WO2023133651A1 - 一种基于数字经济水平的制造业转型升级平台*** - Google Patents

一种基于数字经济水平的制造业转型升级平台*** Download PDF

Info

Publication number
WO2023133651A1
WO2023133651A1 PCT/CN2022/071165 CN2022071165W WO2023133651A1 WO 2023133651 A1 WO2023133651 A1 WO 2023133651A1 CN 2022071165 W CN2022071165 W CN 2022071165W WO 2023133651 A1 WO2023133651 A1 WO 2023133651A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
time
data
subsystem
production
Prior art date
Application number
PCT/CN2022/071165
Other languages
English (en)
French (fr)
Inventor
尹红媛
肖莲英
鲁罗兰
Original Assignee
广州工商学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州工商学院 filed Critical 广州工商学院
Priority to PCT/CN2022/071165 priority Critical patent/WO2023133651A1/zh
Priority to CN202280062530.1A priority patent/CN117999521A/zh
Publication of WO2023133651A1 publication Critical patent/WO2023133651A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention relates to the technical field of manufacturing production monitoring and management, in particular to a manufacturing transformation and upgrading platform system based on digital economy level.
  • the manufacturing industry is the top priority of the real economy. It is of great significance to promote the high-quality development of the manufacturing industry.
  • the high-quality development of the economy cannot be separated from the high-quality development of the manufacturing industry. It must rely on technological innovation to improve the production efficiency and Supply quality.
  • digital technologies centered on the Internet, big data, and artificial intelligence have developed rapidly, and the integration of the digital economy and the real economy has accelerated.
  • the economic development model has been innovated in various links such as production, consumption, and circulation, and the economic landscape has been rewritten. , is an important engine for high-quality development, and the deep integration of the digital economy and the real economy provides new momentum for the improvement of quality and efficiency, transformation and upgrading of the manufacturing industry.
  • Data collection is particularly important in the process of integration of the digital economy and the real manufacturing industry, especially Data product collection of the production process.
  • the main purpose of the present invention is to provide a manufacturing transformation and upgrading platform system based on digital economy level, which can effectively solve the problems in the background technology.
  • the technical solution adopted by the present invention is: a manufacturing transformation and upgrading platform system based on digital economy level, including production subsystem, transportation subsystem, sales subsystem and processing subsystem;
  • the production subsystem is mainly used to collect real-time video data during the production process of mechanical production equipment in the die-casting production of industrial parts;
  • the processing subsystem includes a receiving module, a communication module and a cloud processing module, the receiving module receives the real-time video data acquired in the production subsystem in real time, and synchronizes the video data to the communication module, and the communication module converts the acquired Real-time video data is sent to the cloud processing module of cloud, and described cloud processing module comprises cloud processor and cloud database, and described cloud database stores real-time video data uninterruptedly, and described cloud processor processes real-time video data through cloud processor , in the process of processing, firstly, the single-frame image of the product in the shooting video is manually obtained after the production is qualified, and the single-frame image is compared with the subsequent image to obtain the same frame image for the first time.
  • the cloud processing module records the cycle time of industrial parts die-casting machinery and equipment to produce an industrial part, and obtains a single frame image on the corresponding time cycle node on the real-time video data according to the cycle time, and the acquired The image is compared with the image of the previous node;
  • the transportation subsystem and the sales subsystem generate real-time transportation data and real-time sales data respectively, and the cloud processor processes the real-time transportation data, the real-time sales data and the real-time production data to generate data analysis
  • the cloud processor assists the manufacturing industry in business decision-making and optimization based on data analysis results, realizing the transformation of the manufacturing industry under the digital economy.
  • the transportation system is used to transport qualified products, and record the data in the transportation process to obtain real-time transportation data.
  • the sales system is used to sell products and record data in the sales process to obtain real-time sales data.
  • all sales data and sales records of dealers are retained to generate real-time sales data.
  • the cloud processor builds a forecasting model to predict product sales, and guides manufacturers to purchase raw materials according to the forecast results, realizing digital precise guidance and digital transformation of traditional manufacturing.
  • the number of qualified products will be increased by one; Similarly, it means that an emergency occurs during the die-casting process of the workpiece, which means that there is an error in the die-casting production of the workpiece, and the produced product is unqualified.
  • the number of raw materials is increased by one every time a time period passes through, and finally the total number of raw materials in the production process is calculated. The total number of products and the total number of non-conforming products.
  • the receiving module is provided with a plurality of data receiving interfaces, and each data receiving interface is respectively used to receive the real-time video data of the transmission module, the real-time transportation data in the transportation subsystem and the sales subsystem Real-time sales data in the real-time data transmission between the receiving module and the transmission module, the transportation subsystem and the sales subsystem through the 5G communication network.
  • the cloud processor conducts analysis according to real-time transportation data, manages transportation orders in real time, coordinates the deployment of transportation vehicles, and reduces transportation costs through the overall deployment of transportation vehicles in the transportation subsystem.
  • a database misuse detection unit is established in the cloud database, and the characteristics of all previous database network attacks are summarized in the misuse detection unit, and an intrusion information database is established, and then the collected information is compared with known intrusion Compare the network intrusions in the information database, and then find out whether the cloud database has been invaded, and establish a database protection mechanism to ensure database security, effectively prevent the database from being illegally infringed, and reduce economic losses to manufacturing manufacturers.
  • the present invention has the following beneficial effects:
  • a production subsystem In the platform system of the present invention, a production subsystem, a transportation subsystem, a sales subsystem and a processing subsystem are established.
  • the production subsystem is mainly used to collect real-time video data during the production process of mechanical production equipment in the die-casting production of industrial parts.
  • the receiving module in the processing subsystem receives the real-time video data obtained in the production subsystem in real time, and synchronizes the video data to the communication module, and the communication module sends the obtained real-time video data to the cloud processing module in the cloud.
  • the cloud processing module includes a cloud processor And the cloud database, the cloud database continuously stores real-time video data, and the cloud processor processes the real-time video data through the cloud processor. After the same comparison with the image, the same frame image for the first time is obtained.
  • This frame image is the image after completing the production cycle of the product again.
  • the cloud processing module records the cycle time of industrial parts die-casting machinery and equipment to produce an industrial part , and according to the cycle time, obtain the single-frame image on the node corresponding to the time period on the real-time video data, and compare the acquired image with the image of the previous node to determine whether the two images are the same. If the images are the same, the number of qualified products will be increased by one If the images are not the same, the number of defective products will be increased by one, and the number of raw materials will be increased by one every time a time period is passed. Finally, real-time production data will be generated through image comparison, and real-time transportation data and real-time sales data will be generated in the transportation subsystem and sales subsystem respectively.
  • Cloud processor Real-time transportation data, real-time sales data, and real-time production data are processed to generate data analysis results. Based on the data analysis results, the cloud processor assists the manufacturing industry in business decision-making and optimization, and realizes the transformation of the manufacturing industry under the digital economy. It is more time-saving and labor-saving, and the supervision is more accurate.
  • the cloud processing subsystem combined with Internet cloud services makes the processing more accurate, provides higher cost performance for memory-intensive workloads, and saves manufacturing production costs.
  • Fig. 1 is a system block diagram of a manufacturing transformation and upgrading platform system based on digital economy level in the present invention
  • Fig. 2 is a flow chart of real-time video data processing in a manufacturing transformation and upgrading platform system based on the digital economy level of the present invention
  • Fig. 3 is a corresponding relationship diagram of receiving modules in a digital economy level-based manufacturing transformation and upgrading platform system according to the present invention.
  • the present invention is a manufacturing transformation and upgrading platform system based on the digital economy level, including production subsystems, transportation subsystems, sales subsystems and processing subsystems;
  • the production subsystem is mainly used to collect real-time video data during the production process of mechanical production equipment in the die-casting production of industrial parts;
  • the processing subsystem includes a receiving module, a communication module and a cloud processing module.
  • the receiving module receives the real-time video data acquired in the production subsystem in real time, and synchronizes the video data to the communication module.
  • the communication module sends the acquired real-time video data to the cloud in the cloud.
  • the processing module, the cloud processing module includes a cloud processor and a cloud database, the cloud database continuously stores real-time video data, and the cloud processor processes the real-time video data through the cloud processor. After passing the single-frame image, the single-frame image is compared with the subsequent image to obtain the same frame image for the first time. This frame image is the image after the production cycle of the product is completed again.
  • the cloud processing module records the industrial parts die-casting machinery The cycle time for the equipment to produce an industrial part, and obtain a single frame image on the corresponding time cycle node on the real-time video data according to the cycle time, and compare the obtained image with the image of the previous node;
  • the transportation subsystem and the sales subsystem generate real-time transportation data and real-time sales data respectively.
  • the cloud processor processes the real-time transportation data, real-time sales data and real-time production data to generate data analysis results. Based on the data analysis results, the cloud processor assists manufacturing Make business decisions and optimize the industry, and realize the transformation of the manufacturing industry in the digital economy.
  • the production subsystem includes an acquisition module and a transmission module.
  • the acquisition module establishes an acquisition camera, and the acquisition camera shooting area is facing the industrial parts die-casting machinery and equipment.
  • the entire production process, and the obtained real-time video data of the video area is sent to the transmission module, and the transmission module sends the data to the processing subsystem in real time.
  • the transportation system is used to transport qualified products, and record the data in the transportation process to obtain real-time transportation data.
  • all information and data are summarized according to the order departure point information, order receiving point information, vehicle information and driver information. Then generate real-time transportation data.
  • the sales system is used to sell products and record the data in the sales process to obtain real-time sales data.
  • all sales data and sales records of dealers are retained to generate real-time sales data.
  • the cloud The processor establishes a forecasting model to predict product sales, and guides manufacturers to purchase raw materials according to the forecasting results, so as to realize digital precise guidance and realize the digital transformation of traditional manufacturing.
  • the receiving module is provided with multiple data receiving interfaces, and each data receiving interface is used to receive the real-time video data of the transmission module, the real-time transportation data in the transportation subsystem, and the real-time sales data in the sales subsystem.
  • the transmission module, the transportation subsystem and the sales subsystem realize real-time data transmission through the 5G communication network.
  • the cloud processor conducts analysis based on real-time transportation data, manages transportation orders in real time, coordinates the deployment of transportation vehicles, and reduces transportation costs through the overall deployment of transportation vehicles in the transportation subsystem.
  • a database misuse detection unit is established in the cloud database.
  • the misuse detection unit summarizes the characteristics of all previous database network attacks, and establishes an intrusion information database, and then combines the collected information with the known intrusion information database. By comparing the network intrusions, it is found whether the cloud database has been invaded.
  • a database protection mechanism By establishing a database protection mechanism, the security of the database can be ensured, the database can be effectively prevented from being illegally infringed, and the economic loss to the manufacturing industry can be reduced.
  • the production subsystem is mainly used to collect real-time video data during the production process of mechanical production equipment in the die-casting production of industrial parts.
  • the subsystem includes a receiving module, a communication module and a cloud processing module.
  • the receiving module receives the real-time video data acquired in the production subsystem in real time, and synchronizes the video data to the communication module.
  • the communication module sends the acquired real-time video data to the cloud for cloud processing module, the cloud processing module includes a cloud processor and a cloud database, and the cloud database continuously stores real-time video data, and the cloud processor processes the real-time video data through the cloud processor.
  • the single frame image is compared with the subsequent image to obtain the same frame image for the first time.
  • This frame image is the image after the production cycle of the product is completed again.
  • the cloud processing module records the industrial parts die-casting machinery and equipment The cycle time of producing an industrial component, and according to the cycle time, obtain a single frame image on the corresponding time cycle node on the real-time video data, and compare the obtained image with the image of the previous node to determine whether the two images are the same , if the images are the same, the number of qualified products will be increased by one, if the images of adjacent cycles are the same, the production result will be qualified and authentic, if the images are different, the number of defective products will be increased by one, if the adjacent images are not the same, it means that an emergency occurred during the die-casting process of the workpiece, then If there is an error in the die-casting production of the workpiece, the produced product will be unqualified, and the number of raw materials will be increased by one every time a time period is passed.
  • the production data, transportation subsystem and sales subsystem generate real-time transportation data and real-time sales data respectively
  • the cloud processor processes the real-time transportation data, real-time sales data and real-time production data to generate data analysis results, and the cloud processor generates data analysis results based on the data analysis results , to assist the manufacturing industry in business decision-making and optimization, and realize the transformation of the manufacturing industry under the digital economy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于数字经济水平的制造业转型升级平台***,包括生产子***、运输子***、销售子***以及处理子***,生产子***主要用于采集工业零部件压铸生产中机械生产设备生产过程中的实时视频数据;运输子***和销售子***中分别生成实时运输数据和实时销售数据;处理子***包括接收模块、通信模块以及云处理模块;其中,接收模块实时接收生产子***中获取的实时视频数据;云处理模块包括云处理器以及云数据库,云数据库不间断存储实时视频数据,云处理器对实时视频数据进行处理,通过图像对比最终生成实时生产数据;云处理器对实时运输数据、实时销售数据以及实时生产数据进行处理生成数据分析结果,基于数据分析结果,辅助制造业进行业务决策和优化,实现数字经济下的制造业转型。

Description

一种基于数字经济水平的制造业转型升级平台*** 技术领域
本发明涉及制造业生产监控管理技术领域,特别涉及一种基于数字经济水平的制造业转型升级平台***。
背景技术
数字技术迅猛发展并广泛渗透应用于经济社会各产业领域,重构了经济社会的物质基础,人类经济社会正沿着技术革新、产业重构、融合应用和制度改造的路径,向数字经济新形态演化发展,制造业作为经济的支柱产业,代表着工业发展水平,是经济的主导力量及经济转型的重要基础,在数字经济背景下,数字经济基础产业与制造业的产业融合呈现不可逆的趋势。
制造业是实体经济的重中之重,推动制造业高质量发展,有着重大意义,经济的高质量发展,离不开制造业的高质量发展,要依靠科技创新,提高制造业的生产效率和供给质量,近年来,以互联网、大数据、人工智能为核心的数字技术迅猛发展,数字经济与实体经济加速融合,已经从生产、消费、流通等各个环节创新了经济发展模式,改写了经济面貌,为高质量发展的重要引擎,数字经济与实体经济深度融合,为制造业提质增效和转型升级提供了新动能,在数字经济与实体制造业融合的过程中数据采集尤为重要,尤其是生产过程的数据产品采集。
在工业零部件的压铸制造业中各种生产中所使用的设备也越来 越机械化,智能化,现阶段对单一物品进行批量化生产大多采用机械自动化生产方式,生产过程的监控十分重要,能够对各种情况进行及时处理,但是以往大多采用操作人员人工监控,这样的监控方式限制非常大,会受制于操作人员的经验,受制于设备的工作等各种情况,而且增加了操作人员的劳动强度,降低劳动效率,并容易引发安全事故,为此,我们提出一种基于数字经济水平的制造业转型升级平台***。
发明内容
本发明的主要目的在于提供一种基于数字经济水平的制造业转型升级平台***,可以有效解决背景技术中的问题。
为实现上述目的,本发明采取的技术方案为:一种基于数字经济水平的制造业转型升级平台***,包括生产子***、运输子***、销售子***以及处理子***;
所述生产子***主要用于采集工业零部件压铸生产中机械生产设备生产过程中的实时视频数据;
所述处理子***包括接收模块、通信模块以及云处理模块,所述接收模块实时接收所述生产子***中获取的实时视频数据,并将视频数据同步至通信模块,所述通信模块将获取的实时视频数据发送至云端的云处理模块,所述云处理模块包括云处理器以及云数据库,所述云数据库不间断存储实时视频数据,所述云处理器通过云端处理器对实时视频数据进行处理,处理过程中首先,人工获取拍摄视频中的产品生产合格后单帧图像,在单帧图像与之后通过图像相同比对,获取 第一次相同的帧图像,该帧图像为再次完成生产产品一周期后的图像,所述云处理模块记录工业零部件压铸机械设备生产一件工业零部件的周期时间,并根据周期时间获取实时视频数据上对应时间周期节点上的单帧图像,并将获取的图像与上一节点图像进行相同比对;
两幅图像对比过程中,对前一节点帧图像A进行旋转,旋转次数为s,每次旋转角度为360/s°,在计算前一节点帧图像A每次旋转结束后的第T个Zemike矩,并且T≥2,根据计算得出的数值构建S*T矩阵,其为:
Figure PCTCN2022071165-appb-000001
对矩阵KA的每一列进行均值和标准差的计算,获取均值向量和标准差向量,分别为:
Figure PCTCN2022071165-appb-000002
D div=[D 1,...,D T],其中,
Figure PCTCN2022071165-appb-000003
其中,
Figure PCTCN2022071165-appb-000004
无须对下一节点帧图像B进行旋转,对下一节点帧图像B对应的T个Zernike矩进行计算,得出矩值向量V B,根据计算图像A的
Figure PCTCN2022071165-appb-000005
D div与V B进行比较,判断两幅图像是否相同,通过图像对比最终生成实时生产数据;
所述运输子***以及所述销售子***中分别生成实时运输数据以及实时销售数据,所述云处理器对所述实时运输数据、所述实时销售数据以及所述实时生产数据进行处理生成数据分析结果,所述云处理器基于数据分析结果,辅助制造业进行业务决策和优化,实现数字经济下的制造业转型。
优选地,所述生产子***包括采集模块以及传输模块,所述采集 模块通过建立采集摄像头,所述采集摄像头拍摄区域正对工业零部件压铸机械设备,所述采集模块实时拍摄工业零部件压铸机械设备上料、压铸、出料的全部生产过程,并将得到的视频区域的实时视频数据发送至所述传输模块,所述传输模块实时将数据发送至处理子***。
优选地,所述运输***用于运输生产合格的产品,并记录运输过程中的数据得到实时运输数据,运输过程中根据订单出发点信息、订单接收点信息、车辆信息以及驾驶员信息,全部信息数据进行汇总,进而生成实时运输数据,所述销售***用于销售产品并记录销售过程中的数据得到实时销售数据,销售子***中,经销商的销售数据、销售记录全部留存生成实时销售数据,通过实时销售数据,云处理器建立预测模型预测产品销售行情,根据预测结果指导生产厂家的原材料采购,实现数字化精确指导,实现传统制造业的数字化转型。
优选地,根据图像相同对比生成实时生产数据的过程中:图像相同则合格产品数加一,相邻周期图像相同,则生产结果为合格正品,图像不相同则次品数加一,相邻图像不相同,说明工件压铸过程中产生突发事件,则说明工件压铸生产中出现差错,则生产的产品不合格,每经历一次时间周期原料数加一,最终统计出,生产过程中的原料总数,合格产品总数以及不合格产品总数。
优选地,所述接收模块上设有多个数据接收接口,每个数据接收接口分别用于接收所述传输模块的实时视频数据、所述运输子***中的实时运输数据以及所述销售子***中的实时销售数据,所述接收模块与所述传输模块、所述运输子***以及所述销售子***之间通过 5G通信网络实现实时数据传输。
优选地,所述云处理器根据实时运输数据进行分析,实时管理运输订单,统筹调配运输车辆,在运输子***中通过统筹调配运输车辆,实现降低运输成本。
优选地,所述云数据库中建立数据库误用检测单元,误用检测单元中把以往的所有数据库网络攻击的特征总结出来,并建立一个入侵信息库,然后将搜集到的信息与已知的入侵信息库中的网络入侵进行比较,进而发现云数据库是否被入侵,通过建立数据库防护机制,确保数据库安全,有效防止数据库被非法侵犯,减少给制造业厂家带来经济损失。
与现有技术相比,本发明具有如下有益效果:
本发明中的平台***内建立生产子***、运输子***、销售子***以及处理子***,在生产子***主要用于采集工业零部件压铸生产中机械生产设备生产过程中的实时视频数据,在处理子***中接收模块实时接收生产子***中获取的实时视频数据,并将视频数据同步至通信模块,通信模块将获取的实时视频数据发送至云端的云处理模块,云处理模块包括云处理器以及云数据库,云数据库不间断存储实时视频数据,云处理器通过云端处理器对实时视频数据进行处理,处理过程中首先,人工获取拍摄视频中的产品生产合格后单帧图像,在单帧图像与之后通过图像相同比对,获取第一次相同的帧图像,该帧图像为再次完成生产产品一周期后的图像,云处理模块记录工业零部件压铸机械设备生产一件工业零部件的周期时间,并根据周期时间获取实 时视频数据上对应时间周期节点上的单帧图像,并将获取的图像与上一节点图像进行相同比对,判断两幅图像是否相同,图像相同则合格产品数加一,图像不相同则次品数加一,每经历一次时间周期原料数加一,通过图像对比最终生成实时生产数据,运输子***以及销售子***中分别生成实时运输数据以及实时销售数据,云处理器对实时运输数据、实时销售数据以及实时生产数据进行处理生成数据分析结果,云处理器基于数据分析结果,辅助制造业进行业务决策和优化,实现数字经济下的制造业转型,与现有人工监管相比更加省时省力,监管更加准确,通过云处理子***结合互联网云服务,使得处理更加精确,为内存密集型工作负载提供更高的性价,节约制造业生产成本。
附图说明
图1为本发明一种基于数字经济水平的制造业转型升级平台***的***框图;
图2为本发明一种基于数字经济水平的制造业转型升级平台***中实时视频数据处理的流程图;
图3为本发明一种基于数字经济水平的制造业转型升级平台***中接收模块对应关系图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前端”、“后端”、“两端”、“一端”、“另一端”等指示的方位 或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请参照图1-3所示,本发明为一种基于数字经济水平的制造业转型升级平台***,包括生产子***、运输子***、销售子***以及处理子***;
生产子***主要用于采集工业零部件压铸生产中机械生产设备生产过程中的实时视频数据;
处理子***包括接收模块、通信模块以及云处理模块,接收模块实时接收生产子***中获取的实时视频数据,并将视频数据同步至通信模块,通信模块将获取的实时视频数据发送至云端的云处理模块,云处理模块包括云处理器以及云数据库,云数据库不间断存储实时视频数据,云处理器通过云端处理器对实时视频数据进行处理,处理过程中首先,人工获取拍摄视频中的产品生产合格后单帧图像,在单帧 图像与之后通过图像相同比对,获取第一次相同的帧图像,该帧图像为再次完成生产产品一周期后的图像,云处理模块记录工业零部件压铸机械设备生产一件工业零部件的周期时间,并根据周期时间获取实时视频数据上对应时间周期节点上的单帧图像,并将获取的图像与上一节点图像进行相同比对;
两幅图像对比过程中,对前一节点帧图像A进行旋转,旋转次数为s,每次旋转角度为360/s°,在计算前一节点帧图像A每次旋转结束后的第T个Zemike矩,并且T≥2,根据计算得出的数值构建S*T矩阵,其为:
Figure PCTCN2022071165-appb-000006
对矩阵KA的每一列进行均值和标准差的计算,获取均值向量和标准差向量,分别为:
Figure PCTCN2022071165-appb-000007
D div=[D 1,...,D T],其中,
Figure PCTCN2022071165-appb-000008
其中,
Figure PCTCN2022071165-appb-000009
无须对下一节点帧图像B进行旋转,对下一节点帧图像B对应的T个Zernike矩进行计算,得出矩值向量V B,根据计算图像A的
Figure PCTCN2022071165-appb-000010
D div与V B进行比较,判断两幅图像是否相同,通过图像对比最终生成实时生产数据;
运输子***以及销售子***中分别生成实时运输数据以及实时销售数据,云处理器对实时运输数据、实时销售数据以及实时生产数据进行处理生成数据分析结果,云处理器基于数据分析结果,辅助制造业进行业务决策和优化,实现数字经济下的制造业转型。
其中,生产子***包括采集模块以及传输模块,采集模块通过建 立采集摄像头,采集摄像头拍摄区域正对工业零部件压铸机械设备,采集模块实时拍摄工业零部件压铸机械设备上料、压铸、出料的全部生产过程,并将得到的视频区域的实时视频数据发送至传输模块,传输模块实时将数据发送至处理子***。
其中,运输***用于运输生产合格的产品,并记录运输过程中的数据得到实时运输数据,运输过程中根据订单出发点信息、订单接收点信息、车辆信息以及驾驶员信息,全部信息数据进行汇总,进而生成实时运输数据,销售***用于销售产品并记录销售过程中的数据得到实时销售数据,销售子***中,经销商的销售数据、销售记录全部留存生成实时销售数据,通过实时销售数据,云处理器建立预测模型预测产品销售行情,根据预测结果指导生产厂家的原材料采购,实现数字化精确指导,实现传统制造业的数字化转型。
其中,根据图像相同对比生成实时生产数据的过程中:图像相同则合格产品数加一,相邻周期图像相同,则生产结果为合格正品,图像不相同则次品数加一,相邻图像不相同,说明工件压铸过程中产生突发事件,则说明工件压铸生产中出现差错,则生产的产品不合格,每经历一次时间周期原料数加一,最终统计出,生产过程中的原料总数,合格产品总数以及不合格产品总数。
其中,接收模块上设有多个数据接收接口,每个数据接收接口分别用于接收传输模块的实时视频数据、运输子***中的实时运输数据以及销售子***中的实时销售数据,接收模块与传输模块、运输子***以及销售子***之间通过5G通信网络实现实时数据传输。
其中,云处理器根据实时运输数据进行分析,实时管理运输订单,统筹调配运输车辆,在运输子***中通过统筹调配运输车辆,实现降低运输成本。
其中,云数据库中建立数据库误用检测单元,误用检测单元中把以往的所有数据库网络攻击的特征总结出来,并建立一个入侵信息库,然后将搜集到的信息与已知的入侵信息库中的网络入侵进行比较,进而发现云数据库是否被入侵,通过建立数据库防护机制,确保数据库安全,有效防止数据库被非法侵犯,减少给制造业厂家带来经济损失。
在实际使用中:首先建立生产子***、运输子***、销售子***以及处理子***,在生产子***主要用于采集工业零部件压铸生产中机械生产设备生产过程中的实时视频数据,在处理子***包括接收模块、通信模块以及云处理模块,接收模块实时接收生产子***中获取的实时视频数据,并将视频数据同步至通信模块,通信模块将获取的实时视频数据发送至云端的云处理模块,云处理模块包括云处理器以及云数据库,云数据库不间断存储实时视频数据,云处理器通过云端处理器对实时视频数据进行处理,处理过程中首先,人工获取拍摄视频中的产品生产合格后单帧图像,在单帧图像与之后通过图像相同比对,获取第一次相同的帧图像,该帧图像为再次完成生产产品一周期后的图像,云处理模块记录工业零部件压铸机械设备生产一件工业零部件的周期时间,并根据周期时间获取实时视频数据上对应时间周期节点上的单帧图像,并将获取的图像与上一节点图像进行相同比对,判断两幅图像是否相同,图像相同则合格产品数加一,相邻周期图像 相同,则生产结果为合格正品,图像不相同则次品数加一,相邻图像不相同,说明工件压铸过程中产生突发事件,则说明工件压铸生产中出现差错,则生产的产品不合格,每经历一次时间周期原料数加一,最终统计出,生产过程中的原料总数,合格产品总数以及不合格产品总数,通过图像对比最终生成实时生产数据,运输子***以及销售子***中分别生成实时运输数据以及实时销售数据,云处理器对实时运输数据、实时销售数据以及实时生产数据进行处理生成数据分析结果,云处理器基于数据分析结果,辅助制造业进行业务决策和优化,实现数字经济下的制造业转型。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

  1. 一种基于数字经济水平的制造业转型升级平台***,其特征在于:包括生产子***、运输子***、销售子***以及处理子***;
    所述生产子***主要用于采集工业零部件压铸生产中机械生产设备生产过程中的实时视频数据;
    所述处理子***包括接收模块、通信模块以及云处理模块,所述接收模块实时接收所述生产子***中获取的实时视频数据,并将视频数据同步至通信模块,所述通信模块将获取的实时视频数据发送至云端的云处理模块,所述云处理模块包括云处理器以及云数据库,所述云数据库不间断存储实时视频数据,所述云处理器通过云端处理器对实时视频数据进行处理,处理过程中首先,人工获取拍摄视频中的产品生产合格后单帧图像,在单帧图像与之后通过图像相同比对,获取第一次相同的帧图像,该帧图像为再次完成生产产品一周期后的图像,所述云处理模块记录工业零部件压铸机械设备生产一件工业零部件的周期时间,并根据周期时间获取实时视频数据上对应时间周期节点上的单帧图像,并将获取的图像与上一节点图像进行相同比对;
    两幅图像对比过程中,对前一节点帧图像A进行旋转,旋转次数为s,每次旋转角度为360/s°,在计算帧图像A每次旋转结束后的第T个Zernike矩,并且T≥2,根据计算得出的数值构建S*T矩阵K A,对矩阵K A的每一列进行均值和标准差的计算,获取均值向量和标准差向量,无须对下一节点帧图像B进行旋转,直接对下一节点帧图像B对应的T个Zernike矩进行计算,得出矩值向量,根据计算图像A的均值向量和标准差向量与帧图像B的矩值向量进行比较,判断两 幅图像是否相同,通过图像对比最终生成实时生产数据;
    所述运输子***以及所述销售子***中分别生成实时运输数据以及实时销售数据,所述云处理器对所述实时运输数据、所述实时销售数据以及所述实时生产数据进行处理生成数据分析结果,所述云处理器基于数据分析结果,辅助制造业进行业务决策和优化,实现数字经济下的制造业转型。
  2. 根据权利要求1所述的一种基于数字经济水平的制造业转型升级平台***,其特征在于:所述生产子***包括采集模块以及传输模块,所述采集模块通过建立采集摄像头,所述采集摄像头拍摄区域正对工业零部件压铸机械设备,所述采集模块实时拍摄工业零部件压铸机械设备上料、压铸、出料的全部生产过程,并将得到的视频区域的实时视频数据发送至所述传输模块,所述传输模块实时将数据发送至处理子***。
  3. 根据权利要求2所述的一种基于数字经济水平的制造业转型升级平台***,其特征在于:所述运输***用于运输生产合格的产品,并记录运输过程中的数据得到实时运输数据,所述销售***用于销售产品并记录销售过程中的数据得到实时销售数据。
  4. 根据权利要求3所述的一种基于数字经济水平的制造业转型升级平台***,其特征在于:根据图像相同对比生成实时生产数据的过程中:图像相同则合格产品数加一,图像不相同则次品数加一,每经历一次时间周期原料数加一。
  5. 根据权利要求4所述的一种基于数字经济水平的制造业转型 升级平台***,其特征在于:所述接收模块上设有多个数据接收接口,每个数据接收接口分别用于接收所述传输模块的实时视频数据、所述运输子***中的实时运输数据以及所述销售子***中的实时销售数据。
  6. 根据权利要求1所述的一种基于数字经济水平的制造业转型升级平台***,其特征在于:所述云处理器根据实时运输数据进行分析,实时管理运输订单,统筹调配运输车辆。
  7. 根据权利要求1所述的一种基于数字经济水平的制造业转型升级平台***,其特征在于:所述云数据库中建立数据库误用检测单元,误用检测单元中把以往的所有数据库网络攻击的特征总结出来,并建立一个入侵信息库,然后将搜集到的信息与已知的入侵信息库中的网络入侵进行比较,进而发现云数据库是否被入侵。
PCT/CN2022/071165 2022-01-11 2022-01-11 一种基于数字经济水平的制造业转型升级平台*** WO2023133651A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/071165 WO2023133651A1 (zh) 2022-01-11 2022-01-11 一种基于数字经济水平的制造业转型升级平台***
CN202280062530.1A CN117999521A (zh) 2022-01-11 2022-01-11 一种基于数字经济水平的制造业转型升级平台***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071165 WO2023133651A1 (zh) 2022-01-11 2022-01-11 一种基于数字经济水平的制造业转型升级平台***

Publications (1)

Publication Number Publication Date
WO2023133651A1 true WO2023133651A1 (zh) 2023-07-20

Family

ID=87279878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071165 WO2023133651A1 (zh) 2022-01-11 2022-01-11 一种基于数字经济水平的制造业转型升级平台***

Country Status (2)

Country Link
CN (1) CN117999521A (zh)
WO (1) WO2023133651A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079101A (zh) * 2007-06-19 2007-11-28 中山大学 一种基于Zernike矩的鲁棒哈希图像认证方法
CN102136063A (zh) * 2011-03-15 2011-07-27 西安电子科技大学 基于泽尼克矩的快速图像比对方法
CN107861490A (zh) * 2017-12-25 2018-03-30 长沙智能制造研究总院有限公司 基于工业云平台智能制造轴承装配生产线
CN110264224A (zh) * 2019-06-19 2019-09-20 百度在线网络技术(北京)有限公司 一种物品对象的信息管理方法、装置、设备和介质
CN112041867A (zh) * 2020-06-22 2020-12-04 西安市双合软件技术有限公司 智能工厂数据采集平台及其实施方法
CN112163873A (zh) * 2020-10-29 2021-01-01 杭州谐云科技有限公司 一种基于边缘计算的产品质检***及质检方法
US20210157312A1 (en) * 2016-05-09 2021-05-27 Strong Force Iot Portfolio 2016, Llc Intelligent vibration digital twin systems and methods for industrial environments
CN113419497A (zh) * 2021-07-05 2021-09-21 深圳市荣利伟业科技有限公司 一种基于云计算的制造执行***
CN113506044A (zh) * 2021-08-09 2021-10-15 青岛乾程科技股份有限公司 智能化工业远程监造服务模块、***及流程

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079101A (zh) * 2007-06-19 2007-11-28 中山大学 一种基于Zernike矩的鲁棒哈希图像认证方法
CN102136063A (zh) * 2011-03-15 2011-07-27 西安电子科技大学 基于泽尼克矩的快速图像比对方法
US20210157312A1 (en) * 2016-05-09 2021-05-27 Strong Force Iot Portfolio 2016, Llc Intelligent vibration digital twin systems and methods for industrial environments
CN107861490A (zh) * 2017-12-25 2018-03-30 长沙智能制造研究总院有限公司 基于工业云平台智能制造轴承装配生产线
CN110264224A (zh) * 2019-06-19 2019-09-20 百度在线网络技术(北京)有限公司 一种物品对象的信息管理方法、装置、设备和介质
CN112041867A (zh) * 2020-06-22 2020-12-04 西安市双合软件技术有限公司 智能工厂数据采集平台及其实施方法
CN112163873A (zh) * 2020-10-29 2021-01-01 杭州谐云科技有限公司 一种基于边缘计算的产品质检***及质检方法
CN113419497A (zh) * 2021-07-05 2021-09-21 深圳市荣利伟业科技有限公司 一种基于云计算的制造执行***
CN113506044A (zh) * 2021-08-09 2021-10-15 青岛乾程科技股份有限公司 智能化工业远程监造服务模块、***及流程

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
闫允一 等 (YAN, YUNYI ET AL.): "基于Zernike矩和相似度准则的图像比对算法 (Non-official translation: Image Comparison Algorithm Based on Zernike Moment and Similarity Criterion)", PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON REMOTE SENSING (ICRS 2010), vol. 3, 6 October 2010 (2010-10-06) *
闫允一 等 (YAN, YUNYI ET AL.): "基于Zernike矩和相似度准则的图像比对算法 (Non-official translation: Image Comparison Algorithm Based on Zernike Moment and Similarity Criterion)", PROCEEDINGS OF 2011 INTERNATIONAL CONFERENCE ON ECOLOGICAL PROTECTION OF LAKES‐WETLANDS‐WATERSHED AND APPLICATION OF 3S TECHNOLOGY (EPLWW3S 2011 V2), vol. 2, 26 June 2011 (2011-06-26) *

Also Published As

Publication number Publication date
CN117999521A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
Wang et al. A smart surface inspection system using faster R-CNN in cloud-edge computing environment
CN109145759B (zh) 车辆属性识别方法、装置、服务器及存储介质
US9251425B2 (en) Object retrieval in video data using complementary detectors
JP7080266B2 (ja) 輸送におけるaiベースの検査
CN106845415B (zh) 一种基于深度学习的行人精细化识别方法及装置
WO2021238019A1 (zh) 基于Ghost卷积特征融合神经网络实时车流量检测***及方法
Nguyen et al. Artificial intelligence based data processing algorithm for video surveillance to empower industry 3.5
CN111047818A (zh) 一种基于视频图像的森林火灾预警***
Yan et al. YOLO V3+ VGG16-based automatic operations monitoring and analysis in a manufacturing workshop under Industry 4.0
Taccari et al. Classification of crash and near-crash events from dashcam videos and telematics
CN112102367B (zh) 一种基于运动模型的视频分析算力实时分配调度方法
CN104966304A (zh) 基于卡尔曼滤波与非参数背景模型的多目标检测跟踪方法
CN108182416A (zh) 一种无人机监控场景下的人体行为识别方法、***及装置
US20220318667A1 (en) Intelligent real-time defect prediction, detection, and ai driven automated correction solution
CN107643956A (zh) 定位异常数据的异常起源的方法和装置
CN115457446A (zh) 一种基于视频分析的异常行为监管***
CN114970899A (zh) 一种智慧园区运维***、方法、介质和电子设备
WO2023133651A1 (zh) 一种基于数字经济水平的制造业转型升级平台***
CN117035669A (zh) 基于人工智能的企业安全生产管理方法及***
Han et al. FlexSense: Flexible Infrastructure Sensors for Traffic Perception
CN117218428A (zh) 基于深度学习的铸件表面缺陷检测方法和***
Tan et al. Building defect inspection and data management using computer vision, augmented reality, and BIM technology
CN109544855B (zh) 基于计算机视觉的轨道交通综合监控火灾闭路电视***及实现方法
CN112529881B (zh) 一种电力控制柜线缆异常识别方法及装置
CN114445875A (zh) 基于深度学习的身份识别与人脸比对***及训练方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280062530.1

Country of ref document: CN