WO2023133759A1 - 混合动力***及车辆 - Google Patents

混合动力***及车辆 Download PDF

Info

Publication number
WO2023133759A1
WO2023133759A1 PCT/CN2022/071832 CN2022071832W WO2023133759A1 WO 2023133759 A1 WO2023133759 A1 WO 2023133759A1 CN 2022071832 W CN2022071832 W CN 2022071832W WO 2023133759 A1 WO2023133759 A1 WO 2023133759A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
power system
hybrid power
intermediate shaft
hybrid
Prior art date
Application number
PCT/CN2022/071832
Other languages
English (en)
French (fr)
Inventor
黄志富
卢文建
Original Assignee
舍弗勒技术股份两合公司
黄志富
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 黄志富 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2022/071832 priority Critical patent/WO2023133759A1/zh
Publication of WO2023133759A1 publication Critical patent/WO2023133759A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/10Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with one or more one-way clutches as an essential feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the field of vehicles, and more particularly to a hybrid system and a vehicle including the hybrid system.
  • the above two-motor hybrid system has the following problems.
  • some dual-motor hybrid systems have only one corresponding gear when the engine is used for driving, resulting in poor NVH performance and fuel economy of the hybrid system when the engine is in a high-speed state, and poor performance when the engine is in a low-speed state.
  • Deterioration of power performance on the other hand, some dual-motor hybrid systems use friction clutches, which not only leads to higher costs of the entire hybrid system, but also reduces the transmission efficiency of the entire hybrid system due to the drag torque generated by the friction clutch.
  • the present application is made in view of the above-mentioned drawbacks of the hybrid system.
  • An object of the present application is to provide a hybrid power system, which can reduce the adverse impact on the performance of the hybrid power system due to fewer gears corresponding to the engine, and can avoid the high cost and lower transmission efficiency caused by the use of friction clutches The problem.
  • Another object of the present application is to provide a vehicle including the above hybrid system.
  • the present application provides a hybrid power system as follows, which includes a first motor, a second motor and a transmission, and the transmission includes:
  • a first input shaft drivingly coupled to said first electric machine and adapted to be drivingly coupled to an engine
  • a clutch mechanism comprising a one-way clutch and a synchronizer, the clutch mechanism capable of selectively drivingly coupling and decoupling the second countershaft from either the first countershaft or the first input shaft;
  • the output assembly is coupled with the second motor and the second countershaft for driving the vehicle.
  • the one-way clutch includes an outer ring and an inner ring capable of relative rotation, the outer ring is drivingly coupled with the ring gear of the synchronizer, and the inner ring is connected to the second The countershaft is drivingly coupled, and the synchronizer engagement is capable of selectively drivingly coupling the outer race to the first countershaft or drivingly coupling the outer race to the first input shaft.
  • first intermediate shaft and the second intermediate shaft are arranged coaxially, and the first intermediate shaft is inserted through the second intermediate shaft.
  • the output assembly includes a differential.
  • the transmission further includes a first gear, a second gear, a third gear and a fourth gear, the first gear and the second gear are arranged on The first input shaft, the third gear are arranged on the first intermediate shaft in a torque-proof manner, the fourth gear is arranged on the second intermediate shaft in a non-torque-proof manner, and the fourth the gear is capable of transmission coupling with the second countershaft via the clutch mechanism,
  • the first gear is always in mesh with the third gear to form a first gear pair
  • the second gear is always in mesh with the fourth gear to form a second gear pair.
  • the transmission ratio of the first gear pair is greater than the transmission ratio of the second gear pair
  • the transmission further includes a fifth gear, which is drivingly coupled with the rotor of the first motor, and is always in a meshing state with the second gear.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes a pure motor drive mode
  • the hybrid system when the hybrid system is in the pure motor driving mode, the engine is in a stopped state, the first electric motor is in a stopped state, the second electric motor is in a driving state, and the one-way clutch is disengaged, so that The second electric machine transfers torque to the output assembly.
  • the hybrid power system further includes a control module, and the control module is capable of controlling the hybrid power system so that the hybrid power system realizes a series drive mode,
  • the engine When the hybrid power system is in the series driving mode, the engine is in the driving state, the first motor is in the generating state, the second motor is in the driving state, the one-way clutch is disengaged, and the synchronizer disengaged such that the engine drives the first electric machine to generate electricity and the second electric machine transmits torque to the output assembly.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes a parallel driving mode
  • the hybrid system When the hybrid system is in the parallel driving mode, the engine is in the driving state, the second electric machine is in the driving state, the one-way clutch is engaged, and the synchronizer is engaged, so that the engine and the A second electric machine transfers torque to the output assembly.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes an energy recovery mode
  • the engine When the hybrid power system is in the energy recovery mode, the engine is in a stopped state, the first electric motor is in a stopped state, the second electric motor is in a generating state, the one-way clutch is disengaged, and the second An electric machine receives torque from the output assembly to generate electricity.
  • the present application also provides the following vehicle, which includes the hybrid power system described in any one of the above technical solutions.
  • the present application provides a novel hybrid power system and a vehicle including the hybrid power system.
  • the engine and the first electric machine can be permanently coupled to the first input shaft of the transmission.
  • the first input shaft is always drivingly coupled with the first intermediate shaft.
  • Via a clutch mechanism including a one-way clutch and a synchronizer it is possible to selectively drive-couple the first countershaft and the second countershaft or the first input shaft and the second countershaft.
  • the clutch mechanism of the hybrid power system according to the present application is composed of a one-way clutch and a synchronizer, omitting the complicated actuation system of the friction clutch of the transmission, thereby simplifying the structure and saving the cost, and improving the transmission efficiency.
  • the first countershaft and the second countershaft or the first input shaft and the second countershaft can be selectively drive-coupled via a clutch mechanism including a one-way clutch and a synchronizer
  • the transmission includes a drive coupling with the engine.
  • the corresponding at least two gears can reduce the adverse effect on the performance of the hybrid power system due to fewer gears corresponding to the engine.
  • the structure of the hybrid power system of the present application also has better vehicle applicability, so that the hybrid power system can be applied to vehicles of different types and models.
  • Fig. 1 is a schematic diagram showing the topology of a hybrid power system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram showing a torque transmission path of the hybrid system in FIG. 1 in a pure motor driving mode, wherein the dotted line with an arrow indicates the torque transmission path.
  • FIG. 3 is a schematic diagram illustrating a torque transmission path of the hybrid system in FIG. 1 in a series drive mode, wherein the dashed line with arrows indicates the torque transmission path.
  • FIGS. 4A and 4B are schematic diagrams illustrating torque transmission paths of the hybrid system in FIG. 1 in a parallel drive mode, wherein dashed lines with arrows represent torque transmission paths.
  • FIG. 5 is a schematic diagram showing the torque transmission path of the hybrid system in FIG. 1 in the energy recovery mode, wherein the dashed line with the arrow indicates the torque transmission path.
  • transmission coupling refers to a connection between two components capable of transmitting torque, including direct connection or indirect connection between these two components unless otherwise specified.
  • Anways drive connection means that the state of drive connection is always maintained between two components.
  • torque-resistant connection refers to a connection in which two parts can rotate together to transmit torque
  • the above-mentioned torque-resistant connection can be realized through a spline structure between a gear and a shaft.
  • a hybrid power system includes an engine ICE, a first electric machine EM1 , a second electric machine EM2 , a transmission, and a battery (not shown).
  • crankshaft of the engine ICE is final drive coupled with the first input shaft S1 of the transmission via a dual mass flywheel.
  • the dual-mass flywheel is used to attenuate the torsional vibration from the engine ICE, and other dampers can also be used to attenuate the torsional vibration.
  • the first electric machine EM1 includes a stator and a rotor capable of rotating relative to the stator, and the rotor of the first electric machine EM1 is always drivingly coupled with the first input shaft S1 of the transmission.
  • the torque of the engine ICE can be transmitted to the first electric machine EM1 to drive the first electric machine EM1 to generate electricity; in addition, the torque of the first electric machine EM1 can be transmitted to the engine ICE to start the engine ICE.
  • the first motor EM1 is also electrically connected to the battery. In this way, when the first electric machine EM1 is supplied with electric energy by the battery, the first electric machine EM1 can start the engine ICE as a motor; Charge.
  • the first electric machine EM1 is mainly used to generate electricity to charge the battery and start the engine ICE.
  • the second electric machine EM2 includes a stator and a rotor capable of rotating relative to the stator, and the rotor of the second electric machine EM2 is always drivingly coupled with the second input shaft S2 of the transmission.
  • the second motor EM2 is also electrically connected to the battery. In this way, when the second electric machine EM2 is supplied with electric energy by the battery, the second electric machine EM2 can transmit driving torque to the speed changer as a motor; Charging batteries.
  • the second electric machine EM2 is mainly used for driving and energy recovery.
  • a transmission of a hybrid power system includes a first input shaft S1, a second input shaft S2, a first intermediate shaft S3, a second intermediate shaft S4, Gears G11, G12, G21, G22, G31, G41, G42, GE1, GE2, GDM and clutch mechanism (one-way clutch C and synchronizer SY) and differential DM.
  • the first input shaft S1 can be a solid shaft extending linearly
  • the second input shaft S2 can be a solid shaft extending linearly
  • the first intermediate shaft S3 can be a solid shaft extending linearly
  • the second input shaft S2 can be a solid shaft extending linearly
  • the intermediate shaft S4 may be a hollow shaft extending linearly.
  • the first intermediate shaft S3 is inserted through the second intermediate shaft S4 in a coaxial manner with the second intermediate shaft S4, and the first intermediate shaft S3 and the second intermediate shaft S4 are freely rotatable relative to each other.
  • the first input shaft S1 and the second input shaft S2 are arranged parallel to and staggered with the first intermediate shaft S3 and the second intermediate shaft S4.
  • the first input shaft S1 is always in driving connection with the crankshaft of the engine ICE and the rotor of the first electric machine EM1
  • the second input shaft S2 is always in driving connection with the rotor of the second electric machine EM2
  • the first intermediate shaft S3 and the first input shaft S1 are always in driving connection
  • the second intermediate shaft S4 can be selectively connected to the first input shaft S1 or the second intermediate shaft S4 can be connected to the first intermediate shaft through the clutch mechanism.
  • the gear G11 (corresponding to the first gear) is provided on the first input shaft S1 in a torque-resistant manner.
  • the gear G11 is directly coupled with the first input shaft S1 and the gear G11 can rotate along with the first input shaft S1.
  • the gear G31 (corresponding to the third gear) is arranged on the first intermediate shaft S3 in a torque-proof manner.
  • the gear G31 is directly coupled with the first intermediate shaft S3 and the gear G31 can rotate with the first intermediate shaft S3.
  • the gear G11 and the gear G31 form a first gear pair with external meshing, so that the first input shaft S1 and the first intermediate shaft S3 are always in transmission coupling.
  • the gear G12 (corresponding to the second gear) is arranged on the first input shaft S1 in a torque-proof manner.
  • the gear G12 is directly coupled with the first input shaft S1 and the gear G12 can rotate along with the first input shaft S1.
  • the gear G41 (corresponding to the fourth gear) is disposed on the second countershaft S4 in a non-torsion-resistant manner.
  • the gear G41 and the second countershaft S4 cannot directly transmit torque but can freely rotate relative to each other.
  • the gear G12 and the gear G41 form a second gear pair with external meshing.
  • the transmission ratio of the second gear pair is smaller than that of the first gear pair.
  • the first gear pair can be used to transmit torque when the engine ICE is in a low speed state
  • the second gear pair can be used to transmit torque when the engine ICE is in a high speed state, thereby improving Engine ICE performance at low speed and altitude.
  • the gear GE1 (corresponding to the fifth gear) can be connected with the rotor of the first motor EM1 through the motor shaft, and the gear GE1 is always in mesh with the gear G12.
  • the rotor of the first electric machine EM1 and the first input shaft S1 are always drive-coupled through the externally meshed gear pair formed by the gear GE1 and the gear G12.
  • the gear G42 is arranged on the second countershaft S4 in a rotationally fixed manner, the gear G42 is in direct transmission coupling with the second countershaft S4 and the gear G42 can rotate with the second countershaft S4.
  • the gear GDM is the input gear of the differential DM (output assembly), and the gear GDM and the gear G42 are always in meshing state.
  • the second countershaft S4 is always drivingly coupled to the differential DM via the externally meshed gear pair formed by the gear G42 and the gear GDM.
  • the gear GE2 can be in constant transmission connection with the rotor of the second electric machine EM2 through the electric machine shaft.
  • the gear G21 is arranged on the second input shaft S2 in a torsion-resistant manner, the gear G21 is directly coupled with the second input shaft S2 and the gear G21 can rotate along with the second input shaft S2.
  • Gear GE2 is always in mesh with gear G21.
  • the rotor of the second electric machine EM2 is permanently coupled to the second input shaft S2 through the externally meshed gear pair formed by the gear GE2 and the gear G21.
  • the gear G22 is arranged on the second input shaft S2 in a torsion-resistant manner, the gear G22 is directly coupled with the second input shaft S2 and the gear G22 can rotate along with the second input shaft S2.
  • Gear G22 is always in mesh with gear GDM.
  • the second input shaft S2 is always in transmission coupling with the differential DM via the externally meshed gear pair formed by the gear G22 and the gear GDM.
  • the clutch mechanism is used to selectively drive and couple the second intermediate shaft S4 with the first input shaft S1 and the first intermediate shaft S1 .
  • the clutch mechanism includes a one-way clutch C and a synchronizer SY that can be integrated together.
  • the one-way clutch C may include an outer ring, an inner ring, and rollers assembled together.
  • the inner ring is located radially inside the outer ring, and the inner ring and the outer ring can rotate freely with each other when the one-way clutch C is disengaged, and the inner ring and the outer ring can rotate together when the one-way clutch C is engaged, and the inner ring and the outer ring are capable of transmitting torque via the rollers located between them.
  • the outer ring and the ring gear of the synchronizer SY may be in constant transmission connection through splines, and the inner ring and the second intermediate shaft S4 may be in constant transmission connection by being fixed to each other.
  • the rotational speed of the outer ring toward the circumferential side is greater than that of the inner ring toward the circumferential side.
  • the outer ring can be connected to the inner ring through rollers. In other cases, the one-way clutch C is disengaged.
  • the synchronizer SY may include a gear hub (which may be the outer ring of the one-way clutch C), a ring gear and an engaging gear.
  • the ring gear and the gear hub are always connected by splines and can slide toward both axial sides of the second intermediate shaft S4 (left and right sides in FIG. 1 ) relative to the gear hub.
  • One engaging gear is arranged in a rotationally fixed manner on the first countershaft S3, the other engaging gear can be fixed to the gear G41. After the ring gear moves toward the left side in Fig.
  • the ring gear can be engaged with the gear hub and an engaging gear at the same time, so that the outer ring 1 of the one-way clutch C is in contact with the first
  • the intermediate shaft S3 realizes the transmission coupling, thus after the one-way clutch C is engaged, the second intermediate shaft S4 realizes the transmission coupling with the first intermediate shaft S3. After the ring gear moves toward the right side in Fig.
  • the ring gear can simultaneously engage with the gear hub and another engaging gear, so that the outer ring 1 of the one-way clutch C and the gear G41 realizes the transmission coupling, thus after the one-way clutch C is engaged, the second intermediate shaft S4 and the first input shaft S1 realize the transmission coupling.
  • the differential DM may be a bevel gear differential
  • the gear GDM is an input gear fixed to the housing of the bevel gear differential.
  • the two axle shafts protruding from the differential DM are used to connect with the two wheels of the vehicle.
  • the hybrid power system shown in FIG. 1 includes a control module (not shown in the figure), which can control the hybrid power system so that the hybrid power system has multiple operating modes.
  • the control module can Switching between these operating modes depends on parameters such as the driving state of the vehicle, battery charge level, etc. These operating modes include, but are not limited to, motor-only drive mode, series drive mode, parallel drive mode, and energy recovery mode.
  • Table 1 below shows the working states of the engine ICE, the first electric machine EM1 , the second electric machine EM2 , the one-way clutch C and the synchronizer SY in the above-mentioned exemplary working modes.
  • EV means pure motor drive mode.
  • SER means series drive mode
  • PAR1 represents the first parallel driving mode (for the engine at low speed).
  • PAR2 represents the second parallel drive mode (for the engine at high speed).
  • ICE, EM1, EM2, C, and SY in the first row in Table 1 correspond to the reference numerals in Fig. 1 respectively, that is, respectively represent the engine, the first motor, the first motor in the hybrid power system in Fig. 1 Second motor, one-way clutch, synchronizer.
  • control module of the hybrid power system in Fig. 1 can control the hybrid power system so that the hybrid power system can realize pure motor drive mode EV.
  • the engine ICE is stopped
  • the first motor EM1 is in a stopped state
  • the second motor EM2 is in a driving state
  • the one-way clutch C is disengaged, and the synchronizer SY can be disengaged.
  • the second motor EM2 transmits torque to the differential DM for driving via gear GE2 ⁇ gear G21 ⁇ second input shaft S2 ⁇ gear G22 ⁇ gear GDM.
  • the synchronizer SY can be in any state, but not necessarily in the disengaged state.
  • control module of the hybrid power system in Fig. 1 can control the hybrid power system so that the hybrid power system realizes the series drive mode SER.
  • Engine ICE is in driving state
  • the first motor EM1 is in a power generation state
  • the second motor EM2 is in a driving state
  • the one-way clutch C is disengaged, and the synchronizer SY is disengaged.
  • the engine ICE transmits torque to the first electric motor EM1 via the first input shaft S1 ⁇ gear G12 ⁇ gear GE1, so that the first electric motor EM1 generates electricity; the second electric motor EM2 passes through the gear GE2 ⁇ gear G21 ⁇ the second electric motor EM2
  • the two input shafts S2 ⁇ gear G22 ⁇ gear GDM transmit torque to the differential DM for driving.
  • both the engine ICE and the first electric machine EM1 can be in the high-efficiency working area.
  • control module of the hybrid power system in FIG. 1 can control the hybrid power system so that the hybrid power system realizes the first parallel driving mode PAR1.
  • the engine ICE is in a low-speed driving state
  • the working state of the first motor EM1 can be adjusted as required;
  • the second motor EM2 is in a driving state
  • the one-way clutch C is engaged, and the synchronizer SY is engaged to the left in FIG. 1 .
  • the engine ICE is driven to the ICE via the first input shaft S1 ⁇ gear G11 ⁇ gear G31 ⁇ first countershaft S3 ⁇ synchronizer SY ⁇ one-way clutch C ⁇ second countershaft S4 ⁇ gear G42 ⁇ gear GDM.
  • the differential DM transmits torque for driving; if the first electric motor EM1 is in a driving state, the first electric motor EM1 via gear GE1 ⁇ gear G12 ⁇ first input shaft S1 ⁇ gear G11 ⁇ gear G31 ⁇ first intermediate shaft S3 ⁇ Synchronizer SY ⁇ one-way clutch C ⁇ second intermediate shaft S4 ⁇ gear G42 ⁇ gear GDM transmits torque to differential DM for driving; second motor EM2 via gear GE2 ⁇ gear G21 ⁇ second input shaft S2 ⁇ gear G22 ⁇ Gear GDM transmits torque to differential DM for drive.
  • control module of the hybrid power system in FIG. 1 can control the hybrid power system so that the hybrid power system realizes the second parallel driving mode PAR2.
  • the engine ICE is in a high-speed driving state
  • the working state of the first motor EM1 can be adjusted as required;
  • the second motor EM2 is in a driving state
  • the one-way clutch C is engaged, and the synchronizer SY is engaged to the right in FIG. 1 .
  • the engine ICE transmits torque to the differential DM via the first input shaft S1 ⁇ gear G12 ⁇ gear G41 ⁇ synchronizer SY ⁇ one-way clutch C ⁇ second intermediate shaft S4 ⁇ gear G42 ⁇ gear GDM
  • the first motor EM1 if the first motor EM1 is in the driving state, the first motor EM1 will go to the The differential DM transmits torque for driving; the second electric motor EM2 transmits torque to the differential DM for driving via gear GE2 ⁇ gear G21 ⁇ second input shaft S2 ⁇ gear G22 ⁇ gear GDM.
  • the rotation speed of the outer ring of the one-way clutch C can be adjusted by the first electric machine EM1 .
  • gear shifting can be performed by the synchronizer SY. This is also the reason why the arrow of the torque transmission path of the first electric machine EM1 in Fig. 4A and Fig. 4B is shown as being transmitted towards the first electric machine EM1, that is, the first electric machine EM1 can be in the state of generating electricity to realize the above-mentioned regulation function.
  • control module of the hybrid power system in Fig. 1 can control the hybrid power system so that the hybrid power system realizes the energy recovery mode ER.
  • the engine ICE is stopped
  • the first motor EM1 is in a stopped state
  • the second electric machine EM2 is in the state of generating electricity
  • the one-way clutch C is disengaged, and the synchronizer SY can be disengaged.
  • the torque from the differential DM is transmitted to the second motor EM2 via gear GDM ⁇ gear G22 ⁇ second input shaft S2 ⁇ gear G21 ⁇ gear GE2, so that the second motor EM2 generates power.
  • the synchronizer SY can be in any state, but not necessarily in the disengaged state.
  • the hybrid power system of the present application can realize various working modes according to needs, so as to be applicable to various driving states of the vehicle.
  • the hybrid power system according to the present application can also realize other working modes such as pure engine driving mode, charging mode while driving, and charging mode while parking.
  • the hybrid power system of the present application has strong fault tolerance, even if the one-way clutch C breaks down, the hybrid power system can continue to work in a serial working mode.
  • the hybrid power system of the present application is in the first parallel driving mode, the NVH performance in the low-speed state can be improved, and better acceleration performance in the low-speed state can be achieved.
  • the hybrid power system of the present application is in the second parallel driving mode, the hybrid power system can improve NVH performance at high speed and have better fuel economy.
  • the one-way clutch C is a roller type one-way overrunning clutch, but the application is not limited thereto, and the one-way clutch C can also be a block type one-way overrunning clutch and a rocker type one-way overrunning clutch. to the overrunning clutch, etc.
  • the synchronizer SY can omit the synchronous ring in the traditional synchronizer and the corresponding frictional engagement between the engagement gear and the synchronous ring Part, only retaining the ring gear can realize the required function.
  • the structure of the synchronizer SY is simplified, making the structure of the synchronizer SY more compact and reducing the engaging force of the synchronizer SY, and a complicated actuating system is omitted compared with the case of using a friction clutch.
  • due to the adoption of the fixed shaft transmission it also has higher transmission efficiency.
  • the present application also provides a vehicle including the above-mentioned hybrid system, which can be a plug-in hybrid vehicle or other types of hybrid vehicles, and the vehicle with the above-mentioned hybrid system can balance various driving scenarios driving performance and fuel economy.
  • the hybrid power system includes a control module, and the control module can control the hybrid power system so that the hybrid power system has multiple working modes.
  • the control module does not have to be mechanically integrated with the hybrid system, particularly the components or features shown in the figures, nor does the control module have to be dedicated to controlling the hybrid system.
  • a control module may comprise a plurality of control units. A part of the sub-modules or control unit of the control module may be a control module or control unit of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供了一种混合动力***,其中变速器包括与第一电机(EM1)传动联接且用于与发动机(ICE)传动联接的第一输入轴(S1)、与第一输入轴(S1)传动联接的第一中间轴(S3)、第二中间轴(S4)。变速器的离合机构包括单向离合器(C)和同步器(SY),离合机构能够使第二中间轴(S4)选择性地与第一中间轴(S3)或第一输入轴(S1)传动联接和解除传动联接。变速器的输出组件与第二电机(EM2)和第二中间轴(S4)传动联接,用于驱动车辆行驶。这样,混合动力***简化了结构且节省了成本,改善了传动效率,还减小由于对应发动机的挡位较少对混合动力***性能的不利影响。还提供了一种包括混合动力***的车辆。

Description

混合动力***及车辆 技术领域
本申请涉及车辆领域,更具体地涉及混合动力***及包括该混合动力***的车辆。
背景技术
在现有的车辆中,存在多种双电机混合动力***,用于驱动车辆行驶。在一些典型的双电机混合动力***中,发动机和一个电机与变速器的输入轴传动联接,另一个电机与变速器的输出轴传动联接,从而构造成所谓的P1/P3混合动力***。
但是,在上述双电机混合动力***中,存在如下问题。一方面,有些双电机混合动力***在发动机用于驱动时只有一个对应的挡位,导致混合动力***在发动机处于高速状态时的NVH性能和燃油经济性较差,并且在发动机处于低速状态时的动力性能劣化;另一方面,有些双电机混合动力***采用摩擦离合器,不仅导致整个混合动力***的成本较高,而且摩擦离合器产生了拖拽扭矩导致整个混合动力***的传动效率降低。
发明内容
鉴于上述混合动力***的缺陷而做出了本申请。本申请的一个目的在于提供一种混合动力***,其能够减小由于对应发动机的挡位较少对混合动力***性能的不利影响,而且能够避免采用摩擦离合器所导致的成本较高且传动效率降低的问题。本申请的另一个目的在于提供一种包括上述混合动力***的车辆。
为了实现上述目的,本申请采用如下的技术方案。
本申请提供了一种如下的混合动力***,其包括第一电机、第二电机和变速器,所述变速器包括:
第一输入轴,其与所述第一电机传动联接,并且用于与发动机传动联接;
第一中间轴,其与所述第一输入轴传动联接;
第二中间轴;
离合机构,其包括单向离合器和同步器,所述离合机构能够使所述第二中间轴选择性地与所述第一中间轴或所述第一输入轴传动联接和解除传动联接;以及
输出组件,其与所述第二电机和所述第二中间轴传动联接,用于驱动车辆行驶。
在一种可选的技术方案中,所述单向离合器包括能够相对转动的外圈和内圈,所述外圈与所述同步器的齿圈传动联接,所述内圈与所述第二中间轴传动联接,所述同步器接合能够选择性地使所述外圈与所述第一中间轴传动联接或者使所述外圈与所述第一输入轴传动联接。
在另一种可选的技术方案中,所述第一中间轴、所述第二中间轴同轴布置,所述第一中间轴***穿过所述第二中间轴。
在另一种可选的技术方案中,所述输出组件包括差速器。
在另一种可选的技术方案中,所述变速器还包括第一齿轮、第二齿轮、第三齿轮和第四齿轮,所述第一齿轮和所述第二齿轮以抗扭的方式设置于所述第一输入轴,所述第三齿轮以抗扭的方式设置于所述第一中间轴,所述第四齿轮以非抗扭的方式设置于所述第二中间轴,所述第四齿轮能够经由所述离合机构与所述第二中间轴传动联接,
所述第一齿轮与所述第三齿轮始终处于啮合状态以构成第一齿轮副,所述第二齿轮与所述第四齿轮始终处于啮合状态以构成第二齿轮副。
在另一种可选的技术方案中,所述第一齿轮副的传动比大于所述第二齿轮副的传动比,
所述变速器还包括第五齿轮,所述第五齿轮与所述第一电机的转子传动联接,所述第五齿轮与所述第二齿轮始终处于啮合状态。
在另一种可选的技术方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现纯电机驱动模式,
其中,当所述混合动力***处于所述纯电机驱动模式时,所述发动机处于停止状态,所述第一电机处于停止状态,所述第二电机处于驱动状态,所述单向离合器分离,使得所述第二电机向所述输出组件传递扭矩。
在另一种可选的技术方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现串联驱动模式,
当所述混合动力***处于所述串联驱动模式时,所述发动机处于驱动状态,所述第一电机处于发电状态,所述第二电机处于驱动状态,所述单向离合器分离,所述同步器分离,使得所述发动机驱动所述第一电机发电,所述第二电机向所述输出组件传递扭矩。
在另一种可选的技术方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现并联驱动模式,
当所述混合动力***处于所述并联驱动模式时,所述发动机处于驱动状态,所述第二电机处于驱动状态,所述单向离合器接合,所述同步器接合,使得所述发动机和所述第二电机向所述输出组件传递扭矩。
在另一种可选的技术方案中,所述混合动力***还包括控制模块,所述 控制模块能够控制所述混合动力***使所述混合动力***实现能量回收模式,
当所述混合动力***处于所述能量回收模式时,所述发动机处于停止状态,所述第一电机处于停止状态,所述第二电机处于发电状态,所述单向离合器分离,所述第二电机接收来自所述输出组件的扭矩而进行发电。
本申请还提供了一种如下的车辆,其包括以上技术方案中任意一项技术方案所述的混合动力***。
通过采用上述技术方案,本申请提供了一种新型的混合动力***及包括该混合动力***的车辆。在该混合动力***中,发动机和第一电机与变速器的第一输入轴可以始终传动联接。在变速器中,第一输入轴与第一中间轴始终传动联接。经由包括单向离合器和同步器的离合机构,能够选择性地使第一中间轴和第二中间轴传动联接或者第一输入轴和第二中间轴传动联接。
这样,根据本申请的混合动力***的离合机构由单向离合器和同步器构成,省略了传动的摩擦离合器复杂的致动***,由此简化了结构且节省了成本,而且改善了传动效率。进一步地,由于经由包括单向离合器和同步器的离合机构,能够选择性地使第一中间轴和第二中间轴传动联接或者第一输入轴和第二中间轴传动联接,因此变速器包括与发动机对应的至少两个挡位,从而能够减小由于对应发动机的挡位较少对混合动力***性能的不利影响。而且,本申请的混合动力***的构造还具有较好的车辆适用性,使得该混合动力***能够适用于不同种类不同型号的车辆。
附图说明
图1是示出了根据本申请的一实施例的混合动力***的拓扑结构示意图。
图2是示出了图1中的混合动力***处于纯电机驱动模式下的扭矩传递路径的示意图,其中带箭头的虚线表示扭矩传递路径。
图3是示出了图1中的混合动力***处于串联驱动模式下的扭矩传递路径的示意图,其中带箭头的虚线表示扭矩传递路径。
图4A和图4B是示出了图1中的混合动力***处于并联驱动模式下的扭矩传递路径的示意图,其中带箭头的虚线表示扭矩传递路径。
图5是示出了图1中的混合动力***处于能量回收模式下的扭矩传递路径的示意图,其中带箭头的虚线表示扭矩传递路径。
附图标记说明
ICE发动机 EM1第一电机 EM2第二电机
S1第一输入轴 S2第二输入轴 S3第一中间轴 S4第二中间轴
G11、G12、G21、G22、G31、G41、G42、GE1、GE2、GDM齿轮
C单向离合器 SY同步器 DM差速器。
具体实施例
下面参照附图描述本申请的示例性实施例。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
在本申请中,“传动联接”是指两个部件之间能够传递扭矩地连接,如无特殊说明,包括这两个部件之间直接连接或者间接连接。“始终传动联接”是指两个部件之间始终保持传动联接状态。
在本申请中,“抗扭连接”是指两个部件能够一起转动以传递扭矩地连接,例如齿轮与轴之间通过花键结构能够实现上述抗扭连接。
以下将首先结合说明书附图说明根据本申请的一实施例的混合动力***的结构。
(根据本申请的一实施例的混合动力***的结构)
如图1所示,根据本申请的一实施例的混合动力***包括发动机ICE、第一电机EM1、第二电机EM2、变速器以及电池(未示出)。
在本实施例中,发动机ICE的曲轴经由双质量飞轮与变速器的第一输入轴S1终传动联接。双质量飞轮用于衰减来自发动机ICE的扭振,还可以采用其它减振器来实现衰减扭振的功能。
在本实施例中,第一电机EM1包括定子和能够相对于定子转动的转子,第一电机EM1的转子与变速器的第一输入轴S1始终传动联接。由此,发动机ICE的扭矩能够传递到第一电机EM1,以驱动第一电机EM1进行发电;另外,第一电机EM1的扭矩能够传递到发动机ICE,以启动发动机ICE。另外,第一电机EM1还与电池电连接。这样,在第一电机EM1由电池供给电能的情况下,第一电机EM1作为电动机能够启动发动机ICE;在第一电机EM1获得来自发动机ICE的扭矩的情况下,第一电机EM1作为发电机向电池充电。第一电机EM1主要用于发电以向电池充电和启动发动机ICE。
在本实施例中,第二电机EM2包括定子和能够相对于定子转动的转子,第二电机EM2的转子与变速器的第二输入轴S2始终传动联接。另外,第二电机EM2还与电池电连接。这样,在第二电机EM2由电池供给电能的情况下,第二电机EM2作为电动机能够向变速器传递驱动扭矩;在第二电机EM2获得来自变速器的扭矩的情况下,第二电机EM2作为发电机向电池充电。第二电机EM2主要用于驱动和进行能量回收。
在本实施例中,如图1所示,根据本申请的一实施例的混合动力***的变速器包括第一输入轴S1、第二输入轴S2、第一中间轴S3、第二中间轴S4、齿轮G11、G12、G21、G22、G31、G41、G42、GE1、GE2、GDM以及离合机构(单向离合器C和同步器SY)和差速器DM。
如图1所示,第一输入轴S1可以为直线状延伸的实心轴,第二输入轴S2可以为直线状延伸的实心轴,第一中间轴S3可以为直线状延伸的实心轴,第 二中间轴S4可以为直线状延伸的空心轴。第一中间轴S3以与第二中间轴S4同轴的方式***穿过第二中间轴S4,第一中间轴S3和第二中间轴S4能够相对于彼此自由转动。第一输入轴S1和第二输入轴S2与第一中间轴S3和第二中间轴S4平行且错开布置。第一输入轴S1与发动机ICE的曲轴和第一电机EM1的转子始终传动联接,第二输入轴S2与第二电机EM2的转子始终传动联接。进一步地,第一中间轴S3与第一输入轴S1始终传动联接,经由离合机构能够选择性地使第二中间轴S4与第一输入轴S1传动联接或者使第二中间轴S4与第一中间轴S3传动联接。
如图1所示,齿轮G11(对应第一齿轮)以抗扭的方式设置于第一输入轴S1。齿轮G11与第一输入轴S1直接传动联接并且齿轮G11能够随着第一输入轴S1转动。齿轮G31(对应第三齿轮)以抗扭的方式设置于第一中间轴S3。齿轮G31与第一中间轴S3直接传动联接并且齿轮G31能够随着第一中间轴S3转动。齿轮G11与齿轮G31构成外啮合的第一齿轮副,使得第一输入轴S1与第一中间轴S3始终传动联接。
齿轮G12(对应第二齿轮)以抗扭的方式设置于第一输入轴S1。齿轮G12与第一输入轴S1直接传动联接并且齿轮G12能够随着第一输入轴S1转动。齿轮G41(对应第四齿轮)以非抗扭的方式设置于第二中间轴S4,齿轮G41与第二中间轴S4不能直接传递扭矩而能够相对彼此自由转动。齿轮G12与齿轮G41构成外啮合的第二齿轮副。第二齿轮副的传动比小于第一齿轮副的传动比,第一齿轮副可以用于发动机ICE处于低速状态下传递扭矩,第二齿轮副可以用于发动机ICE处于高速状态下传递扭矩,从而改善发动机ICE在低速和高度状态下的性能。
齿轮GE1(对应第五齿轮)可以通过电机轴与第一电机EM1的转子始终传动联接,齿轮GE1还与齿轮G12始终处于啮合状态。由此,第一电机EM1的转子与第一输入轴S1通过齿轮GE1和齿轮G12构成的外啮合的齿轮副始终 传动联接。
齿轮G42以抗扭的方式设置于第二中间轴S4,齿轮G42与第二中间轴S4直接传动联接并且齿轮G42能够随着第二中间轴S4转动。齿轮GDM为差速器DM(输出组件)的输入齿轮,齿轮GDM与齿轮G42始终处于啮合状态。由此,第二中间轴S4与差速器DM经由齿轮G42和齿轮GDM构成的外啮合的齿轮副始终传动联接。
齿轮GE2可以通过电机轴与第二电机EM2的转子始终传动联接。齿轮G21以抗扭的方式设置于第二输入轴S2,齿轮G21与第二输入轴S2直接传动联接并且齿轮G21能够随着第二输入轴S2转动。齿轮GE2与齿轮G21始终处于啮合状态。由此,第二电机EM2的转子与第二输入轴S2通过齿轮GE2和齿轮G21构成的外啮合的齿轮副始终传动联接。
齿轮G22以抗扭的方式设置于第二输入轴S2,齿轮G22与第二输入轴S2直接传动联接并且齿轮G22能够随着第二输入轴S2转动。齿轮G22与齿轮GDM始终处于啮合状态。由此,第二输入轴S2与差速器DM经由齿轮G22和齿轮GDM构成的外啮合的齿轮副始终传动联接。
如图1所示,离合机构用于使第二中间轴S4与第一输入轴S1和第一中间轴S1选择性地传动联接。离合机构包括可以整合在一起的单向离合器C和同步器SY。
具体地,单向离合器C可以包括组装在一起的外圈、内圈和滚子。内圈位于外圈的径向内侧,且在单向离合器C分离的状态下内圈和外圈能够彼此自由转动,在单向离合器C接合的状态下内圈和外圈能够一起转动且内圈和外圈能够经由位于它们之间的滚子传递扭矩。外圈与同步器SY的齿圈可以通过花键而始终传动联接,内圈与第二中间轴S4可以通过彼此固定而始终传动联接。在本实施例中,当外圈相对于内圈趋向于产生朝向周向一侧的相对转动时,也就是通俗地说外圈的朝向周向一侧的转速大于内圈朝向周向一侧的 转速时,外圈能够经由滚子与内圈传动联接。在其它情况下,单向离合器C分离。
进一步地,同步器SY可以包括齿毂(可以是单向离合器C的外圈)、齿圈和接合齿轮。齿圈与齿毂通过花键始终传动联接且能够相对于齿毂朝向第二中间轴S4的轴向两侧(图1中向左右两侧)滑动。一个接合齿轮抗扭地设置于第一中间轴S3,另一个接合齿轮可以固定于齿轮G41。当齿圈在拨叉等的致动机构的致动下朝向图1中的左侧运动之后,齿圈能够同时与齿毂和一个接合齿轮接合,使得单向离合器C的外圈1与第一中间轴S3实现传动联接,由此在单向离合器C接合之后第二中间轴S4与第一中间轴S3实现传动联接。当齿圈在拨叉等的致动机构的致动下朝向图1中的右侧运动之后,齿圈能够同时与齿毂和另一个接合齿轮接合,使得单向离合器C的外圈1与齿轮G41实现传动联接,由此在单向离合器C接合之后第二中间轴S4与第一输入轴S1实现传动联接。
在本实施例中,如图1所示,差速器DM可以是锥齿轮差速器,齿轮GDM为固定于锥齿轮差速器的壳体的输入齿轮。从差速器DM伸出的两根半轴用于与车辆的两个车轮相连。
这样,通过以上结构,实现了一种新型的混合动力***,其与包括多个离合器的双电机混合动力***相比成本较低,而且能够降低与发动机对应的挡位较少对混合动力***的性能的不利影响,以下将说明该混合动力***的工作模式。
(根据本申请的一实施例的混合动力***的工作模式)
图1中示出的根据本申请的一实施例的混合动力***包括控制模块(图中未示出),该控制模块能够控制混合动力***使得该混合动力***具有多种工作模式,控制模块可以根据车辆的行驶状态、电池荷电水平等参数在这些工作模式之间进行切换。这些工作模式包括但不限于纯电机驱动模式、串联驱动模式、并联驱动模式和能量回收模式。
在以下的表1中示出了上述示例性的工作模式中发动机ICE、第一电机EM1、第二电机EM2、单向离合器C和同步器SY的工作状态。
【表1】
Figure PCTCN2022071832-appb-000001
对于以上表1中的内容进行如下说明。
1.关于表1中的工作模式
EV表示纯电机驱动模式。
SER表示串联驱动模式。
PAR1表示第一并联驱动模式(用于发动机处于低速状态)。
PAR2表示第二并联驱动模式(用于发动机处于高速状态)。
ER表示能量回收模式。
2.表1中的第一行中的ICE、EM1、EM2、C、SY分别与图1中附图标记相对应,即分别表示图1中的混合动力***中的发动机、第一电机、第二电机、单向离合器、同步器。
3.关于符号“█”
对于表1中ICE、EM1、EM2所在的列,有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于工作状态,没有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于非工作状态。
对于表1中的C所在的列,有该符号表示单向离合器C接合,没有该符号表示单向离合器C分离。
对于表1中的SY所在的列,在与“L”对应的列中有该符号表示同步器SY向图1中的左侧接合,在与“R”对应的列中有该符号表示同步器SY向图1中的右侧接合,在与“N”对应的列中有该符号表示同步器SY位于中性的分离状态。
结合以上的表1,对图1中的混合动力***的工作模式进行更具体的说明。
如表1所示,图1中的混合动力***的控制模块能够控制混合动力***使混合动力***实现纯电机驱动模式EV。
当混合动力***处于纯电机驱动模式EV时,
发动机ICE处于停止状态;
第一电机EM1处于停止状态;
第二电机EM2处于驱动状态;
单向离合器C分离,同步器SY可以分离。
这样,如图2所示,第二电机EM2经由齿轮GE2→齿轮G21→第二输入轴S2→齿轮G22→齿轮GDM向差速器DM传递扭矩以用于驱动。
可以理解,由于在纯电机驱动模式中单向离合器C的内圈速度始终大于外圈速度,因而使得单向离合器C保持分离状态,因此同步器SY可以处于任意状态,而不必须处于分离状态。
如表1所示,图1中的混合动力***的控制模块能够控制混合动力***使混合动力***实现串联驱动模式SER。
当混合动力***处于串联驱动模式SER时,
发动机ICE处于驱动状态;
第一电机EM1处于发电状态;
第二电机EM2处于驱动状态;
单向离合器C分离,同步器SY分离。
这样,如图3所示,发动机ICE经由第一输入轴S1→齿轮G12→齿轮GE1 向第一电机EM1传递扭矩,使得第一电机EM1进行发电;第二电机EM2经由齿轮GE2→齿轮G21→第二输入轴S2→齿轮G22→齿轮GDM向差速器DM传递扭矩以用于驱动。
可以理解,由于发动机ICE利用其高速挡齿轮G12与齿轮GE1构成的齿轮副向第一电机EM1传递扭矩,由此发动机ICE和第一电机EM1两者可以都处于高效率工作区域。
如表1所示,图1中的混合动力***的控制模块能够控制混合动力***使混合动力***实现第一并联驱动模式PAR1。
当混合动力***处于第一并联驱动模式PAR1时,
发动机ICE处于低速驱动状态;
第一电机EM1可以根据需要调节工作状态;
第二电机EM2处于驱动状态;
单向离合器C接合,同步器SY向图1中的左侧接合。
这样,如图4A所示,发动机ICE经由第一输入轴S1→齿轮G11→齿轮G31→第一中间轴S3→同步器SY→单向离合器C→第二中间轴S4→齿轮G42→齿轮GDM向差速器DM传递扭矩以用于驱动;如果第一电机EM1处于驱动状态,则第一电机EM1经由齿轮GE1→齿轮G12→第一输入轴S1→齿轮G11→齿轮G31→第一中间轴S3→同步器SY→单向离合器C→第二中间轴S4→齿轮G42→齿轮GDM向差速器DM传递扭矩以用于驱动;第二电机EM2经由齿轮GE2→齿轮G21→第二输入轴S2→齿轮G22→齿轮GDM向差速器DM传递扭矩以用于驱动。
如表1所示,图1中的混合动力***的控制模块能够控制混合动力***使混合动力***实现第二并联驱动模式PAR2。
当混合动力***处于第二并联驱动模式PAR2时,
发动机ICE处于高速驱动状态;
第一电机EM1可以根据需要调节工作状态;
第二电机EM2处于驱动状态;
单向离合器C接合,同步器SY向图1中的右侧接合。
这样,如图4B所示,发动机ICE经由第一输入轴S1→齿轮G12→齿轮G41→同步器SY→单向离合器C→第二中间轴S4→齿轮G42→齿轮GDM向差速器DM传递扭矩以用于驱动;如果第一电机EM1处于驱动状态,则第一电机EM1经由齿轮GE1→齿轮G12→齿轮G41→同步器SY→单向离合器C→第二中间轴S4→齿轮G42→齿轮GDM向差速器DM传递扭矩以用于驱动;第二电机EM2经由齿轮GE2→齿轮G21→第二输入轴S2→齿轮G22→齿轮GDM向差速器DM传递扭矩以用于驱动。
可以理解,当混合动力***从第一并联驱动模式PAR1向第二并联驱动模式PAR2进行转换时,可以通过第一电机EM1来调节单向离合器C的外圈的转速。在单向离合器C的外圈的转速小于内圈的转速之后,可以通过同步器SY来进行换挡。这也是在图4A和图4B中第一电机EM1的扭矩传递路径的箭头被示出为朝向第一电机EM1传递的原因,也就是第一电机EM1可以处于发电状态实现上述调节功能。
如表1所示,图1中的混合动力***的控制模块能够控制混合动力***使混合动力***实现能量回收模式ER。
当混合动力***处于能量回收模式ER时,
发动机ICE处于停止状态;
第一电机EM1处于停止状态;
第二电机EM2处于发电状态;
单向离合器C分离,同步器SY可以分离。
这样,如图5所示,来自差速器DM的扭矩经由齿轮GDM→齿轮G22→第二输入轴S2→齿轮G21→齿轮GE2传递到第二电机EM2,以使得第二电机EM2进行发电。
可以理解,由于单向离合器C的内圈速度始终大于外圈速度,因而使得 单向离合器C保持分离状态,因此同步器SY可以处于任意状态,而不必须处于分离状态。
由此,本申请的混合动力***能够根据需要实现各种工作模式,从而适用车辆的各种不同的行驶状态。
在以上的具体实施例中对本申请的技术方案进行了详细地阐述,以下进行补充说明。
i.可以理解,根据本申请的混合动力***还可以实现例如纯发动机驱动模式、行驶时充电模式、停车时充电模式等其它工作模式。另外,本申请的混合动力***的容错能力强,即使单向离合器C出现故障,混合动力***也可以采用串联工作模式继续工作。当本申请的混合动力***处于第一并联驱动模式时,能够改善低速状态下的NVH性能,而且能够实现较好的低速状态下的加速性能。当本申请的混合动力***处于第二并联驱动模式时,使得混合动力***能够改善高速状态下的NVH性能并具有较好的燃油经济性。
ii.在以上的实施例中说明了单向离合器C是滚子式单向超越离合器,但是本申请不限于此,该单向离合器C还可以是嵌块式单向超越离合器和摇杆式单向超越离合器等。
iii.由于本申请采用同步器SY配合单向离合器C实现挡位切换,基于单向离合器C的特性,同步器SY可以省略传统的同步器中的同步环以及接合齿轮与同步环对应的摩擦接合部分,只保留齿圈就能够实现所需的功能。因而,简化了同步器SY的结构,使得同步器SY的结构更紧凑且降低了同步器SY的接合力,而且与采用摩擦离合器的情况相比,省略了复杂的致动***。进一步地,由于采用固定轴变速器,因而还具有较高的传动效率。
iv.本申请还提供了一种包括上述混合动力***的车辆,该车辆可以是插电式混合动力车辆也可以是其它类型的混合动力车辆,具有上述混合动力***的车辆能够平衡各种行驶场景下的驱动性能和燃油经济性。
v.可以理解,虽然在上面的描述中,说明了混合动力***包括控制模块, 该控制模块能够控制混合动力***使得该混合动力***具有多种工作模式。但是,该控制模块不必与混合动力***,特别是附图中示出的各部件或特征机械地整合在一起,控制模块也不必专门用于控制混合动力***。控制模块可以包括多个控制单元。控制模块的一部分子模块或控制单元可以是车辆的控制模块或控制单元。

Claims (11)

  1. 一种混合动力***,其包括第一电机(EM1)、第二电机(EM2)和变速器,所述变速器包括:
    第一输入轴(S1),其与所述第一电机(EM1)传动联接,并且用于与发动机(ICE)传动联接;
    第一中间轴(S3),其与所述第一输入轴(S1)传动联接;
    第二中间轴(S4);
    离合机构,其包括单向离合器(C)和同步器(SY),所述离合机构能够使所述第二中间轴(S4)选择性地与所述第一中间轴(S3)或所述第一输入轴(S1)传动联接和解除传动联接;以及
    输出组件,其与所述第二电机(EM2)和所述第二中间轴(S4)传动联接,用于驱动车辆行驶。
  2. 根据权利要求1所述的混合动力***,其特征在于,所述单向离合器(C)包括能够相对转动的外圈和内圈,所述外圈与所述同步器(SY)的齿圈传动联接,所述内圈与所述第二中间轴(S4)传动联接,所述同步器(SY)接合能够选择性地使所述外圈与所述第一中间轴(S3)传动联接或者使所述外圈与所述第一输入轴(S1)传动联接。
  3. 根据权利要求1所述的混合动力***,其特征在于,所述第一中间轴(S3)、所述第二中间轴(S4)同轴布置,所述第一中间轴(S3)***穿过所述第二中间轴(S4)。
  4. 根据权利要求1至3中任一项所述的混合动力***,其特征在于,所述输出组件包括差速器。
  5. 根据权利要求1至4中任一项所述的混合动力***,其特征在于,所述变速器还包括第一齿轮(G11)、第二齿轮(G12)、第三齿轮(G31)和第四齿轮(G41),所述第一齿轮(G11)和所述第二齿轮(G12)以抗扭的方式 设置于所述第一输入轴(S1),所述第三齿轮(G31)以抗扭的方式设置于所述第一中间轴(S3),所述第四齿轮(G41)以非抗扭的方式设置于所述第二中间轴(S4),所述第四齿轮(G41)能够经由所述离合机构与所述第二中间轴(S4)传动联接,
    所述第一齿轮(G11)与所述第三齿轮(G31)始终处于啮合状态以构成第一齿轮副,所述第二齿轮(G12)与所述第四齿轮(G41)始终处于啮合状态以构成第二齿轮副。
  6. 根据权利要求5所述的混合动力***,其特征在于,所述第一齿轮副的传动比大于所述第二齿轮副的传动比,
    所述变速器还包括第五齿轮(GE1),所述第五齿轮(GE1)与所述第一电机(EM1)的转子传动联接,所述第五齿轮(GE1)与所述第二齿轮(G12)始终处于啮合状态。
  7. 根据权利要求1至6中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现纯电机驱动模式,
    其中,当所述混合动力***处于所述纯电机驱动模式时,所述发动机(ICE)处于停止状态,所述第一电机(EM1)处于停止状态,所述第二电机(EM2)处于驱动状态,所述单向离合器(C)分离,使得所述第二电机(EM2)向所述输出组件传递扭矩。
  8. 根据权利要求1至6中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现串联驱动模式,
    当所述混合动力***处于所述串联驱动模式时,所述发动机(ICE)处于驱动状态,所述第一电机(EM1)处于发电状态,所述第二电机(EM2) 处于驱动状态,所述单向离合器(C)分离,所述同步器(SY)分离,使得所述发动机(ICE)驱动所述第一电机(EM1)发电,所述第二电机(EM2)向所述输出组件传递扭矩。
  9. 根据权利要求1至6中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现并联驱动模式,
    当所述混合动力***处于所述并联驱动模式时,所述发动机(ICE)处于驱动状态,所述第二电机(EM2)处于驱动状态,所述单向离合器(C)接合,所述同步器(SY)接合,使得所述发动机(ICE)和所述第二电机(EM2)向所述输出组件传递扭矩。
  10. 根据权利要求1至6中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现能量回收模式,
    当所述混合动力***处于所述能量回收模式时,所述发动机(ICE)处于停止状态,所述第一电机(EM1)处于停止状态,所述第二电机(EM2)处于发电状态,所述单向离合器(C)分离,所述第二电机(EM2)接收来自所述输出组件的扭矩而进行发电。
  11. 一种车辆,其包括权利要求1至10中任一项所述的混合动力***。
PCT/CN2022/071832 2022-01-13 2022-01-13 混合动力***及车辆 WO2023133759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071832 WO2023133759A1 (zh) 2022-01-13 2022-01-13 混合动力***及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071832 WO2023133759A1 (zh) 2022-01-13 2022-01-13 混合动力***及车辆

Publications (1)

Publication Number Publication Date
WO2023133759A1 true WO2023133759A1 (zh) 2023-07-20

Family

ID=87280038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071832 WO2023133759A1 (zh) 2022-01-13 2022-01-13 混合动力***及车辆

Country Status (1)

Country Link
WO (1) WO2023133759A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030528A (ja) * 2014-07-29 2016-03-07 トヨタ自動車株式会社 車両制御装置
US20160348741A1 (en) * 2015-05-28 2016-12-01 Ford Global Technologies, Llc Electro-magnetic and centrifugal clutch
CN209159400U (zh) * 2018-10-31 2019-07-26 比亚迪股份有限公司 混合动力驱动***及车辆
CN209336487U (zh) * 2018-12-29 2019-09-03 长城汽车股份有限公司 动力驱动***及具有其的车辆
CN110303869A (zh) * 2019-07-09 2019-10-08 舍弗勒技术股份两合公司 混合动力***
WO2021099422A1 (en) * 2019-11-18 2021-05-27 Delphi Technologies Ip Limited Clutch arrangement for a hybrid vehicle powertrain
CN213799232U (zh) * 2020-09-30 2021-07-27 重庆青山工业有限责任公司 双电机混合动力***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030528A (ja) * 2014-07-29 2016-03-07 トヨタ自動車株式会社 車両制御装置
US20160348741A1 (en) * 2015-05-28 2016-12-01 Ford Global Technologies, Llc Electro-magnetic and centrifugal clutch
CN209159400U (zh) * 2018-10-31 2019-07-26 比亚迪股份有限公司 混合动力驱动***及车辆
CN209336487U (zh) * 2018-12-29 2019-09-03 长城汽车股份有限公司 动力驱动***及具有其的车辆
CN110303869A (zh) * 2019-07-09 2019-10-08 舍弗勒技术股份两合公司 混合动力***
WO2021099422A1 (en) * 2019-11-18 2021-05-27 Delphi Technologies Ip Limited Clutch arrangement for a hybrid vehicle powertrain
CN213799232U (zh) * 2020-09-30 2021-07-27 重庆青山工业有限责任公司 双电机混合动力***

Similar Documents

Publication Publication Date Title
CN109130830B (zh) 用于混合动力车辆的变速器及动力***
US11391348B2 (en) Transmission and power system for use in hybrid vehicle
US8992363B2 (en) Hybrid transmission for a motor vehicle
US9770971B1 (en) Drive unit
US8661941B2 (en) Hybrid drive system
EP3750734B1 (en) Hybrid transmission and hybrid electric vehicle
US11299027B2 (en) Power system for hybrid vehicles
WO2019218266A1 (zh) 混合动力变速器和车辆
WO2019218267A1 (zh) 混合动力变速器和车辆
US20190291566A1 (en) Power transmission structure of hybrid vehicle with one motor generator and three clutches
WO2020093301A1 (zh) 混合动力模块和车辆
CN110027400B (zh) 一种双电机混合动力***
CN108909433B (zh) 用于混合动力车辆的动力***
JP4120314B2 (ja) 車両用動力伝達装置
US6691808B2 (en) Drive unit for motor vehicles
WO2020093302A1 (zh) 混合动力模块和车辆
WO2023133759A1 (zh) 混合动力***及车辆
KR101592636B1 (ko) 차량의 하이브리드 파워트레인
WO2019196010A1 (zh) 混合动力变速器和混合动力车辆
US10906522B2 (en) Road vehicle with dual-clutch transmission and hybrid drive and relative control method
CN111114279B (zh) 混合动力驱动***及车辆
WO2023130451A1 (zh) 混合动力***及车辆
CN215360907U (zh) 用于混合动力汽车的动力传动***
CN215552518U (zh) 混合动力耦合机构及具有其的车辆
CN114228474B (zh) 一种混合动力变速箱、混合动力驱动***及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919422

Country of ref document: EP

Kind code of ref document: A1