the printed circuit board (Printed Circuit Board, PCB) board, and the code recognition circuit is set to identify the model of the collimator through the code formed by the voltage signal .
  • PCB printed Circuit Board
  • the sum of the number of concave parts and the number of convex parts on the top surface of the collimator is 4, and the concave parts and the convex parts are arranged to be identified to form a four-bit binary code, and the binary code corresponds to 16 One of the types of collimators.
  • a protection disk assembly is also included, the protection disk assembly is located on the side of the collimator away from the assembly assembly and has a certain gap with the collimator, which does not affect the automatic locking of the collimator detection, and in the case that the collimator falls off, it is set to protect the bearing;
  • the protection disc assembly includes a protection disc installation rod, a protection disc, a protection disc rotation nut and a second micro switch, and the protection disc is located between the bottom of the collimator and the protection disc rotation nut; the protection The second micro switch is installed in the disc mounting rod;
  • the second micro switch is set to detect whether the protection disc rotation nut is installed in place when the protection disc rotation nut is tightened, and the protection disc installation rod has a through hole inside, which is set to allow each collimation
  • the groove code identification device wire of the device passes through the through hole.
  • the collimator is provided with a concave portion, a convex portion, and a ball groove; the angle of the ball groove is tangent to the locking ball.
  • the transmission assembly includes a rotating seat assembly, a primary position feedback mechanism and a fixed seat, and the collimator device also includes a secondary position feedback mechanism and a control circuit;
  • the collimator is a secondary collimator, the at least two collimators are mounted on the rotating base assembly, and the rotating base assembly is configured to drive the at least two collimators to rotate, and the specified The collimator rotates to the position opposite to the beam hole;
  • the primary position feedback mechanism includes: a driver and a stepping motor, the stepping motor is connected to the rotating base assembly and configured to drive the rotating base assembly to rotate under the instruction of the driver, and the stepping motor is provided with a rotor position A detection sensor, the rotor position detection sensor is set to monitor the position of the stepper motor in real time and automatically switch between open-loop control and closed-loop control according to the situation;
  • the secondary position feedback mechanism includes a grating, a reading head and a data acquisition conversion module; the reading head is configured to read the scale code of the grating and transmit it to the control circuit through the data acquisition conversion module.
  • the primary position feedback mechanism further includes a motor bracket, a shaft coupling and an electromagnetic push rod assembly, the stepping motor is installed on the motor bracket and connected to the shaft coupling at the same time, the coupling The shaft device is connected with the rotating seat assembly.
  • the primary position feedback mechanism has a zero-gap type hard stop homing mechanism and a rotating seat bidirectional limit switch detection mechanism, and the primary position feedback mechanism is set to pass through the hard stop set on the fixed seat, Accurate calibration of the initial zero position of the rotating seat is realized, and the primary position feedback mechanism is also configured to realize the limit protection and alarm function of the rotating seat through the two forward and reverse overtravel limit switches set on the fixed seat;
  • the primary position feedback mechanism is also set to realize the programmable control of the driver through the isolated Recommended Standard (RS) 485 communication interface circuit, and complete the fast switching function of the station.
  • the station adopts motor torque locking, electromagnetic Push rod lock double locking method.
  • the control mode of the primary position feedback mechanism includes open-loop control and closed-loop control, and the use time of the open-loop control is longer than the use time of the closed-loop control, and the primary position feedback mechanism is further set to The open-loop control is performed under the condition of detecting the action of the stepping motor in real time; the primary position feedback mechanism is also configured to cause a position deviation between the instruction and the position of the stepping motor due to overload Next, switch the open-loop control to the closed-loop control to correct the position and speed;
  • the secondary position feedback mechanism is configured to operate in a closed-loop positioning of the primary position feedback mechanism On the basis, the secondary position feedback mechanism is added as the final closed-loop target to eliminate the influence of the deformation of the transmission link between the output shaft of the stepping motor and the end load on the output positioning.
  • the collimator system further includes a protection disk mechanism, the protection disk mechanism includes a rotatable multi-leaf protection disk and a proximity switch detector, and the rotatable multi-leaf protection disk is connected through a mechanical quick connection
  • the collimator device is rotatable in the angular direction, and when the rotatable multi-leaf protection disk is working normally, each leaf of the rotatable multi-leaf protection disk is rotated to directly below the collimator, It is set to prevent the collimator from falling off to the ground when the locking fails;
  • the proximity switch detector is set to detect that the rotatable multi-leaf protection disc is rotated to the working position, and output a corresponding signal; at the end of the treatment, it is necessary to replace the
  • the blades of the rotatable multi-leaf protective disk rotate to the middle of the two collimators, and are set so as not to block the exit and entry of the collimator, and
  • the driver is an a-STEP driver
  • the stepper motor is an a-STEP stepper motor
  • the control circuit is connected to the reading head and the a-STEP driver
  • the a-STEP driver It is directly connected with the a-STEP stepping motor and arranged to control the movement of the multi-station rotary seat assembly;
  • the control circuit includes a power supply module, a communication module, a collimator physical coding module, an electromagnetic push rod drive and position feedback module, and a protection disk detection module;
  • the power supply module adopts a two-level isolation mechanism.
  • the first-level isolation mechanism is the isolation of power supply and control power supply.
  • the control power supply is converted by step-down isolated DC-to-DC power supply (Direct Current/Direct Current, DC/DC) from the power supply. Realization; another level of isolation mechanism is to isolate the communication power supply from the control power supply, and the communication power supply is realized by converting the control power supply through an isolated communication chip;
  • the electromagnetic push rod drive and position feedback module adopts pulse width modulation (Pulse Width Modulation, PWM) design, and the pulse width adjustment range is 0-300 ⁇ s.
  • PWM Pulse Width Modulation
  • the present application provides a motion control method, which is applied to the above-mentioned collimator device.
  • the stepping motor in the motor assembly directly drives the coupling in the motor assembly to rotate, and the coupling and the rotating seat
  • the components are connected, and the coupling absorbs the eccentricity caused during the movement to ensure precise movement.
  • the method includes:
  • the collimator at the position of the beam axis corresponds to the sequence of the preset collimators, and in response to the collimator at the position of the beam axis
  • the collimator corresponds to the preset collimator sequence, and the plan sequence is executed; in response to the collimator at the beam axis position not corresponding to the preset collimator sequence, the first preset position, the second The collimator corresponding to the second preset position or the third preset position is turned to the position of the beam axis.
  • an in-position signal is sent.
  • a fault signal is reported; wherein, the beam axis is the axis of the beam hole;
  • the rotating base of the rotating base assembly has a limited stopper, and the limiting block rotates with the rotating base after the stepper motor receives a command to drive the rotating base to rotate, so as to determine the initial Position, the positioning process of the stepper motor includes:
  • the stepper motor confirms whether the state is ready, and performs the next operation in response to the state being ready, and reports a fault in response to the state not being ready, and ends the current positioning process;
  • the electromagnetic pin cooperates with the stepping motor to realize positioning, identification and locking, and the electromagnetic pin is fixed on the rotating base through a mounting ring, and rotates with the rotating base;
  • the electromagnetic pin includes N first micro N is a natural number greater than or equal to three, N is equal to the sum of the number of blind hole collimators and the number of collimators, wherein, N-1 first micro switches are fixed on the fixed seat, N - The position of one first micro switch corresponds to N-1 collimators respectively, and one first micro switch corresponds to the blind hole collimator;
  • the electromagnetic pin is a push-pull type electromagnetic pin and is in a normally closed state ; When the electromagnetic pin is de-energized, the metal rod remains extended from the electromagnetic pin; when the electromagnetic pin is energized, the metal rod retracts into the electromagnetic pin.
  • the process of realizing automatic positioning, identification and locking of the electromagnetic pin includes:
  • the electromagnetic pin When the swivel base assembly is rotated to the required position, the electromagnetic pin is de-energized, the metal rod protrudes from the electromagnetic pin, and the metal rod is inserted into the tapered hole of the fixing seat , the swivel seat assembly cannot rotate;
  • the metal rod of the electromagnetic pin is in contact with the first microswitch at the corresponding position, and the first microswitch is triggered to detect whether the electromagnetic pin is locked in place to determine the position under the beam axis.
  • the present application provides a motion control method applied to the above-mentioned collimator device, including:
  • the zero point initialization of the motor is completed, and the motor initialization process is performed according to the grating reading fed back by the secondary position feedback mechanism and the theoretical value obtained by the primary position feedback mechanism;
  • the primary position feedback mechanism realizes primary automatic movement, automatic positioning and locking by means of a-STEP closed loop; the secondary position feedback mechanism feeds back position information in real time, and the primary position feedback mechanism performs compensation movement according to the feedback position information, and the deviation Amended to achieve two-level closed-loop control.
  • the motor initialization process is performed according to the grating reading fed back by the secondary position feedback mechanism and the theoretical value obtained by the primary position feedback mechanism, including:
  • the primary position feedback mechanism realizes primary automatic movement, automatic positioning and locking by means of a-STEP closed loop; the secondary position feedback mechanism feeds back position information in real time, and the primary position feedback mechanism performs compensation movement according to the feedback position information, and the deviation Amendments to achieve two-level closed-loop control, including:
  • the control circuit receives the command sent by the host computer and feeds back the command to the driver, and the driver sends a motion command to the stepper motor according to the command, the push rod lock detection switch is closed, and the primary position feedback
  • the electromagnetic push rod of the mechanism is powered on, the coil current is reduced to 10% of the rated value, and the electromagnetic push rod is pulled out from the fixed seat; wherein, the driver is an a-STEP driver;
  • the stepper motor achieves ultra-high resolution of the angle and sufficient motor output torque with a 100:1 ultra-high reduction ratio, and realizes primary motion positioning;
  • the mechanism feeds back to the front stage of the drive to achieve a closed-loop control; wherein, the stepper motor is a-STEP stepper motor;
  • the push rod lock detection switch is turned off, the control circuit adjusts the PWM duty cycle, and the electromagnetic push rod moves to the fixed seat smoothly to achieve primary precise positioning and locking.
  • the control circuit returns motion information to the driver;
  • the reading head reads the grating position in real time, and determines the read grating reading and the theoretical position ⁇ range;
  • the control circuit calculates the direction of motor movement and the number of steps, and sends a movement command to the stepper motor;
  • the control circuit sends a correction command to the stepper motor and the driver to move the collimator to the collimator It needs to move to the station position, and correct the angle deviation to realize the secondary closed-loop control;
  • the stepper motor After the stepper motor receives the movement command, it repeats the operation from the first-level closed-loop control to the second-level closed-loop control until the rotating seat assembly stops moving. After the rotating seat assembly stops moving, , the difference between the grating reading and the target constant is within the range of the theoretical position ⁇ , and the electromagnetic push rod is locked into the hole and triggers the micro switch to return a position signal to the host computer.
  • the swivel seat assembly has two overtravel limit points in forward and reverse directions, and the initialization of the motor zero point includes:
  • the control circuit uses a micro switch to detect the relative position of the rotating seat assembly and the fixed seat, sets the reverse overtravel limit point of the rotating seat assembly as the positioning origin, and uses the pressing mode to search for the positioning origin:
  • the control circuit controls the reverse rotation of the rotary seat assembly, determines the grating reading and the motor encoder reading of the end face of the rotary seat assembly to find the positioning origin, and rotates the rotary seat forwardly after the positioning origin is confirmed. seat assembly, so that all stations of the at least two collimators pass through the beam hole in sequence.
  • the theoretical value of the preset position obtained by using the grating position value of the preset position as the primary position feedback mechanism includes:
  • the control circuit obtains the motor stop bit END, and determines whether the motor stop bit END is equal to 1. In response to the motor stop bit END being equal to 1, there is no alarm; in response to the motor stop bit END being not equal to 1, stop the motor Describe the operation of the stepper motor and feed back the alarm information;
  • the control circuit refreshes the grating reading of the stop position of the stepping motor, and writes the raster reading into the register as starting data, and the stepping motor automatically updates the The grating position value of the preset position, using the grating position value of the preset position as the theoretical value of the preset position; in the case of an alarm, the control circuit refreshes the local alarm information with the feedback alarm information, and controls Displaying the feedback alarm information and reporting data packet processing; wherein, the The preset position includes a plurality of stations;
  • the stepper motor stops moving according to the theoretical value of the preset position, and the grating reading of the stop position of the stepper motor fed back by the secondary position feedback mechanism is consistent with the theoretical value of the preset position
  • the theoretical value of the preset position is used as the initial theoretical value of the motor, including:
  • the stepper motor executes the motion command to run to each station, verify the compliance of the grating reading of the stop position of the stepper motor with the theoretical value of each station, wherein the compliance includes The comparison between the difference between the grating reading and the theoretical value and the preset difference range; the motion command includes the theoretical value of each station;
  • the initialization of the motor ends; in response to the If the difference between the grating reading and the theoretical value is not within the preset difference range, an error is reported during initialization and an initialization failure flag is set, and the initialization of the motor is completed.
  • Fig. 1 is a general assembly diagram of a collimator device capable of automatic and fast switching provided by the embodiment of the present application;
  • Fig. 2 is a schematic structural diagram of an adjustment frame assembly provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a transmission assembly provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a rotating seat assembly provided in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a motor assembly provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electromagnetic pin assembly provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an assembly assembly provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a locking assembly provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a tapered sleeve provided in the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a protection disk assembly provided by an embodiment of the present application.
  • FIG. 11 is a flow chart of a motion control method provided by an embodiment of the present application.
  • FIG. 12 is a flow chart of a stepping motor positioning method provided by an embodiment of the present application.
  • FIG. 13 is a flow chart of another motion control method provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of placing a groove identification PCB probe assembly provided by the embodiment of the present application.
  • Fig. 15 is a schematic diagram of a groove physical coding provided by the embodiment of the present application.
  • Fig. 16 is a structural diagram of an automatic fast switching collimator device that can realize precise motion control provided by the embodiment of the present application;
  • Fig. 17 is a structural diagram of a primary feedback positioning mechanism provided by the embodiment of the present application.
  • Fig. 18 is a structural diagram of a protective disk mechanism provided by the embodiment of the present application.
  • Fig. 19 is a current-time curve diagram of the opening and closing of an electromagnetic pin provided by the embodiment of the present application.
  • FIG. 20 is a flow chart of a precise motion control method provided by an embodiment of the present application.
  • FIG. 21 is a flowchart of a motor initialization processing method provided by an embodiment of the present application.
  • the present application discloses a collimator device that can realize automatic and fast switching, including: an adjustment frame assembly 1, a transmission assembly 2, an assembly assembly 3, a protection disk assembly 4, and a collimator 5 , Blind hole collimator 6.
  • the adjustment frame assembly 1 is located above the transmission assembly 2, and the transmission assembly 2 is connected with the primary collimator through three sets of screws and nuts.
  • the assembly assembly 3 is located below the transmission assembly 2, fixed on the rotating seat assembly on the transmission assembly 2, and rotates The seat assembly drives the assembly assembly 3 to move through the motor assembly; the collimator 5 is located in the assembly assembly 3 and locked.
  • the adjustment frame assembly 1 includes a connecting plate 11 , a screw rod 12 and a nut 13 .
  • the secondary collimator support structure (the structure other than the adjustment frame assembly 1 in the collimator device provided in the embodiment of this application) is fixed on the end of the primary collimator device through the connecting plate 11 in the adjustment frame assembly 1, and the adjustment screw 12 and nut 13 can adjust the distance from the secondary collimator (collimator 5) to the target point.
  • Screw rod 12 and nut 13 have three groups.
  • the transmission assembly 2 includes a fixed base 21 , a rotating base assembly 22 , a motor assembly 23 , and an electromagnetic pin assembly 24 .
  • a beam hole 211 is set on the fixed seat 21, and the motor assembly 23 drives the rotating seat assembly 22 to rotate the designated collimator 5 below the beam hole 211 to realize the automatic and fast switching of multiple positions of the collimator 5.
  • the rotating seat assembly 22 includes: a rotating seat 221 , a bearing inner ring end cover 222 , a thin-walled bearing 223 , and a bearing outer ring end cover 224 .
  • Two thin-walled bearings 223 are installed between the rotating seat 221 and the fixed seat 21 .
  • the rotating seat 221 rotates under the action of the motor assembly 23 through the thin-walled bearing.
  • the thin-walled bearing 223 has a large inner diameter (the inner diameter is greater than 180 mm), a small cross-sectional size, and a light weight to withstand axial and radial forces.
  • the rotating speed is generally around 3000 rpm.
  • two bearings are installed in pairs, which helps the overall collimator work uniformly and rotate smoothly.
  • Thin-walled bearings 223 In the vertical working condition, the weight of the collimator system is supported by two thin-walled bearings to bear the axial force.
  • Thin-walled bearings 223 Under horizontal conditions, the weight of the collimator system consists of two thin-walled shafts Bear radial force.
  • Two bearing end caps are added to the outer walls of the two thin-walled bearings 223, including the bearing outer ring end cap 224 and the bearing inner ring end cap 222, which play the role of fixing the bearing.
  • the weight of the collimator is passed down from the ball to the bottom.
  • the end cover 224 of the bearing outer ring bears the gravity and plays a load-bearing role. If the secondary collimator (collimator 5) is rotated to be placed upward, the end cover 222 of the inner ring of the bearing plays a role of bearing.
  • the rotating seat assembly 22 is provided with a blind hole collimator 6 and three round holes, the blind hole collimator 6 is installed on the rotating seat 221, and in the non-treatment state, the blind hole collimator 6 rotates to the beam hole 211 The lower position can prevent the dark current from harming the patient.
  • the three circular holes are distributed equally at 120°, and the blind hole collimator 6 is located in the middle of the two circular holes.
  • the blind hole collimator 6 is made of tungsten-nickel-copper or tungsten-nickel-iron alloy;
  • the motor assembly includes: a motor bracket 231 , a stepping motor 232 , and a coupling 233 .
  • the stepper motor 232 is fixed on the fixed seat 21 through the motor bracket 231.
  • the output shaft of the stepper motor 232 drives the rotating seat 221 to rotate through the shaft coupling 233.
  • three collimators 5 are installed on the rotating seat 221, and the required collimator 5 can be rotated to the center of the beam hole 211; during the rotation, the coupling 233 can absorb the eccentricity caused during the movement.
  • the motor assembly 23 adopts the direct transmission method, and the stepper motor 232 is selected to directly drive the shaft to rotate, the maximum output torque is 2.4N/m, and there is a reducer with a reduction ratio of 1:100 inside.
  • the number of transmission stages can be reduced, and the transmission accuracy and efficiency can be improved; the structure is compact and meets the space restriction requirements.
  • the coupling 233 is a flexible coupling.
  • the stepper motor 232 is a first-level automatic positioning, identification and locking device, which converts electrical pulses into angular displacements, and controls the angular displacements by controlling the number of pulses to achieve accurate positioning. There is no cumulative error, and the repeat positioning accuracy is high, which can meet the positioning accuracy requirements.
  • the operation process is as follows:
  • Step 1 the upper computer software outputs the planning sequence.
  • Step 2 read the output plan sequence and read the preset collimator sequence.
  • step 3 a plurality of preset collimators are loaded into the assembly components respectively.
  • Step 4 judge whether the collimator at the current beam axis position corresponds to the preset collimator sequence through the identification component, and if the collimator at the current beam axis position corresponds to the preset collimator sequence, the output plan will be executed; if If it is judged that the collimator at the current beam axis position does not correspond to the preset collimator sequence, it is necessary to turn the collimator corresponding to preset position 1, preset position 2 or preset position 3 to the beam axis position. If the collimator turns to the beam axis position successfully, it will send an in-position signal; if the collimator fails to turn to the beam axis position, a fault signal will be reported.
  • Step 5 judging whether the output plan sequence has been executed, and if the plan sequence has been executed, the process ends.
  • Step 6 if the output plan sequence has not been executed, go to step 2.
  • the collimator in the beam axis direction can be transferred from No. 1 collimator to No. 2 or No. 3 collimator through automatic rotation.
  • the initial positioning is realized by means of a-STEP closed-loop: the data of the built-in subdivision rotary encoder of the motor is fed back to the front stage of the drive through the reducer and the transmission mechanism to realize the first-level closed-loop position.
  • the first-level closed-loop network inserts a biquad filter algorithm, which effectively eliminates the subdivision gap and transmission jitter, and ensures the stable positioning of the motor.
  • the second-order position sampling of the electromagnetic pin is fed in through the differential, and passes through the double-second-order filter closed-loop network.
  • the parallel proportional amplifier is programmed to adjust the gain of the second-order closed-loop to realize the second-order precise positioning.
  • Step 1 the stepper motor confirms whether the state is ready, if the state is confirmed to be ready, proceed to the following steps, if the state is not confirmed to be ready, report a fault and end.
  • Step 2 judge whether the current position is consistent with the preset position, if the current position is consistent with the preset position, then end, if the current position is not consistent with the preset position, perform the following steps.
  • Step 3 rotate the position of the collimator to judge whether the collimator has been turned to the preset position, and if the collimator has turned to the preset position, it is ready to reach the preset position according to the preset process. If the collimator does not turn to the preset position, the motor is controlled to rotate so that the collimator reaches the preset position.
  • Step 4 if the collimator fails to reach the preset position within a timeout, report a fault.
  • the electromagnetic pin assembly 24 includes: an electromagnetic pin 241 , a mounting ring 242 , and a first micro switch 243 .
  • the electromagnetic pin 241 is fixed on the rotating base 221 through the mounting ring 242 and rotates together with the rotating base 221 .
  • the electromagnetic pin assembly 24 includes four first microswitches 243, three first microswitches 243 are fixed on the fixed base 21, and are distributed in a circle of 120°, and the positions of the three first microswitches correspond to There are three collimators 5 , and the other first micro switch 243 corresponds to the blind hole collimator 6 .
  • the electromagnetic pin 241 is a push-pull electromagnetic pin and is in a normally closed state. When the electromagnetic pin 241 is powered off, the metal rod of the electromagnetic pin 241 keeps protruding from the electromagnetic pin 241 ; when the electromagnetic pin 241 is powered on, the metal rod retracts into the electromagnetic pin 241 .
  • the electromagnetic pin assembly 24 can realize the automatic positioning, identification and locking of the rotating base assembly 22 .
  • the electromagnetic pin 241 When the motor assembly 23 drives the rotating base 221 to rotate, the electromagnetic pin 241 is energized, the metal rod retracts into the electromagnetic pin 241, and when the rotating base 221 turns to the required position, the electromagnetic pin 241 is powered off, and the metal rod extends out of the electromagnetic pin 241 Besides, it is inserted into the tapered hole of the fixed seat 21, and the rotating seat 221 cannot rotate.
  • the metal rod is in contact with the first microswitch 243 at the corresponding position, and the first microswitch 243 is triggered to send a telecommunication number, the system will know the collimator model under the center of the beam hole 211.
  • the assembly assembly 3 includes a collimator identification assembly and a locking assembly 32 composed of a spring probe 31 and a circular PCB board 33 .
  • the identification of the collimator adopts the groove physical coding method.
  • a concave part 51 or a convex part 52 is set, and there is a probe 31 with spring expansion and contraction on the top of the collimator 5 corresponding to it.
  • Correspond and detect the corresponding electrical signal when the bottom of the probe 31 is in a concave state, the probe 31 has no electrical contact with the secondary collimator (collimator 5), no current passes through the probe 31, and the voltage signal is " 1", when the probe 31 is a convex part, the probe 31 is in contact with the secondary collimator (collimator 5), a current flows through the probe 31, and the voltage signal is "0".
  • a total of 4 concave and convex parts are processed, and a set of four-digit binary codes are formed during identification, corresponding to one of the 16 collimator models.
  • Different types of collimator 5 adopt Different codes; the probe 31 is set on the PCB, and the code identification circuit identifies the collimator model through the code formed by the voltage signal.
  • the locking component 32 fixes the collimator 5 in a ball locking manner.
  • a ball 321, an outer jacket 322, an inner tapered sleeve 323 and a spring 324 Including a ball 321, an outer jacket 322, an inner tapered sleeve 323 and a spring 324, the outer jacket 322 and the inner tapered sleeve 323 are fixed, the inner tapered sleeve 323 is in contact with the ball 321, and the ball 321 is in contact with the ball groove of the collimator 5,
  • the spring 324 is located below the inner tapered sleeve 323 and is connected with the inner tapered sleeve 323;
  • the inner tapered sleeve 323 has 3 tapered parts, respectively the first tapered face 325, the second tapered face 326 and the third tapered face 327, the part where the first tapered face 325 is located, the transverse direction of the inner tapered sleeve 323
  • the cross-sectional area gradually decreases along the direction from top to bottom.
  • the part where the second tapered surface 326 is located, the cross-sectional area of the inner tapered sleeve 323 gradually increases along the direction from top to bottom.
  • the part where the third tapered surface 327 is located, the inner tapered sleeve 323 is located.
  • the cross-sectional area of the tapered sleeve 323 gradually decreases from top to bottom;
  • the first tapered surface 325 and the second tapered surface 326 are tangent to the ball 321 respectively, and the two cone angles between the ball 321 and the ball groove of the collimator 5 are also tangent.
  • the first level of mechanical locking is automatic locking through the ball 321.
  • the spring 324 exerts pressure on the inner tapered sleeve 323 to ensure the first contact between the ball 321 and the inner tapered sleeve 323.
  • the conical surface 325 is in effective contact, and the first conical surface 325 is pressed against the ball 321 to lock the collimator.
  • the secondary mechanical locking method is that when the spring 324 fails and loses the pulling force on the inner conical sleeve 323, the outer sleeve 322 and the inner conical sleeve 323 are locked.
  • the tapered sleeve 323 moves upwards, the ball 321 no longer presses the collimator 5, and the collimator 5 moves downward for a certain distance until the second tapered surface 326 of the inner tapered sleeve 323 compresses the outermost ball 321 again,
  • the ball 321 re-presses the ball groove of the collimator 5 to realize the secondary mechanical locking of the collimator; it is guaranteed that the collimator 5 will not fall off; in the locking mode in this application, when the spring 324 is in normal working condition, the first cone
  • the shape surface presses the ball 321, which can make the ball 321 press the groove of the collimator 5, and lock the collimator 5; the resistance on the collimator 5 compresses the circuit board
  • the probe 31 on the top can detect the specifications and models of the collimator 5, and adopts the mutual cooperation between the tapered sleeve with three tapered surfaces and the ball 321, which can form a protective effect when the spring 324 is normal or fails.
  • the assembly locked with balls 321 is axisymmetric.
  • the overcoat 322 and the inner tapered sleeve 323 are fixed with jackscrews, and both move simultaneously when moving.
  • the inner tapered sleeve 323 is made of brass because it needs to compress the ball 321 and has high hardness requirements.
  • Overcoat 323 considers that the device should be as light as possible, and is made of aluminum alloy, with low density and light weight.
  • Ball 321 adopts hardened steel ball.
  • the collimator device also includes a position sensor, the position sensor and the metal sheet on the overcoat 322 are spaced apart, and the first-level locking inspection protection mode is when the collimator 5 is locked, pull down the overcoat 322, so that the metal sheet on the overcoat 322 is in contact with the outer cover 322.
  • the position sensor is close, and when the distance between the metal sheet on the jacket 322 and the position sensor is less than 2mm, it will be detected by the position sensor, thereby ensuring that the secondary collimator (collimator 5) is installed and locked in place, ensuring safety and reliability.
  • the installation and locking method of the collimator is as follows: install the collimator 5 into the rotating seat 221, pull down the outer cover 322 by hand, make the inner tapered sleeve 323 press the ball 321, and make the ball 321 press the groove of the collimator 5 groove, lock the collimator 5; when replacing the collimator 5, first hold the collimator 5 with your hands, push the outer cover 322 upwards, and move the ball 321, release the locking state, and the collimator 5 can slide down .
  • the protection disk assembly 4 includes a protection disk installation rod 41 , a protection disk 42 , a protection disk rotation nut 43 , and a second micro switch 44 .
  • a three-stage protection device is designed at the bottom of the collimator 5, once the spring 324 in the locking assembly 32 of a single collimator 5 fails, the collimator 5 can be protected when it falls off.
  • a protection disc 42 is installed at the bottom, and then a protection disc rotation nut 43 is installed.
  • a second micro switch 44 is housed in the protection disk mounting rod 41 .
  • the second microswitch 44 When the protection disk rotation nut 43 is tightened, the second microswitch 44 will be pressed, and it can be detected whether the protection disk rotation nut 43 is installed in place.
  • the collimator 5 used in this application is also provided with a groove and a ball groove, and the material is selected from tungsten-nickel-copper alloy or tungsten-nickel-iron alloy, and has a tapered aperture.
  • the angle of the ball groove is tangential to the balls set to lock.
  • At least two collimators are installed on the treatment head at the same time, and the treatment head can quickly switch the collimators according to the treatment plan during the treatment process.
  • the collimator can be replaced without suspending the treatment, which realizes the automatic and fast switching collimation system and saves treatment time.
  • the precise and rapid movement of the secondary collimator to the designated station is a key step. but in therapeutic exercise During the process, due to the influence of the weight of the loaded collimator, some parts will be deformed, resulting in the rotation of the motor, especially when the collimator is in different postures caused by robot movement, the difference in load will easily lead to position deviation.
  • the embodiment of the present application discloses an automatic fast switching collimator device that realizes precise motion control.
  • Multiple secondary collimators with different apertures are installed on the rotating seat assembly in the accelerator head.
  • the primary position feedback mechanism realizes the automatic rotation, automatic identification, and automatic locking of the rotary seat assembly, and the real-time feedback is used to correct the position deviation of the primary position feedback mechanism through the secondary position feedback mechanism.
  • real-time feedback of position information is realized, closed-loop communication of precise motion control and precise motion control of different collimators are realized, and automatic and fast switching saves treatment time.
  • an automatic and fast switching collimator device capable of precise motion control includes: a primary position feedback mechanism, a rotating seat assembly 22, a fixed seat 21, a secondary position feedback mechanism, and a collimator Mechanism 14, protection disk mechanism 4 and control circuit 7.
  • the primary position feedback mechanism includes a driver 8 , a stepping motor 232 , a motor bracket 231 , a coupling 233 and an electromagnetic push rod assembly 9 .
  • the stepper motor 232 is installed on the motor bracket 231 and is connected with the shaft coupling 233 , and the shaft coupling 233 is connected with the rotating seat assembly 22 .
  • Driver 8 and stepping motor 232 are a-STEP type.
  • the primary position feedback mechanism has a zero-gap type hard stop homing mechanism and a two-way limit switch detection mechanism for the rotary seat to achieve accurate calibration of the initial zero position of the rotary seat, as well as limit protection and alarm functions for the rotary seat; through isolated RS485 communication
  • the interface circuit realizes the programmable control of the driver 8 and completes the fast switching function of the station.
  • the station adopts the double locking method of motor torque locking and electromagnetic push rod locking.
  • the fixed seat 21 is provided with a limit switch bracket, and the limit switch bracket is provided with two positive and negative pressure-contact limit switches 10 .
  • the zero-gap type hard gear homing mechanism of the primary position feedback mechanism means that the stepper motor 232 reverses homing at a relatively low speed.
  • the motor torque It will increase, when the motor torque increases to 50% of the load torque of the motor, it is considered to be the zero point of the motor, and the homing ends.
  • the detection mechanism of the two-way limit switch of the swivel seat means that two positive and negative pressure-touch limit switches 10 are installed on the limit switch bracket. Contact, it is considered that the stepper motor 232 rotates beyond the circular rotation position, and the rotation of the stepper motor 232 is stopped immediately at this moment.
  • the primary position feedback mechanism monitors the position of the stepper motor 232 in real time through the rotor position detection sensor, and automatically switches between open-loop control and closed-loop control according to the situation.
  • the device is in an open-loop control state, and while detecting the action of the stepping motor 232, the open-loop control is performed, that is, the control circuit 7 calculates the stepping motor 232 needs the number of steps in the direction of motion, and sends the motion information to the driver 8, and the stepper motor 232 completes the movement in the required direction and the number of steps according to the driver 8 instructions.
  • the stepper motor 232 stops moving, if it is not within the reasonable range of the theoretical position, repeat the process of calculating the deviation, forming a motion command, and the stepping motor 232 completes the motion until the reading of the grating ruler is consistent with the theoretical value. The location is within reason.
  • This application adds a secondary position feedback mechanism as the final closed-loop target on the basis of the closed-loop positioning operation of the primary position feedback mechanism, eliminating the influence of the deformation of the transmission link between the output shaft of the motor and the end load (coupling 233, etc.) on the output positioning .
  • the secondary position feedback mechanism includes a grating 11, a reading head 12 and a data acquisition conversion module.
  • the grating 11 surrounds the outer side of the rotating seat assembly 22 and is fixed by screws.
  • the rotating seat assembly 22 drives the grating 11 to move synchronously with the rotor of the stepping motor 232 .
  • the reading head 12 and the pressure-contact limit switch 10 are installed at the same position of the fixing seat 21, away from the direction of the beam axis.
  • the outside of the grating 11 is engraved with a coded scale
  • the reading head 12 is installed outside the grating 11, the reading head 12 emits laser light, and the grating 11 reflects the laser with the scale code to the inside of the reading head 12, and the reading head 12 will have a coded scale
  • the laser light is received and processed and sent to the control circuit 7 through the data acquisition conversion module.
  • a protective disc mechanism 4 is installed at the end of the collimator 5.
  • the protective disc mechanism 4 includes a rotatable three-leaf protective disc 13 and a proximity switch detector. The working state and the collimator state can be switched by simply rotating the nut.
  • a proximity switch detector is used to detect whether the protection disk mechanism 4 is in a normal protection state, and outputs an electric signal, so that the purpose of quickly replacing the collimator can be realized.
  • the protection plate mechanism 4, the rotatable three-leaf protection plate 13 is connected with other structures of the collimator device through mechanical quick connection, and after the connection, it is locked and fixed in the axial direction by 6 balls, in the angular direction, that is, perpendicular to the axis It can still be rotated in the same plane.
  • each leaf of the rotatable three-leaf protection disk 13 rotates directly below the collimator 5, which can effectively prevent the collimator 5 from falling to the ground when the locking fails.
  • the proximity switch detector can just detect that the rotatable three-leaf rotating protection disc 13 rotates to the working position, and outputs a "protected" signal.
  • the blade of the rotatable three-leaf protective disk 13 is rotated to the middle of the two collimators 5. This part no longer blocks the collimator 5 from coming out and entering, and does not affect the collimator. 5, the proximity switch cannot detect that the rotatable three-leaf protection disc 13 is in the working position at this time, and outputs a "no protection" signal.
  • the rotatable three-leaf protection disc 13 is rotated to the position directly below the collimator 5 (working position), this mechanism restores the protection function of the collimator 5, and the proximity switch detects that the rotatable Turn the signal that the three-leaf protection disc 13 is in the station, and output the "protected" signal.
  • the collimator mechanism 14 includes at least two collimators 5 and the probe PCB board.
  • the collimator mechanism 14 is connected with the rotating seat assembly 22.
  • the outer diameter of the PCB board is smaller than the outer diameter of the collimator barrel, and the inner diameter of the PCB board is larger than the inner diameter of the collimator barrel with the largest aperture.
  • the collimator 5 adopts a symmetrical locking structure, which can effectively avoid the positioning error caused by the asymmetrical locking structure.
  • For the specific locking method refer to the previous embodiment.
  • the control circuit 7 has a power supply module, a communication module connected to the superior system, a physical encoding module of the collimator, an electromagnetic push rod drive and position feedback module, and a protection disk detection module.
  • the control circuit 7 is externally connected to the reading head 12 and the a-STEP driver,
  • the a-STEP driver is directly connected with the a-STEP stepper motor to control the movement of the multi-station rotary seat assembly 22 .
  • the total input terminal of the power module is designed with a transient voltage suppressor diode (Transient Voltage Suppressor, TVS) circuit, which is set to protect the control circuit 7 from electrostatic discharge, and can effectively suppress the surge impact of 400W (10/1000 ⁇ s).
  • the power module adopts a two-level isolation mechanism.
  • the first-level isolation mechanism is the isolation of power supply and control power supply.
  • the power supply is realized by controlling the power supply through the conversion of the isolated communication chip.
  • the electromagnetic push rod drive and position feedback module is designed with PWM technology, and the pulse width adjustment range is 0-300 microseconds, in order to minimize the mechanical impact and reduce the coil current after the electromagnetic push rod is pulled in To ensure that the power consumption does not exceed the limit, it is necessary to reduce the coil current to 10% of the rated value in time after the current is turned on and the current is in place to ensure that the coil continues to work at 24V.
  • the PWM duty cycle in real time during the pull-in process, the instantaneous high-power pull-in and the continuous adjustment of the continuous low-power maintenance current after the pull-in is in place can be realized.
  • the PWM duty cycle in real time to achieve a slow release effect and reduce mechanical shock.
  • the embodiment of the present application discloses a motion control method, as shown in Figure 20, through the hard gear and limit switch detection mechanism, the motor zero point initialization is completed, and according to the grating reading fed back by the secondary position feedback mechanism and the primary position feedback mechanism.
  • the theoretical value is used for motor initialization processing.
  • the primary position feedback mechanism realizes primary automatic movement, automatic positioning and locking with the help of a-STEP closed loop.
  • the secondary position feedback mechanism feeds back the position information in real time.
  • the primary position feedback mechanism performs compensation movement and deviation correction according to the position information. , to achieve two-stage closed-loop control. There are the following steps:
  • the grating position value of the preset position is used as the theoretical value of the preset position obtained by the primary position feedback mechanism, and the stepping motor stops moving according to the theoretical value of the preset position, and the The grating reading of the stop position of the stepper motor fed back by the secondary position feedback mechanism is related to the preset position In the case that the theoretical value of the preset position is consistent with the theoretical value of the preset position as the initial theoretical value of the motor, the initialization of the motor is completed.
  • the upper computer sends a command to the control circuit, and the control circuit feeds back the command to the a-STEP driver, and the driver sends a motion command to the stepper motor according to the command, the push rod lock detection switch is closed, and the primary position feedback
  • the electromagnetic push rod of the mechanism is powered on, the coil current is reduced to 10% of the rated value in time, and the electromagnetic push rod is pulled out from the fixed seat.
  • the a-STEP stepper motor relies on the 100:1 ultra-high reduction ratio to achieve ultra-high resolution angles and sufficient motor output torque to achieve primary motion positioning; a-STEP stepper motors have built-in subdivision rotary encoder data, Feedback to the front stage of the drive through the reducer and the transmission mechanism realizes the first-level closed-loop control.
  • the first-level closed-loop network is inserted into the biquad filter algorithm, which can effectively eliminate the subdivision gap and transmission jitter, and ensure the stable positioning of the a-STEP stepper motor.
  • the control circuit adjusts the PWM duty cycle, the electromagnetic push rod moves slowly to the fixed seat, and the primary precise positioning and locking are realized, and the control circuit returns the motion information to the a-STEP driver .
  • the reading head reads the grating position in real time, and determines the read grating reading and the theoretical position ⁇ range.
  • the control circuit sends a correction command to the stepper motor and the driver to move the collimator to the position where it needs to move to the station, and correct the angular deviation to achieve Secondary closed-loop control, in this embodiment, the range of theoretical position ⁇ is ⁇ 0.018°.
  • the swivel seat assembly has two overtravel limits for positive and negative rotation.
  • the zero point initialization of the motor includes: using a micro switch to detect the relative position between the swivel seat assembly and the fixed seat, and setting the reverse overtravel limit point of the swivel seat assembly as the positioning
  • the origin, the origin search adopts the pressure contact mode supported by the driver: along the end of the rotating seat assembly away from the beam hole, the direction of the beam hole is viewed, that is, when the rotating seat assembly rotates clockwise (forward), the grating reading
  • the reading of the motor encoder increases, and the reading of the grating and the motor encoder decreases when it is rotated counterclockwise (reversely).
  • the swivel seat assembly reversely rotates to find the positioning origin, and after the positioning origin is confirmed, it rotates forward, and the 1# station, the 2# station, the blind hole, and the 3# station pass through the beam hole in turn.
  • the control circuit obtains the motor stop bit END to determine whether the motor stop bit END is equal to 1. If the motor stop bit END is equal to 1, there will be no alarm; if the motor stop bit END is not equal to 1, it will stop. The stepping motor runs and feeds back the alarm information.
  • the control circuit refreshes the grating readings of the stop position of the stepping motor, writes the grating readings into the register as starting data, and the stepping motor automatically updates according to the starting data Renew the grating position value of the preset position, and use the grating position value of the preset position as the theoretical value of the preset position; if there is an alarm, the control circuit refreshes the local alarm information with the feedback alarm information, and controls the display Feedback alarm information and report data packet processing; wherein, the preset positions include a plurality of workstations.
  • stepper motor executes a motion command to run to each station, verify that the grating reading of the stop position of the stepper motor is consistent with the theoretical value of each station, wherein the The compliance includes the comparison between the difference between the grating reading and the theoretical value and the preset difference range; the motion command includes the theoretical value of each station.
  • This application discloses multiple secondary collimators with different apertures installed on the rotating seat assembly in the accelerator head. At least two sets of collimators are installed on the treatment head at the same time. Plan to quickly switch collimators. The shortcoming of time delay in changing the collimator in the related art is overcome, and in most cases there is no need to suspend treatment to replace the collimator. 2.
  • This application realizes the fast switching of different collimators through the automatic rotation, automatic recognition and automatic locking of the rotating seat assembly, saving treatment time.
  • the blind hole collimator installed on the swivel seat assembly in this application can be rotated to the position of the blind hole collimator in the non-ray irradiation state within the treatment fraction, so as to greatly block the dark current and reduce the impact of dark current on the patient.
  • the transmission system of this application adopts a direct transmission method, and a stepping motor is selected to directly drive the shaft to rotate, which reduces the number of transmission stages and improves transmission accuracy and efficiency; the structure is compact and meets the space restriction requirements. Realize automatic positioning, identification and locking. At the same time, the stepper motor converts electrical pulses into angular displacement, and the angular displacement can be controlled by controlling the number of pulses to achieve accurate positioning. There is no cumulative error, and the repeat positioning accuracy is high, which can meet the positioning accuracy requirements. 5.
  • This application uses a ball locking method to fix the collimator. Three-level locking protection, automatic locking through balls, and can form a protective effect when the spring is normal or invalid.
  • the precise motion control method and the collimator identification method proposed in this application have significantly improved the automation, precision, reliability and safety of the entire device.
  • This application realizes the precise calibration of the initial zero position of the rotary seat through the bidirectional limit switch, and uses the primary position feedback mechanism and the secondary position feedback mechanism to realize the two-stage closed-loop control of the rotary seat assembly, and the grating directly measures the value Accurate, eliminating the error caused by the deformation of the transmission link due to the overload of the collimator.
  • the collimator is protected by a rotatable three-leaf protection plate. Through reasonable structure control, it is easy to operate and can be replaced without taking it off, reducing the replacement time and saving the treatment time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本申请提供了一种准直器装置以及运动控制方法。准直器装置包括传动组件和至少两个准直器,所述传动组件与所述准直器连接,所述传动组件设置为通过旋转动作实现不同准直器的自动切换。

Description

准直器装置以及运动控制方法
本申请要求在2022年01月17日提交中国专利局、申请号为202210045978.4的中国专利申请的优先权,要求在2022年12月07日提交中国专利局、申请号为202211580708.X的中国专利申请的优先权,该两件申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及放射外科机器人设备技术领域,例如涉及可实现自动快速切换的二级准直器装置以及运动控制方法。
背景技术
图像引导放射治疗(Image Guided Radiation Therapy,IGRT)是逐步发展起来的肿瘤放射治疗新技术,它通过先进的影像设备及图像处理方法,在治疗计划阶段,对患者进行准确靶区探测、勾画和治疗射束分布规划、剂量分布计算,在治疗照射前进行精确靶区定位、在治疗过程中进行靶区运动跟踪,实现对肿瘤的精确放射治疗,降低对肿瘤周边正常组织及关键器官的损伤。图像引导技术是现代新兴精确放射治疗的基础,如头颈部立体定向放射外科(Stereotactic Radio Surgery,SRS)手术、立体定向体部放射治疗(Stereotactic Body Radiation Therapy,SBRT)。精准放射治疗SRS和SBRT也统称为放射外科治疗。
放射外科机器人***是放射外科治疗专用设备,主要应用于全身实体肿瘤精确放射治疗,结合多模态图像引导、现代机器人和小型化直线加速器等先进技术,实现了精确图像引导下的精准放疗,以大剂量、低分次(1至5次)治疗不同大小的肿瘤。
放射外科机器人***,在球面治疗空间中,采用多束非共面高剂量小野照射,使加速器治疗射束可以在球面上不同位置不同方向投射到患者靶区,以达到最优化的治疗剂量分布,获得最好的治疗效果。以放射外科***治疗中心为球中心,以源轴距(Source-Axis Distanc,SAD)为半径,定义一个球面。在球面上规划均匀分布的多个节点(可以多达数千个),称为治疗节点,球面上所有治疗节点的集合即为球面治疗空间。治疗计划***从球面治疗空间中选择针对患者的优化治疗节点(数十至上百个),满足最佳剂量分布的临床要求。每个分次治疗通常需要使用多个不同孔径的射野,以实现治疗计划制定的剂量分布。每个分次治疗需要使用多个不同孔径的射野照射,通过更换直线加速器中的不同孔径二级准直器来实现。
在放射治疗设备上使用圆形准直器时,每次仅安装一只准直器。机器人放射外科加速器***主要进行立体定向放射治疗,通常完成其治疗计划需要使用多个不同孔径的准直器。在治疗过程中,即使机器人自动更换准直器,也会延误时间,降低工作效率。
在解决更换准直器导致的延误时间和降低效率问题方面,专利CN201711349474.7公开了一种准直器,包括:安装在固定板上的滑板;安装在滑板上的准直器轮和旋转驱动装置,旋转驱动装置带动准直器轮转动,且准直器轮沿圆周方向上设置有至少两个不同尺寸的开孔,开孔所在的圆周的圆心位于准直器轮的转动轴线上。该专利的目的在于快速实现不同尺寸开孔的更换。由于在治疗过程中,准直器壁需要一定厚度,防止漏射,故在一个准直器上设置有至少两个不同尺寸的开孔会导致设计体积大,准直器过重,产生安全隐患,在机器人运动过程中不便利。采用电机搭载同步带方式运动,同步带传动精度低,易老化,变形量大,定位精度差,不符合临床使用需求。
专利CN94247384.1同样公开了与CN201711349474.7类似的方案,在准直器柱体上开有不同孔径的偏心准直孔,利用分度传动机构改变准直器柱体的回转角度,使不同孔径的准直孔与射线通道对接,实现射线束径的变换。上述设计同样具有体积非常巨大,传动装置驱动复杂的问题。
CN200780044846.3专利公开了一种自动准直器更换装置,是采用插拔式更换方式,通过机械手方式进行自动的更换放射治疗***的一个或多个准直器。该自动准直器更换***需要依赖于机械手,每次机械臂需要离开治疗位置,实现一定的运动、抓取准直器、拧紧等过程的时间,更换准直器后,再回到治疗位置,会导致重复定位精度差,每个分次的治疗时间的延长,同时机械手在运动过程中,也会对患者产生一定的安全隐患。
同时在放射治疗整个过程中,磁控管一直在输出微波,会对加速管内的杂散电子进行加速,导致低能射线产生,这种低能射线即为暗电流。暗电流是客观存在的现象,加速器对暗电流没有防护措施,暗电流会直接照射到患者体内,造成治疗计划以外的照射。
发明内容
本申请公开了可实现自动快速切换的二级准直器装置以及运动控制方法。将至少两个准直器同时安装在治疗头上,在治疗过程中治疗头可根据治疗计划快速切换准直器。在大多数情况下无需中止治疗就可以更换准直器,克服相关技术在更换准直器时延误时间的缺点。
本申请提供一种准直器装置,包括传动组件和至少两个准直器,所述传动 组件与所述准直器连接,所述传动组件设置为通过旋转动作实现不同准直器的自动切换。
一实施例中,还包括至少两组装配组件,每组装配组件上设置准直器,所述传动组件与每组装配组件相连接,所述传动组件设置为通过旋转带动不同装配组件实现不同准直器的自动切换;
所述传动组件包括旋转座组件、固定座、电机组件和电磁销钉组件,所述电机组件与所述固定座和所述旋转座组件相连接,所述固定座上设有束流孔,所述旋转座组件设置为在所述电机组件的驱动下,带动所述装配组件进行运动以使指定的准直器旋转至与所述束流孔相对的位置;
所述电磁销钉组件设置为自动定位、鉴别和锁定所述旋转座组件,所述电磁销钉组件包括:电磁销钉、安装环和第一微动开关;所述电磁销钉通过所述安装环固定在所述旋转座组件上,随着所述旋转座组件转动,在所述电机组件带动所述旋转座组件转动的情况下,所述电磁销钉被通电,所述电磁销钉的金属杆缩回所述电磁销钉内,在所述电机组件带动所述旋转座组件转动到需要的位置的情况下,所述电磁销钉被断电,所述金属杆伸出所述电磁销钉外,***到所述固定座的锥形孔中,以使所述旋转座组件不能转动;且所述金属杆与对应位置的第一微动开关接触,所述第一微动开关被触发,在所述第一微动开关被触发的情况下,第一微动开关设置为发送电信号,使***识别与所述束流孔的中心相对的准直器型号。
一实施例中,还包括调节架组件,所述调节架组件包括连接板、螺杆以及螺母,所述连接板设置为将所述传动组件与初级准直器末端相连接;在所述螺杆和所述螺母被调节的情况下,所述螺杆和所述螺母设置为调整所述装配组件上设置的准直器到靶点的距离,其中,所述所述装配组件上设置的准直器为二级准直器。
所述旋转座组件包括:旋转座、轴承内圈端盖、两个薄壁轴承以及轴承外圈端盖;
所述两个薄壁轴承安装于所述旋转座和所述固定座之间,所述两个薄壁轴承的外壁设有所述轴承外圈端盖和所述轴承内圈端盖,所述旋转座设置为通过所述薄壁轴承,在所述电机组件的作用下旋转;
所述两个薄壁轴承的外壁、所述轴承外圈端盖和所述轴承内圈端盖,对所述两个薄壁轴承进行固定;准直器的重量由上而下传递;在所述准直器位于所述准直器装置的下端的情况下,所述轴承外圈端盖设置为承受所述准直器的重力;在所述准直器位于所述准直器装置的上端的情况下,所述轴承内圈端盖设 置为承受所述准直器的重力,所述准直器为二级准直器。
一实施例中,所述旋转座组件上设置有至少一个盲孔准直器和至少两个圆孔,所述盲孔准直器被安装在所述旋转座上,所述至少两个圆孔等分分布,设置为固定连接所述至少两组装配组件;所述盲孔准直器位于两个圆孔中间,与所述装配组件处于同一圆周上,所述电机组件还设置为在非治疗状态下驱动所述旋转座组件旋转以控制所述盲孔准直器切换到与所述束流孔相对的位置。
一实施例中,所述电磁销钉是推拉式电磁销钉,处于常闭状态;在所述电磁销钉被断电的情况下,所述金属杆保持伸出所述电磁销钉的状态;在所述电磁销钉被通电的情况下,所述金属杆缩回所述电磁销钉内;第一微动开关的数量等于盲孔准直器的数量和圆孔的数量之和,所述第一微动开关固定在所述固定座上,每个盲孔准直器和每个圆孔均对应一第一微动开关。
所述电机组件包括:电机支架、步进电机和联轴器;所述步进电机安装在所述电机支架上,且与所述联轴器相连,所述联轴器与所述旋转座组件连接。
一实施例中,所述装配组件还包括:准直器识别组件和锁定组件;所述锁定组件包括弹簧、外套、内锥形套和滚珠,所述外套与所述内锥形套之间固定,所述内锥形套与所述滚珠接触,所述滚珠与所述准直器的滚珠槽接触,所述弹簧位于所述内锥形套下方并与所述内锥形套连接;
所述内锥形套具有三个锥面部分,分别为第一锥形面、第二锥形面和第三锥形面,所述第一锥形面所在部分,所述内锥形套的横截面积沿由上而下方向逐渐减小;所述第二锥形面所在部分,所述内锥形套的横截面积沿由上而下方向逐渐增大;所述第三锥形面所在部分,所述内锥形套的横截面积沿由上而下方向逐渐减小;
所述第一个锥形面以及所述第二个锥形面分别和所述滚珠接触时均相切,所述滚珠与所述准直器的滚珠槽的两个锥角相切。
一实施例中,所述锁定组件具有三级锁定方式,包括两级机械锁定和一级锁定检验保护;
一级机械锁定方式为在所述弹簧处于正常工作状态的情况下,所述弹簧设置为对所述内锥形套施加压力,以使所述滚珠与所述内锥形套的第一个内锥面有效接触,并使所述第一锥形面压紧所述滚珠进行准直器锁定;二级机械锁定方式为在所述弹簧失去对所述内锥形套的拉力的情况下,所述准直器外套与所述内锥形套向上运动,所述滚珠不再压紧所述准直器,所述准直器向下移动一定距离,直到所述内锥形套的第二锥形面重新压紧最外侧的滚珠,所述滚珠重新压紧所述准直器的滚珠槽以实现准直器二级机械锁定,以使所述准直器不脱 落;
所述准直器装置还包括位置传感器,所述位置传感器与所述外套上的金属片间隔设置,一级锁定检验保护方式为在所述准直器锁紧且所述外套被沿预设方向拉动的情况下,所述外套上的金属片与所述位置传感器接近,所述位置传感器设置为检测所述金属片,以使所述准直器被安装锁定到位;其中,所述准直器为二级准直器,所述预设方向为所述准直器脱离所述装配组件的方向;
准直器安装与锁定方式为:将所述准直器安装到所述装配组件中,用手向下拉所述外套,使所述内锥形套压紧所述滚珠,使得所述滚珠压紧所述准直器的沟槽,锁紧所述准直器;在更换所述准直器的情况下,先用手托住所述准直器,向上推所述外套,使所述滚珠移动,解除锁紧状态,以使所述准直器脱离所述装配组件。
一实施例中,所述准直器识别组件包括:设置于准直器顶部表面的凹部和凸部、带弹簧伸缩的探针和编码识别电路;
所述准直器识别采用物理编码方式,在所述准直器表面顶部表面对应的位置处,设置凹部或凸部,所述准直器的上方有所述带弹簧伸缩的探针与所述凹部和所述凸部相对应并设置为探测出相应的电信号;在所述探针下方为所述凹部的情况下,所述探针与所述准直器没有接触,没有电流通过所述探针,电压信号为1,在所述探针下方为凸部的情况下,所述探针与所述准直器接触,有电流通过探针,电压信号为0,所述准直器为二级准直器。
一实施例中,在所述准直器顶部表面的不同半径处,被加工出一定数量的凹部和凸部,所述一定数量的凹部和凸部设置为被识别以形成一组二进制编码,不同型号的准直器采用不同的编码;所述探针设于印刷电路板(Printed Circuit Board,PCB)板上,所述编码识别电路设置为通过电压信号组成的编码对准直器的型号进行识别。
一实施例中,在准直器顶部表面的凹部的数量和凸部的数量之和为4,所述凹部和所述凸部设置为被识别以形成四位二进制编码,所述二进制编码对应16种准直器的型号之一。
一实施例中,还包括保护盘组件,所述保护盘组件位于所述准直器的远离所述装配组件的一侧并与所述准直器具有一定间隙,不影响准直器自动锁定的检测,且在所述准直器脱落的情况下,设置为起到保护承重的作用;
所述保护盘组件包括保护盘安装杆、保护盘、保护盘旋转螺母和第二微动开关,所述保护盘位于所述准直器的底部和所述保护盘旋转螺母之间;所述保护盘安装杆内装有所述第二微动开关;
所述第二微动开关设置为在拧紧所述保护盘旋转螺母的情况下检测所述保护盘旋转螺母是否安装到位,所述保护盘安装杆内部开有通孔,设置为让每个准直器的沟槽编码识别装置电线通过通孔穿出。
一实施例中,所述准直器设有凹部、凸部、滚珠槽;所述滚珠槽的角度与设置为锁定的滚珠相切。
一实施例,所述传动组件包括旋转座组件、初级位置反馈机构和固定座,所述准直器装置还包括次级位置反馈机构和控制电路;
所述准直器为二级准直器,所述至少两个准直器安装于所述旋转座组件上,所述旋转座组件设置为带动所述至少两个准直器旋转,并将指定的准直器旋转至与束流孔相对的位置;
所述初级位置反馈机构包括:驱动器和步进电机,所述步进电机连接所述旋转座组件并设置为在所述驱动器的指令下驱动所述旋转座组件旋转,步进电机设置有转子位置检测传感器,所述转子位置检测传感器设置为实时监控所述步进电机的位置并根据状况自动切换开环控制与闭环控制;
所述次级位置反馈机构包括光栅、读数头和数据采集转换模块;所述读数头设置为读取所述光栅的刻度编码并通过所述数据采集转换模块传送给所述控制电路。
一实施例中,所述初级位置反馈机构还包括电机支架、联轴器和电磁推杆组件,所述步进电机安装在所述电机支架上,同时与所述联轴器相连,所述联轴器与所述旋转座组件连接。
一实施例中,所述初级位置反馈机构具有零间隙型硬挡寻零机制和旋转座双向限位开关检测机制,所述初级位置反馈机构设置为通过所述固定座上设置的硬挡块,实现旋转座初始零位的精确校准,所述初级位置反馈机构还设置为通过所述固定座上设置的两个正反转超程限位开关,实现旋转座限位保护与报警功能;所述初级位置反馈机构还设置为通过隔离式推荐标准(Recommended Standard,RS)485通讯接口电路实现对所述驱动器的可编程式控制,完成工位快速切换功能,所述工位采用电机扭矩锁定、电磁推杆锁定双重锁定方式。
一实施例中,所述初级位置反馈机构的控制方式包括开环控制和闭环控制,且所述开环控制的使用时长比所述闭环控制的使用时长多,所述初级位置反馈机构还设置为在实时检测所述步进电机的动作的情况下执行所述开环控制;所述初级位置反馈机构还设置为在因过载而在指令和所述步进电机的位置上发生位置偏移的情况下将所述开环控制切换为所述闭环控制,以修正位置与速度;
所述次级位置反馈机构设置为在所述初级位置反馈机构的闭环定位运行的 基础上增加所述次级位置反馈机构作为最终闭环目标,以消除所述步进电机的输出轴至末端负载之间传动环节变形对输出定位的影响。
一实施例中,所述准直器***还包括保护盘机构,所述保护盘机构包含可旋转多叶保护盘和接近开关检测器,所述可旋转多叶保护盘通过机械快接方式接入所述准直器装置,在角向可旋转,在所述可旋转多叶保护盘正常工作的情况下,所述可旋转多叶保护盘的每一叶旋转至所述准直器正下方,设置为防止所述准直器锁紧失效时脱落至地面;所述接近开关检测器设置为检测到所述可旋转多叶保护盘旋转至工作位,并输出相应信号;在治疗结束需要更换所述准直器的情况下,所述可旋转多叶保护盘的叶片旋转至两个准直器中间,设置为不再阻挡所述准直器的脱出与进入,所述接近开关检测器还设置为在检测不到所述可旋转多叶保护盘在工作位的情况下,输出相应信号;在所述准直器更换完毕的情况下,所述可旋转多叶保护盘被旋转至所述准直器正下方设置为恢复对所述准直器的保护功能,所述接近开关检测器还设置为检测到所述可旋转多叶保护盘在工作位的信号,并输出相应信号。
一实施例中,所述驱动器为a-STEP驱动器,所述步进电机为a-STEP步进电机,所述控制电路连接所述读数头和所述a-STEP驱动器,所述a-STEP驱动器与所述a-STEP步进电机直接相连设置为控制多工位的旋转座组件的运动;
所述控制电路包括电源模块,通讯模块,准直器物理编码模块、电磁推杆驱动与位置反馈模块、保护盘检测模块;
所述电源模块采用两级隔离机制,一级隔离机制为功率供电与控制供电隔离,所述控制供电由功率供电经降压隔离型直流转直流电源(Direct Current/Direct Current,DC/DC)转换实现;另一级隔离机制为通讯供电与所述控制供电隔离,通讯供电由所述控制供电经隔离型通讯芯片转换实现;
所述电磁推杆驱动与位置反馈模块,采用脉冲宽度调制(Pulse Width Modulation,PWM)设计,脉宽调节范围为0-300μs,所述电磁推杆驱动与位置反馈模块设置为在电流开启瞬间吸合到位后及时降低线圈电流至额定值的10%,以使线圈持续工作;通过吸合过程中实时调整PWM占空比实现瞬间大功率吸合与吸合到位后的持续小功率维持电流的连续调节;电流关闭期间实时调整PWM占空比,以减小机械冲击。
本申请提供一种运动控制方法,应用于上述的准直器装置,所述电机组件中的步进电机直接带动所述电机组件中的联轴器旋转,所述联轴器与所述旋转座组件连接,所述联轴器吸收运动过程中导致的偏心,保证精准运动,所述方法包括:
读取上位机软件输出的计划序列,读取预设准直器序列;
在多个预设的准直器分别被装入所述装配组件的情况下,判断束轴位置的准直器是否与所述预设准直器序列对应,响应于所述束轴位置的准直器与所述预设准直器序列对应,执行所述计划序列;响应于所述束轴位置的准直器与所述预设准直器序列不对应,将第一预设位置、第二预设位置或第三预设位置对应的准直器转至与所述束轴位置,在将预设位置的准直器转至所述束轴位置成功的情况下,发送到位信号,在将预设位置的准直器转至所述束轴位置失败的情况下,上报故障信号;其中,所述束轴为所述束流孔的轴线;
判断所述上位机软件输出放入计划序列是否执行完毕,响应于所述计划序列被执行完毕,结束本次控制;
响应于所述计划序列未被执行完毕,返回执行所述读取上位机软件输出的计划序列,读取预设准直器序列,判断当前束轴位置的准直器是否与所述预设准直器序列对应的操作。
一实施例中,所述旋转座组件的旋转座上有限位挡块,所述限位块在所述步进电机接收命令带动所述旋转座旋转后,跟随所述旋转座旋转,以确定初始位置,所述步进电机的定位流程包括:
所述步进电机确认状态是否就绪,响应于状态就绪,进行下一操作,响应于状态未就绪,上报故障,结束当前定位流程;
判断当前位置与预设位置是否一致,响应于当前位置与所述预设位置一致,结束当前定位流程,响应于当前位置与所述预设位置不一致,执行下一操作;
旋转所述准直器的位置,判断所述准直器是否已转至所述预设位置,响应于所述准直器已转至所述预设位置,判断按照预设过程到达所述预设位置的状态就绪;响应于所述准直器未转至所述预设位置,控制所述步进电机转动,以使所述准直器到达所述预设位置;
在所述准直器超时未到达所述预设位置的情况下,上报故障;
所述电磁销钉配合所述步进电机实现定位、鉴别与锁定,所述电磁销钉通过安装环固定在所述旋转座上,随着所述旋转座转动;所述电磁销钉包括N个第一微动开关,N为大于或等于三的自然数,N等于盲孔准直器的数量和准直器的数量之和,其中,N-1个第一微动开关固定在所述固定座上,N-1个第一微动开关的位置分别对应N-1个准直器,1个第一微动开关对应所述盲孔准直器;所述电磁销钉是推拉式电磁销钉,处于常闭状态;在所述电磁销钉被断电的情况下,所述金属杆保持伸出所述电磁销钉的状态;在所述电磁销钉被通电的情况下,所述金属杆缩回所述电磁销钉内。
一实施例中,所述电磁销钉实现自动定位、鉴别、锁定的流程包括:
在所述电机组件带动所述旋转座组件转动的情况下,所述电磁销钉被通电,所述金属杆缩回所述电磁销钉内;
在所述旋转座组件转动到需要的位置的情况下,所述电磁销钉被断电,所述金属杆伸出所述电磁销钉外,所述金属杆***到所述固定座的锥形孔中,所述旋转座组件不能转动;
所述电磁销钉的金属杆与对应位置的第一微动开关接触,所述第一微动开关被触发,检测到所述电磁销钉是否锁定到位,以确定所述束轴下的工位。
本申请提供一种运动控制方法,应用于上述的准直器装置,包括:
通过硬挡块和限位开关检测机制,完成电机零点初始化,根据所述次级位置反馈机构反馈的光栅读数与所述初级位置反馈机构得到的理论值进行电机初始化处理;
所述初级位置反馈机构借助a-STEP闭环实现初级自动运动、自动定位和锁定;所述次级位置反馈机构即时信息反馈位置信息,所述初级位置反馈机构根据反馈的位置信息进行补偿运动,偏差修正,实现两级闭环控制。
一实施例中,根据所述次级位置反馈机构反馈的光栅读数与所述初级位置反馈机构得到的理论值进行电机初始化处理,包括:
将预置位置的光栅位置值作为所述初级位置反馈机构得到的所述预置位置的理论值,在所述步进电机根据所述预置位置的理论值运动停止,且所述次级位置反馈机构反馈的所述步进电机的停止位置的光栅读数与所述预置位置的理论值相符的情况下,将所述预置位置的理论值作为电机初始理论值,所述电机初始化结束;
所述初级位置反馈机构借助a-STEP闭环实现初级自动运动、自动定位和锁定;所述次级位置反馈机构即时信息反馈位置信息,所述初级位置反馈机构根据反馈的位置信息进行补偿运动,偏差修正,实现两级闭环控制,包括:
所述控制电路接收上位机发送的命令并将所述命令反馈至所述驱动器,所述驱动器根据所述命令发送运动指令至所述步进电机,推杆锁定检测开关闭合,所述初级位置反馈机构的电磁推杆上电,降低线圈电流至额定值的10%,电磁推杆从所述固定座中拨出;其中,所述驱动器为a-STEP驱动器;
所述步进电机以100:1超高减速比实现角度超高分辨率和足够的电机输出扭矩,实现初级运动定位;所述步进电机内置细分型旋转编码器数据,经减速器与传动机构反馈至驱动前级实现一级闭环控制;其中,所述步进电机为a-STEP 步进电机;
所述准直器运动到位后,所述推杆锁定检测开关开断,所述控制电路调整PWM占空比,所述电磁推杆平稳运动至所述固定座上,实现初级精确定位锁定,所述控制电路返回运动信息至所述驱动器;
所述读数头实时读取光栅位置,确定读取的光栅读数与理论位置Δ范围;
所述控制电路根据所述准直器的当前位置及所述准直器需运动到工位位置,计算电机运动方向及步数,并向所述步进电机发送运动指令;在所述光栅读数与目标常量之间的差值偏离所述理论位置Δ范围的情况下,所述控制电路发送修正命令至所述步进电机及所述驱动器,以移动所述准直器至所述准直器需运动到工位位置,且修正角度偏差,实现二级闭环控制;
在所述步进电机接收到所述运动指令后,重复执行所述一级闭环控制到所述二级闭环控制的操作,直至所述旋转座组件停止运动,在所述旋转座组件停止运动后,所述光栅读数与所述目标常量之间的差值在所述理论位置Δ范围内,且所述电磁推杆入孔锁定并触发微动开关返回到位信号给所述上位机。
一实施例中,所述旋转座组件具有正反转2个超程限位点,所述完成电机零点初始化,包括:
所述控制电路采用微动开关检测所述旋转座组件与所述固定座的相对位置,设置所述旋转座组件的反转超程限位点为定位原点,采用压触模式搜索定位原点:
所述控制电路控制所述旋转座组件反向旋转,确定所述旋转座组件的端面的光栅读数与电机编码器读数以寻找所述定位原点,在所述定位原点确认后正向旋转所述旋转座组件,以使所述至少两个准直器的所有工位依次经过所述束流孔。
一实施例中,所述将预置位置的光栅位置值作为所述初级位置反馈机构得到的所述预置位置的理论值,包括:
所述控制电路获得电机停止位END,并确定所述电机停止位END是否等于1,响应于所述电机停止位END等于1,无报警;响应于所述电机停止位END不等于1,停止所述步进电机的运行并反馈报警信息;
在无报警的情况下,所述控制电路刷新所述步进电机的停止位置的光栅读数,将所述光栅读数作为出发数据写入寄存器,所述步进电机根据所述出发数据自动更新所述预置位置的光栅位置值,将所述预置位置的光栅位置值作为所述预置位置的理论值;在有报警的情况下,所述控制电路以反馈的报警信息刷新本地报警信息,控制显示所述反馈的报警信息并上报数据包处理;其中,所 述预置位置包括多个工位;
所述在所述步进电机根据所述预置位置的理论值运动停止,且所述次级位置反馈机构反馈的所述步进电机的停止位置的光栅读数与所述预置位置的理论值相符的情况下,将所述预置位置的理论值作为电机初始理论值,包括:
在所述步进电机执行运动命令运行至每个工位后,验证所述步进电机的停止位置的光栅读数与所述每个工位的理论值的符合性,其中,所述符合性包括所述光栅读数与所述理论值的差值与预设差值范围的对比情况;所述运动命令中包含所述每个工位的理论值;
响应于所述光栅读数与所述理论值的差值在所述预设差值范围内,保存所述光栅读数作为所述每个工位的位置参数,所述电机初始化结束;响应于所述光栅读数与所述理论值的差值不在所述预设差值范围内,执行初始化报错并设置初始化失败标志,所述电机初始化结束。
附图说明
图1为本申请实施例提供的一种可实现自动快速切换的准直器装置的总装图;
图2为本申请实施例提供的一种调节架组件的结构示意图;
图3为本申请实施例提供的一种传动组件的结构示意图;
图4为本申请实施例提供的一种旋转座组件的结构示意图;
图5为本申请实施例提供的一种电机组件的结构示意图;
图6为本申请实施例提供的一种电磁销钉组件的结构示意图;
图7为本申请实施例提供的一种装配组件的结构示意图;
图8为本申请实施例提供的一种锁定组件的结构示意图;
图9为本申请实施例提供的一种锥形套的结构示意图;
图10为本申请实施例提供的一种保护盘组件的结构示意图;
图11为本申请实施例提供的一种运动控制方法的流程图;
图12为本申请实施例提供的一种步进电机定位方法的流程图;
图13为本申请实施例提供的另一种运动控制方法的流程图;
图14为本申请实施例提供的一种沟槽识别PCB探针组件放入示意图;
图15为本申请实施例提供的一种沟槽物理编码放入原理图;
图16为本申请实施例提供的一种可实现精准运动控制的自动快速切换准直器装置的结构图;
图17为本申请实施例提供的一种初级反馈定位机构的结构图;
图18为本申请实施例提供的一种保护盘机构的结构图;
图19为本申请实施例提供的一种电磁销钉开启与关断电流-时间曲线图;
图20为本申请实施例提供的一种精准运动控制方法的流程图;
图21为本申请实施例提供的一种电机初始化处理方法的流程图。
具体实施方式
下面结合附图和具体实施方式对本申请进行说明。
如图1和图4所示,本申请公开了一种可实现自动快速切换的准直器装置,包括:调节架组件1、传动组件2、装配组件3、保护盘组件4、准直器5、盲孔准直器6。调节架组件1位于传动组件2上方,通过三组螺杆和螺母将传动组件2与初级准直器相连接,装配组件3位于传动组件2下方,固定在传动组件2上的旋转座组件上,旋转座组件通过电机组件带动装配组件3进行运动;准直器5位于装配组件3内并进行锁定。
如图2所示,调节架组件1,包括连接板11,螺杆12,螺母13。二级准直器支撑结构(本申请实施例提供的准直器装置中除调节架组件1外的结构)通过调节架组件1中的连接板11固定在初级准直器装置末端,通过调节螺杆12和螺母13可以调整二级准直器(准直器5)到靶点的距离。螺杆12和螺母13有三组。
如图1和图3所示,传动组件2包括固定座21、旋转座组件22、电机组件23、电磁销钉组件24。固定座21上设置一个束流孔211,电机组件23带动旋转座组件22,将指定的准直器5旋转至束流孔211下方,实现准直器5多工位的自动快速切换。
如图4所示,旋转座组件22包括:旋转座221、轴承内圈端盖222、薄壁轴承223、轴承外圈端盖224。
旋转座221和固定座21之间安装有两个薄壁轴承223。旋转座221通过薄壁轴承,在电机组件23的作用下旋转。薄壁轴承223的内径大(内孔径大于180mm),截面尺寸小,重量轻,以承受轴向力和径向力,转速一般在3000rpm左右。为了使准直器***工作平稳,采用两个轴承配对安装,有助于整体准直器工作时受力均匀,转动平稳。薄壁轴承223在垂直工况下,准直器***的重量由两个薄壁轴承承受轴向力。薄壁轴承223在水平工况下,准直器***的重量由两个薄壁轴 承承受径向力。
两个薄壁轴承223的外壁加两个轴承端盖,包括轴承外圈端盖224和轴承内圈端盖222,起到固定轴承的作用。准直器的重力从滚珠传下来到底部。二级准直器(准直器5)向下放置时,轴承外圈端盖224承受重力,起到承重作用。如果二级准直器(准直器5)旋转到向上放置,轴承内圈端盖222起到承重作用。
旋转座组件22上设置有盲孔准直器6和三个圆孔,盲孔准直器6安装在旋转座221上,在非治疗状态下,盲孔准直器6旋转至束流孔211下方的位置,可以阻挡暗电流对患者的伤害。
三个圆孔为120°等分分布,盲孔准直器6位于2个圆孔中间。盲孔准直器6材质为钨镍铜或者钨镍铁合金;三个圆孔设置为固定连接装配组件3。
如图5所示,所述电机组件包括:电机支架231、步进电机232、联轴器233。步进电机232通过电机支架231固定在固定座21上,当根据治疗计划选择一孔径的准直器5时,步进电机232输出轴通过联轴器233带动旋转座221旋转,本实施方式中,旋转座221上安装有三个准直器5,可以将需要的准直器5旋转至束流孔211的中心下;在旋转过程中联轴器233能够吸收运动过程中导致的偏心。
电机组件23采用直接传动方式,选用步进电机232直接带动轴旋转,最大输出扭矩为2.4N/m,内部带有减速比为1:100的减速器。可以减少传动级数,提高传动精度和效率;结构紧凑,满足空间限制要求。联轴器233为挠性联轴器。
本申请中,步进电机232是一级自动定位、鉴别和锁定装置,将电脉冲转化为角位移,通过控制脉冲个数来控制角位移量以达到准确定位的目的。没有累积误差,重复定位精度高,可以满足定位精度要求。如图11和图13所示,操作流程如下:
步骤1,上位机软件输出计划序列。
步骤2,读取输出的计划序列,读取预设准直器序列。
步骤3,将多个预设的准直器分别装入装配组件中。
步骤4,通过识别组件判断当前束轴位置的准直器是否与预设准直器序列对应,若当前束轴位置的准直器与预设准直器序列对应,将执行输出的计划;若判断当前束轴位置的准直器与预设准直器序列不对应,则需要将预设位置1、预设位置2或预设位置3对应的准直器转至束轴位置,若准直器转至束轴位置成功,发送到位信号,若准直器转至束轴位置失败,上报故障信号。
步骤5,判断输出的计划序列是否执行完毕,若计划序列执行完毕,此过程结束。
步骤6,若输出的计划序列未执行完毕,则转至步骤2。
通过自动旋转可实现束轴方向的准直器从1号准直器转到2号或3号准直器的状态。
如图13所示,精准运动控制方法流程图详解:
1、100:1超高减速比实现角度超高分辨率和足够的电机输出扭矩。
2、初次定位借助a-STEP闭环实现:电机内置细分型旋转编码器数据经减速器与传动机构反馈至驱动前级实现位置一级闭环。
3、一级闭环网络***双二阶滤波算法,有效消除细分间隙及传动抖动,确保电机平稳定位。
4、电磁销钉二阶位置取样经差分馈入,并经双二阶滤波器闭环网络,同时并列比例放大器程控调节二阶闭环的增益,实现二级精确定位。
如图12所示,步进电机定位流程:
步骤1,步进电机确认状态是否就绪,若确认状态就绪,则进行下述步骤,若确认状态未就绪,则上报故障,结束。
步骤2,判断当前位置与预设位置是否一致,若当前位置与预设位置一致,则结束,若当前位置与预设位置不一致,则执行下述步骤。
步骤3,旋转准直器位置,判断准直器是否已转至预设位置,若准直器已转至预设位置,则按照预设过程到达预设位置的状态就绪。若准直器未转至预设位置,则控制电机转动,以使准直器到达预设位置。
步骤4,若准直器超时未到达预设位置,则上报故障。
如图6所示,电磁销钉组件24包括:电磁销钉241、安装环242、第一微动开关243。电磁销钉241通过安装环242固定在旋转座221上,随着旋转座221一起转动。本实施方式中电磁销钉组件24包括4个第一微动开关243,3个第一微动开关243固定在固定座21上,成120°圆周分布,3个第一微动开关的位置分别对应3个准直器5,另1个第一微动开关243对应盲孔准直器6。
电磁销钉241是推拉式电磁销钉,处于常闭状态。电磁销钉241被断电时,电磁销钉241的金属杆保持伸出电磁销钉241的状态;电磁销钉241被通电时,金属杆缩回电磁销钉241内。电磁销钉组件24可实现旋转座组件22的自动定位、鉴别和锁定。当电机组件23带动旋转座221转动时,电磁销钉241被通电,金属杆缩回电磁销钉241内,旋转座221转到需要的位置时,电磁销钉241被断电,金属杆伸出电磁销钉241外,***到固定座21的锥形孔中,旋转座221不能转动。金属杆与对应位置的第一微动开关243接触,第一微动开关243被触发,发送电信 号,***就会清楚束流孔211中心下的准直器型号。
如图7-9、14-15所示,装配组件3包括弹簧探针31和环形PCB板33组成的准直器识别组件和锁定组件32。
所述准直器识别采用沟槽物理编码方式,在准直器5表面顶部表面对应的位置处,设置凹部51或凸部52,准直器5上方有带弹簧伸缩的探针31与之相对应并探测出相应的电信号;当探针31下方为凹部状态时,探针31与二级准直器(准直器5)没有电接触,没有电流通过该探针31,电压信号为“1”,当探针31下方为凸部时,探针31与二级准直器(准直器5)接触,有电流通过探针31,电压信号为“0”。
在准直器5顶部表面的不同半径处,加工出总数为4的凹部和凸部,识别时形成一组四位二进制编码,对应16种准直器型号之一,不同型号准直器5采用不同的编码;探针31设于PCB板上,编码识别电路通过电压信号组成的编码对准直器型号进行识别。
如图8-9所示,锁定组件32采用滚珠锁定方式固定准直器5。包括滚珠321、外套322、内锥形套323和弹簧324,外套322与内锥形套323之间固定,内锥形套323与滚珠321接触,滚珠321与准直器5的滚珠槽接触,弹簧324位于内锥形套323下方并与内锥形套323连接;
内锥形套323具有3个锥面部分,分别第一锥形面325、第二锥形面326和第三锥形面327,第一锥形面325所在部分,内锥形套323的横截面积沿由上而下方向逐渐减小,第二锥形面326所在部分,内锥形套323的横截面积沿由上而下方向逐渐增大,第三锥形面327所在部分,内锥形套323的横截面积沿由上而下方向逐渐减小;
第一个锥形面325、第二个锥形面326分别和滚珠321接触时均是相切的,滚珠321与准直器5的滚珠槽的两个锥角也是相切的。
有三级锁定保护,一级机械锁定方式为通过滚珠321进行自动锁定,弹簧324处于正常工作状态时,弹簧324对内锥形套323施加压力,保证滚珠321与内锥形套323的第一锥形面325有效接触,并使第一锥形面325压紧滚珠321进行准直器锁定,二级机械锁定方式为当弹簧324失效失去对内锥形套323的拉力时,外套322与内锥形套323向上运动,滚珠321不再压紧准直器5,准直器5向下移动一定距离,直到内锥形套323的第二锥形面326重新压紧最外侧的滚珠321,滚珠321重新压紧准直器5的滚珠槽以实现准直器二级机械锁定;保证准直器5不会脱落;本申请中的锁定方式,当弹簧324处于正常工作状态时,第一锥形面压紧滚珠321,可使滚珠321压紧准直器5的沟槽,锁紧准直器5;准直器5上的电阻压缩电路板 上的探针31,能够检测准直器5的规格型号,并采用带有三个锥面的锥形套与滚珠321的相互配合,可以在弹簧324正常和失效时候,均形成保护作用。
该采用滚珠321锁定的组件是轴对称的。
外套322与内锥形套323之间用顶丝固定,运动时,两者同时运动。内锥形套323由于需要压紧滚珠321,硬度要求较高,采用黄铜材质。外套323考虑到装置要尽量轻,采用铝合金材质,密度小,重量轻。滚珠321采用淬火钢珠。
准直器装置还包括位置传感器,位置传感器与外套322上的金属片间隔设置,一级锁定检验保护方式为在准直器5锁紧时,向下拉外套322,使外套322上的金属片与位置传感器接近,当外套322上的金属片与位置传感器距离小于2mm时,被位置传感器检测出来,由此能保证二级准直器(准直器5)被安装锁定到位,保证安全可靠。
准直器安装与锁定方式为:将准直器5安装到旋转座221中,用手向下拉外套322,使内锥形套323压紧滚珠321,使得滚珠321压紧准直器5的沟槽,锁紧准直器5;更换准直器5时,先用手托住准直器5,向上推外套322,使滚珠321移动,解除锁紧状态,准直器5便可以向下滑落。
如图10所示,保护盘组件4,包括保护盘安装杆41、保护盘42、保护盘旋转螺母43、第二微动开关44,保护盘42与准直器5底部留有间隙。在准直器5底部设计三级保护装置,一旦单个准直器5的锁定组件32中的弹簧324失效,准直器5脱落时可以起到保护作用。
将三个准直器5用弹簧滚珠方式锁定后,在底部安装保护盘42,再安装保护盘旋转螺母43。保护盘安装杆41内装有第二微动开关44。
拧紧保护盘旋转螺母43时,会压紧第二微动开关44,可以检测保护盘旋转螺母43是否安装到位。保护盘安装杆41内部开有三个通孔,便于让每个准直器5的电阻识别装置电线通过通孔穿出,第二微动开关44的电线也需要从中间孔穿出,以保证线路的整齐和易于维护。
本申请所用的准直器5,在传统准直器基础上,还设有沟槽和滚珠槽,材质选用钨镍铜合金或者钨镍铁合金,带有锥度的孔径。滚珠槽的角度与设置为锁定的滚珠是相切的。
上述实施例中将至少两个准直器同时安装在治疗头上,在治疗过程中治疗头可根据治疗计划快速切换准直器。在大多数情况下无需中止治疗就可以更换准直器,实现了自动快速切换的准直***,节约治疗时间。该准直***在治疗过程中,二级准直器精准快速运动到指定工位,是关键步骤。但在治疗的运动 过程中,由于加载的准直器重量影响,会导致部分部件变形,导致电机在旋转过程中,尤其是机器人运动导致的准直器处于不同姿态情况下,负载的不同容易导致位置发生偏移,没有直接带动二级准直器转动同样的角度,导致多个因素累计得到的患者平面精度偏差较大,对治疗效果会产生影响。而单纯依靠电机运动定位锁定难以保证二级准直器与初级准直器完全的束轴重合,从而导致治疗束畸形,影响治疗效果。
为解决上述技术问题,本申请实施例公开了一种实现精准运动控制的自动快速切换准直器装置,多个不同孔径的二级准直器安装在加速器机头内的旋转座组件上,通过初级位置反馈机构实现旋转座组件的自动旋转、自动识别、自动锁定,通过次级位置反馈机构进行实时反馈修正初级位置反馈机构的位置偏差,当安装在旋转座组件上的多个不同孔径的准直器在一个治疗分次内自动快速更换的过程中,实现了位置信息实时反馈,实现了精准运动控制的闭环通讯以及不同准直器的精准运动控制,自动快速切换,节省了治疗时间。
如图16至图18所示,一种可实现精准运动控制的自动快速切换准直器装置,包括:初级位置反馈机构、旋转座组件22、固定座21、次级位置反馈机构、准直器机构14、保护盘机构4和控制电路7。
所述初级位置反馈机构包括驱动器8、步进电机232、电机支架231、联轴器233和电磁推杆组件9。步进电机232安装在电机支架231上,同时与联轴器233相连,联轴器233与旋转座组件22连接。驱动器8和步进电机232是a-STEP型号。
初级位置反馈机构,具有零间隙型硬挡寻零机制和旋转座双向限位开关检测机制,以实现旋转座初始零位的精确校准,以及旋转座限位保护与报警功能;通过隔离式RS485通讯接口电路实现对驱动器8的可编程式控制,完成工位快速切换功能,工位采用电机扭矩锁定、电磁推杆锁定双重锁定方式。
固定座21上设有限位开关支架,限位开关支架上装有正反两个压触限位开关10。初级位置反馈机构的零间隙型硬挡寻零机制是指步进电机232以较低速度反向寻零,当安装在旋转座上的机械支杆结构与限位开关支架相撞时,电机扭矩会增大,当电机扭矩增到电机承载扭矩的50%时,认为此处为电机零点,寻零结束。旋转座双向限位开关检测机制是指限位开关支架上装有正反两个压触限位开关10,除寻零过程外,任何时候旋转座上的机械支杆结构与压触限位开关10接触,认为步进电机232旋转超出圆周旋转位置,此时立即停止步进电机232的旋转。
初级位置反馈机构通过转子位置检测传感器实时监控步进电机232的位置,根据状况自动切换开环控制与闭环控制。一般情况下装置处于开环控制状态,一边检测步进电机232的动作,一边执行开环控制,即控制电路7计算步进电机 232需要运动的方向的步数,并将运动信息发送给驱动器8,步进电机232根据驱动器8指令完成所需方向和步数的运动。
因过载等而在指令和步进电机232的位置上发生位置偏移时,会立即切换到闭环控制,即当光栅尺反馈的位置信息与理论位置信息不符时,开启闭环控制,从而修正位置与速度。例如为控制电路7计算当前位置与理论位置的偏差,形成电机运动方向和步数的指令,步进电机232完成控制电路7的指令,步进电机232运动完成后光栅尺反馈实时位置并与理论值比较,若在理论位置的合理范围内,步进电机232停止运动,若不在理论位置的合理范围内重复计算偏差、形成运动指令、步进电机232完成运动的过程,直至光栅尺读数与理论位置在合理范围内。
本申请在初级位置反馈机构闭环定位运行的基础上增加了次级位置反馈机构作为最终闭环目标,消除了电机输出轴至末端负载之间(联轴器233等)传动环节变形对输出定位的影响。
次级位置反馈机构包括光栅11、读数头12和数据采集转换模块。光栅11环绕在旋转座组件22外侧,通过螺钉固定。步进电机232的转子沿步进电机232的主轴的轴向做旋转运动时,旋转座组件22带动光栅11随步进电机232的转子作同步运动。读数头12与压触限位开关10置于固定座21的同一部位安装,远离束轴方向。
光栅11外部刻有编码形式的刻度,读数头12安装在光栅11的外部,读数头12发射激光,光栅11将带有刻度编码的激光反射至读数头12内部,读数头12将带有编码刻度的激光进行接收处理后通过数据采集转换模块发送至控制电路7。
在准直器5末端安装有保护盘机构4,保护盘机构4包含可旋转三叶保护盘13和接近开关检测器,工作状态和更换准直器状态只需旋转螺母即可进行切换,同时,采用接近开关检测器对保护盘机构4是否处于正常保护状态进行检测,输出电信号,可实现快速更换准直器的目的。
保护盘机构4,可旋转三叶保护盘13通过机械快接方式与该准直器装置的其他结构连接,连接后由6个滚珠进行轴向的锁紧固定,在角向,即垂直于轴向的平面上依然可以旋转。可旋转三叶保护盘13正常工作时,可旋转三叶保护盘13的每一叶旋转至准直器5正下方,能有效防止准直器5锁紧失效时脱落至地面。此时,接近开关检测器正好能够检测到可旋转三叶旋转保护盘13旋转至工作位,并输出“已保护”信号。当治疗结束需要更换准直器5时,将可旋转三叶保护盘13的叶片旋转至两个准直器5中间,此零件不再阻挡准直器5的脱出与进入,不影响准直器5的更换,接近开关此时检测不到可旋转三叶保护盘13在工作位,输出“不保护”信号。待准直器5更换完毕,将可旋转三叶保护盘13旋转至准直器5正下方(工作位),此机构恢复对准直器5的保护功能,接近开关检测到可旋 转三叶保护盘13在工位的信号,输出“已保护”信号。
准直器机构14,包括至少两个准直器5和探针PCB板,准直器机构14与旋转座组件22连接,准直器5上方带有沟槽,探针PCB板上设有金属探针,PCB板的外径小于准直器筒外径,PCB板的内径大于最大孔径准直器筒的内径。准直器5采用对称式锁定结构,可以有效规避非对称性锁定结构带来的定位误差。具体锁定方式参见上一实施例。
控制电路7,具有电源模块,与上级***连接的通讯模块,准直器物理编码模块、电磁推杆驱动与位置反馈模块、保护盘检测模块,控制电路7外接读数头12和a-STEP驱动器,a-STEP驱动器与a-STEP步进电机直接相连,以控制多工位旋转座组件22的运动。
电源模块的总输入端设计瞬态电压抑制二极管(Transient Voltage Suppressor,TVS)电路,设置为保护控制电路7免受静电放电,可以有效抑制400W(10/1000μs)的浪涌冲击。电源模块采用两级隔离机制,一级隔离机制为功率供电与控制供电隔离,控制供电由功率供电,经降压隔离型DC/DC转换实现;一级隔离机制为通讯供电与控制供电隔离,通讯供电由控制供电经隔离型通讯芯片转换实现。
如图19所示,电磁推杆驱动与位置反馈模块,设计有PWM技术,脉宽调节范围为0-300微秒,为最大限度减小机械冲击,并在电磁推杆吸合后降低线圈电流确保消耗功率不超限,在电流开启瞬间吸合到位后需要及时降低线圈电流至额定值的10%,保证线圈在24V电压时持续工作。通过吸合过程中实时调整PWM占空比可以实现瞬间大功率吸合与吸合到位后的持续小功率维持电流的连续调节。电流关闭期间同样需要实时调整PWM占空比,以达到缓释效果,减小机械冲击。
本申请实施例公开了一种运动控制方法,如图20所示,经过硬档和限位开关检测机制,完成电机零点初始化,根据次级位置反馈机构反馈的光栅读数与初级位置反馈机构得到的理论值进行电机初始化处理,初级位置反馈机构借助a-STEP闭环实现初级自动运动、自动定位和锁定,次级位置反馈机构即时信息反馈位置信息,初级位置反馈机构根据位置信息进行补偿运动,偏差修正,实现两级闭环控制。有如下步骤:
(1)电机零点初始化。
(2)将预置位置的光栅位置值作为所述初级位置反馈机构得到的所述预置位置的理论值,在所述步进电机根据所述预置位置的理论值运动停止,且所述次级位置反馈机构反馈的所述步进电机的停止位置的光栅读数与所述预置位置 的理论值相符的情况下,将所述预置位置的理论值作为电机初始理论值,所述电机初始化结束。
(3)上位机发送命令至控制电路,控制电路将该命令反馈至a-STEP驱动器,所述驱动器根据所述命令发送运动指令至所述步进电机,推杆锁定检测开关闭合,初级位置反馈机构的电磁推杆上电,及时降低线圈电流至额定值的10%,电磁推杆从固定座中拨出。
(4)a-STEP步进电机凭借100:1超高减速比实现角度超高分辨率和足够的电机输出扭矩,实现初级运动定位;a-STEP步进电机内置细分型旋转编码器数据,经减速器与传动机构反馈至驱动前级实现一级闭环控制,一级闭环网络***双二阶滤波算法,可有效消除细分间隙及传动抖动,确保a-STEP步进电机平稳定位。
(5)运动到位后,推杆锁定检测开关开断,控制电路调整PWM占空比,电磁推杆缓适运动至固定座上,实现初级精确定位锁定,控制电路返回运动信息至a-STEP驱动器。
(6)读数头实时读取光栅位置,确定读取的光栅读数与理论位置Δ范围。
(7)当光栅读数与目标常量之间的差值偏离理论位置Δ范围后,控制电路发送修正命令给步进电机及驱动器,移动准直器至需运动到工位位置,修正角度偏差,实现二级闭环控制,在本实施方式中理论位置Δ范围为±0.018°。
(8)旋转座组件停止运动后,光栅读数与目标常量之间的差值小于在理论位置Δ范围内,且电磁推杆入孔锁定并触发微动开关返回到位信号给上位机。
旋转座组件具有正反转2个超程限位,所述电机零点初始化包括:采用微动开关检测旋转座组件与固定座的相对位置,设置旋转座组件的反转超程限位点为定位原点,原点搜索采用驱动器支持的压触模式:沿旋转座组件远离束流孔的端面向束流孔方向,即逆束流孔方向观察,旋转座组件顺时针(正向)旋转时,光栅读数与电机编码器读数增大,逆时针(反向)旋转时光栅读数与电机编码器读数减小。旋转座组件反向旋转寻找定位原点,定位原点确认后正向旋转,1#工位、2#工位、盲孔、3#工位、依次经过束流孔。
如图21所示,电机初始化流程如下:
(1)电机零点初始化后,控制电路获得电机停止位END,确定电机停止位END是否等于1,响应于电机停止位END等于1,则无报警;响应于电机停止位END不等于1,则停止步进电机运行并反馈报警信息。
(2)若无报警,控制电路刷新所述步进电机的停止位置的光栅读数,将所述光栅读数作为出发数据写入寄存器,所述步进电机根据所述出发数据自动更 新所述预置位置的光栅位置值,将所述预置位置的光栅位置值作为所述预置位置的理论值;若有报警,则控制电路以反馈的报警信息刷新本地报警信息,控制显示反馈的报警信息并上报数据包处理;其中,所述预置位置包括多个工位。
(3)在所述步进电机执行运动命令运行至每个工位后,验证所述步进电机的停止位置的光栅读数与所述每个工位的理论值的符合性,其中,所述符合性包括所述光栅读数与所述理论值的差值与预设差值范围的对比情况;所述运动命令中包含所述每个工位的理论值。
(4)若所述光栅读数与所述理论值的差值在所述预设差值范围内,保存所述光栅读数作为所述每个工位的位置参数,所述电机初始化结束;若所述光栅读数与所述理论值的差值不在所述预设差值范围内,执行初始化报错并设置初始化失败标志,所述电机初始化结束。
本申请的技术效果:
1.本申请公开了安装在加速器机头内旋转座组件上的多个不同孔径二级准直器,将至少两组准直器同时安装在治疗头上,在治疗过程中治疗头可根据治疗计划快速切换准直器。克服了相关技术在更换准直器时延误时间的缺点,在大多数情况下无需中止治疗更换准直器。2.本申请通过旋转座组件的自动旋转、自动识别、自动锁定,实现不同准直器的快速切换,节省治疗时间。3.本申请在旋转座组件上安装的盲孔准直器,在治疗分次内非射线照射状态下,选择旋转到盲孔准直器位置,以大幅度阻挡暗电流,降低暗电流对患者的损伤。4.本申请的传动***采用直接传动方式,选用步进电机直接带动轴旋转,减少了传动级数,提高传动精度和效率;结构紧凑,满足空间限制要求。实现自动定位、鉴别和锁动。同时步进电机将电脉冲转化为角位移,可以通过控制脉冲个数来控制角位移量以达到准确定位的目的。没有累积误差,重复定位精度高,可以满足定位精度要求。5.本申请采用滚珠锁定方式固定准直器。三级锁定保护,通过滚珠进行自动锁定,并可以在弹簧正常和失效时候,均形成保护作用。保证二级准直器被安装锁定到位,保证安全可靠。6.本申请提出的精确运动控制方法、和准直器识别方法,显著提高了整个装置的自动化程度、精度、可靠性以及安全性。7.本申请通过双向限位开关,实现了旋转座初始零位的精确校准,并采用初级位置反馈机构和次级位置反馈机构,实现了旋转座组件的两级闭环控制,且光栅直接测量值精准,消除了传动环节由于准直器过载导致部件变形所引起的误差。8.采用可旋转三叶保护盘对准直器进行保护,通过合理的结构控制,操作便捷,不用取下即可更换,减少更换时间,节约了治疗时间。

Claims (27)

  1. 一种准直器装置,包括传动组件和至少两个准直器,所述传动组件与所述准直器连接,所述传动组件设置为通过旋转动作实现不同准直器的自动切换。
  2. 根据权利要求1所述的准直器装置,还包括至少两组装配组件,每组装配组件上设置准直器,所述传动组件与每组装配组件相连接,所述传动组件设置为通过旋转带动不同装配组件实现不同准直器的自动切换;所述传动组件包括旋转座组件、固定座、电机组件和电磁销钉组件,所述电机组件与所述固定座均和所述旋转座组件相连接,所述固定座上设有束流孔,所述旋转座组件设置为在所述电机组件的驱动下,带动所述装配组件进行运动以使指定的准直器旋转至与所述束流孔相对的位置;
    所述电磁销钉组件设置为自动定位、鉴别和锁定所述旋转座组件,所述电磁销钉组件包括:电磁销钉、安装环和第一微动开关;所述电磁销钉通过所述安装环固定在所述旋转座组件上,随着所述旋转座组件转动,在所述电机组件带动所述旋转座组件转动的情况下,所述电磁销钉被通电,所述电磁销钉的金属杆缩回所述电磁销钉内,在所述电机组件带动所述旋转座组件转动到需要的位置的情况下,所述电磁销钉被断电,所述金属杆伸出所述电磁销钉外,***到所述固定座的锥形孔中,以使所述旋转座组件不能转动;且所述金属杆与对应位置的第一微动开关接触,所述第一微动开关被触发,在所述第一微动开关被触发的情况下,第一微动开关设置为发送电信号,使***识别与所述束流孔的中心相对的准直器的型号。
  3. 根据权利要求2所述的准直器装置,还包括调节架组件,所述调节架组件包括连接板、螺杆以及螺母,所述连接板设置为将所述传动组件与初级准直器末端相连接;在所述螺杆和所述螺母被调节的情况下,所述螺杆和所述螺母设置为调整所述装配组件上设置的准直器到靶点的距离,其中,所述所述装配组件上设置的准直器为二级准直器。
  4. 根据权利要求2所述的准直器装置,其中,所述旋转座组件包括:旋转座、轴承内圈端盖、两个薄壁轴承以及轴承外圈端盖;
    所述两个薄壁轴承安装于所述旋转座和所述固定座之间,所述两个薄壁轴承的外壁设有所述轴承外圈端盖和所述轴承内圈端盖,所述旋转座设置为通过所述薄壁轴承在所述电机组件的作用下旋转;
    所述两个薄壁轴承的外壁、所述轴承外圈端盖和所述轴承内圈端盖,对所述两个薄壁轴承进行固定;在所述准直器位于所述准直器装置的下端的情况下,所述轴承外圈端盖设置为承受所述准直器的重力;在所述准直器位于所述准直器装置的上端的情况下,所述轴承内圈端盖设置为承受所述准直器的重力,所 述准直器为二级准直器。
  5. 根据权利要求4所述的准直器装置,其中,所述旋转座组件上设置有至少一个盲孔准直器和至少两个圆孔,所述盲孔准直器被安装在所述旋转座上,所述至少两个圆孔等分分布,设置为固定连接所述至少两组装配组件;所述盲孔准直器位于两个圆孔中间,与所述装配组件处于同一圆周上,所述电机组件还设置为在非治疗状态下驱动所述旋转座组件旋转以控制所述盲孔准直器切换到与所述束流孔相对的位置。
  6. 根据权利要求4所述的准直器装置,其中,所述电磁销钉是推拉式电磁销钉,处于常闭状态;在所述电磁销钉被断电的情况下,所述金属杆保持伸出所述电磁销钉的状态;在所述电磁销钉被通电的情况下,所述金属杆缩回所述电磁销钉内;第一微动开关的数量等于盲孔准直器的数量和圆孔的数量之和,所述第一微动开关固定在所述固定座上,每个盲孔准直器和每个圆孔均对应一第一微动开关。
  7. 根据权利要求2所述的准直器装置,其中,所述电机组件包括:电机支架、步进电机和联轴器;所述步进电机安装在所述电机支架上,且与所述联轴器相连,所述联轴器与所述旋转座组件连接。
  8. 根据权利要求2所述的准直器装置,其中,所述装配组件还包括:准直器识别组件和锁定组件;所述锁定组件包括弹簧、外套、内锥形套和滚珠,所述外套与所述内锥形套之间固定,所述内锥形套与所述滚珠接触,所述滚珠与所述准直器的滚珠槽接触,所述弹簧位于所述内锥形套下方并与所述内锥形套连接;
    所述内锥形套具有三个锥面部分,分别为第一锥形面、第二锥形面和第三锥形面,所述第一锥形面所在部分,所述内锥形套的横截面积沿由上而下方向逐渐减小;所述第二锥形面所在部分,所述内锥形套的横截面积沿由上而下方向逐渐增大;所述第三锥形面所在部分,所述内锥形套的横截面积沿由上而下方向逐渐减小;
    所述第一个锥形面以及所述第二个锥形面分别和所述滚珠接触时均相切,所述滚珠与所述准直器的滚珠槽的两个锥角相切。
  9. 根据权利要求8所述的准直器装置,其中,所述锁定组件具有三级锁定方式,包括两级机械锁定和一级锁定检验保护;
    一级机械锁定方式为在所述弹簧处于正常工作状态的情况下,所述弹簧设置为对所述内锥形套施加压力,以使所述滚珠与所述内锥形套的第一个内锥面有效接触,并使所述第一锥形面压紧所述滚珠进行准直器锁定;二级机械锁定 方式为在所述弹簧失去对所述内锥形套的拉力的情况下,所述准直器外套与所述内锥形套向上运动,所述滚珠不再压紧所述准直器,所述准直器向下移动一定距离,直到所述内锥形套的第二锥形面重新压紧最外侧的滚珠,所述滚珠重新压紧所述准直器的滚珠槽以实现准直器二级机械锁定,以使所述准直器不脱落;
    所述准直器装置还包括位置传感器,所述位置传感器与所述外套上的金属片间隔设置,一级锁定检验保护方式为在所述准直器锁紧,且所述外套被沿预设方向拉动的情况下,所述外套上的金属片与所述位置传感器接近,所述位置传感器设置为检测所述金属片,以使所述准直器被安装锁定到位;其中,所述准直器为二级准直器,所述预设方向为所述准直器脱离所述装配组件的方向;
    准直器安装与锁定方式为:将所述准直器安装到所述装配组件中,用手向下拉所述外套,使所述内锥形套压紧所述滚珠,使得所述滚珠压紧所述准直器的沟槽,锁紧所述准直器;在更换所述准直器的情况下,先用手托住所述准直器,向上推所述外套,使所述滚珠移动,解除锁紧状态,以使所述准直器脱离所述装配组件。
  10. 根据权利要求8所述的准直器装置,其中,所述准直器识别组件包括:设置于准直器顶部表面的凹部和凸部、带弹簧伸缩的探针和编码识别电路;
    所述准直器识别采用物理编码方式,在所述准直器表面顶部表面对应的位置处,设置凹部或凸部,所述准直器的上方有所述带弹簧伸缩的探针与所述凹部和所述凸部相对应并设置为探测出相应的电信号;在所述探针下方为所述凹部的情况下,所述探针与所述准直器没有接触,没有电流通过所述探针,电压信号为1,在所述探针下方为凸部的情况下,所述探针与所述准直器接触,有电流通过探针,电压信号为0;所述准直器为二级准直器。
  11. 根据权利要求10所述的准直器装置,其中,在所述准直器顶部表面的不同半径处,被加工出一定数量的凹部和凸部,所述一定数量的凹部和凸部设置为被识别以形成二进制编码,不同型号的准直器采用不同的编码;所述探针设于印刷电路板PCB板上,所述编码识别电路设置为通过电压信号组成的编码对准直器的型号进行识别。
  12. 根据权利要求11所述的准直器装置,其中,在所述准直器顶部表面的凹部的数量和凸部的数量之和为4,所述凹部和所述凸部设置为被识别以形成四位二进制编码,所述二进制编码对应16种准直器的型号之一。
  13. 根据权利要求2所述的准直器装置,还包括保护盘组件,所述保护盘组件位于所述准直器的远离所述装配组件的一侧并与所述准直器具有一定间隙, 不影响准直器自动锁定的检测,且在所述准直器脱落的情况下,设置为起到保护承重的作用;
    所述保护盘组件包括保护盘安装杆、保护盘、保护盘旋转螺母和第二微动开关,所述保护盘位于所述准直器的底部和所述保护盘旋转螺母之间;所述保护盘安装杆内装有所述第二微动开关;
    所述第二微动开关设置为在拧紧所述保护盘旋转螺母的情况下检测所述保护盘旋转螺母是否安装到位,所述保护盘安装杆内部开有通孔,设置为让每个准直器的沟槽编码装置电线通过通孔穿出。
  14. 根据权利要求2所述的准直器装置,其中,所述准直器设有凹部、凸部、滚珠槽;所述滚珠槽的角度与设置为锁定的滚珠相切。
  15. 根据权利要求1所述的准直器装置,其中,所述传动组件包括旋转座组件、初级位置反馈机构和固定座,所述准直器装置还包括次级位置反馈机构和控制电路;
    所述准直器为二级准直器,所述至少两个准直器安装于所述旋转座组件上,所述旋转座组件设置为带动所述至少两个准直器旋转,并将指定的准直器旋转至与束流孔相对的位置;
    所述初级位置反馈机构包括:转子位置检测传感器、驱动器和步进电机,所述步进电机连接所述旋转座组件并设置为在所述驱动器的指令下驱动所述旋转座组件旋转,所述转子位置检测传感器设置为实时监控所述步进电机的位置并根据状况自动切换开环控制与闭环控制;
    所述次级位置反馈机构包括光栅、读数头和数据采集转换模块;所述读数头设置为读取所述光栅的刻度编码并通过所述数据采集转换模块传送给所述控制电路。
  16. 根据权利要求15所述的准直器装置,其中,所述初级位置反馈机构还包括电机支架、联轴器和电磁推杆组件,所述步进电机安装在所述电机支架上,且与所述联轴器相连,所述联轴器与所述旋转座组件连接。
  17. 根据权利要求16所述的准直器装置,其中,所述初级位置反馈机构具有零间隙型硬挡寻零机制和旋转座双向限位开关检测机制,所述初级位置反馈机构设置为通过所述固定座上设置的硬挡块,实现旋转座初始零位的校准,所述初级位置反馈机构还设置为通过所述固定座上设置的两个正反转超程限位开关,实现旋转座限位保护与报警功能;所述初级位置反馈机构还设置为通过隔离式推荐标准RS485通讯接口电路实现对所述驱动器的可编程式控制,完成工位切换功能,所述工位采用电机扭矩锁定、电磁推杆锁定双重锁定方式。
  18. 根据权利要求17所述的准直器装置,其中,所述初级位置反馈机构的控制方式包括开环控制和闭环控制,且所述开环控制的使用时长比所述闭环控制的使用时长多,所述初级位置反馈机构还设置为在实时检测所述步进电机的动作的情况下执行所述开环控制;所述初级位置反馈机构还设置为在因过载而在指令和所述步进电机的位置上发生位置偏移的情况下将所述开环控制切换为所述闭环控制,以修正位置与速度;
    所述次级位置反馈机构设置为在所述初级位置反馈机构的闭环定位运行的基础上增加所述次级位置反馈机构作为最终闭环目标,以消除所述步进电机的输出轴至末端负载之间传动环节变形对输出定位的影响。
  19. 根据权利要求15所述的准直器装置,还包括保护盘机构,所述保护盘机构包含可旋转多叶保护盘和接近开关检测器,所述可旋转多叶保护盘通过机械快接方式接入所述准直器装置,在角向可旋转;在所述可旋转多叶保护盘正常工作的情况下,所述可旋转多叶保护盘的每一叶旋转至所述准直器正下方,设置为防止所述准直器锁紧失效时脱落至地面;所述接近开关检测器设置为检测到所述可旋转多叶保护盘旋转至工作位,并输出相应信号;在治疗结束需要更换所述准直器的情况下,所述可旋转多叶保护盘的叶片旋转至两个准直器中间,设置为不再阻挡所述准直器的脱出与进入,所述接近开关检测器还设置为在检测不到所述可旋转多叶保护盘在工作位的情况下,输出相应信号;在所述准直器更换完毕的情况下,所述可旋转多叶保护盘被旋转至所述准直器正下方设置为恢复对所述准直器的保护功能,所述接近开关检测器还设置为检测到所述可旋转多叶保护盘在工作位的信号,并输出相应信号。
  20. 根据权利要求15所述的准直器装置,其中,所述驱动器为a-STEP驱动器,所述步进电机为a-STEP步进电机,所述控制电路连接所述读数头和所述a-STEP驱动器,所述a-STEP驱动器与所述a-STEP步进电机直接相连设置为控制多工位的旋转座组件的运动;
    所述控制电路包括电源模块,通讯模块,准直器物理编码模块、电磁推杆驱动与位置反馈模块以及保护盘检测模块;
    所述电源模块采用两级隔离机制,一级隔离机制为功率供电与控制供电隔离,所述控制供电由所述功率供电经降压隔离型直流转直流电源DC/DC转换实现;另一级隔离机制为通讯供电与所述控制供电隔离,所述通讯供电由所述控制供电经隔离型通讯芯片转换实现;
    所述电磁推杆驱动与位置反馈模块,采用脉冲宽度调制PWM设计,脉宽调节范围为0-300μs,所述电磁推杆驱动与位置反馈模块设置为在电流开启瞬间吸合到位后及时降低线圈电流至额定值的10%,以使线圈持续工作;通过吸合 过程中实时调整PWM占空比实现瞬间大功率吸合与吸合到位后的持续小功率维持电流的连续调节;电流关闭期间实时调整PWM占空比,以减小机械冲击。
  21. 一种运动控制方法,应用于权利要求2-14任一项所述的准直器装置,所述电机组件中的步进电机直接带动所述电机组件中的联轴器旋转,所述联轴器与所述旋转座组件连接,所述联轴器吸收运动过程中导致的偏心,所述方法包括:
    读取上位机软件输出的计划序列,读取预设准直器序列;
    在多个预设的准直器分别被装入所述装配组件的情况下,判断束轴位置的准直器是否与所述预设准直器序列对应,响应于所述束轴位置的准直器与所述预设准直器序列对应,执行所述计划序列;响应于所述束轴位置的准直器与所述预设准直器序列不对应,将第一预设位置、第二预设位置或第三预设位置对应的准直器转至所述束轴位置,在将预设位置的准直器转至所述束轴位置成功的情况下,发送到位信号,在将预设位置的准直器转至所述束轴位置失败的情况下,上报故障信号;其中,所述束轴为所述束流孔的轴线;
    判断所述上位机软件输出的计划序列是否执行完毕,响应于所述计划序列被执行完毕,结束本次控制;
    响应于所述计划序列未被执行完毕,返回执行所述读取上位机软件输出的计划序列,读取预设准直器序列,判断当前束轴位置的准直器是否与所述预设准直器序列对应的操作。
  22. 根据权利要求21所述的运动控制方法,其中,所述旋转座组件的旋转座上有限位挡块,所述限位块在所述步进电机接收命令带动所述旋转座旋转后,跟随所述旋转座旋转,以确定初始位置,所述步进电机的定位流程包括:
    所述步进电机确认状态是否就绪,响应于状态就绪,进行下一操作,响应于状态未就绪,上报故障,结束当前定位流程;
    判断当前位置与预设位置是否一致,响应于当前位置与所述预设位置一致,结束当前定位流程,响应于当前位置与所述预设位置不一致,执行下一操作;
    旋转所述准直器的位置,判断所述准直器是否已转至所述预设位置,响应于所述准直器已转至所述预设位置,按照预设过程到达所述预设位置的状态就绪;响应于所述准直器未转至所述预设位置,控制所述步进电机转动,以使所述准直器到达所述预设位置;
    在所述准直器超时未到达所述预设位置的情况下,上报故障;
    所述电磁销钉配合所述步进电机实现定位、鉴别与锁定,所述电磁销钉通 过安装环固定在所述旋转座上,随着所述旋转座转动;所述电磁销钉包括N个第一微动开关,N为大于或等于三的自然数,N等于盲孔准直器的数量和准直器的数量之和,其中,N-1个第一微动开关固定在所述固定座上,N-1个第一微动开关的位置分别对应N-1个准直器,1个第一微动开关对应所述盲孔准直器;所述电磁销钉是推拉式电磁销钉,处于常闭状态;在所述电磁销钉被断电的情况下,所述金属杆保持伸出所述电磁销钉的状态;在所述电磁销钉被通电的情况下,所述金属杆缩回所述电磁销钉内。
  23. 根据权利要求21所述的运动控制方法,其中,所述电磁销钉实现自动定位、鉴别、锁定的流程包括:
    在所述电机组件带动所述旋转座组件转动的情况下,所述电磁销钉被通电,所述金属杆缩回所述电磁销钉内;
    在所述旋转座组件转动到需要的位置的情况下,所述电磁销钉被断电,所述金属杆伸出所述电磁销钉外,所述金属杆***到所述固定座的锥形孔中,所述旋转座组件不能转动;
    所述电磁销钉的金属杆与对应位置的第一微动开关接触,所述第一微动开关被触发,检测到所述电磁销钉是否锁定到位,以确定所述束轴下的工位。
  24. 一种运动控制方法,应用于权利要求15-20任一项所述的准直器装置,包括:
    通过硬挡块和限位开关检测机制,完成电机零点初始化,根据所述次级位置反馈机构反馈的光栅读数与所述初级位置反馈机构得到的理论值进行电机初始化处理;
    所述初级位置反馈机构借助a-STEP闭环实现初级自动运动、自动定位和锁定;所述次级位置反馈机构即时信息反馈位置信息,所述初级位置反馈机构根据反馈的位置信息进行补偿运动,偏差修正,实现两级闭环控制。
  25. 根据权利要求24所述的运动控制方法,其中,
    根据所述次级位置反馈机构反馈的光栅读数与所述初级位置反馈机构得到的理论值进行电机初始化处理,包括:
    将预置位置的光栅位置值作为所述初级位置反馈机构得到的所述预置位置的理论值,在所述步进电机根据所述预置位置的理论值运动停止,且所述次级位置反馈机构反馈的所述步进电机的停止位置的光栅读数与所述预置位置的理论值相符的情况下,将所述预置位置的理论值作为电机初始理论值,所述电机初始化结束;
    所述初级位置反馈机构借助a-STEP闭环实现初级自动运动、自动定位和锁定;所述次级位置反馈机构即时信息反馈位置信息,所述初级位置反馈机构根据反馈的位置信息进行补偿运动,偏差修正,实现两级闭环控制,包括:
    所述控制电路接收上位机发送的命令并将所述命令反馈至所述驱动器,所述驱动器根据所述命令发送运动指令至所述步进电机,推杆锁定检测开关闭合,所述初级位置反馈机构的电磁推杆上电,降低线圈电流至额定值的10%,电磁推杆从所述固定座中拨出;其中,所述驱动器为a-STEP驱动器;
    所述步进电机以100:1减速比实现角度分辨率和电机输出扭矩,实现初级运动定位;所述步进电机内置细分型旋转编码器数据,经减速器与传动机构反馈至驱动前级实现一级闭环控制;其中,所述步进电机为a-STEP步进电机;
    所述准直器运动到位后,所述推杆锁定检测开关开断,所述控制电路调整脉冲宽度调制PWM占空比,所述电磁推杆运动至所述固定座上,实现初级定位锁定,且所述控制电路返回运动信息至所述驱动器;
    所述读数头实时读取光栅位置,确定读取的光栅读数与理论位置Δ范围;
    所述控制电路根据所述准直器的当前位置及所述准直器需运动到工位位置,计算电机运动方向及步数,并向所述步进电机发送运动指令;在所述光栅读数与目标常量之间的差值偏离所述理论位置Δ范围的情况下,所述控制电路发送修正命令至所述步进电机及所述驱动器,以移动所述准直器至所述准直器需运动到工位位置,且修正角度偏差,实现二级闭环控制;
    在所述步进电机接收到所述运动指令后,重复执行所述一级闭环控制到所述二级闭环控制的操作,直至所述旋转座组件停止运动,在所述旋转座组件停止运动后,所述光栅读数与所述目标常量之间的差值在所述理论位置Δ范围内,且所述电磁推杆入孔锁定并触发微动开关返回到位信号给所述上位机。
  26. 根据权利要求25所述的运动控制方法,其中,所述旋转座组件具有正反转2个超程限位点,所述完成电机零点初始化,包括:
    所述控制电路采用微动开关检测所述旋转座组件与所述固定座的相对位置,设置所述旋转座组件的反转超程限位点为定位原点,采用压触模式搜索定位原点:
    所述控制电路控制所述旋转座组件反向旋转,确定所述旋转座组件的端面的光栅读数与电机编码器读数,以寻找所述定位原点,在所述定位原点确认后正向旋转所述旋转座组件,以使所述至少两个准直器的所有工位依次经过所述束流孔。
  27. 根据权利要求26所述的运动控制方法,其中,所述将预置位置的光栅位置值作为所述初级位置反馈机构得到的所述预置位置的理论值,包括:
    所述控制电路获得电机停止位END,并确定所述电机停止位END是否等于1,响应于所述电机停止位END等于1,无报警;响应于所述电机停止位END不等于1,停止所述步进电机的运行并反馈报警信息;
    在无报警的情况下,所述控制电路刷新所述步进电机的停止位置的光栅读数,将所述光栅读数作为出发数据写入寄存器,所述步进电机根据所述出发数据自动更新所述预置位置的光栅位置值,将所述预置位置的光栅位置值作为所述预置位置的理论值;在有报警的情况下,所述控制电路以反馈的报警信息刷新本地报警信息,控制显示所述反馈的报警信息并上报数据包处理;其中,所述预置位置包括多个工位;
    所述在所述步进电机根据所述预置位置的理论值运动停止,且所述次级位置反馈机构反馈的所述步进电机的停止位置的光栅读数与所述预置位置的理论值相符的情况下,将所述预置位置的理论值作为电机初始理论值,包括:
    在所述步进电机执行运动命令运行至每个工位后,验证所述步进电机的停止位置的光栅读数与所述每个工位的理论值的符合性,其中,所述符合性包括所述光栅读数与所述理论值的差值与预设差值范围的对比情况;所述运动命令中包含所述每个工位的理论值;
    响应于所述光栅读数与所述理论值的差值在所述预设差值范围内,保存所述光栅读数作为所述每个工位的位置参数,所述电机初始化结束;响应于所述光栅读数与所述理论值的差值不在所述预设差值范围内,执行初始化报错并设置初始化失败标志,所述电机初始化结束。
PCT/CN2023/072061 2022-01-17 2023-01-13 准直器装置以及运动控制方法 WO2023134741A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23740082.5A EP4344737A1 (en) 2022-01-17 2023-01-13 Collimator device and motion control method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210045978.4A CN114452549B (zh) 2022-01-17 2022-01-17 一种可实现自动快速切换的准直***
CN202210045978.4 2022-01-17
CN202211580708.XA CN115933770B (zh) 2022-12-07 2022-12-07 一种实现精准运动控制的自动快速切换准直器***
CN202211580708.X 2022-12-07

Publications (1)

Publication Number Publication Date
WO2023134741A1 true WO2023134741A1 (zh) 2023-07-20

Family

ID=87280131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072061 WO2023134741A1 (zh) 2022-01-17 2023-01-13 准直器装置以及运动控制方法

Country Status (2)

Country Link
EP (1) EP4344737A1 (zh)
WO (1) WO2023134741A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755696A (zh) * 2012-07-09 2012-10-31 清华大学 用于断层放疗和动态调强放疗的多叶准直器及其控制方法
CN108079444A (zh) * 2018-01-12 2018-05-29 广东东阳光药业有限公司 准直器更换装置及其使用方法
CN111141763A (zh) * 2020-01-16 2020-05-12 散裂中子源科学中心 多工位切换的高精度第二中子束线开关
WO2021087681A1 (zh) * 2019-11-04 2021-05-14 新里程医用加速器(无锡)有限公司 基于锥形束的螺旋容积调强放疗装置及影像***
CN114452549A (zh) * 2022-01-17 2022-05-10 江苏瑞尔医疗科技有限公司 一种可实现自动快速切换的准直***
CN217187511U (zh) * 2022-01-17 2022-08-16 江苏瑞尔医疗科技有限公司 一种带安全机构的放射治疗准直器装置
CN217430684U (zh) * 2022-01-17 2022-09-16 江苏瑞尔医疗科技有限公司 一种用于放射治疗准直设备的自动定位装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755696A (zh) * 2012-07-09 2012-10-31 清华大学 用于断层放疗和动态调强放疗的多叶准直器及其控制方法
CN108079444A (zh) * 2018-01-12 2018-05-29 广东东阳光药业有限公司 准直器更换装置及其使用方法
WO2021087681A1 (zh) * 2019-11-04 2021-05-14 新里程医用加速器(无锡)有限公司 基于锥形束的螺旋容积调强放疗装置及影像***
CN111141763A (zh) * 2020-01-16 2020-05-12 散裂中子源科学中心 多工位切换的高精度第二中子束线开关
CN114452549A (zh) * 2022-01-17 2022-05-10 江苏瑞尔医疗科技有限公司 一种可实现自动快速切换的准直***
CN217187511U (zh) * 2022-01-17 2022-08-16 江苏瑞尔医疗科技有限公司 一种带安全机构的放射治疗准直器装置
CN217430684U (zh) * 2022-01-17 2022-09-16 江苏瑞尔医疗科技有限公司 一种用于放射治疗准直设备的自动定位装置

Also Published As

Publication number Publication date
EP4344737A1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
CN114452549B (zh) 一种可实现自动快速切换的准直***
US7989785B2 (en) Gantry, particle therapy system, and method for operating a gantry
US11038445B2 (en) Dual-sensing feedback and transmission system for linear motor
EP3586922B1 (en) Neutron capture therapy system
CN209286522U (zh) 一种质子治疗旋转机架
WO2023134741A1 (zh) 准直器装置以及运动控制方法
JPH051029B2 (zh)
CN102256434A (zh) 同源双能igrt医用电子直线加速器
CN217187511U (zh) 一种带安全机构的放射治疗准直器装置
CN211561617U (zh) 放射治疗设备
CN217430684U (zh) 一种用于放射治疗准直设备的自动定位装置
US20200298026A1 (en) Radiotherapeutic device
CN115933770B (zh) 一种实现精准运动控制的自动快速切换准直器***
CN204307225U (zh) 一种用于医用加速器的准确调位治疗床
CN209525707U (zh) 一种自助医疗设备
CN219071877U (zh) 一种放射治疗设备的位置校准装置
CN204502129U (zh) 一种多叶光栅叶片防掉落机构
CN221181420U (zh) 放射性密封籽源植入器枪体
CN208614387U (zh) 一种精确简易的连续分度装置
CN208992622U (zh) 自动调心机构和减速器的装配装置
CN208978137U (zh) 调模机构及具有其的注塑机
CN105114444A (zh) 一种转动阻尼力可调的关节机构
CN104203343B (zh) 一种可实现源体运动的拉杆装置及其放射装置
CN106710644A (zh) 一种核电机组稳压器人孔盖板定位装置
CN112135666A (zh) 一种防碰撞装置及放射治疗设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023740082

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023740082

Country of ref document: EP

Effective date: 20231228