WO2023132659A1 - 매니폴드 냉매 모듈 - Google Patents

매니폴드 냉매 모듈 Download PDF

Info

Publication number
WO2023132659A1
WO2023132659A1 PCT/KR2023/000233 KR2023000233W WO2023132659A1 WO 2023132659 A1 WO2023132659 A1 WO 2023132659A1 KR 2023000233 W KR2023000233 W KR 2023000233W WO 2023132659 A1 WO2023132659 A1 WO 2023132659A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
water
manifold
expansion valve
cooled condenser
Prior art date
Application number
PCT/KR2023/000233
Other languages
English (en)
French (fr)
Inventor
황인국
이상용
이성제
이해준
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Publication of WO2023132659A1 publication Critical patent/WO2023132659A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/01Minimizing space with more compact designs or arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/03Reducing weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/05Reducing production costs, e.g. by redesign
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/07Facilitating assembling or mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles

Definitions

  • the embodiment relates to a manifold refrigerant module. More specifically, it relates to a manifold refrigerant module in which pipes, fittings, and pods are formed as one block.
  • electric vehicles and hybrid vehicles are the most attention-seeking fields in the automobile industry in recent years. These electric vehicles and hybrid vehicles are equipped with batteries to provide driving power, and the batteries are used not only for driving but also for heating and cooling.
  • a heat pump refers to absorbing low-temperature heat and moving the absorbed heat to a high-temperature temperature.
  • a heat pump as an example has a cycle in which a liquid refrigerant evaporates in an evaporator, takes heat from the surroundings to become a gas, and then liquefies while discharging heat to the surroundings by a condenser. If this is applied to an electric vehicle or a hybrid vehicle, there is an advantage in securing a heat source that is insufficient in conventional air conditioning cases.
  • the modular configuration of the heat pump system for electric vehicles is a partial modularization method in which important parts (valves, accumulators, chillers, condensers, internal heat exchangers and sensors, etc.) are connected by pipes, and fittings and connectors are used to connect these pipes. It must be configured separately, and an appropriate gap is created for connection between parts. As a result, there are disadvantages in packaging, cost, and workability.
  • An object of the embodiment is to reduce cost, reduce weight, and increase workability by using a manifold plate that performs functions of pipes, fittings, and housings.
  • An embodiment of the present invention is a manifold refrigerant module including a manifold plate having a plurality of refrigerant passages formed therein, and a plurality of heat exchangers disposed on the manifold plate, wherein the plurality of heat exchangers are left-right or up-down. It can be characterized by being arranged as.
  • the plurality of heat exchangers may be a water-cooled condenser and a chiller, and an accumulator may be disposed between the water-cooled condenser and the chiller.
  • the chiller and the accumulator are disposed on one side and the water-cooled condenser is disposed on the other side based on a virtual reference line formed of the manifold plate.
  • a first expansion valve for controlling expansion of the refrigerant flowing into the water-cooled condenser, a first directional control valve for controlling a direction of the refrigerant flowing out of the water-cooled condenser, and a second directional control valve for controlling a direction of the refrigerant flowing out of the water-cooled condenser are provided on the other side of the reference line. It can be characterized by being placed in.
  • the high-pressure refrigerant flowing into the manifold plate from the outside may circulate and flow out through the other side of the reference line.
  • At least one of the plurality of heat exchangers is a water-cooled integrated heat exchanger, an accumulator is disposed on the manifold plate, and the inside of the water-cooled integrated heat exchanger is divided into an upper water-cooled condenser area and a lower chiller area, The chiller area and the accumulator may be disposed adjacent to each other.
  • the refrigerant flowing into the water-cooled condenser region may flow in from the upper part and move downward, and the refrigerant flowing into the chiller region may flow in from the lower part and move upward.
  • the refrigerant flowing into the accumulator may move adjacent to a portion divided into the water-cooled condenser area and the chiller area.
  • the refrigerant moving on the manifold plate may be separated into a high pressure region and a low pressure region through a reference line.
  • a first expansion valve for controlling the expansion of the refrigerant flowing into the water-cooled condenser region, a first directional control valve for controlling a direction of the refrigerant flowing out of the water-cooled condenser region, and a second directional control valve for controlling a direction of the refrigerant flowing out of the water-cooled condenser region are provided on the reference line. It may be characterized in that it is disposed on the upper side of.
  • the chiller area may be disposed between the second expansion valve and the accumulator.
  • the embodiment has an effect of increasing the workability of the refrigerant module and maximizing the packaging property.
  • FIG. 1 is a perspective view of a manifold refrigerant module according to an embodiment of the present invention
  • FIG. 2 is a rear perspective view of a manifold refrigerant module according to an embodiment of the present invention
  • FIG. 3 is a diagram showing the flow of refrigerant in the air conditioner mode in FIG. 1;
  • FIG. 4 is a diagram showing the flow of refrigerant in the heat pump mode in FIG. 1;
  • FIG. 5 is a perspective view of a manifold refrigerant module according to another embodiment of the present invention.
  • FIG. 6 is a rear perspective view of a manifold refrigerant module according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing the flow of refrigerant in the air conditioner mode in FIG. 5;
  • FIG. 8 is a diagram illustrating a flow of refrigerant in a heat pump mode in FIG. 5 .
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in a variety of different forms, and if it is within the scope of the technical idea of the present invention, one or more of the components among the embodiments can be selectively implemented. can be used by combining and substituting.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when described as “at least one (or more than one) of A and (and) B and C”, A, B, and C are combined. may include one or more of all possible combinations.
  • first, second, A, B, (a), and (b) may be used to describe components of an embodiment of the present invention.
  • a component when a component is described as being 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected to, combined with, or connected to the other component, but also with the component. It may also include the case of being 'connected', 'combined', or 'connected' due to another component between the other components.
  • FIG. 1 is a perspective view of a manifold refrigerant module according to an embodiment of the present invention
  • FIG. 2 is a rear perspective view of the manifold refrigerant module according to an embodiment of the present invention
  • FIG. 3 is a refrigerant in an air conditioner mode in FIG. 4 is a diagram showing the flow of the refrigerant in the heat pump mode in FIG. 1 .
  • the manifold refrigerant module 1 is disposed on the manifold plate 100 and the manifold plate 100 having a plurality of refrigerant passages formed therein.
  • the accumulator 300 may be disposed between the chiller 400 and the water-cooled condenser 200. .
  • the manifold plate 100 has a plurality of refrigerant passages formed therein, and a plurality of heat pump system components may be seated therein.
  • a plurality of valves that control the direction and expansion of the refrigerant moving with the water-cooled condenser 200, the accumulator 300, and the chiller 400 may be disposed on the manifold plate 100.
  • the manifold plate 100 can reduce costs and increase workability by simultaneously performing the functions of pipes, fittings, and housings. Also, a plurality of flow paths connected to the water-cooled condenser 200 , the accumulator 300 , and the chiller 400 may be disposed inside the manifold plate 100 .
  • the water-cooled condenser 200 may condense the high-temperature and high-pressure gaseous refrigerant discharged from the compressor or the internal condenser into a high-pressure liquid by exchanging heat with an external heat source and move the condensed liquid.
  • the water-cooled condenser 200 may include an inlet 210 through which the refrigerant flows and an outlet 220 through which the refrigerant flows out. At this time, considering thermal interference, the inlet 210 may be disposed on one side of the water-cooled condenser 200 close to the first expansion valve 150, and the outlet 220 is the first expansion valve ( 150) and may be disposed on the other side of the water-cooled condenser 200.
  • the inlet 210 may be disposed closer than the outlet 220 based on the first expansion valve 150 .
  • a distance from the first expansion valve 150 to the inlet 210 may be smaller than a distance from the first expansion valve 150 to the outlet 220 .
  • the inlet 210 may be called a water-cooled condenser inlet or a first inlet
  • the outlet may be called a water-cooled condenser outlet or a first outlet.
  • the accumulator 300 is installed at the inlet side of the compressor (not shown) to join the refrigerant that has passed through the evaporator and/or the chiller 400, and separates the liquid refrigerant from the gaseous refrigerant in the refrigerant so that only the gaseous refrigerant can be supplied to the compressor. let it be
  • the chiller 400 is supplied with a low-temperature, low-pressure refrigerant and exchanges heat with cooling water moving in a cooling water circulation line (not shown).
  • the cold cooling water heat-exchanged in the chiller 400 may circulate through the cooling water circulation line and exchange heat with the battery.
  • the chiller 400 may include an inlet 410 through which refrigerant flows and an outlet 420 through which refrigerant flows out. At this time, in consideration of thermal interference, the inlet 410 may be disposed on one side of the chiller 400 close to the second expansion valve 160, and the outlet 420 is the second expansion valve 160. ) and may be disposed on the other side of the chiller 400 far away.
  • the inlet 410 may be disposed closer than the outlet 420 based on the second expansion valve 160 .
  • a distance from the second expansion valve 160 to the inlet 410 may be smaller than a distance from the second expansion valve 160 to the outlet 420 .
  • the inlet 410 may be referred to as a chiller inlet or a second inlet
  • the outlet may be referred to as a chiller outlet or a second outlet.
  • the chiller 400 and the accumulator 300 may be disposed on one side and the water-cooled condenser 200 may be disposed on the other side based on the reference line L formed on the manifold plate 100. there is.
  • the two-way switching valve 180 may be disposed on the other side of the reference line (L).
  • the first expansion valve 150 may be disposed above the water-cooled condenser 200, and may expand or pass the refrigerant introduced through the second inlet hole 130 formed in the manifold plate 100.
  • the refrigerant introduced through the first expansion valve 150 may undergo heat exchange or move to an external heat exchanger while passing through the water-cooled condenser port.
  • the refrigerant moving through the water-cooled condenser 200 may move to the evaporator or an external heat exchanger through the first direction conversion valve 170 disposed on the upper side of the side of the water-cooled condenser 200 disposed on the upper side, and the water-cooled condenser
  • the moving direction of the refrigerant passing through the 200 may be controlled through the second direction conversion valve 180 .
  • the second expansion valve 160 disposed on one side of the reference line L is disposed above the chiller 400, and the refrigerant flows into the second expansion valve 160 through the first inlet hole 110. .
  • the second expansion valve 160 may expand and move the refrigerant introduced through the first inlet hole 110 .
  • a component through which a low-pressure refrigerant moves may be disposed on one side of the reference line (L).
  • the accumulator 300 and the chiller 400 may be connected in parallel so that the refrigerant moves.
  • the chiller 400 is disposed farthest from the water-cooled condenser 200 to minimize thermal interference between refrigerants.
  • the high-pressure refrigerant flowing into the manifold plate 100 from the outside in the air conditioner mode may circulate on the other side of the reference line L and flow out.
  • the high-pressure refrigerant introduced through the second inlet hole 130 formed in the manifold plate 100 flows into the first expansion valve 150, and the refrigerant passes through the first expansion valve 150 in an open state. and flows into the water-cooled condenser (200).
  • the refrigerant passing through the water-cooled condenser 200 flows into the second direction conversion valve 180 and flows out to the external heat exchanger.
  • the refrigerant introduced through the first inlet hole 110 passes through the chiller 400 and moves to the accumulator 300 after heat exchange, and the refrigerant introduced from the evaporator through the second direction switching valve 180 ) is introduced into
  • the refrigerant flowing into the accumulator 300 is gas-liquid separated, and the gaseous refrigerant flows into the compressor through the first outlet hole 120 and circulates.
  • the high-pressure refrigerant flowing into the manifold plate 100 circulates to the other side based on the reference line L, thereby minimizing thermal interference between the refrigerants and optimizing the refrigerant flow.
  • the refrigerant introduced through the second inlet hole 130 expands while passing through the first expansion valve 150 and then flows into the water-cooled condenser 200, and the water-cooled condenser 200
  • the refrigerant passing through is discharged to the outside of the manifold plate 100 through the second outlet hole 140 passing through the first directional control valve 170 and/or the second directional control valve 180 and moving to the external heat exchanger. do.
  • the refrigerant flowing into the second expansion valve 160 through the first inlet hole 110 opens the side of the accumulator 300 and moves the refrigerant to the accumulator 300 .
  • the refrigerant moving from the evaporator flowing into the second directional control valve 180 flows into the accumulator 300, and the refrigerant flowing into the accumulator 300 is gas-liquid separated, and the refrigerant in the gaseous phase flows into the compressor, and then the refrigerant It circulates through the hip pump system.
  • FIG. 5 is a perspective view of a manifold refrigerant module according to another embodiment of the present invention
  • FIG. 6 is a rear perspective view of the manifold refrigerant module according to another embodiment of the present invention
  • FIG. 7 is an air conditioner mode in FIG. It is a diagram showing the flow of the refrigerant
  • FIG. 8 is a diagram showing the flow of the refrigerant in the heat pump mode in FIG.
  • FIGS. 5 to 8 the same reference numerals as those of FIGS. 1 to 4 denote the same members, and detailed descriptions thereof will be omitted.
  • the manifold refrigerant module 1a according to another embodiment of the present invention is disposed on the manifold plate 100 and the manifold plate 100 having a plurality of refrigerant passages formed therein.
  • the water-cooled integrated heat exchanger 500 has an upper water-cooled condenser area 500A and a lower chiller area 500B. divided, and the chiller area 500B and the accumulator 300 may be disposed adjacent to each other.
  • An accumulator 300 may be disposed on one side of the water-cooled integrated heat exchanger 500 .
  • the accumulator 300 may be disposed to be biased toward the chiller area 500B rather than the water-cooled condenser area 500A.
  • the refrigerant flowing into the water-cooled condenser area 500A may flow in from the top and move to the bottom, and the refrigerant flowing into the chiller area 500B may flow in from the bottom and move upward.
  • Such a structure can minimize thermal interference between a refrigerant moving at high temperature and high pressure and a refrigerant moving at low temperature and low pressure.
  • the second directional control valve 180 is disposed above the reference line (L), and the second expansion valve 160 for controlling expansion and movement of the refrigerant flowing into the chiller area 500B is located below the reference line (L).
  • the first expansion valve 150 may be located on the side of the water-cooled condenser area 500A.
  • the chiller region 500B is disposed between the second expansion valve 160 and the accumulator 300, so that the low-pressure refrigerant moves may be disposed in the same region below the reference line L.
  • the second expansion valve 160 may be located on a side of the chiller area 500B.
  • first expansion valve 150 through which the high-pressure refrigerant flows in through the second inlet hole 130 may be spaced apart from the accumulator 300 .
  • the manifold plate 100 has a limited space, but the first expansion valve 150 and the accumulator 300 may be spaced apart to minimize thermal interference between refrigerants even in this limited area.
  • the refrigerant flowing from the compressor or the internal condenser through the second inlet hole 130 passes through the first expansion valve 150 in an open state and flows into the upper part of the water-cooled condenser area. After that, it moves to the bottom.
  • the refrigerant passing through the water-cooled condenser area 500A passes through the second direction conversion valve 180 and moves to the external heat exchanger. At this time, the first direction change valve 170 is closed so that the refrigerant does not flow.
  • the refrigerant moving to the accumulator 300 may move adjacent to a region in which the water-cooled integrated heat exchanger 500 is divided into a water-cooled condenser region 500A and a chiller region 500B. This is to minimize thermal interference between the refrigerant moving in the accumulator 300 and the refrigerant moving in the water-cooled heat exchanger area 500A and the chiller area 500B.
  • the gaseous refrigerant may move to the first outlet hole 120 and be introduced into the compressor.
  • the refrigerant introduced through the second inlet hole 130 passes through the first expansion valve 150 and expands to form a water-cooled condenser area 500A of the water-cooled integrated heat exchanger 500. And / or may flow into the first direction change valve (170).
  • the refrigerant flowing into the first directional control valve 170 may flow into the external heat exchanger through the second outlet hole 140, and the refrigerant flowing into the water-cooled condenser area 500A passes through the water-cooled condenser area 500A and is removed. After flowing into the 2-way switching valve 180, it flows into the accumulator 300.
  • the refrigerant that has moved to the accumulator 300 is gas-liquid separated, and the gaseous refrigerant flows into the compressor through the first outlet hole 120 so that the refrigerant circulates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

본 발명은 내부에 복수의 냉매유로가 형성되는 매니폴드 플레이트, 상기 매니폴드 플레이트에 배치되는 복수개의 열교환기를 포함하는 매니폴드 냉매 모듈에 있어서, 상기 복수개의 열교환기는 좌우 방향 또는 상하 방향으로 배치되는 것을 특징으로 하는 매니폴드 냉매 모듈을 제공한다.

Description

매니폴드 냉매 모듈
실시예는 매니폴드 냉매 모듈에 관한 것이다. 더욱 상세하게는 배관, 피팅 및 포드부를 하나의 블록으로 형성하는 매니폴드 냉매 모듈에 관한 것이다.
환경 친화적인 산업 발전 및 화석원료를 대체하는 에너지원의 개발 기조아래, 근래 자동차 산업에서 가장 주목받는 분야는 전기자동차와 하이브리드 자동차가 있다. 이들 전기자동차와 하이브리드 자동차에는 배터리가 장착되어 구동력을 제공하는데, 주행 운전뿐만 아니라 냉난방 시에도 배터리를 이용한다.
배터리를 이용하여 구동력을 제공하는 차량에서, 냉난방 시 배터리가 열원으로 사용된다는 것은 그만큼 주행거리가 감소된다는 것을 의미하는데, 위 문제를 극복하기 위하여 종래부터 가정용 냉난방장치로 널리 활용된 히트펌프 시스템을 자동차에 적용하는 방법이 제안되었다.
참고로 히트펌프란 저온의 열을 흡수하여 흡수된 열을 고온으로 이동시키는 것을 말한다. 일 예로서의 히트펌프는 액체 냉매가 증발기 내에서 증발하고 주위에서 열을 빼앗아 기체가 되며, 다시 응축기에 의해 주위에 열을 방출하면서 액화되는 사이클을 가진다. 이를 전기자동차 또는 하이브리드 자동차에 적용하면, 종래 일반적인 공조케이스에 부족한 열원을 확보할 수 있는 장점이 있다.
현재 전기 자동차용 히트펌프 시스템의 모듈화 구성은 부분 모듈화 방식으로 중요부품(밸브, 어큐뮬레이터, 칠러, 응축기, 내부 열교환기 및 센서 등)이 배관에 의해 연결되며, 이러한 배관의 연결을 위해 피팅 및 커넥터들이 별도로 구성되어야 하며, 부품간의 연결을 위해 적정 간격이 발생하게 된다. 이로 인해 패키징, 원가 및 작업성에서 불리한 점이 존재한다.
또한, 모듈 및 집적화의 불완전성으로 인하여, 냉방과 난방모드 전환시 불필요한 유동거리 증가로 인해 시스템의 성능이 저하되는 문제점이 존재한다.
실시예는 배관, 피팅 및 하우징의 기능을 수행하는 매니폴드 플레이트를 이용하여 원가절감, 중량저감 및 작업성을 증대하는 것을 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예는, 내부에 복수의 냉매유로가 형성되는 매니폴드 플레이트, 상기 매니폴드 플레이트에 배치되는 복수개의 열교환기를 포함하는 매니폴드 냉매 모듈에 있어서, 상기 복수개의 열교환기는 좌우 방향 또는 상하 방향으로 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 복수개의 열교환기는 수냉식 응축기 및 칠러이고, 상기 수냉식 응축기와 상기 칠러의 사이에는 어큐뮬레이터가 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 매니폴드 플레이트의 형성되는 가상의 기준선을 기준으로 상기 칠러와 상기 어큐뮬레이터는 일측에 배치되며, 상기 수냉식 응축기는 타측에 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 수냉식 응축기로 유입되는 냉매의 팽창여부를 제어하는 제1 팽창밸브와 상기 수냉식 응축기에서 유출되는 냉매의 방향을 제어하는 제1 방향전환밸브 및 제2 방향전환밸브는 상기 기준선의 타측에 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 냉매 모듈이 에어컨 모드인 경우, 외부로부터 상기 매니폴드 플레이트로 유입되는 고압의 냉매는 상기 기준선의 타측을 순환하여 유출되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 복수개의 열교환기 중 적어도 하나는 수냉식 통합 열교환기이고, 상기 매니폴드 플레이트에는 어큐뮬레이터가 배치되며, 상기 수냉식 통합 열교환기는 내부가 상부의 수냉식 응축기 영역과 하부의 칠러 영역으로 구획되며, 상기 칠러 영역와 상기 어큐뮬레이터는 인접하여 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 수냉식 응축기 영역으로 유입되는 냉매는 상부에서 유입되어 하부로 이동하며, 상기 칠러 영역으로 유입되는 냉매는 하부에서 유입되어 상부로 이동하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 어큐뮬레이터로 유입되는 냉매는 상기 수냉식 응축기 영역과 상기 칠러 영역으로 구획되는 부분에 인접하여 이동하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 냉매 모듈이 에어컨 모드인 경우, 상기 매니폴드 플레이트를 이동하는 냉매는 기준선을 통해 고압 영역과 저압 영역으로 분리되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 수냉식 응축기 영역으로 유입되는 냉매의 팽창여부를 제어하는 제1 팽창밸브와 상기 수냉식 응축기 영역에서 유출되는 냉매의 방향을 제어하는 제1 방향전환밸브 및 제2 방향전환밸브는 상기 기준선의 상측에 배치되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 칠러 영역은 제2 팽창밸브와 상기 어큐뮬레이터 사이에 배치되는 것을 특징으로 할 수 있다.
실시예에 따르면, 냉매 모듈의 원가 절감 및 중량을 저감하는 효과가 있다.
또한, 실시예는 냉매 모듈의 작업성을 증대하고, 팩키징성을 극대화하는 효과가 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일실시예에 따른 매니폴드 냉매 모듈의 사시도이고,
도 2는 본 발명의 일실시예에 따른 매니폴드 냉매 모듈의 배면사시도이고,
도 3은 도 1에서 에어컨 모드에서 냉매의 흐름을 나타내는 도면이고,
도 4는 도 1에서 히트펌프 모드에서 냉매의 흐름을 나타내는 도면이고,
도 5는 본 발명의 또 다른 실시예에 따른 매니폴드 냉매 모듈의 사시도이고,
도 6은 본 발명의 또 다른 실시예에 따른 매니폴드 냉매 모듈의 배면사시도이고,
도 7은 도 5에서 에어컨 모드에서 냉매의 흐름을 나타내는 도면이고,
도 8은 도 5에서 히트펌프 모드에서 냉매의 흐름을 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 ‘연결’, ‘결합’ 또는 ‘접속’된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 ‘연결’, ‘결합’ 또는 ‘접속’ 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1 내지 도 6은, 본 발명을 개념적으로 명확히 이해하기 위하여, 주요 특징 부분만을 명확히 도시한 것이며, 그 결과 도해의 다양한 변형이 예상되며, 도면에 도시된 특정 형상에 의해 본 발명의 범위가 제한될 필요는 없다.
도 1은 본 발명의 일실시예에 따른 매니폴드 냉매 모듈의 사시도이고, 도 2는 본 발명의 일실시예에 따른 매니폴드 냉매 모듈의 배면사시도이고, 도 3은 도 1에서 에어컨 모드에서 냉매의 흐름을 나타내는 도면이고, 도 4는 도 1에서 히트펌프 모드에서 냉매의 흐름을 나타내는 도면이다.
도 1 내지 도 4를 참조하면, 본 발명의 일실시예에 따른 매니폴드 냉매 모듈(1)은 내부에 복수의 냉매 유로가 형성되는 매니폴드 플레이트(100), 매니폴드 플레이트(100)에 배치되는 수냉식 응축기(200), 어큐뮬레이터(300) 및 칠러(400)를 포함하는 매니폴드 냉매 모듈에 있어서, 상기 칠러(400)와 수냉식 응축기(200) 사이에 어큐뮬레이터(300) 배치되는 것을 특징으로 할 수 있다.
매니폴드 플레이트(100)는 내부에 복수의 냉매 유로가 형성되며, 복수의 히트펌프 시스템의 구성요소가 안착될 수 있다. 일실시예로, 매니폴드 플레이트(100)에는 수냉식 응축기(200), 어큐뮬레이터(300) 및 칠러(400)와 이동하는 냉매의 방향 및 팽창여부를 제어하는 복수의 밸브가 배치될 수 있다.
매니폴드 플레이트(100)는 배관, 피팅 및 하우징의 기능을 동시에 수행하여 원가절감 및 작업성을 증대할 수 있다. 그리고, 상기 매니폴드 플레이트(100)의 내부에는 수냉식 응축기(200), 어큐뮬레이터(300) 및 칠러(400)와 연결되는 복수 개의 유로가 배치될 수 있다.
수냉식 응축기(200)는 압축기 또는 내부 응축기에서 토출된 고온고압의 기상 냉매를 외부 열원과 열교환시켜 고압의 액체로 응축하여 이동시킬 수 있다. 그리고, 상기 수냉식 응축기(200)는 냉매가 유입되는 유입구(210)와 냉매가 유출되는 유출구(220)를 포함할 수 있다. 이때, 열 간섭을 고려하여, 상기 유입구(210)는 상기 제1 팽창밸브(150)와 가까운 상기 수냉식 응축기(200)의 일측에 배치될 수 있고, 상기 유출구(220)는 상기 제1 팽창밸브(150)와 먼 상기 수냉식 응축기(200)의 타측에 배치될 수 있다. 상세하게 상기 제1 팽창밸브(150)를 기준으로 상기 유입구(210)는 상기 유출구(220)보다 가깝게 배치될 수 있다. 예컨데, 상기 제1 팽창밸브(150)에서 상기 유입구(210)까지의 거리는 상기 제1 팽창밸브(150)에서 상기 유출구(220)까지의 거리보다 작을 수 있다. 여기서, 상기 유입구(210)는 수냉식 응축기 유입구 또는 제1 유입구라 불릴 수 있고, 상기 유출구는 수냉식 응축기 유출구 또는 제1 유출구라 불릴 수 있다.
어큐뮬레이터(300)는 압축기(미도시)의 입구 측에 설치되어 증발기 및/또는 칠러(400)를 경유한 냉매가 합류되며, 냉매 중 액상 냉매와 기상 냉매를 분리하여 기상 냉매만 압축기로 공급될 수 있도록 한다.
칠러(400)는 저온 저압의 냉매가 공급되어 냉각수 순환라인(미도시)에서 이동하는 냉각수와 열교환된다. 칠러(400)에서 열교환된 차가운 냉각수는 냉각수 순환라인을 순환하여 배터리와 열교환될 수 있다. 그리고, 상기 칠러(400)는 냉매가 유입되는 유입구(410)와 냉매가 유출되는 유출구(420)를 포함할 수 있다. 이때, 열 간섭을 고려하여, 상기 유입구(410)는 상기 제2 팽창밸브(160)와 가까운 상기 칠러(400)의 일측에 배치될 수 있고, 상기 유출구(420)는 상기 제2 팽창밸브(160)와 먼 상기 칠러(400)의 타측에 배치될 수 있다. 상세하게 상기 제2 팽창밸브(160)를 기준으로 상기 유입구(410)는 상기 유출구(420)보다 가깝게 배치될 수 있다. 예컨데, 상기 제2 팽창밸브(160)에서 상기 유입구(410)까지의 거리는 상기 제2 팽창밸브(160)에서 상기 유출구(420)까지의 거리보다 작을 수 있다. 여기서, 상기 유입구(410)는 칠러 유입구 또는 제2 유입구라 불릴 수 있고, 상기 유출구는 칠러 유출구 또는 제2 유출구라 불릴 수 있다.
본 발명의 일실시예에 따르면 매니폴드 플레이트(100)에 형성되는 기준선(L)을 기준으로 칠러(400)와 어큐뮬레이터(300)는 일측에 배치되며, 수냉식 응축기(200)는 타측에 배치될 수 있다.
또한, 수냉식 응축기(200)로 유입되는 냉매의 팽창여부를 제어하는 제1 팽창밸브(150)와, 수냉식 응축기(200)에서 유출되는 냉매의 방향을 제어하는 제1 방향전환밸브(170) 및 제2 방향전환밸브(180)는 기준선(L)의 타측에 배치될 수 있다.
제1 팽창밸브(150)는 수냉식 응축기(200)의 상측에 배치될 수 있으며, 매니폴드 플레이트(100)에 형성되는 제2 유입홀(130)을 통해 유입되는 냉매를 팽창 또는 통과시킬 수 있다. 제1 팽창밸브(150)를 통해 유입되는 냉매는 수냉식 응축구를 통과하면서 열교환이 진행되거나 이동하여 외부 열교환기로 이동할 수 있다.
이때, 수냉식 응축기(200)를 통해 이동하는 냉매는 상부에 배치되는 수냉식 응축기(200)의 측면의 상측에 배치되는 제1 방향전환밸브(170)를 통해 증발기나 외부 열교환기로 이동할 수 있으며, 수냉식 응축기(200)를 통과하는 냉매는 제2 방향전환밸브(180)를 통해 이동방향이 제어될 수 있다.
기준선(L)을 기준으로 일측에 배치되는 제2 팽창밸브(160)는 칠러(400)의 상측에 배치되며, 제1 유입홀(110)을 통해 냉매가 제2 팽창밸브(160)로 유입된다. 제2 팽창밸브(160)는 제1 유입홀(110)을 통해 유입되는 냉매를 팽창 및 이동시킬 수 있다.
기준선(L)을 기준으로 일측에는 저압의 냉매가 이동하는 구성요소가 배치될 수 있다. 어큐뮬레이터(300)와 칠러(400)는 병렬로 연결되어 냉매가 이동하도록 배치될 수 있다. 이러한 구조에서 칠러(400)는 수냉식 응축기(200)로부터 가장 먼 위치에 배치되어 냉매간의 열간섭을 최소화할 수 있다.
도 3을 참조하면, 에어컨 모드에서 외부로부터 매니폴드 플레이트(100)로 유입되는 고압의 냉매는 기준선(L)의 타측을 순환하고 유출될 수 있다.
매니폴드 플레이트(100)에 형성되는 제2 유입홀(130)을 통해 유입되는 고압의 냉매는 제1 팽창밸브(150)로 유입되며, 제1 팽창밸브(150)는 개방된 상태로 냉매가 통과하여 수냉식 응축기(200)로 유입된다. 수냉식 응축기(200)를 통과한 냉매는 제2 방향전환밸브(180)로 유입되어 외부 열교환기로 유출된다.
제1 유입홀(110)을 통해 유입되는 냉매는 칠러(400)를 통과하여 열교환 후 어큐뮬레이터(300)로 이동하게 되며, 제2 방향전환밸브(180)를 통해 증발기로부터 유입되는 냉매는 어큐뮬레이터(300)로 유입된다.
어큐뮬레이터(300)로 유입되는 냉매는 기액 분리되어 기상의 냉매는 제1 유출홀(120)을 통해 압축기로 유입되어 순환하게 된다.
이와 같이 에어컨 모드에서는 매니폴드 플레이트(100)로 유입되는 고압의 냉매는 기준선(L)을 기준으로 타측으로 순환하여 냉매간의 열간섭을 최소화하여, 냉매 흐름을 최적화할 수 있다.
도 4를 참조하면, 히트펌프 모드에서 제2 유입홀(130)을 통해 유입되는 냉매는 제1 팽창밸브(150)를 거치면서 팽창한 후 수냉식 응축기(200)로 유입되며, 수냉식 응축기(200)를 통과하는 냉매는 제1 방향전환밸브(170) 및/또는 제2 방향전환밸브(180)를 통과하여 외부 열교환기로 이동하는 제2 유출홀(140)을 통해 매니폴드 플레이트(100) 외부로 배출된다.
제1 유입홀(110)을 통해 제2 팽창밸브(160)로 유입되는 냉매는 어큐뮬레이터(300) 측이 개방되어 냉매가 어큐뮬레이터(300)로 이동한다. 또한, 제2 방향전환밸브(180)로 유입되는 증발기에서 이동하는 냉매는 어큐뮬레이터(300)로 유입되며, 어큐뮬레이터(300)로 유입되는 냉매는 기액분리되어 기상의 냉매가 압축기로 유입된 후 냉매가 히프펌프 시스템을 순환하게 된다.
한편, 이하에서는, 첨부된 도면을 참조하여 본 발명의 또 다른 실시예에 따른 매니폴드 냉매 모듈을 설명하면 다음과 같다. 단, 본 발명의 일 실시예에 따른 매니폴드 냉매 모듈에서 설명한 바와 동일한 것에 대해서는 그 설명을 생략하기로 한다.
도 5는 본 발명의 또 다른 실시예에 따른 매니폴드 냉매 모듈의 사시도이고, 도 6은 본 발명의 또 다른 실시예에 따른 매니폴드 냉매 모듈의 배면사시도이고, 도 7은 도 5에서 에어컨 모드에서 냉매의 흐름을 나타내는 도면이고, 도 8은 도 5에서 히트펌프 모드에서 냉매의 흐름을 나타내는 도면이다.
도 5 내지 도 8의 설명에 있어서, 도 1 내지 도 4와 동일한 참조부호는 동일한 부재를 나타내며 상세한 설명은 생략하기로 한다.
도 5 내지 도 8을 참조하면, 본 발명의 또 다른 실시예에 따른 매니폴트 냉매 모듈(1a)은 내부에 복수의 냉매유로가 형성되는 매니폴드 플레이트(100), 매니폴드 플레이트(100)에 배치되는 수냉식 통합 열교환기(500) 및 어큐뮬레이터(300)를 포함하는 매니폴드 냉매 모듈에 있어서, 수냉식 통합 열교환기(500)는 내부가 상부의 수냉식 응축기 영역(500A)과 하부의 칠러 영역(500B)으로 구획되며, 칠러 영역(500B)과 어큐뮬레이터(300)는 인접하여 배치될 수 있다.
수냉식 통합 열교환기(500)의 일측에는 어큐뮬레이터(300)가 배치될 수 있다. 이때, 어큐뮬레이터(300)는 수냉식 응축기 영역(500A)보다는 칠러 영역(500B)으로 치우치도록 배치될 수 있다.
수냉식 응축기 영역(500A)으로 유입되는 냉매는 상부에서 유입되어 하부로 이동하며, 칠러 영역(500B)으로 유입되는 냉매는 하부에서 유입되어 상부로 이동할 수 있다. 이러한 구조는 고온 고압으로 이동하는 냉매와 저온 저압으로 이동하는 냉매의 열간섭을 최소화할 수 있다.
수냉식 응축기 영역(500A)으로 유입되는 냉매의 팽창 여부 및 이동을 제어하는 제1 팽창밸브(150)와 수냉식 응축기 영역(500A)에서 유출되는 냉매의 방향을 제어하는 제1 방향전환밸브(170) 및 제2 방향전환밸브(180)는 기준선(L)의 상측에 배치되며, 칠러 영역(500B)으로 유입되는 냉매의 팽창 여부 및 이동을 제어하는 제2 팽창밸브(160)는 기준선(L)의 하측에 배치될 수 있다. 도 5 및 도 6에 도시된 바와 같이, 상기 제1 팽창밸브(150)는 수냉식 응축기 영역(500A)의 측면에 위치할 수 있다. 이를 통해 에어컨 모드시 고압의 냉매가 이동하는 구성과 저압의 냉매가 이동하는 구성을 분리배치하여 열간섭을 최소화할 수 있다.
다시 말하면, 칠러 영역(500B)은 제2 팽창밸브(160)와 어큐뮬레이터(300) 사이에 배치되어, 저압의 냉매가 이동하는 구성이 기준선(L) 하부의 동일영역에 배치될 수 있다. 도 5 및 도 6에 도시된 바와 같이, 상기 제2 팽창밸브(160)는 칠러 영역(500B)의 측면에 위치할 수 있다.
또한, 고압의 냉매가 제2 유입홀(130)로부터 유입되어 이동하는 제1 팽창밸브(150)는 어큐뮬레이터(300)와 이격되어 배치될 수 있다. 매니폴드 플레이트(100)는 한정된 공간을 구비하나, 이러한 한정된 영역에서도 냉매간의 열간섭을 최소화하기 위해 제1 팽창밸브(150)와 어큐뮬레이터(300)는 이격 배치될 수 있다.
도 7을 참조하면, 에어컨 모드의 경우, 제2 유입홀(130)을 통해 압축기 또는 내부 응축기로부터 유입되는 냉매는 열림상태의 제1 팽창밸브(150)를 통과하여 수냉식 응축기 영역의 상부로 유입된 후, 하부로 이동하게 된다. 수냉식 응축기 영역(500A)을 통과한 냉매는 제2 방향전환밸브(180)를 거쳐 외부 열교환기로 이동하게 된다. 이때, 제1 방향전환밸브(170)는 폐쇄되어 냉매가 유입되지 않는다.
제1 유입홀(110)을 통해 제2 팽창밸브(160)로 유입되는 냉매는 칠러 영역(500B)의 하부로 유입되며, 냉각수와 열교환후 어큐뮬레이터(300)로 이동하게 된다. 이때, 어큐뮬레이터(300)로 이동하는 냉매는 수냉식 통합 열교환기(500)가 수냉식 응축기 영역(500A)과 칠러 영역(500B)으로 구획되는 영역에 인접하여 이동할 수 있다. 이는 어큐뮬레이터(300)로 이동하는 냉매가 수냉식 열교환기 영역(500A) 및 칠러 영역(500B)을 이동하는 냉매에 열간섭을 최소화하기 위함이다.
어큐뮬레이터(300)에서 기액분리된 냉매 중 기상의 냉매는 제1 유출홀(120)로 이동하여 압축기로 유입될 수 있다.
도 8을 참조하면, 히트펌프 모드의 경우, 제2 유입홀(130)을 통해 유입되는 냉매는 제1 팽창밸브(150)를 지나며 팽창되어 수냉식 통합 열교환기(500)의 수냉식 응축기 영역(500A) 및/또는 제1 방향전환밸브(170)로 유입될 수 있다.
제1 방향전환밸브(170)로 유입되는 냉매는 제2 유출홀(140)을 통해 외부 열교환기로 유입될 수 있으며, 수냉식 응축기 영역(500A)으로 유입되는 냉매는 수냉식 응축기 영역(500A)을 지나 제2 방향전환밸브(180)로 유입된 후 어큐뮬레이터(300)로 유입된다.
또한, 외부 열교환기로부터 제2 팽창밸브(160)로 유입되는 냉매는 어큐뮬레이터(300)로 이동한다.
어큐뮬레이터(300)로 이동한 냉매는 기액분리되어 기상 냉매는 제1 유출홀(120)을 통해 압축기로 유입되어 냉매가 순환하게 된다.
이상으로 본 발명의 실시 예에 관하여 첨부된 도면을 참조하여 구체적으로 살펴보았다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
1, 1a : 매니폴드 냉매 모듈
100 : 매니폴드 플레이트
110 : 제1 유입홀
120 : 제1 유출홀
130 : 제2 유입홀
140 : 제2 유출홀
150 : 제1 팽창밸브
160 : 제2 팽창밸브
170 : 제1 방향전환밸브
180 : 제2 방향전환밸브
200 : 수냉식 응축기
300 : 어뮤뮬레이터
400 : 칠러
500 : 수냉식 통합 열교환기
500A : 수냉식 응축기 영역
500B : 칠러 영역
L : 기준선

Claims (15)

  1. 내부에 복수의 냉매유로가 형성되는 매니폴드 플레이트, 상기 매니폴드 플레이트에 배치되는 복수개의 열교환기를 포함하는 매니폴드 냉매 모듈에 있어서,
    상기 복수개의 열교환기는 좌우 방향 또는 상하 방향으로 배치되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  2. 제1 항에 있어서,
    상기 복수개의 열교환기는 수냉식 응축기 및 칠러이고, 상기 수냉식 응축기와 상기 칠러의 사이에는 어큐뮬레이터가 배치되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  3. 제2 항에 있어서,
    상기 매니폴드 플레이트의 형성되는 가상의 기준선을 기준으로 상기 칠러와 상기 어큐뮬레이터는 일측에 배치되며, 상기 수냉식 응축기는 타측에 배치되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  4. 제3 항에 있어서,
    상기 수냉식 응축기로 유입되는 냉매의 팽창여부를 제어하는 제1 팽창밸브와 상기 수냉식 응축기에서 유출되는 냉매의 방향을 제어하는 제1 방향전환밸브 및 제2 방향전환밸브는 상기 기준선의 타측에 배치되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  5. 제3 항에 있어서,
    상기 냉매 모듈이 에어컨 모드인 경우,
    외부로부터 상기 매니폴드 플레이트로 유입되는 고압의 냉매는 상기 기준선의 타측을 순환하여 유출되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  6. 제2 항에 있어서,
    상기 수냉식 응축기로 유입되는 냉매를 팽창하는 제1 팽창밸브와 상기 칠러로 유입되는 냉매를 팽창하는 제2 팽창밸브를 포함하고,
    상기 제1 팽창밸브는 상기 수냉식 응축기의 상측에 위치하고,
    상기 제2 팽창밸브는 상기 칠러의 상측에 위치하는 매니폴드 냉매 모듈.
  7. 제6 항에 있어서,
    상기 수냉식 응축기의 유입구는 상기 제1 팽창밸브와 가까운 일측에 형성되고,
    상기 수냉식 응축기의 유출구는 상기 제1 팽창밸브와 먼 타측에 형성되는 매니폴드 냉매 모듈.
  8. 제6 항에 있어서,
    상기 칠러의 유입구는 상기 제2 팽창밸브와 가까운 일측에 형성되고,
    상기 칠러의 유출구는 상기 제2 팽창밸브와 먼 타측에 형성되는 매니폴드 냉매 모듈.
  9. 제1항에 있어서,
    상기 복수개의 열교환기 중 적어도 하나는 수냉식 통합 열교환기이고,
    상기 매니폴드 플레이트에는 어큐뮬레이터가 배치되며,
    상기 수냉식 통합 열교환기는 내부가 상부의 수냉식 응축기 영역과 하부의 칠러 영역으로 구획되며, 상기 칠러 영역과 상기 어큐뮬레이터는 인접하여 배치되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  10. 제9 항에 있어서,
    상기 수냉식 응축기 영역으로 유입되는 냉매는 상부에서 유입되어 하부로 이동하며, 상기 칠러 영역으로 유입되는 냉매는 하부에서 유입되어 상부로 이동하는 것을 특징으로 하는 매니폴드 냉매 모듈.
  11. 제10 항에 있어서,
    상기 어큐뮬레이터로 유입되는 냉매는 상기 수냉식 응축기 영역과 상기 칠러 영역으로 구획되는 부분에 인접하여 이동하는 것을 특징으로 하는 매니폴드 냉매 모듈.
  12. 제9 항에 있어서,
    상기 냉매 모듈이 에어컨 모드인 경우,
    상기 매니폴드 플레이트를 이동하는 냉매는 기준선을 통해 고압 영역과 저압 영역으로 분리되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  13. 제12 항에 있어서,
    상기 수냉식 응축기 영역으로 유입되는 냉매의 팽창여부를 제어하는 제1 팽창밸브와 상기 수냉식 응축기 영역에서 유출되는 냉매의 방향을 제어하는 제1 방향전환밸브 및 제2 방향전환밸브는 상기 기준선의 상측에 배치되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  14. 제13 항에 있어서,
    상기 칠러 영역은 제2 팽창밸브와 상기 어큐뮬레이터 사이에 배치되는 것을 특징으로 하는 매니폴드 냉매 모듈.
  15. 제9 항에 있어서,
    상기 수냉식 응축기 영역으로 유입되는 냉매를 팽창하는 제1 팽창밸브와 상기 칠러 영역으로 유입되는 냉매를 팽창하는 제2 팽창밸브를 포함하고,
    상기 제1 팽창밸브는 상기 수냉식 응축기 영역의 측면에 위치하고,
    상기 제2 팽창밸브는 상기 칠러 영역의 측면에 위치하는 매니폴드 냉매 모듈.
PCT/KR2023/000233 2022-01-10 2023-01-05 매니폴드 냉매 모듈 WO2023132659A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0003405 2022-01-10
KR1020220003405A KR20230108064A (ko) 2022-01-10 2022-01-10 매니폴드 냉매 모듈

Publications (1)

Publication Number Publication Date
WO2023132659A1 true WO2023132659A1 (ko) 2023-07-13

Family

ID=87073992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000233 WO2023132659A1 (ko) 2022-01-10 2023-01-05 매니폴드 냉매 모듈

Country Status (2)

Country Link
KR (1) KR20230108064A (ko)
WO (1) WO2023132659A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172948A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 熱交換ユニットおよび車両用空調装置
KR20190002878A (ko) * 2017-06-30 2019-01-09 현대자동차주식회사 차량용 ce 모듈
US20190039440A1 (en) * 2017-08-04 2019-02-07 Tesla, Inc. Technologies for manifolds
CN113276630A (zh) * 2021-06-24 2021-08-20 浙江吉利控股集团有限公司 一种热管理集成模块和电动车辆
KR20210136642A (ko) * 2020-05-08 2021-11-17 한온시스템 주식회사 열교환기 및 이를 이용하는 히트펌프 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172948A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 熱交換ユニットおよび車両用空調装置
KR20190002878A (ko) * 2017-06-30 2019-01-09 현대자동차주식회사 차량용 ce 모듈
US20190039440A1 (en) * 2017-08-04 2019-02-07 Tesla, Inc. Technologies for manifolds
KR20210136642A (ko) * 2020-05-08 2021-11-17 한온시스템 주식회사 열교환기 및 이를 이용하는 히트펌프 시스템
CN113276630A (zh) * 2021-06-24 2021-08-20 浙江吉利控股集团有限公司 一种热管理集成模块和电动车辆

Also Published As

Publication number Publication date
KR20230108064A (ko) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2019066330A1 (ko) 자동차의 통합 열관리 시스템
WO2014065548A1 (en) Air conditioner
WO2015102362A1 (ko) 쿨링모듈 및 차량용 냉방시스템
WO2022255769A1 (ko) 통합 쿨링 모듈
WO2022177303A1 (ko) 차량의 공조용 냉각수 매니폴드 및 통합 냉각수 분배 및 저장 모듈
WO2020246792A1 (ko) 열관리 시스템
WO2018124789A1 (ko) 자동차용 히트펌프
WO2018135850A1 (ko) 폐열회수형 하이브리드 히트펌프시스템
WO2020013506A1 (ko) 특히 전기 자동차용 콤팩트 열 교환기 유닛 및 공기 조화 모듈
WO2023132659A1 (ko) 매니폴드 냉매 모듈
WO2018190540A1 (ko) 차량용 공조장치
WO2024029908A1 (ko) 매니폴드 유체 모듈
WO2024014739A1 (ko) 매니폴드 유체 모듈
WO2023204473A1 (ko) 매니폴드 유체 모듈
WO2024014740A1 (ko) 매니폴드 유체 모듈
WO2023229278A1 (ko) 매니폴드 유체 모듈
WO2024014737A1 (ko) 기액분리기 일체형 매니폴드 유체 모듈
WO2022245155A1 (ko) 통합 쿨링 모듈
WO2024136063A1 (ko) 차량용 열교환 모듈
WO2024122817A1 (ko) 차량용 열관리 유체 모듈
WO2020246791A1 (ko) 열관리 시스템
WO2011013948A2 (en) Refrigerator
WO2020246793A1 (ko) 열관리 시스템
WO2024135992A1 (ko) 유체 제어용 밸브 어셈블리
WO2023068645A1 (ko) 냉난방 베이퍼 인젝션 시스템 및 이에 사용되는 베이퍼 인젝션 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737407

Country of ref document: EP

Kind code of ref document: A1