WO2023133854A1 - 电池单体、电池、用电设备、电池单体的制造方法及设备 - Google Patents

电池单体、电池、用电设备、电池单体的制造方法及设备 Download PDF

Info

Publication number
WO2023133854A1
WO2023133854A1 PCT/CN2022/072162 CN2022072162W WO2023133854A1 WO 2023133854 A1 WO2023133854 A1 WO 2023133854A1 CN 2022072162 W CN2022072162 W CN 2022072162W WO 2023133854 A1 WO2023133854 A1 WO 2023133854A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
connection section
section
battery cell
electrode assembly
Prior art date
Application number
PCT/CN2022/072162
Other languages
English (en)
French (fr)
Inventor
苏华圣
邢承友
李全坤
王鹏
覃炎运
史恺悦
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/072162 priority Critical patent/WO2023133854A1/zh
Publication of WO2023133854A1 publication Critical patent/WO2023133854A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery cell, a battery, an electrical device, and a method and device for manufacturing the battery cell.
  • the purpose of the present application is to provide a battery cell, a battery, an electrical device, and a method and device for manufacturing the battery cell.
  • the battery cell has high safety.
  • the present application provides a battery cell, including: an adapter, including a first connection section for connecting electrode terminals and a second connection section for connecting electrode assemblies, the first connection section and The second connection section is separately arranged and connected to each other, the first connection section is a multi-layer structure and includes multi-layer conductive sheets stacked, and the second connection section is interposed between the multi-layer conductive sheets .
  • the multi-layer conductive sheets are stacked, and the second connecting section is sandwiched between the multi-layer conductive sheets, so that the multi-layer conductive sheets are separately arranged on both sides of the second connecting section.
  • the conductive sheet is connected to one side of the second connecting section
  • the multilayer conductive sheet is connected to the second connecting section from both sides of the second connecting section, and the conductive sheet on each side of the second connecting section
  • the number of layers is small, which is convenient to realize the connection of the multi-layer conductive sheet to the second connecting section from both sides, and reduces the difficulty of connecting the conductive sheet to the second connecting section.
  • the conductive sheet welded on one side of the second connecting section The number of layers is less, which can prevent the conductive sheet and the second connecting section from being welded or connected cracking, causing the conductive sheet far away from the second connecting section to be disconnected from the second connecting section, ensuring the connection between the second connecting section and the multi-layer conductive sheet
  • the connection strength improves the connection reliability between the second connection section and the multi-layer conductive sheet, thereby making the battery cell have higher safety.
  • the number of layers of the conductive sheets located on both sides of the second connecting section is the same.
  • the number of layers of the conductive sheets on both sides of the second connection section is the same, and the difficulty of connecting the conductive sheets on both sides to the second connection section is relatively low, so as to ensure the connection between the multi-layer conductive sheets and the second connection section reliability.
  • the minimum thickness of the second connection section is greater than the maximum thickness of any layer of the conductive sheet in the multi-layer conductive sheet.
  • the thickness of the second connecting section is greater than the thickness of any layer of the conductive sheet in the multi-layer conductive sheet, that is, the thickness of the conductive sheet is relatively thin, which is convenient for bending, so as to reduce the installation space of the adapter and ensure A battery cell has a high energy density.
  • the thicknesses of the conductive sheets of each layer in the multi-layer conductive sheet are equal.
  • the thickness of the conductive sheets of each layer is equal, which facilitates the processing and manufacturing of the conductive sheets and facilitates mass production.
  • two adjacent layers of conductive sheets in the multi-layer conductive sheets are welded or connected by conductive glue.
  • connection method of welding or conductive glue can ensure the conductivity between the multi-layer conductive sheets, so as to ensure the passage of current, and at the same time ensure the connection strength.
  • the second connection section is a single-layer structure.
  • the second connection section has a single-layer structure, so as to ensure the connection reliability between the second connection section and the electrode assembly.
  • the second connection section includes a first surface facing the electrode assembly and a second surface facing away from the electrode assembly, and a part of the multi-layer conductive sheet is connected to the conductive sheet The first surface is welded, and another part of the conductive sheet is welded to the second surface.
  • the multilayer conductive sheet is welded to the first surface and the second surface respectively to ensure the connection strength between the multilayer conductive sheet and the second connection section, and the multilayer conductive sheet is welded on both sides of the second connection section to reduce the The welding difficulty between the multilayer conductive sheet and the second connection section is reduced, and the connection reliability between the multilayer conductive sheet and the second connection section is ensured.
  • the second connection section includes a main body region and a first connection region protruding away from the electrode assembly, the first surface and the second surface are located on the first connection area.
  • the first connection area protrudes in a direction away from the electrode assembly, so that an area for accommodating the conductive sheet is formed between the first connection area and the electrode assembly, ensuring that the multilayer conductive sheet is connected to the first surface and the second surface. , will not affect the assembly connection between the second connection section and the electrode assembly.
  • the second connecting section includes a first connecting area for connecting with the first connecting section and two second connecting areas for connecting with the electrode assembly, the first connecting area A connection area is located between the two second connection areas, and the multi-layer conductive sheet is connected to opposite sides of the first connection area.
  • the first connection area is located between the two second connection areas, and the assembly space is reasonably allocated to ensure that the connection force between the second connection section and the electrode assembly is balanced, and the connection between the first connection section and the second connection section is stable.
  • the second connection section is directly connected to the electrode assembly through the two second connection regions.
  • the second connection section is directly connected to the electrode assembly through the second connection area, which facilitates the transmission of current and ensures the overcurrent capability.
  • the second connection section is welded to the electrode assembly through the two second connection regions.
  • the second connection section and the electrode assembly are welded through two second connection areas to ensure the stability of the connection between the second connection section and the electrode assembly.
  • the second connecting section further includes a main body area, the first connecting area is connected to the main body area, and the second connecting area protrudes from the main body area facing the electrode.
  • the maximum thickness of the first connection zone is smaller than the minimum thickness of the body zone, the maximum thickness of the first connection zone is smaller than the minimum thickness of the smaller thickness of the two second connection zones .
  • the thickness of the first connection area is smaller than the thickness of the main body area and smaller than the thickness of the second connection area, which is convenient to reduce the assembly height of the multi-layer conductive sheet and the second connection section, and reduces the thickness of the first connection section and the second connection section.
  • the space occupation of the assembled structure of the two connecting sections increases the energy density of the battery cell.
  • a surface of the first connecting section close to the electrode assembly is higher than a surface of the second connecting section close to the electrode assembly.
  • the surface of the first connection section close to the electrode assembly is higher than the surface of the second connection section close to the electrode assembly, in other words, the surface of the first connection section close to the electrode assembly is closer to the surface of the second connection section.
  • the surface of the electrode assembly is far away from the electrode assembly, so as to prevent the first connection section from affecting the assembly connection between the second connection section and the electrode assembly, and ensure the reliability of the connection between the second connection section and the electrode assembly.
  • the stiffness of the second connection section is greater than the stiffness of the first connection section.
  • the second connecting section has a relatively high rigidity, so as to ensure the reliability of the connection between the second connecting section and the electrode assembly. Difficulty of bending of two connecting segments.
  • the present application provides a battery, which includes the battery cell in the above embodiment.
  • the present application provides an electric device, which includes the battery cell in the above embodiment, and the battery cell is used to provide electric energy.
  • the present application provides a method for manufacturing a battery cell, which includes: providing an electrode terminal; providing an electrode assembly; providing an adapter, the adapter includes a first connection section and a second connection section, the The first connection section and the second connection section are separately arranged and connected to each other, the first connection section has a multi-layer structure and includes multi-layer conductive sheets stacked, the second connection section has a single-layer structure, The second connection section is sandwiched between the multi-layer conductive sheets; the first connection section is connected to the electrode terminal, and the second connection section is connected to the electrode assembly.
  • the present application provides a battery cell manufacturing equipment, which includes: providing a module for providing an electrode terminal, providing an electrode assembly, and providing an adapter, the adapter includes a first connecting section and a second Two connection sections, the first connection section and the second connection section are separately arranged and connected to each other, the first connection section is a multi-layer structure and includes multi-layer conductive sheets stacked, and the second connection section It is a single-layer structure, the second connection section is sandwiched between the multi-layer conductive sheets; an assembly module is used to connect the first connection section to the electrode terminal, and connect the second connection section connected to the electrode assembly.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery provided in some embodiments of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell provided in some embodiments of the present application.
  • Fig. 4 is a schematic diagram of the unfolded state of the adapter provided by some embodiments of the present application.
  • Fig. 5 is a schematic diagram of an exploded structure of an adapter provided in some embodiments of the present application.
  • Fig. 6 is a schematic diagram of the assembly of the first connecting section and the second connecting section provided by some embodiments of the present application;
  • Fig. 7 is a top view of an adapter provided by some embodiments of the present application.
  • Fig. 8 is a sectional view of the A-A direction of Fig. 7;
  • Fig. 9 is a partial enlarged view of place B in Fig. 8;
  • Fig. 10 is a cross-sectional view of a battery cell provided by some embodiments of the present application.
  • Fig. 11 is a schematic diagram of the bending state of the adapter provided by some embodiments of the present application.
  • FIG. 12 is a schematic flowchart of a method for manufacturing a battery cell according to some embodiments of the present application.
  • Fig. 13 is a schematic block diagram of manufacturing equipment for battery cells according to some embodiments of the present application.
  • Marking instructions 100-battery; 101-box; 1011-first part; 1012-second part; 1-battery unit; 11-end cover; 12-housing; 13-electrode assembly; 14-transfer piece; 141-first connecting section; 1410-conductive sheet; 1411-first sub-connecting section; 1412-second sub-connecting section; 1413-third sub-connecting section; 1414-first bending area; 1415-second bending 1416-first bending axis; 1417-second bending axis; 142-second connection section; 1421-first surface; 1422-second surface; 1423-body region; 1424-first connection region; 1425 - second connection area; 1426 - through hole; 15 - electrode terminal; 200 - controller; 300 - motor; 1000 - vehicle.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the battery cell also includes an adapter and an electrode terminal, the adapter is used to connect the electrode assembly and the electrode terminal, so as to lead out the electric energy of the electrode assembly through the electrode terminal.
  • the electrode terminal connected to the positive electrode tab is a positive electrode terminal
  • the electrode terminal connected to the negative electrode tab is a negative electrode terminal.
  • the adapter is generally bent in order to reduce the assembly height.
  • the tabs of the electrode assembly are usually flattened, and after the adapter is welded to the tab, the adapter is bent to fit the end cap and the housing together.
  • the adapter For power-type battery cells, the requirements for the internal resistance and overcurrent of the battery cells are relatively high. However, in order to facilitate bending and process welding, the adapter cannot be made too thick, so the flow area is very small.
  • the adapter may include a first connecting section and a second connecting section, the first connecting section is a multi-layer structure and includes a laminated The multi-layer conductive sheet is provided, and the multi-layer conductive sheet is connected to the second connecting section.
  • the current multi-layer conductive sheet is prone to false welding and easy to fall off in the welding area during use.
  • the reason for the current virtual welding is that due to the large number of layers of the multi-layer conductive sheet, the multi-layer conductive sheet is located on one side of the second connecting section, and the welding needs to puncture many layers, so it is easy to cause virtual welding or even part of the conductive sheet and the second connection section.
  • the connecting section is detached, and if the welding power is increased, it will cause the welding edge to crack.
  • connection between the multi-layer conductive sheet and the second connection section is weakly welded, or the edge of the connection between the multi-layer conductive sheet and the second connection section is cracked, which makes the connection reliability between the multi-layer conductive sheet and the second connection section poor, resulting in the transfer
  • the overcurrent capacity of the components is insufficient, and the temperature rise of the adapter is too high, which may easily cause thermal runaway of the battery cells, thereby affecting the safety of the battery cells.
  • the battery cell includes a first The connection section and the second connection section for connecting the electrode assembly, the first connection section and the second connection section are separately arranged and connected to each other, the first connection section has a multi-layer structure and includes multi-layer conductive sheets stacked, and the second The connection section is sandwiched between the multi-layer conductive sheets, and the multi-layer conductive sheets are connected to both sides of the second connection section.
  • the multilayer conductive sheet is stacked, and the second connection section is interposed between the multilayer conductive sheets, so that the multilayer
  • the multi-layer conductive sheet is separately arranged on both sides of the second connecting section, and the multi-layer conductive sheet is connected to the second connecting section from both sides of the second connecting section.
  • the multi-layer conductive sheet is connected to the second connection section from both sides, which reduces the difficulty of connecting the multi-layer conductive sheet to the second connection section.
  • the number of layers of the conductive sheet welded on one side of the second connection section is less.
  • connection reliability between the connecting section and the multi-layer conductive sheet makes the battery cell have higher safety.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited, in electrical equipment such as vehicles, ships, or aircrafts.
  • the battery unit disclosed in this application can be used to form the power supply system of the electrical equipment.
  • the embodiment of the present application provides an electric device that uses a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet computer, a notebook computer, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric car, a ship, Spacecraft and more.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle is used as an example to describe an electric device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 , used for the circuit system of the vehicle 1000 , for example, used for starting, navigating, and operating power requirements of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is a schematic diagram of an exploded structure of a battery 100 provided in some embodiments of the present application.
  • the battery 100 includes a case 101 and a battery cell 1 , and the battery cell 1 is housed in the case 101 .
  • the box body 101 is used to provide accommodating space for the battery cell 1 , and the box body 101 can adopt various structures.
  • the box body 101 may include a first part 1011 and a second part 1012, the first part 1011 and the second part 1012 cover each other, the first part 1011 and the second part 1012 jointly define a of accommodation space.
  • the second part 1012 can be a hollow structure with one end open, the first part 1011 can be a plate-shaped structure, and the first part 1011 covers the opening side of the second part 1012, so that the first part 1011 and the second part 1012 jointly define an accommodation space ;
  • the first part 1011 and the second part 1012 can also be hollow structures with one side opening, and the opening side of the first part 1011 is covered by the opening side of the second part 1012 .
  • the battery 100 there may be multiple battery cells 1 , and the multiple battery cells 1 may be connected in series or in parallel or mixed.
  • the mixed connection means that the multiple battery cells 1 are connected in series and in parallel.
  • a plurality of battery cells 1 can be directly connected in series, in parallel or mixed together, and then the whole of the plurality of battery cells 1 is housed in the box 101; of course, the battery 100 can also be a plurality of battery cells 1
  • the battery modules are firstly connected in series, parallel or mixed to form a battery module, and then multiple battery modules are connected in series, parallel or mixed to form a whole and accommodated in the box 101 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a current flow component for realizing electrical connection between multiple battery cells 1 .
  • each battery cell 1 can be a secondary battery or a primary battery; it can also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell 1 provided according to some embodiments of the present application.
  • the battery cell 1 refers to the smallest unit constituting the battery 100 .
  • the battery cell 1 includes an end cap 11 , a casing 12 , an electrode assembly 13 , an adapter 14 and an electrode terminal 15 .
  • the end cap 11 refers to a component that covers the opening of the casing 12 to isolate the internal environment of the battery cell 1 from the external environment.
  • the shape of the end cap 11 can be adapted to the shape of the housing 12 to fit the housing 12 .
  • the end cap 11 can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the end cap 11 is not easily deformed when being squeezed and collided, so that the battery cell 1 can have a higher Structural strength and safety performance can also be improved.
  • the end cover 11 may be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 1 reaches a threshold value.
  • the material of the end cap 11 can also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can be provided inside the end cover 11 , and the insulator can be used to isolate the electrical connection components in the housing 12 from the end cover 11 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the casing 12 is a component used to cooperate with the end cap 11 to form the internal environment of the battery cell 1 , wherein the formed internal environment can be used to accommodate the electrode assembly 13 , electrolyte and other components.
  • the housing 12 and the end cover 11 can be independent parts, and an opening can be provided on the housing 12 , and the internal environment of the battery cell 1 can be formed by making the end cover 11 cover the opening at the opening.
  • the end cover 11 and the housing 12 can also be integrated. Specifically, the end cover 11 and the housing 12 can form a common connection surface before other components are inserted into the housing. When the inside of the housing 12 needs to be encapsulated , then make the end cover 11 cover the housing 12.
  • the shape of the casing 12 can be determined according to the specific shape and size of the electrode assembly 13 .
  • the housing 12 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the electrode assembly 13 is a part where the electrochemical reaction occurs in the battery cell 1 .
  • One or more electrode assemblies 13 may be contained within the casing 12 .
  • the electrode assembly 13 is mainly formed by winding a positive pole piece and a negative pole piece, and a separator is usually provided between the positive pole piece and the negative pole piece.
  • the part of the positive pole piece and the negative pole piece with the active material constitutes the main body of the electrode assembly 13 , and the parts of the positive pole piece and the negative pole piece without the active material respectively form tabs.
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at both ends of the main body.
  • the electrode terminal 15 is disposed on the end cap 11 , and the electrode terminal 15 is electrically connected to the electrode assembly 13 through the adapter 14 for outputting or inputting electric energy of the battery cell 1 .
  • Figure 4 is a schematic diagram of the unfolded state of the adapter 14 provided by some embodiments of the present application
  • Figure 5 is a schematic diagram of the exploded structure of the adapter 14 provided by some embodiments of the present application
  • Figure 6 is a schematic diagram of this application
  • the assembly diagram of the first connection section 141 and the second connection section 142 provided in some embodiments of the application.
  • the present application provides a battery cell 1 . As shown in FIGS.
  • the battery cell 1 includes an adapter 14 , and the adapter 14 includes a first connection section 141 for connecting the electrode terminal 15 and a second connection section 142 for connecting the electrode assembly 13 , the first connection section 141 and the second connection section 142 are separately arranged and connected to each other, the first connection section 141 is a multi-layer structure and includes a multi-layer conductive sheet 1410 stacked, and the second connection section 142 is sandwiched between the multi-layer conductive sheets. Between slices 1410.
  • the adapter 14 is a component for realizing the electrical connection between the electrode terminal 15 and the electrode assembly 13 .
  • the conductive sheet 1410 is a sheet structure with conductive properties, and the conductive sheet 1410 is electrically connected with the second connection section 142 to realize the transmission of electric energy.
  • the conductive sheet 1410 may be a metal sheet (for example, aluminum, copper or other conductive metals), which has good electrical conductivity, so as to conduct the electric energy of the electrode assembly 13 .
  • Conductive sheet 1410 can also be non-metallic conductive sheet 1410, such as graphite sheet, conductive ceramic sheet.
  • the multi-layer conductive sheets 1410 are stacked so as to increase the flow area through the multi-layer conductive sheets 1410 , thereby improving the flow capacity of the adapter 14 .
  • the second connection section 142 is interposed between the multilayer conductive sheets 1410.
  • the multilayer conductive sheet 1410 clamps the second connection section 142, and the multilayer conductive sheet 1410 is connected to both sides of the second connection section 142.
  • the layer conductive sheet 1410 is respectively connected to the second connection section 142 on both sides of the second connection section 142 .
  • the multilayer conductive sheet 1410 is connected to the second connection section from both sides of the second connection section 142 142, the number of layers of the conductive sheet 1410 on each side of the second connecting section 142 is small, which reduces the difficulty of connecting the multi-layer conductive sheet 1410 and the second connecting section 142.
  • the number of layers of the sheet 1410 is small, which can prevent the conductive sheet 1410 and the second connection section 142 from being welded or connected cracked, causing the conductive sheet 1410 far away from the second connection section 142 to be disconnected from the second connection section 142, so as to facilitate the realization of multi-layer
  • the connection of the conductive sheet 1410 to the second connection section 142 from both sides ensures the connection strength between the second connection section 142 and the multilayer conductive sheet 1410, improves the connection reliability between the second connection section 142 and the multilayer conductive sheet 1410, and further This makes the battery cell 1 have higher safety.
  • the number of layers of the conductive sheet 1410 located on both sides of the second connection section 142 is the same.
  • the multilayer conductive sheet 1410 is respectively connected to both sides of the second connection section 142, and the number of layers of the conductive sheet 1410 on both sides of the second connection section 142 is the same, that is, the multilayer conductive sheet 1410 and the second connection section 142
  • the number of layers of conductive sheets 1410 connected on each side is the same, in other words, the connection difficulty between the conductive sheets 1410 on both sides of the second connecting section 142 and the second connecting section 142 is the same.
  • the number of layers of the conductive sheets 1410 on both sides of the second connecting section 142 is the same, and the difficulty of connecting the conductive sheets 1410 on both sides to the second connecting section 142 is reduced, so as to ensure the connection between the multilayer conductive sheets 1410 and the second connecting section 142 reliability.
  • the minimum thickness of the second connecting segment 142 is greater than the maximum thickness of any layer of the conductive sheet 1410 in the multi-layer conductive sheet 1410 .
  • the minimum thickness of the second connection section 142 means that when the second connection section 142 is a non-uniform thickness structure, the thickness value at the minimum thickness of the second connection section 142 is the minimum thickness of the second connection section 142; When the connecting section 142 has a uniform thickness structure, the thickness value at any position of the second connecting section 142 is the maximum thickness of the second connecting section 142 .
  • the maximum thickness of any layer of conductive sheet 1410 in the multilayer conductive sheet 1410 refers to the thickness of the region where the thickness of any layer of conductive sheet 1410 in the multilayer conductive sheet 1410 is the largest, or, when the thickness of the multilayer conductive sheet 1410 is inconsistent , the thickness of the conductive sheet 1410 with the largest thickness among the multi-layer conductive sheets 1410 .
  • the minimum thickness of the second connection section 142 is greater than the maximum thickness of any layer of conductive sheet 1410 in the multilayer conductive sheet 1410. It is thinner, reduces the bending difficulty of the first connecting section 141, facilitates the bending of the first connecting section 141, reduces the height of the adapter 14 after bending, reduces the installation space of the adapter 14, and facilitates the bending of the first connecting section 141.
  • the energy density of the battery cell 1 is guaranteed.
  • the thickness of each layer of the conductive sheet 1410 in the multi-layer conductive sheet 1410 is equal.
  • the multi-layer conductive sheets 1410 adopt the same thickness, which facilitates the processing and manufacturing of the conductive sheets 1410, facilitates mass production, and reduces processing costs.
  • the thickness of each layer of conductive sheet 1410 in the multilayer conductive sheet 1410 may also be unequal. According to different usage requirements, the multilayer conductive sheet 1410 is designed as conductive sheet 1410 with different thickness specifications.
  • two adjacent layers of conductive sheets 1410 in the multi-layer conductive sheets 1410 are welded or connected by conductive glue.
  • connection method of welding or conductive glue can ensure the conductivity between the multi-layer conductive sheets 1410 to ensure the passage of current and also ensure the connection strength.
  • two adjacent layers of conductive sheets 1410 are laser welded, so that the two adjacent layers of conductive sheets 1410 have better connection stability and can also ensure the passage of current.
  • connection method of two adjacent layers of conductive sheets 1410 may also be other methods that can realize metal connection, such as riveting, bolt connection and the like.
  • the second connection section 142 is a single-layer structure.
  • the second connection section 142 has a single-layer structure, so as to ensure the reliability of the connection between the second connection section 142 and the electrode assembly 13 .
  • the second connecting section 142 may be disc-shaped, the size of the second connecting section 142 is basically consistent with the size of the end surface of the electrode assembly 13, and the second connecting section 142 has a larger contact with the electrode assembly 13 Therefore, the thickness of the second connection section 142 can be smaller than the minimum thickness of the multilayer conductive sheet 1410, and the second connection section 142 does not need to be thickened or arranged in a multilayer structure.
  • the second connection section 142 includes a first surface 1421 facing the electrode assembly 13 (see FIG. 3 ) and a second surface 1422 facing away from the electrode assembly 13, and the multilayer conductive A part of the conductive sheet 1410 in the sheet 1410 is welded to the first surface 1421 , and another part of the conductive sheet 1410 is welded to the second surface 1422 .
  • the first surface 1421 and the second surface 1422 are two opposite surfaces in the thickness direction of the second connection section 142 , the first surface 1421 is the surface facing the electrode assembly 13 in the thickness direction of the second connection section 142 , and the second surface 1422 is the surface of the second connecting section 142 facing away from the electrode assembly 13 in the thickness direction.
  • Part of the conductive sheet 1410 in the multilayer conductive sheet 1410 is welded to the first surface 1421, and another part of the conductive sheet 1410 is welded to the second surface 1422.
  • the multilayer conductive sheet 1410 is welded to the first surface 1421 and the second surface respectively. 1422, so as to realize the conductive connection between the multi-layer conductive sheet 1410 and the second connecting segment 142.
  • the multilayer conductive sheet 1410 is welded to the first surface 1421 and the second surface 1422 respectively to ensure the connection strength between the multilayer conductive sheet 1410 and the second connection section 142, and the multilayer conductive sheet 1410 is welded on both sides of the second connection section 142 , reducing the difficulty of welding the multilayer conductive sheet 1410 and the second connection section 142 , and ensuring the reliability of the connection between the multilayer conductive sheet 1410 and the second connection section 142 .
  • FIG. 7 is a top view of the adapter 14 provided by some embodiments of the present application
  • FIG. 8 is a cross-sectional view along the A-A direction of FIG. 7
  • FIG. 9 is a partial enlarged view of B in FIG. 8 .
  • the second connection section 142 includes a main body region 1423 and a first connection region 1424 protruding away from the electrode assembly 13 (see FIG. 3 ).
  • the first surface 1421 and the second surface 1422 are located in the first connection area 1424 .
  • the main body area 1423 is the base part of the second connecting section 142, the first connecting area 1424 is connected to the main body area 1423, and the first connecting area 1424 protrudes away from the electrode assembly 13 relative to the main body area 1423, so that the first connecting area 1424
  • the surface close to the electrode assembly 13 of the main body region 1423 is farther away from the electrode assembly 13 than the surface close to the electrode assembly 13 of the body region 1423 .
  • the first surface 1421 and the second surface 1422 are located in the first connection area 1424, the first surface 1421 and the second surface 1422 protrude from the main body area 1423 in the direction away from the electrode assembly 13, and the first connection area 1424 and the electrode assembly 13 are formed
  • the area for accommodating the conductive sheet 1410 ensures that after the multilayer conductive sheet 1410 is connected to the first surface 1421 and the second surface 1422 , it will not affect the assembly and connection of the second connection section 142 and the electrode assembly 13 .
  • the first connection region 1424 is located between the two second connection regions 1425 , and the multilayer conductive sheet 1410 is connected to opposite sides of the first connection region 1424 .
  • the first connection area 1424 is located between the two second connection areas 1425, and the assembly space is allocated reasonably. On the one hand, it ensures that the connection force between the second connection section 142 and the electrode assembly 13 is balanced, and on the other hand, it ensures that the first connection section 141 The connection with the second connecting section 142 is stable.
  • the second connection section 142 is directly connected to the electrode assembly 13 through two second connection regions 1425 .
  • the second connection section 142 is directly connected to the electrode assembly 13 through two second connection areas 1425.
  • the second connection area 1425 is the area of the second connection section 142 for connecting the electrode assembly 13.
  • the second connection area 1425 realizes the second The connection section 142 is electrically connected to the electrode assembly 13 .
  • the second connection section 142 is directly connected to the electrode assembly 13 through the second connection area 1425 , which facilitates the transmission of current and ensures the overcurrent capability.
  • the second connection section 142 is welded to the electrode assembly 13 through two second connection regions 1425 .
  • the second connection section 142 is welded to the electrode assembly 13 through two second connection areas 1425 to ensure the stability of the connection between the second connection section 142 and the electrode assembly 13 and ensure the overcurrent capability.
  • the second connection section 142 further includes a body region 1423 , the first connection region 1424 is connected to the body region 1423 , and the second connection region 1425 protrudes from the body region 1423
  • the maximum thickness of the first connection region 1424 is smaller than the minimum thickness of the main body region 1423, and the maximum thickness of the first connection region 1424 is smaller than the minimum thickness of the smaller one of the two second connection regions 1425 .
  • the first connection area 1424 can be formed by reducing the thickness of the second connection section 142, and under the condition of ensuring the connection between the first connection section 141 and the first connection area 1424, reduce the thickness of the first connection area 1424 as much as possible, in other words In other words, the first connection region 1424 may be the thinnest part of the second connection section 142 .
  • the assembled thickness of the first connecting section 141 and the first connecting area 1424 is thinner than the assembled thickness of the first connecting section 141 and the main body area 1423 and the second connecting area 1425 , the first connecting section 141 and the second connecting section 142
  • the space occupied after assembly is small, and the energy density of the battery cell 1 is improved.
  • the second connection area 1425 protrudes toward the electrode assembly 13 relative to the main body area 1423 to ensure the contact between the second connection area 1425 and the electrode assembly 13 and the welding quality between the second connection area 1425 and the electrode assembly 13 .
  • connection area 1425 In order to ensure that the second connection area 1425 is connected to both the inner and outer pole pieces of the winding structure of the electrode assembly 13, as shown in FIG. In the center, two second connection areas 1425 are arranged opposite to each other, so as to ensure that the connection force between the second connection section 142 and the electrode assembly 13 is balanced.
  • the first connection zone 1424 is located between the two second connection zones 1425, and the profile of the first connection zone 1424 matches the profile of the two second connection zones 1425, so as to ensure that the first connection section 141 and the second connection section 142 have
  • the larger contact area is convenient to ensure the connection stability between the first connecting section 141 and the second connecting section 142 .
  • the connecting part of the first connecting section 141 and the second connecting section 142 is a trapezoidal structure.
  • the main body area 1423 of the second connection section 142 is provided with a through hole 1426.
  • the through hole 1426 is aligned with the winding center hole of the electrode assembly 13 to realize the assembly positioning of the second connection section 142 and the electrode assembly 13; at the same time, when injecting the electrolyte It is convenient for the electrolyte to contact the electrode assembly 13 after passing through the through hole 1426 to infiltrate the electrode assembly 13 , and the air in the electrode assembly 13 or the gas after the chemical reaction of the electrolyte can be discharged through the through hole 1426 .
  • multiple through holes 1426 may be provided, and may be distributed in other positions of the main body region 1423 in addition to being disposed in the middle of the second connecting section 142 .
  • FIG. 10 is a cross-sectional view of a battery cell 1 provided by some embodiments of the present application.
  • the surface of the first connecting section 141 close to the electrode assembly 13 is higher than the surface of the second connecting section 142 close to the electrode assembly 13 .
  • the surface of the second connection section 142 close to the electrode assembly 13 is the surface where the second connection section 142 is connected to the electrode assembly 13 .
  • the surface of the first connection section 141 close to the electrode assembly 13 is higher than the surface of the second connection section 142 close to the electrode assembly 13 means that the surface of the first connection section 141 close to the electrode assembly 13 is closer to the second connection section 142
  • the surface of the electrode assembly 13 is far away from the electrode assembly 13, in other words, the first connection section 141 is far away from the electrode assembly 13 relative to the second connection section 142, so that the first connection section 141 does not contact the electrode assembly 13, and the first connection section 141 There may be a gap with the electrode assembly 13 .
  • the first connection section 141 is far away from the electrode assembly 13 relative to the second connection section 142, and when the second connection section 142 is connected to the electrode assembly 13, it can prevent the first connection section 141 from affecting the assembly connection between the second connection section 142 and the electrode assembly 13 , to ensure the reliability of the connection between the second connection section 142 and the electrode assembly 13 .
  • the rigidity of the second connecting section 142 is greater than that of the first connecting section 141 .
  • the stiffness of the second connecting section 142 is greater than that of the first connecting section 141 , in other words, the first connecting section 141 is easier to bend than the second connecting section 142 .
  • the first connecting section 141 Since the first connecting section 141 has a certain length, during the assembly process of the battery cell 1, after the connection between the adapter 14 and the electrode assembly 13 and the electrode terminal 15 is completed, when the end cover 11 and the casing 12 are assembled, The space occupied by the adapter piece 14 can be reduced by bending the first connecting section 141 .
  • the rigidity of the first connecting section 141 is small, which can reduce the difficulty of bending the first connecting section 141 relative to the second connecting section 142 , and facilitate the bending of the first connecting section 141 .
  • the second connection section 142 has high rigidity, so as to ensure the connection reliability between the second connection section 142 and the electrode assembly 13 .
  • FIG. 11 is a schematic diagram of the bending state of the adapter 14 provided by some embodiments of the present application.
  • the first connection section 141 includes a first sub-connection section 1411, a second sub-connection section 1412 and a third sub-connection section 1413, and the first sub-connection section 1411 is used to communicate with The second connection section 142 is connected, the third sub-connection section 1413 is used to connect with the electrode terminal 15 , and the second sub-connection section 1412 is connected to the first sub-connection section 1411 and the third sub-connection section 1413 .
  • the first sub-connection section 1411 and the third sub-connection section 1413 are located at the two ends of the second sub-connection section 1412, after the adapter piece 14 is bent , the first sub-connection section 1411 and the third sub-connection section 1413 are respectively located on both sides of the second sub-connection section 1412 in the thickness direction.
  • the first connecting section 141 is bent into an S shape.
  • the second sub-connection section 1412 is bent relative to the first sub-connection section 1411 around the first bending axis 1416 (see FIG.
  • the second sub-connecting section 1412 is bent around a second bending axis 1417 (see FIG. 7 ) to form a second bending region 1415 .
  • the first connecting section 141 has an opposite first surface and a second surface.
  • the first connecting section 141 is in an S-shaped bending form.
  • the first surface is located at the inner circle of the first bending zone 1414.
  • the second surface is located at the outer ring of the first bending area 1414, the bending radius of the conductive sheet 1410 close to the first surface is small, and the bending radius of the conductive sheet 1410 close to the second surface is large;
  • the first surface is located at the outer circle of the second bending zone 1415, and the second surface is located at the inner circle of the second bending zone 1415.
  • the bending radius of the conductive sheet 1410 on the surface is relatively small.
  • each layer of conductive sheet 1410 is bent twice, the bending extension of each layer of conductive sheet 1410 is the same, that is, the edges of both ends of each layer of conductive sheet 1410 are flush, and on the one hand, each layer of the first connecting section 141
  • the layered conductive sheet 1410 is evenly stressed and is not prone to breakage.
  • the height of the first connecting section 141 after bending is controlled to ensure the energy density of the battery cell 1 and avoid delamination in the multilayer structure, and the inner layer Wrinkles are prone to occur, which in turn leads to an increase in height after bending, occupying installation space and making it inconvenient to assemble the battery cell 1 .
  • the present application also provides a battery 100, which includes the battery cell 1 described in any one of the solutions above.
  • the present application also provides an electric device, which includes the battery cell 1 described in any solution above, and the battery cell 1 is used to provide electric energy for the electric device.
  • the electric device may be any of the aforementioned devices or systems using the battery cell 1 .
  • the present application provides a battery cell 1 , which is a cylindrical battery cell, which includes an end cap 11 , a casing 12 , and an electrode assembly 13 , the adapter 14 and the electrode terminal 15 .
  • the housing 12 has an opening, and the end cap 11 is disposed on the opening of the housing 12 .
  • the electrode assembly 13 is arranged in the housing 12 , and the electrode terminal 15 is arranged in the end cap 11 .
  • the adapter 14 includes a first connection section 141 for connecting the electrode terminal 15 and a second connection section 142 for connecting the electrode assembly 13, the first connection section 141 and the second connection section 142 are separately arranged and electrically connected to each other,
  • the first connection segment 141 is a multi-layer structure and includes multi-layer conductive sheets 1410 stacked, and the second connection segment 142 is sandwiched between the multi-layer conductive sheets 1410 .
  • the second connecting section 142 includes a first surface 1421 facing the electrode assembly 13 and a second surface 1422 facing away from the electrode assembly 13, the multilayer conductive sheet 1410 A part of the conductive sheet 1410 is welded to the first surface 1421 , and another part of the conductive sheet 1410 is welded to the second surface 1422 .
  • the multilayer conductive sheets 1410 are respectively welded on both sides of the second connection section 142, and the number of layers of the conductive sheets 1410 on both sides of the second connection section 142 is relatively low, so that the second The welding difficulty between the conductive sheet 1410 on each side of the connecting section 142 and the second connecting section 142 is reduced, so as to improve the connection reliability between the multilayer conductive sheet 1410 and the second connecting section 142 .
  • FIG. 12 shows a schematic flow chart of a method for manufacturing a battery cell 1 according to some embodiments of the present application. As shown in FIG. 12, the manufacturing method of the battery cell 1 may include:
  • the adapter 14 includes a first connecting section 141 and a second connecting section 142, the first connecting section 141 and the second connecting section 142 are separately arranged and connected to each other, and the first connecting section 141 is multiple Layer structure and includes multi-layer conductive sheets 1410 stacked, the second connection section 142 is a single-layer structure, and the second connection section 142 is sandwiched between the multi-layer conductive sheets 1410;
  • step “S401, providing electrode terminal 15", step “S402, providing electrode assembly 13", and step “S403, providing adapter 14" is not unique, and in some embodiments, they can be performed sequentially Step “S402, provide the electrode assembly 13", step “S401, provide the electrode terminal 15" and step “S403, provide the adapter 14", or step “S403, provide the adapter 14", “S402 , provide the electrode assembly 13" and step “S401, provide the electrode terminal 15"; the application for the step “S401, provide the electrode terminal 15", step “S402, provide the electrode assembly 13" and step “S403, provide the adapter 14"
  • the order of is not limited.
  • FIG. 13 shows a schematic block diagram of a battery cell manufacturing device 500 according to some embodiments of the present application.
  • the battery cell manufacturing equipment 500 may include a providing module 501 and an assembling module 502 .
  • the providing module 501 is used for providing the electrode terminal 15 , providing the electrode assembly 13 and providing the adapter 14 .
  • the adapter 14 includes a first connecting section 141 and a second connecting section 142.
  • the first connecting section 141 and the second connecting section 142 are separately arranged and connected to each other.
  • the first connecting section 141 is a multilayer structure and includes multiple
  • the layered conductive sheet 1410 and the second connecting section 142 are a single-layer structure, and the second connecting section 142 is sandwiched between the multi-layered conductive sheets 1410 .
  • the assembly module 502 is used for connecting the first connecting section 141 to the electrode terminal 15 and connecting the second connecting section 142 to the electrode assembly 13 .
  • the battery cell 1 with high safety can be manufactured through the manufacturing equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池单体、电池、用电设备及电池单体的制造方法及设备,属于电池技术领域。本申请提供了一种电池单体,包括:转接件,包括用于连接电极端子的第一连接段和用于连接电极组件的第二连接段,第一连接段与第二连接段分体设置且相互连接,第一连接段为多层结构且包括层叠设置的多层导电片,第二连接段夹设于多层导电片之间。该电池单体,具有较高的安全性。

Description

电池单体、电池、用电设备、电池单体的制造方法及设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池、用电设备及电池单体的制造方法及设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的能量密度外,安全性也是一个不可忽视的问题。因此,如何提高电池的安全性,是电池技术中一个亟需解决的技术问题。
发明内容
本申请的目的在于提供一种电池单体、电池、用电设备及电池单体的制造方法及设备。该电池单体,具有较高的安全性。
本申请是通过如下技术方案实现的:
第一方面,本申请提供了一种电池单体,包括:转接件,包括用于连接电极端子的第一连接段和用于连接电极组件的第二连接段,所述第一连接段与所述第二连接段分体设置且相互连接,所述第一连接段为多层结构且包括层叠设置的多层导电片,所述第二连接段夹设于所述多层导电片之间。
根据本申请实施例的电池单体,多层导电片层叠设置,第二连接段夹设于多层导电片之间,使得多层导电片分设于第二连接段的两侧,相对于多层导电片连接于第二连接段的一侧的情况,本申请的电池单体,多层导电片从第二连接段的两侧连接于第二连接段,第二连接段每侧的导电片的层数较小,便于实现多层导电片分别从两侧与第二连接段的连接,降低导电片与第二连接段的连接难度,当采用焊接时,第二连接段单侧焊接的导电片的层数较少,能够避免导电片与第二连接段出现虚焊或连接开裂,导致远离第二连接段的导电片与第二连接段脱离连接,保证第二连接段与多层导电片的连接强度,提高第二连接段与多层导电片的连接可靠性,进而使得电池单体具有较高的安全性。
根据本申请的一些实施例,位于所述第二连接段的两侧的导电片的层数相同。
在上述方案中,第二连接段的两侧的导电片的层数相同,两侧的导电片连接于第二连接段的难度较低,以便于保证多层导电片与第二连接段的连接可靠性。
根据本申请的一些实施例,所述第二连接段的最小厚度大于所述多层导电片中任意一层导电片的最大厚度。
在上述方案中,第二连接段的厚度大于多层导电片中任意一层导电片的厚度,也即导电片的厚度较薄,便于折弯,以减小转接件的安装空间,便于保证电池单体具有较高的能量密度。
根据本申请的一些实施例,所述多层导电片中的各层导电片的厚度均相等。
在上述方案中,各层导电片的厚度均相等,便于导电片的加工制造,便于批量化生产。
根据本申请的一些实施例,所述多层导电片中的相邻两层导电片焊接或通过导电胶连接。
在上述方案中,采用焊接或导电胶的连接方式,能够保证多层导电片之间的导电性,以保证电流的通过,同时还能够保证连接强度。
根据本申请的一些实施例,所述第二连接段为单层结构。
在上述方案中,第二连接段为单层结构,便于保证第二连接段与电极组件的连接可靠性。
根据本申请的一些实施例,所述第二连接段包括面向所述电极组件的第一表面和背向所述电极组件的第二表面,所述多层导电片中的一部分所述导电片与所述第一表面焊接,另一部分所述导电片与所述第二表面焊接。
在上述方案中,多层导电片分别与第一表面和第二表面焊接,保证多层导电片与第二连接段的连接强度,并且多层导电片在第二连接段的两侧焊接,降低了多层导电片与第二连接段的焊接难度,保证多层导电片与第二连接段的连接可靠性。
根据本申请的一些实施例,所述第二连接段包括主体区和朝背离所述电极组件的方向凸出的第一连接区,所述第一表面和所述第二表面位于所述第一连接区。
在上述方案中,第一连接区朝背离电极组件的方向凸出,使得第一连接区与电极组件之间形成容纳导电片的区域,保证多层导电片连接于第一表面和第二表面后,不会影响第二连接段与电极组件的装配连接。
根据本申请的一些实施例,所述第二连接段包括用于与所述第一连接段连接的第一连接区和用于与所述电极组件连接的两个第二连接区,所述第一连接区位于所述两个第二连接区之间,所述多层导电片连接于所述第一连接区的相对的两侧。
在上述方案中,第一连接区位于两个第二连接区之间,合理分配装配空间,保证第二连接段与电极组件的连接受力均衡,保证第一连接段与第二连接段连接稳定。
根据本申请的一些实施例,所述第二连接段与所述电极组件通过所述两个第二连接区直接连接。
在上述方案中,第二连接段与电极组件直接通过第二连接区连接,便于实现电流的传输,保证过流能力。
根据本申请的一些实施例,所述第二连接段与所述电极组件通过所述两个第二连接区焊接。
在上述方案中,第二连接段与电极组件通过两个第二连接区焊接,保证第二连接段与电极组件的连接稳定性。
根据本申请的一些实施例,所述第二连接段还包括主体区,所述第一连接区连 接于所述主体区,所述第二连接区凸出于所述主体区的面向所述电极组件的一侧,所述第一连接区的最大厚度小于所述主体区的最小厚度,所述第一连接区的最大厚度小于所述两个第二连接区中厚度较小一者的最小厚度。
在上述方案中,第一连接区的厚度小于主体区的厚度、且小于第二连接区的厚度,便于减小多层导电片与第二连接段的装配高度,降低了第一连接段与第二连接段装配后的结构的空间占用,提高了电池单体的能量密度。
根据本申请的一些实施例,沿所述第二连接段的厚度方向,所述第一连接段的靠近所述电极组件的表面高于所述第二连接段的靠近所述电极组件的表面。
在上述方案中,第一连接段的靠近电极组件的表面高于第二连接段的靠近电极组件的表面,换句话说,第一连接段的靠近电极组件的表面相对于第二连接段的靠近电极组件的表面远离电极组件,以避免第一连接段影响第二连接段与电极组件的装配连接,保证第二连接段与电极组件的连接可靠性。
根据本申请的一些实施例,所述第二连接段的刚度大于所述第一连接段的刚度。
在上述方案中,第二连接段具有较高的刚度,以便于保证第二连接段与电极组件的连接可靠性,同时,第一连接段的刚度较低,能够降低第一连接段相对于第二连接段折弯的难度。
第二方面,本申请提供了一种电池,其包括上述实施例中的电池单体。
第三方面,本申请提供了一种用电设备,其包括上述实施例中的电池单体,所述电池单体用于提供电能。
第四方面,本申请提供了一种电池单体的制造方法,其包括:提供电极端子;提供电极组件;提供转接件,所述转接件包括第一连接段和第二连接段,所述第一连接段与所述第二连接段分体设置且相互连接,所述第一连接段为多层结构且包括层叠设置的多层导电片,所述第二连接段为单层结构,所述第二连接段夹设于所述多层导电片之间;将所述第一连接段连接于所述电极端子,将所述第二连接段连接于所述电极组件。
第五方面,本申请提供了一种电池单体的制造设备,其包括:提供模块,用于提供电极端子、提供电极组件及提供转接件,所述转接件包括第一连接段和第二连接段,所述第一连接段与所述第二连接段分体设置且相互连接,所述第一连接段为多层结构且包括层叠设置的多层导电片,所述第二连接段为单层结构,所述第二连接段夹设于所述多层导电片之间;组装模块,用于将所述第一连接段连接于所述电极端子,以及将所述第二连接段连接于所述电极组件。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要 使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的分解结构示意图;
图3为本申请一些实施例提供的电池单体的分解结构示意图;
图4为本申请一些实施例提供的转接件的展开状态示意图;
图5为本申请一些实施例提供的转接件的分解结构示意图;
图6为本申请一些实施例提供的第一连接段与第二连接段的装配示意图;
图7为本申请一些实施例提供的转接件的俯视图;
图8为图7的A-A方向的剖视图;
图9为图8的B处局部放大图;
图10为本申请一些实施例提供的电池单体的剖视图;
图11为本申请一些实施例提供的转接件的折弯状态示意图;
图12为本申请一些实施例的电池单体的制造方法的示意性流程图;
图13为本申请一些实施例的电池单体的制造设备的示意性框图;
在附图中,附图并未按照实际的比例绘制。
标记说明:100-电池;101-箱体;1011-第一部分;1012-第二部分;1-电池单体;11-端盖;12-壳体;13-电极组件;14-转接件;141-第一连接段;1410-导电片;1411-第一子连接段;1412-第二子连接段;1413-第三子连接段;1414-第一弯折区;1415-第二弯折区;1416-第一折弯轴线;1417-第二折弯轴线;142-第二连接段;1421-第一表面;1422-第二表面;1423-主体区;1424-第一连接区;1425-第二连接区;1426-通孔;15-电极端子;200-控制器;300-马达;1000-车辆。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排它的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可 以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要理解的是,术语“中心”、“长度”、“宽度”、“厚度”、“底”、“内”、“外”、“周向”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚 乙烯)等。
电池单体还包括转接件和电极端子,转接件用于连接电极组件和电极端子,以将电极组件的电能通过电极端子导出。对应地,与正极极耳连接的电极端子为正电极端子,与负极极耳连接的电极端子为负电极端子。为了便于电池单体的装配、节省转接件的占用空间,转接件一般采用折弯的形式以降低装配高度。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
目前通用的大圆柱电池单体通常是通过将电极组件的极耳揉平,转接件与极耳焊接后,转接件进行折弯将端盖与壳体配合到一起。对于功率型电池单体,电池单体内阻和过流的要求较高。但是,转接件为了方便折弯和工艺焊接不能制作得太厚,所以过流面积就很小。虽然当前通过采用多片导电片与电极端子连接来提高过流能力和降低内阻,例如,转接件可以包括第一连接段和第二连接段,第一连接段为多层结构且包括层叠设置的多层导电片,多层导电片连接于第二连接段,但是,当前多层导电片焊接容易出现虚焊及在使用过程中容易在焊接区脱落。当前虚焊的原因是由于多层导电片的层数较多,多层导电片位于第二连接段的一侧,焊接需要穿刺的层数多,所以容易导致虚焊甚至部分导电片与第二连接段脱离,如果焊接功率加大又会导致焊接边缘开裂。多层导电片与第二连接段的连接出现虚焊,或者多层导电片与第二连接段的连接边缘开裂,使得多层导电片与第二连接段的连接可靠性较差,导致转接件的过流能力不足,转接件的温升过高,容易引发电池单体热失控,进而影响电池单体的安全性。
鉴于此,为了解决多层导电片与第二连接段的连接可靠性较差的问题,发明人经过深入研究,设计了一种电池单体,该电池单体包括用于连接电极端子的第一连接段和用于连接电极组件的第二连接段,第一连接段与第二连接段分体设置且相互连接,第一连接段为多层结构且包括层叠设置的多层导电片,第二连接段夹设于多层导电片之间,多层导电片连接于第二连接段的两侧。
相对于多层导电片连接于第二连接段的一侧的情况,在本申请的电池单体中,多层导电片层叠设置,第二连接段夹设于多层导电片之间,使得多层导电片分设于第二连接段的两侧,多层导电片从第二连接段的两侧连接于第二连接段,第二连接段每侧的导电片的层数较小,便于实现多层导电片分别从两侧与第二连接段的连接,降低多层导电片与第二连接段的连接难度,当采用焊接时,第二连接段单侧焊接的导电片的层数较少,能够避免导电片与第二连接段出现虚焊或连接开裂,导致远离第二连接段的导电片与第二连接段脱离连接,保证第二连接段与多层导电片的连接强度,提高第二连接段与多层导电片的连接可靠性,进而使得电池单体具有较高的安全性。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体组成该用电设备的电源***。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限 于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路***,例如用于车辆1000的启动、导航和运行时的工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的分解结构示意图。电池100包括箱体101和电池单体1,电池单体1容纳于箱体101内。其中,箱体101用于为电池单体1提供容纳空间,箱体101可以采用多种结构。在一些实施例中,箱体101可以包括第一部分1011和第二部分1012,第一部分1011与第二部分1012相互盖合,第一部分1011和第二部分1012共同限定出用于容纳电池单体1的容纳空间。第二部分1012可以为一端开口的空心结构,第一部分1011可以为板状结构,第一部分1011盖合于第二部分1012的开口侧,以使第一部分1011与第二部分1012共同限定出容纳空间;第一部分1011和第二部分1012也可以是均为一侧开口的空心结构,第一部分1011的开口侧盖合于第二部分1012的开口侧。
在电池100中,电池单体1可以是多个,多个电池单体1之间可串联或并联或混联,混联是指多个电池单体1中既有串联又有并联。多个电池单体1之间可直接串联或并联或混联在一起,再将多个电池单体1构成的整体容纳于箱体101内;当然,电池100也可以是多个电池单体1先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体101内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体1之间的电连接。
其中,每个电池单体1可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。
请参见图3,图3为根据本申请一些实施例提供的电池单体1的分解结构示意图。电池单体1是指组成电池100的最小单元。如图3所示,电池单体1包括端盖11、壳体12、电极组件13、转接件14及电极端子15。
端盖11是指盖合于壳体12的开口处以将电池单体1的内部环境隔绝于外部环境的部件。不限地,端盖11的形状可以与壳体12的形状相适应以配合壳体12。可选地,端盖11可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖11在受挤压碰撞时就不易发生形变,使电池单体1能够具备更高的结构强度,安全性能也可以有所提高。端盖11上可以设置有用于在电池单体1的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖11的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖11的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体12内的电连接部件与端盖11,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体12是用于配合端盖11以形成电池单体1的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件13、电解液以及其他部件。壳体12和端盖11可以独立的部件,可以于壳体12上设置开口,通过在开口处使端盖11盖合开口以形成电池单体1的内部环境。不限地,也可以使端盖11和壳体12一体化,具体地,端盖11和壳体12可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体12的内部时,再使端盖11盖合壳体12。壳体12的形状可以根据电极组件13的具体形状和尺寸大小来确定。壳体12的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件13是电池单体1中发生电化学反应的部件。壳体12内可以包含一个或多个电极组件13。电极组件13主要由正极极片和负极极片卷绕形成,并且通常在正极极片与负极极片之间设有隔膜。正极极片和负极极片具有活性物质的部分构成电极组件13的主体,正极极片和负极极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体的一端或是分别位于主体的两端。在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳通过转接件14连接电极端子15以形成电流回路。
电极端子15设置于端盖11上,电极端子15通过转接件14与电极组件13电连接,以用于输出或输入电池单体1的电能。
请参见图4至图6,图4为本申请一些实施例提供的转接件14的展开状态示意图,图5为本申请一些实施例提供的转接件14的分解结构示意图,图6为本申请一些实施例提供的第一连接段141与第二连接段142的装配示意图。根据本申请的一些实施例,本申请提供了一种电池单体1。如图3至图6所示,该电池单体1包括转接件14,转接件14包括用于连接电极端子15的第一连接段141和用于连接电极组件13的第二连接段142,第一连接段141与第二连接段142分体设置且相互连接,第一连接段141为多层结构且包括层叠设置的多层导电片1410,第二连接段142夹设于多层导电片1410之间。
转接件14为实现电极端子15和电极组件13电连接的部件。导电片1410为具有导电特性的片材结构,导电片1410与第二连接段142电连接,以实现电能的传输。导电片1410可以为金属片(例如,铝、铜或者其他导电金属),具有较好的导电性能,以便于将电极组件13的电能导出。导电片1410也可以为非金属导电片1410,例如石 墨片、导电陶瓷片。
多层导电片1410层叠设置,以通过多层导电片1410来增加过流面积,进而提高转接件14的过流能力。
第二连接段142夹设于多层导电片1410之间,换句话说,多层导电片1410夹持第二连接段142,多层导电片1410连接于第二连接段142的两侧,多层导电片1410在第二连接段142的两侧分别与第二连接段142连接。
相对于多层导电片1410连接于第二连接段142的一侧的情况,本申请实施例的电池单体1,多层导电片1410从第二连接段142的两侧连接于第二连接段142,第二连接段142每侧的导电片1410的层数较小,降低多层导电片1410与第二连接段142的连接难度,当采用焊接时,第二连接段142单侧焊接的导电片1410的层数较少,能够避免导电片1410与第二连接段142出现虚焊或连接开裂,导致远离第二连接段142的导电片1410与第二连接段142脱离连接,便于实现多层导电片1410分别从两侧与第二连接段142的连接,保证第二连接段142与多层导电片1410的连接强度,提高第二连接段142与多层导电片1410的连接可靠性,进而使得电池单体1具有较高的安全性。
根据本申请的一些实施例,位于第二连接段142的两侧的导电片1410的层数相同。
多层导电片1410分别连接于第二连接段142的两侧,位于第二连接段142的两侧的导电片1410的层数相同,也即,多层导电片1410与第二连接段142的每侧连接的导电片1410的层数相同,换句话说,第二连接段142的两侧的导电片1410与第二连接段142的连接难度相同。
第二连接段142的两侧的导电片1410的层数相同,两侧的导电片1410连接于第二连接段142的难度降低,以便于保证多层导电片1410与第二连接段142的连接可靠性。
根据本申请的一些实施例,第二连接段142的最小厚度大于多层导电片1410中任意一层导电片1410的最大厚度。
第二连接段142的最小厚度是指,当第二连接段142为非等厚度结构时,第二连接段142的厚度最小处的厚度值即为第二连接段142的最小厚度;当第二连接段142为等厚度结构时,第二连接段142的任意位置的厚度值即为第二连接段142的最大厚度。
多层导电片1410中任意一层导电片1410的最大厚度是指,多层导电片1410中任意一层导电片1410的厚度最大的区域的厚度,或者,当多层导电片1410的厚度不一致时,多层导电片1410中厚度最大的导电片1410的厚度。
第二连接段142的最小厚度大于多层导电片1410中任意一层导电片1410的最大厚度是指,第二连接段142的厚度大于任意一层导电片1410的厚度,导电片1410的厚度可以较薄,降低第一连接段141的折弯难度,便于实现第一连接段141的折弯,以减小转接件14的折弯后的高度,减小转接件14的安装空间,便于保证电池单体1的能量密度。
根据本申请的一些实施例,多层导电片1410中的各层导电片1410的厚度均相等。
多层导电片1410采用相同的厚度,便于导电片1410的加工制造,便于批量化生产,减少了加工成本。
根据本申请的一些实施例,多层导电片1410中各层导电片1410的厚度也可以不相等,根据不同的使用需求,多层导电片1410设计成不同厚度规格的导电片1410。
根据本申请的一些实施例,多层导电片1410中的相邻两层导电片1410焊接或通过导电胶连接。
采用焊接或导电胶的连接方式,能够保证多层导电片1410之间的导电性,以保证电流的通过,同时还能够保证连接强度。例如,相邻的两层导电片1410激光焊接,使得相邻的两层导电片1410具有较好的连接稳定性,还可以保证电流的通过。
本申请的其他实施例中,相邻两层导电片1410的连接方式还可以为其他能够实现金属连接的方式,例如铆接、螺栓连接等。
根据本申请的一些实施例,第二连接段142为单层结构。
第二连接段142为单层结构,便于保证第二连接段142与电极组件13的连接可靠性。
根据本申请的一些实施例,第二连接段142可以为圆盘状,第二连接段142的尺寸与电极组件13的端面尺寸基本一致,第二连接段142与电极组件13具有较大的接触面积,具有较好的过流能力,因此,第二连接段142的厚度可以小于多层导电片1410的最小厚度,第二连接段142无需加厚或者设置成多层结构。
根据本申请的一些实施例,如图6所示,第二连接段142包括面向电极组件13(请参见图3)的第一表面1421和背向电极组件13的第二表面1422,多层导电片1410中的一部分导电片1410与第一表面1421焊接,另一部分导电片1410与第二表面1422焊接。
第一表面1421和第二表面1422为第二连接段142的厚度方向的相对的两个表面,第一表面1421为第二连接段142的厚度方向上面向电极组件13的表面,第二表面1422为第二连接段142的厚度方向上背离电极组件13的表面。
多层导电片1410中的一部分导电片1410与第一表面1421焊接,另一部分导电片1410与第二表面1422焊接,换句话说,多层导电片1410分别焊接于第一表面1421和第二表面1422,以实现多层导电片1410与第二连接段142的导电连接。
多层导电片1410分别与第一表面1421和第二表面1422焊接,保证多层导电片1410与第二连接段142的连接强度,并且多层导电片1410在第二连接段142的两侧焊接,降低了多层导电片1410与第二连接段142的焊接难度,保证多层导电片1410与第二连接段142的连接可靠性。
请参见图7至图9,图7为本申请一些实施例提供的转接件14的俯视图,图8为图7的A-A方向的剖视图,图9为图8的B处局部放大图。
根据本申请的一些实施例,如图7至图9所示,第二连接段142包括主体区1423和朝背离电极组件13(请参见图3)的方向凸出的第一连接区1424,第一表面 1421和第二表面1422位于第一连接区1424。
主体区1423为第二连接段142的基体部分,第一连接区1424连接于主体区1423,第一连接区1424相对于主体区1423朝背离电极组件13的方向凸出,使得第一连接区1424的靠近电极组件13的表面相对于主体区1423的靠近电极组件13的表面远离电极组件13。
第一表面1421和第二表面1422位于第一连接区1424,第一表面1421和第二表面1422朝背离电极组件13的方向凸出主体区1423,第一连接区1424与电极组件13之间形成容纳导电片1410的区域,保证多层导电片1410连接于第一表面1421和第二表面1422后,不会影响第二连接段142与电极组件13的装配连接。
根据本申请的一些实施例,如图7至图9所示,第二连接段142包括用于与第一连接段141连接的第一连接区1424和用于与电极组件13(请参见图3)连接的两个第二连接区1425,第一连接区1424位于两个第二连接区1425之间,多层导电片1410连接于第一连接区1424的相对的两侧。
第一连接区1424位于两个第二连接区1425之间,合理分配装配空间,一方面,保证第二连接段142与电极组件13的连接受力均衡,另一方面,保证第一连接段141与第二连接段142连接稳定。
根据本申请的一些实施例,第二连接段142与电极组件13通过两个第二连接区1425直接连接。
第二连接段142与电极组件13通过两个第二连接区1425直接连接,第二连接区1425为第二连接段142的用于连接电极组件13的区域,通过第二连接区1425实现第二连接段142与电极组件13的电连接。
第二连接段142与电极组件13直接通过第二连接区1425连接,便于实现电流的传输,保证过流能力。
根据本申请的一些实施例,第二连接段142与电极组件13通过两个第二连接区1425焊接。
第二连接段142与电极组件13通过两个第二连接区1425焊接,保证第二连接段142与电极组件13的连接稳定性,保证过流能力。
根据本申请的一些实施例,如图7至图9所示,第二连接段142还包括主体区1423,第一连接区1424连接于主体区1423,第二连接区1425凸出于主体区1423的面向电极组件13的一侧,第一连接区1424的最大厚度小于主体区1423的最小厚度,第一连接区1424的最大厚度小于两个第二连接区1425中厚度较小一者的最小厚度。
第一连接区1424可以通过减薄第二连接段142的厚度形成,在保证第一连接段141与第一连接区1424的连接条件下,尽可能减小第一连接区1424的厚度,换句话说,第一连接区1424可以为第二连接段142的厚度最薄处。
第一连接段141与第一连接区1424连接后的装配厚度相对于第一连接段141与主体区1423和第二连接区1425的装配厚度较薄,第一连接段141与第二连接段142装配后的空间占用较小,提高了电池单体1的能量密度。
第二连接区1425相对于主体区1423朝向电极组件13凸出,保证第二连接 区1425与电极组件13的接触、保证第二连接区1425与电极组件13的焊接质量。
为了保证第二连接区1425与电极组件13的卷绕结构的内外圈极片均连接,如图7所示,第二连接区1425为V型结构,并且V型结构指向第二连接段142的中心,两个第二连接区1425相对设置,保证第二连接段142与电极组件13的连接受力均衡。第一连接区1424位于两个第二连接区1425之间,并且第一连接区1424的轮廓与两个第二连接区1425的轮廓匹配,以保证第一连接段141与第二连接段142具有较大的接触面积,便于保证第一连接段141与第二连接段142的连接稳定性。例如,第一连接段141的与第二连接段142的连接的部分为梯形结构。
为了便于实现第二连接段142与电极组件13的连接定位,第二连接段142的主体区1423设置有通孔1426,例如,如图7所示,通孔1426可以位于第二连接段142的中部,在第二连接段142与电极组件13装配时,通过通孔1426与电极组件13的卷绕中心孔对齐,实现第二连接段142与电极组件13的装配定位;同时,在注入电解液时便于电解液通过通孔1426后与电极组件13接触,以浸润电极组件13,还可以通过通孔1426排出电极组件13内的空气或者电解液发生化学反应后的气体。在本申请的其他实施例中,通孔1426还可以设置多个,除了设置于第二连接段142的中部,还可以分布于主体区1423的其他位置。
请参见图10,图10为本申请一些实施例提供的电池单体1的剖视图。根据本申请的一些实施例,如图10所示,沿第二连接段142的厚度方向,第一连接段141的靠近电极组件13的表面高于第二连接段142的靠近电极组件13的表面。
第二连接段142的靠近电极组件13的表面为第二连接段142与电极组件13连接的表面。第一连接段141的靠近电极组件13的表面高于第二连接段142的靠近电极组件13的表面是指,第一连接段141的靠近电极组件13的表面相对于第二连接段142的靠近电极组件13的表面远离电极组件13,换句话说,第一连接段141相对于第二连接段142远离电极组件13,以使得第一连接段141与电极组件13不接触,第一连接段141可以与电极组件13之间具有间隙。
第一连接段141相对于第二连接段142远离电极组件13,在第二连接段142与电极组件13连接时,能够避免第一连接段141影响第二连接段142与电极组件13的装配连接,保证第二连接段142与电极组件13的连接可靠性。
根据本申请的一些实施例,第二连接段142的刚度大于第一连接段141的刚度。
第二连接段142的刚度大于第一连接段141的刚度,换句话说,第一连接段141相对于第二连接段142更容易折弯。
由于第一连接段141具有一定的长度,在电池单体1的装配过程中,完成转接件14与电极组件13和电极端子15的连接后,进行端盖11与壳体12的装配时,可以通过折弯第一连接段141来减小转接件14的空间占用。第一连接段141的刚度较小,能够降低第一连接段141相对于第二连接段142折弯的难度,便于实现第一连接段141的折弯。同时,第二连接段142具有较高的刚度,以便于保证第二连接段142与电极组件13的连接可靠性。
请参见图11,图11为本申请一些实施例提供的转接件14的折弯状态示意图。根据本申请的一些实施例,如图11所示,第一连接段141包括第一子连接段1411、第二子连接段1412及第三子连接段1413,第一子连接段1411用于与第二连接段142连接,第三子连接段1413用于与电极端子15连接,第二子连接段1412连接第一子连接段1411和第三子连接段1413。在转接件14折弯前,沿转接件14的长度方向,第一子连接段1411和第三子连接段1413位于第二子连接段1412的两端,在转接件14折弯后,第一子连接段1411和第三子连接段1413分别位于第二子连接段1412的厚度方向的两侧。
如图11所示,第一子连接段1411和第二子连接段1412之间具有第一弯折区1414,第二子连接段1412与第三子连接段1413之间具有第二弯折区1415,第一连接段141折弯后呈S型。换句话说,第二子连接段1412相对于第一子连接段1411绕第一折弯轴线1416(请参见图7)折弯后形成第一弯折区1414,第三子连接段1413相对于第二子连接段1412绕第二折弯轴线1417(请参见图7)折弯后形成第二弯折区1415。第一连接段141具有相对的第一面和第二面,第一连接段141的S型折弯形式,在第一弯折区1414处,第一面位于第一弯折区1414的内圈,第二面位于第一弯折区1414的外圈,靠近第一面的导电片1410的折弯半径较小,靠近第二面的导电片1410的折弯半径较大;在第二弯折区1415处,第一面位于第二弯折区1415的外圈,第二面位于第二弯折区1415的内圈,靠近第一面的导电片1410的折弯半径较大,靠近第二面的导电片1410的折弯半径较小。第一连接段141经过上述两次折弯后,使得各层导电片1410的折弯延伸量相同,即各层导电片1410的两端边缘齐平,进而一方面使得第一连接段141的各层导电片1410受力均匀,不易发生断裂,另一方面控制了第一连接段141折弯后的高度,保证了电池单体1的能量密度,避免多层结构出现分层现象,并且内层容易出现褶皱,进而导致折弯后高度增加,占用安装空间且不便于电池单体1的装配的问题。
根据本申请的一些实施例,本申请还提供了一种电池100,其包括上述任一方案所述的电池单体1。
根据本申请的一些实施例,本申请还提供了一种用电设备,其包括上述任一方案所述的的电池单体1,电池单体1用于为用电设备提供电能。
用电设备可以是前述任一应用电池单体1的设备或***。
根据本申请的一些实施例,参见图3至图11,本申请提供了一种电池单体1,该电池单体1为圆柱电池单体,其包括端盖11、壳体12、电极组件13、转接件14及电极端子15。壳体12具有开口,端盖11盖设于壳体12的开口处。电极组件13设置于壳体12内,电极端子15设置于端盖11。转接件14包括用于连接电极端子15的第一连接段141和用于连接电极组件13的第二连接段142,第一连接段141和第二连接段142分体设置且相互电连接,第一连接段141为多层结构且包括层叠设置的多层导电片1410,第二连接段142夹设于多层导电片1410之间。位于第二连接段142的两侧的导电片1410的层数相同,第二连接段142包括面向电极组件13的第一表面1421和背向电极组件13的第二表面1422,多层导电片1410中的一部分导电片1410与第一 表面1421焊接,另一部分导电片1410与第二表面1422焊接。
根据本申请实施例的电池单体1,多层导电片1410分别焊接于第二连接段142的两侧,并且第二连接段142的两侧的导电片1410的层数较低,使得第二连接段142的每侧的导电片1410与第二连接段142的焊接难度降低,便于提高多层导电片1410与第二连接段142的连接可靠性。
图12示出了本申请一些实施例的电池单体1的制造方法的示意性流程图。如图12所示,该电池单体1的制造方法可以包括:
S401,提供电极端子15;
S402,提供电极组件13;
S403,提供转接件14,转接件14包括第一连接段141和第二连接段142,第一连接段141与第二连接段142分体设置且相互连接,第一连接段141为多层结构且包括层叠设置的多层导电片1410,第二连接段142为单层结构,第二连接段142夹设于多层导电片1410之间;
S404,将第一连接段141连接于电极端子15,将第二连接段142连接于电极组件13。
需要指出的是,步骤“S401,提供电极端子15”、步骤“S402,提供电极组件13”及步骤“S403,提供转接件14”的顺序并不唯一,在一些实施例中,可以依次进行步骤“S402,提供电极组件13”、步骤“S401,提供电极端子15”及步骤“S403,提供转接件14”,或者,也可以依次进行步骤“S403,提供转接件14”、“S402,提供电极组件13”及步骤“S401,提供电极端子15”;本申请对步骤“S401,提供电极端子15”、步骤“S402,提供电极组件13”及步骤“S403,提供转接件14”的顺序并不作限定。
图13示出了本申请一些实施例的电池单体的制造设备500的示意性框图。如图13所示,该电池单体的制造设备500可以包括提供模块501和组装模块502。提供模块501用于提供电极端子15、提供电极组件13及提供转接件14。转接件14包括第一连接段141和第二连接段142,第一连接段141与第二连接段142分体设置且相互连接,第一连接段141为多层结构且包括层叠设置的多层导电片1410,第二连接段142为单层结构,第二连接段142夹设于多层导电片1410之间。组装模块502用于将第一连接段141连接于电极端子15,将第二连接段142连接于电极组件13。
根据本申请实施例的电池单体的制造设备500,通过该制造设备能够制造出安全性较高的电池单体1。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种电池单体,包括:
    转接件,包括用于连接电极端子的第一连接段和用于连接电极组件的第二连接段,所述第一连接段与所述第二连接段分体设置且相互连接,所述第一连接段为多层结构且包括层叠设置的多层导电片,所述第二连接段夹设于所述多层导电片之间。
  2. 根据权利要求1所述的电池单体,其中,位于所述第二连接段的两侧的导电片的层数相同。
  3. 根据权利要求1或2所述的电池单体,其中,所述第二连接段的最小厚度大于所述多层导电片中任意一层导电片的最大厚度。
  4. 根据权利要求1-3中任一项所述的电池单体,其中,所述多层导电片中的各层导电片的厚度均相等。
  5. 根据权利要求1-4中任一项所述的电池单体,其中,所述多层导电片中的相邻两层导电片焊接或通过导电胶连接。
  6. 根据权利要求1-5中任一项所述的电池单体,其中,所述第二连接段为单层结构。
  7. 根据权利要求1-6中任一项所述的电池单体,其中,所述第二连接段包括面向所述电极组件的第一表面和背向所述电极组件的第二表面,所述多层导电片中的一部分所述导电片与所述第一表面焊接,另一部分所述导电片与所述第二表面焊接。
  8. 根据权利要求7所述的电池单体,其中,所述第二连接段包括主体区和朝背离所述电极组件的方向凸出的第一连接区,所述第一表面和所述第二表面位于所述第一连接区。
  9. 根据权利要求1-7中任一项所述的电池单体,其中,所述第二连接段包括用于与所述第一连接段连接的第一连接区和用于与所述电极组件连接的两个第二连接区,所述第一连接区位于所述两个第二连接区之间,所述多层导电片连接于所述第一连接区的相对的两侧。
  10. 根据权利要求9所述的电池单体,其中,所述第二连接段与所述电极组件通过所述两个第二连接区直接连接。
  11. 根据权利要求9所述的电池单体,其中,所述第二连接段与所述电极组件通过所述两个第二连接区焊接。
  12. 根据权利要求9所述的电池单体,其中,所述第二连接段还包括主体区,所述第一连接区连接于所述主体区的边缘,所述第二连接区凸出于所述主体区的面向所述电极组件的一侧,所述第一连接区的最大厚度小于所述主体区的最小厚度,所述第一连接区的最大厚度小于所述两个第二连接区中厚度较小一者的最小厚度。
  13. 根据权利要求1-12中任一项所述的电池单体,其中,沿所述第二连接段的厚度方向,所述第一连接段的靠近所述电极组件的表面高于所述第二连接段的靠近所述电极组件的表面。
  14. 根据权利要求1-13中任一项所述的电池单体,其中,所述第二连接段的刚度大于所述第一连接段的刚度。
  15. 一种电池,包括如权利要求1-14中任一项所述的电池单体。
  16. 一种用电设备,包括如权利要求1-14中任一项所述的电池单体,所述电池单体用于提供电能。
  17. 一种电池单体的制造方法,包括:
    提供电极端子;
    提供电极组件;
    提供转接件,所述转接件包括第一连接段和第二连接段,所述第一连接段与所述第二连接段分体设置且相互连接,所述第一连接段为多层结构且包括层叠设置的多层导电片,所述第二连接段为单层结构,所述第二连接段夹设于所述多层导电片之间;
    将所述第一连接段连接于所述电极端子,将所述第二连接段连接于所述电极组件。
  18. 一种电池单体的制造设备,包括:
    提供模块,用于提供电极端子、提供电极组件及提供转接件,所述转接件包括第一连接段和第二连接段,所述第一连接段与所述第二连接段分体设置且相互连接,所述第一连接段为多层结构且包括层叠设置的多层导电片,所述第二连接段为单层结构,所述第二连接段夹设于所述多层导电片之间;
    组装模块,用于将所述第一连接段连接于所述电极端子,以及将所述第二连接段连接于所述电极组件。
PCT/CN2022/072162 2022-01-14 2022-01-14 电池单体、电池、用电设备、电池单体的制造方法及设备 WO2023133854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072162 WO2023133854A1 (zh) 2022-01-14 2022-01-14 电池单体、电池、用电设备、电池单体的制造方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072162 WO2023133854A1 (zh) 2022-01-14 2022-01-14 电池单体、电池、用电设备、电池单体的制造方法及设备

Publications (1)

Publication Number Publication Date
WO2023133854A1 true WO2023133854A1 (zh) 2023-07-20

Family

ID=87279858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072162 WO2023133854A1 (zh) 2022-01-14 2022-01-14 电池单体、电池、用电设备、电池单体的制造方法及设备

Country Status (1)

Country Link
WO (1) WO2023133854A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115641A1 (ja) * 2014-02-03 2015-08-06 新神戸電機株式会社 集電体の接続構造及び該接続構造を備えた蓄電器
CN205488319U (zh) * 2016-01-25 2016-08-17 宁德时代新能源科技股份有限公司 一种连接片结构及具有该连接片结构的电池组
JP2016175095A (ja) * 2015-03-19 2016-10-06 日立化成株式会社 超音波溶接方法
CN209401722U (zh) * 2019-02-25 2019-09-17 宁德时代新能源科技股份有限公司 二次电池
CN111048728A (zh) * 2020-03-18 2020-04-21 江苏时代新能源科技有限公司 二次电池、电池模块以及使用二次电池作为电源的装置
CN211428260U (zh) * 2019-12-30 2020-09-04 蜂巢能源科技有限公司 连接片及具有其的电芯和车辆
CN112821011A (zh) * 2021-02-24 2021-05-18 东莞市骅新电子科技有限公司 一种新能源电池搭接焊软连接片的生产工艺及其制品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115641A1 (ja) * 2014-02-03 2015-08-06 新神戸電機株式会社 集電体の接続構造及び該接続構造を備えた蓄電器
JP2016175095A (ja) * 2015-03-19 2016-10-06 日立化成株式会社 超音波溶接方法
CN205488319U (zh) * 2016-01-25 2016-08-17 宁德时代新能源科技股份有限公司 一种连接片结构及具有该连接片结构的电池组
CN209401722U (zh) * 2019-02-25 2019-09-17 宁德时代新能源科技股份有限公司 二次电池
CN211428260U (zh) * 2019-12-30 2020-09-04 蜂巢能源科技有限公司 连接片及具有其的电芯和车辆
CN111048728A (zh) * 2020-03-18 2020-04-21 江苏时代新能源科技有限公司 二次电池、电池模块以及使用二次电池作为电源的装置
CN112821011A (zh) * 2021-02-24 2021-05-18 东莞市骅新电子科技有限公司 一种新能源电池搭接焊软连接片的生产工艺及其制品

Similar Documents

Publication Publication Date Title
US11757161B2 (en) Battery cell, battery and electricity consuming device
WO2023137950A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
CN215989120U (zh) 方形电池单体、电池及用电设备
US20220246992A1 (en) Electrode assembly, battery cell, battery, and manufacturing device and method for electrode assembly
EP4254620A1 (en) Battery cell, battery, and power consuming device
WO2023130902A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2023221598A1 (zh) 连接组件、电池单体、电池及用电设备
US20230395952A1 (en) Battery cell, battery and electrical device
WO2023020127A1 (zh) 电极组件、电池单体、电池及用电设备
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
US20230395870A1 (en) Electrode assembly, battery cell, battery, and electric device
WO2023159507A1 (zh) 绝缘件、端盖组件、电池单体、电池及用电设备
WO2023221703A1 (zh) 集流体、极片、电池单体、电池及用电装置
WO2023134480A1 (zh) 电极组件、电池单体、电池及用电设备
CN218602565U (zh) 外壳、电池单体、电池及用电设备
US20220247043A1 (en) Battery cell, battery, power consumption device and battery cell manufaturing method and device
WO2023133854A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2023004829A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法和设备
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2023045490A1 (zh) 电极组件及制造方法和***、电池单体、电池和用电装置
US20230361429A1 (en) Electrode assembly, battery cell, battery, and electrical apparatus
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置
WO2024031256A1 (zh) 电极组件、电池单体、电池及用电设备
WO2024060093A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919502

Country of ref document: EP

Kind code of ref document: A1