WO2023134653A1 - 通信网络预测方法、终端及网络侧设备 - Google Patents

通信网络预测方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023134653A1
WO2023134653A1 PCT/CN2023/071486 CN2023071486W WO2023134653A1 WO 2023134653 A1 WO2023134653 A1 WO 2023134653A1 CN 2023071486 W CN2023071486 W CN 2023071486W WO 2023134653 A1 WO2023134653 A1 WO 2023134653A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
result
model
models
Prior art date
Application number
PCT/CN2023/071486
Other languages
English (en)
French (fr)
Inventor
贾承璐
杨昂
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023134653A1 publication Critical patent/WO2023134653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a communication network prediction method, terminal and network side equipment.
  • Wireless communication network positioning means that the terminal estimates its current geographic location by measuring reference signals. Specifically, the terminal measures positioning reference signals from multiple positioning base stations, and reports the measurement information of the positioning reference signals to the core network through the serving base station. The location management function of the core network performs location estimation; finally, the core network sends the location information of the terminal to the terminal through the serving base station to complete the positioning of the terminal.
  • the wireless communication network positioning method mainly relies on the measurement results of the direct path for positioning, and can achieve high positioning with low implementation complexity when there is a line-of-sight (LOS) path.
  • LOS line-of-sight
  • NLOS non-line-of-sight
  • the positioning method based on artificial intelligence (AI) or machine learning (Machine Learning, ML) can solve the positioning problem in the case of NLOS; however, the stability, robustness and Generalization ability is still an important factor restricting its large-scale application. Therefore, how to effectively improve the positioning accuracy and reduce the failure probability is an urgent problem to be solved.
  • Embodiments of the present application provide a communication network prediction method, a terminal, and a network side device, which can solve the problem of a high probability of positioning failure.
  • a communication network prediction method comprising:
  • the terminal uses L models to respectively perform target tasks, and obtains the first result output by the L models; wherein, L is a positive integer;
  • the terminal performs any of the following operations:
  • the terminal determines a prediction result of the target task based on the first result
  • the terminal sends the first result to the network side device
  • the terminal receives the second result sent by the network side device; the terminal determines the prediction result of the target task based on the first result and the second result; wherein the second result is the network side
  • the device uses M models to obtain the target tasks respectively; M is a positive integer.
  • a communication network prediction method comprising:
  • the network-side device uses M models to perform target tasks respectively, and obtains second results output by the M models; wherein, M is a positive integer;
  • the network side device performs any of the following operations:
  • the network side device determines a prediction result of the target task based on the second result
  • the network side device sends the second result to the terminal
  • the network side device receives the first result sent by the terminal; the network side device determines the prediction result of the target task based on the first result and the second result; wherein the first result is the
  • the terminal uses L models to obtain the target tasks respectively; L is a positive integer.
  • a device for predicting a communication network includes:
  • the first execution module is configured to use the L models to execute the target tasks respectively, and obtain the first results output by the L models; wherein, L is a positive integer;
  • the first prediction module is configured to perform any of the following operations:
  • the terminal determines a prediction result of the target task based on the first result
  • the terminal sends the first result to the network side device
  • the terminal receives the second result sent by the network side device; the terminal determines the prediction result of the target task based on the first result and the second result; wherein the second result is the network side
  • the device uses M models to obtain the target tasks respectively; M is a positive integer.
  • a communication network prediction device comprising:
  • the second execution module is used to use the M models to execute the target tasks respectively, and obtain the second results output by the M models; wherein, M is a positive integer;
  • a second predictive module configured to perform any of the following operations:
  • the network side device determines a prediction result of the target task based on the second result
  • the network side device sends the second result to the terminal
  • the network side device receives the first result sent by the terminal; the network side device determines the prediction result of the target task based on the first result and the second result; wherein the first result is the
  • the terminal uses L models to obtain the target tasks respectively; L is a positive integer.
  • a terminal in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method in one aspect.
  • a terminal including a processor and a communication interface; wherein the processor is used for:
  • the terminal determines a prediction result of the target task based on the first result
  • the terminal sends the first result to the network side device
  • the terminal receives the second result sent by the network side device; the terminal determines the prediction result of the target task based on the first result and the second result; wherein the second result is the network side
  • the device uses M models to obtain the target tasks respectively; M is a positive integer.
  • a network-side device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the second aspect.
  • a network side device including a processor and a communication interface; wherein the processor is used for:
  • the network side device determines a prediction result of the target task based on the second result
  • the network side device sends the second result to the terminal
  • the network side device receives the first result sent by the terminal; the network side device determines the prediction result of the target task based on the first result and the second result; wherein the first result is the
  • the terminal uses L models to obtain the target tasks respectively; L is a positive integer.
  • a ninth aspect provides a communication network prediction system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the method described in the first aspect, and the network-side device can be used to perform the steps of the method described in the second aspect The steps of the method.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method as described in the first aspect are implemented, or the The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect. method, or implement the method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the method, or realize the steps of the method as described in the second aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application
  • Fig. 2 is one of the schematic flow charts of the communication network prediction method provided by the embodiment of the present application.
  • FIG. 3 is the second schematic flow diagram of the communication network prediction method provided by the embodiment of the present application.
  • Fig. 4 is one of the structural schematic diagrams of the communication network prediction device provided by the embodiment of the present application.
  • Fig. 5 is the second structural schematic diagram of the communication network prediction device provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 8 is one of the schematic structural diagrams of the network side equipment provided by the embodiment of the present application.
  • FIG. 9 is a second schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for example purposes, and uses NR terms in most of the following descriptions, but these techniques can also be applied to communication systems other than NR system applications, such as the 6th generation (6th generation Generation, 6G) communication system.
  • 6G 6th generation Generation
  • FIG. 1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system shown in FIG. 1 includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart
  • the network side device 12 may include an access network device, a core network device and/or a neural network processing node, wherein the access network device 12 may also be referred to as a radio access network device or a radio access network (Radio Access Network, RAN) , a radio access network function or a radio access network unit.
  • RAN Radio Access Network
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be referred to as a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (Base Transceiver Station, BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all As long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this embodiment of the application, only the base station in the NR system is used as an example for introduction, and The specific type of the base station is not limited.
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that, in the embodiment of the present application, only the core
  • the embodiment of the present application provides a communication network prediction method.
  • a communication network prediction method By using multiple models in the communication network to perform the same task respectively, after obtaining the results corresponding to each model, fusing the results corresponding to the multiple models to obtain the prediction result of the task, and then proceeding Decision-making, which can comprehensively consider the results of multiple models/algorithms to make decisions, can effectively improve decision-making accuracy, reduce the probability of failure, and reduce the frequency of model switching to achieve compatibility and deployment of different models.
  • Fig. 2 is one of the flow diagrams of the communication network prediction method provided by the embodiment of the present application. As shown in Fig. 2, the method includes steps 201-202; wherein:
  • Step 201 the terminal uses L models to execute target tasks respectively, and obtains first results output by the L models; wherein, L is a positive integer.
  • Step 202 the terminal performs any of the following operations:
  • the terminal determines a prediction result of the target task based on the first result
  • the terminal sends the first result to the network side device
  • the terminal receives the second result sent by the network side device; the terminal determines the prediction result of the target task based on the first result and the second result; wherein the second result is the network side
  • the device uses M models to obtain the target tasks respectively; M is a positive integer.
  • Terminals include but are not limited to the types of terminals 11 listed above; network-side devices include but not limited to the types of network-side devices 12 listed above, for example, network-side devices include at least one of the following: core network nodes; access network nodes (such as base stations); neural network processing nodes.
  • the core network node is, for example, a network data analysis function (Network Data Analytics Function, NWDAF) network element and/or a location service management function (location management function, LMF) network element.
  • NWDAF Network Data Analytics Function
  • LMF location management function
  • the target tasks performed by the model in the embodiment of the present application may include positioning and/or channel state information (Channel State Information, CSI) estimation and other tasks.
  • CSI Channel State Information
  • the type of any one of the L models includes: an AI-based model or a non-AI-based model.
  • the type of any one of the M models includes: an AI-based model or a non-AI-based model.
  • the non-AI-based model may include a wireless communication network positioning method based on the measurement result of the direct-ray path, and the like.
  • the AI-based model may include at least one of the following: a Convolutional Neural Network (CNN with attention) model based on attention; a Vision Transformer (Vision Transformer) model.
  • the terminal uses L models to perform target tasks respectively, and each model outputs its own output results.
  • the first result may include: L output results respectively output by the L models; or, a fusion result of the L output results.
  • the second result sent by the network side device may include: M output results respectively output by the M models; or a fusion result of the M output results.
  • the terminal determines the prediction result of the target task based on the first result, it makes a decision related to the target task based on the prediction result of the target task.
  • model deployment mode and the task prediction mode in the embodiment of the present application will be described below.
  • the specific implementation of the model deployment method and the task prediction method may include any of the following methods:
  • the terminal determines the prediction result of the target task based on multiple models deployed on the terminal.
  • the network side device determines the prediction result of the target task based on multiple models deployed on the network side device.
  • Method 3 The terminal obtains the first result output by the L models based on the L models deployed on the terminal; the network side device obtains the second result output by the M models based on the M models deployed on the network side device, and sends the first result The second result is sent to the terminal; the terminal determines the prediction result of the target task based on the first result and the second result.
  • Method 4 The terminal obtains the first result output by the L models based on the L models deployed on the terminal, and sends the first result to the network side device; the network side device obtains M based on the M models deployed on the network side device. Then, the network side device determines the prediction result of the target task based on the first result and the second result.
  • the number and types of models used by the terminal may be different; for different tasks and different methods, the number and types of models used by the network side device may also be different.
  • the terminal determines the prediction result of the target task based on multiple models deployed on the terminal.
  • the terminal determines L models; then the terminal uses the L models to execute the target task respectively, and obtains the first result output by the L models; the terminal determines the prediction result of the target task based on the first result . Further, the terminal makes a decision related to the target task based on the prediction result of the target task.
  • the implementation manner for the terminal to determine the L models may include any of the following:
  • the network side device directly configures multiple models for the terminal
  • the network side device actively sends the first information to the terminal, and the first information includes configuration information of L models; the terminal receives the first information sent by the network side device, and determines the L model based on the configuration information of the L models. models.
  • the terminal after receiving the first information sent by the network-side device, the terminal sends feedback information to the network-side device; wherein the feedback information is used to indicate whether the terminal supports the model corresponding to the model configuration information.
  • the network side device learns whether the terminal indicates a model corresponding to the model configuration information based on the feedback information reported by the terminal.
  • the first information includes at least one of the following:
  • the model attribute information may include at least one of the following: parametric model, non-parametric model, AI model, non-AI model, model error, and whether the model needs to be fine-tuned.
  • model feature information may include at least one of the following: model structure; model parameters (such as model weight and/or model bias); model configuration (such as the optimizer adopted by the model and/or the loss function adopted); model optimizer state.
  • the adaptation environment information includes at least one of the following: LOS or NLOS scene; dense urban or rural scene; Internet of Things (Internet of Things, IoT) scene; sidelink scene.
  • the fusion mode information of the output results of each model includes a post-processing mode.
  • the post-processing method may include further data processing methods such as filtering and weighting.
  • model life cycle information may include at least one of the following: model effective time; model invalidation time; model update cycle; model and target task association.
  • the measurement quantity information input by each type of model may include at least one of the following: channel state information; received signal information; historical state information; sensor information.
  • the channel state information may include at least one of the following: time domain information; frequency domain information; air domain information; delay domain information; Doppler domain information.
  • the received signal information is used to describe signal quality and/or characteristics; the received signal information may include at least one of the following: RSRP, RSRQ, SINR, bit error rate, and frame error rate.
  • historical status information may include historical location information at past N moments.
  • the output information of the various types of models may include at least one of the following: direct target parameters; intermediate quantities; soft information of direct target parameters or intermediate quantities.
  • Soft information such as the probability distribution of terminal locations and other information.
  • direct target parameters may include relative position information and/or absolute position information.
  • intermediate quantities are used to derive target parameters.
  • the intermediate quantity may include at least one of the following: time of arrival information (TOA), angle information (such as AOA, AOD), and RSRP.
  • TOA time of arrival information
  • angle information such as AOA, AOD
  • RSRP RSRP
  • the terminal requests the network side device to configure multiple models for the terminal
  • the terminal sends request information to the network side device, where the request information is used to request the network side device to configure L models;
  • the network side device receives the request information sent by the terminal; the network side device configures the L models for the terminal based on the request information and/or third information, and the network side device sends the first information to the terminal;
  • the terminal receives the first information sent by the network side device, and determines the L models based on the configuration information of the L models.
  • the request information may include second information; where the second information includes at least one of the following:
  • the mobility information of the terminal may include: moving speed and/or beam switching information.
  • the moving speed of the terminal is greater than the first threshold; for another example, the beam switching frequency is greater than the second threshold.
  • the environment information of the terminal may include at least one of the following: LOS/NLOS scene; dense urban/rural scene; number of surrounding base stations; base station ID; and reference signal measurement information.
  • the precision requirement information may include at least one of the following: an absolute precision requirement; and a quantization level of precision.
  • the absolute accuracy requirement may include: an error in a horizontal direction and/or an error in a vertical height direction.
  • task information is used to indicate the tasks performed by the model.
  • the task information may include a positioning task or a CSI estimation task.
  • the terminal may report the capability information of the terminal to the network side device.
  • the terminal sends third information to the network side device; wherein the third information is used to indicate capability information of the terminal.
  • the third information includes at least one of the following:
  • the data type may include at least one of the following: data format information; data preprocessing mode.
  • the data obtainable by the terminal may include: data associated with sensor configurations and/or data associated with reference signals.
  • the data associated with the sensor configuration includes: image information captured by the visual sensor, distance information captured by the radar sensor, and the like.
  • Data associated with the reference signal includes channel state information.
  • the hardware capability information of the terminal includes at least one of the following: CPU and/or GPU capability (such as computing capability); space for storing data sets or storable data volume; CPU and GPU resources for executing tasks.
  • CPU and/or GPU capability such as computing capability
  • space for storing data sets or storable data volume space for storing data sets or storable data volume
  • CPU and GPU resources for executing tasks.
  • the third information may be reported before the second information, for example, the terminal reports the third information during the initial access phase; the third information may also be reported at the same time as the second information; or, the third information may be reported later than the second information. Information reporting.
  • the terminal configures the L models based on at least one manner of autonomously determining and notifying the network side device, protocol pre-definition, or high-layer pre-configuration. For example, the terminal configures L models autonomously; or, the protocol pre-defines or high-level pre-configures L models.
  • the terminal selects multiple models from the pre-configured model pool
  • the model pool includes at least one model.
  • the terminal selects the L models in the model pool based on the target information; wherein, the model pool includes K models; K is greater than or equal to L; and K is a positive integer.
  • the target information may include at least one of the following:
  • the statistical information of the output results of each model includes: statistical information of the same model results within a period of time. For example, calculate the statistics of the input and output of different models over a period of time, respectively. Statistics such as mean, variance, etc.
  • the statistical information of output results of multiple models includes: statistical information of statistical quantities output by different models within a period of time; statistical information such as mean value, variance, and the like.
  • the model error information of each model includes: instant error information and/or statistical error information within a period of time.
  • the mobility information of the terminal may include: moving speed and/or beam switching information.
  • the moving speed of the terminal is greater than the first threshold; for another example, the beam switching frequency is greater than the second threshold.
  • the environment information of the terminal may include at least one of the following: LOS/NLOS scene; dense urban/rural scene; number of surrounding base stations; base station ID; and reference signal measurement information.
  • the precision requirement information may include at least one of the following: an absolute precision requirement; and a quantization level of precision.
  • the absolute accuracy requirement may include: an error in a horizontal direction and/or an error in a vertical height direction.
  • task information is used to indicate the tasks performed by the model.
  • the task information may include a positioning task or a CSI estimation task.
  • the measurement quantity information input by each type of model may include at least one of the following: channel state information; received signal information; historical state information; sensor information.
  • the channel state information may include at least one of the following: time domain information; frequency domain information; air domain information; delay domain information; Doppler domain information.
  • received signal information is used to describe signal quality and/or characteristics; received signal information may include at least one of the following: RSRP, RSRQ, SINR, bit error rate, and frame error rate.
  • historical status information may include historical location information at past N moments.
  • the measurement information of the reference signal of the current terminal may include at least one of the following: SSB measurement information; SRS measurement information; CSI-RS measurement information; PRS measurement information.
  • the reference terminal includes surrounding terminals of the current terminal, such as a transmitting terminal or a receiving terminal in a sidelink scenario.
  • the measurement information of the reference signal of the reference terminal may include at least one of the following: SSB measurement information; SRS measurement information; CSI-RS measurement information; PRS measurement information.
  • the network side device determines the prediction result of the target task based on multiple models deployed on the network side device.
  • the network-side device determines M models; then the network-side device uses the M models to perform target tasks respectively, and obtains the second results output by the M models; the network-side device determines the M models based on the second results. The predicted results of the target task. Further, the network side device makes a decision related to the target task based on the prediction result of the target task.
  • the implementation manner for the network side device to determine the M models may include any of the following:
  • the network side device configures multiple models
  • the network side device configures the M models based on at least one manner of autonomous determination, protocol pre-definition, or pre-configuration.
  • the network side device may acquire fifth information and/or sixth information from the terminal.
  • the fifth information and/or the sixth information may be used to assist the network side device to perform model selection and model configuration.
  • the terminal sends fifth information to the network side device; the network side device receives the fifth information sent by the terminal; wherein the fifth information includes at least one of the following:
  • the mobility information of the terminal may include: moving speed and/or beam switching information.
  • the moving speed of the terminal is greater than the first threshold; for another example, the beam switching frequency is greater than the second threshold.
  • the environment information of the terminal may include at least one of the following: LOS/NLOS scene; dense urban/rural scene; number of surrounding base stations; base station ID; and reference signal measurement information.
  • the precision requirement information may include at least one of the following: an absolute precision requirement; and a quantization level of precision.
  • the absolute accuracy requirement may include: an error in a horizontal direction and/or an error in a vertical height direction.
  • task information is used to indicate the tasks performed by the model.
  • the task information may include a positioning task or a CSI estimation task.
  • the terminal may report the capability information of the terminal to the network side device.
  • the terminal sends sixth information to the network side device; the network side device receives the sixth information sent by the terminal; where the sixth information is used to indicate capability information of the terminal.
  • the sixth information may include at least one of the following:
  • the data type may include at least one of the following: data format information; data preprocessing mode.
  • the data obtainable by the terminal may include: data associated with sensor configurations and/or data associated with reference signals.
  • the data associated with the sensor configuration includes: image information captured by the visual sensor, distance information captured by the radar sensor, and the like.
  • Data associated with the reference signal includes channel state information.
  • the hardware capability information of the terminal includes at least one of the following: CPU and/or GPU capability (such as computing capability); space for storing data sets or storable data volume; CPU and GPU resources for performing tasks.
  • CPU and/or GPU capability such as computing capability
  • space for storing data sets or storable data volume space for storing data sets or storable data volume
  • CPU and GPU resources for performing tasks.
  • the sixth information may be reported before the fifth information, for example, the terminal reports the sixth information during the initial access phase; the sixth information may also be reported at the same time as the fifth information; or, the sixth information may be reported later than the fifth information. Information reporting.
  • the network side device selects multiple models from the pre-configured model pool
  • the model pool includes at least one model.
  • the network side device selects the M models in the model pool based on the target information; wherein, the model pool includes P models; P is greater than or equal to M; and P is a positive integer.
  • the target information may include at least one of the following:
  • the statistical information of the output results of each model includes: statistical information of the same model results within a period of time. For example, calculate the statistics of the input and output of different models over a period of time, respectively. Statistics such as mean, variance, etc.
  • the statistical information of output results of multiple models includes: statistical information of statistical quantities output by different models within a period of time; statistical information such as mean value, variance, and the like.
  • the model error information of each model includes: instant error information and/or statistical error information within a period of time.
  • the mobility information of the terminal may include: moving speed and/or beam switching information.
  • the moving speed of the terminal is greater than the first threshold; for another example, the beam switching frequency is greater than the second threshold.
  • the environment information of the terminal may include at least one of the following: LOS/NLOS scene; dense urban/rural scene; number of surrounding base stations; base station ID; and reference signal measurement information.
  • the precision requirement information may include at least one of the following: an absolute precision requirement; and a quantization level of precision.
  • the absolute accuracy requirement may include: an error in a horizontal direction and/or an error in a vertical height direction.
  • task information is used to indicate the tasks performed by the model.
  • the task information may include a positioning task or a CSI estimation task.
  • the measurement quantity information input by each type of model may include at least one of the following: channel state information; received signal information; historical state information; sensor information.
  • the channel state information may include at least one of the following: time domain information; frequency domain information; air domain information; delay domain information; Doppler domain information.
  • the received signal information is used to describe signal quality and/or characteristics; the received signal information may include at least one of the following: RSRP, RSRQ, SINR, bit error rate, and frame error rate.
  • historical status information may include historical location information at past N moments.
  • the measurement information of the reference signal of the current terminal may include at least one of the following: SSB measurement information; SRS measurement information; CSI-RS measurement information; PRS measurement information.
  • the reference terminal includes surrounding terminals of the current terminal, such as a transmitting terminal or a receiving terminal in a sidelink scenario.
  • the measurement information of the reference signal of the reference terminal may include at least one of the following: SSB measurement information; SRS measurement information; CSI-RS measurement information; PRS measurement information.
  • the network side device after determining the M models, the network side device sends seventh information to the terminal; where the seventh information includes configuration information of the M models.
  • the terminal receives the seventh information sent by the network-side device, and obtains the measurement quantities corresponding to the M models based on the configuration information of the M models included in the seventh information; the terminal sends the measurement quantities to the network-side device information.
  • the network side device receives the measurement quantity information sent by the terminal, and based on the measurement quantity information sent by the terminal, uses the M models to respectively execute target tasks, and obtains second results output by the M models.
  • the seventh information may include at least one of the following:
  • the input requirements of each model may include at least one of the following: measurement quantity information input by each type of model; data type input by each type of model;
  • the measurement quantity information input by each type of model may include at least one of the following: channel state information; received signal information; historical state information; sensor information.
  • the channel state information may include at least one of the following: time domain information; frequency domain information; air domain information; delay domain information; Doppler domain information.
  • the received signal information is used to describe signal quality and/or characteristics; the received signal information may include at least one of the following: RSRP, RSRQ, SINR, bit error rate, and frame error rate.
  • the historical status information may include historical location information at past N moments.
  • the data type input by each category model may include at least one of the following: format information of the data; data preprocessing method.
  • the data that can be acquired by the terminal may include: data associated with the sensor configuration and/or data associated with the reference signal; wherein, the data associated with the sensor configuration includes: picture information captured by the visual sensor, distance information captured by the radar sensor, etc. .
  • Data associated with the reference signal includes channel state information.
  • model lifecycle information may include at least one of the following: model effective time; model invalidation time; model update cycle; model and target task association.
  • the implementation manner in which the network side device determines the prediction result of the target task based on the second result may include: the network side device determines the prediction result of the target task based on the second fusion method and the second result result.
  • the second fusion method may include at least one of the following:
  • the network side device determines the second fusion manner based on the target information.
  • the target information may include at least one of the following:
  • the statistical information of the output results of each model includes: statistical information of the same model results within a period of time. For example, calculate the statistics of the input and output of different models over a period of time, respectively. Statistics such as mean, variance, etc.
  • the statistical information of output results of multiple models includes: statistical information of statistical quantities output by different models within a period of time; statistical information such as mean value, variance, and the like.
  • the model error information of each model includes: instant error information and/or statistical error information within a period of time.
  • the mobility information of the terminal may include: moving speed and/or beam switching information.
  • the moving speed of the terminal is greater than the first threshold; for another example, the beam switching frequency is greater than the second threshold.
  • the environment information of the terminal may include at least one of the following: LOS/NLOS scene; dense urban/rural scene; number of surrounding base stations; base station ID; and reference signal measurement information.
  • the precision requirement information may include at least one of the following: an absolute precision requirement; and a quantization level of precision.
  • the absolute accuracy requirement may include: an error in a horizontal direction and/or an error in a vertical height direction.
  • task information is used to indicate the tasks performed by the model.
  • the task information may include a positioning task or a CSI estimation task.
  • the measurement quantity information input by each type of model may include at least one of the following: channel state information; received signal information; historical state information; sensor information.
  • the channel state information may include at least one of the following: time domain information; frequency domain information; air domain information; delay domain information; Doppler domain information.
  • the received signal information is used to describe signal quality and/or characteristics; the received signal information may include at least one of the following: RSRP, RSRQ, SINR, bit error rate, and frame error rate.
  • historical status information may include historical location information at past N moments.
  • the measurement information of the reference signal may include at least one of the following: SSB measurement information; SRS measurement information; CSI-RS measurement information; PRS measurement information.
  • Method 3 Multiple models are deployed on the terminal side and the network side device side respectively, and the terminal determines the prediction result of the target task.
  • the terminal determines L models; the network side device determines M models.
  • the terminal obtains first results output by the L models based on the L models deployed on the terminal.
  • the network-side device obtains second results output by the M models based on the M models deployed on the network-side device, and sends the second results to the terminal.
  • the terminal determines the prediction result of the target task based on the first result and the second result. Further, the terminal makes a decision related to the target task based on the prediction result of the target task.
  • the network side device may send eleventh information to the terminal; where the eleventh information is used to indicate a prediction manner based on the first result and the second result.
  • the terminal receives the eleventh information sent by the network side device.
  • the prediction method includes any of the following:
  • the terminal determines the predicted result of the target task based on the first result and the second result.
  • the network side device determines the prediction result of the target task based on the first result and the second result
  • the prediction method corresponding to mode 3 is a terminal-centered and network-side device-assisted method.
  • the terminal determining the prediction result of the target task based on the first result and the second result may include: the terminal based on the first fusion method, the first result and the second result , to determine the prediction result of the target task.
  • the first fusion method may include at least one of the following:
  • the terminal determines the first fusion manner based on the target information.
  • the target information may include at least one of the following:
  • the statistical information of the output results of each model includes: statistical information of the same model results within a period of time. For example, calculate the statistics of the input and output of different models over a period of time, respectively. Statistics such as mean, variance, etc.
  • the statistical information of output results of multiple models includes: statistical information of statistical quantities output by different models within a period of time; statistical information such as mean value, variance, and the like.
  • the model error information of each model includes: instant error information and/or statistical error information within a period of time.
  • the mobility information of the terminal may include: moving speed and/or beam switching information.
  • the moving speed of the terminal is greater than the first threshold; for another example, the beam switching frequency is greater than the second threshold.
  • the environment information of the terminal may include at least one of the following: LOS/NLOS scene; dense urban/rural scene; number of surrounding base stations; base station ID; and reference signal measurement information.
  • the precision requirement information may include at least one of the following: an absolute precision requirement; and a quantization level of precision.
  • the absolute accuracy requirement may include: an error in a horizontal direction and/or an error in a vertical height direction.
  • task information is used to indicate the tasks performed by the model.
  • the task information may include a positioning task or a CSI estimation task.
  • the measurement quantity information input by each type of model may include at least one of the following: channel state information; received signal information; historical state information; sensor information.
  • the channel state information may include at least one of the following: time domain information; frequency domain information; air domain information; delay domain information; Doppler domain information.
  • the received signal information is used to describe signal quality and/or characteristics; the received signal information may include at least one of the following: RSRP, RSRQ, SINR, bit error rate, and frame error rate.
  • historical status information may include historical location information at past N moments.
  • the measurement information of the reference signal of the current terminal may include at least one of the following: SSB measurement information; SRS measurement information; CSI-RS measurement information; PRS measurement information.
  • the reference terminal includes surrounding terminals of the current terminal, such as a transmitting terminal or a receiving terminal in a sidelink scenario.
  • the measurement information of the reference signal of the reference terminal may include at least one of the following: SSB measurement information; SRS measurement information; CSI-RS measurement information; PRS measurement information.
  • Mode 4 Multiple models are deployed on the terminal side and the network side device side respectively, and the network side device determines the prediction result of the target task.
  • the terminal determines L models; the network side device determines M models.
  • the terminal obtains first results output by the L models based on the L models deployed on the terminal, and sends the first results to the network side device.
  • the network side device obtains second results output by the M models based on the M models deployed on the network side device; the network side device determines the prediction result of the target task based on the first result and the second result. Further, the network side device makes a decision related to the target task based on the prediction result of the target task.
  • the network side device may send eleventh information to the terminal; where the eleventh information is used to indicate a prediction manner based on the first result and the second result.
  • the terminal receives the eleventh information sent by the network side device.
  • the prediction method includes any of the following:
  • the terminal determines the predicted result of the target task based on the first result and the second result.
  • the network side device determines the prediction result of the target task based on the first result and the second result
  • prediction method corresponding to method 4 is a network-side device-centered and terminal-assisted method.
  • the network side device determining the prediction result of the target task based on the first result and the second result may include: the network side device based on the second fusion method, the first result and the second result, determining the predicted result of the target task.
  • the second fusion method may include at least one of the following:
  • the network side device determines the second fusion manner based on the target information.
  • the target information may include at least one of the following:
  • the statistical information of the output results of each model includes: statistical information of the same model results within a period of time. For example, calculate the statistics of the input and output of different models over a period of time, respectively. Statistics such as mean, variance, etc.
  • the statistical information of output results of multiple models includes: statistical information of statistical quantities output by different models within a period of time; statistical information such as mean value, variance, and the like.
  • the model error information of each model includes: instant error information and/or statistical error information within a period of time.
  • the mobility information of the terminal may include: moving speed and/or beam switching information.
  • the moving speed of the terminal is greater than the first threshold; for another example, the beam switching frequency is greater than the second threshold.
  • the environment information of the terminal may include at least one of the following: LOS/NLOS scene; dense urban/rural scene; number of surrounding base stations; base station ID; and reference signal measurement information.
  • the precision requirement information may include at least one of the following: an absolute precision requirement; and a quantization level of precision.
  • the absolute accuracy requirement may include: an error in a horizontal direction and/or an error in a vertical height direction.
  • task information is used to indicate the tasks performed by the model.
  • the task information may include a positioning task or a CSI estimation task.
  • the measurement quantity information input by each type of model may include at least one of the following: channel state information; received signal information; historical state information; sensor information.
  • the channel state information may include at least one of the following: time domain information; frequency domain information; air domain information; delay domain information; Doppler domain information.
  • the received signal information is used to describe signal quality and/or characteristics; the received signal information may include at least one of the following: RSRP, RSRQ, SINR, bit error rate, and frame error rate.
  • historical status information may include historical location information at past N moments.
  • the measurement information of the reference signal may include at least one of the following: SSB measurement information; SRS measurement information; CSI-RS measurement information; PRS measurement information.
  • Fig. 3 is the second schematic flow diagram of the communication network prediction method provided by the embodiment of the present application. As shown in Fig. 3, the method includes steps 301-302; wherein:
  • Step 301 the network side device uses M models to respectively execute target tasks, and obtains second results output by the M models; wherein, M is a positive integer.
  • Step 302 the network side device performs any of the following operations:
  • the network side device determines a prediction result of the target task based on the second result
  • the network side device sends the second result to the terminal
  • the network side device receives the first result sent by the terminal; the network side device determines the prediction result of the target task based on the first result and the second result; wherein the first result is the
  • the terminal uses L models to obtain the target tasks respectively; L is a positive integer.
  • Terminals include but are not limited to the types of terminals 11 listed above; network-side devices include but not limited to the types of network-side devices 12 listed above, for example, network-side devices include at least one of the following: core network nodes; access network nodes (such as base stations); neural network processing nodes.
  • the core network node is, for example, a network data analysis function (Network Data Analytics Function, NWDAF) network element and/or a location service management function (location management function, LMF) network element.
  • NWDAF Network Data Analytics Function
  • LMF location management function
  • the target tasks performed by the model in the embodiment of the present application may include positioning and/or channel state information (Channel State Information, CSI) estimation and other tasks.
  • CSI Channel State Information
  • the type of any one of the L models includes: an AI-based model or a non-AI-based model.
  • the type of any one of the M models includes: an AI-based model or a non-AI-based model.
  • the non-AI-based model may include a wireless communication network positioning method based on the measurement result of the direct-ray path, and the like.
  • the AI-based model may include at least one of the following: a Convolutional Neural Network (CNN with attention) model based on attention; a Vision Transformer (Vision Transformer) model.
  • the terminal uses L models to perform target tasks respectively, and each model outputs its own output results.
  • the first result may include: L output results respectively output by the L models; or, a fusion result of the L output results.
  • the second result sent by the network side device may include: M output results respectively output by the M models; or a fusion result of the M output results.
  • the terminal determines the prediction result of the target task based on the first result, it makes a decision related to the target task based on the prediction result of the target task.
  • the method also includes:
  • the network side device sends first information to the terminal; wherein, the first information includes configuration information of the L models; the configuration information of the L models is used by the terminal to determine the L models ;
  • the network side device receives request information sent by the terminal, the request information is used to request the network side device to configure the L models; the network side device configures the L models based on the request information and/or third information L models; the network side device sends first information to the terminal; wherein the first information includes configuration information of the L models; the configuration information of the L models is used by the terminal to determine the Describe L models.
  • the first information includes at least one of the following:
  • the measured quantity information input by the various types of models includes at least one of the following:
  • the output information of each category of models includes at least one of the following:
  • the request information includes second information; wherein the second information includes at least one of the following:
  • the method also includes:
  • the network side device receives third information sent by the terminal; where the third information is used to indicate capability information of the terminal.
  • the third information includes at least one of the following:
  • the data type includes at least one of the following:
  • the method further includes:
  • the network side device receives the feedback information sent by the terminal; wherein the feedback information is used to indicate whether the terminal supports the model corresponding to the model configuration information.
  • the method also includes:
  • the network side device determines the M models.
  • the network-side device determining the M models includes:
  • the network-side device configures the M models based on at least one of autonomous determination, protocol pre-definition, or pre-configuration;
  • the network side device selects the M models in the model pool based on the target information; wherein, the model pool includes P models; P is greater than or equal to M; and P is a positive integer.
  • the method also includes:
  • the network side device receives fifth information sent by the terminal; wherein the fifth information includes at least one of the following:
  • the method also includes:
  • the network side device receives sixth information sent by the terminal, where the sixth information is used to indicate capability information of the terminal.
  • the sixth information includes at least one of the following:
  • the data type includes at least one of the following:
  • the method also includes:
  • the network side device sends seventh information to the terminal, where the seventh information includes configuration information of the M models.
  • the seventh information includes at least one of the following:
  • the method also includes:
  • the network side device receives the measurement quantity information sent by the terminal.
  • the network-side device uses M models to respectively perform target tasks, and obtains second results output by the M models, including:
  • the network-side device uses the M models to respectively execute target tasks based on the measurement quantity information sent by the terminal, and obtains second results output by the M models.
  • the network side device determining the prediction result of the target task based on the second result includes: the network side device determining the target task prediction result based on the second fusion method and the second result. forecast result;
  • the network side device determining the prediction result of the target task based on the first result and the second result includes: the network side device based on the second fusion method, the first result and the The second result is to determine the predicted result of the target task.
  • the second fusion method includes:
  • the prediction result is determined.
  • the method also includes:
  • the network side device determines the second fusion manner based on the target information.
  • the target information includes at least one of the following:
  • the method also includes:
  • the network side device makes a decision related to the target task based on the prediction result of the target task.
  • the second result includes:
  • M output results respectively output by the M models; or a fusion result of the M output results.
  • the method also includes:
  • the network-side device sends eleventh information to the terminal, where the eleventh information is used to indicate a prediction manner based on the first result and the second result.
  • the prediction method includes any of the following:
  • the network side device determines the prediction result of the target task based on the first result and the second result
  • the terminal determines the predicted result of the target task based on the first result and the second result.
  • the communication network prediction method provided in the embodiment of the present application may be executed by a communication network prediction device.
  • the method for predicting the communication network performed by the device for predicting the communication network is used as an example to describe the device for predicting the communication network provided in the embodiment of the present application.
  • Fig. 4 is one of the schematic structural diagrams of the communication network prediction device provided by the embodiment of the present application. As shown in Fig. 4, the communication network prediction device 400 is applied to a terminal and includes:
  • the first execution module 401 is configured to use the L models to respectively execute the target tasks, and obtain the first results output by the L models; wherein, L is a positive integer;
  • the first prediction module 402 is configured to perform any of the following operations:
  • the terminal determines a prediction result of the target task based on the first result
  • the terminal sends the first result to the network side device
  • the terminal receives the second result sent by the network side device; the terminal determines the prediction result of the target task based on the first result and the second result; wherein the second result is the network side
  • the device uses M models to obtain the target tasks respectively; M is a positive integer.
  • the communication network prediction device by using multiple models in the communication network to perform the same task respectively, after obtaining the results corresponding to each model, fusing the results corresponding to the multiple models to obtain the prediction result of the task, and then proceeding Decision-making, which can comprehensively consider the results of multiple models/algorithms to make decisions, can effectively improve decision-making accuracy, reduce the probability of failure, and reduce the frequency of model switching to achieve compatibility and deployment of different models.
  • the device also includes:
  • a first determining module configured to determine the L models.
  • the first determination module is specifically used for any of the following:
  • the network side device receiving first information sent by the network side device; wherein the first information includes configuration information of the L models; determining the L models based on the configuration information of the L models;
  • the model pool includes K models; K is greater than or equal to L; K is a positive integer.
  • the first information includes at least one of the following:
  • the measured quantity information input by the various types of models includes at least one of the following:
  • the output information of each category of models includes at least one of the following:
  • the request information includes second information; wherein the second information includes at least one of the following:
  • the device also includes:
  • the first sending module is configured to send third information to the network side device; wherein the third information is used to indicate capability information of the terminal.
  • the third information includes at least one of the following:
  • the data type includes at least one of the following:
  • the device also includes:
  • the second sending module is configured to send feedback information to the network side device; wherein the feedback information is used to indicate whether the terminal supports the model corresponding to the model configuration information.
  • the device also includes:
  • the third sending module is configured to send fifth information to the network side device; wherein the fifth information includes at least one of the following:
  • the device also includes:
  • the fourth sending module is configured to send sixth information to the network side device; wherein the sixth information is used to indicate capability information of the terminal.
  • the sixth information includes at least one of the following:
  • the data type includes at least one of the following:
  • the device also includes:
  • the first receiving module is configured to receive seventh information sent by the network side device; wherein the seventh information includes configuration information of the M models.
  • the seventh information includes at least one of the following:
  • the device also includes:
  • a fifth sending module configured to send measurement quantity information to the network side device.
  • the first prediction module 402 is used for:
  • the prediction result of the target task is determined.
  • the first fusion method includes:
  • the prediction result is determined.
  • the device also includes:
  • the second determination module is configured to determine the first fusion method based on the target information.
  • the target information includes at least one of the following:
  • the measurement information of the reference signal of the reference terminal is the measurement information of the reference signal of the reference terminal.
  • the device also includes:
  • the first decision-making module is configured to make a decision related to the target task based on the prediction result of the target task.
  • the first result includes:
  • L output results respectively output by the L models; or a fusion result of the L output results.
  • the device also includes:
  • the second receiving module is configured to receive the eleventh information sent by the network side device; wherein the eleventh information is used to indicate a prediction method based on the first result and the second result.
  • the prediction method includes any of the following:
  • the network side device determines the prediction result of the target task based on the first result and the second result
  • the terminal determines the predicted result of the target task based on the first result and the second result.
  • Fig. 5 is the second schematic structural diagram of the communication network prediction device provided by the embodiment of the present application. As shown in Fig. 5, the communication network prediction device 500 is applied to network side equipment and includes:
  • the second execution module 501 is configured to use M models to execute target tasks respectively, and obtain second results output by the M models; wherein, M is a positive integer;
  • the second prediction module 502 is configured to perform any of the following operations:
  • the network side device determines a prediction result of the target task based on the second result
  • the network side device sends the second result to the terminal
  • the network side device receives the first result sent by the terminal; the network side device determines the prediction result of the target task based on the first result and the second result; wherein the first result is the
  • the terminal uses L models to obtain the target tasks respectively; L is a positive integer.
  • the communication network prediction device by using multiple models in the communication network to perform the same task respectively, after obtaining the results corresponding to each model, fusing the results corresponding to the multiple models to obtain the prediction result of the task, and then proceeding Decision-making, which can comprehensively consider the results of multiple models/algorithms to make decisions, can effectively improve decision-making accuracy, reduce the probability of failure, and reduce the frequency of model switching to achieve compatibility and deployment of different models.
  • the device also includes:
  • a sixth sending module configured to send first information to the terminal; wherein the first information includes configuration information of the L models; the configuration information of the L models is used by the terminal to determine the L models;
  • a processing module configured for the network side device to receive request information sent by the terminal, where the request information is used to request the network side device to configure the L models; the network side device based on the request information and/or Or the third information configures the L models; the network side device sends the first information to the terminal; wherein the first information includes the configuration information of the L models; the configuration information of the L models It is used for the terminal to determine the L models.
  • the first information includes at least one of the following:
  • the measured quantity information input by the various types of models includes at least one of the following:
  • the output information of each category of models includes at least one of the following:
  • the request information includes second information; wherein the second information includes at least one of the following:
  • the device also includes:
  • the third receiving module is configured to receive third information sent by the terminal; wherein the third information is used to indicate capability information of the terminal.
  • the third information includes at least one of the following:
  • the data type includes at least one of the following:
  • the device also includes:
  • the fourth receiving module is configured to receive feedback information sent by the terminal; wherein the feedback information is used to indicate whether the terminal supports the model corresponding to the model configuration information.
  • the device also includes:
  • the second determination module is used to determine the M models.
  • the second determining module is used for:
  • the model pool includes P models; P is greater than or equal to M; and P is a positive integer.
  • the device also includes:
  • the fifth receiving module is configured to receive fifth information sent by the terminal; wherein the fifth information includes at least one of the following:
  • the device also includes:
  • a sixth receiving module configured to receive sixth information sent by the terminal; wherein the sixth information is used to indicate capability information of the terminal.
  • the sixth information includes at least one of the following:
  • the data type includes at least one of the following:
  • the device also includes:
  • a seventh sending module configured to send seventh information to the terminal; wherein the seventh information includes configuration information of the M models.
  • the seventh information includes at least one of the following:
  • the device also includes:
  • the seventh receiving module is configured to receive measurement quantity information sent by the terminal.
  • the second execution module is configured to use the M models to respectively execute target tasks based on the measurement quantity information sent by the terminal, and obtain second results output by the M models.
  • the second prediction module is used for:
  • the prediction result of the target task is determined.
  • the second fusion method includes:
  • the prediction result is determined.
  • the device also includes:
  • a third determining module configured to determine the second fusion manner based on target information.
  • the target information includes at least one of the following:
  • the device also includes:
  • the second decision module is used for the network side device to make a decision related to the target task based on the prediction result of the target task.
  • the second result includes:
  • M output results respectively output by the M models; or a fusion result of the M output results.
  • the device also includes:
  • An eighth sending module configured to send eleventh information to the terminal; wherein the eleventh information is used to indicate a prediction method based on the first result and the second result.
  • the prediction method includes any of the following:
  • the network side device determines the prediction result of the target task based on the first result and the second result
  • the terminal determines the predicted result of the target task based on the first result and the second result.
  • the communication network prediction apparatus in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the communication network prediction device provided in the embodiment of the present application can realize each process realized by the method embodiments in FIG. 1 to FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • Fig. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 600 includes a processor 601 and a memory 602, and the memory 602 stores programs that can run on the processor 601 Or an instruction, for example, when the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each step of the above embodiment of the communication network prediction method can be implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, the steps of the communication network prediction method embodiment described above can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface; wherein the processor is used for:
  • the terminal determines a prediction result of the target task based on the first result
  • the terminal sends the first result to the network side device
  • the terminal receives the second result sent by the network side device; the terminal determines the prediction result of the target task based on the first result and the second result; wherein the second result is the network side
  • the device uses M models to obtain the target tasks respectively; M is a positive integer.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • Fig. 7 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, and a display unit 706 , at least some components in the user input unit 707 , the interface unit 708 , the memory 709 , and the processor 710 .
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes at least one of a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be described in detail here.
  • the radio frequency unit 701 may transmit the downlink data from the network side device to the processor 710 for processing after receiving the downlink data; in addition, the radio frequency unit 701 may send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 709 may include volatile memory or nonvolatile memory, or, memory 709 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • the processor 710 is configured to use the L models to perform target tasks respectively, and obtain the first result output by the L models; wherein, L is a positive integer; perform any of the following operations:
  • the terminal determines a prediction result of the target task based on the first result
  • the terminal sends the first result to the network side device
  • the terminal receives the second result sent by the network side device; the terminal determines the prediction result of the target task based on the first result and the second result; wherein the second result is the network side
  • the device uses M models to obtain the target tasks respectively; M is a positive integer.
  • the terminal provided in the embodiment of the present application performs the same task by using multiple models in the communication network, and after obtaining the results corresponding to each model, fuses the results corresponding to the multiple models to obtain the prediction result of the task, and then makes a decision to realize the comprehensive Considering the results of multiple models/algorithms to make decisions can effectively improve decision-making accuracy, reduce the probability of failure, and reduce the frequency of model switching to achieve compatible coexistence and deployment of different models.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface; wherein the processor is used for:
  • the network side device determines a prediction result of the target task based on the second result
  • the network side device sends the second result to the terminal
  • the network side device receives the first result sent by the terminal; the network side device determines the prediction result of the target task based on the first result and the second result; wherein the first result is the
  • the terminal uses L models to obtain the target tasks respectively; L is a positive integer.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • FIG. 8 is one of the schematic structural diagrams of the network side equipment provided by the embodiment of the present application.
  • the antenna 801 is connected to the radio frequency device 802 .
  • the radio frequency device 802 receives information through the antenna 801, and sends the received information to the baseband device 803 for processing.
  • the baseband device 803 processes the information to be sent and sends it to the radio frequency device 802
  • the radio frequency device 802 processes the received information and sends it out through the antenna 801 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 803, where the baseband device 803 includes a baseband processor.
  • the baseband device 803 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 806, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 806 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 800 in this embodiment of the present invention also includes: instructions or programs stored in the memory 805 and operable on the processor 804, and the processor 804 calls the instructions or programs in the memory 805 to execute the network-side device side.
  • the steps of the communication network prediction method achieve the same technical effect, and are not described here in order to avoid repetition.
  • FIG. 9 is the second schematic structural diagram of the network side device provided by the embodiment of the present application.
  • the network side device 900 includes: a processor 901 , a network interface 902 and a memory 903 .
  • the network interface 902 is, for example, a common public radio interface (common public radio interface, CPRI).
  • the network-side device 900 in this embodiment of the present invention also includes: instructions or programs stored in the memory 903 and operable on the processor 901, and the processor 901 calls the instructions or programs in the memory 903 to execute the network-side device side.
  • the steps of the communication network prediction method achieve the same technical effect, and are not described here in order to avoid repetition.
  • the embodiment of the present application also provides a communication network prediction system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the communication network prediction method described above, and the network-side device can be used to perform the above-mentioned Steps of communication network prediction method.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium may be volatile or non-volatile.
  • Programs or instructions are stored on the readable storage medium.
  • the program Or, when the instruction is executed by the processor, each process of the above communication network prediction method embodiment can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above embodiment of the communication network prediction method Each process, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above communication network prediction method
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信网络预测方法、终端及网络侧设备,属于通信技术领域,本申请实施例的通信网络预测方法包括:终端使用L个模型分别执行目标任务,获得L个模型输出的第一结果;其中,L为正整数(201);终端执行以下任一项操作:终端基于第一结果,确定目标任务的预测结果;终端向网络侧设备发送第一结果;终端接收网络侧设备发送的第二结果,终端基于第一结果及第二结果确定目标任务的预测结果;其中,第二结果为网络侧设备使用M个模型分别执行目标任务后得到的;M为正整数(202)。

Description

通信网络预测方法、终端及网络侧设备
相关申请的交叉引用
本申请要求于2022年01月14日提交的申请号为202210044930.1,发明名称为“通信网络预测方法、终端及网络侧设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种通信网络预测方法、终端及网络侧设备。
背景技术
位置信息是一类重要的感知信息,不仅能够用于满足多样化的业务需求,例如,旁链路(sidelink)或智慧工厂等,也能够作为通信链路的先验信息,帮助提升通信***的整体性能和服务体验。无线通信网络定位是终端通过对参考信号的测量估计自身当前地理位置,具体地,终端测量来自多个定位基站的定位参考信号,及将定位参考信号的测量信息通过服务基站上报给核心网,由核心网的定位管理功能进行位置估计;最后核心网通过服务基站将终端的地理位置信息下发给终端,完成对终端的定位。
相关技术中,无线通信网络定位方法主要依靠对直射径的测量结果进行定位,在存在视距(line-of-sight,LOS)径的情况下能以较低的实现复杂度达到较高的定位精度,但是,容易受到非视距(non-line-of-sight,NLOS)的影响,特别是当终端与定位基站之间的直射径不存在时,定位精度将大幅度下降,导致定位失败概率高。实际中,基于人工智能(Artificial Intelligence,AI)或机器学习(Machine Learning,ML)的定位方法,虽然可以解决NLOS情况下的定位问题;但是,基于AI的定位方法的稳定性、鲁棒性以及泛化能 力仍是制约其大规模应用的重要因素。因此,如何有效提高定位精度,降低失败概率是亟待解决的问题。
发明内容
本申请实施例提供一种通信网络预测方法、终端及网络侧设备,能够解决定位失败概率高的问题。
第一方面,提供了一种通信网络预测方法,该方法包括:
终端使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数;
所述终端执行以下任一项操作:
所述终端基于所述第一结果,确定所述目标任务的预测结果;
所述终端向网络侧设备发送所述第一结果;
所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
第二方面,提供了一种通信网络预测方法,该方法包括:
网络侧设备使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果;其中,M为正整数;
所述网络侧设备执行以下任一项操作:
所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果;
所述网络侧设备向终端发送所述第二结果;
所述网络侧设备接收终端发送的第一结果;所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第一结果为所述终端使用L个模型分别执行所述目标任务后得到的;L为正整数。
第三方面,提供了一种通信网络预测装置,该装置包括:
第一执行模块,用于使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数;
第一预测模块,用于执行以下任一项操作:
所述终端基于所述第一结果,确定所述目标任务的预测结果;
所述终端向网络侧设备发送所述第一结果;
所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
第四方面,提供了一种通信网络预测装置,该装置包括:
第二执行模块,用于使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果;其中,M为正整数;
第二预测模块,用于执行以下任一项操作:
所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果;
所述网络侧设备向终端发送所述第二结果;
所述网络侧设备接收终端发送的第一结果;所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第一结果为所述终端使用L个模型分别执行所述目标任务后得到的;L为正整数。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口;其中,所述处理器用于:
使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数;执行以下任一项操作:
所述终端基于所述第一结果,确定所述目标任务的预测结果;
所述终端向网络侧设备发送所述第一结果;
所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口;其中,所述处理器用于:
使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果;其中,M为正整数;执行以下任一项操作:
所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果;
所述网络侧设备向终端发送所述第二结果;
所述网络侧设备接收终端发送的第一结果;所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第一结果为所述终端使用L个模型分别执行所述目标任务后得到的;L为正整数。
第九方面,提供了一种通信网络预测***,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第二方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,通过在通信网络中使用多个模型分别执行同一任务,在得到各个模型对应的结果之后,融合多个模型对应的结果得到任务的预测结果,进而进行决策,实现综合考虑多种模型/算法的结果做出决策,能够有 效提升决策精度,降低失败概率,还可以降低模型切换的频率,实现对于不同模型的兼容并存和部署。
附图说明
图1是本申请实施例可应用的无线通信***的示意图;
图2是本申请实施例提供的通信网络预测方法的流程示意图之一;
图3是本申请实施例提供的通信网络预测方法的流程示意图之二;
图4是本申请实施例提供的通信网络预测装置的结构示意图之一;
图5是本申请实施例提供的通信网络预测装置的结构示意图之二;
图6是本申请实施例提供的通信设备的结构示意图;
图7是本申请实施例提供的终端的结构示意图;
图8是本申请实施例提供的网络侧设备的结构示意图之一;
图9是本申请实施例提供的网络侧设备的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long  Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的通信***,如第6代(6th Generation,6G)通信***。
图1是本申请实施例可应用的无线通信***的示意图,图1示出的无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备、核心网设备和/或神经网络处理节点,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、 WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR***中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的通信网络预测方法进行详细地说明。
本申请实施例提供一种通信网络预测方法,通过在通信网络中使用多个模型分别执行同一任务,在得到各个模型对应的结果之后,融合多个模型对应的结果得到任务的预测结果,进而进行决策,实现综合考虑多种模型/算法的结果做出决策,能够有效提升决策精度,降低失败概率,还可以降低模型 切换的频率,实现对于不同模型的兼容并存和部署。
图2是本申请实施例提供的通信网络预测方法的流程示意图之一,如图2所示,该方法包括步骤201-202;其中:
步骤201、终端使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数。
步骤202、终端执行以下任一项操作:
所述终端基于所述第一结果,确定所述目标任务的预测结果;
所述终端向网络侧设备发送所述第一结果;
所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
需要说明的是,本申请实施例可应用于通信网络中基于模型进行预测的场景中。终端包括但不限于上述所列举的终端11的类型;网络侧设备包括但不限于上述所列举的网络侧设备12的类型,例如网络侧设备包括以下至少一项:核心网节点;接入网节点(比如基站);神经网络处理节点。核心网节点例如网络数据分析功能(Network Data Analytics Function,NWDAF)网元和/或位置服务管理功能(location management function,LMF)网元。
可以理解的是,本申请实施例中模型所执行的目标任务可以包括定位和/或信道状态信息(Channel State Information,CSI)估计等任务。
可选地,所述L个模型中任一模型的类型包括:基于AI的模型或基于非AI的模型。所述M个模型中任一模型的类型包括:基于AI的模型或基于非AI的模型。具体地,基于非AI的模型可以包括基于对直射径的测量结果进行定位的无线通信网络定位方法等。基于AI的模型可以包括以下至少一项:基于注意力的卷积神经网络(CNN with attention)模型;视觉转换器(Vision Transformer)模型。
实际中,终端使用L个模型分别执行目标任务,每个模型分别输出各自的输出结果。可选地,所述第一结果可以包括:所述L个模型分别输出的L 个输出结果;或者,所述L个输出结果的融合结果。
可选地,网络侧设备发送的第二结果可以包括:所述M个模型分别输出的M个输出结果;或者,所述M个输出结果的融合结果。
可选地,所述终端基于所述第一结果确定所述目标任务的预测结果之后,基于所述目标任务的预测结果进行所述目标任务关联的决策。
本申请实施例提供的通信网络预测方法中,通过在通信网络中使用多个模型分别执行同一任务,在得到各个模型对应的结果之后,融合多个模型对应的结果得到任务的预测结果,进而进行决策,实现综合考虑多种模型/算法的结果做出决策,能够有效提升决策精度,降低失败概率,还可以降低模型切换的频率,实现对于不同模型的兼容并存和部署。
下面对本申请实施例中模型部署方式和任务预测方式的具体实现方式进行说明。模型部署方式和任务预测方式的具体实现方式可以包括以下任意一种方式:
方式1、终端基于部署在终端的多个模型,确定目标任务预测结果。
方式2、网络侧设备基于部署在网络侧设备的多个模型,确定目标任务预测结果。
方式3、终端基于部署在终端的L个模型获得L个模型输出的第一结果;网络侧设备基于部署在网络侧设备的M个模型获得M个模型输出的第二结果,并将所述第二结果发送至终端;终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果。
方式4、终端基于部署在终端的L个模型获得L个模型输出的第一结果,并将所述第一结果发送至网络侧设备;网络侧设备基于部署在网络侧设备的M个模型获得M个模型输出的第二结果,然后,网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果。
可以理解的是,针对不同任务不同方式,终端所使用的模型数量和类型可以不同;针对不同任务不同方式,网络侧设备所使用的模型数量和类型也可以不同。
这里,针对方式1-方式4分别进行说明:
方式1、终端基于部署在终端的多个模型,确定目标任务预测结果。
具体地,终端确定L个模型;然后终端使用所述L个模型分别执行目标任务,获得所述L个模型输出的第一结果;终端基于所述第一结果,确定所述目标任务的预测结果。进一步地,终端基于所述目标任务的预测结果,进行所述目标任务关联的决策。
可选地,终端确定L个模型的实现方式可以包括以下任意一项:
(1)网络侧设备直接为终端配置多个模型
例如,网络侧设备主动向终端发送第一信息,所述第一信息包括L个模型的配置信息;终端接收网络侧设备发送的第一信息,基于所述L个模型的配置信息确定所述L个模型。
可选地,终端接收网络侧设备发送的第一信息之后,向网络侧设备发送反馈信息;其中,所述反馈信息用于指示所述终端是否支持所述模型配置信息对应的模型。网络侧设备基于终端上报的反馈信息,获知终端是否指示模型配置信息对应的模型。
可选地,所述第一信息包括以下至少一项:
a)模型数量信息;
b)模型类别信息;
c)模型标识(ID)信息;
d)模型的优先级信息;
e)模型属性信息;
具体地,模型属性信息可以包括以下至少一项:参数模型、非参数模型、AI模型、非AI模型、模型误差及模型是否需要微调。
f)模型精度信息;
g)模型误差信息;
h)模型计算能力要求信息;
i)模型存储能力要求信息;
j)模型特征信息;
例如,模型特征信息可以包括以下至少一项:模型结构;模型参数(例如模型权重和/或模型偏置);模型配置(例如模型采用的优化器和/或采用的损失函数);模型优化器状态。
k)适配环境信息;
例如,适配环境信息包括以下至少一项:LOS或NLOS场景;密集城区或乡村场景;物联网(Internet of Things,IoT)场景;sidelink场景。
l)处理时延信息;
m)各模型输出结果的融合方式信息;
例如,各模型输出结果的融合方式信息包括后处理方式。实际中,后处理方式可以包括:滤波、加权等进一步数据处理方式。
n)模型生命周期信息;
例如,模型生命周期信息可以包括以下至少一项:模型生效时间;模型失效时间;模型更新周期;模型与目标任务的关联关系。
o)各类别模型输入的测量量信息;
具体地,所述各类别模型输入的测量量信息可以包括以下至少一项:信道状态信息;接收信号信息;历史状态信息;传感器信息。
例如,信道状态信息可以包括以下至少一项:时域信息;频域信息;空域信息;时延域信息;多普勒域信息。
例如,接收信号信息用于描述信号质量和/或特征;接收信号信息可以包括以下至少一项:RSRP、RSRQ、SINR、误码率及误帧率。
例如,历史状态信息可以包括过去N个时刻的历史位置信息。
p)各类别模型的输出信息。
具体地,所述各类别模型的输出信息可以包括以下至少一项:直接目标参数;中间量;直接目标参数或中间量的软信息。软信息例如终端位置的概率分布等信息。
例如,直接目标参数可以包括相对位置信息和/或绝对位置信息。
例如,中间量用于推导目标参数。中间量可以包括以下至少一项:到达时间信息(TOA)、角度信息(如AOA、AOD)、RSRP。
(2)终端请求网络侧设备为终端配置多个模型
具体地,终端向网络侧设备发送请求信息,所述请求信息用于请求所述网络侧设备配置L个模型;
网络侧设备接收终端发送的请求信息;网络侧设备基于所述请求信息和/或第三信息为所述终端配置所述L个模型,网络侧设备向所述终端发送第一信息;
终端接收所述网络侧设备发送的第一信息,基于所述L个模型的配置信息确定所述L个模型。
可选地,所述请求信息可以包括第二信息;其中,第二信息包括以下至少一项:
a)终端的移动性信息;
具体地,终端的移动性信息可以包括:移动速度和/或波束切换信息。例如,终端的移动速度大于第一阈值;再例如,波束切换频率大于第二阈值。
b)终端的环境信息;
具体地,终端的环境信息可以包括以下至少一项:LOS/NLOS场景;密集城区/乡村场景;周围基站数量;基站ID;参考信号的测量信息。
c)精度要求信息;
具体地,精度要求信息可以包括以下至少一项:绝对精度要求;精度的量化等级。其中,绝对精度要求可以包括:水平方向误差和/或垂直高度方向误差。
d)任务信息。
具体地,任务信息用于指示模型执行的任务。任务信息可以包括定位任务或CSI估计任务。
可选地,终端可以向网络侧设备上报终端的能力信息。
具体地,终端向所述网络侧设备发送第三信息;其中,所述第三信息用 于指示所述终端的能力信息。所述第三信息包括以下至少一项:
a)终端的传感器配置信息;
b)终端可获取的数据类型;
例如,所述数据类型可以包括以下至少一项:数据的格式信息;数据预处理方式。
终端可获取的数据可以包括:与传感器配置相关联的数据和/或与参考信号关联的数据。与传感器配置相关联的数据包括:视觉传感器捕获的图片信息、雷达传感器捕捉的距离信息等。与参考信号关联的数据包括信道状态信息。
c)终端的硬件能力信息。
例如,终端的硬件能力信息包括以下至少一项:CPU和/或GPU能力(例如计算能力);用于存储数据集的空间或可存储的数据量;用于执行任务的CPU、GPU资源。
需要说明的是,第三信息可以先于第二信息上报,例如终端在初始接入阶段上报第三信息;第三信息也可以与第二信息同时上报;或者,第三信息可以晚于第二信息上报。
(3)终端自主配置多个模型
具体地,终端基于自主确定并告知网络侧设备、协议预定义或高层预配置中至少一种方式,配置所述L个模型。例如,终端自主配置L个模型;或者,协议预定义或高层预配置L个模型。
(4)终端从预配置的模型池中选择多个模型
具体地,模型池中包括至少一个模型。例如,终端基于目标信息,选择模型池中所述L个模型;其中,所述模型池中包括K个模型;K大于或等于L;K为正整数。
可选地,所述目标信息可以包括以下至少一项:
a)各个模型的输出结果的统计信息;
具体地,各个模型的输出结果的统计信息包括:一段时间内同一模型结 果的统计信息。例如,分别计算不同模型在一段时间内输入的统计信息、输出的统计信息。统计信息例如均值、方差等。
b)多个模型的输出结果的统计信息;
具体地,多个模型的输出结果的统计信息包括:一段时间内不同模型输出的统计量的统计信息;统计信息例如均值、方差等。
c)各个模型的模型误差信息;
例如,各个模型的模型误差信息包括:即时误差信息和/或一段时间内的统计误差信息。
d)终端的移动性信息;
具体地,终端的移动性信息可以包括:移动速度和/或波束切换信息。例如,终端的移动速度大于第一阈值;再例如,波束切换频率大于第二阈值。
e)终端的环境信息;
具体地,终端的环境信息可以包括以下至少一项:LOS/NLOS场景;密集城区/乡村场景;周围基站数量;基站ID;参考信号的测量信息。
f)精度要求信息;
具体地,精度要求信息可以包括以下至少一项:绝对精度要求;精度的量化等级。其中,绝对精度要求可以包括:水平方向误差和/或垂直高度方向误差。
g)任务信息;
具体地,任务信息用于指示模型执行的任务。任务信息可以包括定位任务或CSI估计任务。
h)各类别模型输入的测量量信息;
具体地,所述各类别模型输入的测量量信息可以包括以下至少一项:信道状态信息;接收信号信息;历史状态信息;传感器信息。
例如,信道状态信息可以包括以下至少一项:时域信息;频域信息;空域信息;时延域信息;多普勒域信息。
例如,接收信号信息用于描述信号质量和/或特征;接收信号信息可以包 括以下至少一项:RSRP、RSRQ、SINR、误码率及误帧率。
例如,历史状态信息可以包括过去N个时刻的历史位置信息。
i)模型的优先级信息;
j)当前终端的参考信号的测量信息;
具体地,当前终端的参考信号的测量信息可以包括以下至少一项:SSB测量信息;SRS测量信息;CSI-RS测量信息;PRS测量信息。
k)参考终端的模型配置信息;
可选地,参考终端包括当前终端的周围终端,如sidelink场景中发射终端或接收终端。
l)参考终端的参考信号的测量信息。
具体地,参考终端的参考信号的测量信息可以包括以下至少一项:SSB测量信息;SRS测量信息;CSI-RS测量信息;PRS测量信息。
方式2、网络侧设备基于部署在网络侧设备的多个模型,确定目标任务预测结果。
具体地,网络侧设备确定M个模型;然后网络侧设备使用所述M个模型分别执行目标任务,获得所述M个模型输出的第二结果;网络侧设备基于所述第二结果,确定所述目标任务的预测结果。进一步地,所述网络侧设备基于所述目标任务的预测结果,进行所述目标任务关联的决策。
可选地,网络侧设备确定M个模型的实现方式可以包括以下任意一项:
(1)网络侧设备配置多个模型
例如,所述网络侧设备基于自主确定、协议预定义或预配置中至少一种方式,配置所述M个模型。
可选地,在网络侧设备确定M个模型的场景中,网络侧设备可以从终端获取第五信息和/或第六信息。所述第五信息和/或第六信息可以用于辅助网络侧设备进行模型选择和模型配置。
具体地,终端向网络侧设备发送第五信息;网络侧设备接收终端发送的第五信息;其中,所述第五信息包括以下至少一项:
a)终端的移动性信息;
具体地,终端的移动性信息可以包括:移动速度和/或波束切换信息。例如,终端的移动速度大于第一阈值;再例如,波束切换频率大于第二阈值。
b)终端的环境信息;
具体地,终端的环境信息可以包括以下至少一项:LOS/NLOS场景;密集城区/乡村场景;周围基站数量;基站ID;参考信号的测量信息。
c)精度要求信息;
具体地,精度要求信息可以包括以下至少一项:绝对精度要求;精度的量化等级。其中,绝对精度要求可以包括:水平方向误差和/或垂直高度方向误差。
d)任务信息。
具体地,任务信息用于指示模型执行的任务。任务信息可以包括定位任务或CSI估计任务。
可选地,终端可以向网络侧设备上报终端的能力信息。例如,终端向网络侧设备发送第六信息;所述网络侧设备接收终端发送的第六信息;其中,所述第六信息用于指示所述终端的能力信息。所述第六信息可以包括以下至少一项:
a)终端的传感器配置信息;
b)终端可获取的数据类型;
例如,所述数据类型可以包括以下至少一项:数据的格式信息;数据预处理方式。
终端可获取的数据可以包括:与传感器配置相关联的数据和/或与参考信号关联的数据。与传感器配置相关联的数据包括:视觉传感器捕获的图片信息、雷达传感器捕捉的距离信息等。与参考信号关联的数据包括信道状态信息。
c)终端的硬件能力信息。
例如,终端的硬件能力信息包括以下至少一项:CPU和/或GPU能力(例 如计算能力);用于存储数据集的空间或可存储的数据量;用于执行任务的CPU、GPU资源。
需要说明的是,第六信息可以先于第五信息上报,例如终端在初始接入阶段上报第六信息;第六信息也可以与第五信息同时上报;或者,第六信息可以晚于第五信息上报。
(2)网络侧设备从预配置的模型池中选择多个模型
具体地,模型池中包括至少一个模型。例如,网络侧设备基于目标信息,选择模型池中所述M个模型;其中,所述模型池中包括P个模型;P大于或等于M;P为正整数。
可选地,所述目标信息可以包括以下至少一项:
a)各个模型的输出结果的统计信息;
具体地,各个模型的输出结果的统计信息包括:一段时间内同一模型结果的统计信息。例如,分别计算不同模型在一段时间内输入的统计信息、输出的统计信息。统计信息例如均值、方差等。
b)多个模型的输出结果的统计信息;
具体地,多个模型的输出结果的统计信息包括:一段时间内不同模型输出的统计量的统计信息;统计信息例如均值、方差等。
c)各个模型的模型误差信息;
例如,各个模型的模型误差信息包括:即时误差信息和/或一段时间内的统计误差信息。
d)终端的移动性信息;
具体地,终端的移动性信息可以包括:移动速度和/或波束切换信息。例如,终端的移动速度大于第一阈值;再例如,波束切换频率大于第二阈值。
e)终端的环境信息;
具体地,终端的环境信息可以包括以下至少一项:LOS/NLOS场景;密集城区/乡村场景;周围基站数量;基站ID;参考信号的测量信息。
f)精度要求信息;
具体地,精度要求信息可以包括以下至少一项:绝对精度要求;精度的量化等级。其中,绝对精度要求可以包括:水平方向误差和/或垂直高度方向误差。
g)任务信息;
具体地,任务信息用于指示模型执行的任务。任务信息可以包括定位任务或CSI估计任务。
h)各类别模型输入的测量量信息;
具体地,所述各类别模型输入的测量量信息可以包括以下至少一项:信道状态信息;接收信号信息;历史状态信息;传感器信息。
例如,信道状态信息可以包括以下至少一项:时域信息;频域信息;空域信息;时延域信息;多普勒域信息。
例如,接收信号信息用于描述信号质量和/或特征;接收信号信息可以包括以下至少一项:RSRP、RSRQ、SINR、误码率及误帧率。
例如,历史状态信息可以包括过去N个时刻的历史位置信息。
i)模型的优先级信息;
j)当前终端的参考信号的测量信息;
具体地,当前终端的参考信号的测量信息可以包括以下至少一项:SSB测量信息;SRS测量信息;CSI-RS测量信息;PRS测量信息。
k)参考终端的模型配置信息;
可选地,参考终端包括当前终端的周围终端,如sidelink场景中发射终端或接收终端。
l)参考终端的参考信号的测量信息。
具体地,参考终端的参考信号的测量信息可以包括以下至少一项:SSB测量信息;SRS测量信息;CSI-RS测量信息;PRS测量信息。
可选地,网络侧设备确定M个模型之后,向所述终端发送第七信息;其中,所述第七信息包括所述M个模型的配置信息。
终端接收所述网络侧设备发送的第七信息,基于所述第七信息包括的所 述M个模型的配置信息,获取M个模型所对应的测量量;终端向所述网络侧设备发送测量量信息。
网络侧设备接收所述终端发送的测量量信息,基于所述终端发送的测量量信息,使用所述M个模型分别执行目标任务,获得所述M个模型输出的第二结果。
具体地,所述第七信息可以包括以下至少一项:
[1]各模型的输入要求;
实际中,各模型的输入要求可以包括以下至少一项:各类别模型输入的测量量信息;各类别模型输入的数据类型;
例如,所述各类别模型输入的测量量信息可以包括以下至少一项:信道状态信息;接收信号信息;历史状态信息;传感器信息。
其中,信道状态信息可以包括以下至少一项:时域信息;频域信息;空域信息;时延域信息;多普勒域信息。
接收信号信息用于描述信号质量和/或特征;接收信号信息可以包括以下至少一项:RSRP、RSRQ、SINR、误码率及误帧率。
历史状态信息可以包括过去N个时刻的历史位置信息。
例如,各类别模型输入的数据类型可以包括以下至少一项:数据的格式信息;数据预处理方式。终端可获取的数据可以包括:与传感器配置相关联的数据和/或与参考信号关联的数据;其中,与传感器配置相关联的数据包括:视觉传感器捕获的图片信息、雷达传感器捕捉的距离信息等。与参考信号关联的数据包括信道状态信息。
[2]模型精度信息;
[3]处理时延信息;
[4]模型生命周期信息。
实际中,模型生命周期信息可以包括以下至少一项:模型生效时间;模型失效时间;模型更新周期;模型与目标任务的关联关系。
可选地,网络侧设备基于所述第二结果,确定所述目标任务的预测结果 的实现方式可以包括:网络侧设备基于第二融合方式和所述第二结果,确定所述目标任务的预测结果。
具体地,所述第二融合方式可以包括以下至少一项:
1)通过对各个模型的输出结果进行滤波,得到预测结果的融合方式;
2)基于各个模型的权重和输出结果,确定预测结果的融合方式。
可选地,所述网络侧设备基于目标信息,确定所述第二融合方式。
具体地,所述目标信息可以包括以下至少一项:
a)各个模型的输出结果的统计信息;
具体地,各个模型的输出结果的统计信息包括:一段时间内同一模型结果的统计信息。例如,分别计算不同模型在一段时间内输入的统计信息、输出的统计信息。统计信息例如均值、方差等。
b)多个模型的输出结果的统计信息;
具体地,多个模型的输出结果的统计信息包括:一段时间内不同模型输出的统计量的统计信息;统计信息例如均值、方差等。
c)各个模型的模型误差信息;
例如,各个模型的模型误差信息包括:即时误差信息和/或一段时间内的统计误差信息。
d)终端的移动性信息;
具体地,终端的移动性信息可以包括:移动速度和/或波束切换信息。例如,终端的移动速度大于第一阈值;再例如,波束切换频率大于第二阈值。
e)终端的环境信息;
具体地,终端的环境信息可以包括以下至少一项:LOS/NLOS场景;密集城区/乡村场景;周围基站数量;基站ID;参考信号的测量信息。
f)精度要求信息;
具体地,精度要求信息可以包括以下至少一项:绝对精度要求;精度的量化等级。其中,绝对精度要求可以包括:水平方向误差和/或垂直高度方向误差。
g)任务信息;
具体地,任务信息用于指示模型执行的任务。任务信息可以包括定位任务或CSI估计任务。
h)各类别模型输入的测量量信息;
具体地,所述各类别模型输入的测量量信息可以包括以下至少一项:信道状态信息;接收信号信息;历史状态信息;传感器信息。
例如,信道状态信息可以包括以下至少一项:时域信息;频域信息;空域信息;时延域信息;多普勒域信息。
例如,接收信号信息用于描述信号质量和/或特征;接收信号信息可以包括以下至少一项:RSRP、RSRQ、SINR、误码率及误帧率。
例如,历史状态信息可以包括过去N个时刻的历史位置信息。
i)模型的优先级信息;
j)参考信号的测量信息;
具体地,参考信号的测量信息可以包括以下至少一项:SSB测量信息;SRS测量信息;CSI-RS测量信息;PRS测量信息。
方式3、在终端侧和网络侧设备侧分别部署多个模型,由终端确定目标任务的预测结果。
具体地,终端确定L个模型;网络侧设备确定M个模型。终端基于部署在终端的L个模型获得L个模型输出的第一结果。网络侧设备基于部署在网络侧设备的M个模型获得M个模型输出的第二结果,并将所述第二结果发送至终端。终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果。进一步地,终端基于所述目标任务的预测结果,进行所述目标任务关联的决策。
可选地,网络侧设备可以向终端发送第十一信息;其中,所述第十一信息用于指示基于所述第一结果和所述第二结果的预测方式。终端接收所述网络侧设备发送的第十一信息。
其中,所述预测方式包括以下任一项:
1)以终端为中心、网络侧设备辅助的方式:
终端基于所述第一结果和所述第二结果,确定所述目标任务的预测结果。
2)以网络侧设备为中心、终端辅助的方式:
网络侧设备基于所述第一结果和所述第二结果,确定所述目标任务的预测结果;
可以理解的是,方式3对应的预测方式是以终端为中心、网络侧设备辅助的方式。
可选地,终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果的实现方式可以包括:终端基于第一融合方式、所述第一结果及所述第二结果,确定所述目标任务的预测结果。
具体地,所述第一融合方式可以包括以下至少一项:
1)通过对各个模型的输出结果进行滤波,得到预测结果的融合方式;
2)基于各个模型的权重和输出结果,确定预测结果的融合方式。
可选地,终端基于目标信息,确定所述第一融合方式。
可选地,所述目标信息可以包括以下至少一项:
a)各个模型的输出结果的统计信息;
具体地,各个模型的输出结果的统计信息包括:一段时间内同一模型结果的统计信息。例如,分别计算不同模型在一段时间内输入的统计信息、输出的统计信息。统计信息例如均值、方差等。
b)多个模型的输出结果的统计信息;
具体地,多个模型的输出结果的统计信息包括:一段时间内不同模型输出的统计量的统计信息;统计信息例如均值、方差等。
c)各个模型的模型误差信息;
例如,各个模型的模型误差信息包括:即时误差信息和/或一段时间内的统计误差信息。
d)终端的移动性信息;
具体地,终端的移动性信息可以包括:移动速度和/或波束切换信息。例 如,终端的移动速度大于第一阈值;再例如,波束切换频率大于第二阈值。
e)终端的环境信息;
具体地,终端的环境信息可以包括以下至少一项:LOS/NLOS场景;密集城区/乡村场景;周围基站数量;基站ID;参考信号的测量信息。
f)精度要求信息;
具体地,精度要求信息可以包括以下至少一项:绝对精度要求;精度的量化等级。其中,绝对精度要求可以包括:水平方向误差和/或垂直高度方向误差。
g)任务信息;
具体地,任务信息用于指示模型执行的任务。任务信息可以包括定位任务或CSI估计任务。
h)各类别模型输入的测量量信息;
具体地,所述各类别模型输入的测量量信息可以包括以下至少一项:信道状态信息;接收信号信息;历史状态信息;传感器信息。
例如,信道状态信息可以包括以下至少一项:时域信息;频域信息;空域信息;时延域信息;多普勒域信息。
例如,接收信号信息用于描述信号质量和/或特征;接收信号信息可以包括以下至少一项:RSRP、RSRQ、SINR、误码率及误帧率。
例如,历史状态信息可以包括过去N个时刻的历史位置信息。
i)模型的优先级信息;
j)当前终端的参考信号的测量信息;
具体地,当前终端的参考信号的测量信息可以包括以下至少一项:SSB测量信息;SRS测量信息;CSI-RS测量信息;PRS测量信息。
k)参考终端的模型配置信息;
可选地,参考终端包括当前终端的周围终端,如sidelink场景中发射终端或接收终端。
l)参考终端的参考信号的测量信息。
具体地,参考终端的参考信号的测量信息可以包括以下至少一项:SSB测量信息;SRS测量信息;CSI-RS测量信息;PRS测量信息。
方式4、在终端侧和网络侧设备侧分别部署多个模型,由网络侧设备确定目标任务的预测结果。
具体地,终端确定L个模型;网络侧设备确定M个模型。终端基于部署在终端的L个模型获得L个模型输出的第一结果,并将所述第一结果发送至网络侧设备。网络侧设备基于部署在网络侧设备的M个模型获得M个模型输出的第二结果;网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果。进一步地,网络侧设备基于所述目标任务的预测结果,进行所述目标任务关联的决策。
可选地,网络侧设备可以向终端发送第十一信息;其中,所述第十一信息用于指示基于所述第一结果和所述第二结果的预测方式。终端接收所述网络侧设备发送的第十一信息。
其中,所述预测方式包括以下任一项:
1)以终端为中心、网络侧设备辅助的方式:
终端基于所述第一结果和所述第二结果,确定所述目标任务的预测结果。
2)以网络侧设备为中心、终端辅助的方式:
网络侧设备基于所述第一结果和所述第二结果,确定所述目标任务的预测结果;
可以理解的是,方式4对应的预测方式是以网络侧设备为中心、终端辅助的方式。
可选地,网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果的实现方式可以包括:所述网络侧设备基于第二融合方式、所述第一结果及所述第二结果,确定所述目标任务的预测结果。
具体地,所述第二融合方式可以包括以下至少一项:
1)通过对各个模型的输出结果进行滤波,得到预测结果的融合方式;
2)基于各个模型的权重和输出结果,确定预测结果的融合方式。
可选地,所述网络侧设备基于目标信息,确定所述第二融合方式。
具体地,所述目标信息可以包括以下至少一项:
a)各个模型的输出结果的统计信息;
具体地,各个模型的输出结果的统计信息包括:一段时间内同一模型结果的统计信息。例如,分别计算不同模型在一段时间内输入的统计信息、输出的统计信息。统计信息例如均值、方差等。
b)多个模型的输出结果的统计信息;
具体地,多个模型的输出结果的统计信息包括:一段时间内不同模型输出的统计量的统计信息;统计信息例如均值、方差等。
c)各个模型的模型误差信息;
例如,各个模型的模型误差信息包括:即时误差信息和/或一段时间内的统计误差信息。
d)终端的移动性信息;
具体地,终端的移动性信息可以包括:移动速度和/或波束切换信息。例如,终端的移动速度大于第一阈值;再例如,波束切换频率大于第二阈值。
e)终端的环境信息;
具体地,终端的环境信息可以包括以下至少一项:LOS/NLOS场景;密集城区/乡村场景;周围基站数量;基站ID;参考信号的测量信息。
f)精度要求信息;
具体地,精度要求信息可以包括以下至少一项:绝对精度要求;精度的量化等级。其中,绝对精度要求可以包括:水平方向误差和/或垂直高度方向误差。
g)任务信息;
具体地,任务信息用于指示模型执行的任务。任务信息可以包括定位任务或CSI估计任务。
h)各类别模型输入的测量量信息;
具体地,所述各类别模型输入的测量量信息可以包括以下至少一项:信 道状态信息;接收信号信息;历史状态信息;传感器信息。
例如,信道状态信息可以包括以下至少一项:时域信息;频域信息;空域信息;时延域信息;多普勒域信息。
例如,接收信号信息用于描述信号质量和/或特征;接收信号信息可以包括以下至少一项:RSRP、RSRQ、SINR、误码率及误帧率。
例如,历史状态信息可以包括过去N个时刻的历史位置信息。
i)模型的优先级信息;
j)参考信号的测量信息;
具体地,参考信号的测量信息可以包括以下至少一项:SSB测量信息;SRS测量信息;CSI-RS测量信息;PRS测量信息。
图3是本申请实施例提供的通信网络预测方法的流程示意图之二,如图3所示,该方法包括步骤301-302;其中:
步骤301、网络侧设备使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果;其中,M为正整数。
步骤302、所述网络侧设备执行以下任一项操作:
所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果;
所述网络侧设备向终端发送所述第二结果;
所述网络侧设备接收终端发送的第一结果;所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第一结果为所述终端使用L个模型分别执行所述目标任务后得到的;L为正整数。
需要说明的是,本申请实施例可应用于通信网络中基于模型进行预测的场景中。终端包括但不限于上述所列举的终端11的类型;网络侧设备包括但不限于上述所列举的网络侧设备12的类型,例如网络侧设备包括以下至少一项:核心网节点;接入网节点(比如基站);神经网络处理节点。核心网节点例如网络数据分析功能(Network Data Analytics Function,NWDAF)网元和/或位置服务管理功能(location management function,LMF)网元。
可以理解的是,本申请实施例中模型所执行的目标任务可以包括定位和/ 或信道状态信息(Channel State Information,CSI)估计等任务。
可选地,所述L个模型中任一模型的类型包括:基于AI的模型或基于非AI的模型。所述M个模型中任一模型的类型包括:基于AI的模型或基于非AI的模型。具体地,基于非AI的模型可以包括基于对直射径的测量结果进行定位的无线通信网络定位方法等。基于AI的模型可以包括以下至少一项:基于注意力的卷积神经网络(CNN with attention)模型;视觉转换器(Vision Transformer)模型。
实际中,终端使用L个模型分别执行目标任务,每个模型分别输出各自的输出结果。可选地,所述第一结果可以包括:所述L个模型分别输出的L个输出结果;或者,所述L个输出结果的融合结果。
可选地,网络侧设备发送的第二结果可以包括:所述M个模型分别输出的M个输出结果;或者,所述M个输出结果的融合结果。
可选地,所述终端基于所述第一结果确定所述目标任务的预测结果之后,基于所述目标任务的预测结果进行所述目标任务关联的决策。
本申请实施例提供的通信网络预测方法中,通过在通信网络中使用多个模型分别执行同一任务,在得到各个模型对应的结果之后,融合多个模型对应的结果得到任务的预测结果,进而进行决策,实现综合考虑多种模型/算法的结果做出决策,能够有效提升决策精度,降低失败概率,还可以降低模型切换的频率,实现对于不同模型的兼容并存和部署。
可选地,所述方法还包括:
所述网络侧设备向所述终端发送第一信息;其中,所述第一信息包括所述L个模型的配置信息;所述L个模型的配置信息用于所述终端确定所述L个模型;
或者,
所述网络侧设备接收终端发送的请求信息,所述请求信息用于请求所述网络侧设备配置所述L个模型;所述网络侧设备基于所述请求信息和/或第三信息配置所述L个模型;所述网络侧设备向所述终端发送第一信息;其中, 所述第一信息包括所述L个模型的配置信息;所述L个模型的配置信息用于所述终端确定所述L个模型。
可选地,所述第一信息包括以下至少一项:
模型数量信息;
模型类别信息;
模型标识ID信息;
模型的优先级信息;
模型属性信息;
模型精度信息;
模型误差信息;
模型计算能力要求信息;
模型存储能力要求信息;
模型特征信息;
适配环境信息;
处理时延信息;
各模型输出结果的融合方式信息;
模型生命周期信息;
各类别模型输入的测量量信息;
各类别模型的输出信息。
可选地,所述各类别模型输入的测量量信息,包括以下至少一项:
信道状态信息;
接收信号信息;
历史状态信息;
传感器信息。
可选地,所述各类别模型的输出信息,包括以下至少一项:
直接目标参数;
中间量;
直接目标参数的软信息。
可选地,所述请求信息包括第二信息;其中,所述第二信息包括以下至少一项:
终端的移动性信息;
终端的环境信息;
精度要求信息;
任务信息。
可选地,所述方法还包括:
所述网络侧设备接收所述终端发送的第三信息;其中,所述第三信息用于指示所述终端的能力信息。
可选地,所述第三信息包括以下至少一项:
终端的传感器配置信息;
终端可获取的数据类型;
终端的硬件能力信息。
可选地,所述数据类型包括以下至少一项:
数据的格式信息;
数据预处理方式。
可选地,所述网络侧设备向所述终端发送第一信息之后,所述方法还包括:
所述网络侧设备接收所述终端发送的反馈信息;其中,所述反馈信息用于指示所述终端是否支持所述模型配置信息对应的模型。
可选地,所述方法还包括:
所述网络侧设备确定所述M个模型。
可选地,所述网络侧设备确定所述M个模型,包括:
所述网络侧设备基于自主确定、协议预定义或预配置中至少一种方式,配置所述M个模型;
或者,
所述网络侧设备基于目标信息,选择模型池中所述M个模型;其中,所述模型池中包括P个模型;P大于或等于M;P为正整数。
可选地,所述方法还包括:
所述网络侧设备接收终端发送的第五信息;其中,所述第五信息包括以下至少一项:
终端的移动性信息;
终端的环境信息;
精度要求信息;
任务信息。
可选地,所述方法还包括:
所述网络侧设备接收所述终端发送的第六信息;其中,所述第六信息用于指示所述终端的能力信息。
可选地,所述第六信息包括以下至少一项:
终端的传感器配置信息;
终端可获取的数据类型;
终端的硬件能力信息。
可选地,所述数据类型包括以下至少一项:
数据的格式信息;
数据预处理方式。
可选地,所述方法还包括:
所述网络侧设备向所述终端发送第七信息;其中,所述第七信息包括所述M个模型的配置信息。
可选地,所述第七信息包括以下至少一项:
各模型的输入要求;
模型精度信息;
处理时延信息;
模型生命周期信息。
可选地,所述方法还包括:
所述网络侧设备接收所述终端发送的测量量信息。
可选地,所述网络侧设备使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果,包括:
所述网络侧设备基于所述终端发送的测量量信息,使用所述M个模型分别执行目标任务,获得所述M个模型输出的第二结果。
可选地,所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果,包括:所述网络侧设备基于第二融合方式和所述第二结果,确定所述目标任务的预测结果;
或者,所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果,包括:所述网络侧设备基于第二融合方式、所述第一结果及所述第二结果,确定所述目标任务的预测结果。
可选地,所述第二融合方式,包括:
对各个模型的输出结果进行滤波,得到预测结果;
和/或,基于各个模型的权重和输出结果,确定预测结果。
可选地,所述方法还包括:
所述网络侧设备基于目标信息,确定所述第二融合方式。
可选地,所述目标信息包括以下至少一项:
各个模型的输出结果的统计信息;
多个模型的输出结果的统计信息;
各个模型的模型误差信息;
终端的移动性信息;
终端的环境信息;
精度要求信息;
任务信息;
各类别模型输入的测量量信息;
模型的优先级信息;
参考信号的测量信息。
可选地,所述方法还包括:
所述网络侧设备基于所述目标任务的预测结果,进行所述目标任务关联的决策。
可选地,所述第二结果包括:
所述M个模型分别输出的M个输出结果;或所述M个输出结果的融合结果。
可选地,所述方法还包括:
所述网络侧设备向所述终端发送第十一信息;其中,所述第十一信息用于指示基于所述第一结果和所述第二结果的预测方式。
可选地,所述预测方式包括以下任一项:
网络侧设备基于所述第一结果和所述第二结果,确定所述目标任务的预测结果;
终端基于所述第一结果和所述第二结果,确定所述目标任务的预测结果。
本申请实施例提供的通信网络预测方法,执行主体可以为通信网络预测装置。本申请实施例中以通信网络预测装置执行通信网络预测方法为例,说明本申请实施例提供的通信网络预测装置。
图4是本申请实施例提供的通信网络预测装置的结构示意图之一,如图4所示,该通信网络预测装置400,应用于终端,包括:
第一执行模块401,用于使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数;
第一预测模块402,用于执行以下任一项操作:
所述终端基于所述第一结果,确定所述目标任务的预测结果;
所述终端向网络侧设备发送所述第一结果;
所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
本申请实施例提供的通信网络预测装置中,通过在通信网络中使用多个模型分别执行同一任务,在得到各个模型对应的结果之后,融合多个模型对应的结果得到任务的预测结果,进而进行决策,实现综合考虑多种模型/算法的结果做出决策,能够有效提升决策精度,降低失败概率,还可以降低模型切换的频率,实现对于不同模型的兼容并存和部署。
可选地,所述装置还包括:
第一确定模块,用于确定所述L个模型。
可选地,第一确定模块具体用于以下任一项:
接收网络侧设备发送的第一信息;其中,所述第一信息包括所述L个模型的配置信息;基于所述L个模型的配置信息确定所述L个模型;
向网络侧设备发送请求信息,所述请求信息用于请求所述网络侧设备配置所述L个模型;接收所述网络侧设备发送的第一信息;其中,所述第一信息包括所述L个模型的配置信息;基于所述L个模型的配置信息确定所述L个模型;
基于自主确定并告知网络侧设备、协议预定义或高层预配置中至少一种方式,配置所述L个模型;
基于目标信息,选择模型池中所述L个模型;其中,所述模型池中包括K个模型;K大于或等于L;K为正整数。
可选地,所述第一信息包括以下至少一项:
模型数量信息;
模型类别信息;
模型标识ID信息;
模型的优先级信息;
模型属性信息;
模型精度信息;
模型误差信息;
模型计算能力要求信息;
模型存储能力要求信息;
模型特征信息;
适配环境信息;
处理时延信息;
各模型输出结果的融合方式信息;
模型生命周期信息;
各类别模型输入的测量量信息;
各类别模型的输出信息。
可选地,所述各类别模型输入的测量量信息,包括以下至少一项:
信道状态信息;
接收信号信息;
历史状态信息;
传感器信息。
可选地,所述各类别模型的输出信息,包括以下至少一项:
直接目标参数;
中间量;
直接目标参数或中间量的软信息。
可选地,所述请求信息包括第二信息;其中,所述第二信息包括以下至少一项:
终端的移动性
信息;
终端的环境信息;
精度要求信息;
任务信息。
可选地,所述装置还包括:
第一发送模块,用于向所述网络侧设备发送第三信息;其中,所述第三信息用于指示所述终端的能力信息。
可选地,所述第三信息包括以下至少一项:
终端的传感器配置信息;
终端可获取的数据类型;
终端的硬件能力信息。
可选地,所述数据类型包括以下至少一项:
数据的格式信息;
数据预处理方式。
可选地,所述装置还包括:
第二发送模块,用于向网络侧设备发送反馈信息;其中,所述反馈信息用于指示所述终端是否支持所述模型配置信息对应的模型。
可选地,所述装置还包括:
第三发送模块,用于向网络侧设备发送第五信息;其中,所述第五信息包括以下至少一项:
终端的移动性信息;
终端的环境信息;
精度要求信息;
任务信息。
可选地,所述装置还包括:
第四发送模块,用于向网络侧设备发送第六信息;其中,所述第六信息用于指示所述终端的能力信息。
可选地,所述第六信息包括以下至少一项:
终端的传感器配置信息;
终端可获取的数据类型;
终端的硬件能力信息。
可选地,所述数据类型包括以下至少一项:
数据的格式信息;
数据预处理方式。
可选地,所述装置还包括:
第一接收模块,用于接收所述网络侧设备发送的第七信息;其中,所述第七信息包括所述M个模型的配置信息。
可选地,所述第七信息包括以下至少一项:
各模型的输入要求;
模型精度信息;
处理时延信息;
模型生命周期信息。
可选地,所述装置还包括:
第五发送模块,用于向所述网络侧设备发送测量量信息。
可选地,第一预测模块402用于:
基于第一融合方式和所述第一结果,确定所述目标任务的预测结果;
或者,基于第一融合方式、所述第一结果及所述第二结果,确定所述目标任务的预测结果。
可选地,所述第一融合方式,包括:
对各个模型的输出结果进行滤波,得到预测结果;
和/或,基于各个模型的权重和输出结果,确定预测结果。
可选地,所述装置还包括:
第二确定模块,用于基于目标信息,确定所述第一融合方式。
可选地,所述目标信息包括以下至少一项:
各个模型的输出结果的统计信息;
多个模型的输出结果的统计信息;
各个模型的模型误差信息;
终端的移动性信息;
终端的环境信息;
精度要求信息;
任务信息;
各类别模型输入的测量量信息;
模型的优先级信息;
当前终端的参考信号的测量信息;
参考终端的模型配置信息;
参考终端的参考信号的测量信息。
可选地,所述装置还包括:
第一决策模块,用于基于所述目标任务的预测结果,进行所述目标任务关联的决策。
可选地,所述第一结果包括:
所述L个模型分别输出的L个输出结果;或所述L个输出结果的融合结果。
可选地,所述装置还包括:
第二接收模块,用于接收所述网络侧设备发送的第十一信息;其中,所述第十一信息用于指示基于所述第一结果和所述第二结果的预测方式。
可选地,所述预测方式包括以下任一项:
网络侧设备基于所述第一结果和所述第二结果,确定所述目标任务的预测结果;
终端基于所述第一结果和所述第二结果,确定所述目标任务的预测结果。
图5是本申请实施例提供的通信网络预测装置的结构示意图之二,如图5所示,该通信网络预测装置500,应用于网络侧设备,包括:
第二执行模块501,用于使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果;其中,M为正整数;
第二预测模块502,用于执行以下任一项操作:
所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果;
所述网络侧设备向终端发送所述第二结果;
所述网络侧设备接收终端发送的第一结果;所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第一结 果为所述终端使用L个模型分别执行所述目标任务后得到的;L为正整数。
本申请实施例提供的通信网络预测装置中,通过在通信网络中使用多个模型分别执行同一任务,在得到各个模型对应的结果之后,融合多个模型对应的结果得到任务的预测结果,进而进行决策,实现综合考虑多种模型/算法的结果做出决策,能够有效提升决策精度,降低失败概率,还可以降低模型切换的频率,实现对于不同模型的兼容并存和部署。
可选地,所述装置还包括:
第六发送模块,用于向所述终端发送第一信息;其中,所述第一信息包括所述L个模型的配置信息;所述L个模型的配置信息用于所述终端确定所述L个模型;
或者,处理模块,用于所述网络侧设备接收终端发送的请求信息,所述请求信息用于请求所述网络侧设备配置所述L个模型;所述网络侧设备基于所述请求信息和/或第三信息配置所述L个模型;所述网络侧设备向所述终端发送第一信息;其中,所述第一信息包括所述L个模型的配置信息;所述L个模型的配置信息用于所述终端确定所述L个模型。
可选地,所述第一信息包括以下至少一项:
模型数量信息;
模型类别信息;
模型标识ID信息;
模型的优先级信息;
模型属性信息;
模型精度信息;
模型误差信息;
模型计算能力要求信息;
模型存储能力要求信息;
模型特征信息;
适配环境信息;
处理时延信息;
各模型输出结果的融合方式信息;
模型生命周期信息;
各类别模型输入的测量量信息;
各类别模型的输出信息。
可选地,所述各类别模型输入的测量量信息,包括以下至少一项:
信道状态信息;
接收信号信息;
历史状态信息;
传感器信息。
可选地,所述各类别模型的输出信息,包括以下至少一项:
直接目标参数;
中间量;
直接目标参数的软信息。
可选地,所述请求信息包括第二信息;其中,所述第二信息包括以下至少一项:
终端的移动性信息;
终端的环境信息;
精度要求信息;
任务信息。
可选地,所述装置还包括:
第三接收模块,用于接收所述终端发送的第三信息;其中,所述第三信息用于指示所述终端的能力信息。
可选地,所述第三信息包括以下至少一项:
终端的传感器配置信息;
终端可获取的数据类型;
终端的硬件能力信息。
可选地,所述数据类型包括以下至少一项:
数据的格式信息;
数据预处理方式。
可选地,所述装置还包括:
第四接收模块,用于接收所述终端发送的反馈信息;其中,所述反馈信息用于指示所述终端是否支持所述模型配置信息对应的模型。
可选地,所述装置还包括:
第二确定模块,用于确定所述M个模型。
可选地,第二确定模块,用于:
基于自主确定、协议预定义或预配置中至少一种方式,配置所述M个模型;
或者,
基于目标信息,选择模型池中所述M个模型;其中,所述模型池中包括P个模型;P大于或等于M;P为正整数。
可选地,所述装置还包括:
第五接收模块,用于接收终端发送的第五信息;其中,所述第五信息包括以下至少一项:
终端的移动性信息;
终端的环境信息;
精度要求信息;
任务信息。
可选地,所述装置还包括:
第六接收模块,用于接收所述终端发送的第六信息;其中,所述第六信息用于指示所述终端的能力信息。
可选地,所述第六信息包括以下至少一项:
终端的传感器配置信息;
终端可获取的数据类型;
终端的硬件能力信息。
可选地,所述数据类型包括以下至少一项:
数据的格式信息;
数据预处理方式。
可选地,所述装置还包括:
第七发送模块,用于向所述终端发送第七信息;其中,所述第七信息包括所述M个模型的配置信息。
可选地,所述第七信息包括以下至少一项:
各模型的输入要求;
模型精度信息;
处理时延信息;
模型生命周期信息。
可选地,所述装置还包括:
第七接收模块,用于接收所述终端发送的测量量信息。
可选地,所述第二执行模块用于基于所述终端发送的测量量信息,使用所述M个模型分别执行目标任务,获得所述M个模型输出的第二结果。
可选地,所述第二预测模块用于:
基于第二融合方式和所述第二结果,确定所述目标任务的预测结果;
或者,基于第二融合方式、所述第一结果及所述第二结果,确定所述目标任务的预测结果。
可选地,所述第二融合方式,包括:
对各个模型的输出结果进行滤波,得到预测结果;
和/或,基于各个模型的权重和输出结果,确定预测结果。
可选地,所述装置还包括:
第三确定模块,用于基于目标信息,确定所述第二融合方式。
可选地,所述目标信息包括以下至少一项:
各个模型的输出结果的统计信息;
多个模型的输出结果的统计信息;
各个模型的模型误差信息;
终端的移动性信息;
终端的环境信息;
精度要求信息;
任务信息;
各类别模型输入的测量量信息;
模型的优先级信息;
参考信号的测量信息。
可选地,所述装置还包括:
第二决策模块,用于所述网络侧设备基于所述目标任务的预测结果,进行所述目标任务关联的决策。
可选地,所述第二结果包括:
所述M个模型分别输出的M个输出结果;或所述M个输出结果的融合结果。
可选地,所述装置还包括:
第八发送模块,用于向所述终端发送第十一信息;其中,所述第十一信息用于指示基于所述第一结果和所述第二结果的预测方式。
可选地,所述预测方式包括以下任一项:
网络侧设备基于所述第一结果和所述第二结果,确定所述目标任务的预测结果;
终端基于所述第一结果和所述第二结果,确定所述目标任务的预测结果。
本申请实施例中的通信网络预测装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的通信网络预测装置能够实现图1至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图6是本申请实施例提供的通信设备的结构示意图,如图6所示,该通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述通信网络预测方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述通信网络预测方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口;其中,所述处理器用于:
使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数;执行以下任一项操作:
所述终端基于所述第一结果,确定所述目标任务的预测结果;
所述终端向网络侧设备发送所述第一结果;
所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
图7是本申请实施例提供的终端的结构示意图,如图7所示,该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器710逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图7中示出的 终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器 (Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,处理器710,用于使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数;执行以下任一项操作:
所述终端基于所述第一结果,确定所述目标任务的预测结果;
所述终端向网络侧设备发送所述第一结果;
所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
本申请实施例提供的终端,通过在通信网络中使用多个模型分别执行同一任务,在得到各个模型对应的结果之后,融合多个模型对应的结果得到任务的预测结果,进而进行决策,实现综合考虑多种模型/算法的结果做出决策,能够有效提升决策精度,降低失败概率,还可以降低模型切换的频率,实现对于不同模型的兼容并存和部署。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口;其中,所述处理器用于:
使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果;其中,M为正整数;执行以下任一项操作:
所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果;
所述网络侧设备向终端发送所述第二结果;
所述网络侧设备接收终端发送的第一结果;所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第一结果为所述终端使用L个模型分别执行所述目标任务后得到的;L为正整数。
该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
图8是本申请实施例提供的网络侧设备的结构示意图之一,如图8所示,该网络侧设备800包括:天线801、射频装置802、基带装置803、处理器804和存储器805。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收信息,将接收的信息发送给基带装置803进行处理。在下行方向上,基带装置803对要发送的信息进行处理,并发送给射频装置802,射频装置802对收到的信息进行处理后经过天线801发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置803中实现,该基带装置803包括基带处理器。
基带装置803例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器805连接,以调用存储器805中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口806,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备800还包括:存储在存储器805上并可在处理器804上运行的指令或程序,处理器804调用存储器805中的指令或程序执行网络侧设备侧的通信网络预测方法的步骤,并达到相同的技术效果,为避免重复,故不在此赘述。
图9是本申请实施例提供的网络侧设备的结构示意图之二,如图9所示,该网络侧设备900包括:处理器901、网络接口902和存储器903。其中,网络接口902例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备900还包括:存储在存储器903上并可在处理器901上运行的指令或程序,处理器901调用存储器903中的指令或程序执行网络侧设备侧的通信网络预测方法的步骤,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供了一种通信网络预测***,包括:终端及网络侧设备,所述终端可用于执行如上所述通信网络预测方法的步骤,所述网络侧设备可用于执行如上所述的通信网络预测方法的步骤。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是以易失性的,也可以是非易失性的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述通信网络预测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述通信网络预测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述通信网络预测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是 还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (49)

  1. 一种通信网络预测方法,包括:
    终端使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数;
    所述终端执行以下任一项操作:
    所述终端基于所述第一结果,确定所述目标任务的预测结果;
    所述终端向网络侧设备发送所述第一结果;
    所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端确定所述L个模型。
  3. 根据权利要求2所述的方法,其中,所述终端确定所述L个模型,包括以下任一项:
    所述终端接收网络侧设备发送的第一信息;其中,所述第一信息包括所述L个模型的配置信息;所述终端基于所述L个模型的配置信息确定所述L个模型;
    所述终端向网络侧设备发送请求信息,所述请求信息用于请求所述网络侧设备配置所述L个模型;所述终端接收所述网络侧设备发送的第一信息;其中,所述第一信息包括所述L个模型的配置信息;所述终端基于所述L个模型的配置信息确定所述L个模型;
    所述终端基于自主确定并告知网络侧设备、协议预定义或高层预配置中至少一种方式,配置所述L个模型;
    所述终端基于目标信息,选择模型池中所述L个模型;其中,所述模型池中包括K个模型;K大于或等于L;K为正整数。
  4. 根据权利要求3所述的方法,其中,所述第一信息包括以下至少一项:
    模型数量信息;
    模型类别信息;
    模型标识ID信息;
    模型的优先级信息;
    模型属性信息;
    模型精度信息;
    模型误差信息;
    模型计算能力要求信息;
    模型存储能力要求信息;
    模型特征信息;
    适配环境信息;
    处理时延信息;
    各模型输出结果的融合方式信息;
    模型生命周期信息;
    各类别模型输入的测量量信息;
    各类别模型的输出信息。
  5. 根据权利要求4所述的方法,其中,所述各类别模型输入的测量量信息,包括以下至少一项:
    信道状态信息;
    接收信号信息;
    历史状态信息;
    传感器信息。
  6. 根据权利要求4所述的方法,其中,所述各类别模型的输出信息,包括以下至少一项:
    直接目标参数;
    中间量;
    直接目标参数或中间量的软信息。
  7. 根据权利要求3所述的方法,其中,所述请求信息包括第二信息;其中,所述第二信息包括以下至少一项:
    终端的移动性
    信息;
    终端的环境信息;
    精度要求信息;
    任务信息。
  8. 根据权利要求3所述的方法,其中,所述方法还包括:
    所述终端向所述网络侧设备发送第三信息;其中,所述第三信息用于指示所述终端的能力信息。
  9. 根据权利要求8所述的方法,其中,所述第三信息包括以下至少一项:
    终端的传感器配置信息;
    终端可获取的数据类型;
    终端的硬件能力信息。
  10. 根据权利要求9所述的方法,其中,所述数据类型包括以下至少一项:
    数据的格式信息;
    数据预处理方式。
  11. 根据权利要求3所述的方法,其中,所述终端接收网络侧设备发送的第一信息之后,所述方法还包括:
    所述终端向网络侧设备发送反馈信息;其中,所述反馈信息用于指示所述终端是否支持所述模型配置信息对应的模型。
  12. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端向网络侧设备发送第五信息;其中,所述第五信息包括以下至少一项:
    终端的移动性信息;
    终端的环境信息;
    精度要求信息;
    任务信息。
  13. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端向网络侧设备发送第六信息;其中,所述第六信息用于指示所述终端的能力信息。
  14. 根据权利要求13所述的方法,其中,所述第六信息包括以下至少一项:
    终端的传感器配置信息;
    终端可获取的数据类型;
    终端的硬件能力信息。
  15. 根据权利要求14所述的方法,其中,所述数据类型包括以下至少一项:
    数据的格式信息;
    数据预处理方式。
  16. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端接收所述网络侧设备发送的第七信息;其中,所述第七信息包括所述M个模型的配置信息。
  17. 根据权利要求16所述的方法,其中,所述第七信息包括以下至少一项:
    各模型的输入要求;
    模型精度信息;
    处理时延信息;
    模型生命周期信息。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:
    所述终端向所述网络侧设备发送测量量信息。
  19. 根据权利要求1所述的方法,其中,所述终端基于所述第一结果,确定所述目标任务的预测结果,包括:所述终端基于第一融合方式和所述第 一结果,确定所述目标任务的预测结果;
    或者,所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果,包括:所述终端基于第一融合方式、所述第一结果及所述第二结果,确定所述目标任务的预测结果。
  20. 根据权利要求19所述的方法,其中,所述第一融合方式,包括:
    对各个模型的输出结果进行滤波,得到预测结果;
    和/或,基于各个模型的权重和输出结果,确定预测结果。
  21. 根据权利要求19所述的方法,其中,所述方法还包括:
    所述终端基于目标信息,确定所述第一融合方式。
  22. 根据权利要求3或21所述的方法,其中,所述目标信息包括以下至少一项:
    各个模型的输出结果的统计信息;
    多个模型的输出结果的统计信息;
    各个模型的模型误差信息;
    终端的移动性信息;
    终端的环境信息;
    精度要求信息;
    任务信息;
    各类别模型输入的测量量信息;
    模型的优先级信息;
    当前终端的参考信号的测量信息;
    参考终端的模型配置信息;
    参考终端的参考信号的测量信息。
  23. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端基于所述目标任务的预测结果,进行所述目标任务关联的决策。
  24. 根据权利要求1所述的方法,其中,所述第一结果包括:
    所述L个模型分别输出的L个输出结果;或所述L个输出结果的融合结 果。
  25. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端接收所述网络侧设备发送的第十一信息;其中,所述第十一信息用于指示基于所述第一结果和所述第二结果的预测方式。
  26. 根据权利要求25所述的方法,其中,所述预测方式包括以下任一项:
    网络侧设备基于所述第一结果和所述第二结果,确定所述目标任务的预测结果;
    终端基于所述第一结果和所述第二结果,确定所述目标任务的预测结果。
  27. 一种通信网络预测方法,包括:
    网络侧设备使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果;其中,M为正整数;
    所述网络侧设备执行以下任一项操作:
    所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果;
    所述网络侧设备向终端发送所述第二结果;
    所述网络侧设备接收终端发送的第一结果;所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第一结果为所述终端使用L个模型分别执行所述目标任务后得到的;L为正整数。
  28. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述终端发送第一信息;其中,所述第一信息包括所述L个模型的配置信息;所述L个模型的配置信息用于所述终端确定所述L个模型;
    或者,
    所述网络侧设备接收终端发送的请求信息,所述请求信息用于请求所述网络侧设备配置所述L个模型;所述网络侧设备基于所述请求信息和/或第三信息配置所述L个模型;所述网络侧设备向所述终端发送第一信息;其中,所述第一信息包括所述L个模型的配置信息;所述L个模型的配置信息用于所述终端确定所述L个模型。
  29. 根据权利要求28所述的方法,其中,所述第一信息包括以下至少一项:
    模型数量信息;
    模型类别信息;
    模型标识ID信息;
    模型的优先级信息;
    模型属性信息;
    模型精度信息;
    模型误差信息;
    模型计算能力要求信息;
    模型存储能力要求信息;
    模型特征信息;
    适配环境信息;
    处理时延信息;
    各模型输出结果的融合方式信息;
    模型生命周期信息;
    各类别模型输入的测量量信息;
    各类别模型的输出信息。
  30. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述网络侧设备确定所述M个模型。
  31. 根据权利要求30所述的方法,其中,所述网络侧设备确定所述M个模型,包括:
    所述网络侧设备基于自主确定、协议预定义或预配置中至少一种方式,配置所述M个模型;
    或者,
    所述网络侧设备基于目标信息,选择模型池中所述M个模型;其中,所述模型池中包括P个模型;P大于或等于M;P为正整数。
  32. 根据权利要求30所述的方法,其中,所述方法还包括:
    所述网络侧设备接收终端发送的第五信息;其中,所述第五信息包括以下至少一项:
    终端的移动性信息;
    终端的环境信息;
    精度要求信息;
    任务信息。
  33. 根据权利要求30所述的方法,其中,所述方法还包括:
    所述网络侧设备接收所述终端发送的第六信息;其中,所述第六信息用于指示所述终端的能力信息。
  34. 根据权利要求30所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述终端发送第七信息;其中,所述第七信息包括所述M个模型的配置信息。
  35. 根据权利要求34所述的方法,其中,所述方法还包括:
    所述网络侧设备接收所述终端发送的测量量信息。
  36. 根据权利要求35所述的方法,其中,所述网络侧设备使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果,包括:
    所述网络侧设备基于所述终端发送的测量量信息,使用所述M个模型分别执行目标任务,获得所述M个模型输出的第二结果。
  37. 根据权利要求27所述的方法,其中,所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果,包括:所述网络侧设备基于第二融合方式和所述第二结果,确定所述目标任务的预测结果;
    或者,所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果,包括:所述网络侧设备基于第二融合方式、所述第一结果及所述第二结果,确定所述目标任务的预测结果。
  38. 根据权利要求37所述的方法,其中,所述第二融合方式,包括:
    对各个模型的输出结果进行滤波,得到预测结果;
    和/或,基于各个模型的权重和输出结果,确定预测结果。
  39. 根据权利要求37所述的方法,其中,所述方法还包括:
    所述网络侧设备基于目标信息,确定所述第二融合方式。
  40. 根据权利要求31或39所述的方法,其中,所述目标信息包括以下至少一项:
    各个模型的输出结果的统计信息;
    多个模型的输出结果的统计信息;
    各个模型的模型误差信息;
    终端的移动性信息;
    终端的环境信息;
    精度要求信息;
    任务信息;
    各类别模型输入的测量量信息;
    模型的优先级信息;
    参考信号的测量信息。
  41. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述网络侧设备基于所述目标任务的预测结果,进行所述目标任务关联的决策。
  42. 根据权利要求27所述的方法,其中,所述第二结果包括:
    所述M个模型分别输出的M个输出结果;或所述M个输出结果的融合结果。
  43. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述终端发送第十一信息;其中,所述第十一信息用于指示基于所述第一结果和所述第二结果的预测方式。
  44. 根据权利要求43所述的方法,其中,所述预测方式包括以下任一项:
    网络侧设备基于所述第一结果和所述第二结果,确定所述目标任务的预测结果;
    终端基于所述第一结果和所述第二结果,确定所述目标任务的预测结果。
  45. 一种通信网络预测装置,包括:
    第一执行模块,用于使用L个模型分别执行目标任务,获得所述L个模型输出的第一结果;其中,L为正整数;
    第一预测模块,用于执行以下任一项操作:
    所述终端基于所述第一结果,确定所述目标任务的预测结果;
    所述终端向网络侧设备发送所述第一结果;
    所述终端接收网络侧设备发送的第二结果;所述终端基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第二结果为所述网络侧设备使用M个模型分别执行所述目标任务后得到的;M为正整数。
  46. 一种通信网络预测装置,包括:
    第二执行模块,用于使用M个模型分别执行目标任务,获得所述M个模型输出的第二结果;其中,M为正整数;
    第二预测模块,用于执行以下任一项操作:
    所述网络侧设备基于所述第二结果,确定所述目标任务的预测结果;
    所述网络侧设备向终端发送所述第二结果;
    所述网络侧设备接收终端发送的第一结果;所述网络侧设备基于所述第一结果及所述第二结果,确定所述目标任务的预测结果;其中,所述第一结果为所述终端使用L个模型分别执行所述目标任务后得到的;L为正整数。
  47. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至26任一项所述的通信网络预测方法的步骤。
  48. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求27至44任一项所述的通信网络预测方法的步骤。
  49. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-26任一项所述的通信网络预测方 法,或者实现如权利要求27至44任一项所述的通信网络预测方法的步骤。
PCT/CN2023/071486 2022-01-14 2023-01-10 通信网络预测方法、终端及网络侧设备 WO2023134653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210044930.1A CN116489035A (zh) 2022-01-14 2022-01-14 通信网络预测方法、终端及网络侧设备
CN202210044930.1 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023134653A1 true WO2023134653A1 (zh) 2023-07-20

Family

ID=87212545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071486 WO2023134653A1 (zh) 2022-01-14 2023-01-10 通信网络预测方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116489035A (zh)
WO (1) WO2023134653A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597104A (zh) * 2018-10-22 2019-04-09 中国科学院光电研究院 一种采用多模型多***对目标跟踪定位的方法
US20200021954A1 (en) * 2019-08-30 2020-01-16 Lg Electronics Inc. Intelligent device controlling method, mobile terminal and intelligent computing device
CN111989948A (zh) * 2020-07-17 2020-11-24 北京小米移动软件有限公司 定位测量数据上报方法、装置、终端及存储介质
CN112218330A (zh) * 2020-11-19 2021-01-12 中国联合网络通信集团有限公司 定位方法及通信装置
CN113839797A (zh) * 2020-06-23 2021-12-24 华为技术有限公司 数据处理方法和装置
WO2022005353A1 (en) * 2020-07-03 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Ue, network node and methods for handling mobility information in a communications network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597104A (zh) * 2018-10-22 2019-04-09 中国科学院光电研究院 一种采用多模型多***对目标跟踪定位的方法
US20200021954A1 (en) * 2019-08-30 2020-01-16 Lg Electronics Inc. Intelligent device controlling method, mobile terminal and intelligent computing device
CN113839797A (zh) * 2020-06-23 2021-12-24 华为技术有限公司 数据处理方法和装置
WO2022005353A1 (en) * 2020-07-03 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Ue, network node and methods for handling mobility information in a communications network
CN111989948A (zh) * 2020-07-17 2020-11-24 北京小米移动软件有限公司 定位测量数据上报方法、装置、终端及存储介质
CN112218330A (zh) * 2020-11-19 2021-01-12 中国联合网络通信集团有限公司 定位方法及通信装置

Also Published As

Publication number Publication date
CN116489035A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US10715951B1 (en) Positioning support for wireless devices such as NR-IoT devices and useful for geofencing
WO2023143572A1 (zh) 基于人工智能ai模型的定位方法及通信设备
WO2023093894A1 (zh) 感知业务实现方法、装置、网络侧设备及终端
WO2023066288A1 (zh) 模型请求方法、模型请求处理方法及相关设备
WO2023134653A1 (zh) 通信网络预测方法、终端及网络侧设备
WO2023179617A1 (zh) 定位方法、装置、终端及网络侧设备
WO2024007989A1 (zh) 信息上报方法、装置、终端及接入网设备
WO2024140445A1 (zh) 模型信息传输方法、装置及设备
WO2023236979A1 (zh) 定位模型的选择方法、终端及网络侧设备
WO2024067281A1 (zh) Ai模型的处理方法、装置及通信设备
WO2024067437A1 (zh) 模型去激活方法、信息发送方法、装置及设备
WO2023186099A1 (zh) 信息反馈方法、装置及设备
WO2024067438A1 (zh) Ai模型推理方法、设备及可读存储介质
WO2024027580A1 (zh) 事件信息传输方法、lmf、接入网设备及终端
WO2024032695A1 (zh) Csi预测处理方法、装置、通信设备及可读存储介质
WO2023151657A1 (zh) 信息处理方法及通信设备
WO2024125525A1 (zh) Ai算力上报方法、终端及网络侧设备
WO2023185865A1 (zh) 模型有效性反馈方法、装置、终端及网络侧设备
WO2023088387A1 (zh) 信道预测方法、装置、ue及***
WO2024008111A1 (zh) 数据采集方法及装置
WO2023213242A1 (zh) Ue策略信息的配置方法、装置、第一网络功能及终端
WO2023155839A1 (zh) Ai模型的在线学习方法、装置、通信设备及可读存储介质
WO2023186014A1 (zh) 信号发送方法、信号接收方法及通信设备
WO2023098661A1 (zh) 定位方法及通信设备
WO2024022265A1 (zh) 测量结果上报方法、装置、终端、网络侧设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739995

Country of ref document: EP

Kind code of ref document: A1