WO2023134333A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023134333A1
WO2023134333A1 PCT/CN2022/136964 CN2022136964W WO2023134333A1 WO 2023134333 A1 WO2023134333 A1 WO 2023134333A1 CN 2022136964 W CN2022136964 W CN 2022136964W WO 2023134333 A1 WO2023134333 A1 WO 2023134333A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
coreset
pdcch
terminal
type
Prior art date
Application number
PCT/CN2022/136964
Other languages
English (en)
French (fr)
Inventor
何泓利
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023134333A1 publication Critical patent/WO2023134333A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • the transceiver device In mmWave communication, in the initial stage of establishing a connection, the transceiver device needs to determine the appropriate beam direction and the corresponding spatial filtering parameters through the beam training process, and determine the beam pair link (beam pair link) between the transceiver devices. BPL).
  • the beam training process is completed through the channel state information (channel state information, CSI) reporting process.
  • CSI channel state information
  • a network device that is, a sending device
  • uses different beams to send a channel state information reference signal (CSI-RS) to a terminal device (that is, a receiving device)
  • CSI-RS channel state information reference signal
  • the terminal device can use different beams to receive CSI-RS signals, so that it can obtain the receiving beam that matches the different sending beams of the network device, that is, determine one or more BPLs, and then report the CSI-RS measurement results to the network device, where
  • the measurement results include the identification of the reference signal and the reference signal received power or signal-to-noise ratio corresponding to the reference signal.
  • the network device can determine one or more better transmission beams according to the CSI-RS measurement results to complete the beam training process.
  • the network device and the terminal device can transmit and receive downlink control information (DCI) carried by a physical downlink control channel (physical downlink control channel, PDCCH) through the optimal BPL. Since the terminal device is not sure whether the network device will issue DCI and where to issue DCI, the network device will configure the control resource set (CORESET) and search space (search space, SS) for the terminal device in advance. Some candidate time-frequency resource positions are determined, so that the terminal equipment performs blind detection of a physical downlink control channel (physical downlink control channel, PDCCH) (or DCI) at these positions.
  • DCI downlink control information
  • the configuration information of the CORESET includes transmission configuration indicator (transmission configuration indicator, TCI) status information.
  • TCI state information may be used to indicate a source reference signal (reference signal, RS) having a type D quasi co-location (quasi co-location, QCL) relationship with a demodulation reference signal (demodulation reference signal, DMRS) of the PDCCH.
  • RS reference signal
  • QCL quasi co-location
  • DMRS demodulation reference signal
  • the terminal device can determine the receiving beam used for blind detection of the PDCCH according to the BPL corresponding to the type D QCL source reference signal indicated by the TCI state information.
  • the terminal device can The same receiving beam is used to perform blind detection of the PDCCH at the same time-frequency position.
  • the existing process of reconfiguring TCI state information generally includes: the terminal device reports CSI, and the network device replies with an acknowledgment (acknowledgment, ACK) message after receiving the CSI.
  • the device sends a signaling to activate new TCI state information to update the BPL used for PDCCH transmission and reception, and the terminal device demodulates and decodes the signaling and replies with an ACK message.
  • this process makes the time delay for updating the source reference signal having a QCL relationship with the demodulation reference signal associated with the PDCCH (or DCI) too long.
  • the communication quality of the beam link degrades relatively quickly. If the configuration of the new TCI status information or the new BPL is not completed before the beam link is completely unavailable, the communication link may be interrupted. .
  • the present application provides a communication method and device, which can reduce the delay of updating the TCI state information in CORESET, that is, reduce the delay of updating the source reference signal that has a QCL relationship with the demodulation reference signal of the PDCCH, or reduce the delay of updating the terminal in
  • the time delay of the receiving beam used when monitoring the PDCCH on the CORESET/SS reduces the probability of communication link interruption.
  • the present application provides a communication method, which can be executed by a terminal, or by a component of the terminal, such as a processor, a chip, or a chip system of the terminal, and the method includes: reporting channel state information to the network device , the channel state information includes the identification of at least one reference signal and the reference signal received power RSRP corresponding to each reference signal in the at least one reference signal and/or the signal-to-interference-noise ratio SINR corresponding to each reference signal; when the channel state information satisfies the preset condition, start to monitor the physical downlink control channel PDCCH on the first search space SS; wherein, the demodulation reference signal and the first reference signal of the PDCCH on the first SS satisfy the type D quasi-co-location QCL relationship, the first A reference signal is a reference signal with the highest RSRP or a reference signal with the highest SINR in the channel state information.
  • the network device can report to the terminal on the first SS
  • the terminal starts to monitor the PDCCH on the first SS, that is, the first SS starts to take effect or is activated.
  • the terminal and the network device can directly use the new beam on the first SS to send and receive the PDCCH.
  • the demodulation reference signal of the PDCCH in the first SS and the first reference signal satisfy the type D QCL relationship.
  • the type D source reference signal indicated in the TCI state information of the CORESET associated with the first SS is the first reference signal , or a reference signal having a type D QCL relationship with the first reference signal.
  • the first reference signal is the reference signal with the highest RSRP or the highest SINR in the channel state information, that is, the BPL corresponding to the first reference signal is the best BPL. Therefore, the network device can use the transmit beam corresponding to the best BPL to perform For the transmission of the PDCCH, the terminal can use the receiving beam corresponding to the best BPL to monitor the PDCCH.
  • the temporary first SS can be directly activated between the terminal and the network device, and both can The optimal BPL performs the sending and receiving of the PDCCH on the temporary first SS, which can realize faster and more efficient beam switching. That is, after the first SS is activated, the TCI state information of the CORESET associated with the first SS is automatically configured, that is, the type D QCL source reference signal is the first reference signal.
  • CORESET monitors the delay of the receiving beam used by the PDCCH, or updates the delay of the source reference signal that has a QCL relationship with the demodulation reference signal of the PDCCH (or DCI), to reduce the probability of link interruption.
  • the method before reporting the channel state information to the network device, the method further includes: receiving first configuration information from the network device; the first configuration information includes configuration information of the first control resource set CORESET and the first SS Configuration information, the configuration information of the first CORESET and the configuration information of the first SS include the time-frequency position information of the candidate PDCCH, and the first SS is associated with the first CORESET.
  • the configuration information of the first CORESET can be applied to the first SS; the first CORESET is the first type of CORESET, wherein the SS associated with the first type of CORESET is the SS that the terminal does not perform PDCCH monitoring by default.
  • the terminal may not be in the Monitoring of the PDCCH is performed on the first SS.
  • the type D QCL relationship between the demodulation reference signal of the PDCCH on the first SS and the first reference signal can also be understood as the satisfaction of type D between the demodulation reference signal of the PDCCH on the first CORESET and the first reference signal QCL relationship.
  • the method before reporting the channel state information to the network device, the method further includes: receiving second configuration information from the network device; the second configuration information includes configuration information of at least one second type of CORESET and at least one first Two SS configuration information, at least one second SS is associated with at least one second-type CORESET, and on the SS associated with the second-type CORESET, the terminal needs to perform PDCCH monitoring; in the configuration information of each second-type CORESET
  • the transmission configuration indicates TCI state information, and the TCI state information is used to indicate the source reference signal, and the type D QCL relationship is satisfied between the source reference signal and the demodulation reference signal of the PDCCH on the second type of CORESET.
  • the PDCCH on the second type of CORESET may be understood as the PDCCH on at least one second SS associated with the second type of CORESET.
  • the preset condition includes: the first reference signal is different from the second reference signal; or, the relationship between the first reference signal and the second reference signal does not satisfy the type D QCL; wherein, the second reference signal A source reference signal indicated by TCI status information included in the configuration information of a second-type CORESET among at least one second-type CORESET.
  • the channel state information includes the identity of the third reference signal and the RSRP and/or SINR corresponding to the third reference signal;
  • the preset condition includes: the RSRP value or the SINR value of the third reference signal is lower than the preset Threshold value, the third reference signal is the same as the second reference signal; or, the RSRP value or SINR value of the third reference signal is lower than the preset threshold value, and the type D QCL is satisfied between the third reference signal and the second reference signal relationship;
  • the second reference signal is a source reference signal indicated by the TCI status information included in the configuration information of a second type of CORESET in at least one second type of CORESET.
  • the preset condition when the preset condition is satisfied, it can be determined according to the channel state information that the quality of the existing BPL used to transmit and receive PDCCH is lower than the preset threshold value, so the PDCCH needs to be transmitted and received on the new BPL.
  • the first SS is the first user-specific search space USS
  • at least one second SS includes at least one second USS
  • the method further includes: when the first USS is required in the target time unit, and at least When PDCCH monitoring is performed on some or all of the second USSs in one second USS, PDCCH monitoring is performed on the first USS preferentially according to the monitoring capability of the terminal.
  • the BPL corresponding to the first USS is the best BPL indicated in the channel state information, so based on this design, the terminal monitors the PDCCH first on the first USS, which can make monitoring the PDCCH more efficient.
  • the first SS is the first USS
  • at least one second SS includes at least one second USS
  • the method further includes: when the first USS is required on the target time unit, and at least one second USS
  • PDCCH monitoring is performed on some or all of the second USSs
  • PDCCH monitoring is performed on the corresponding USSs according to the monitoring capability of the terminal and the priority of the USS
  • the priority of the first USS is lower than that of the third USS and higher than the priority of the fourth USS
  • the third USS is the second USS with the highest priority among the at least one second USS
  • the fourth USS is the second USS with the second highest priority among the at least one second USS
  • the priority of the first USS is lower than the priority of the third USS and higher than the priority of the fourth USS
  • the third USS is the second USS with the highest priority on the target time unit
  • the fourth USS is the priority on the target time unit Second highest second USS.
  • the terminal preferentially monitors the PDCCH on the second USS with the highest priority.
  • the terminal preferentially monitors the PDCCH on the existing BPL, so that the terminal activates the The first SS, but the network device does not activate the first SS, and the network device and the terminal cannot transmit and receive PDCCH in the new BPL, so as to ensure the smooth flow of the existing BPL.
  • the communication quality of the existing BPL When it is not reduced to be completely unavailable, the existing BPL can still perform some basic communication operations. Therefore, this solution can ensure that the communication link is not interrupted.
  • the method further includes: after the first moment, stopping the PDCCH monitoring on the first SS; the first moment is the target duration after the second moment Moment, the second moment is: the moment when the channel state information is sent to the network device; or, the moment when the confirmation message is received from the network device, and the confirmation message is used to indicate that the network device has successfully received the channel state information; or, the first SS takes effect for the first time or, the moment when the PDCCH is first detected on the first SS.
  • the method further includes: after receiving the TCI status information included in the configuration information of the target CORESET reconfigured by the network device, stop monitoring the PDCCH on the first SS.
  • the target CORESET belongs to at least one second-type CORESET; or, after receiving the target indication information from the network device, stop monitoring the PDCCH on the first SS, and the target indication information is used to instruct the terminal to stop in the first
  • the monitoring of the PDCCH is carried out on the SS.
  • the present application provides a communication method, and the method may be executed by a network device, or may be executed by a component of the network device, such as a processor, a chip, or a chip system of the network device.
  • the method includes: receiving channel state information from a terminal, the channel state information including at least one reference signal identifier and the RSRP corresponding to each reference signal in the at least one reference signal and/or the SINR corresponding to each reference signal; when the channel state information satisfies the predetermined When the condition is set, it is determined that the terminal starts to monitor the PDCCH on the first SS; wherein, the type D QCL relationship is satisfied between the demodulation reference signal of the PDCCH on the first SS and the first reference signal, and the first reference signal is the first The reference signal with the highest RSRP or the reference signal with the highest SINR in the channel state information.
  • the method before receiving channel state information from the terminal, the method further includes: sending first configuration information to the terminal; the first configuration information includes configuration information of the first CORESET and configuration information of the first SS, and the first The configuration information of the CORESET and the configuration information of the first SS include the time-frequency position information of the candidate PDCCH, and the first SS is associated with the first CORESET. It can also be understood that the configuration information of the first CORESET can be applied to the first SS; the first CORESET is the first type of CORESET, wherein the SS associated with the first type of CORESET is the SS that the terminal does not perform PDCCH monitoring by default.
  • the terminal may not monitor the PDCCH in the first SS.
  • the type D QCL relationship between the demodulation reference signal of the PDCCH on the first SS and the first reference signal can also be understood as the satisfaction of type D between the demodulation reference signal of the PDCCH on the first CORESET and the first reference signal QCL relationship.
  • the method before receiving the channel state information from the terminal, the method further includes: sending second configuration information to the terminal; the second configuration information includes configuration information of at least one second type of CORESET and at least one second SS configuration information, at least one second SS is associated with at least one second-type CORESET, and the terminal needs to perform PDCCH monitoring on the SS associated with the second-type CORESET; the configuration information of each second-type CORESET includes transmission
  • the configuration indicates TCI state information, and the TCI state information is used to indicate the source reference signal, and the type D QCL relationship is satisfied between the source reference signal and the demodulation reference signal of the PDCCH on the second type of CORESET.
  • the PDCCH on the second type of CORESET may be understood as the PDCCH on at least one second SS associated with the second type of CORESET.
  • the preset condition includes: the first reference signal is different from the second reference signal; or, the relationship between the first reference signal and the second reference signal does not satisfy the type D QCL; wherein, the second reference signal A source reference signal indicated by TCI status information included in the configuration information of a second-type CORESET among at least one second-type CORESET.
  • the channel state information includes the identity of the third reference signal and the RSRP and/or SINR corresponding to the third reference signal;
  • the preset condition includes: the RSRP value or the SINR value of the third reference signal is lower than the preset Threshold value, the third reference signal is the same as the second reference signal; or, the RSRP value or SINR value of the third reference signal is lower than the preset threshold value, and the type D QCL is satisfied between the third reference signal and the second reference signal relationship;
  • the second reference signal is a source reference signal indicated by the TCI status information included in the configuration information of a second type of CORESET in at least one second type of CORESET.
  • the method further includes: after the first moment, determining that the terminal stops monitoring the PDCCH on the first SS;
  • the moment of the target duration after the second moment, the second moment is: the moment when the channel state information is received from the terminal; or, the moment when a confirmation message is sent to the terminal, and the confirmation message is used to indicate that the network device has successfully received the channel state information; or, the second moment
  • the method further includes: after sending the TCI status information included in the configuration information of the reconfigured target CORESET to the terminal, determining that the terminal stops at PDCCH monitoring is performed on the first SS, and the target CORESET belongs to at least one second-type CORESET; or, after sending target indication information to the terminal, it is determined that the terminal stops monitoring PDCCH on the first SS, and the target indication information is used to indicate The terminal stops monitoring the PDCCH on the first SS.
  • the present application provides a communication device, which may be the terminal in the first aspect above, or a device including the above terminal, or a device included in the above terminal, such as a chip.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means can be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a communication module (or called a communication unit, a transceiver unit, a transceiver module) and a processing module (or called a processing unit); the communication module is used to report the channel state information to the network device , the channel state information includes the identification of at least one reference signal and the RSRP corresponding to each reference signal in the at least one reference signal and/or the SINR corresponding to each reference signal; the processing module is configured to, when the channel state information satisfies a preset condition, Start to monitor the PDCCH on the first SS; wherein, the type D QCL relationship is satisfied between the demodulation reference signal of the PDCCH on the first SS and the first reference signal, and the first reference signal is the reference with the highest RSRP in the channel state information signal or the reference signal with the highest SINR.
  • a communication module or called a communication unit, a transceiver unit, a transceiver module
  • a processing module or called a processing unit
  • the communication module is further configured to receive first configuration information from the network device; the first configuration information includes configuration information of the first CORESET and configuration information of the first SS, configuration information of the first CORESET and configuration information of the first SS
  • the configuration information of an SS includes the time-frequency position information of the candidate PDCCH, and the first SS is associated with the first CORESET. It can also be understood that the configuration information of the first CORESET can be applied to the first SS; the first CORESET is the first type of CORESET , wherein the SS associated with the first type of CORESET is the SS that the communication device does not perform PDCCH monitoring by default.
  • the terminal may not perform PDCCH monitoring on the first SS.
  • the type D QCL relationship between the demodulation reference signal of the PDCCH on the first SS and the first reference signal can also be understood as the satisfaction of type D between the demodulation reference signal of the PDCCH on the first CORESET and the first reference signal QCL relationship.
  • the communication module is further configured to receive second configuration information from the network device;
  • the second configuration information includes configuration information of at least one second type of CORESET and configuration information of at least one second SS, at least one The second SS is associated with at least one second-type CORESET, and on the SS associated with the second-type CORESET, the communication device needs to perform PDCCH monitoring;
  • the configuration information of each second-type CORESET includes TCI status information, TCI status information It is used to indicate the source reference signal, and the type D QCL relationship is satisfied between the source reference signal and the demodulation reference signal of the PDCCH on the second type of CORESET.
  • the PDCCH on the second type of CORESET may be understood as the PDCCH on at least one second SS associated with the second type of CORESET.
  • the preset condition includes: the first reference signal is different from the second reference signal; or, the relationship between the first reference signal and the second reference signal does not satisfy the type D QCL; wherein, the second reference signal A source reference signal indicated by TCI status information included in the configuration information of a second-type CORESET among at least one second-type CORESET.
  • the channel state information includes the identity of the third reference signal and the RSRP and/or SINR corresponding to the third reference signal;
  • the preset condition includes: the RSRP value or the SINR value of the third reference signal is lower than the preset Threshold value, the third reference signal is the same as the second reference signal; or, the RSRP value or SINR value of the third reference signal is lower than the preset threshold value, and the type D QCL is satisfied between the third reference signal and the second reference signal relationship;
  • the second reference signal is a source reference signal indicated by the TCI status information included in the configuration information of a second type of CORESET in at least one second type of CORESET.
  • the first SS is the first user-specific search space USS, and at least one second SS includes at least one second USS; the processing module is also used to, when the first USS is required on the target time unit, And when the PDCCH monitoring is performed on some or all of the at least one second USS, the PDCCH monitoring is performed on the first USS preferentially according to the monitoring capability of the communication device.
  • the first SS is the first USS, and at least one second SS includes at least one second USS; the processing module is also used for when the first USS is required on the target time unit, and at least one second USS
  • PDCCH monitoring is performed on some or all of the second USSs in the two USSs
  • PDCCH monitoring is performed on the corresponding USSs according to the monitoring capability of the communication device and the priority of the USS
  • the priority of the first USS is lower than that of the third USS
  • the priority of the USS is higher than the priority of the fourth USS
  • the third USS is the second USS with the highest priority among at least one second USS
  • the fourth USS is the second USS with the second highest priority among at least one second USS
  • the priority of the first USS is lower than the priority of the third USS and higher than the priority of the fourth USS
  • the third USS is the second USS with the highest priority on the target time unit
  • the fourth USS is the target time unit Go to the
  • the processing module is also configured to stop monitoring the PDCCH on the first SS after the first moment; the first moment is the moment of the target duration after the second moment, and the second moment is: to the network The moment when the device sends the channel state information; or, the moment when the confirmation message is received from the network device, and the confirmation message is used to indicate that the network device has successfully received the channel state information; or, the moment when the first SS takes effect for the first time; or, when the first SS The time when the PDCCH is detected for the first time.
  • the processing module is further configured to stop monitoring the PDCCH on the first SS after receiving the TCI status information included in the configuration information of the target CORESET reconfigured by the network device, and the target CORESET belongs to at least one The second type of CORESET; or, the processing module is further configured to stop monitoring the PDCCH on the first SS after receiving the target indication information from the network device, and the target indication information is used to instruct the communication device to stop on the first SS Perform PDCCH monitoring.
  • the present application provides a communication device, which may be the network device in the second aspect above, or a device including the above network device, or a device included in the above network device, such as a chip.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means can be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a communication module (or called a communication unit, a transceiver module, a transceiver unit) and a processing module (or called a processing unit); the communication module is configured to receive channel state information from a terminal, The channel state information includes the identification of at least one reference signal and the RSRP corresponding to each reference signal in the at least one reference signal and/or the SINR corresponding to each reference signal; the processing module is used to determine when the channel state information satisfies a preset condition
  • the terminal starts to monitor the PDCCH on the first SS; where the demodulation reference signal of the PDCCH on the first SS and the first reference signal satisfy the type D QCL relationship, and the first reference signal is the RSRP in the first channel state information The highest reference signal or the reference signal with the highest SINR.
  • the communication module is also used to send the first configuration information to the terminal;
  • the first configuration information includes the configuration information of the first CORESET and the configuration information of the first SS, the configuration information of the first CORESET and the first
  • the configuration information of the SS includes the time-frequency position information of the candidate PDCCH, and the first SS is associated with the first CORESET.
  • the configuration information of the first CORESET can be applied to the first SS; the first CORESET is the first type of CORESET, Wherein, the SS associated with the first type of CORESET is the SS that the terminal does not perform PDCCH monitoring by default.
  • the terminal may not perform PDCCH monitoring on the first SS.
  • the type D QCL relationship between the demodulation reference signal of the PDCCH on the first SS and the first reference signal can also be understood as the satisfaction of type D between the demodulation reference signal of the PDCCH on the first CORESET and the first reference signal QCL relationship.
  • the communication module is further configured to send second configuration information to the terminal;
  • the second configuration information includes at least one second type of CORESET configuration information and at least one second SS configuration information, and at least one first Two SSs are associated with at least one second-type CORESET.
  • the terminal needs to perform PDCCH monitoring;
  • the configuration information of each second-type CORESET includes transmission configuration indication TCI status information, TCI
  • the state information is used to indicate the source reference signal, and the type D QCL relationship is satisfied between the source reference signal and the demodulation reference signal of the PDCCH on the second type of CORESET.
  • the PDCCH on the second type of CORESET may be understood as the PDCCH on at least one second SS associated with the second type of CORESET.
  • the preset condition includes: the first reference signal is different from the second reference signal; or, the relationship between the first reference signal and the second reference signal does not satisfy the type D QCL; wherein, the second reference signal A source reference signal indicated by TCI status information included in the configuration information of a second-type CORESET among at least one second-type CORESET.
  • the channel state information includes the identity of the third reference signal and the RSRP and/or SINR corresponding to the third reference signal;
  • the preset condition includes: the RSRP value or the SINR value of the third reference signal is lower than the preset Threshold value, the third reference signal is the same as the second reference signal; or, the RSRP value or SINR value of the third reference signal is lower than the preset threshold value, and the type D QCL is satisfied between the third reference signal and the second reference signal relationship;
  • the second reference signal is a source reference signal indicated by the TCI status information included in the configuration information of a second type of CORESET in at least one second type of CORESET.
  • the processing module is also used to determine that the terminal stops monitoring the PDCCH on the first SS after the first moment; the first moment is the moment of the target duration after the second moment, and the second moment is: The moment when the channel state information is received from the terminal; or, the moment when an acknowledgment message is sent to the terminal, and the acknowledgment message is used to indicate that the communication device has successfully received the channel state information; or, the moment when the first SS takes effect for the first time; or, at the first SS The moment when the PDCCH is sent to the terminal for the first time.
  • the processing module is further configured to determine that the terminal stops monitoring the PDCCH on the first SS after sending the TCI status information included in the configuration information of the reconfigured target CORESET to the terminal, and the target CORESET belongs to at least A second type of CORESET; or, the processing module is also used to determine that the terminal stops monitoring the PDCCH on the first SS after sending the target indication information to the terminal, and the target indication information is used to instruct the terminal to stop on the first SS Perform PDCCH monitoring.
  • the present application provides a communication device, including a processor and a communication interface; the communication interface is used to communicate with other devices; the processor is used to execute computer programs or instructions, so that the communication device performs the above-mentioned first aspect and The method described in any one of the designs, or to enable the communication device to execute the method described in the above second aspect and any one of the designs.
  • the present application provides a communication device, including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the first aspect or the second aspect above the method described.
  • the communication device may be the terminal in the above-mentioned first aspect, or a device including the above-mentioned terminal, or a device included in the above-mentioned terminal, such as a chip; or, the communication device may be the network device in the above-mentioned second aspect, or include the above-mentioned A device of a network device, or a device contained in the above-mentioned network device, such as a chip.
  • the present application provides a communication device, including: at least one processor; the processor is used to execute computer programs or instructions stored in the memory, so that the communication device performs the above-mentioned first or second aspect.
  • the memory can be coupled to the processor, or it can be independent of the processor.
  • the communication device may be the terminal in the above-mentioned first aspect, or a device including the above-mentioned terminal, or a device included in the above-mentioned terminal, such as a chip; or, the communication device may be the network device in the above-mentioned second aspect, or include the above-mentioned A device of a network device, or a device contained in the above-mentioned network device, such as a chip.
  • the present application provides a computer-readable storage medium, including computer programs or instructions, which, when run on a communication device, cause the communication device to perform the method described in the first aspect and any of the above-mentioned designs, or , so that the communication device executes the method described in the above second aspect and any one of the designs.
  • the present application provides a computer program product, the computer program product including: a computer program or instruction, when the computer program or instruction is run on the computer, the computer executes the above-mentioned first aspect and any one of the designs. method, or causing a computer to execute the method described in the above second aspect and any one of the designs.
  • the present application provides a chip, including: a processing circuit and a transceiver pin, and the processing circuit and the transceiver pin are used to implement the method provided by any design in the first aspect or the second aspect.
  • the processing circuit is used to execute the processing action in the corresponding method
  • the transceiving pin is used to execute the receiving/sending action in the corresponding method.
  • the present application provides a communication system, including: the communication device provided in the third aspect or any design thereof, and the communication device provided in the fourth aspect or any design thereof.
  • FIG. 1 is a schematic diagram of a terminal and a network device using different beams to transmit and receive CSI-RS provided in an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a configured CORESET and SS provided by the embodiment of the present application;
  • FIG. 3 is a schematic flow chart of an existing update of TCI state information in CORESET
  • FIG. 4 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flow diagram of activating the first SS provided by the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • instructions may include direct instructions and indirect instructions, as well as explicit instructions and implicit instructions.
  • the information indicated by a certain information is referred to as the information to be indicated, and there are many ways to indicate the information to be indicated during the specific implementation process.
  • the information to be indicated may be indicated directly, wherein the information to be indicated itself or an index of the information to be indicated may be indicated.
  • the information to be indicated may also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated.
  • only a part of the information to be indicated may be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be realized by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the indication overhead to a certain extent.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the frequency band used in millimeter wave communication may refer to an electromagnetic wave frequency band with a frequency range from 30 gigahertz (GHz) to 300 GHz.
  • GHz gigahertz
  • 26GHz, 28GHz and other frequency bands similar to 30GHz are also classified as millimeter wave frequency bands.
  • the millimeter wave frequency band has wider spectrum resources and can support high data rate transmission.
  • the wavelength of the millimeter wave frequency band is small, so the size of the antenna is smaller, which is more convenient for multi-antenna integration. Therefore, millimeter wave communication is a key technology in the fifth generation mobile communication (the fifth generation, 5G) NR system and future communication systems.
  • the channel attenuation of the millimeter wave frequency band is greater. Therefore, devices using the millimeter wave frequency band for communication need to use beamforming technology to concentrate the energy of signal transmission and reception in a specific direction, that is, On a specific beam, the equivalent channel gain between transceiver devices is increased to ensure the coverage performance and transmission data rate of millimeter wave communication.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beam forming technology may be a beam forming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology.
  • Beams include transmit beams and receive beams.
  • the transmitting beam can refer to the distribution of the signal strength formed in different directions in space after the signal is transmitted by the antenna
  • the receiving beam can refer to the distribution of the received signal strength strengthened or weakened by the antenna array in different directions in space.
  • a common implementation of beamforming is to set different amplitude gains and/or phase deviations on multiple transmit/receive antenna units, which can equivalently form a spatial filter to achieve signal transmission in a specific beam direction and receive. Therefore, different beams can be called (or “correspond") to different spatial parameters, spatial filters or spatial filter parameters, etc.; different transmit beams can be called (or “corresponding") to different spatial transmission parameters, spatial transmission filter different receiving beams may be referred to as different spatial receiving parameters, spatial receiving filters, spatial receiving filter parameters, etc.
  • airspace may also be referred to as "space”
  • space space
  • the transmitting and receiving devices Since the transmitting and receiving devices are in the initial stage of establishing a connection, information such as the position and channel between the transmitting and receiving devices is usually unknown, so the transmitting and receiving devices need to go through the beam training process to determine the appropriate beam and the corresponding spatial filtering parameters.
  • the beam training process between the network device and the terminal is completed through the CSI reporting process.
  • the CSI reporting process specifically includes: the network device first configures multiple CSI-RSs for the terminal through the CSI-RS configuration information, and the CSI-RS configuration information includes the time-frequency position, index, port number, Port pattern and other information.
  • the network device sends multiple CSI-RSs to the terminal, and the network device may use different airspace transmission parameters, that is, different transmission beams, when sending each CSI-RS.
  • the terminal receives each CSI-RS sent by the network equipment, and measures the reference signal received power (reference signal received power, RSRP) and/or signal to interference and noise ratio (signal to interference and noise ratio, SINR) of each CSI-RS ) (also called signal-to-noise ratio), and then report the CSI to the network device, the CSI includes the CSI-RS index and the RSRP value and/or SINR value corresponding to the CSI-RS.
  • the terminal can also use different beams to receive the CSI-RS. For each transmit beam of the network device, the terminal can use a different receive beam, so that for each transmit beam, the terminal can determine an optimal the receiving beam.
  • the network device After the network device receives the CSI reported by the terminal, since the network device knows the beams used to send each CSI-RS, the network device can determine which beams to use to send signals through the CSI-RS reported by the terminal so that the terminal can receive For signals with higher energy, the terminal can also determine the corresponding receiving beams for these transmitting beams, thereby determining the BPL between the terminal and the network device, and completing the beam training process.
  • BPL refers to a transmission link formed by a sending beam and a corresponding receiving beam.
  • BPLs between the terminal and the network device there may be one or more optimal or better BPLs, that is, there may be one or more BPLs with better communication quality.
  • the optimal BPL between the terminal and the network device may change due to possible movement of the terminal, possible occlusion between the terminal and the network device, and changes in the environment of surrounding scatterers.
  • the network device will send the CSI-RS for beam tracking to the terminal, and the network device can use the best BPL obtained through beam training before.
  • the sending beam is used to send the CSI-RS, and correspondingly, the terminal can use the receiving beam corresponding to the best BPL to receive the CSI-RS, so as to implement continuous measurement of the quality of the best BPL.
  • the network device can also use other beams to send the CSI-RS.
  • the terminal can also use different receiving beams to receive the CSI-RS to determine the corresponding best receiving beam .
  • the process of beam tracking is realized by re-determining the optimal BPL between the network device and the terminal.
  • the CSI-RS may be a synchronization signal (synchronization signal, SS) physical broadcast channel (physical broadcast channel, PBCH) block (SS/PBCH block, SSB), or a non-zero power ( non-zero-power, NZP)-CSI-RS, etc.
  • SS synchronization signal
  • PBCH physical broadcast channel
  • NZP non-zero-power
  • the DCI carried by the PDCCH can be transmitted and received between the terminal and the network device through the previously trained beam (for example: the best BPL).
  • the network device since the terminal cannot determine whether the network device will deliver DCI and where to deliver DCI, the network device will configure CORESET and SS for the terminal in advance.
  • the CORESET and SS can be used to determine the location of some time-frequency resources, so that the terminal can Blind decoding (BD) of the PDCCH (or DCI) is performed at these positions to obtain the DCI, and then determine whether the network device schedules the terminal for data transmission, channel state information reporting, etc. according to the DCI.
  • BD Blind decoding
  • blind detection may also be called or understood as monitoring or monitoring.
  • the CORESET can be used to determine the frequency domain position occupied by the PDCCH carrying the DCI in the frequency domain, the number of symbols occupied in the time domain, and the like.
  • the configuration information of CORESET includes CORESET identification, frequency domain position, number of symbols occupied by time domain, mapping relationship between control channel element (CCE) and specific resource group (resource element group, REG), TCI status information etc.
  • CCE control channel element
  • REG resource group
  • TCI state information may also be referred to as TCI state for short.
  • one CCE may correspond to six REGs, and one REG represents a resource corresponding to one symbol in the time domain and one resource block (resource block, RE) in the frequency domain.
  • the SS can be used to determine the number of the start symbol occupied by the PDCCH in the time domain, the PDCCH monitoring cycle and other information.
  • the configuration information in the SS includes the type of the SS, the sequence number (or identifier) of the SS, the period of the SS and the offset within the period, the position of the starting symbol of the SS in the time slot, and PDCCH candidates under various aggregation levels The number of sets (candidates), the type of DCI to be monitored, and other information.
  • the PDCCH is formed by aggregation of several CCEs, and the number of CCEs aggregated into the PDCCH is called an aggregation level.
  • one SS is associated with (or corresponds to) one CORESET.
  • a CORESET can be associated with one or more SSs, and it can also be understood as a CORESET or the configuration information of the CORESET can be applied to the SS.
  • the network device is configured with two CORESETs for the terminal, namely CORESET0 and CORESET1, wherein CORESET0 occupies two symbols in the time domain and 12 symbols in the frequency domain (physical resource block, PRB ), CORESET1 occupies 1 symbol in the time domain and 24 PRBs in the frequency domain.
  • the network device is also configured with two SSs for the terminal, where SS0 is associated with CORESET0, and the monitoring period of SS0 is 1 slot (slot), and the start symbol is located at symbol 0 of the corresponding slot, where SS1 is associated with CORESET1, and the monitoring period of SS1 is There are 2 slots, and the start symbol is located at symbol 0 of the corresponding slot.
  • the time-frequency resources determined according to CORESET and SS include many CCEs, but the terminal is not sure which CCEs are aggregated from the PDCCH. Therefore, all resources that may be PDCCHs are called PDCCH candidate sets, that is, network devices send The PDCCH may appear on each PDCCH candidate set, and in the embodiment of the present application, the PDCCH candidate set may also be referred to as a candidate PDCCH.
  • the type of SS includes common search space (common search space, CSS) and user equipment UE (user, equipment, UE) specific search space (UE specific search space, USS).
  • CSS is usually used to broadcast some cell-common information.
  • the USS can only be used by a specific terminal, for example, it can be used after the specific terminal accesses the network device. Among them, the priority of the CSS is higher than that of the USS, and the priority of the USS with a small serial number is higher than that of the USS with a large serial number.
  • the terminal device will first monitor the PDCCH on the CSS, and then follow the USS index (or identification, sequence number, etc.) from Monitoring the PDCCH in the order of low to high can also be understood as monitoring the PDCCH in the order of USS priority from high to low.
  • the fact that the terminal device monitors the PDCCH preferentially on the CSS may also be understood as that the CSS allocates candidate PDCCHs.
  • the QCL relationship is used to indicate that multiple antenna ports (or reference signals) have one or more identical or similar channel characteristics.
  • the terminal may adopt the same or similar communication configurations for multiple reference signals having a QCL relationship.
  • the channel large-scale characteristics (or channel characteristics) corresponding to the antenna port sending one reference signal can be inferred from the channel large-scale characteristics corresponding to the antenna port sending another reference signal
  • the large-scale characteristics corresponding to the reference signals having a QCL relationship are the same, or, the large-scale characteristics corresponding to one reference signal can be used to determine the large-scale characteristics corresponding to another reference signal having a QCL relationship with the reference signal, or , the difference between the large-scale features corresponding to the two reference signals is smaller than a certain threshold.
  • the large-scale characteristics of the channel include but are not limited to delay spread (delay spread), Doppler spread (doppler spread), Doppler frequency shift (doppler shift), average delay (average delay), average gain, space Receive parameters (spatial Rx parameters), etc.
  • the spatial reception parameters may include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure, AOD), average AOD, AOD extension, receiving antenna space Correlation parameters, transmit antenna spatial correlation parameters, transmit beams, receive beams, etc.
  • the QCL relationship can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, delay spread;
  • Type B Doppler frequency shift, Doppler spread
  • Type C Doppler frequency shift, average delay
  • Type D space to receive parameters.
  • Type A, Type B, and Type C can be used for time-frequency synchronization and channel estimation.
  • Doppler frequency shift can be used for frequency domain synchronization
  • average delay can be used for time domain synchronization
  • Doppler spread can be used for channel estimation.
  • Type D indicates that the spatial reception parameters used by the terminal to receive two reference signals may be the same or similar, which may be used by the terminal to determine the spatial reception parameters.
  • the spatial reception parameter may be understood as a reception beam.
  • type D can also be used to indicate that the space transmission parameters used by the network device to send two reference signals are the same or similar. The parameters can be understood as sending beams.
  • a TCI state information includes a downlink reference signal and the QCL type of the reference signal.
  • one piece of TCI status information includes indication information of the first downlink reference signal and the QCL type corresponding to the reference signal, and the second downlink reference signal and the QCL type corresponding to the reference signal.
  • the QCL type corresponding to the first downlink reference signal is typeA or typeB or typeC
  • the QCL type corresponding to the second downlink reference signal is typeD.
  • the TCI state information can be used to indicate the source reference signal that has a quasi co-location (QCL) relationship with the DMRS of the PDCCH, in other words, the TCI state can be used to indicate the QCL relationship between the DMRS and the source reference signal.
  • QCL quasi co-location
  • the configuration information of CORESET may include one or more TCI state information, and the MAC control element (control element, CE) on the medium access control (medium access control, MAC) layer may activate one of them.
  • CE control element
  • MAC medium access control
  • the terminal can perform channel estimation when monitoring the PDCCH on the CORESET according to the channel characteristics of the source reference signal indicated by the TCI status information, or determine the Receive beam used for PDCCH monitoring on CORESET.
  • the terminal can use the previously received The receiving beam of the CSI-RS receives the PDCCH.
  • the optimal BPL may be used to transmit and receive the PDCCH on the CORESET configured for the terminal.
  • the communication quality of the optimal BPL may be degraded. For example, when the terminal moves, there may be occlusion between the terminal and the network equipment, and changes in the surrounding scatterer environment.
  • the optimal BPL obtained through beam training before Communication quality may degrade, in other words, the optimal BPL between the terminal and network equipment may change, requiring beam switching. Therefore, the terminal can continuously report CSI to the network device to notify the network device of the change of the optimal transmission beam.
  • the network device When the network device receives the CSI, it will reconfigure (that is, update) the TCI status information in the CORESET of the terminal device. So that the new BPL can be used to transmit and receive the PDCCH between the terminal and the network device according to the updated TCI status information.
  • the prior art provides a process for updating TCI status information in the CORESET.
  • the terminal generates CSI, wherein the terminal measures the RSRP (or SINR) of the CSI-RS issued by the network device, and generates CSI according to the measurement result; then the terminal waits for the uplink time slot for CSI reporting, for example: after n time slots is an uplink time slot, which can be used for CSI reporting, and n is a positive integer, so the terminal reports CSI to the network device after n time slots. Subsequently, the network device receives the reported CSI by processing the channel carrying the CSI, so as to determine whether the optimal transmission beam has changed according to the CSI, and the network device replies an ACK message to the terminal, and the ACK message is used to indicate that the network device has successfully received the CSI .
  • the network device receives the reported CSI by processing the channel carrying the CSI, so as to determine whether the optimal transmission beam has changed according to the CSI, and the network device replies an ACK message to the terminal, and the ACK message is used to indicate that the network device has successfully received the CSI
  • the process of updating the TCI state information is performed, and the process specifically includes: the network device generates a MAC CE, and the MAC CE It is used to update the TCI state of CORESET and send the MAC CE to the terminal.
  • the type D indicated in the TCI state is the QCL source reference signal that is the reference signal with the highest RSRP/SINR in the above CSI report, or the type indicated in the TCI state
  • the D QCL source reference signal has a direct type D QCL relationship with the reference signal with the highest RSRP/SINR in the above CSI report, or has an indirect type D QCL relationship.
  • This process can be understood as indicating to the terminal that the network device will then use the best transmit beam in the above reported CSI to send the PDCCH on the SS associated with the CORESET, so the terminal device can subsequently use the best beam in the above reported CSI
  • the receive beam corresponding to the transmit beam monitors the PDCCH on the SS associated with the CORESET.
  • the terminal analyzes the received MAC CE, waits for the uplink time slot, and then replies with an ACK message in the uplink time slot, for example: after m time slots, it is the time to reply the ACK message, and m is a positive integer, then the terminal device is in m Reply an ACK message to the network device after time slots to notify the network device that the MAC CE has been successfully received.
  • the update of the TCI status information in the CORESET is completed, and the network device and the terminal can transmit and receive the PDCCH according to the updated TCI status information/BPL.
  • the process of updating the TCI state information for the CORESET requires a long signaling interaction time, so that the update delay of the TCI state information is relatively long. In other words, the time delay of the receiving beam used by the updating terminal to monitor the PDCCH on the CORESET is too long.
  • the communication quality of the best BPL may degrade rapidly, for example: within tens of milliseconds (ms) or even less than 10ms, its communication quality may degrade to the point where it cannot be used , that is, the best BPL will be interrupted.
  • the best BPL is interrupted during the signaling interaction process of updating the TCI status information of CORESET, it will cause the new BPL configuration to fail, while other old (or called "existing", “existing” ")
  • the communication quality of BPL is also reduced to unusable, that is, the link between the network device and the terminal device is interrupted. In this case, it takes a long time (up to hundreds of ms) to initiate the communication between the terminal and the network device The beam failure recovery (beam failure recovery) process.
  • the present application provides a communication method, which can reduce the delay of updating the TCI state information in CORESET, that is, reduce the delay of updating the source reference signal that has a QCL relationship with the demodulation reference signal of the PDCCH, or reduce Update the time delay of the receiving beam used by the terminal when the CORESET monitors the PDCCH to reduce the probability of communication link interruption.
  • Orthogonal frequency-division multiple access OFDMA
  • single carrier frequency-division multiple access single carrier FDMA
  • SC-FDMA single carrier frequency-division multiple access
  • satellite communication system NTN system
  • Internet of things Internet of things, IoT
  • IoT Internet of things
  • NR system NR system
  • future evolved communication system etc.
  • system can be used interchangeably with "network”.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the communication system 10 includes at least one network device 30 and one or more terminals 40 connected to the network device 30 .
  • different terminals 40 may communicate with each other.
  • the communication system 20 includes at least one terminal (also referred to as a terminal device) 40 and one or more network devices 30 connected to the terminal 40 .
  • a terminal device also referred to as a terminal device
  • different network devices 30 may communicate with each other.
  • the terminal reports channel state information to the network device.
  • the network device receives the channel state information from the terminal, where the channel The state information includes an identifier of at least one reference signal, and RSRP and/or SINR corresponding to each reference signal.
  • the first The SS starts to take effect or is activated, that is, the network device can send the PDCCH to the terminal on the first SS, and the terminal starts to monitor the PDCCH on the first SS, where the demodulation reference signal of the PDCCH in the first SS and the first reference The type D QCL relationship is satisfied between the signals, and the first reference signal is the reference signal with the highest RSRP or the reference signal with the highest SINR in the channel state information.
  • the first SS when the channel state information meets the preset conditions, the first SS is activated, and the terminal and network equipment can directly use the new beam on the first SS to transmit and receive PDCCH.
  • the first SS is not activated by default under normal circumstances. , that is, the network device will not send the PDCCH in the first SS, and the terminal will not monitor the PDCCH in the first SS, but when the information status information reported by the terminal meets the preset conditions, for example, it indicates that the best beam changes or When the previous BPL quality is lower than a certain threshold, etc., the terminal activates the first SS, and the network device also activates the first SS after receiving the channel state information and confirming that the state information satisfies a preset condition.
  • the network device and the terminal can transmit and receive the PDCCH on the first SS according to the BPL corresponding to the first reference signal.
  • the first reference signal is the reference signal with the highest RSRP or the highest SINR in the channel state information, that is, the BPL corresponding to the first reference signal is the best BPL, or, equivalently, the best BPL in the channel state information is A sending beam used by the network device to send the first reference signal and a receiving beam used by the terminal to receive the first reference signal.
  • the terminal and the network device can use the optimal BPL to perform PDCCH transmission and reception on the first SS or the corresponding CORESET.
  • the terminal when the terminal reports the channel state information to the network device and the channel state information meets the preset conditions, it will directly activate the corresponding SS, and determine the TCI state information of the CORESET associated with the SS according to the channel state information, and the terminal
  • the device can use the receiving beam corresponding to the best BPL in the channel state information or the beam close to the receiving beam (it can be understood as the beam that has the same direction as the receiving beam, but the beam width may be different, and it will be uniformly described here).
  • the SS monitors the PDCCH.
  • the network device when the network device receives the channel state information and the channel state information meets the preset conditions, it will directly activate the corresponding SS, and determine the TCI state of the CORESET associated with the SS according to the channel state information information, the network device can use the transmission beam corresponding to the best BPL in the channel state information or a beam close to the transmission beam when transmitting the PDCCH on the SS (it can be understood that the direction of the transmission beam is the same, but beamwidth may vary from beam to beam).
  • the temporary first SS can be directly activated between the terminal and the network device, and both can The best BPL of the PDCCH is sent and received in the temporary first SS, which can realize faster and more efficient beam switching.
  • the CORESET monitors the time delay of the receiving beam used by the PDCCH, or updates the time delay of the source reference signal that has a QCL relationship with the demodulation reference signal of the PDCCH (or DCI), to reduce the probability of link interruption.
  • the network device 30 in this embodiment of the present application is a device for connecting the terminal 40 to a wireless network.
  • the network device 30 may be a node in a wireless access network, and may also be called a base station, or It may be called a radio access network (radio access network, RAN) node (or device).
  • RAN radio access network
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as Traditional macro base station eNB and micro base station eNB in heterogeneous network scenarios; or it can also include the next generation node B (next generation node B, gNB) in the 5G new radio (new radio, NR) system, or it can also include transmission Reception point (transmission reception point, TRP), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), base band pool BBU pool, or WiFi access point (access point , AP), etc.; or it can also include the centralized unit (centralized unit, CU) and distributed unit (distributed unit, DU) in the cloud access network (cloud radio access network, CloudRAN) system; or it can include non- The
  • network equipment can be used as a layer 1 (L1) relay (relay), or as a base station, or as a DU, or can be used as an integrated access and backhaul (IAB) node; or, the network device can be a device that implements the base station function in IoT, such as vehicle-to-everything (V2X), device
  • V2X vehicle-to-everything
  • D2D device to device
  • M2M machine to machine
  • the base stations in this embodiment of the present application may include various forms of base stations, for example: macro base stations, micro base stations (also called small stations), relay stations, access points, next-generation base stations (gNodeB, gNB), home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.,
  • base stations for example: macro base stations, micro base stations (also called small stations), relay stations, access points, next-generation base stations (gNodeB, gNB), home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • base stations for example: macro base stations, micro base stations (also called small stations), relay stations, access points, next-generation
  • the terminal 40 in this embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that may be used in a terminal.
  • the terminal can be user equipment (user equipment, UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication in the 5G network or the future evolved PLMN. equipment, terminal agent or terminal device, etc.
  • An access terminal may be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, industrial control (industrial Wireless terminals in control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal may be a terminal having a communication function in IoT, for example, a terminal in V2X (such as a vehicle networking device), a terminal in D2D communication, or a terminal in M2M communication. Terminals can be mobile or fixed.
  • the network device 30 and the terminal 40 in the embodiment of the present application may also be referred to as communication devices, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • the communication method provided by the embodiment of the present application can be applied between the network device and the terminal shown in FIG. 4 and FIG. 5 , and the specific implementation can refer to the method embodiment described later, and will not be repeated here. .
  • FIG. 4 and FIG. 5 are only simplified schematic diagrams for easy understanding, and the communication system may also include other devices, which are not shown in FIG. 4 and FIG. 5 .
  • the terminal and/or network device may perform some or all of the steps in the embodiment of the present application, these steps or operations are only examples, and the embodiment of the present application may also perform other operations or various operations deformation.
  • each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all operations in the embodiment of the present application.
  • the terminal reports channel state information to the network device.
  • the network device receives the channel state information from the terminal.
  • the channel state information includes the identifier of at least one reference signal, and the RSRP corresponding to each reference signal in the at least one reference signal and/or the SINR corresponding to each reference signal.
  • the reference signal may be called CSI-RS.
  • the network device can configure multiple CSI-RSs for beam measurement for the terminal, including configuring the indexes of these CSI-RSs, time-frequency positions, port numbers and other information, and send beams to the corresponding time-frequency positions to The terminal sends these CSI-RSs.
  • the transmission beams (or referred to as spatial transmission parameters) adopted by the network device may be the same or different. It should be pointed out that the present application does not limit the timing for the network device to issue the CSI-RS, which may be issued periodically or aperiodically, and this application does not make a limitation on this.
  • whether the CSI-RS is sent periodically, or the period size used when the CSI-RS is sent periodically can be configured by the network device in the configuration information of the CSI-RS.
  • the terminal can receive the CSI-RS from the network device through the receiving beam. Similarly, the receiving beams (or called spatial receiving parameters) adopted by the terminal can be the same or different. Then, the terminal can generate channel state information according to the measurement result of each CSI-RS, and then report the channel state information to the network device. Optionally, the terminal may report channel state information periodically, semi-statically, or aperiodically. This application does not limit the method and timing for the terminal to report channel state information to the network device. Optionally, the specific manner and timing of reporting the channel state information may be configured by the network device.
  • the terminal may measure RSRP and SINR at the same time, or measure one of them.
  • the channel state information reported by the terminal may also include only one of the two, and which one to report may be configured by the network device.
  • the terminal When the channel state information satisfies the preset condition, the terminal starts to monitor the PDCCH in the first search space SS. Correspondingly, when the network device receives the channel state information and the channel state information satisfies the preset condition, the network device determines that: the terminal starts to monitor the PDCCH on the first SS.
  • the demodulation reference signal of the PDCCH on the first SS and the first reference signal satisfy the type D quasi-co-location QCL relationship, and the first reference signal is the reference signal with the highest RSRP or the reference with the highest SINR in the channel state information Signal.
  • the network device can use the first airspace transmission parameter to send the PDCCH to the terminal on the first SS, and the terminal can use the first airspace reception parameter to monitor PDCCH or PDCCH candidates on the first SS set, the first airspace transmission parameter is determined according to the airspace transmission parameter of the first reference signal, and the first airspace reception parameter is determined according to the airspace reception parameter of the first reference signal.
  • the network device can use the first sending beam to send the PDCCH to the terminal on the first SS, and the terminal can use the first receiving beam to monitor the PDCCH on the first SS.
  • the first sending beam is The transmit beam corresponding to the best BPL indicated by the channel state information or a beam close to the transmit beam
  • the first receive beam is the receive beam corresponding to the best BPL indicated by the channel state information or a beam close to the receive beam.
  • the first SS is not activated by default under normal circumstances, that is, the network device will not send the PDCCH on the first SS, and the terminal device will not monitor the PDCCH on the first SS, but when the information status information reported by the terminal device
  • the terminal device activates the first SS, and the network device confirms that the state information satisfies the preset condition after receiving the channel state information.
  • the first SS is also activated after setting the condition.
  • activating the first SS can also be understood as activating the first CORESET.
  • the terminal starting to monitor the PDCCH on the first SS may also be understood as the terminal starting to monitor the PDCCH on the first CORESET.
  • the relationship between the demodulation reference signal of the PDCCH on the first SS and the first reference signal satisfies the type D quasi-co-location QCL relationship. It can also be understood that the relationship between the demodulation reference signal of the PDCCH on the first CORESET and the first reference signal satisfies Type D quasi-co-located QCL relationship.
  • the terminal when the channel state information satisfies the preset condition, and after the terminal receives the ACK message from the network device for the channel state information, the terminal starts to monitor the PDCCH on the first SS; equivalently, when the channel state When the information satisfies the preset condition, and after the network device replies with an ACK message for the channel state information, the network device determines that: the terminal starts to monitor the PDCCH on the first SS. Based on this implementation, the terminal will not start to monitor the PDCCH on the first SS, that is, activate the first SS, after determining that the network device receives the channel state information meeting the preset condition.
  • both the terminal and the network device use the first SS to transmit and receive the PDCCH, that is, use the TCI state corresponding to the first SS. It can be avoided that the terminal reports the channel state information, but the network device does not receive it, so the terminal adopts the TCI state corresponding to the first SS, but the network device does not adopt the TCI state of the first SS, so that the communication between the terminal and the network device TCI configuration mismatch problem.
  • the first reference signal is the reference signal with the highest RSRP in the channel state information.
  • the first reference signal is the reference signal with the highest SINR in the channel state information.
  • the first reference signal may be the reference signal with the highest RSRP in the channel state information, or the reference signal with the highest SINR in the channel state information, or It may be the reference signal with the highest RSRP and the highest SINR at the same time in the channel state information.
  • the specific method for determining the first reference signal may be configured or preconfigured by the network.
  • the preset condition includes: the first reference signal is different from the second reference signal; or, the type D QCL relationship is not satisfied between the first reference signal and the second reference signal.
  • the second reference signal is a source reference signal indicated by TCI state information included in the configuration information of one second type CORESET among the at least one second type CORESET.
  • the second type of CORESET can be understood as the CORESET normally used to send and receive PDCCH between the current terminal device and the network device (different from the CORESET associated with the first spare SS), on the SS associated with the second type of CORESET, the The above-mentioned terminal equipment needs to continuously monitor the PDCCH.
  • the above preset condition it can be determined according to the channel state information that the quality of the existing BPL used to transmit and receive the PDCCH is lower than the BPL corresponding to the first reference signal, so the PDCCH needs to be transmitted and received on the new BPL.
  • the type D QCL relationship can be a direct type D QCL relationship, or an indirect type D QCL relationship, for example: there is a direct type D QCL relationship between signal A and signal B, and signal B and signal There is a direct type D QCL relationship between C, then there is an indirect type D QCL relationship between signal A and signal C.
  • the second reference signal may be a source reference signal indicated by TCI state information included in configuration information of one second-type CORESET among at least one second-type CORESET.
  • the second reference signal may be a source reference signal indicated by the TCI status information included in the configuration information of any second-type CORESET in at least one second-type CORESET, or it may be at least one second-type CORESET
  • the identifier here can be understood as the identifier included in the configuration information of the CORESET.
  • a source reference signal indicated by the TCI state information here can be understood as a type D QCL source reference signal in the TCI state information.
  • the channel state information includes the identifier of the third reference signal and the RSRP and/or SINR corresponding to the third reference signal
  • the preset condition may also include: the RSRP value or the SINR value of the third reference signal is lower than the preset Threshold value, the third reference signal is the same as the second reference signal, or, the RSRP value or SINR value of the third reference signal is lower than the preset threshold value
  • the type D QCL relationship between the third reference signal and the second reference signal is satisfied .
  • the second reference signal please refer to the above, and details will not be repeated here.
  • the preset condition may further include: a difference between the RSRP of the first reference signal and the RSRP of the second reference signal (or the third reference signal) is greater than a first preset threshold. Or, the difference between the SINR of the first reference signal and the SINR of the second reference signal (or the third reference signal) is greater than a second preset threshold. That is, only when the BPL quality corresponding to the first reference signal is greater than the existing BPL quality by a certain degree, the activation of the first SS will be triggered, and the new BPL is used on the first SS to transmit and receive PDCCH, avoiding short-term fluctuations in BPL quality Lead to frequent activation of the first SS and frequent switching of BPL.
  • FIG. 7 shows a schematic diagram of the first SS being activated.
  • the terminal generates CSI, for example, the terminal measures RSRP and/or SINR of the CSI-RS delivered by the network device, and generates CSI according to the measurement result. Then the terminal waits for the CSI reporting time, for example: after n time slots, it is the CSI reporting time, n is a positive integer, and reports the CSI to the network device.
  • the first SS is not activated during the time period of the foregoing process, that is, the first SS is inactive state, since the CSI meets the preset condition, the terminal device determines that the first SS is activated, that is, starts to monitor the PDCCH on the first SS, and the receiving beam used to monitor the PDCCH corresponds to the best BPL in the CSI A receiving beam or a beam close to the receiving beam.
  • the network device receives the CSI and determines that the CSI satisfies the preset condition, so the network device activates the first SS after this step, that is, the network device can send the PDCCH to the terminal through the first SS, and send the PDCCH on the first SS using the transmission
  • the beam may be the transmit beam corresponding to the best BPL in the CSI or a beam close to the transmit beam.
  • performing PDCCH monitoring may also be described as “performing PDCCH blind detection”.
  • the first SS when the channel state information meets the preset conditions, the first SS is activated, and the terminal and network equipment can directly use the new beam on the first SS to transmit and receive the PDCCH.
  • the first SS defaults to not Activated, that is, the network device will not send the PDCCH in the first SS, and the terminal will not monitor the PDCCH in the first SS, but when the information status information reported by the terminal meets the preset conditions, for example, indicating that the best beam changes Or when the previous BPL quality is lower than a certain threshold, etc., the terminal activates the first SS, and the network device also activates the first SS after receiving the channel state information and confirming that the state information satisfies a preset condition.
  • the network device and the terminal can transmit and receive the PDCCH on the first SS according to the BPL corresponding to the first reference signal.
  • the first reference signal is the reference signal with the highest RSRP or the highest SINR in the channel state information, that is, the BPL corresponding to the first reference signal is the best BPL, or, equivalently, the best BPL in the channel state information That is, the sending beam used by the network device to send the first reference signal and the receiving beam used by the terminal device to receive the first reference signal.
  • the terminal and the network device can use the optimal BPL to perform the PDCCH transmission and reception on the first SS.
  • the terminal when the terminal reports the channel state information to the network device and the channel state information meets the preset conditions, it will directly activate the corresponding SS, and determine the TCI state information of the CORESET associated with the SS according to the channel state information, and the terminal The device may monitor the PDCCH on the SS through the receive beam corresponding to the best BPL in the channel state information or a beam close to the receive beam.
  • the network device when the network device receives the channel state information and the channel state information meets the preset conditions, it will directly activate the corresponding SS, and determine the TCI state of the CORESET associated with the SS according to the channel state information
  • the network device may use the transmission beam corresponding to the best BPL in the channel state information or a beam close to the transmission beam when transmitting the PDCCH on the SS.
  • the temporary first SS can be directly activated between the terminal and the network device, and both can The best BPL of the PDCCH is sent and received in the temporary first SS, which can realize faster and more efficient beam switching.
  • the CORESET monitors the time delay of the receiving beam used by the PDCCH, or updates the time delay of the source reference signal that has a QCL relationship with the demodulation reference signal of the PDCCH (or DCI), to reduce the probability of link interruption.
  • step S601 in order to facilitate the terminal to know the specific situation of the SS and CORESET configured by the network device, optionally, before step S601, as shown in FIG. 8, the method shown in FIG. 6 also includes the following steps:
  • the network device sends the first configuration information to the terminal.
  • the terminal receives the first configuration information from the network device.
  • the first configuration information includes the configuration information of the first CORESET and the configuration information of the first SS
  • the configuration information of the first CORESET and the first SS includes the time-frequency position information of the candidate PDCCH (or, the network device may send to the terminal Time-frequency location information of PDCCH). That is, the terminal can determine the time-frequency position where the PDCCH needs to be monitored after the first SS is activated according to the configuration information of the first CORESET and the first SS.
  • the configuration information of the first CORESET may not include initial TCI state information by default.
  • the network device and the terminal when the network device and the terminal subsequently activate the first SS and the first CORESET, the network device and the terminal can automatically configure TCI status information in the configuration information of the first CORESET, and the source reference signal indicated by the TCI status information is first reference signal.
  • the configuration information of the first CORESET and the configuration information of the first SS may be included in one piece of configuration information, or may be included in two pieces of configuration information respectively.
  • the configuration information of the first CORESET and the configuration information of the first SS may be delivered by the network device to the terminal at the same time, or may be delivered by the network device to the terminal successively.
  • the first SS is associated with the first CORESET, which can also be described as configuration information of the first CORESET applicable to the first SS.
  • the first CORESET is a CORESET applicable to the first SS.
  • the number of first SSs may be one or more.
  • the first CORESET is a CORESET of the first type, wherein the SS associated with the CORESET of the first type (in other words, the CORESET of the first type is a CORESET applicable to the SS) is the SS that the terminal does not perform PDCCH monitoring by default (or , the network device does not send the SS of the PDCCH to the terminal by default), that is, by default, the terminal does not monitor the PDCCH at the time-frequency positions of these SSs.
  • the first type of CORESET is a CORESET for which the terminal does not monitor the PDCCH by default. It can also be understood that after the terminal device receives the first configuration information, the terminal may not monitor the PDCCH at the corresponding time-frequency position.
  • the network device sends the second configuration information to the terminal.
  • the terminal receives the second configuration information from the network device.
  • the second configuration information includes configuration information of at least one second-type CORESET and configuration information of at least one second SS.
  • the configuration information of the second type of CORESET and the configuration information of the second SS include the time-frequency position information of the terminal monitoring PDCCH (or called candidate PDCCH) (or, the network device can send the time-frequency position information of the PDCCH to the terminal). That is, the terminal can determine the time-frequency position where the PDCCH needs to be monitored according to the configuration information of the second type of CORESET and the configuration information of the second SS. It can also be understood that after the terminal device receives the second configuration information, the terminal needs to monitor the PDCCH at a corresponding time-frequency position.
  • At least one second SS is associated with at least one CORESET of a second type. It should be understood that a second-type CORESET may be associated with one or more second SSs. In other words, the second-type CORESET is a CORESET applicable to the second SS.
  • the configuration information of the second type of CORESET and the configuration information of the second SS may be included in one piece of configuration information, or may be included in different configuration information respectively.
  • configuration information of different second-type CORESETs may be included in one piece of configuration information, or may be included in one or more pieces of different configuration information.
  • the multiple pieces of configuration information may be delivered to the terminal by the network device at the same time, or may be delivered by the network device to the terminal successively.
  • the specific configuration of the configuration information of the first type of CORESET, the second type of CORESET, the SS associated with the first type of CORESET, the SS associated with the second type of CORESET, etc. are not limited by this application.
  • the terminal On the SS associated with the second type of CORESET, the terminal needs to perform PDCCH monitoring.
  • the SS associated with the second type of CORESET (in other words, the second type of CORESET is the CORESET applicable to the SS) is the SS that the terminal needs (or defaults) to perform PDCCH monitoring (or, the network device can send the PDCCH to the terminal.
  • the configuration information of each second-type CORESET includes TCI configuration information, and the TCI state information is used to indicate a source reference signal, and the source reference signal is associated with the second-type CORESET (or the second CORESET associated with the second CORESET).
  • first configuration information and the second configuration information may be delivered by the network device to the terminal at the same time, or may be delivered by the network device to the terminal successively, which is not limited in this application.
  • the terminal may monitor the PDCCH on the second SS (or the second type of CORESET) before the activation of the first SS according to the received first configuration information and second configuration information.
  • the terminal can also continue to monitor the PDCCH on the second SS (or the second type of CORESET).
  • the terminal can monitor the PDCCH according to the priority of the SS.
  • SS can be divided into USS and CSS, and the priority of CSS is higher than that of USS.
  • the terminal monitors the PDCCH on the CSS the monitoring capability of the terminal will not be exceeded.
  • the terminal monitors the PDCCH on the USS it specifically includes the following possible implementation manners.
  • the first SS is a first USS
  • at least one second SS includes at least one second USS.
  • the method shown in Figure 6 also includes step S605 (not shown in the figure):
  • the terminal needs to perform PDCCH monitoring on the first USS and at least one second USS on some or all of the second USSs in the target time unit, it can preferentially perform PDCCH on the first USS according to the monitoring capability of the terminal monitoring.
  • the target time unit may be one or more time slots, one or more time-domain symbols, and one or more spans, which are not specifically limited in the present application and will be described collectively here.
  • the terminal may determine which SSs are located in the target time unit according to the configuration information of the SSs, and the terminal may monitor the PDCCH on these SSs within the target time unit, which will be described uniformly here.
  • At least one second SS may further include one or more second CSSs.
  • the terminal when the terminal needs to monitor the PDCCH in the first USS and two second USSs, the terminal gives priority to monitoring the PDCCH on the first USS, that is, the priority of the first USS is The USS with the highest priority among all USSs to be monitored. It can be understood that the BPL corresponding to the first USS is the best BPL indicated in the channel state information, so it is more efficient to monitor the PDCCH in the first USS first.
  • the terminal preferentially monitors the PDCCH on a certain USS, which can be understood as that the terminal allocates candidate PDCCHs for the USS.
  • the first SS is a first USS
  • at least one second SS includes at least one second USS.
  • the method shown in FIG. 6 also includes step S606 (not shown in the figure):
  • the terminal When the terminal needs to monitor the PDCCH on the first USS and at least one second USS on part or all of the second USS in the target time unit, it can monitor the corresponding USS according to the monitoring capability of the terminal and the priority of the USS.
  • the PDCCH is monitored on the USS.
  • the priority of the first USS is lower than the priority of the third USS and higher than the priority of the fourth USS
  • the third USS is the second USS with the highest priority among at least one second USS
  • the fourth USS is at least one The second USS with the second highest priority (or called the second highest) among the second USSs. That is, the first USS is the USS with the second highest priority among all USSs.
  • the priority of the first USS is lower than the priority of the third USS and higher than the priority of the fourth USS
  • the third USS is the second USS with the highest priority on the target time unit
  • the fourth USS is the second USS with the highest priority on the target time unit
  • the second USS with the second highest priority That is, the first USS is the USS with the second highest priority among the USSs that need to be monitored by the terminal in the target time unit.
  • the terminal preferentially monitors the PDCCH on a certain USS, which can be understood as that the terminal allocates candidate PDCCHs for the USS.
  • the USS priority may be determined by the USS ID, and the determined rule may be that the smaller the USS ID, the higher the USS priority, or the larger the USS ID, the higher the USS priority.
  • the terminal first ensures that the monitoring of the PDCCH is performed on the original BPL (corresponding to the second USS with the highest priority).
  • the terminal activates the first SS, but the network device does not activate the second USS.
  • One SS in this case, network equipment and terminals cannot transmit and receive PDCCH on the new BPL, but this method ensures the smooth flow of the old BPL, and some basic communications can be performed when the quality of the old BPL has not dropped, ensuring The communication link is not interrupted.
  • the SS includes one or more candidate PDCCHs.
  • the terminal may cancel monitoring of candidate PDCCHs in the USS with lower priority. For example: the terminal can sequentially cancel the monitoring of candidate PDCCHs in n (n is a positive integer) USS with low priority in order of priority from low to high, so as to ensure that the terminal can monitor PDCCH on the first USS After that, the number of candidate PDCCHs in the remaining USS that needs to be monitored does not exceed the monitoring capability of the terminal.
  • the terminal may also stop monitoring the PDCCH on the first SS, and this operation specifically includes the following two possible implementation manners.
  • step S607 (not shown in the figure):
  • the terminal stops monitoring the PDCCH on the first SS.
  • the network device determines that the terminal stops monitoring the PDCCH on the first SS.
  • the first moment is the moment of the target duration after the second moment.
  • the second moment is: the moment when the terminal reports the channel state information to the network device.
  • the terminal receives an acknowledgment message from the network device.
  • the moment when the network device sends a confirmation message to the terminal is used to indicate that the network device has successfully received the channel state information.
  • the target duration may be configured or preconfigured by the network device.
  • the network device determines that the terminal stops detecting the PDCCH on the first SS, and it can also be understood that the network device will not (or cannot) send the PDCCH to the terminal on the first SS.
  • the method shown in FIG. 6 may further include the following steps (not shown in the figure):
  • the terminal After receiving the TCI state information included in the configuration information of the target CORESET reconfigured by the network device, the terminal stops monitoring the PDCCH on the first SS. Correspondingly, after sending the TCI state information included in the configuration information of the reconfigured target CORESET to the terminal, the network device determines that the terminal stops monitoring the PDCCH on the first SS.
  • the target CORESET belongs to at least one CORESET of the second type.
  • the target CORESET may be one or more CORESETs of the second type.
  • the network device reconfigures the terminal to reconfigure the TCI state information included in the configuration information of the target CORESET.
  • the method shown in FIG. 3 may be used for specific implementation, or other methods may be used, which are not specifically limited in this application.
  • the terminal After receiving the target indication information from the network device, the terminal stops monitoring the PDCCH on the first SS. Correspondingly, after the network device sends the target indication information to the terminal, the network device determines that the terminal stops monitoring the PDCCH on the first SS.
  • the target indication information is used to instruct the terminal to stop monitoring the PDCCH on the first SS.
  • the first CORESET and the first SS can also be configured as the second type CORESET as well as the second SS.
  • the first CORESET and the first SS are automatically configured as new second-type CORESETs and second SSs within a preset time after they are activated.
  • the preset time will automatically replace the previously configured second type of CORESET and second SS to become the second type of CORESET and second SS .
  • the first CORESET and the first SS automatically replace the previously configured second
  • the CORESET of the first type and the second SS become the CORESET of the second type and the second SS, or are automatically configured as a new CORESET of the second type and the second SS.
  • second-type CORESET and second SS are specifically replaced by the first CORESET and the first SS can be configured in the above-mentioned second configuration information, or can be configured separately, which is not limited in this application.
  • the communication device eg, network device, terminal device
  • the communication device includes a corresponding hardware structure and/or software module for performing each function.
  • the embodiments of this application can be implemented in hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present application.
  • the embodiment of the present application can divide the functional modules of the communication device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • the communication device includes a processing module 901 and a communication module 902 .
  • the processing module 901 is configured to support the network device to determine that the terminal starts to monitor the PDCCH on the first SS when the channel state information meets a preset condition; and/or Other processing operations that need to be performed by the network device in the embodiment of the present application.
  • the communication module 902 is used to support the network device to perform step S601 in FIG. 6 , steps S601 , S603 , and S604 in FIG. 8 , and/or other communication operations that the network device needs to perform in the embodiment of the present application.
  • the processing module 901 is configured to support the terminal device to perform step S602 in FIG. 6 and/or other processing operations that the terminal device needs to perform in this embodiment of the application.
  • the communication module 902 is used to support the terminal device to perform step S601 in FIG. 6, steps S601, S603, and S604 in FIG. 8, and/or other communication operations that the terminal device needs to perform in this embodiment of the application.
  • the communication device may further include a storage module 903, configured to store program codes and data of the communication device, and the data may include but not limited to original data or intermediate data.
  • the processing module 901 may be a processor or a controller, such as a CPU, a general-purpose processor, an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication module 902 may be a communication interface, a transceiver or a transceiver circuit, etc., wherein the communication interface is collectively referred to as, in a specific implementation, the communication interface may include multiple interfaces, for example, may include: an interface between a base station and a terminal and/or or other interfaces.
  • the storage module 903 may be a memory.
  • the processing module 901 is a processor
  • the communication module 902 is a communication interface
  • the storage module 903 is a memory
  • the communication device involved in this embodiment of the present application may be as shown in FIG. 10 .
  • the communication device includes: a processor 1001 , a communication interface 1002 , and a memory 1003 .
  • the communication device may further include a bus 1004 .
  • the communication interface 1002, the processor 1001 and the memory 1003 can be connected to each other through the bus 1004;
  • the bus 1004 can be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus etc.
  • the bus 1004 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 10 , but it does not mean that there is only one bus or one type of bus.
  • the embodiments of the present application further provide a computer program product carrying computer instructions, and when the computer instructions are run on a computer, the computer is made to execute the method described in the foregoing embodiments.
  • the embodiments of the present application further provide a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and when the computer instructions are run on a computer, the computer is made to execute the methods described in the above-mentioned embodiments.
  • an embodiment of the present application further provides a chip, including: a processing circuit and a transceiver pin, and the processing circuit and the transceiver pin are used to implement the method described in the foregoing embodiments.
  • the processing circuit is used to execute the processing action in the corresponding method
  • the transceiving pin is used to execute the receiving/sending action in the corresponding method.
  • an embodiment of the present application further provides a communication system, including: the network device provided in the foregoing embodiments, and the terminal provided in the foregoing embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)) wait.
  • a magnetic medium such as a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a digital video disc (Digital Video Disc, DVD)
  • a semiconductor medium such as a solid state disk (Solid State Disk, SSD)
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple devices. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,能够降低更新CORESET中的TCI状态信息的时延,也即降低更新与PDCCH的解调参考信号具有QCL关系的源参考信号的时延,或者降低更新终端在CORESET监测PDCCH时采用的接收波束的时延,减少通信链路中断的概率。方法包括:终端向网络设备上报信道状态信息,信道状态信息包括至少一个参考信号的标识以及至少一个参考信号中每个参考信号对应的RSRP和/或每个参考信号对应的SINR;当信道状态信息满足预设条件时,开始在第一SS上进行PDCCH的监测;其中,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,第一参考信号为信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。

Description

通信方法及装置
本申请要求于2022年01月14日提交国家知识产权局、申请号为202210044848.9、发明名称为“一种通信方法、终端及网络设备”以及要求于2022年02月28日提交国家知识产权局、申请号为202210192662.8、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在毫米波通信中,收发设备在建立连接的初始阶段,收发设备需要通过波束训练过程来确定合适的波束方向以及对应的空域滤波参数,确定收发设备之间的波束对链路(beam pair link,BPL)。
现有新无线(new radio,NR)***中,波束训练过程通过信道状态信息(channel state information,CSI)上报流程完成。例如,网络设备(即发送设备)采用不同的波束向终端设备(即接收设备)发送信道状态信息参考信号(channel state information reference signal,CSI-RS),不同的参考信号和波束之间通常有对应关系,终端设备可以使用不同的波束接收CSI-RS信号,从而能够得到与网络设备不同发送波束匹配的接收波束,即确定一个或多个BPL,然后向网络设备上报CSI-RS的测量结果,其中测量结果包括参考信号的标识以及参考信号对应的参考信号接收功率或者信噪比,网络设备可以根据CSI-RS的测量结果确定一个或多个较好的发送波束,完成波束训练过程。
波束训练过程完成之后,网络设备和终端设备可以通过最佳BPL进行由物理下行控制信道(physical downlink control channel,PDCCH)承载的下行控制信息(downlink control information,DCI)的收发。由于终端设备不确定网络设备是否会下发DCI以及具体在何处下发DCI,因此网络设备会提前为终端设备配置控制资源集合(control resource set,CORESET)以及搜索空间(search space,SS),确定一些候选的时频资源位置,以便于终端设备在这些位置上进行物理下行控制信道(physical downlink control channel,PDCCH)(或DCI)的盲检。
其中,在CORESET的配置信息中包括传输配置指示(transmission configuration indicator,TCI)状态信息。TCI状态信息可用于指示与PDCCH的解调参考信号(demodulation reference signal,DMRS)具有类型D准共址(quasi co-location,QCL)关系的源参考信号(reference signal,RS)。可以理解,若两个参考信号具有类型D QCL关系,则一个参考信号对应的接收波束可以根据另一个参考信号对应的接收波束确定。由此,终端设备可以根据TCI状态信息指示的类型D QCL源参考信号对应的BPL确定对PDCCH盲检时采用的接收波束。具体的,若TCI状态信息指示PDCCH的DMRS和某个CSI-RS具有类型D QCL关系,且终端设备之前已经通过波束训练过程确定了该CSI-RS对应的最佳接收波束,则该终端设备可以使用同样的接收波束在同样的时频位置上进行PDCCH的盲检。
但是,收发设备之间出现遮挡时,之前确定的最佳BPL的通信质量可能会下降, 因此网络设备需要重新配置(即更新)CORESET中的TCI状态信息,即更新在CORESET上进行PDCCH收发的BPL,也即进行波束切换。现有的重新配置TCI状态信息的流程一般包括:终端设备上报CSI,网络设备接收到CSI之后回复确认(acknowledgement,ACK)消息,当该CSI指示原BPL质量下降或者最佳BPL发生变化后,网络设备发送激活新TCI状态信息的信令来更新用于PDCCH收发的BPL,终端设备对该信令进行解调译码并回复ACK消息。该过程存在复杂的信令交互,使得更新TCI状态信息的时延过长。换言之,该过程使得更新与PDCCH(或者DCI)关联的解调参考信号具有QCL关系的源参考信号的时延过长。而通常在波束需要切换的过程中,波束链路的通信质量下降的速度比较快,如果在波束链路完全不可用之前未完成新TCI状态信息或者新BPL的配置,可能会导致通信链路中断。
发明内容
本申请提供一种通信方法及装置,能够降低更新CORESET中的TCI状态信息的时延,也即降低更新与PDCCH的解调参考信号具有QCL关系的源参考信号的时延,或者降低更新终端在CORESET/SS上监测PDCCH时采用的接收波束的时延,减少通信链路中断的概率。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种通信方法,该方法可以由终端执行,也可以由终端的部件,例如终端的处理器、芯片、或芯片***等执行,方法包括:向网络设备上报信道状态信息,信道状态信息包括至少一个参考信号的标识以及至少一个参考信号中每个参考信号对应的参考信号接收功率RSRP和/或每个参考信号对应的信干噪比SINR;当信道状态信息满足预设条件时,开始在第一搜索空间SS上进行物理下行控制信道PDCCH的监测;其中,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D准共址QCL关系,第一参考信号为信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
基于上述技术方案,在信道状态信息满足预设条件时,可以推断出网络设备和终端之间的最佳BPL发生变化将导致最佳BPL/波束发生切换,网络设备可以在第一SS上向终端发送PDCCH,终端开始在第一SS上进行PDCCH的监测,即第一SS开始生效或被激活。换言之,终端和网络设备能够直接在第一SS上使用新波束进行PDCCH的收发。第一SS中的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,可以理解,第一SS关联的CORESET的TCI状态信息中指示的类型D源参考信号为第一参考信号,或者为和第一参考信号有类型D QCL关系的参考信号。第一参考信号是信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号,即第一参考信号对应的BPL为最佳BPL,由此,网络设备可以使用该最佳BPL对应的发送波束进行PDCCH的发送,终端可以使用该最佳BPL对应的接收波束进行PDCCH的监测。
这样,当终端上报的信道状态信息指示终端和网络设备之间的最佳BPL发生变化时,终端和网络设备之间可以直接激活临时的第一SS,并且两者可以根据信道状态信息中指示的最佳BPL在该临时的第一SS上进行PDCCH的发送和接收,能够实现更快速高效的波束切换。即第一SS激活后自动配置了第一SS关联的CORESET的TCI 状态信息,即类型D QCL源参考信号为第一参考信号。所以实现了终端和网络设备之间无需通过复杂的信令交互来更新CORESET的TCI状态信息,节省了大量的信令交互的时间,能够降低更新TCI状态信息的时延,也即降低更新终端在CORESET监测PDCCH采用的接收波束的时延,或者更新与PDCCH(或者DCI)的解调参考信号具有QCL关系的源参考信号的时延,减少链路中断的概率。
一种可能的设计中,在向网络设备上报信道状态信息之前,方法还包括:从网络设备接收第一配置信息;第一配置信息中包括第一控制资源集合CORESET的配置信息和第一SS的配置信息,第一CORESET的配置信息和第一SS的配置信息中包括候选PDCCH的时频位置信息,第一SS与第一CORESET关联,也可以理解为第一CORESET的配置信息可以应用于第一SS;第一CORESET为第一类型的CORESET,其中,与第一类型的CORESET关联的SS为终端默认不进行PDCCH监测的SS,也可以理解为当终端接收了第一配置信息之后,终端可以不在第一SS上进行PDCCH的监测。另外,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系也可理解为第一CORESET上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系。
一种可能的设计中,在向网络设备上报信道状态信息之前,方法还包括:从网络设备接收第二配置信息;第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息,至少一个第二SS与至少一个第二类型的CORESET关联,在与第二类型的CORESET关联的SS上,终端需要进行PDCCH监测;每个第二类型的CORESET的配置信息中包括传输配置指示TCI状态信息,TCI状态信息用于指示源参考信号,源参考信号与在第二类型的CORESET上的PDCCH的解调参考信号之间满足类型D QCL关系。在第二类型的CORESET上的PDCCH可以理解为在第二类型的CORESET关联的至少一个第二SS上的PDCCH。
一种可能的设计中,预设条件包括:第一参考信号和第二参考信号不同;或者,第一参考信号和第二参考信号之间不满足类型D QCL的关系;其中,第二参考信号为至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。基于该设计,当该预设条件满足时,根据信道状态信息可以确定,已有的用于收发PDCCH的BPL质量低于第一参考信号对应的BPL,因此需要在新的BPL上进行PDCCH的收发。
一种可能的设计中,信道状态信息中包括第三参考信号的标识和第三参考信号对应的RSRP和/或SINR;预设条件包括:第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号与第二参考信号相同;或者,第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号与第二参考信号之间满足类型D QCL的关系;其中,第二参考信号为至少一个第二类型的CORESET中一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。基于该设计,当该预设条件满足时,根据信道状态信息可以确定,已有的用于收发PDCCH的BPL质量低于预设门限值,因此需要在新的BPL上进行PDCCH的收发。
一种可能的设计中,第一SS为第一用户特定搜索空间USS,至少一个第二SS中包括至少一个第二USS,方法还包括:当在目标时间单元上需要在第一USS,以及至 少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,根据终端的监测能力优先在第一USS上进行PDCCH的监测。可以理解,第一USS对应的BPL为信道状态信息中指示的最佳BPL,因此基于该设计,终端优先在第一USS上监测PDCCH,可以使得监测PDCCH的效率更高。
一种可能的设计中,第一SS为第一USS,至少一个第二SS中包括至少一个第二USS,方法还包括:当在目标时间单元上需要在第一USS,以及至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,根据终端的监测能力以及USS的优先级在对应的USS上进行PDCCH的监测;其中,第一USS的优先级低于第三USS的优先级且高于第四USS的优先级,第三USS为至少一个第二USS中优先级最高的第二USS,第四USS为至少一个第二USS中优先级次高的第二USS;或者,第一USS的优先级低于第三USS的优先级且高于第四USS的优先级,第三USS为目标时间单元上优先级最高的第二USS,第四USS为目标时间单元上优先级次高的第二USS。基于该设计,终端优先在优先级最高的第二USS上进行PDCCH的监测,换言之,终端优先在已有的BPL上进行PDCCH的监测,使得在网络设备没有接收到信道状态信息时,终端激活了第一SS,而网络设备未激活第一SS,网络设备和终端之间无法在新的BPL进行PDCCH的收发的情况下,保证已有的BPL的畅通,可以理解,在已有BPL的通信质量未降低到完全不可用时,已有的BPL还可以进行一些基本的通信操作,因此,该方案可以保证通信链路不中断。
一种可能的设计中,在第一SS上进行PDCCH的监测之后,方法还包括:在第一时刻之后,停止在第一SS上进行PDCCH的监测;第一时刻为第二时刻之后目标时长的时刻,第二时刻为:向网络设备发送信道状态信息的时刻;或者,从网络设备接收到确认消息的时刻,确认消息用于指示网络设备成功接收到信道状态信息;或者,第一SS首次生效的时刻;或者,在第一SS上首次监测到PDCCH的时刻。
一种可能的设计中,在第一SS上进行PDCCH的监测之后,方法还包括:在接收到网络设备重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,停止在第一SS上进行PDCCH的监测,目标CORESET属于至少一个第二类型的CORESET;或者,在从网络设备接收到目标指示信息后,停止在第一SS上进行PDCCH的监测,目标指示信息用于指示终端停止在第一SS上进行PDCCH的监测。
第二方面,本申请提供一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片***等执行。方法包括:从终端接收信道状态信息,信道状态信息包括至少一个参考信号的标识以及至少一个参考信号中每个参考信号对应的RSRP和/或每个参考信号对应的SINR;当信道状态信息满足预设条件时,确定终端开始在第一SS上进行PDCCH的监测;其中,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,第一参考信号为第一信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
一种可能的设计中,在从终端接收信道状态信息之前,方法还包括:向终端发送第一配置信息;第一配置信息中包括第一CORESET的配置信息和第一SS的配置信息,第一CORESET的配置信息和第一SS的配置信息中包括候选PDCCH的时频位置信息,第一SS与第一CORESET关联,也可以理解为第一CORESET的配置信息可应用于第 一SS;第一CORESET为第一类型的CORESET,其中,与第一类型的CORESET关联的SS为终端默认不进行PDCCH监测的SS。也可以理解为当终端接收了第一配置信息之后,终端可以不在第一SS进行PDCCH的监测。另外,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系也可理解为第一CORESET上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系。
一种可能的设计中,在从终端接收信道状态信息之前,方法还包括:向终端发送第二配置信息;第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息,至少一个第二SS与至少一个第二类型的CORESET关联,在与第二类型的CORESET关联的SS上,终端需要进行PDCCH监测;每个第二类型的CORESET的配置信息中包括传输配置指示TCI状态信息,TCI状态信息用于指示源参考信号,源参考信号与在第二类型的CORESET上的PDCCH的解调参考信号之间满足类型D QCL关系。在第二类型的CORESET上的PDCCH可以理解为在第二类型的CORESET关联的至少一个第二SS上的PDCCH。
一种可能的设计中,预设条件包括:第一参考信号和第二参考信号不同;或者,第一参考信号和第二参考信号之间不满足类型D QCL的关系;其中,第二参考信号为至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
一种可能的设计中,信道状态信息中包括第三参考信号的标识和第三参考信号对应的RSRP和/或SINR;预设条件包括:第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号与第二参考信号相同;或者,第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号与第二参考信号之间满足类型D QCL的关系;其中,第二参考信号为至少一个第二类型的CORESET中一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
一种可能的设计中,在确定终端开始在第一SS上进行PDCCH的监测之后,方法还包括:在第一时刻之后,确定终端停止在第一SS上进行PDCCH的监测;第一时刻为第二时刻之后目标时长的时刻,第二时刻为:从终端接收到信道状态信息的时刻;或者,向终端发送确认消息的时刻,确认消息用于指示网络设备成功接收到信道状态信息;或者,第一SS首次生效的时刻;或者,在第一SS上首次向终端发送PDCCH的时刻。
一种可能的设计中,在确定终端开始在第一SS上进行PDCCH的监测之后,方法还包括:在向终端发送重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,确定终端停止在第一SS上进行PDCCH的监测,目标CORESET属于至少一个第二类型的CORESET;或者,在向终端发送目标指示信息后,确定终端停止在第一SS上进行PDCCH的监测,目标指示信息用于指示终端停止在第一SS上进行PDCCH的监测。
第三方面,本申请提供一种通信装置,该通信装置可以为上述第一方面中的终端,或者包含上述终端的装置,或者上述终端中包含的装置,比如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一 个或多个与上述功能相对应的模块或单元。在一种可能的设计中,该通信装置包括通信模块(或者称为通信单元、收发单元、收发模块)以及处理模块(或者称为处理单元);通信模块,用于向网络设备上报信道状态信息,信道状态信息包括至少一个参考信号的标识以及至少一个参考信号中每个参考信号对应的RSRP和/或每个参考信号对应的SINR;处理模块,用于当信道状态信息满足预设条件时,开始在第一SS上进行PDCCH的监测;其中,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,第一参考信号为信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
一种可能的设计中,通信模块,还用于从网络设备接收第一配置信息;第一配置信息中包括第一CORESET的配置信息和第一SS的配置信息,第一CORESET的配置信息和第一SS的配置信息中包括候选PDCCH的时频位置信息,第一SS与第一CORESET关联,也可以理解为第一CORESET的配置信息可以应用于第一SS;第一CORESET为第一类型的CORESET,其中,与第一类型的CORESET关联的SS为通信装置默认不进行PDCCH监测的SS,也可以理解为当终端接收了第一配置信息之后,终端可以不在第一SS上进行PDCCH的监测。另外,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系也可理解为第一CORESET上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系。
一种可能的设计中,通信模块,还用于从网络设备接收第二配置信息;第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息,至少一个第二SS与至少一个第二类型的CORESET关联,与第二类型的CORESET关联的SS上,通信装置需要进行PDCCH监测;每个第二类型的CORESET的配置信息中包括TCI状态信息,TCI状态信息用于指示源参考信号,源参考信号与第二类型的CORESET上的PDCCH的解调参考信号之间满足类型D QCL关系。在第二类型的CORESET上的PDCCH可以理解为在第二类型的CORESET关联的至少一个第二SS上的PDCCH。
一种可能的设计中,预设条件包括:第一参考信号和第二参考信号不同;或者,第一参考信号和第二参考信号之间不满足类型D QCL的关系;其中,第二参考信号为至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
一种可能的设计中,信道状态信息中包括第三参考信号的标识和第三参考信号对应的RSRP和/或SINR;预设条件包括:第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号与第二参考信号相同;或者,第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号与第二参考信号之间满足类型D QCL的关系;其中,第二参考信号为至少一个第二类型的CORESET中一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
一种可能的设计中,第一SS为第一用户特定搜索空间USS,至少一个第二SS中包括至少一个第二USS;处理模块,还用于当在目标时间单元上需要在第一USS,以及至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,根据通信装置的监测能力优先在第一USS上进行PDCCH的监测。
一种可能的设计中,第一SS为第一USS,至少一个第二SS中包括至少一个第二USS;处理模块,还用于当在目标时间单元上需要在第一USS,以及至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,根据通信装置的监测能力以及USS的优先级在对应的USS上进行PDCCH的监测;其中,第一USS的优先级低于第三USS的优先级且高于第四USS的优先级,第三USS为至少一个第二USS中优先级最高的第二USS,第四USS为至少一个第二USS中优先级次高的第二USS;或者,第一USS的优先级低于第三USS的优先级且高于第四USS的优先级,第三USS为目标时间单元上优先级最高的第二USS,第四USS为目标时间单元上优先级次高的第二USS。
一种可能的设计中,处理模块,还用于在第一时刻之后,停止在第一SS上进行PDCCH的监测;第一时刻为第二时刻之后目标时长的时刻,第二时刻为:向网络设备发送信道状态信息的时刻;或者,从网络设备接收到确认消息的时刻,确认消息用于指示网络设备成功接收到信道状态信息;或者,第一SS首次生效的时刻;或者,在第一SS上首次监测到PDCCH的时刻。
一种可能的设计中,处理模块,还用于在接收到网络设备重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,停止在第一SS上进行PDCCH的监测,目标CORESET属于至少一个第二类型的CORESET;或者,处理模块,还用于在从网络设备接收到目标指示信息后,停止在第一SS上进行PDCCH的监测,目标指示信息用于指示通信装置停止在第一SS上进行PDCCH的监测。
第四方面,本申请提供一种通信装置,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的设计中,该通信装置包括通信模块(或者称为通信单元、收发模块、收发单元)以及处理模块(或者称为处理单元);通信模块,用于从终端接收信道状态信息,信道状态信息包括至少一个参考信号的标识以及至少一个参考信号中每个参考信号对应的RSRP和/或每个参考信号对应的SINR;处理模块,用于当信道状态信息满足预设条件时,确定终端开始在第一SS上进行PDCCH的监测;其中,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,第一参考信号为第一信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
一种可能的设计中,通信模块,还用于向终端发送第一配置信息;第一配置信息中包括第一CORESET的配置信息和第一SS的配置信息,第一CORESET的配置信息和第一SS的配置信息中包括候选PDCCH的时频位置信息,第一SS与第一CORESET关联,也可以理解为第一CORESET的配置信息可以应用于第一SS;第一CORESET为第一类型的CORESET,其中,与第一类型的CORESET关联的SS为终端默认不进行PDCCH监测的SS,也可以理解为当终端接收了第一配置信息之后,终端可以不在第一SS上进行PDCCH的监测。另外,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系也可理解为第一CORESET上的PDCCH的解调参 考信号和第一参考信号之间满足类型D QCL关系。
一种可能的设计中,通信模块,还用于向终端发送第二配置信息;第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息,至少一个第二SS与至少一个第二类型的CORESET关联,在与第二类型的CORESET关联的SS上,终端需要进行PDCCH监测;每个第二类型的CORESET的配置信息中包括传输配置指示TCI状态信息,TCI状态信息用于指示源参考信号,源参考信号与第二类型的CORESET上的PDCCH的解调参考信号之间满足类型D QCL关系。在第二类型的CORESET上的PDCCH可以理解为在第二类型的CORESET关联的至少一个第二SS上的PDCCH。
一种可能的设计中,预设条件包括:第一参考信号和第二参考信号不同;或者,第一参考信号和第二参考信号之间不满足类型D QCL的关系;其中,第二参考信号为至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
一种可能的设计中,信道状态信息中包括第三参考信号的标识和第三参考信号对应的RSRP和/或SINR;预设条件包括:第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号与第二参考信号相同;或者,第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号与第二参考信号之间满足类型D QCL的关系;其中,第二参考信号为至少一个第二类型的CORESET中一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
一种可能的设计中,处理模块,还用于在第一时刻之后,确定终端停止在第一SS上进行PDCCH的监测;第一时刻为第二时刻之后目标时长的时刻,第二时刻为:从终端接收到信道状态信息的时刻;或者,向终端发送确认消息的时刻,确认消息用于指示通信装置成功接收到信道状态信息;或者,第一SS首次生效的时刻;或者,在第一SS上首次向终端发送PDCCH的时刻。
一种可能的设计中,处理模块,还用于在向终端发送重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,确定终端停止在第一SS上进行PDCCH的监测,目标CORESET属于至少一个第二类型的CORESET;或者,处理模块,还用于在向终端发送目标指示信息后,确定终端停止在第一SS上进行PDCCH的监测,目标指示信息用于指示终端停止在第一SS上进行PDCCH的监测。
第五方面,本申请提供一种通信装置,包括处理器以及通信接口;通信接口用于与其他装置通信;处理器,用于执行计算机程序或指令,以使通信装置执行如上述第一方面及其中任一设计所述的方法,或者,以使通信装置执行如上述第二方面及其中任一设计所述的方法。
第六方面,本申请提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述第一方面或者第二方面所述的方法。该通信装置可以为上述第一方面中的终端,或者包含上述终端的装置,或者上述终端中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。
第七方面,本申请提供一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述第一方面或者第二方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第一方面中的终端,或者包含上述终端的装置,或者上述终端中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。
第八方面,本申请提供一种计算机可读存储介质,包括计算机程序或指令,当其在通信装置上运行时,使得通信装置执行如上述第一方面及其中任一设计所述的方法,或者,使得通信装置执行如上述第二方面及其中任一设计所述的方法。
第九方面,本申请提供一种计算机程序产品,计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如上述第一方面及其中任一设计所述的方法,或者,使得计算机执行如上述第二方面及其中任一设计所述的方法。
第十方面,本申请提供一种芯片,包括:处理电路和收发管脚,处理电路和收发管脚用于实现上述第一方面或第二方面中任一设计提供的方法。其中,处理电路用于执行相应方法中的处理动作,收发管脚用于执行相应方法中的接收/发送的动作。
第十一方面,本申请提供一种通信***,包括:上述第三方面或其任一设计提供的通信装置,以及上述第四方面或其任一设计提供的通信装置。
需要说明的是,上述第二方面至第十一方面中任一设计所带来的技术效果可以参见第一方面中对应设计所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种终端和网络设备采用不同的波束进行CSI-RS的收发的示意图;
图2为本申请实施例提供的一种配置的CORESET以及SS的示意图;
图3为现有的一种更新CORESET中的TCI状态信息的流程示意图;
图4为本申请实施例提供的一种通信***的架构示意图;
图5为本申请实施例提供的又一种通信***的架构示意图;
图6为本申请实施例提供的一种通信方法的流程示意图;
图7为本申请实施例提供的一种激活第一SS的流程示意图;
图8为本申请实施例提供的又一种通信方法的流程示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行详尽的描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等 字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种。例如,可以直接指示所述待指示信息,其中所述待指示信息本身或者所述待指示信息的索引等。又例如,也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。又例如,还可以仅仅指示所述待指示信息的一部分,而所述待指示信息的其他部分则是已知的或者提前约定的。另外,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解,下面先对本申请实施例可能涉及的技术术语和相关概念进行介绍。
1、毫米波通信和波束
毫米波通信采用的频段(简称为毫米波频段)可指频率范围从30吉赫兹(GHz)到300GHz的电磁波频段。有些场合下也会把26GHz、28GHz等和30GHz相近的频段归为毫米波频段。相比较于传统的sub-6GHz频段,毫米波频段的频谱资源更宽,可支持高数据率的传输。同时毫米波频段的波长较小,因此天线尺寸更小,更便于多天线集成。由此,毫米波通信是第五代移动通信(the fifth generation,5G)NR***以及未来通信***中的关键技术。但是,相比较于传统的sub-6GHz频段,毫米波频段的信道衰减较大,因此,采用毫米波频段进行通信的设备需利用波束成形技术将信号发送和接收的能量集中在特定的方向,即特定波束上,提高收发设备之间的等效信道增益,保证毫米波通信的覆盖性能和传输数据率。
波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。波束包括发射波束和接收波束。发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指天线阵列在空间不同方向上进行加强或削弱接收的信号强度的分布。
波束成形的一种常用实现方式是在多个发送/接收天线单元上设置不同的幅度增益和/或相位偏差,其可等效形成一种空间的滤波器,从而实现特定波束方向上信号的发送和接收。因此不同的波束可以称为(或者“对应”)不同的空域参数、空域滤波器或者空域滤波器参数等;不同的发送波束可以称为(或者“对应”)不同的空域发送参数、空域发送滤波器、空域发送滤波器参数等;不同的接收波束可以称为不同的空域接收参数、空域接收滤波器、空域接收滤波器参数等。本申请实施例中,“空域” 也可称之为“空间”,“空间”也可称之为“空域”,其为同一含义。
2、波束训练、波束追踪
由于收发设备在建立连接的初始阶段,收发设备之间的位置和信道等信息通常是未知的,因此收发设备需要通过波束训练过程以确定合适的波束以及对应的空域滤波参数。
以发送设备为网络设备,接收设备为终端为例,现有的NR***中,网络设备和终端之间的波束训练过程是通过CSI上报流程完成的。该CSI上报流程具体包括:网络设备首先通过CSI-RS的配置信息为终端配置多个CSI-RS,在CSI-RS的配置信息中包括每个CSI-RS的时频位置、索引、端口数量、端口图样等信息。如图1所示,网络设备向终端发送多个CSI-RS,网络设备在发送每个CSI-RS时,可以采用不同的空域发送参数,也即可以采用不同的发送波束。
然后,终端接收网络设备发送的每个CSI-RS,并测量每个CSI-RS的参考信号接收功率(reference signal received power,RSRP)和/或信干噪比(signal to interference and noise ratio,SINR)(也可称之为信噪比),随后向网络设备上报CSI,该CSI中包括CSI-RS的索引以及CSI-RS对应的RSRP值和/或SINR值。其中,终端在接收CSI-RS时也可以采用不同的波束接收,对于网络设备的每个发送波束,终端都可以采用不同的接收波束,以便于针对每一个发送波束,终端都可以确定一个最佳的接收波束。网络设备在接收到终端上报的CSI之后,由于网络设备已知发送各个CSI-RS采用的波束,因此,通过终端上报的CSI-RS,网络设备即可确定采用哪些波束发送信号可使得终端接收到能量较高的信号,针对这些发送波束,终端也可确定对应的接收波束,由此,可确定终端与网络设备之间的BPL,完成波束训练过程。
可以理解,BPL指的是由发送波束和对应的接收波束形成的传输链路。其中,终端和网络设备之间的BPL中,可能存在一个或者多个最佳或者较好的BPL,即存在一个或者多个通信质量较好的BPL。
其中,在终端和网络设备建立连接之后,由于终端可能发生移动,终端和网络设备之间可能出现遮挡、周围散射体环境变化等情况,终端和网络设备之间最佳的BPL可能会发生变化。为使得终端的接收波束与网络设备的发送波束之间始终保持对准,网络设备会向终端发送用于波束追踪的CSI-RS,其中网络设备可以采用之前通过波束训练获得的最佳BPL对应的发送波束来发送CSI-RS,相应的,终端可以采用该最佳BPL对应的接收波束来接收CSI-RS,以实现对该最佳BPL的质量的持续测量。另外,网络设备也可以采用其他的波束来发送该CSI-RS,相应的,针对网络设备的每个发送波束,终端也可以采用不同的接收波束接收CSI-RS,以确定对应的最佳接收波束。由此,以重新确定出网络设备和终端之间的最佳BPL,实现波束追踪的过程。
可选的,在本申请实施例中,CSI-RS可以是同步信号(synchronization signal,SS)物理广播信道(physical broadcast channel,PBCH)块(SS/PBCH block,SSB),也可以是非零功率(non-zero-power,NZP)-CSI-RS等,本申请对CSI-RS的类型不作具体限定。
3、CORESET、SS
5G NR***中,波束训练完成之后,终端和网络设备之间可以通过之前训练好的 波束(例如:最佳BPL)进行由PDCCH承载的DCI的收发。但由于终端无法确定网络设备是否会下发DCI以及具体在何处下发DCI,因此网络设备会提前为终端配置CORESET以及SS,该CORESET以及SS可用于确定一些时频资源位置,以便于终端在这些位置上进行PDCCH(或者DCI)的盲检(blind decoding,BD),以获取DCI,进而根据DCI确定网络设备是否调度终端进行数据传输、信道状态信息上报等。在本申请实施例中,盲检也可以称之为或理解为监测、检测(monitoring)。
其中,CORESET可用于确定承载DCI的PDCCH在频域上占据的频域位置以及在时域上占据的符号数目等。在CORESET的配置信息中包括CORESET的标识、频域位置、时域占据的符号数、控制信道单元(control channel element,CCE)到具体的资源组(resource element group,REG)的映射关系、TCI状态信息等。在本申请实施例中,TCI状态信息也可简称为TCI状态。示例性的,一个CCE可以对应6个REG,一个REG表示时域上的一个符号和频域上的一个资源块(resource block,RE)对应的资源。
SS可用于确定PDCCH在时域上占据的起始符号的编号、PDCCH监测周期等信息。在SS中的配置信息包括SS的类型,SS的序号(或称为标识)、SS的周期以及周期内的偏移,SS在时隙中的起始符号的位置,各种聚合等级下PDCCH候选集(candidate)的数目,需要监测的DCI的类型等信息。其中PDCCH由若干个CCE聚合形成,聚合成PDCCH的CCE数目称之为聚合等级。
其中,一个SS与一个CORESET关联(或者对应)。一个CORESET可以关联一个或者多个SS,也可以理解为一个CORESET或者该CORESET的配置信息可以应用于该SS。示例性的,如图2所示,网络设备为终端配置有两个CORESET,分别为CORESET0和CORESET1,其中CORESET0在时域上占两个符号,在频域上占12个(physical resource block,PRB),CORESET1在时域上占1个符号,在频域上占24个PRB。网络设备为终端还配置有两个SS,其中SS0关联CORESET0,SS0的监测周期为1个时隙(slot),起始符号位于对应时隙的符号0,其中SS1关联CORESET1,SS1的监测周期为2个时隙(slot),起始符号位于对应时隙的符号0。
可以理解,根据CORESET以及SS确定出的时频资源中包括许多CCE,但是终端不确定PDCCH由哪些CCE聚合而成,因此,所有可能是PDCCH的资源都称之为PDCCH候选集,即网络设备发送的PDCCH可能出现在每一个PDCCH候选集上,在本申请实施例中,PDCCH候选集也可以称之为候选PDCCH。
其中,SS的类型包括公共搜索空间(common search space,CSS)和用户设备UE(user,equipment,UE)特定搜索空间(UE specific search space,USS)。CSS通常用于广播一些小区公用的信息。而USS只能某个特定终端使用,例如:其可以在该特定终端接入网络设备后使用。其中,CSS的优先级要高于USS,序号小的USS的优先级高于序号大的USS的优先级。需要说明的是,基于对终端的处理复杂度、耗电等方面的考虑,终端在每个时间单元内监测的次数、能够进行信道估计的CCE的数目、能够监测的候选PDCCH的数目等存在一定的限制,因此当终端设备在某个时间单元上被配置的候选PDCCH的数目超过限制时,终端设备会优先在CSS上进行PDCCH的监测,然后按照USS索引(或者称为标识、序号等)从低到高的顺序监测PDCCH, 也可以理解为按照USS优先级从高到低的顺序监测PDCCH。终端设备优先在CSS上进行PDCCH的监测也可以理解为该CSS分配候选PDCCH。
4、QCL关系和TCI状态信息
在NR***中,QCL关系用于表示多个天线端口(或者参考信号)之间具有一个或者多个相同或者相类似的信道特征。终端对于具有QCL关系的多个参考信号,可以采用相同或者相类似的通信配置。具体的,若两个参考信号具有QCL关系,则发送一个参考信号的天线端口对应的信道大尺度特性(或者说,信道特征)可以从发送另一个参考信号的天线端口对应的信道大尺度特性推断获得,或者说,具有QCL关系的参考信号对应的大尺度特性相同,或者,一个参考信号对应的大尺度特性可用于确定与该参考信号具有QCL关系的另一个参考信号对应的大尺度特性,或者,两个参考信号对应的大尺度特性之间的差值小于某阈值。
其中,该信道大尺度特性包括但不限于时延扩展(delay spread)、多普勒扩展(doppler spread)、多普勒频移(doppler shift)、平均时延(average delay)、平均增益、空间接收参数(spatial Rx parameters)等。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束等等。
在5G NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;
类型D(type D):空间接收参数。
其中,类型A、类型B、类型C中的参数可用于时频同步和信道估计,具体的,多普勒频移可用于频域同步,平均时延可用于时域同步,多普勒扩展以及时延扩展可用于信道估计。
类型D指示终端接收两个参考信号采用的空间接收参数可以相同或类似,其可用于终端确定空间接收参数。可选的,该空间接收参数可理解为接收波束。另外,在NR***中,网络设备和终端之间是通过波束训练过程建立连接的,因此,类型D还可以用于指示网络设备发送两个参考信号采用的空间发送参数相同或类似,该空域发送参数可理解为发送波束。
QCL关系通常通过TCI状态信息进行配置。一个TCI状态信息包含一个下行参考信号以及该参考信号的QCL类型。或者,一个TCI状态信息包含第一个下行参考信号的指示信息和该参考信号对应的QCL类型,以及第二个下行参考信号和该参考信号对应的QCL类型。其中第一个下行参考信号对应的QCL类型为typeA或者typeB或者typeC,第二个下行参考信号对应的QCL类型为typeD。
例如:TCI状态信息可用于指示与PDCCH的DMRS具有准共址(quasi co-location,QCL)关系的源参考信号,换言之,TCI状态可用于指示DMRS与源参考信号之间的QCL关系。
在一些实现方式中,在CORESET的配置信息中可以包括一个或者多个TCI状态 信息,可以通过媒体接入控制(medium access control,MAC)层上的MAC控制单元(control element,CE)激活其中的一个TCI状态信息。
当某个CORESET被配置或者被激活了某个TCI状态信息之后,终端可以根据该TCI状态信息指示的源参考信号的信道特征,进行对该CORESET上的PDCCH监测时的信道估计,或者确定对该CORESET上的PDCCH监测时采用的接收波束。
例如:当TCI状态信息指示的类型D QCL源参考信号为波束训练过程中的CSI-RS,即PDCCH的DMRS与波束训练过程中的CSI-RS具有QCL类型D的关系时,终端可以使用之前接收该CSI-RS的接收波束接收PDCCH。
以上是对本申请实施例可能涉及的技术术语和相关概念的介绍,以下不再赘述。
目前,终端和网络设备之间通过波束训练获得最佳BPL之后,可能采用该最佳BPL在为终端配置的CORESET上进行PDCCH的收发。但是该最佳BPL的通信质量可能会下降,例如:当终端发生移动时,终端和网络设备之间可能会出现遮挡、周围散射体环境发生变化等情况,之前通过波束训练获得的最佳BPL的通信质量可能会下降,换言之,终端和网络设备之间的最佳BPL可能会发生变化,需要进行波束切换。因此,终端可以持续地向网络设备上报CSI以通知网络设备最佳发送波束的变化情况,当网络设备接收到该CSI时,会重新配置(即更新)该终端设备的CORESET中的TCI状态信息,以便于终端和网络设备之间可以根据更新的TCI状态信息采用新的BPL进行PDCCH的收发。
示例性的,如图3所示,现有技术中给出了一种更新CORESET中的TCI状态信息的流程。
终端生成CSI,其中终端通过测量网络设备下发的CSI-RS的RSRP(或者SINR),并根据测量的结果生成CSI;然后终端等待用于CSI上报的上行时隙,例如:n个时隙之后为上行时隙,可用于CSI上报,n为正整数,所以终端在n个时隙后向网络设备上报CSI。随后,网络设备通过处理承载CSI的信道以接收上报的CSI,从而根据该CSI确定最佳发送波束是否发生变化,并且网络设备向终端回复ACK消息,该ACK消息用于指示网络设备成功接收到CSI。
若网络设备根据该CSI确定需要更新CORESET中的TCI状态信息,即确定需要更新CORESET的收/发波束,则执行更新TCI状态信息的过程,该过程具体包括:网络设备生成MAC CE,该MAC CE用于更新CORESET的TCI状态,并向终端发送该MAC CE,该TCI状态中的指示的类型D QCL源参考信号为上述CSI上报中RSRP/SINR最高的参考信号,或者该TCI状态中指示的类型D QCL源参考信号与上述CSI上报中RSRP/SINR最高的参考信号有直接的类型D QCL关系,或者有间接的类型D QCL关系。该过程可以理解为向终端指示:网络设备之后会使用上述上报的CSI中对应的最佳的发送波束在该CORESET关联的SS上发送PDCCH,因此终端设备后续可以使用上述上报的CSI中最佳的发送波束对应的接收波束在该CORESET关联的SS上监测PDCCH。
然后终端对接收到的MAC CE进行解析,等待上行时隙,然后在该上行时隙回复ACK消息,例如:m个时隙之后为回复ACK消息的时间,m为正整数,则终端设备在m个时隙之后向网络设备回复ACK消息,以通知网络设备已成功接收到MAC CE。 这样,CORESET中的TCI状态信息更新完成,网络设备和终端之间可以根据更新后的TCI状态信息/BPL进行PDCCH的收发。
如上所述,在波束发生切换的过程中,对于该CORESET更新TCI状态信息的过程需要较长的信令交互时间,使得TCI状态信息的更新时延较长。换言之,更新终端在CORESET上监测PDCCH时采用的接收波束的时延过长。然而,在该波束切换的场景下,最佳BPL的通信质量下降的速度可能较快,例如:在几十毫秒(ms)甚至少于10ms的时间内,其通信质量可能降低到无法使用的情况,也即该最佳BPL会中断。因此,若在更新CORESET的TCI状态信息的信令交互过程中,该最佳BPL发生中断,则会导致新BPL配置失败,而其他旧的(或者称为“已有的”、“已存在的”)BPL的通信质量也降低到无法使用,即网络设备和终端设备之间的链路发生中断,在这种情况下终端和网络设备之间需要发起耗时较长(可达数百ms)的波束失败恢复(beam failure recovery)过程。
基于此,本申请提供一种通信方法,该方法能够降低更新CORESET中的TCI状态信息的时延,也即降低更新与PDCCH的解调参考信号具有QCL关系的源参考信号的时延,或者降低更新终端在CORESET监测PDCCH时采用的接收波束的时延,减少通信链路中断的概率。
本申请实施例的技术方案可以应用于各种通信***。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、卫星通信***、NTN***、物联网(internet of things,IoT)***、NR***、或未来演进的通信***等。术语“***”可以和“网络”相互替换。此外,通信***还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
上述适用本申请的通信***仅是举例说明,适用本申请的通信***不限于此,在此统一说明,以下不再赘述。
如图4所示,为本申请实施例提供的一种通信***10。该通信***10包括至少一个网络设备30以及与该网络设备30连接的一个或多个终端40。可选的,不同的终端40之间可以相互通信。
或者,如图5所示,为本申请实施例提供的另一种通信***20。该通信***20包括至少一个终端(也可称为终端设备)40以及与该终端40连接的一个或多个网络设备30。可选的,不同的网络设备30之间可以相互通信。
以图4或图5所示的网络设备30和任一终端40通信为例,本申请中,终端向网络设备上报信道状态信息,相应的,网络设备接收来自终端的信道状态信息,其中,信道状态信息中包括至少一个参考信号的标识,以及每个参考信号对应的RSRP和/或SINR。在上报的所述信道状态信息满足预设条件时,可以理解,满足该预设条件时可以推断出网络设备和终端之间的最佳BPL发生变化将导致最佳BPL/波束发生切换,第一SS开始生效或被激活,即网络设备可以在第一SS上向终端发送PDCCH,终端开始在第一SS上进行PDCCH的监测,其中,第一SS中的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,第一参考信号是信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
基于该方案,在信道状态信息满足预设条件时,第一SS激活,终端和网络设备能够直接在第一SS上使用新波束进行PDCCH的收发,换言之,第一SS在正常情况下默认不激活,即网络设备不会在第一SS进行PDCCH的发送,终端也不会在第一SS进行PDCCH的监测,但是当终端上报的信息状态信息满足预设条件,例如,指示最佳波束发生变化或者之前的BPL质量低于某个门限等时,终端激活第一SS,网络设备在收到所述信道状态信息后确认所述状态信息满足预设条件后也激活第一SS。
同时,第一SS上的PDCCH的解调参考信号与第一参考信号之间存在类型D QCL关系,即第一SS关联的CORESET的TCI状态信息中指示的类型D源参考信号为第一参考信号,或者为和第一参考信号有类型D QCL关系的参考信号。也可以理解为第一SS关联的CORESET上的PDCCH的解调参考信号与第一参考信号之间存在类型D QCL关系。换言之,网络设备和终端能根据第一参考信号对应的BPL在第一SS上进行PDCCH的收发。第一参考信号是信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号,即第一参考信号对应的BPL为最佳BPL,或者,等效的,信道状态信息中最佳的BPL即为网络设备发送第一参考信号使用的发送波束以及终端接收第一参考信号使用的接收波束。由此,终端和网络设备可以采用该最佳BPL在第一SS或者对应的CORESET上进行PDCCH的收发。
这样,在终端将信道状态信息上报给网络设备且信道状态信息满足预设条件的情况下,会直接激活对应的SS,并且根据所述信道状态信息确定该SS关联的CORESET的TCI状态信息,终端设备可以通过信道状态信息中最佳的BPL对应的接收波束或者与该接收波束相近的波束(可理解为与该接收波束的指向相同,但波束宽度可能不同的波束,在此统一说明)在该SS进行PDCCH的监测。同样的,网络设备在接收到所述信道状态信息并且所述信道状态信息满足预设条件的情况下也会直接激活对应的SS,并且根据所述信道状态信息确定该SS关联的CORESET的TCI状态信息,网络设备在该SS上进行PDCCH的发送时可以使用所述信道状态信息中最佳的BPL对应的发送波束或者与该发送波束相近的波束(可理解为与该发送波束的指向相同,但波束宽度可能不同的波束)。
综上,当终端上报的信道状态信息指示终端和网络设备之间的最佳BPL发生变化时,终端和网络设备之间可以直接激活临时的第一SS,并且两者可以根据信道状态信息中指示的最佳BPL在该临时的第一SS进行PDCCH的发送和接收,能够实现更快速高效的波束切换。即终端和网络设备之间无需通过复杂的信令交互来更新CORESET的TCI状态信息,节省了图3中大量的信令交互的时间,能够降低更新TCI状态信息的时延,也即降低更新终端在CORESET监测PDCCH采用的接收波束的时延,或者更新与PDCCH(或者DCI)的解调参考信号具有QCL关系的源参考信号的时延,减少链路中断的概率。
可选的,本申请实施例中的网络设备30,是一种将终端40接入到无线网络的设备,所述网络设备30可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。例如,网络设备可以包括长期演进(long term evolution,LTE)***或演进的LTE***(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站 eNB和异构网络场景下的微基站eNB;或者也可以包括5G新无线(new radio,NR)***中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等;再或者还可以包括云接入网(cloud radio access network,CloudRAN)***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU);又或者可以包括非陆地网络(non-terrestrial network,NTN)中的基站,即可以部署于高空平台或者卫星,在NTN中,网络设备可以作为层1(L1)中继(relay),或者可以作为基站,或者可以作为DU,或者可以作为接入回传一体化(integrated access and backhual,IAB)节点;又或者,网络设备可以是IoT中实现基站功能的设备,例如车联网(vehicle-to-everything,V2X)、设备到设备(device to device,D2D)、或者机器到机器(machine to machine,M2M)中实现基站功能的设备,本申请实施例并不限定。
可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端40,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。或者,终端可以是IoT中具有通信功能的终端,例如V2X中的终端(例如车联网设备)、D2D通信中的终端、或者M2M通信中的终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备30与终端40也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例提供的通信方法,可以适用于图4以及图5所示的网络设备与终端之间,具体实现可以参照后文所述的方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信***中,相应的名称也可以用其他通信***中的对应功能的名称进行替代。
应理解,图4以及图5仅为便于理解而示例的简化示意图,该通信***中还可以包括其他设备,图4以及图5中未予以画出。
下面将结合附图,以图4或图5所示的网络设备30与任一终端40进行交互为例,对本申请实施例提供的通信进行展开说明。
需要说明的是,本申请下述实施例中各个消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
可以理解的,本申请实施例中,终端和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
如图6所示,为本申请实施例提供的一种通信方法,该方法包括如下步骤:
S601、终端向网络设备上报信道状态信息。相应的,网络设备接收来自终端的信道状态信息。
其中,信道状态信息中包括至少一个参考信号的标识,以及至少一个参考信号中每个参考信号对应的RSRP和/或每个参考信号对应的SINR。
示例性的,该参考信号可以称之为CSI-RS。可选的,网络设备可以为终端配置多个用于波束测量的CSI-RS,包括配置这些CSI-RS的索引,时频位置,端口数等信息,并在对应的时频位置通过发送波束向终端发送这些CSI-RS。其中,对于每个用于波束测量的CSI-RS,网络设备采用的发送波束(或者称之为空间发送参数)可以相同也可以不同。需要指出的是,本申请并不限定网络设备下发CSI-RS的时机,可以周期性下发,也可以非周期性下发,本申请对此不作限定。可选的,CSI-RS是否周期性下发,或者CSI-RS周期性下发时采用的周期大小可由网络设备在CSI-RS的配置信息中进行配置。
终端可以通过接收波束接收来自网络设备的CSI-RS,同样的,终端采用的接收波束(或者称之为空间接收参数)可以相同也可以不同。然后,终端可以根据每个CSI-RS的测量结果生成信道状态信息,随后向网络设备上报该信道状态信息。可选的,终端可以周期性上报信道状态信息,半静态上报信道状态信息,也可以非周期性上报信道状态信息,本申请对终端向网络设备上报信道状态信息的方式和时机不作限定。可选的,该上报信道状态信息的具体方式和时机可以由网络设备进行配置。
可以理解,对于每个参考信号,终端可以同时测量RSRP以及SINR,也可以测量这二者中的一个。在终端同时测量RSRP以及SINR的情况下,终端上报的信道状态信息中也可以仅包括这二者中的一个,具体上报哪些还可以由网络设备进行配置。
S602、当信道状态信息满足预设条件时,终端开始在第一搜索空间SS上进行PDCCH的监测。相应的,当网络设备接收到信道状态信息且信道状态信息满足预设条件时,网络设备确定:终端开始在第一SS上进行PDCCH的监测。
其中,第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D准共址QCL关系,第一参考信号为所述信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
可以理解,在信道状态信息满足预设条件时,网络设备可以使用第一空域发送参 数在第一SS上向终端发送PDCCH,终端可以使用第一空域接收参数在第一SS上监测PDCCH或者PDCCH候选集,第一空域发送参数根据第一参考信号的空域发送参数确定,第一空域接收参数根据第一参考信号的空域接收参数确定。
换言之,在信道状态信息满足预设条件时,网络设备可以采用第一发送波束在第一SS上向终端发送PDCCH,终端可以使用第一接收波束在第一SS上监测PDCCH,第一发送波束为信道状态信息指示的最佳BPL对应的发送波束或者与该发送波束相近的波束,第一接收波束为信道状态信息指示的最佳BPL对应的接收波束或者与该接收波束相近的波束。
换言之,第一SS在正常情况下默认不激活,即网络设备不会在第一SS进行PDCCH的发送,终端设备也不会在第一SS进行PDCCH的监测,但是当终端设备上报的信息状态信息满足预设条件,例如指示最佳波束发生变化或者之前的BPL质量低于某个门限等时,终端设备激活第一SS,网络设备在收到所述信道状态信息后确认所述状态信息满足预设条件后也激活第一SS。
可以理解,当第一SS与第一CORESET关联时,激活第一SS也可以理解为激活第一CORESET。终端开始在第一SS上进行PDCCH的监测也可以理解为终端开始在第一CORESET上进行PDCCH的监测。第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D准共址QCL关系也可以理解为,第一CORESET上的PDCCH的解调参考信号和第一参考信号之间满足类型D准共址QCL关系。
可选的,当信道状态信息满足预设条件时,且终端收到所述网络设备针对信道状态信息的ACK消息后,终端开始在第一SS上进行PDCCH的监测;等效的,当信道状态信息满足预设条件时,且网络设备针对所述信道状态信息回复ACK消息后,网络设备确定:终端开始在第一SS上进行PDCCH的监测。基于该实现方式,终端在确定网络设备接收到满足预设条件的信道状态信息之后,才会开始在第一SS上进行PDCCH的监测,也即激活第一SS。可以保证终端和网络设备都采用第一SS进行PDCCH的收发,也即使用第一SS对应的TCI状态。可以避免出现,终端上报了信道状态信息,但是网络设备未接收到,由此终端采用第一SS对应的TCI状态,而网络设备未采用第一SS的TCI状态,使得终端和网络设备之间的TCI配置不匹配的问题。
可以理解,在信道状态信息中仅包括每个参考信号对应的RSRP的情况下,第一参考信号为信道状态信息中RSRP最高的参考信号。在信道状态信息中仅包括每个参考信号对应的SINR的情况下,第一参考信号为信道状态信息中SINR最高的参考信号。在信道状态信息中同时包括每个参考信号对应的RSRP以及SINR的情况下,第一参考信号可以为信道状态信息中RSRP最高的参考信号,也可以为信道状态信息中SINR最高的参考信号,还可以是信道状态信息中RSRP以及SINR同时最高的参考信号。可选的,确定第一参考信号的具体方法可以是网络配置的或者预配置的。
可选的,预设条件包括:所述第一参考信号和第二参考信号不同;或者,所述第一参考信号和所述第二参考信号之间不满足类型D QCL的关系。其中,所述第二参考信号为所述至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
此处第二类型的CORESET可以理解为当前终端设备和网络设备之间正常用于收 发PDCCH的CORESET(区别于备用的第一SS关联的CORESET),在第二类型的CORESET关联的SS上,所述终端设备需要持续地进行PDCCH的监测,进一步的细节请参考后文详细介绍,此处不再展开。当上述预设条件满足时,根据信道状态信息可以确定,已有的用于收发PDCCH的BPL质量低于第一参考信号对应的BPL,因此需要在新的BPL上进行PDCCH的收发。
本申请实施例中,类型D QCL关系可以是直接的类型D QCL关系,也可以是间接的类型D QCL关系,例如:信号A与信号B之间存在直接的类型D QCL关系,信号B和信号C之间存在直接的类型D QCL关系,则信号A和信号C之间存在间接的类型D QCL关系。
可选的,第二参考信号可以是至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。具体的,第二参考信号可以是至少一个第二类型的CORESET中任一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号,也可以是至少一个第二类型的CORESET中标识(或者称之为序号)最小的第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号,还可以是至少一个第二类型的CORESET中除最小标识之外的其他标识的第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。此处标识可以理解为CORESET的配置信息中包括的标识。此处TCI状态信息指示的一个源参考信号可以理解为TCI状态信息中的类型D QCL源参考信号。
可选的,在信道状态信息中包括第三参考信号的标识和第三参考信号对应的RSRP和/或SINR,预设条件还可以包括:第三参考信号的RSRP值或者SINR值低于预设门限值,第三参考信号和第二参考信号相同,或者,第三参考信号的RSRP值或者SINR值低于预设门限值第三参考信号和第二参考信号之间满足类型D QCL关系。此处第二参考信号的介绍请参考上文所述,此处不再赘述。当上述预设条件满足时,根据信道状态信息可以确定,已有的用于收发PDCCH的BPL质量低于预设门限值,因此需要在新的BPL上进行PDCCH的收发。
可选的,预设条件还可以包括:第一参考信号的RSRP与第二参考信号(或者第三参考信号)的RSRP之间的差值大于第一预设阈值。或者,第一参考信号的SINR与第二参考信号(或者第三参考信号)的SINR之间的差值大于第二预设阈值。即只有当第一参考信号对应的BPL质量比已有BPL质量大于一定程度时,才会触发第一SS的激活,并且在第一SS上使用新BPL进行PDCCH的收发,避免了BPL质量短期波动导致第一SS的频繁激活和BPL的频繁切换。
示例性的,图7示出了第一SS被激活的示意图。如图7所示,终端生成CSI,例如:终端通过测量网络设备下发的CSI-RS的RSRP和/或SINR,并根据测量的结果生成CSI。然后终端等待CSI上报时间,例如:n个时隙后为CSI上报时间,n为正整数,向网络设备上报CSI,前述过程的时间段内第一SS未被激活,即第一SS处于未激活状态,由于所述CSI满足预设条件,所述终端设备确定第一SS被激活,即开始在所述第一SS监测PDCCH,用于监测PDCCH的接收波束为所述CSI中最佳BPL对应的接收波束或者与该接收波束相近的波束。然后,网络设备接收CSI并确定该CSI满足 预设条件,因此网络设备在该步骤之后激活第一SS,即网络设备可以通过第一SS向终端发送PDCCH,在第一SS上发送PDCCH使用的发送波束可以为所述CSI中最佳BPL对应的发送波束或者与该发送波束相近的波束。
可选的,在本申请实施例中,“进行PDCCH的监测”也可描述为“进行PDCCH的盲检”。
基于上述技术方案,在信道状态信息满足预设条件时,第一SS激活,终端和网络设备能够直接在第一SS上使用新波束进行PDCCH的收发,换言之,第一SS在正常情况下默认不激活,即网络设备不会在第一SS进行PDCCH的发送,终端也不会在第一SS进行PDCCH的监测,但是当终端上报的信息状态信息满足预设条件,例如,指示最佳波束发生变化或者之前的BPL质量低于某个门限等时,终端激活第一SS,网络设备在收到所述信道状态信息后确认所述状态信息满足预设条件后也激活第一SS。
同时,第一SS上的PDCCH的解调参考信号与第一参考信号之间存在类型D QCL关系,即第一SS关联的CORESET的TCI状态信息中指示的类型D源参考信号为第一参考信号或者为和第一参考信号有类型D QCL关系的参考信号。换言之,网络设备和终端能根据第一参考信号对应的BPL在第一SS上进行PDCCH的收发。第一参考信号是信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号,即第一参考信号对应的BPL为最佳BPL,或者,等效的,所述信道状态信息中最佳的BPL即为所述网络设备发送第一参考信号使用的发送波束以及所述终端设备接收第一参考信号使用的接收波束。由此,终端和网络设备可以采用该最佳BPL在第一SS上进行PDCCH的收发。
这样,在终端将信道状态信息上报给网络设备且信道状态信息满足预设条件的情况下,会直接激活对应的SS,并且根据所述信道状态信息确定该SS关联的CORESET的TCI状态信息,终端设备可以通过信道状态信息中最佳的BPL对应的接收波束或者与该接收波束相近的波束在该SS进行PDCCH的监测。同样的,网络设备在接收到所述信道状态信息并且所述信道状态信息满足预设条件的情况下也会直接激活对应的SS,并且根据所述信道状态信息确定该SS关联的CORESET的TCI状态,网络设备在该SS上进行PDCCH的发送时可以使用所述信道状态信息中最佳的BPL对应的发送波束或者与该发送波束相近的波束。
综上,当终端上报的信道状态信息指示终端和网络设备之间的最佳BPL发生变化时,终端和网络设备之间可以直接激活临时的第一SS,并且两者可以根据信道状态信息中指示的最佳BPL在该临时的第一SS进行PDCCH的发送和接收,能够实现更快速高效的波束切换。即终端和网络设备之间无需通过复杂的信令交互来更新CORESET的TCI状态信息,节省了图3中大量的信令交互的时间,能够降低更新TCI状态信息的时延,也即降低更新终端在CORESET监测PDCCH采用的接收波束的时延,或者更新与PDCCH(或者DCI)的解调参考信号具有QCL关系的源参考信号的时延,减少链路中断的概率。
其中,为便于终端获知网络设备为其配置的SS以及CORESET的具体情况,可选的,在步骤S601之前,如图8所示,图6所示的方法还包括以下步骤:
S603、网络设备向终端发送第一配置信息。相应的,终端接收来自网络设备的第 一配置信息。
其中,第一配置信息中包括第一CORESET的配置信息和第一SS的配置信息,第一CORESET和第一SS的配置信息中包括候选PDCCH的时频位置信息(或者,网络设备可以向终端发送PDCCH的时频位置信息)。也即终端根据第一CORESET和第一SS的配置信息可以确定在第一SS被激活后需要监测PDCCH的时频位置。
一种可能的实现方式中,第一CORESET的配置信息中默认可以不包括初始的TCI状态信息。在该实现方式中,网络设备和终端后续激活第一SS以及第一CORESET时,网络设备和终端可以在第一CORESET的配置信息中自动配置TCI状态信息,该TCI状态信息指示的源参考信号为第一参考信号。
需要说明的是,第一CORESET的配置信息和第一SS的配置信息可以包含在一个配置信息中,也可以分别包含在两个配置信息中。第一CORESET的配置信息和第一SS的配置信息可以由网络设备同时下发给终端,也可以由网络设备先后下发给终端。
第一SS与第一CORESET关联,也可以描述为第一CORESET的配置信息可以应用于第一SS,换言之,第一CORESET为适用于第一SS的CORESET。可选的,在本申请实施例中,第一SS的数目可以为一个或多个。
第一CORESET为第一类型的CORESET,其中,与所述第一类型的CORESET关联的SS(换言之,第一类型的CORESET为适用于该SS的CORESET)为终端默认不进行PDCCH监测的SS(或者,网络设备默认不向终端发送PDCCH的SS),即默认情况下,终端不会在这些SS的时频位置上进行PDCCH的监测。可选的,与第一类型的CORESET关联的SS可以为一个或多个。也可以理解,第一类型的CORESET为终端默认不进行PDCCH监测的CORESET。也可以理解,当所述终端设备收到第一配置信息之后,所述终端可以不在对应的时频位置进行PDCCH的监测。
S604、网络设备向终端发送第二配置信息。相应的,终端接收来自网络设备的第二配置信息。
其中,第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息。第二类型的CORESET的配置信息以及第二SS的配置信息中包括终端监测PDCCH(或者,称为候选PDCCH)的时频位置信息(或者,网络设备可以向终端发送PDCCH的时频位置信息)。也即终端根据第二类型的CORESET的配置信息以及第二SS的配置信息可以确定需要监测PDCCH的时频位置。也可以理解,当所述终端设备收到第二配置信息之后,所述终端需要在对应的时频位置进行PDCCH的监测。
至少一个第二SS与至少一个第二类型的CORESET关联。应该理解,一个第二类型的CORESET可以关联一个或多个第二SS,换言之,第二类型的CORESET为适用于第二SS的CORESET。
同样的,第二类型的CORESET的配置信息和第二SS的配置信息可以包含在一个配置信息中,也可以分别包含在不同的配置信息中。可选的,不同的第二类型的CORESET的配置信息可以包含在一个配置信息,也可以包含在一个或多个不同的配置信息中。在采用多个配置信息的情况下,这多个配置信息可以由网络设备同时下发给终端,也可以由网络设备先后下发给终端。
需要说明的是,在本申请实施例中,第一类型的CORESET、第二类型的CORESET、与第一类型的CORESET关联的SS、与第二类型的CORESET关联的SS等的配置信息的具体配置方式、下发方式等,本申请均不对其限定。
在第二类型的CORESET关联的SS上,终端需要进行PDCCH监测。换言之,与第二类型的CORESET关联的SS(换言之,第二类型的CORESET为适用于该SS的CORESET)为终端需要(或者默认)进行PDCCH监测的SS(或者,网络设备可以向终端发送PDCCH的SS)。其中,每个第二类型的CORESET的配置信息中包括TCI配置信息,该TCI状态信息用于指示源参考信号,该源参考信号与该第二类型的CORESET(或与该第二CORESET关联的第二SS)上的PDCCH的解调参考信号之间满足类型D QCL关系。
需要说明的是,第一配置信息和第二配置信息可以由网络设备同时下发给终端,也可以由网络设备先后下发给终端,本申请对此不作限定。
进一步的,终端可以根据接收到的第一配置信息以及第二配置信息,在第一SS激活之前,终端在第二SS(或者第二类型的CORESET)上进行PDCCH的监测。在第一SS激活之后,终端除了在第一SS(或者第一CORESET)上进行PDCCH的监测之外,还可以继续在第二SS(或者第二类型的CORESET)上进行PDCCH的监测。
可以理解,由于网络设备在一个时隙或者一个间隔(span)中为终端配置的SS可能会超过终端的监测能力,因此终端可以根据SS的优先级进行PDCCH的监测。其中,SS可分为USS以及CSS,CSS的优先级要高于USS的优先级。一般而言,终端在CSS上监测PDCCH时,不会超过终端的监测能力。终端在USS上监测PDCCH时,具体包括以下可能的实现方式。
一种可能的实现方式中,第一SS为第一USS,至少一个第二SS中包括至少一个第二USS。图6所示的方法还包括步骤S605(图中未示出):
S605、当在目标时间单元上终端需要在第一USS,以及至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,可以根据终端的监测能力优先在第一USS上进行PDCCH的监测。
其中,目标时间单元可以是一个或者多个时隙、一个或者多个时域符号,一个或者多个span,本申请对此不作具体限定,在此统一说明。
可选的,终端可以根据SS的配置信息确定位于目标时间单元内的SS具体为哪些,终端可以在该目标时间单元内在这些SS上进行PDCCH的监测,在此统一说明。
可选的,至少一个第二SS中还可以包括一个或多个第二CSS。
示例性的,在目标时间单元上,终端需要在第一USS以及2个第二USS中进行PDCCH的监测时,终端优先在第一USS上进行PDCCH的监测,也即第一USS的优先级是所有待监测的USS中优先级最高的USS。可以理解,第一USS对应的BPL是信道状态信息中指示的最佳的BPL,因此优先在第一USS中监测PDCCH效率更高。
可以理解,终端优先在某个USS上进行PDCCH监测可以理解为终端为该USS分配候选PDCCH。
另一种可能的实现方式中,第一SS为第一USS,至少一个第二SS中包括至少一个第二USS。图6所示的方法还包括步骤S606(图中未示出):
S606、当在目标时间单元上终端需要在第一USS,以及至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,可以根据终端的监测能力以及USS的优先级在对应的USS上进行PDCCH的监测。
其中,第一USS的优先级低于第三USS的优先级且高于第四USS的优先级,第三USS为至少一个第二USS中优先级最高的第二USS,第四USS为至少一个第二USS中优先级次高(或者,称之为第二高)的第二USS。即第一USS是所有USS中优先级次高的USS。
或者,第一USS的优先级低于第三USS的优先级且高于第四USS的优先级,第三USS为目标时间单元上优先级最高的第二USS,第四USS为目标时间单元上优先级次高的第二USS。即第一USS是终端在目标时间单元上需要监测的USS中优先级次高的USS。
可以理解,终端优先在某个USS上进行PDCCH监测可以理解为终端为该USS分配候选PDCCH。
可选的,上述USS的优先级可以通过USS的标识确定,确定的规则可以是USS的标识越小,USS优先级越高,或者也可以是USS的标识越大,USS的优先级越高。通过上述方法,终端优先保证了在原BPL(对应优先级最高的第二USS)上进行PDCCH的监测,当网络设备没有收到信道状态信息时,终端激活了第一SS,但是网络设备没有激活第一SS,在这种情况下网络设备和终端无法在新的BPL进行PDCCH的收发,而本方法保证了旧BPL的畅通,当旧BPL质量未掉底时还可以进行一些基本的通信,保证了通信链路不中断。
可以理解,SS中包括一个或多个候选PDCCH。可选的,当在目标时间单元内,终端需要监测的USS中的候选PDCCH的数目超过终端的监测能力时,终端可以取消对优先级较低的USS中的候选PDCCH的监测。例如:终端可以按照优先级从低到高的顺序,依次取消对n(n为正整数)个优先级低的USS中的候选PDCCH的监测,以使得在保证终端能在第一USS上监测PDCCH后,剩余的需要监测的USS中的候选PDCCH的数目不超过终端的监测能力。
可选的,终端还可以停止在第一SS上进行PDCCH的监测,该操作具体包括以下两种可能的实现方式。
一种可能的实现方式中,图6所示的方法,还包括步骤S607(图中未示出):
S607、在第一时刻之后,终端停止在第一SS上进行PDCCH的监测。相应的,在第一时刻之后,网络设备确定终端停止在第一SS上进行PDCCH的监测。
其中,第一时刻为第二时刻之后目标时长的时刻。第二时刻为:终端向网络设备上报信道状态信息的时刻。相应的,网络设备从终端接收到信道状态信息的时刻。或者,
终端从网络设备接收到确认消息的时刻。相应的,网络设备向终端发送确认消息的时刻。其中,该确认消息用于指示网络设备成功接收到信道状态信息。或者,
第一SS首次生效(或者激活)的时刻。或者,
终端在第一SS上首次监测到PDCCH的时刻。相应的,网络设备在第一SS上首次向终端发送PDCCH的时刻。
可选的,目标时长可以是网络设备配置的或者预配置的。
需要说明的是,本申请实施例中,网络设备确定终端停止在第一SS上进行PDCCH的检测,也可理解为网络设备不会(或者无法)在第一SS上向终端发送PDCCH。
另一种可能的实现方式中,图6所示的方法还可以包括以下步骤(图中未示出):
S608a、终端在接收到网络设备重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,停止在第一SS上进行PDCCH的监测。相应的,网络设备在向终端发送重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,确定终端停止在第一SS上进行PDCCH的监测。
其中,目标CORESET属于至少一个第二类型的CORESET。目标CORESET可以为一个或者多个第二类型的CORESET。
可选的,网络设备为终端重新配置目标CORESET的配置信息中包括的TCI状态信息的具体实现可采用图3所示的方式,也可以采用其他的方式,本申请对此不作具体限定。
或者,S608b、终端在从网络设备接收到目标指示信息后,停止在第一SS上进行PDCCH的监测。相应的,网络设备在向终端发送目标指示信息后,网络设备确定终端停止在第一SS上进行PDCCH的监测。
其中,目标指示信息用于指示终端停止在第一SS上进行PDCCH的监测。
可选的,在一些实施例中,第一CORESET以及第一SS通过图6所示的方法被激活(或者,描述为生效)之后,第一CORESET以及第一SS还可被配置为第二类型的CORESET以及第二SS。
在一种可能的实现方式中,第一CORESET以及第一SS激活后预设时间,自动配置为新的第二类型的CORESET以及第二SS。
在另一种可能的实现的方式中,第一CORESET以及第一SS激活后预设时间,自动替换之前已配置的第二类型的CORESET以及第二SS,成为第二类型的CORESET以及第二SS。
在又一种可能的实现方式中,终端和网络设备之间采用激活后的第一CORESET以及第一SS完成一次完整的数据调度之后,第一CORESET以及第一SS自动替换之前已配置的第二类型的CORESET以及第二SS,成为第二类型的CORESET以及第二SS,或者,自动配置为新的第二类型的CORESET以及第二SS。
具体的,对于第一CORESET以及第一SS具体替换掉哪个第二类型CORESET以及第二SS,可以在上述第二配置信息配置,也可以单独配置,本申请对此并不做限制。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,通信装置(例如网络设备、终端设备)为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可 以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图9所示,为本申请实施例提供的一种通信装置,该通信装置包括处理模块901和通信模块902。
一种可能的示例中,以通信装置为网络设备为例,处理模块901用于支持网络设备在信道状态信息满足预设条件时,确定终端开始在第一SS上进行PDCCH的监测;和/或本申请实施例中网络设备需要执行的其他处理操作。通信模块902用于支持网络设备执行图6的步骤S601,图8中的步骤S601、S603、S604,和/或本申请实施例中网络设备需要执行的其他通信操作。
另一种可能的示例中,以通信装置为终端设备为例,处理模块901用于支持终端设备执行图6中的步骤S602,和/或本申请实施例中终端设备需要执行的其他处理操作。通信模块902用于支持终端设备执行图6中的步骤S601,图8中的步骤S601、S603、S604,和/或本申请实施例中终端设备需要执行的其他通信操作。
可选的,该通信装置还可以包括存储模块903,用于存储通信装置的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
其中,处理模块901可以是处理器或控制器,例如可以是CPU,通用处理器,专用集成电路(application specific integrated circuit,ASIC),现场可编程逻辑门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块902可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,例如可以包括:基站和终端之间的接口和/或其他接口。存储模块903可以是存储器。
当处理模块901为处理器,通信模块902为通信接口,存储模块903为存储器时,本申请实施例所涉及的通信装置可以为图10所示。
参阅图10所示,该通信装置包括:处理器1001、通信接口1002、存储器1003。可选的,通信装置还可以包括总线1004。其中,通信接口1002、处理器1001以及存储器1003可以通过总线1004相互连接;总线1004可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,本申请实施例还提供一种携带计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行上述实施例所介绍的方法。
可选的,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行上述实施例 所介绍的方法。
可选的,本申请实施例还提供一种芯片,包括:处理电路和收发管脚,处理电路和收发管脚用于实现上述实施例所介绍的方法。其中,处理电路用于执行相应方法中的处理动作,收发管脚用于执行相应方法中的接收/发送的动作。
可选的,本申请实施例还提供一种通信***,包括:上述实施例所提供的网络设备,以及上述实施例所提供的终端。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种通信方法,其特征在于,应用于终端,所述方法包括:
    向网络设备上报信道状态信息,所述信道状态信息包括至少一个参考信号的标识以及所述至少一个参考信号中每个参考信号对应的参考信号接收功率RSRP和/或所述每个参考信号对应的信干噪比SINR;
    当所述信道状态信息满足预设条件时,开始在第一搜索空间SS上进行物理下行控制信道PDCCH的监测;其中,所述第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D准共址QCL关系,所述第一参考信号为所述信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
  2. 根据权利要求1所述的方法,其特征在于,在向所述网络设备上报所述信道状态信息之前,所述方法还包括:
    从所述网络设备接收第一配置信息;所述第一配置信息中包括第一控制资源集合CORESET的配置信息和所述第一SS的配置信息,所述第一CORESET的配置信息和所述第一SS的配置信息中包括候选PDCCH的时频位置信息,所述第一SS与所述第一CORESET关联;
    所述第一CORESET为第一类型的CORESET,其中,与所述第一类型的CORESET关联的SS为所述终端默认不进行PDCCH监测的SS。
  3. 根据权利要求1或2所述的方法,其特征在于,在向所述网络设备上报所述信道状态信息之前,所述方法还包括:
    从所述网络设备接收第二配置信息;所述第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息,所述至少一个第二SS与所述至少一个第二类型的CORESET关联,在所述第二类型的CORESET关联的SS上,所述终端需要进行PDCCH监测;
    每个第二类型的CORESET的配置信息中包括传输配置指示TCI状态信息,所述TCI状态信息用于指示源参考信号,所述源参考信号与所述第二类型的CORESET上的PDCCH的解调参考信号之间满足类型D QCL关系。
  4. 根据权利要求3所述的方法,其特征在于,所述预设条件包括:
    所述第一参考信号和第二参考信号不同;或者,所述第一参考信号和所述第二参考信号之间不满足类型D QCL的关系;
    其中,所述第二参考信号为所述至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
  5. 根据权利要求3或4所述的方法,其特征在于,所述信道状态信息中包括第三参考信号的标识和所述第三参考信号对应的RSRP和/或SINR;
    所述预设条件包括:所述第三参考信号的RSRP值或者SINR值低于预设门限值,所述第三参考信号与第二参考信号相同;或者,
    所述第三参考信号的RSRP值或者SINR值低于所述预设门限值,所述第三参考信号与所述第二参考信号之间满足类型D QCL的关系;
    其中,所述第二参考信号为所述至少一个第二类型的CORESET中一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一SS为第一用户特定搜索空间USS,所述至少一个第二SS中包括至少一个第二USS,所述方法还包括:
    当在目标时间单元上需要在所述第一USS,以及所述至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,根据所述终端的监测能力优先在所述第一USS上进行PDCCH的监测。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一SS为第一USS,所述至少一个第二SS中包括至少一个第二USS,所述方法还包括:
    当在目标时间单元上需要在所述第一USS,以及所述至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,根据所述终端的监测能力以及USS的优先级在对应的USS上进行PDCCH的监测;
    其中,所述第一USS的优先级低于第三USS的优先级且高于第四USS的优先级,所述第三USS为所述至少一个第二USS中优先级最高的第二USS,所述第四USS为所述至少一个第二USS中优先级次高的第二USS;
    或者,
    所述第一USS的优先级低于所述第三USS的优先级且高于所述第四USS的优先级,所述第三USS为所述目标时间单元上优先级最高的第二USS,所述第四USS为所述目标时间单元上优先级次高的第二USS。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,在第一SS上进行PDCCH的监测之后,所述方法还包括:
    在第一时刻之后,停止在所述第一SS上进行PDCCH的监测;
    所述第一时刻为第二时刻之后目标时长的时刻,所述第二时刻为:
    向所述网络设备发送所述信道状态信息的时刻;或者,
    从所述网络设备接收到确认消息的时刻,所述确认消息用于指示所述网络设备成功接收到所述信道状态信息;或者,
    所述第一SS首次生效的时刻;或者,
    在所述第一SS上首次监测到PDCCH的时刻。
  9. 根据权利要求3-7任一项所述的方法,其特征在于,在第一SS上进行PDCCH的监测之后,所述方法还包括:
    在接收到所述网络设备重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,停止在所述第一SS上进行PDCCH的监测,所述目标CORESET属于所述至少一个第二类型的CORESET;
    或者,
    在从所述网络设备接收到目标指示信息后,停止在所述第一SS上进行PDCCH的监测,所述目标指示信息用于指示所述终端停止在所述第一SS上进行PDCCH的监测。
  10. 一种通信方法,其特征在于,应用于网络设备,所述方法包括:
    从终端接收信道状态信息,所述信道状态信息包括至少一个参考信号的标识以及所述至少一个参考信号中每个参考信号对应的RSRP和/或所述每个参考信号对应的SINR;
    当所述信道状态信息满足预设条件时,确定所述终端开始在第一SS上进行 PDCCH的监测;其中,所述第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,所述第一参考信号为第一所述信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
  11. 根据权利要求10所述的方法,其特征在于,在从所述终端接收所述信道状态信息之前,所述方法还包括:
    向所述终端发送第一配置信息;所述第一配置信息中包括第一CORESET的配置信息和所述第一SS的配置信息,所述第一CORESET的配置信息和所述第一SS的配置信息中包括候选PDCCH的时频位置信息,所述第一SS与所述第一CORESET关联;
    所述第一CORESET为第一类型的CORESET,其中,与所述第一类型的CORESET关联的SS为所述终端默认不进行PDCCH监测的SS。
  12. 根据权利要求10或11所述的方法,其特征在于,在从所述终端接收所述信道状态信息之前,所述方法还包括:
    向所述终端发送第二配置信息;所述第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息,所述至少一个第二SS与所述至少一个第二类型的CORESET关联,在所述第二类型的CORESET关联的SS上,所述终端需要进行PDCCH监测;
    所述每个第二类型的CORESET的配置信息中包括传输配置指示TCI状态信息,所述TCI状态信息用于指示源参考信号,所述源参考信号与所述第二类型的CORESET上的PDCCH的解调参考信号之间满足类型D QCL关系。
  13. 根据权利要求12所述的方法,其特征在于,所述预设条件包括:
    所述第一参考信号和第二参考信号不同;或者,所述第一参考信号和所述第二参考信号之间不满足类型D QCL的关系;
    其中,所述第二参考信号为所述至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
  14. 根据权利要求12或13所述的方法,其特征在于,所述信道状态信息中包括第三参考信号的标识和所述第三参考信号对应的RSRP和/或SINR;
    所述预设条件包括:所述第三参考信号的RSRP值或者SINR值低于预设门限值,所述第三参考信号与第二参考信号相同;或者,
    所述第三参考信号的RSRP值或者SINR值低于所述预设门限值,所述第三参考信号与所述第二参考信号之间满足类型D QCL的关系;
    其中,所述第二参考信号为所述至少一个第二类型的CORESET中一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,在确定所述终端开始在第一SS上进行PDCCH的监测之后,所述方法还包括:
    在第一时刻之后,确定所述终端停止在所述第一SS上进行PDCCH的监测;
    所述第一时刻为第二时刻之后目标时长的时刻,所述第二时刻为:
    从所述终端接收到所述信道状态信息的时刻;或者,
    向所述终端发送确认消息的时刻,所述确认消息用于指示所述网络设备成功接收到所述信道状态信息;或者,
    所述第一SS首次生效的时刻;或者,
    在所述第一SS上首次向所述终端发送PDCCH的时刻。
  16. 根据权利要求12-14任一项所述的方法,其特征在于,在确定所述终端开始在第一SS上进行PDCCH的监测之后,所述方法还包括:
    在向所述终端发送重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,确定所述终端停止在所述第一SS上进行PDCCH的监测,所述目标CORESET属于所述至少一个第二类型的CORESET;
    或者,
    在向所述终端发送目标指示信息后,确定所述终端停止在所述第一SS上进行PDCCH的监测,所述目标指示信息用于指示所述终端停止在所述第一SS上进行PDCCH的监测。
  17. 一种通信装置,其特征在于,包括通信模块以及处理模块;
    所述通信模块,用于向网络设备上报信道状态信息,所述信道状态信息包括至少一个参考信号的标识以及所述至少一个参考信号中每个参考信号对应的RSRP和/或所述每个参考信号对应的SINR;
    所述处理模块,用于当所述信道状态信息满足预设条件时,开始在第一SS上进行PDCCH的监测;其中,所述第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,所述第一参考信号为所述信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述通信模块,还用于从所述网络设备接收第一配置信息;所述第一配置信息中包括第一CORESET的配置信息和所述第一SS的配置信息,所述第一CORESET的配置信息和所述第一SS的配置信息中包括候选PDCCH的时频位置信息,所述第一SS与所述第一CORESET关联;
    所述第一CORESET为第一类型的CORESET,其中,与所述第一类型的CORESET关联的SS为所述通信装置默认不进行PDCCH监测的SS。
  19. 根据权利要求17或18所述的通信装置,其特征在于,
    所述通信模块,还用于从所述网络设备接收第二配置信息;所述第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息,所述至少一个第二SS与所述至少一个第二类型的CORESET关联,在所述第二类型的CORESET关联的SS上,所述通信装置需要进行PDCCH监测;
    每个第二类型的CORESET的配置信息中包括TCI状态信息,所述TCI状态信息用于指示源参考信号,所述源参考信号与所述第二类型的CORESET上的PDCCH的解调参考信号之间满足类型D QCL关系。
  20. 根据权利要求19所述的通信装置,其特征在于,所述预设条件包括:
    所述第一参考信号和第二参考信号不同;或者,所述第一参考信号和所述第二参考信号之间不满足类型D QCL的关系;
    其中,所述第二参考信号为所述至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述信道状态信息中包括第三参考信号的标识和所述第三参考信号对应的RSRP和/或SINR;
    所述预设条件包括:所述第三参考信号的RSRP值或者SINR值低于预设门限值,所述第三参考信号与第二参考信号相同;或者,
    所述第三参考信号的RSRP值或者SINR值低于所述预设门限值,所述第三参考信号与所述第二参考信号之间满足类型D QCL的关系;
    其中,所述第二参考信号为所述至少一个第二类型的CORESET中一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
  22. 根据权利要求17-21任一项所述的通信装置,其特征在于,所述第一SS为第一用户特定搜索空间USS,所述至少一个第二SS中包括至少一个第二USS;
    所述处理模块,还用于当在目标时间单元上需要在所述第一USS,以及所述至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,根据所述通信装置的监测能力优先在所述第一USS上进行PDCCH的监测。
  23. 根据权利要求17-21任一项所述的通信装置,其特征在于,所述第一SS为第一USS,所述至少一个第二SS中包括至少一个第二USS;
    所述处理模块,还用于当在目标时间单元上需要在所述第一USS,以及所述至少一个第二USS中的部分或全部第二USS上进行PDCCH的监测时,根据所述通信装置的监测能力以及USS的优先级在对应的USS上进行PDCCH的监测;
    其中,所述第一USS的优先级低于第三USS的优先级且高于第四USS的优先级,所述第三USS为所述至少一个第二USS中优先级最高的第二USS,所述第四USS为所述至少一个第二USS中优先级次高的第二USS;
    或者,
    所述第一USS的优先级低于所述第三USS的优先级且高于所述第四USS的优先级,所述第三USS为所述目标时间单元上优先级最高的第二USS,所述第四USS为所述目标时间单元上优先级次高的第二USS。
  24. 根据权利要求17-23任一项所述的通信装置,其特征在于,
    所述处理模块,还用于在第一时刻之后,停止在所述第一SS上进行PDCCH的监测;
    所述第一时刻为第二时刻之后目标时长的时刻,所述第二时刻为:
    向所述网络设备发送所述信道状态信息的时刻;或者,
    从所述网络设备接收到确认消息的时刻,所述确认消息用于指示所述网络设备成功接收到所述信道状态信息;或者,
    所述第一SS首次生效的时刻;或者,
    在所述第一SS上首次监测到PDCCH的时刻。
  25. 根据权利要求19-23任一项所述的通信装置,其特征在于,
    所述处理模块,还用于在接收到所述网络设备重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,停止在所述第一SS上进行PDCCH的监测,所述目标CORESET属于所述至少一个第二类型的CORESET;
    或者,
    所述处理模块,还用于在从所述网络设备接收到目标指示信息后,停止在所述第一SS上进行PDCCH的监测,所述目标指示信息用于指示所述通信装置停止在所述第一SS上进行PDCCH的监测。
  26. 一种通信装置,其特征在于,包括通信模块以及处理模块;
    所述通信模块,用于从终端接收信道状态信息,所述信道状态信息包括至少一个参考信号的标识以及所述至少一个参考信号中每个参考信号对应的RSRP和/或所述每个参考信号对应的SINR;
    所述处理模块,用于当所述信道状态信息满足预设条件时,确定所述终端开始在第一SS上进行PDCCH的监测;其中,所述第一SS上的PDCCH的解调参考信号和第一参考信号之间满足类型D QCL关系,所述第一参考信号为第一所述信道状态信息中RSRP最高的参考信号或者SINR最高的参考信号。
  27. 根据权利要求26所述的通信装置,其特征在于,
    所述通信模块,还用于向所述终端发送第一配置信息;所述第一配置信息中包括第一CORESET的配置信息和所述第一SS的配置信息,所述第一CORESET的配置信息和所述第一SS的配置信息中包括候选PDCCH的时频位置信息,所述第一SS与所述第一CORESET关联;
    所述第一CORESET为第一类型的CORESET,其中,与所述第一类型的CORESET关联的SS为所述终端默认不进行PDCCH监测的SS。
  28. 根据权利要求26或27所述的通信装置,其特征在于,
    所述通信模块,还用于向所述终端发送第二配置信息;所述第二配置信息中包括至少一个第二类型的CORESET的配置信息和至少一个第二SS的配置信息,所述至少一个第二SS与所述至少一个第二类型的CORESET关联,在所述第二类型的CORESET关联的SS上,所述终端需要进行PDCCH监测;
    所述每个第二类型的CORESET的配置信息中包括传输配置指示TCI状态信息,所述TCI状态信息用于指示源参考信号,所述源参考信号与所述第二类型的CORESET上的PDCCH的解调参考信号之间满足类型D QCL关系。
  29. 根据权利要求28所述的通信装置,其特征在于,所述预设条件包括:
    所述第一参考信号和第二参考信号不同;或者,所述第一参考信号和所述第二参考信号之间不满足类型D QCL的关系;
    其中,所述第二参考信号为所述至少一个第二类型的CORESET中的一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
  30. 根据权利要求28或29所述的通信装置,其特征在于,所述信道状态信息中包括第三参考信号的标识和所述第三参考信号对应的RSRP和/或SINR;
    所述预设条件包括:所述第三参考信号的RSRP值或者SINR值低于预设门限值,所述第三参考信号与第二参考信号相同;或者,
    所述第三参考信号的RSRP值或者SINR值低于所述预设门限值,所述第三参考信号与所述第二参考信号之间满足类型D QCL的关系;
    其中,所述第二参考信号为所述至少一个第二类型的CORESET中一个第二类型的CORESET的配置信息中包括的TCI状态信息指示的一个源参考信号。
  31. 根据权利要求26-30任一项所述的通信装置,其特征在于,
    所述处理模块,还用于在第一时刻之后,确定所述终端停止在所述第一SS上进行PDCCH的监测;
    所述第一时刻为第二时刻之后目标时长的时刻,所述第二时刻为:
    从所述终端接收到所述信道状态信息的时刻;或者,
    向所述终端发送确认消息的时刻,所述确认消息用于指示所述通信装置成功接收到所述信道状态信息;或者,
    所述第一SS首次生效的时刻;或者,
    在所述第一SS上首次向所述终端发送PDCCH的时刻。
  32. 根据权利要求28-30任一项所述的通信装置,其特征在于,
    所述处理模块,还用于在向所述终端发送重新配置的目标CORESET的配置信息中包括的TCI状态信息之后,确定所述终端停止在所述第一SS上进行PDCCH的监测,所述目标CORESET属于所述至少一个第二类型的CORESET;
    或者,所述处理模块,还用于在向所述终端发送目标指示信息后,确定所述终端停止在所述第一SS上进行PDCCH的监测,所述目标指示信息用于指示所述终端停止在所述第一SS上进行PDCCH的监测。
  33. 一种通信装置,其特征在于,包括处理器以及通信接口;所述通信接口用于与其他装置通信;所述处理器,用于执行计算机程序或指令,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,以使所述通信装置执行如权利要求10-16中任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当其在通信装置上运行时,使得所述通信装置执行如权利要求1-9中任意一项所述的方法,或者,使得所述通信装置执行如权利要求10-16中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-9中任一项所述的方法,或者,使得所述计算机执行如权利要求10-16中任一项所述的方法。
PCT/CN2022/136964 2022-01-14 2022-12-06 通信方法及装置 WO2023134333A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210044848.9 2022-01-14
CN202210044848 2022-01-14
CN202210192662.8A CN116488690A (zh) 2022-01-14 2022-02-28 通信方法及装置
CN202210192662.8 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023134333A1 true WO2023134333A1 (zh) 2023-07-20

Family

ID=87212505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136964 WO2023134333A1 (zh) 2022-01-14 2022-12-06 通信方法及装置

Country Status (2)

Country Link
CN (1) CN116488690A (zh)
WO (1) WO2023134333A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972515A (zh) * 2018-07-31 2020-04-07 Lg电子株式会社 在无线通信***中监测终端的控制信号的方法及其终端
CN111314035A (zh) * 2020-01-20 2020-06-19 北京紫光展锐通信技术有限公司 Pdcch的监控方法、装置、用户设备及存储介质
CN111800801A (zh) * 2019-08-16 2020-10-20 维沃移动通信有限公司 Pdcch的监听方法和设备
WO2020216293A1 (zh) * 2019-04-26 2020-10-29 维沃移动通信有限公司 信道监听方法、终端及网络设备
CN113595703A (zh) * 2018-04-02 2021-11-02 Oppo广东移动通信有限公司 一种资源指示方法及装置、计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595703A (zh) * 2018-04-02 2021-11-02 Oppo广东移动通信有限公司 一种资源指示方法及装置、计算机存储介质
CN110972515A (zh) * 2018-07-31 2020-04-07 Lg电子株式会社 在无线通信***中监测终端的控制信号的方法及其终端
WO2020216293A1 (zh) * 2019-04-26 2020-10-29 维沃移动通信有限公司 信道监听方法、终端及网络设备
CN111800801A (zh) * 2019-08-16 2020-10-20 维沃移动通信有限公司 Pdcch的监听方法和设备
CN111314035A (zh) * 2020-01-20 2020-06-19 北京紫光展锐通信技术有限公司 Pdcch的监控方法、装置、用户设备及存储介质

Also Published As

Publication number Publication date
CN116488690A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US11050478B2 (en) Method and apparatus for beam reporting in next generation wireless systems
CN109391962B (zh) 通信方法及通信装置
WO2020156174A1 (zh) 波束指示的方法和通信装置
US20190069285A1 (en) Configuration of beam indication in a next generation mmwave system
JP6833976B2 (ja) ランダムアクセス方法、ランダムアクセス装置およびランダムアクセスシステム、端末ならびに基地局
US11943037B2 (en) Method and apparatus for beam failure recovery in a wireless communication system
WO2019246470A1 (en) Integrated access and backhaul nex generation nodeb capabilities and signaling
KR20230156033A (ko) 재구성가능한 지능형 표면들과 연관된 핸드오버 기법들
WO2023220515A1 (en) Cell barring techniques for carrier aggregation in wireless communications
US20230231651A1 (en) Semi-persistent channel state information reference signal handling for multicast
WO2023134333A1 (zh) 通信方法及装置
US20230328608A1 (en) Methods, terminals and base stations for beam footprint handover
US20240163950A1 (en) Sidelink assisted indication of beam failure
US20240022982A1 (en) Techniques for layer 2 signaling for layer 1 and layer 2 mobility
EP4380070A1 (en) Apparatus and method for beam operation of iab node in wireless communication system
US20240015538A1 (en) Beam measurement reporting for spatially offset beams
US20240196416A1 (en) Sidelink transmission configuration indicator (tci) state command conflict resolution
US20230262500A1 (en) Relaying beam failure detection reports
WO2024065598A1 (en) Transmission reception point mode switching
WO2023206249A1 (en) Machine learning model performance monitoring reporting
WO2024065639A1 (en) Techniques for channel access-aware conflict determination for unlicensed sidelink bands
US20240147485A1 (en) Coordination between connected user equipments and the network
WO2023142018A1 (en) Unified transmission configuration indicator type switching
US20240031825A1 (en) Beam management using a dedicated physical layer channel
US20230171621A1 (en) Method and apparatus for beam failure recovery under a unified tci framework

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919966

Country of ref document: EP

Kind code of ref document: A1