WO2023130903A1 - 发送物理随机接入信道prach的方法、装置及存储介质 - Google Patents

发送物理随机接入信道prach的方法、装置及存储介质 Download PDF

Info

Publication number
WO2023130903A1
WO2023130903A1 PCT/CN2022/138073 CN2022138073W WO2023130903A1 WO 2023130903 A1 WO2023130903 A1 WO 2023130903A1 CN 2022138073 W CN2022138073 W CN 2022138073W WO 2023130903 A1 WO2023130903 A1 WO 2023130903A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
random access
prach
sending
access preamble
Prior art date
Application number
PCT/CN2022/138073
Other languages
English (en)
French (fr)
Inventor
王俊伟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210126392.0A external-priority patent/CN116471704A/zh
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023130903A1 publication Critical patent/WO2023130903A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a method, device and storage medium for sending a Physical Random Access Channel (PRACH).
  • PRACH Physical Random Access Channel
  • the 5th Generation Mobile Communication Technology complies with the listen before talk (LBT) rule in the unlicensed spectrum operation of the R16 standard of the New Radio (NR) base station system, That is, if the base station/terminal device wants to send a signal, it can listen to the channel.
  • LBT listen before talk
  • NR New Radio
  • the LBT process is not performed, and the PRACH is directly transmitted on the physical random access channel.
  • PRACH Physical Random Access Channel
  • the LBT failure processing cannot be performed effectively, so that the terminal device easily enters a state where the link is abnormally unavailable, which affects the stability of the link.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the purpose of this disclosure is to propose a method, device, storage medium, computer program product, and computer program for sending a physical random access channel PRACH, so as to realize that the PRACH is configured to be exempt from listening first in the process of sending a random access preamble
  • LBT the effective implementation of LBT failure processing can effectively avoid link abnormalities, thereby effectively maintaining the stability of the link.
  • the embodiment of the first aspect of the present disclosure proposes a method for sending a physical random access channel PRACH, including: when the terminal device is configured to listen first and then talk LBT fails to restore the configuration, sending a random access preamble on the PRACH , execute the LBT; if the execution of the LBT fails, execute the failure handling process of the LBT.
  • the method for sending the physical random access channel PRACH proposed by the embodiment of the first aspect of the present disclosure is to perform LBT when the PRACH sends the random access preamble when the terminal device is configured to listen first and then talk when the LBT fails to restore the configuration.
  • the LBT failure processing process is executed to implement LBT failure processing effectively when PRACH is configured to be exempted from listening before speaking LBT in the process of sending random access preambles, which can effectively avoid link failure. abnormal, thus effectively maintaining the stability of the link.
  • the embodiment of the second aspect of the present disclosure proposes an apparatus for sending a physical random access channel PRACH, including: a first execution unit, configured to restore the configuration when the terminal device is configured to listen before speaking and the LBT fails to restore the configuration.
  • a first execution unit configured to restore the configuration when the terminal device is configured to listen before speaking and the LBT fails to restore the configuration.
  • the LBT is executed;
  • the second executing unit is configured to execute the failure processing procedure of the LBT when the execution of the LBT fails.
  • the device for sending the physical random access channel PRACH proposed by the embodiment of the second aspect of the present disclosure performs LBT when the PRACH sends a random access preamble when the terminal device is configured to listen first and then talk LBT fails to restore the configuration,
  • the LBT failure processing process is executed to implement LBT failure processing effectively when PRACH is configured to be exempted from listening before speaking LBT in the process of sending random access preambles, which can effectively avoid link failure. abnormal, thus effectively maintaining the stability of the link.
  • the embodiment of the third aspect of the present disclosure proposes a device for sending a physical random access channel PRACH, including: a memory, a transceiver, and a processor: a memory for storing computer programs; Sending and receiving data under control; the processor is used to read the computer program in the memory and perform the following operations: in the case that the terminal device is configured to listen first and then talk LBT fails to restore the configuration, send a random access preamble on the PRACH When executing the LBT code, execute the LBT; if the execution of the LBT fails, execute the failure handling process of the LBT.
  • the device for sending the physical random access channel PRACH proposed by the embodiment of the third aspect of the present disclosure performs LBT when the PRACH sends a random access preamble when the terminal device is configured to listen first and then talk when the LBT fails to restore the configuration.
  • the LBT failure processing process is executed to implement LBT failure processing effectively when PRACH is configured to be exempted from listening before speaking LBT in the process of sending random access preambles, which can effectively avoid link failure. abnormal, thus effectively maintaining the stability of the link.
  • the embodiment of the fourth aspect of the present disclosure provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the embodiment of the first aspect of the present disclosure.
  • the processor-readable storage medium proposed in the embodiment of the fourth aspect of the present disclosure implements LBT when the PRACH sends a random access preamble when the terminal device is configured to listen first and then talk when the LBT fails to restore the configuration.
  • execute the LBT failure processing process to realize that when the PRACH is configured to be exempt from listening to the LBT in the process of sending the random access preamble, the LBT failure processing can be effectively performed, which can effectively avoid link abnormalities, thereby Effectively maintain the stability of the link.
  • the embodiment of the fifth aspect of the present disclosure provides a computer program product, including a computer program.
  • the computer program is executed by a processor, the method for sending a physical random access channel PRACH as proposed in the embodiment of the first aspect of the present disclosure is implemented.
  • the embodiment of the sixth aspect of the present disclosure provides a computer program, the computer program includes computer program code, when the computer program code is run on the computer, the computer executes the sending physical A method of random access channel PRACH.
  • the computer program product and computer program proposed in the embodiments of the fifth aspect and the sixth aspect of the present disclosure perform LBT when the terminal device is configured to listen first and then talk LBT fails to restore the configuration, when the random access preamble is sent on the PRACH , in the case of failure to execute LBT, execute the failure processing process of LBT, and implement LBT failure processing effectively when PRACH is configured to be exempted from LBT during the process of sending random access preamble, which can effectively avoid chaining In order to effectively maintain the stability of the link.
  • FIG. 1 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the LBT failure processing flow in an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a device for sending a physical random access channel PRACH proposed by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a device for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure.
  • Fig. 11 is a schematic structural diagram of an apparatus for sending a physical random access channel (PRACH) proposed by another embodiment of the present disclosure.
  • PRACH physical random access channel
  • This disclosure is just to solve the technical problem that the related technology cannot effectively perform LBT failure processing, which makes the terminal equipment easily enter the abnormal and unavailable state of the link and affects the stability of the link. It provides a physical random
  • the method of accessing the PRACH channel is to implement LBT when it is configured to exempt from listening first and then talk LBT during the process of sending random access preambles on PRACH. In the process of accessing the preamble, when it is configured to be exempt from LBT, it can effectively execute LBT failure processing, which can effectively avoid link abnormalities, and thus effectively maintain the stability of the link.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • Fig. 1 is a schematic flowchart of a method for sending a physical random access channel (PRACH) proposed by an embodiment of the present disclosure.
  • PRACH physical random access channel
  • the execution subject of the method for sending the physical random access channel PRACH in this embodiment is a device for sending the physical random access channel PRACH, and the device can be implemented by software and/or hardware, and the device can configured in the terminal device.
  • a terminal device refers to a communication device that can transmit and receive a digital signal, and the terminal device can send a signal to a network device through a channel.
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem. End devices may have different names on different systems.
  • a terminal device may be called a user equipment (User Equipment, UE).
  • the wireless terminal device can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Core Network Core Network
  • RAN Radio Access Network
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), can also be a home evolved base station (Home evolved Node B, HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission, etc.
  • the method for sending a physical random access channel PRACH includes: S101-S102.
  • a physical random access channel refers to an access channel when a terminal device (such as a user equipment UE) initiates a call, and can be formed with an access channel (Random Access Channel, RACH)
  • RACH Random Access Channel
  • the mapping is used to transmit the RACH, that is to say, it can be used to bear the transmission signal from the RACH.
  • the random access preamble is the actual content sent by the UE on the physical random access channel PRACH, which is composed of a signal sequence.
  • the process of sending the random access preamble on the PRACH can be called sending a physical random access preamble The process of accessing the channel PRACH.
  • the listen before talk (LBT) rule means that if a signal is to be sent on the channel, the channel can be monitored, and if the channel shows that it is idle, the signal can be sent on the channel, if Channel failure, that is, the channel is busy, may cause failure when sending related signals.
  • executing LBT refers to listening to the channel, successful execution of LBT means that the channel state is idle, and can trigger sending a random access preamble on the PRACH, and failure of LBT execution means that the channel state is busy. Sending the random access preamble on the PRACH may cause sending failure.
  • the LBT failure recovery configuration after listening first refers to the processing strategy set after multiple executions of LBT failures after the LBT failure
  • the LBT failure recovery configuration can be set to use the LBT execution result as the judgment condition , and according to the judgment conditions, instruct the terminal equipment to switch the active uplink subset bandwidth (Bandwidth Part, BWP), that is to say, switch the BWP that sends the random access preamble on the PRACH, stop the ongoing RACH process, and re-initiate the random access preamble
  • BWP active uplink subset bandwidth
  • the process of accessing the RACH channel, the process of re-initiating the RACH can be implemented by high-level processing in the terminal device, and completes processing operations such as parameter initialization for the RACH process.
  • the terminal device when the terminal device is configured to listen first and then talk when the LBT fails to restore the configuration, when the PRACH sends the random access preamble, it can execute LBT to listen to the channel to obtain the execution result of LBT , if the LBT execution is successful, indicating that the channel state is idle, it can trigger the sending of the random access preamble on the PRACH, and the LBT execution fails, indicating that the channel state is busy.
  • the terminal can still send the random access preamble on the PRACH, but it may cause The RACH process failed.
  • the terminal device is configured to restore the configuration if the LBT fails to be configured, then for sending the random access preamble on the PRACH
  • LBT can be performed first, and then the process of sending the random access preamble on the PRACH can be performed, or the process of sending the random access preamble on the PRACH can be performed first, and then the LBT can be performed, which is not limited.
  • the failure to perform LBT means that the channel is in a busy state, and when the random access preamble is sent on the PRACH, it may cause a sending failure.
  • the LBT failure handling process refers to the failure handling strategy for the process of sending the random access preamble on the PRACH after the channel fails to perform LBT.
  • the LBT failure handling process may, for example, include performing random access resource selection procedure, or any other possible failure handling strategy, without limitation.
  • LBT fails to restore the configuration, and when PRACH sends a random access preamble, after executing LBT, the execution result of LBT can be obtained, wherein, LBT The execution result can be success or failure.
  • the successful execution of LBT means that the channel state is idle, which can trigger the sending of random access preamble on PRACH.
  • the failure of LBT execution means that the channel state is busy. At this time, it indicates that if the random access preamble is sent on PRACH code, the sending may fail.
  • the indication result of LBT execution failure is received, it indicates that the execution of LBT fails, and the failure processing process of LBT can be executed, and the random access resource selection process can be executed, wherein the execution of the random access resource selection process can be Satisfy certain execution conditions, the execution conditions include receiving the LBT failure indication reported by the physical layer in the terminal device (the LBT failure indication is used to indicate the failure to execute LBT), which is not configured during the process of sending the random access preamble on the PRACH Exempt from listening before speaking LBT, and configuring LBT failure recovery configuration, if the execution conditions of the random access resource selection process are met, the random access resource selection process can be performed, and the random access preamble can be sent on the PRACH again.
  • the LBT failure indication is used to indicate the failure to execute LBT
  • LBT fails to restore the configuration
  • the PRACH sends the random access preamble
  • LBT is executed
  • the failure processing process of LBT is executed
  • the PRACH is configured to be exempt from the LBT in the process of sending the random access preamble
  • the LBT failure processing can be effectively performed, and the link abnormality can be effectively avoided, thereby effectively maintaining the stability of the link.
  • Fig. 2 is a schematic flowchart of a method for sending a physical random access channel (PRACH) proposed by another embodiment of the present disclosure.
  • PRACH physical random access channel
  • the method for sending a physical random access channel PRACH includes: S201-S203.
  • a physical random access channel refers to an access channel when a terminal device (such as a user equipment UE) initiates a call, and can be formed with an access channel (Random Access Channel, RACH)
  • RACH Random Access Channel
  • the mapping is used to transmit the RACH, that is to say, it can be used to bear the transmission signal from the RACH.
  • the random access preamble is the actual content sent by the UE on the physical random access channel PRACH, which is composed of a signal sequence.
  • the process of sending the random access preamble on the PRACH can be called sending a physical random access preamble The process of accessing the channel PRACH.
  • the listen before talk (LBT) rule means that if a signal is to be sent on the channel, the channel can be monitored, and if the channel shows that it is idle, the signal can be sent on the channel, If the channel fails, that is, if the channel is busy, it may cause the send to fail.
  • executing LBT refers to listening to the channel, successful execution of LBT means that the channel state is idle, and can trigger sending a random access preamble on the PRACH, and failure of LBT execution means that the channel state is busy. Sending the random access preamble on the PRACH may cause sending failure.
  • the LBT failure recovery configuration after listening first refers to the processing strategy set after multiple executions of LBT failures after the LBT failure
  • the LBT failure recovery configuration can be set to use the LBT execution result as the judgment condition , and according to the judgment conditions, instruct the terminal equipment to switch the active uplink subset bandwidth (Bandwidth Part, BWP), that is to say, switch the BWP that sends the random access preamble on the PRACH, stop the ongoing RACH process, and re-initiate the random access preamble
  • BWP active uplink subset bandwidth
  • the process of accessing the RACH channel, the process of re-initiating the RACH can be implemented by high-level processing in the terminal device, and completes processing operations such as parameter initialization for the RACH process.
  • the terminal device when the terminal device is configured to listen first and then talk when the LBT fails to restore the configuration, when the PRACH sends the random access preamble, it can execute LBT to listen to the channel to obtain the execution result of LBT , if the LBT execution is successful, indicating that the channel state is idle, it can trigger the sending of the random access preamble on the PRACH, and the LBT execution fails, indicating that the channel state is busy.
  • the terminal can still send the random access preamble on the PRACH, but it may cause RACH Process failed.
  • the terminal device is configured to restore the configuration if the LBT fails to be configured, then for sending the random access preamble on the PRACH
  • LBT can be performed first, and then the process of sending the random access preamble on the PRACH can be performed, or the process of sending the random access preamble on the PRACH can be performed first, and then the LBT can be performed, which is not limited.
  • the failure to perform LBT means that the channel is in a busy state, and when the random access preamble is sent on the PRACH, it may cause a sending failure.
  • the LBT failure handling process refers to the failure handling strategy for the process of sending the random access preamble on the PRACH after the channel fails to perform LBT.
  • the LBT failure handling process may, for example, include performing random access resource selection procedure, or any other possible failure handling strategy, without limitation.
  • LBT fails to restore the configuration, and when PRACH sends a random access preamble, after executing LBT, the execution result of LBT can be obtained, wherein, LBT The execution result can be success or failure.
  • the successful execution of LBT means that the channel state is idle, which can trigger the sending of random access preamble on PRACH.
  • the failure of LBT execution means that the channel state is busy. At this time, it indicates that if the random access preamble is sent on PRACH , the sending may fail.
  • the indication result of LBT execution failure is received, it indicates that the execution of LBT fails, and the failure processing process of LBT can be executed, and the random access resource selection process can be executed, wherein the execution of the random access resource selection process can be Satisfy certain execution conditions, the execution conditions include receiving the LBT failure indication reported by the physical layer in the terminal device (the LBT failure indication is used to indicate the failure to execute LBT), which is not configured during the process of sending the random access preamble on the PRACH Exempt from listening before speaking LBT, and configured LBT failure recovery configuration, if the execution conditions of the random access resource selection process are met, the random access resource selection process can be performed, and the random access preamble can be sent on the PRACH again.
  • the LBT failure indication is used to indicate the failure to execute LBT
  • exempt from LBT means that when the terminal device sends short control signaling, it can be exempted from executing the LBT rule and directly sent, wherein the short control signaling is characterized by: within a certain sending period (for example, the The sending period can be 100ms) the duty cycle is less than 10%, that is, the sending time is less than 10ms, and the PRACH is configured to be exempted from LBT during the process of sending the random access preamble, which means that the random access preamble is sent on the PRACH In the process, it is configured so that there is no need to perform the LBT process, that is, in the process of sending the random access preamble on the PRACH, it is configured not to monitor the idle or busy state of the physical random access channel, and directly send the random access in the PRACH preamble.
  • the short control signaling is characterized by: within a certain sending period (for example, the The sending period can be 100ms) the duty cycle is less than 10%, that is, the sending time is less than 10ms
  • the PRACH when the PRACH is not configured to be exempt from LBT during the process of sending the random access preamble, it means that when the PRACH sends the random access preamble, the LBT needs to be executed to monitor the channel.
  • whether the PRACH is configured to be exempted from LBT during the process of sending the random access preamble may be determined by the LBT exemption indication, wherein the LBT exemption indication may be sent by the base station, and the base station sends a broadcast message or
  • the radio resource control (Radio Resource Control, RRC) message when configuring the RACH resource, uses the LBT exemption indication to indicate whether the terminal device is exempt from the LBT when sending the PRACH.
  • RRC Radio Resource Control
  • the terminal device does not receive the LBT exemption instruction sent by the base station, that is to say, it is not configured to be exempted from LBT during the process of sending the random access preamble on the PRACH, then the LBT rule is executed, Perform channel sensing on the channel to be sent to determine whether the channel to be sent is idle or busy, so as to obtain the execution result of LBT. If the LBT is executed successfully, send a random access preamble on the PRACH.
  • LBT is executed at the physical layer in the terminal device, and then the physical layer can report the execution result of LBT to a high-level layer in the terminal device, where the high-level layer is the Medium Access Control (MAC) in the terminal device , MAC) layer, after the high layer receives the execution result of LBT, it can trigger subsequent processing logic.
  • MAC Medium Access Control
  • the execution parameters of LBT can be determined, and the execution parameters of LBT can be LBT type and LBT beam direction (the LBT beam direction can be omnidirectional or directional).
  • the LBT type can be type-1 type or type-2 type, wherein, the type-1 type of LBT is also called LBT CAT3, and the random backoff of the fixed contention window of the type-1 sending node, the contention window is long It is fixed.
  • the competition window (Contending Windows, CW) can be an integer (for example, CW can be 3), and the type-1 type can generate a random number N from 0 to CW before executing LBT, and then perform N
  • the idle channel detection of the time slot length the type-2 type of LBT is also called LBT CAT2, and the type-2 type performs a fixed-time idle channel detection at the sending node, that is to say, before sending, it can do a fixed
  • the idle channel monitoring process with a duration of 13 ⁇ s includes 2 energy detection time slots. When the detection results of the two detection time slots are both idle, the execution result state of LBT CAT2 is considered to be idle.
  • the random access preamble can be sent on the PRACH, and after the physical layer in the terminal device executes the LBT , the upper layer in the terminal device can receive the execution result of the LBT.
  • the random access preamble can be sent on the PRACH by sending the random access preamble on the PRACH when no LBT exemption is configured during the process of sending the random access preamble on the PRACH and the execution of the LBT is successful.
  • LBT exemption is not configured during the process, LBT is executed to monitor the channel.
  • the random access preamble is sent on the PRACH, which can effectively guarantee the execution of the process of sending the random access preamble on the PRACH. Coherence, effectively guaranteeing the success rate of sending the random access preamble on the PRACH.
  • LBT when PRACH is configured to be exempt from listening before speaking LBT in the process of sending the random access preamble, LBT is executed, and in the case of failure to execute LBT, the failure processing process of LBT is executed to realize In the process of sending the random access preamble, when it is configured to be exempted from LBT, the LBT failure processing can be effectively performed, which can effectively avoid link abnormalities, thereby effectively maintaining the stability of the link.
  • the random access preamble is sent on the PRACH, so that when the PRACH is not configured to exempt from LBT during the process of sending the random access preamble, execute LBT is used to listen to the channel.
  • the random access preamble is sent on the PRACH, which can effectively ensure the continuity of the process of sending the random access preamble on the PRACH, and effectively ensure that the random access preamble is sent on the PRACH.
  • the transmission success rate of the incoming preamble is not be expired.
  • Fig. 3 is a schematic flowchart of a method for sending a physical random access channel (PRACH) proposed by another embodiment of the present disclosure.
  • PRACH physical random access channel
  • the method for sending a physical random access channel PRACH includes: S301-S302.
  • exempt from LBT means that when the terminal device sends short control signaling, it can be exempted from executing the LBT rule and directly sent, wherein the short control signaling is characterized by: within a certain sending period (for example, the The sending period can be 100ms) the duty cycle is less than 10%, that is, the sending time is less than 10ms, and the PRACH is configured to be exempted from LBT during the process of sending the random access preamble, which means that the random access preamble is sent on the PRACH In the process, it is configured so that there is no need to perform the LBT process, that is, in the process of sending the random access preamble on the PRACH, it is configured not to monitor the idle or busy state of the physical random access channel, and directly send the random access in the PRACH preamble.
  • the short control signaling is characterized by: within a certain sending period (for example, the The sending period can be 100ms) the duty cycle is less than 10%, that is, the sending time is less than 10ms
  • the PRACH when the PRACH is not configured to be exempt from LBT during the process of sending the random access preamble, it means that when the PRACH sends the random access preamble, the LBT needs to be executed to monitor the channel.
  • whether the PRACH is configured to be exempted from LBT during the process of sending the random access preamble may be determined by the LBT exemption indication, wherein the LBT exemption indication may be sent by the base station, and the base station sends a broadcast message or
  • the radio resource control (Radio Resource Control, RRC) message when configuring the RACH resource, uses the LBT exemption indication to indicate whether the terminal device is exempt from the LBT when sending the PRACH.
  • RRC Radio Resource Control
  • the terminal device does not receive the LBT exemption instruction sent by the base station, that is to say, it is not configured to be exempted from LBT during the process of sending the random access preamble on the PRACH, then the LBT rule is executed, Perform channel sensing on the channel to be sent to determine whether the channel to be sent is idle or busy, so as to obtain the execution result of the LBT, and if the LBT is executed successfully, send a random access preamble on the PRACH.
  • LBT is executed at the physical layer in the terminal device, and then the physical layer can report the execution result of LBT to a high-level layer in the terminal device, where the high-level layer is the Medium Access Control (MAC) in the terminal device , MAC) layer, after the high layer receives the execution result of LBT, it can trigger subsequent processing logic.
  • MAC Medium Access Control
  • the execution parameters of LBT can be determined, and the execution parameters of LBT can be LBT type and LBT beam direction (the LBT beam direction can be omnidirectional or directional).
  • the LBT type can be type-1 type or type-2 type, wherein, the type-1 type of LBT is also called LBT CAT3, and the random backoff of the fixed contention window of the type-1 sending node, the contention window is long It is fixed.
  • the competition window (Contending Windows, CW) can be an integer (for example, CW can be 3), and the type-1 type can generate a random number N from 0 to CW before executing LBT, and then perform N
  • the idle channel detection of the time slot length the type-2 type of LBT is also called LBT CAT2, and the type-2 type performs a fixed-time idle channel detection at the sending node, that is to say, before sending, it can do a fixed
  • the idle channel monitoring process with a duration of 13 ⁇ s includes 2 energy detection time slots. When the detection results of the two detection time slots are both idle, the execution result state of LBT CAT2 is considered to be idle.
  • the random access preamble in the process of sending the random access preamble on the PRACH, no LBT exemption is configured, and the LBT execution is successful, the random access preamble can be sent on the PRACH, and executed at the physical layer of the terminal device After the LBT, the upper layer in the terminal device can receive the execution result of the LBT.
  • S302 Execute a random access resource selection process when the LBT failure indication is received.
  • the LBT failure indication refers to a result indication used to characterize the failure of LBT execution, and is used to indicate the failure of LBT execution, and the LBT failure indication may be received by a high layer of the terminal device.
  • the random access resource selection process refers to switching to a new uplink channel and trying to send the random access preamble on the PRACH.
  • LBT can be executed on the physical layer of the terminal device to obtain the execution result of LBT, and convert the execution result of LBT into The LBT execution instruction is reported to the upper layer of the terminal device. If the LBT execution fails, the LBT failure instruction is reported to the upper layer of the terminal device. After the upper layer of the terminal device receives the LBT failure instruction, if the terminal device is configured with LBT failure recovery configuration, then execute During the random access resource selection process, a retry of the RACH process is performed.
  • the random access channel RACH process when performing the random access resource selection process, the random access channel RACH process may be performed, and the user equipment UE sends the random access preamble to the base station on the physical random access channel PRACH, and the base station receives the random access preamble After random access to the preamble, a Random Access Response (Random Access Response, RAR) is sent on the Physical Downlink Shared Channel (PDSCH), and then the UE can send a random access response (RAR) on the Physical Uplink Shared Channel (Physical Uplink Shared Channel) according to the uplink scheduling information. , PUSCH) to send cell wireless network temporary identifier and other information to perform radio resource control (Radio Resource Control, RRC) connection, and the base station sends contention resolution to the UE to determine whether the UE has successfully established a connection with the base station.
  • RAR Random Access Response
  • PUSCH Physical Uplink Shared Channel
  • RRC Radio Resource Control
  • the random access resource selection process when the PRACH is not configured to exempt LBT during the process of sending the random access preamble, and when the LBT failure indication is received, the random access resource selection process is performed, so that after receiving the LBT failure indication, the random access resource selection process is used.
  • the access resource selection process switches the link and executes the process of sending the random access preamble on the PRACH, so that the process of sending the PRACH can be retried when the LBT execution fails.
  • the random access preamble is sent on the PRACH, so that the process of sending the random access preamble on the PRACH can be
  • the LBT exemption is not configured, execute LBT to monitor the channel.
  • the execution of LBT is successful, send the random access preamble on the PRACH, which can effectively guarantee the execution consistency of the process of sending the random access preamble on the PRACH.
  • the random access resource selection process is performed , so that after receiving the LBT failure indication, the random access resource selection process is used to switch links to perform the process of sending the random access preamble on the PRACH, so that the process of sending the PRACH can be retried when the LBT execution fails.
  • Fig. 4 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure.
  • the method for sending a physical random access channel PRACH includes: S401-S403.
  • LBT fails to restore the configuration, when the PRACH sends a random access preamble, determine the LBT configuration information, wherein the LBT configuration information is determined by the base station, or the LBT configuration information is determined by the terminal device Sure.
  • LBT configuration information refers to parameter information that can be determined before performing LBT.
  • the LBT configuration information can be LBT type information and LBT beam direction information.
  • the LBT configuration information can be determined by the base station, or the LBT configuration information Can be determined by the end device.
  • the base station when the base station determines the LBT configuration information, the base station can configure the LBT type information and beam direction information.
  • the LBT type can be type-1 type or type-2 type, and the LBT beam direction information can be It is an omnidirectional beam direction or a directional beam direction.
  • the base station determines the LBT configuration information, the base station can configure the LBT type information and beam direction information.
  • the LBT type can be set to type-1 type or type-2 type, and set The beam direction information of the LBT is an omnidirectional beam direction or a directional beam direction, so as to obtain LBT configuration information.
  • the base station may configure LBT configuration information as follows:
  • LBT_type_Msg1 is used to instruct the terminal device to send PRACH
  • NUMERATED means enumeration
  • the type of LBT is divided into type-1 type or type-2 type, when NUMERATED indicates type-1 type, when the terminal device sends PRACH, execute type -1 type LBT, when NUMERATED indicates type-2, the terminal device executes type-2 type LBT when sending PRACH.
  • the terminal device when configuring the LBT type information in the LBT configuration information, only one type may be indicated.
  • LBT_type_Msg1 when configured, the terminal device executes according to the type-1 type of LBT.
  • the terminal device executes according to the type-2 type of LBT, or when LBT_type_Msg2 is configured, the terminal device executes according to the type-2 type of LBT, and when it is not configured, the terminal device executes according to the type-1 type of LBT.
  • the configuration of the LBT type information and the configuration of the LBT beam direction information can also be performed by the terminal device, and the terminal device can determine the setting of the LBT configuration information by itself, and use the set information as the LBT configuration information.
  • S402 Execute LBT according to the LBT configuration information.
  • LBT may be performed according to the LBT configuration information.
  • LBT of a corresponding type and beam direction may be performed according to the LBT type information and the LBT beam direction information in the LBT configuration information.
  • the LBT configuration information includes: LBT type, and/or, LBT beam direction, so that the executed LBT can be configured according to the LBT type and LBT beam direction in the LBT configuration information, so that the channel can be monitored
  • LBT type and/or, LBT beam direction
  • the adaptive configuration of the LBT executed at the same time can effectively improve the channel monitoring effect.
  • the LBT beam direction may be an omnidirectional beam direction or may be a directional beam direction.
  • the LBT type can be type-1 type or type-2 type, wherein, the type-1 type of LBT is also called LBT CAT3, and the random backoff of the fixed contention window of the type-1 sending node, the contention window is long It is fixed, for example, the competition window can be an integer (for example, the competition window (Contending Windows, CW) can be 3), type-1 type can generate a random number N from 0 to CW before executing LBT, and then perform The idle channel detection of N time slot length, the type-2 type of LBT is also called LBT CAT2, and the type-2 type performs a fixed-time idle channel detection at the sending node, that is to say, before sending, you can do An idle channel monitoring process with a fixed duration of 13 ⁇ s, the fixed duration includes 2 energy detection time slots, and when the detection results of the two detection time slots are both idle, the execution result state of LBT CAT2 is considered to be idle.
  • the competition window can be an integer (for example, the competition window (Contending Windows, CW) can
  • the LBT of the corresponding type and the corresponding beam direction when executing LBT according to the LBT configuration information, the LBT of the corresponding type and the corresponding beam direction may be invoked and executed according to the LBT type and the LBT beam direction in the LBT configuration information.
  • the LBT configuration information is determined when the PRACH sends the random access preamble when the terminal device is configured to listen first and then talk when the LBT fails to restore the configuration.
  • the LBT configuration information is determined by the base station, or the LBT configuration information is determined by the base station.
  • the information is determined by the terminal device.
  • LBT configuration information LBT is executed, so that the corresponding type of LBT can be executed to listen to the channel according to the LBT configuration information. Since the LBT configuration information can be determined by the base station or by the terminal device, the LBT configuration can be realized.
  • the adaptive configuration of information improves the interception effect of the interception process on the channel.
  • the failure to perform LBT means that the channel state is busy, and at this time it indicates that if the random access preamble is sent on the PRACH, the sending may fail.
  • the LBT failure handling process refers to the failure handling strategy for the process of sending the random access preamble on the PRACH after the channel fails to perform LBT.
  • the LBT failure handling process may, for example, include performing random access resource selection The process, or the failure handling process of the LBT may also be other types of failure handling policies, which are not limited.
  • LBT fails to restore the configuration, and when the PRACH sends a random access preamble, and after executing LBT, the execution result of LBT can be obtained, wherein, The result of LBT execution can be success or failure.
  • the successful execution of LBT means that the channel state is idle, and the random access preamble can be sent on the PRACH. preamble, it may cause sending failure.
  • the indication result of LBT execution failure is received, it indicates that the execution of LBT fails, and the failure processing process of LBT can be executed, and the random access resource selection process can be executed, wherein the execution of the random access resource selection process can be Satisfy certain execution conditions, the execution conditions include receiving the LBT failure indication reported by the physical layer in the terminal device (the LBT failure indication is used to indicate the failure to execute LBT), which is not configured during the process of sending the random access preamble on the PRACH Exempt from listening before speaking LBT, and configured LBT failure recovery configuration, if the execution conditions of the random access resource selection process are met, the random access resource selection process can be performed, and a new uplink channel is switched to try to send random access on the PRACH. Enter the preamble.
  • Figure 5 is a schematic diagram of the LBT failure processing flow in the embodiment of the present disclosure. If the PRACH is configured to be exempt from LBT during the process of sending the random access preamble, the physical layer in the terminal device Execute LBT, and report the execution result of LBT to the upper layer. If the execution of LBT fails, execute the failure handling process of LBT.
  • LBT fails to restore the configuration
  • the PRACH sends the random access preamble
  • LBT is executed
  • the failure processing process of LBT is executed
  • the PRACH is configured to be exempted from LBT during the process of sending the random access preamble
  • the LBT failure process can be effectively performed, which can effectively avoid link abnormalities, thereby effectively maintaining the stability of the link.
  • the LBT type and LBT beam direction in the configuration information configure the LBT to be executed, so that the adaptive configuration of the LBT executed when the channel is monitored can be realized, and the effect of the channel is guaranteed.
  • the terminal device By configuring the terminal device to listen first Afterwards, in the case of LBT failure recovery configuration, when the PRACH sends a random access preamble, determine the LBT configuration information, where the LBT configuration information is determined by the base station, or the LBT configuration information is determined by the terminal device, and execute LBT according to the LBT configuration information. , so that the corresponding type of LBT can be executed to intercept the channel according to the LBT configuration information. Since the LBT configuration information can be determined by the base station or the terminal device, the adaptive configuration of the LBT configuration information can be realized, and the interception process of the channel can be improved. listening effect.
  • Fig. 6 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure.
  • the method for sending a physical random access channel PRACH includes: S601-S605.
  • S601 Receive an indication message sent by a base station to configure a random access channel RACH or a system broadcast.
  • the indication message of the random access channel RACH is used to determine whether the PRACH is configured to be exempt from LBT in the process of sending the random access preamble, and the indication message of the configuration random access channel RACH can be configured and sent by the base station , or the base station may send an indication message broadcast by other systems, and the terminal device may receive the configuration random access channel RACH or the indication message broadcast by the system sent by the base station.
  • the data transmission interface when receiving the configuration random access channel RACH or the system broadcast instruction message sent by the base station, the data transmission interface may be configured in advance on the device sending the physical random access channel PRACH.
  • the base station configures the random access channel After the RACH indication message, the base station can send the indication message through a broadcast message or an RRC message, or the base station can send an indication message broadcast by other systems, and then the device sending the physical random access channel PRACH can receive the configuration sent by the base station through the data transmission interface An indication message of the random access channel RACH.
  • S602 According to the indication message, determine whether the PRACH is configured to be exempt from LBT during the process of sending the random access preamble.
  • the terminal device after the terminal device receives the indication message sent by the base station to configure the random access channel RACH resources or the system broadcast, it can analyze and process the received indication message, and detect whether the indication message contains configuration information for determining Whether the target field of exempting LBT is configured during the process of sending the random access preamble on the PRACH.
  • the base station can configure the indication message as follows:
  • LBT_exempt_Msg1 is used to indicate whether to configure the target field in the exempt LBT indication message during the process of sending the random access preamble on the PRACH.
  • ENUMERATED indicates enumeration, which is divided into TRUE and FALSE.
  • the terminal device It can be regarded as being configured to be exempt from LBT when sending PRACH, that is, without triggering the execution of LBT, the random access preamble can be sent directly on PRACH.
  • the terminal device When ENUMERATED is FALSE, the terminal device can be regarded as not configured when sending PRACH Exempt from LBT, that is to say, the execution of LBT can be triggered, and only when the execution of LBT is successful, the random access preamble can be sent on the PRACH.
  • the target field in the configuration indication message when receiving an indication message for configuring the random access channel RACH or system broadcast sent by the base station, and determining whether to configure the target field in the indication message, if the target field in the configuration indication message is detected, determine Exemption from LBT is configured during the process of sending the random access preamble on the PRACH, and then LBT can be performed. If the target field in the configuration indication message is not detected, it is determined that the exemption is not configured during the process of sending the random access preamble on the PRACH LBT, which can then be performed.
  • the PRACH by receiving the configuration random access channel RACH or the system broadcast indication message sent by the base station, according to the indication message, it is determined whether the PRACH is configured to be exempted from LBT during the process of sending the random access preamble, so as to realize according to the information sent by the base station.
  • the indication message determines whether the LBT is configured to be exempted during the process of sending the random access preamble on the PRACH, which can effectively improve the accuracy and timeliness of determining whether the LBT is configured to be exempted, and realizes timely triggering of subsequent corresponding processing logic according to the indication message. Effectively avoid link anomalies.
  • the indication message it is determined whether the cell accessed by the terminal device is configured to be exempt from LBT, or, if the indication message is not received, it is determined that the cell accessed by the terminal device is configured to be exempt from LBT, so that according to the indication
  • the message judges whether the cell accessed by the terminal device is configured to be exempt from LBT, that is to say, judges the mode of the cell accessed by the terminal device, and realizes the combination of the LBT mode and the instruction message sending RACH information configuration exemption LBT, Thus, the overhead of indication information is effectively reduced.
  • the base station when the base station sends an indication message for configuring the random access channel RACH or system broadcast, it can indicate whether the cell accessed by the terminal device is configured to be exempt from LBT, that is to say, the cell accessed by the terminal device Indicates the mode of the cell.
  • the mode of the cell accessed by the terminal device is divided into LBT mode and NO-LBT mode.
  • the LBT mode refers to when sending data or signals on the channel (the channel includes PRACH and any other channel/signal information), execute the LBT process, and the NO-LBT mode means that when sending data or signals on the channel, the LBT process is not executed.
  • 1-bit indication information may be used to indicate the LBT mode or the NO-LBT mode.
  • the base station can configure the indication message as follows:
  • ENUMERATED means enumeration, which is divided into TRUE and FALSE.
  • LBT-modeAndMsg1_exempt indicates TRUE, the terminal device can be regarded as being configured to be exempted from LBT when sending PRACH, and the cell accessed by the terminal device is in LBT mode.
  • the terminal device can be regarded as not configured to exempt LBT when sending PRACH, and the cell the terminal device accesses is in LBT mode; when LBT-modeAndMsg1_exempt is not configured or instructed by the base station, that is to say, the terminal device is not receiving If the indication message is received, it is determined that the cell accessed by the terminal device is in the NO-LBT mode, and the cell accessed by the terminal device is configured to be exempt from LBT.
  • the base station may send other system broadcast messages to determine whether the cell accessed by the terminal device is configured to be exempt from LBT, and may check whether the cell accessed by the terminal device is configured to be exempt from LBT in the indication message broadcast by other systems.
  • Indication After receiving the indication message sent by the base station to configure the random access channel RACH or the system broadcast, the terminal device can determine whether it is configured to be exempt from LBT during the process of sending the random access preamble on the PRACH according to the indication message.
  • the geographic location of the terminal device when determining whether an LBT exemption is configured during the process of sending a random access preamble on the PRACH, the geographic location of the terminal device is determined, and if the geographic location belongs to the target location area, it is determined that the random access preamble is sent on the PRACH In the process of the preamble, it is configured to be exempt from LBT.
  • the target location area is the location area that is exempted from LBT during the process of sending the random access preamble on the PRACH.
  • the exemption LBT is not configured, so that the terminal device can determine whether the exemption LBT is configured during the process of sending the random access preamble on the PRACH in combination with its own geographical location, so as to realize the random access sending on the PRACH Flexible determination of whether the preamble is exempt from LBT during configuration.
  • the target location area refers to the location area where the terminal device configured to be exempt from LBT is located during the process of sending the random access preamble on the PRACH.
  • the location processing may be performed first to obtain the geographic location of the terminal device, and then the terminal device may be located within the target location area. If the geographic location of the terminal device belongs to the target location area, it is determined that the PRACH is configured to be exempt from LBT during the process of sending the random access preamble. If the geographic location of the terminal device does not belong to the target location area, Then it is determined that no LBT exemption is configured during the process of sending the random access preamble on the PRACH.
  • the LBT may be executed to monitor the channel.
  • exempt from LBT means that when the terminal device sends short control signaling, it can be exempted from executing the LBT rule and directly sent, wherein the short control signaling is characterized by: within a certain sending period (for example, the The sending period can be 100ms) the duty cycle is less than 10%, that is, the sending time is less than 10ms, and the PRACH is configured to be exempted from LBT during the process of sending the random access preamble, which means that the random access preamble is sent on the PRACH In the process, it is configured so that there is no need to perform the LBT process, that is, in the process of sending the random access preamble on the PRACH, it is configured not to monitor the idle or busy state of the physical random access channel, and directly send the random access in the PRACH preamble.
  • the short control signaling is characterized by: within a certain sending period (for example, the The sending period can be 100ms) the duty cycle is less than 10%, that is, the sending time is less than 10ms
  • the PRACH when the PRACH is not configured to be exempt from LBT during the process of sending the random access preamble, it means that when the PRACH sends the random access preamble, the LBT needs to be executed to monitor the channel.
  • whether the PRACH is configured to be exempted from LBT during the process of sending the random access preamble may be determined by the LBT exemption indication, wherein the LBT exemption indication may be sent by the base station, and the base station sends a broadcast message or
  • the radio resource control (Radio Resource Control, RRC) message when configuring the RACH resource, uses the LBT exemption indication to indicate whether the terminal device is exempt from the LBT when sending the PRACH.
  • RRC Radio Resource Control
  • the terminal device does not receive the LBT exemption instruction sent by the base station, that is to say, it is not configured to be exempted from LBT during the process of sending the random access preamble on the PRACH, then the LBT rule is executed to Perform channel sensing on the channel to be sent to determine whether the channel to be sent is idle or busy, so as to obtain the execution result of LBT. If the execution of LBT is successful, send a random access preamble on the PRACH.
  • LBT is executed at the physical layer in the terminal device, and then the physical layer can report the execution result of LBT to a high-level layer in the terminal device, where the high-level layer is the Medium Access Control (MAC) in the terminal device , MAC) layer, after the high layer receives the execution result of LBT, it can trigger subsequent processing logic.
  • MAC Medium Access Control
  • the execution parameters of LBT can be determined, and the execution parameters of LBT can be LBT type and LBT beam direction (the LBT beam direction can be omnidirectional or directional).
  • the LBT type can be type-1 type or type-2 type, wherein, the type-1 type of LBT is also called LBT CAT3, and the random backoff of the fixed contention window of the type-1 sending node, the contention window is long It is fixed.
  • the competition window (Contending Windows, CW) can be an integer (for example, CW can be 3), and the type-1 type can generate a random number N from 0 to CW before executing LBT, and then perform N
  • the idle channel detection of the time slot length the type-2 type of LBT is also called LBT CAT2, and the type-2 type performs a fixed-time idle channel detection at the sending node, that is to say, before sending, it can do a fixed
  • the idle channel monitoring process with a duration of 13 ⁇ s includes 2 energy detection time slots. When the detection results of the two detection time slots are both idle, the execution result state of LBT CAT2 is considered to be idle.
  • the random access preamble can be sent on the PRACH, and after the physical layer in the terminal device executes the LBT , the upper layer in the terminal device can receive the execution result of the LBT.
  • the failure to perform LBT means that the channel is in a busy state, and when the random access preamble is sent on the PRACH, it may cause a sending failure.
  • the LBT failure handling process refers to the failure handling strategy for the process of sending the random access preamble on the PRACH after the channel fails to perform LBT.
  • the LBT failure handling process may, for example, include performing random access resource selection procedure, or any other possible failure handling strategy, without limitation.
  • LBT fails to restore the configuration, and when PRACH sends a random access preamble, after executing LBT, the execution result of LBT can be obtained, wherein, LBT The execution result can be success or failure.
  • the successful execution of LBT means that the channel state is idle, which can trigger the sending of random access preamble on PRACH.
  • the failure of LBT execution means that the channel state is busy. At this time, it indicates that if the random access preamble is sent on PRACH code, the sending may fail.
  • the indication result of LBT execution failure is received, it indicates that the execution of LBT fails, and the failure processing process of LBT can be executed, and the random access resource selection process can be executed, wherein the execution of the random access resource selection process can be Satisfy certain execution conditions, the execution conditions include receiving the LBT failure indication reported by the physical layer in the terminal device (the LBT failure indication is used to indicate the failure to execute LBT), which is not configured during the process of sending the random access preamble on the PRACH Exempt from listening before speaking LBT, and configuring LBT failure recovery configuration, if the execution conditions of the random access resource selection process are met, the random access resource selection process can be performed, and the random access preamble can be sent on the PRACH again.
  • the LBT failure indication is used to indicate the failure to execute LBT
  • the base station by receiving the indication message sent by the base station to configure the random access channel RACH, according to the indication message, it is determined whether the PRACH is configured to be exempt from LBT in the process of sending the random access preamble, and the determination is realized according to the indication message sent by the base station.
  • the PRACH is configured to be exempted from LBT in the process of sending the random access preamble can effectively improve the accuracy and timeliness of determining whether it is configured to be exempted from LBT, and realize timely triggering of subsequent corresponding processing logic according to the indication message, effectively avoiding
  • LBT fails to restore the configuration
  • the PRACH sends the random access preamble execute LBT
  • the execution of LBT fails, execute the failure processing process of LBT
  • the LBT failure process can be effectively executed, which can effectively avoid link abnormalities, thereby effectively maintaining the stability of the link.
  • the geographic location of the device if the geographic location belongs to the target location area, it is determined that it is configured to be exempt from LBT during the process of sending the random access preamble on the PRACH, where the target location area is the process of sending the random access preamble on the PRACH In the location area exempt from LBT, if the geographic location does not belong to the target location area, it is determined that the process of sending the random access preamble on the PRACH is not configured to be exempt from LBT, so that the terminal device can determine the random access preamble on the PRACH based on its own geographical location. Whether the LBT exemption is configured during the process of accessing the preamble realizes the flexible determination of whether the LBT exemption is configured during the process of sending the random access preamble on the PRACH.
  • Fig. 7 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure.
  • the method for sending a physical random access channel PRACH includes: S701-S706.
  • the PRACH is configured to be exempt from LBT during the process of sending the random access preamble, and the reference configuration information is the target configuration information, increment the second power ramping count value to obtain the first power ramping count value , the second power ramping count value is the power ramping count value related to the last time the terminal device sent the random access preamble on the PRACH.
  • the first power ramping count value refers to the power counting value when the terminal device sends the PRACH. In the case of other parameters being the same, the greater the value of the first power ramping count value, the more the terminal device sends The greater the power during the PRACH, the smaller the value of the first power ramping count value, and the smaller the transmitted power.
  • the power ramping count value related to the last random access preamble sent by the terminal device on the PRACH refers to the last time the random access preamble was sent on the PRACH corresponding to the current process of sending the random access preamble on the PRACH The related power ramp count value of the code process.
  • the second power ramping count value refers to a power ramping count value related to the last time the terminal device sent the random access preamble on the PRACH.
  • the reference configuration information refers to terminal device configuration information used to determine the first power ramping count value.
  • the target configuration information refers to the judgment condition for whether to increment the second power ramp count value.
  • the reference configuration information is the target configuration information
  • the second power ramp count value can be incremented. processing to obtain the first power ramp count value.
  • the comparison process can be performed in the target configuration information according to the reference configuration information. If the reference configuration information is the target configuration information, it can be set Determine the incremental step, and perform incremental processing on the second power ramp count value according to the incremental step, and use the second power ramp count value after the increment process as the first power ramp count value, wherein the incremental step can be Set it to 1, or you can set any other reasonable value as the incremental step size, there is no limit to this.
  • the target configuration information includes any of the following: the last time the PRACH was configured to be exempt from LBT during the process of sending the random access preamble, and the last time the PRACH was sending the random access preamble, no LBT was received Failure indication, so that the reference configuration information can be checked according to the target configuration information, so as to determine the first power ramp count value according to the target configuration information and the reference configuration information, so that the power of the terminal device to send the random access preamble on the PRACH
  • the count value is adaptively configured.
  • the judgment condition can be preset as the target configuration information
  • the target configuration information can include: the last time the random access preamble was configured to be exempted from LBT in the process of sending the random access preamble on the PRACH, the last time the random access preamble was sent on the PRACH
  • the second power ramping count value is incremented, and the incremented second power ramping count value is used as Get the first power ramp count value.
  • the target configuration information can be used to compare the reference configuration information. If the target configuration information does not include any of the following: the PRACH is configured to be exempt from LBT during the process of sending the random access preamble, the last time When the PRACH is configured to be exempt from LBT during the process of sending the random access preamble, and the last time the PRACH sent the random access preamble, no LBT failure indication was received, then there is no need to increment the second power ramping count value , using the second power ramp-up count value that has not been incremented as the first power ramp-up count value.
  • the comparison process can be performed in the target configuration information according to the reference configuration information. If the reference configuration information is not the target configuration information, the second The second power ramp count value is incremented, and the second power ramp count value is used as the first power ramp count value
  • S703 Determine an indication parameter according to the first power ramp count value.
  • the indication parameter refers to a related power parameter when the terminal device sends the PRACH, and is used to characterize the power of the terminal device when sending the PRACH.
  • the indication parameter is determined according to the first power ramp count value, and the judgment condition can be set in advance.
  • the judgment condition is met, Incrementing the power ramping count value of the PRACH last sent by the terminal device to obtain the incremented power ramping count value as the first power ramping count value, and then according to the first power ramping count value, determine the terminal The relevant power parameters when the device sends PRACH, and use the obtained relevant power parameters when the terminal device sends PRACH as an indication parameter, where the incremental step size during incremental processing can be 1, or can also be set to an incremental value of other values Step size for incremental processing, there is no limit to this.
  • the indication parameter may be determined according to the first power ramping count value.
  • the second power ramping count value is incremented to obtain the first power ramping
  • the count value, the second power ramp count value is the power ramp count value related to the random access preamble sent by the terminal device on the PRACH last time.
  • the indication parameter is determined, so that it can be configured according to the reference Information and target configuration information determine the indication parameters, because the indication parameters are used to indicate the relevant power when the PRACH sends the random access preamble, so that the adaptive configuration of the relevant power can be realized, and the random access preamble is effectively guaranteed to be sent on the PRACH performance of the process.
  • S704 Send a random access preamble on the PRACH according to the indication parameter.
  • the random access preamble may be sent on the PRACH according to the indication parameter.
  • the random access preamble after sending the random access preamble on the PRACH according to the indication parameter, the random access preamble may be sent on the PRACH according to the power of the terminal device indicated by the indication parameter when sending the PRACH.
  • the PRACH is configured to be exempt from LBT during the process of sending the random access preamble
  • the PRACH sends the random access preamble
  • the random access preamble is sent by referring to the indication parameter, and at this time, it is not necessary to refer to The execution result of LBT.
  • the physical layer in the terminal device can perform LBT.
  • the PRACH when the PRACH sends the random access preamble, it is a reference indication parameter Complete the transmission of the random access preamble without referring to the execution result of LBT.
  • the execution result of LBT is used to trigger the failure process of LBT. If the PRACH is configured to exempt LBT during the process of sending the random access preamble, and refer to the If the information is not the target configuration information, the second power ramping count value is used as the first power ramping count value.
  • the execution result of the LBT can be obtained, and the execution result of the LBT can be reported to the upper layer of the terminal device. If the execution of the LBT fails, the failed execution result of the LBT can be uploaded. To the upper layer of the terminal device, the upper layer of the terminal device executes the failure handling process of the LBT.
  • the execution result of the LBT is only used to trigger the failure processing process of the LBT, and the execution result of the LBT may not be used as the process of sending the random access preamble on the PRACH. Reference to the process of entering the preamble.
  • the terminal device when the terminal device is configured to listen first and then talk, when the LBT fails to restore the configuration, when the PRACH sends the random access preamble, the LBT is executed, and when the execution of the LBT fails, the LBT failure processing process is executed, so that the PRACH In the process of sending the random access preamble, when it is configured to be exempt from LBT, it can effectively execute LBT failure processing, which can effectively avoid link abnormalities, thereby effectively maintaining the stability of the link.
  • the target configuration information reference The configuration information is checked to determine the first power ramping count value according to the target configuration information and the reference configuration information, so that the power count value for sending the random access preamble by the terminal device on the PRACH can be adaptively configured.
  • Fig. 8 is a schematic flowchart of a method for sending a physical random access channel PRACH proposed by another embodiment of the present disclosure.
  • the method for sending a physical random access channel PRACH includes: S801-S805.
  • the first power ramping count value determines the power parameter for sending the PRACH.
  • S802 Send the power parameter of the PRACH as an indication parameter.
  • the power parameter for sending the PRACH may be used as an indication parameter.
  • the random access preamble after sending the power parameter of the PRACH as the indication parameter, the random access preamble may be sent on the PRACH according to the indication parameter.
  • the power parameter for sending the PRACH is determined according to the first power ramp count value, and the power parameter for sending the PRACH is used as an indication parameter , so that the power parameter for sending the PRACH can be determined as an indication parameter according to the first power ramp count value, so as to realize the acquisition of the sending power when the PRACH sends the random access preamble, and ensure the process of sending the random access preamble on the PRACH. Effective execution.
  • the random access preamble after sending the power parameter of the PRACH as the indication parameter, if the LBT exemption is configured during the process of sending the random access preamble on the PRACH, the random access preamble can be sent on the PRACH according to the indication parameter, In this way, the random access preamble can be sent on the PRACH according to the corresponding power parameter in the indication parameter.
  • the process of sending the random access preamble on the PRACH can refer to the indication parameter instead of the execution result of the LBT, thereby effectively ensuring that the PRACH
  • the LBT exemption is configured in the process of sending the random access preamble, the process can be effectively and timely executed, and has a relatively reliable execution effect.
  • the LBT is executed in the physical layer of the terminal device.
  • the execution result of the LBT can be obtained, and the execution result of the LBT can be reported to the upper layer of the terminal device. If the execution of the LBT fails, the failed execution result of the LBT can be uploaded. To the upper layer of the terminal device, the upper layer of the terminal device executes the failure handling process of the LBT.
  • LBT fails to restore the configuration
  • the PRACH sends the random access preamble
  • LBT is executed
  • the failure processing process of LBT is executed
  • the PRACH is configured to be exempted from LBT during the process of sending the random access preamble
  • the LBT failure process can be effectively executed, which can effectively avoid link abnormalities, thereby effectively maintaining the stability of the link.
  • the power parameter for sending the PRACH is determined according to the first power ramp count value, and the power parameter for sending the PRACH is used as an indication parameter, so that the first power
  • the ramp count value determines the power parameter for sending the PRACH as an indication parameter, realizes the acquisition of the sending power when sending the random access preamble on the PRACH, and ensures the effective execution of the process of sending the random access preamble on the PRACH. It can also be realized that the random access preamble is sent on the PRACH according to the corresponding power parameter in the indication parameter.
  • the process of sending the random access preamble on the PRACH can refer to the indication parameter instead of the execution result of the LBT, thereby effectively ensuring that the PRACH
  • the process can be effectively and timely executed, and has a relatively reliable execution effect.
  • Fig. 9 is a schematic structural diagram of an apparatus for sending a physical random access channel (PRACH) proposed by an embodiment of the present disclosure.
  • PRACH physical random access channel
  • the device 80 for sending the physical random access channel PRACH includes:
  • the first execution unit 901 is configured to execute LBT when the PRACH sends a random access preamble when the terminal device is configured to listen before speaking and LBT fails to restore the configuration;
  • the second execution unit 902 is configured to execute a failure handling process of the LBT in the case of failure to execute the LBT.
  • FIG. 10 is a schematic structural diagram of an apparatus for sending a physical random access channel PRACH proposed in another embodiment of the present disclosure, and further includes:
  • the first sending unit 903 is configured to send the random access preamble on the PRACH according to the indication parameter in the case that LBT exemption is configured during the process of sending the random access preamble on the PRACH.
  • the second sending unit 904 is configured to send the random access preamble on the PRACH when no LBT exemption is configured during the process of sending the random access preamble on the PRACH and the execution of the LBT is successful.
  • the first determining unit 905 is configured to determine the indication parameter according to the first power ramping count value when the PRACH is configured to be exempt from LBT during the process of sending the random access preamble;
  • the second power ramping count value is incremented to obtain the first power ramping count value, and the second power ramping count value is the last power ramping count value of the terminal device.
  • the PRACH sends the power ramping count value related to the random access preamble.
  • the processing unit 906 is configured to use the second power ramping count value as the first power ramping count value when the reference configuration information is not the target configuration information.
  • the target configuration information includes any of the following:
  • the first determining unit 905 is specifically configured to:
  • the power parameter for sending the PRACH is used as an indication parameter.
  • the third execution unit 907 is configured to execute a random access resource selection process when the LBT failure indication is received.
  • the receiving unit 908 is configured to receive an instruction message for configuring a random access channel RACH or system broadcast sent by the base station;
  • the second determining unit 909 is configured to determine whether LBT exemption is configured during the process of sending the random access preamble on the PRACH according to the indication message.
  • the third determining unit 910 is configured to determine whether the cell accessed by the terminal device is configured to be exempt from LBT according to the indication message; or,
  • the fourth determining unit 911 is configured to determine that the cell accessed by the terminal device is configured to be exempt from LBT if the indication message is not received.
  • the fifth determining unit 912 is configured to determine the geographic location of the terminal device
  • the sixth determining unit 913 is configured to determine that LBT is configured to be exempted from the LBT during the process of sending the random access preamble on the PRACH when the geographic location belongs to the target location area, wherein the target location area is when the random access preamble is sent on the PRACH Location areas exempt from LBT during the coding process;
  • the seventh determining unit 914 is configured to determine that no exempt LBT is configured during the process of sending the random access preamble on the PRACH when the geographic location does not belong to the target location area.
  • the first execution unit 901 is specifically configured to:
  • LBT configuration information where the LBT configuration information is determined by the base station, or the LBT configuration information is determined by the terminal device;
  • the LBT configuration information includes: LBT type, and/or, LBT beam direction.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • An integrated unit may be stored in a processor-readable storage medium if it is realized in the form of a software function unit and sold or used as an independent product.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for enabling a computer device (which may be a personal computer, server, or network device, etc.) or a processor (processor) to execute all or part of the steps of the methods in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • LBT fails to restore the configuration
  • the PRACH sends a random access preamble
  • LBT is executed
  • the execution of LBT fails
  • the failure of LBT is executed
  • the processing process realizes that when the PRACH is configured to be exempt from the LBT in the process of sending the random access preamble, the LBT failure processing can be effectively performed, and the link abnormality can be effectively avoided, thereby effectively maintaining the stability of the link.
  • Fig. 11 is a schematic structural diagram of an apparatus for sending a physical random access channel (PRACH) proposed by another embodiment of the present disclosure.
  • PRACH physical random access channel
  • the device 110 for sending the physical random access channel PRACH includes a memory 1101, a transceiver 1102, a processor 1103 and a user interface 1104: the memory 1101 is used to store computer programs; the transceiver 1102 is used to operate on the processor Send and receive data under the control of 1103; processor 1103 is used to read the computer program in memory 1101 and perform the following operations:
  • the terminal device is configured to listen first and then talk after the LBT fails to restore the configuration, when the PRACH sends the random access preamble, execute the LBT;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1103 and various circuits of the memory represented by the memory 1101 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1102 may be a plurality of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 1104 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1103 is responsible for managing the bus architecture and general processing, and the memory 1101 can store data used by the processor 1103 when performing operations.
  • the processor 1103 can be a CPU (Central Processing Unit), ASIC (Application Specific Integrated Circuit, Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array, Field Programmable Gate Array) or CPLD (Complex Programmable Logic Device, complex programmable logic device), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device, complex programmable logic device
  • the processor can also adopt a multi-core architecture.
  • the processor is used to execute any method provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the processor 1103 is specifically configured to:
  • the random access preamble is sent on the PRACH according to the indication parameter.
  • the processor 1103 is specifically configured to:
  • the random access preamble is sent on the PRACH.
  • the processor 1103 is specifically configured to:
  • the PRACH is configured to be exempt from LBT during the process of sending the random access preamble, determine the indication parameter according to the first power ramping count value;
  • the second power ramping count value is incremented to obtain the first power ramping count value, and the second power ramping count value is the last power ramping count value of the terminal device.
  • the PRACH sends the power ramping count value related to the random access preamble.
  • the processor 1103 is specifically configured to:
  • the second power ramp-up count value is used as the first power ramp-up count value.
  • the target configuration information includes any of the following:
  • the processor 1103 is specifically configured to:
  • the power parameter for sending the PRACH is used as an indication parameter.
  • the processor 1103 is specifically configured to:
  • the processor 1103 is specifically configured to:
  • the indication message it is determined whether the PRACH is configured to be exempt from LBT during the process of sending the random access preamble.
  • the processor 1103 is specifically configured to:
  • the indication message determine whether the cell accessed by the terminal device is configured to be exempt from LBT; or,
  • the indication message is not received, it is determined that the cell accessed by the terminal device is configured to be exempt from LBT.
  • the processor 1103 is specifically configured to:
  • the geographic location belongs to the target location area
  • the PRACH is configured to be exempt from LBT during the process of sending the random access preamble
  • the target location area is the location area that is exempt from LBT during the process of sending the random access preamble on the PRACH ;
  • the geographic location does not belong to the target location area, it is determined that no LBT exemption is configured during the process of sending the random access preamble on the PRACH.
  • the processor 1103 is specifically configured to:
  • LBT configuration information where the LBT configuration information is determined by the base station, or the LBT configuration information is determined by the terminal device;
  • the LBT configuration information includes: LBT type, and/or, LBT beam direction.
  • the embodiments of the present disclosure provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute sending physical random access The method of entering the channel PRACH.
  • the processor-readable storage medium is a non-transitory processor-readable storage medium.
  • the embodiments of the present disclosure provide a computer program product, including a computer program.
  • the computer program is executed by a processor, the method for sending the physical random access channel PRACH as proposed in the foregoing embodiments of the present disclosure is implemented.
  • An embodiment of the present disclosure also proposes a computer program, wherein the computer program includes computer program code, and when the computer program code is run on the computer, the computer executes the method of sending the physical random access channel PRACH as proposed in the foregoing embodiments of the present disclosure. method.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.
  • various parts of the present disclosure may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提出一种发送物理随机接入信道PRACH的方法、装置及存储介质,该方法包括:在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程。

Description

发送物理随机接入信道PRACH的方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为202210126392.0、申请日为2022年2月10日和申请号为202210021895.1、申请日为2022年1月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及通信技术领域,具体涉及一种发送物理随机接入信道PRACH的方法、装置及存储介质。
背景技术
第五代移动通信技术(5th Generation Mobile Communication Technology,5G)在新空口(New Radio,NR)基站***的R16标准的非授权频谱操作中,遵从先听后说(listen before talk,LBT)规则,即基站/终端设备如果想发送信号,可以对信道进行侦听。
相关技术中,通常是在被配置为豁免执行LBT过程,发送物理随机接入信道(Physical Random Access Channel,PRACH)时,不执行LBT过程,直接进行物理随机接入信道的发送PRACH。
这种方式下,不能够有效地执行LBT失败处理,使得终端设备容易进入链路异常不可用的状态,影响链路的稳定性。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的目的在于提出一种发送物理随机接入信道PRACH的方法、装置、存储介质、计算机程序产品和计算机程序,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性。
本公开第一方面实施例提出了一种发送物理随机接入信道PRACH的方法,包括:在终端设备被配置先听后说LBT失败恢复配置的情况下,在所述PRACH发送随机接入前导码时,执行所述LBT;在执行所述LBT失败的情况下,执行所述LBT的失败处理过程。
本公开第一方面实施例提出的发送物理随机接入信道PRACH的方法,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性。
本公开第二方面实施例提出了一种发送物理随机接入信道PRACH的装置,包括:第一执行单元,用于在终端设备被配置先听后说LBT失败恢复配置的情况下,在所述PRACH发送随机接入前导码时,执行所述LBT;第二执行单元,用于在执行所述LBT失败的情况下,执行所述LBT的失败处理过程。
本公开第二方面实施例提出的发送物理随机接入信道PRACH的装置,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况 下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性。
本公开第三方面实施例提出了一种发送物理随机接入信道PRACH的装置,包括:存储器,收发机,处理器:存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:在终端设备被配置先听后说LBT失败恢复配置的情况下,在所述PRACH发送随机接入前导码时,执行所述LBT;在执行所述LBT失败的情况下,执行所述LBT的失败处理过程。
本公开第三方面实施例提出的发送物理随机接入信道PRACH的装置,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性。
本公开第四方面实施例提出了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开第一方面实施例提出的发送物理随机接入信道PRACH的方法。
本公开第四方面实施例提出的处理器可读存储介质,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性。
本公开第五方面实施例提出了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如本公开第一方面实施例提出的发送物理随机接入信道PRACH的方法。
本公开第六方面实施例提出了一种计算机程序,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如本公开第一方面实施例提出的发送物理随机接入信道PRACH的方法。
本公开第五方面和第六方面实施例提出的计算机程序产品和计算机程序,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图;
图2是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图;
图3是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图;
图4是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图;
图5是本公开实施例中的LBT失败处理流程示意图;
图6是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图;
图7是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图;
图8是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图;
图9是本公开一实施例提出的发送物理随机接入信道PRACH的装置结构示意图;
图10是本公开另一实施例提出的发送物理随机接入信道PRACH的装置结构示意图;
图11是本公开另一实施例提出的发送物理随机接入信道PRACH的装置结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其他量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开正是为了解决相关技术中存在的不能够有效地执行LBT失败处理,使得终端设备容易进入链路异常不可用的状态,影响链路的稳定性的技术问题,提供了一种发送物理随机接入信道PRACH的方法,通过在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,执行LBT,在执行LBT失败时,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性。
本公开实施例提供的技术方案可以适用于多种***,尤其是5G***。例如适用的***可以是全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)***、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)***、高级长期演进(long term evolution advanced,LTE-A)***、通用移动***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)***、5G新空口(New Radio,NR)***等。这多种***中均包括终端设备和网络设备。***中还可以包括核心网部分,例如演进的分组***(Evloved Packet System,EPS)、5G***(5GS)等。
图1是本公开一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图。
其中,需要说明的是,本实施例的发送物理随机接入信道PRACH的方法的执行主体为发送物理随机接入信道PRACH的装置,该装置可以由软件和/或硬件的方式实现,该装置可以配置在终端设备中。在一些实施例中,终端设备是指可以用于对数字信号进行转送和接收的通信设备,终端设备可以通过信道向网络设备发送信号。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的***中,终端设备的名称可能 也不相同。
例如在5G***中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为***、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。
例如,本公开实施例涉及的网络设备可以是全球移动通信***(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)***中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
如图1所示,该发送物理随机接入信道PRACH的方法,包括:S101-S102。
S101:在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT。
在一些实施例中,物理随机接入信道(Physical Random Access Channel,PRACH)是指终端设备(例如用户设备UE)发起呼叫时的接入信道,可以与接入信道(Random Access Channel,RACH)形成映射,用于传输RACH,也即是说,可以用于承载来自RACH的传输信号。
在一些实施例中,随机接入前导码是UE在物理随机接入信道PRACH中发送的实际内容,由信号序列组成,在PRACH发送随机接入前导码的过程,即可以被称为发送物理随机接入信道PRACH的过程。
在一些实施例中,先听后说(listen before talk,LBT)规则,是指如果要在信道上发送信号,可以对信道进行侦听,如果信道显示空闲,则可以在信道上发送信号,如果信道失败,也即是说信道繁忙,则发送相关的信号时可能导致失败。
在一些实施例中,执行LBT是指对信道进行侦听,LBT执行成功是指信道状态空闲,可以触发在PRACH上发送随机接入前导码,LBT执行失败是指信道状态繁忙,此时指示若在PRACH上发送随机接入前导码,则可能导致发送失败。
在一些实施例中,先听后说LBT失败恢复配置是指在执行LBT失败后,针对多次执行LBT失败后设置的处理策略,该LBT失败恢复配置可以设置为以LBT的执行结果作为判断条件,并根据判断条件,指示终端设备切换激活的上行子集带宽(Bandwidth Part,BWP),也即是说,切换在PRACH发送随机接入前导码的BWP,停止正在进行的RACH过程,重新发起随机接入信道RACH的过程,该重新发起RACH的过程可以由终端设备中的高层处理实现,完成对于RACH过程的参数初始化等处理操作。
本公开实施例中,可以在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,以对信道进行侦听,以得到LBT的执行结果,若LBT执行成功,指示信道状态空闲,可以触发在PRACH上发送随机接入前导码,LBT执行失败,指示信道状态繁忙,此时,若在PRACH上发送随机接入前导码的过程中被配置为豁免先听后说LBT,也即是说在PRACH上发送随机接入前导码的过程中不执行先听后说LBT,则终端仍可以在PRACH上发送随机接入前导码,但有可能导致RACH过程失败。
另一些实施例中,若在PRACH发送随机接入前导码的过程中被配置为豁免先听后说LBT,且终端设备被配置先听后说LBT失败恢复配置,则针对在PRACH发送随机接入前导码的过程,可以先执行LBT,而后执行在PRACH发送随机接入前导码的过程,或者也可以先执行在PRACH发送随机接入前导码的过程,而后执行LBT,对此不做限制。
S102:在执行LBT失败的情况下,执行LBT的失败处理过程。
在一些实施例中,执行LBT失败是指信道为繁忙状态,当在PRACH上发送随机接入前导码时,可能导致发送失败。
在一些实施例中,LBT的失败处理过程是指信道执行LBT失败之后,针对在PRACH发送随机接入前导码的过程的失败处理策略,该LBT的失败处理过程可以例如包括执行随机接入资源选择过程,或者,也可以是其他任意可能的失败处理策略,对此不做限制。
本公开实施例中,在终端设备被配置先听后说LBT失败恢复配置的情况下,并在PRACH发送随机接入前导码时,执行LBT之后,可以对LBT的执行结果进行获取,其中,LBT执行结果可以为成功或者失败,LBT执行成功是指信道状态空闲,可以触发在PRACH上发送随机接入前导码,LBT执行失败是指信道状态繁忙,此时指示若在PRACH上发送随机接入前导码,则可能导致发送失败。
本公开实施例中,若接收到LBT执行失败的指示结果,则表明执行LBT失败,则可以执行LBT的失败处理过程,可以执行随机接入资源选择过程,其中随机接入资源选择过程的执行可以满足一定的执行条件,该执行条件包括接收到终端设备中的物理层上报的LBT失败指示(该LBT失败指示用于指示执行LBT失败),在PRACH发送随机接入前导码的过程中未被配置豁免先听后说LBT,以及配置了LBT失败恢复配置,若满足随机接入资源选择过程的执行条件,则可以执行随机接入资源选择过程,再次尝试在PRACH发送随机接入前导码。
本实施例中,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异 常,从而有效地维护链路的稳定性。
图2是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图。
如图2所示,该发送物理随机接入信道PRACH的方法,包括:S201-S203。
S201:在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT。
在一些实施例中,物理随机接入信道(Physical Random Access Channel,PRACH)是指终端设备(例如用户设备UE)发起呼叫时的接入信道,可以与接入信道(Random Access Channel,RACH)形成映射,用于传输RACH,也即是说,可以用于承载来自RACH的传输信号。
在一些实施例中,随机接入前导码是UE在物理随机接入信道PRACH中发送的实际内容,由信号序列组成,在PRACH发送随机接入前导码的过程,即可以被称为发送物理随机接入信道PRACH的过程。
在一些实施例中,先听后说(listen before talk,LBT)规则,是指如果要在信道上发送信号,则可以对信道进行侦听,如果信道显示空闲,则可以在信道上发送信号,如果信道失败,也即是说信道繁忙,则可能导致发送失败。
在一些实施例中,执行LBT是指对信道进行侦听,LBT执行成功是指信道状态空闲,可以触发在PRACH上发送随机接入前导码,LBT执行失败是指信道状态繁忙,此时指示若在PRACH上发送随机接入前导码,则可能导致发送失败。
在一些实施例中,先听后说LBT失败恢复配置是指在执行LBT失败后,针对多次执行LBT失败后设置的处理策略,该LBT失败恢复配置可以设置为以LBT的执行结果作为判断条件,并根据判断条件,指示终端设备切换激活的上行子集带宽(Bandwidth Part,BWP),也即是说,切换在PRACH发送随机接入前导码的BWP,停止正在进行的RACH过程,重新发起随机接入信道RACH的过程,该重新发起RACH的过程可以由终端设备中的高层处理实现,完成对于RACH过程的参数初始化等处理操作。
本公开实施例中,可以在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,以对信道进行侦听,以得到LBT的执行结果,若LBT执行成功,指示信道状态空闲,可以触发在PRACH上发送随机接入前导码,LBT执行失败,指示信道状态繁忙,此时,若在PRACH上发送随机接入前导码的过程中被配置为豁免先听后说LBT,也即是说在PRACH上发送随机接入前导码的过程不执行先听后说LBT,则终端仍可以在PRACH上发送随机接入前导码,但有可能导致RACH过程失败。
另一些实施例中,若在PRACH发送随机接入前导码的过程中被配置为豁免先听后说LBT,且终端设备被配置先听后说LBT失败恢复配置,则针对在PRACH发送随机接入前导码的过程,可以先执行LBT,而后执行在PRACH发送随机接入前导码的过程,或者也可以先执行在PRACH发送随机接入前导码的过程,而后执行LBT,对此不做限制。
S202:在执行LBT失败的情况下,执行LBT的失败处理过程。
在一些实施例中,执行LBT失败是指信道为繁忙状态,当在PRACH上发送随机接入前导码时,可能导致发送失败。
在一些实施例中,LBT的失败处理过程是指信道执行LBT失败之后,针对在PRACH发送随机接入前导码的过程的失败处理策略,该LBT的失败处理过程可以例如包括执行随机接入资源选择过程,或者,也可以是其他任意可能的失败处理策略,对此不做限制。
本公开实施例中,在终端设备被配置先听后说LBT失败恢复配置的情况下,并在PRACH发送随机接入前导码时,执行LBT之后,可以对LBT的执行结果进行获取,其中,LBT执行结果可以为成功或者失败,LBT执行成功是指信道状态空闲,可以触发PRACH上发送随机接入前导码,LBT执行失败是指信道状态繁忙,此时指示若在PRACH上发送随机接入前导码,则可能导致发送失败。
本公开实施例中,若接收到LBT执行失败的指示结果,则表明执行LBT失败,则可以执行LBT的失败处理过程,可以执行随机接入资源选择过程,其中随机接入资源选择过程的执行可以满足一定的执行条件,该执行条件包括接收到终端设备中的物理层上报的LBT失败指示(该LBT失败指示用于指示执行LBT失败),在PRACH发送随机接入前导码的过程中未被配置豁免先听后说LBT,以及配置了LBT失败恢复配置,如果满足随机接入资源选择过程的执行条件,则可以执行随机接入资源选择过程,再次尝试在PRACH发送随机接入前导码。
S203:在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且执行LBT成功的情况下,在PRACH发送随机接入前导码。
在一些实施例中,豁免LBT是指当终端设备发送的是短控制信令时,可免于执行LBT规则直接发送,其中,短控制信令的特征是:在一定的发送周期内(例如该发送周期可以为100ms)占空比小于10%,即发送的时间小于10ms,在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT,是指在PRACH发送随机接入前导码的过程中被配置为无需执行LBT过程,即在PRACH发送随机接入前导码的过程中被配置为无需对物理随机接入信道的空闲或者繁忙状态进行侦听,直接在PRACH中发送随机接入前导码。
本公开实施例中,在PRACH发送随机接入前导码的过程中未被配置豁免LBT,是指在PRACH发送随机接入前导码时,需要执行LBT对信道进行侦听。
本公开实施例中,在PRACH发送随机接入前导码的过程中是否被配置为豁免先听后说LBT可以由LBT豁免指示确定,其中,LBT豁免指示可以由基站发出,基站通过发送广播消息或者无线资源控制(Radio Resource Control,RRC)消息,在配置RACH资源时,利用LBT豁免指示对终端设备发送PRACH时是否豁免LBT进行指示配置。
本公开实施例中,若终端设备未接收到基站发出的LBT豁免指示,也即是说,在PRACH发送随机接入前导码的过程中未被配置豁免先听后说LBT,则执行LBT规则,以对待发送的信道进行信道侦听,用于确定待发送的信道为空闲或者繁忙状态,以得到LBT的执行结果,若LBT执行成功,则在PRACH发送随机接入前导码。
本公开实施例中,LBT是在终端设备中的物理层执行,而后物理层可以将LBT的执行结果上报至终端设备中的高层,其中,该高层为终端设备中的媒体访问控制(Medium Access Control,MAC)层,高层接收到LBT的执行结果之后可以触发后续的处理逻辑。
本公开实施例中,在终端设备执行LBT之前,可以确定LBT的执行参数,该LBT的执行参数可以为LBT类型以及LBT波束方向(该LBT波束方向可以为全向或者定向)。
本公开实施例中,LBT类型可以为type-1类型或者type-2类型,其中,LBT的type-1类型也称为LBT CAT3,type-1类型发送节点固定竞争窗口的随机退避,竞争窗口长是固定的,例如竞争窗口(Contending Windows,CW)可以为整数(例如CW可以为3),type-1类型在执行LBT之前,可以从0到CW之间产生一个随机数N,而后进行N个时隙长度的空闲信道侦听,LBT的type-2类型也称为LBT CAT2,type-2 类型在发送节点进行一个固定时长的空闲信道检测,也即是说,在发送之前,可以做一个固定时长为13μs的空闲信道侦听过程,该固定时长包括2个能量检测时隙,当两个检测时隙检测结果都为空闲时,则认为LBT CAT2的执行结果状态为空闲。
本公开实施例中,若在PRACH发送随机接入前导码的过程中未被配置豁免LBT,若LBT执行成功,则可以在PRACH发送随机接入前导码,在终端设备中的物理层执行LBT之后,终端设备中的高层可以接收到LBT的执行结果。
本实施例中,通过在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且执行LBT成功的情况下,在PRACH发送随机接入前导码,从而可以在PRACH发送随机接入前导码的过程中未被配置豁免LBT时,执行LBT以对信道进行侦听,在执行LBT成功时,在PRACH发送随机接入前导码,能够有效地保障在PRACH发送随机接入前导码的过程的执行连贯性,有效地保障在PRACH发送随机接入前导码的发送成功率。
本实施例中,通过在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT的情况下,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性,通过在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且执行LBT成功的情况下,在PRACH发送随机接入前导码,从而可以在PRACH发送随机接入前导码的过程中未被配置豁免LBT时,执行LBT以对信道进行侦听,在执行LBT成功时,在PRACH发送随机接入前导码,能够有效地保障在PRACH发送随机接入前导码的过程的执行连贯性,有效地保障在PRACH发送随机接入前导码的发送成功率。
图3是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图。
如图3所示,该发送物理随机接入信道PRACH的方法,包括:S301-S302。
S301:在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且执行LBT成功的情况下,在PRACH发送随机接入前导码。
在一些实施例中,豁免LBT是指当终端设备发送的是短控制信令时,可免于执行LBT规则直接发送,其中,短控制信令的特征是:在一定的发送周期内(例如该发送周期可以为100ms)占空比小于10%,即发送的时间小于10ms,在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT,是指在PRACH发送随机接入前导码的过程中被配置为无需执行LBT过程,即在PRACH发送随机接入前导码的过程中被配置为无需对物理随机接入信道的空闲或者繁忙状态进行侦听,直接在PRACH中发送随机接入前导码。
本公开实施例中,在PRACH发送随机接入前导码的过程中未被配置豁免LBT,是指在PRACH发送随机接入前导码时,需要执行LBT对信道进行侦听。
本公开实施例中,在PRACH发送随机接入前导码的过程中是否被配置为豁免先听后说LBT可以由LBT豁免指示确定,其中,LBT豁免指示可以由基站发出,基站通过发送广播消息或者无线资源控制(Radio Resource Control,RRC)消息,在配置RACH资源时,利用LBT豁免指示对终端设备发送PRACH时是否豁免LBT进行指示配置。
本公开实施例中,若终端设备未接收到基站发出的LBT豁免指示,也即是说,在PRACH发送随机接入前导码的过程中未被配置豁免先听后说LBT,则执行LBT规则,以对待发送的信道进行信道侦听, 用于确定待发送的信道为空闲或者繁忙状态,以得到LBT的执行结果,若LBT执行成功,则在PRACH发送随机接入前导码。
本公开实施例中,LBT是在终端设备中的物理层执行,而后物理层可以将LBT的执行结果上报至终端设备中的高层,其中,该高层为终端设备中的媒体访问控制(Medium Access Control,MAC)层,高层接收到LBT的执行结果之后可以触发后续的处理逻辑。
本公开实施例中,在终端设备执行LBT之前,可以确定LBT的执行参数,该LBT的执行参数可以为LBT类型以及LBT波束方向(该LBT波束方向可以为全向或者定向)。
本公开实施例中,LBT类型可以为type-1类型或者type-2类型,其中,LBT的type-1类型也称为LBT CAT3,type-1类型发送节点固定竞争窗口的随机退避,竞争窗口长是固定的,例如竞争窗口(Contending Windows,CW)可以为整数(例如CW可以为3),type-1类型在执行LBT之前,可以从0到CW之间产生一个随机数N,而后进行N个时隙长度的空闲信道侦听,LBT的type-2类型也称为LBT CAT2,type-2类型在发送节点进行一个固定时长的空闲信道检测,也即是说,在发送之前,可以做一个固定时长为13μs的空闲信道侦听过程,该固定时长包括2个能量检测时隙,当两个检测时隙检测结果都为空闲时,则认为LBT CAT2的执行结果状态为空闲。
本公开实施例中,可以在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且LBT执行成功的情况下,可以在PRACH发送随机接入前导码,在终端设备中的物理层执行LBT之后,终端设备中的高层可以接收到LBT的执行结果。
S302:在接收到LBT失败指示的情况下,执行随机接入资源选择过程。
在一些实施例中,LBT失败指示是指用于表征LBT执行失败的结果指示,用于指示执行LBT失败,LBT失败指示可以由终端设备的高层接收。
在一些实施例中,随机接入资源选择过程是指切换至一个新的上行信道尝试在PRACH发送随机接入前导码。
本公开实施例中,若在PRACH发送随机接入前导码的过程中未被配置豁免LBT,则可以在终端设备的物理层执行LBT,以得到LBT的执行结果,并将LBT的执行结果转换为LBT执行指示上报至终端设备的高层,若LBT执行失败,则将LBT失败指示上报至终端设备的高层,终端设备的高层接收到LBT失败指示之后,若终端设备被配置LBT失败恢复配置,则执行随机接入资源选择过程,进行RACH过程的再次尝试。
本公开实施例中,在执行随机接入资源选择过程时,可以进行随机接入信道RACH过程,由用户设备UE在物理随机接入信道PRACH上向基站发送随机接入前导码,基站在收到随机接入前导后,在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)发送随机接入响应(Random Access Response,RAR),而后UE可以根据上行调度信息,在上行物理共享信道(Physical Uplink Shared Channel,PUSCH)发送小区无线网络临时标识等信息,进行无线资源控制(Radio Resource Control,RRC)连接,基站向UE发送竞争解决,确定UE是否与基站成功建立连接。
本实施例中,通过在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且接收到LBT失败指示时,执行随机接入资源选择过程,从而在接收到LBT失败指示之后,利用随机接入资源选择过程切换链路执行在PRACH发送随机接入前导码的过程,实现在LBT执行失败时发送PRACH的过程可以重新尝试执行。
本实施例中,通过在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且执行LBT成功时,在PRACH发送随机接入前导码,从而可以在PRACH发送随机接入前导码的过程中未被配置豁免LBT时,执行LBT以对信道进行侦听,在执行LBT成功时,在PRACH发送随机接入前导码,能够有效地保障在PRACH发送随机接入前导码的过程的执行连贯性,有效地保障在PRACH发送随机接入前导码的发送成功率,通过在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且接收到LBT失败指示时,执行随机接入资源选择过程,从而在接收到LBT失败指示之后,利用随机接入资源选择过程切换链路执行在PRACH发送随机接入前导码的过程,实现在LBT执行失败时发送PRACH的过程可以重新尝试执行。
图4是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图。
如图4所示,该发送物理随机接入信道PRACH的方法,包括:S401-S403。
S401:在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,确定LBT配置信息,其中,LBT配置信息由基站确定,或者LBT配置信息由终端设备确定。
在一些实施例中,LBT配置信息是指在执行LBT之前可以确定的参数信息,该LBT配置信息可以为LBT的类型信息以及LBT的波束方向信息,LBT配置信息可以由基站确定,或者LBT配置信息可以由终端设备确定。
本公开实施例中,在由基站确定LBT配置信息时,可以由基站进行LBT的类型信息以及波束方向信息的配置,LBT类型可以为type-1类型或者type-2类型,LBT的波束方向信息可以为全向波束方向或者定向波束方向,在由基站确定LBT配置信息时,可以由基站进行LBT的类型信息以及波束方向信息的配置,可以设置LBT类型为type-1类型或者type-2类型,设置LBT的波束方向信息为全向波束方向或者定向波束方向,以得到LBT配置信息。
举例而言,基站可以如下配置LBT配置信息:
RACH配置信息RACH-ConfigCommon
{
   LBT_type_Msg1  ENUMERATED{type-1,type-2}
}。
其中,LBT_type_Msg1用于指示终端设备发送PRACH,NUMERATED表示枚举,LBT的类型分为type-1类型或者type-2类型,当NUMERATED指示为type-1类型时,终端设备在发送PRACH时,执行type-1类型的LBT,当NUMERATED指示为type-2时,终端设备在发送PRACH时,执行type-2类型的LBT。
另一些实施例中,在对LBT配置信息中的LBT类型信息进行配置时,也可以只指示一种类型,当配置了LBT_type_Msg1时,终端设备按照type-1类型的LBT来执行,没有配置时,终端设备按照type-2类型的LBT来执行,或者配置了LBT_type_Msg2时,终端设备按照type-2类型的LBT来执行,没有配置时,终端设备按照type-1类型的LBT来执行。
另一些实施例中,还可以由终端设备进行LBT的类型信息的配置以及LBT波束方向信息的配置,由终端设备自行确定LBT配置信息的设置,并将设置好的信息作为LBT配置信息。
S402:根据LBT配置信息,执行LBT。
本公开实施例在上述由基站确定LBT配置信息或者由终端设备确定LBT配置信息之后,可以根据 LBT配置信息来执行LBT。
本公开实施例中,在根据LBT配置信息,执行LBT时,可以根据LBT配置信息中的LBT类型信息和LBT波束方向信息,执行相应的类型以及波束方向的LBT。
一些实施例中,LBT配置信息包括:LBT类型,和/或,LBT波束方向,从而可以根据LBT配置信息中的LBT类型以及LBT波束方向对执行的LBT进行配置,从而可以实现对信道进行侦听时执行的LBT的适应性配置,有效提升信道侦听效果。
在一些实施例中,LBT波束方向可以为全向波束方向或者可以为定向波束方向。
本公开实施例中,LBT类型可以为type-1类型或者type-2类型,其中,LBT的type-1类型也称为LBT CAT3,type-1类型发送节点固定竞争窗口的随机退避,竞争窗口长是固定的,例如竞争窗口可以为整数(例如,竞争窗口(Contending Windows,CW)可以为3),type-1类型在执行LBT之前,可以从0到CW之间产生一个随机数N,而后进行N个时隙长度的空闲信道侦听,LBT的type-2类型也称为LBT CAT2,type-2类型在发送节点进行一个固定时长的空闲信道检测,也即是说,在发送之前,可以做一个固定时长为13μs的空闲信道侦听过程,该固定时长包括2个能量检测时隙,当两个检测时隙检测结果都为空闲时,则认为LBT CAT2的执行结果状态为空闲。
本公开实施例中,在根据LBT配置信息,执行LBT时,可以根据LBT配置信息中的LBT类型和LBT波束方向,调用并执行相应类型以及相应波束方向的LBT。
本实施例中,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,确定LBT配置信息,其中,LBT配置信息由基站确定,或者LBT配置信息由终端设备确定,根据LBT配置信息,执行LBT,从而可以根据LBT配置信息执行相应类型的LBT对信道进行侦听,由于LBT配置信息可以由基站或者由终端设备确定,则可以实现对LBT配置信息的适应性配置,提升对信道进行侦听处理的侦听效果。
S403:在执行LBT失败的情况下,执行LBT的失败处理过程。
在一些实施例中,执行LBT失败是指信道状态繁忙,此时指示若在PRACH上发送随机接入前导码,则可能导致发送失败。
在一些实施例中,LBT的失败处理过程是指信道执行LBT失败之后,针对在PRACH发送随机接入前导码的过程的失败处理策略,该LBT的失败处理过程可以例如包括执行随机接入资源选择过程,或者该LBT的失败处理过程也可以为其他类型的失败处理策略,对此不做限制。
本公开实施例中,在终端设备被配置先听后说LBT失败恢复配置的情况下,并在PRACH发送随机接入前导码时,并执行LBT之后,可以对LBT的执行结果进行获取,其中,LBT执行结果可以为成功或者失败,LBT执行成功是指信道状态空闲,可以在PRACH上发送随机接入前导码,LBT执行失败,是指信道状态繁忙,此时指示若在PRACH上发送随机接入前导码,则可能导致发送失败。
本公开实施例中,若接收到LBT执行失败的指示结果,则表明执行LBT失败,则可以执行LBT的失败处理过程,可以执行随机接入资源选择过程,其中随机接入资源选择过程的执行可以满足一定的执行条件,该执行条件包括接收到终端设备中的物理层上报的LBT失败指示(该LBT失败指示用于指示执行LBT失败),在PRACH发送随机接入前导码的过程中未被配置豁免先听后说LBT,以及配置了LBT失败恢复配置,如果满足随机接入资源选择过程的执行条件,则可以执行随机接入资源选择过程,切换至一个新的上行信道尝试在PRACH发送随机接入前导码。
举例而言,如图5所示,图5是本公开实施例中的LBT失败处理流程示意图,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,则在终端设备中的物理层执行LBT,并将LBT的执行结果上报至高层,若执行LBT失败,则执行LBT的失败处理过程。
本实施例中,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性,根据LBT配置信息中的LBT类型以及LBT波束方向对执行的LBT进行配置,从而可以实现对信道进行侦听时执行的LBT的适应性配置,保证对信道的侦听效果,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,确定LBT配置信息,其中,LBT配置信息由基站确定,或者LBT配置信息由终端设备确定,根据LBT配置信息,执行LBT,从而可以根据LBT配置信息执行相应类型的LBT对信道进行侦听,由于LBT配置信息可以由基站或者由终端设备确定,则可以实现对LBT配置信息的适应性配置,提升对信道进行侦听处理的侦听效果。
图6是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图。
如图6所示,该发送物理随机接入信道PRACH的方法,包括:S601-S605。
S601:接收基站发送的配置随机接入信道RACH或者***广播的指示消息。
在一些实施例中,随机接入信道RACH的指示消息用于确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT,该配置随机接入信道RACH的指示消息可以由基站配置并发送,或者基站可以发送其他***广播的指示消息,由终端设备接收基站发送的配置随机接入信道RACH或者***广播的指示消息。
本公开实施例中,在接收基站发送的配置随机接入信道RACH的或者***广播指示消息时,可以预先在发送物理随机接入信道PRACH的装置上配置数据传输接口,当基站配置随机接入信道RACH指示消息后,基站可以通过广播消息或者RRC消息发送该指示消息,或者基站可以发送其他***广播的指示消息,而后发送物理随机接入信道PRACH的装置可以经由该数据传输接口接收基站发送的配置随机接入信道RACH的指示消息。
S602:根据指示消息,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT。
本公开实施例中,在终端设备接收到基站发送的配置随机接入信道RACH资源或者***广播的指示消息之后,可以对接收到的指示消息进行分析处理,检测指示消息中是否配置包含用于确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT的目标字段。
举例而言,基站可以如下配置指示消息:
RACH配置信息RACH-ConfigCommon
{
   LBT_exempt_Msg1  ENUMERATED{TRUE,FALSE}
}。
其中,LBT_exempt_Msg1为用于指示在PRACH发送随机接入前导码的过程中是否被配置豁免LBT指示消息中的目标字段,ENUMERATED表示枚举,分为TRUE和FALSE,当ENUMERATED指示为TRUE时,终端设备可以视作发送PRACH时被配置豁免LBT,也即是说,不触发执行LBT,可以直接 在PRACH发送随机接入前导码,当ENUMERATED表示为FALSE时,终端设备可以视作发送PRACH时未被配置豁免LBT,也即是说,可以触发执行LBT,且只有当LBT执行成功时,才能在PRACH发送随机接入前导码。
本公开实施例中,在接收到基站发送的配置随机接入信道RACH或者***广播的指示消息,并确定是否配置指示消息中的目标字段时,若检测到配置指示消息中的目标字段,则确定在PRACH发送随机接入前导码的过程中被配置豁免LBT,而后可以执行LBT,若未检测到配置指示消息中的目标字段,则确定在PRACH发送随机接入前导码的过程中未被配置豁免LBT,而后可以执行LBT。
本实施例中,通过接收基站发送的配置随机接入信道RACH的或者***广播指示消息,根据指示消息,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT,实现根据基站发送的指示消息确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT,能够有效提升是否被配置豁免LBT的确定准确性和确定及时性,实现根据指示消息及时地触发后续相应的处理逻辑,有效避免了链路异常。
一些实施例中,根据指示消息,确定终端设备所接入小区是否被配置豁免LBT,或,在未接收到指示消息的情况下,确定终端设备所接入小区被配置豁免LBT,从而可以根据指示消息对终端设备所接入的小区是否被配置豁免LBT进行判断,也即是说对终端设备所接入小区的模式进行判断,实现将LBT模式和发送RACH信息配置豁免LBT的指示消息进行结合,从而有效减少指示信息的开销。
本公开实施例中,在基站发送配置随机接入信道RACH或者***广播的指示消息时,可以对终端设备所接入小区是否被配置豁免LBT进行指示,也即是说,对终端设备所接入小区的模式进行指示,该终端设备所接入小区的模式分为LBT模式和NO-LBT模式,其中,LBT模式是指在信道上发送数据或者信号时(该信道包括PRACH和其它任何信道/信号信息),执行LBT过程,NO-LBT模式是指在信道上发送数据或者信号时,不执行LBT过程。
本公开实施例中,在基站配置随机接入信道RACH的指示消息以指示终端设备所接入小区的模式时,可以利用1比特的指示信息用于表示LBT模式或NO-LBT模式。
举例而言,基站可以如下配置指示消息:
LBT-modeAndMsg1_exempt ENUMERATED{TRUE,FALSE};
其中,ENUMERATED表示枚举,分为TRUE和FALSE,当LBT-modeAndMsg1_exempt指示为TRUE时,终端设备可以视作发送PRACH时被配置豁免LBT,终端设备所接入小区处于LBT模式,当LBT-modeAndMsg1_exempt指示为FALSE时,终端设备可以视作发送PRACH时未被配置豁免LBT,终端设备所接入小区处于LBT模式;当LBT-modeAndMsg1_exempt没有被基站配置或者指示时,也即是说,终端设备在未接收到指示消息的情况下,确定终端设备所接入小区处于NO-LBT模式,终端设备所接入小区被配置豁免LBT。
另一些实施例中,基站可以发送其他***广播消息用于确定终端设备所接入小区是否被配置豁免LBT,可以在其他***广播的指示消息中对终端设备所接入小区是否被配置豁免LBT进行指示,终端设备接收到基站发送的配置随机接入信道RACH或者***广播的指示消息之后,可以根据指示消息,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT。
一些实施例中,在确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT时,确定终端设备的地理位置,在地理位置属于目标位置区域的情况下,确定在PRACH发送随机接入前导码的过程中被配置豁免LBT,其中,目标位置区域,是在PRACH发送随机接入前导码的过程中豁免LBT的位置区 域,在地理位置不属于目标位置区域的情况下,确定在PRACH发送随机接入前导码的过程中未配置豁免LBT,从而可以实现由终端设备结合自身地理位置,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT,实现对在PRACH发送随机接入前导码的过程中是否被配置豁免LBT的灵活确定。
在一些实施例中,目标位置区域是指在PRACH发送随机接入前导码的过程中被配置为豁免LBT的终端设备所在的位置区域。
本公开实施例中,在确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT时,可以首先通过定位处理,以获取终端设备的地理位置,而后可以在目标位置区域内对终端设备所在的地理位置进行检索,若终端设备所在的地理位置属于目标位置区域,则确定在PRACH发送随机接入前导码的过程中被配置豁免LBT,若终端设备所在的地理位置不属于目标位置区域,则确定在PRACH发送随机接入前导码的过程未配置豁免LBT。
S603:执行LBT。
本公开实施例中,在根据指示消息,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT之后,可以执行LBT对信道进行侦听。
S604:在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且执行LBT成功的情况下,在PRACH发送随机接入前导码。
在一些实施例中,豁免LBT是指当终端设备发送的是短控制信令时,可免于执行LBT规则直接发送,其中,短控制信令的特征是:在一定的发送周期内(例如该发送周期可以为100ms)占空比小于10%,即发送的时间小于10ms,在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT,是指在PRACH发送随机接入前导码的过程中被配置为无需执行LBT过程,即在PRACH发送随机接入前导码的过程中被配置为无需对物理随机接入信道的空闲或者繁忙状态进行侦听,直接在PRACH中发送随机接入前导码。
本公开实施例中,在PRACH发送随机接入前导码的过程中未被配置豁免LBT,是指在PRACH发送随机接入前导码时,需要执行LBT对信道进行侦听。
本公开实施例中,在PRACH发送随机接入前导码的过程中是否被配置为豁免先听后说LBT可以由LBT豁免指示确定,其中,LBT豁免指示可以由基站发出,基站通过发送广播消息或者无线资源控制(Radio Resource Control,RRC)消息,在配置RACH资源时,利用LBT豁免指示对终端设备发送PRACH时是否豁免LBT进行指示配置。
本公开实施例中,终端设备未接收到基站发出的LBT豁免指示,也即是说,在PRACH发送随机接入前导码的过程中未被配置豁免先听后说LBT,则执行LBT规则,以对待发送的信道进行信道侦听,用于确定待发送的信道为空闲或者繁忙状态,以得到LBT的执行结果,若LBT执行成功,则在PRACH发送随机接入前导码。
本公开实施例中,LBT是在终端设备中的物理层执行,而后物理层可以将LBT的执行结果上报至终端设备中的高层,其中,该高层为终端设备中的媒体访问控制(Medium Access Control,MAC)层,高层接收到LBT的执行结果之后可以触发后续的处理逻辑。
本公开实施例中,在终端设备执行LBT之前,可以确定LBT的执行参数,该LBT的执行参数可以为LBT类型以及LBT波束方向(该LBT波束方向可以为全向或者定向)。
本公开实施例中,LBT类型可以为type-1类型或者type-2类型,其中,LBT的type-1类型也称为LBT  CAT3,type-1类型发送节点固定竞争窗口的随机退避,竞争窗口长是固定的,例如竞争窗口(Contending Windows,CW)可以为整数(例如CW可以为3),type-1类型在执行LBT之前,可以从0到CW之间产生一个随机数N,而后进行N个时隙长度的空闲信道侦听,LBT的type-2类型也称为LBT CAT2,type-2类型在发送节点进行一个固定时长的空闲信道检测,也即是说,在发送之前,可以做一个固定时长为13μs的空闲信道侦听过程,该固定时长包括2个能量检测时隙,当两个检测时隙检测结果都为空闲时,则认为LBT CAT2的执行结果状态为空闲。
本公开实施例中,若在PRACH发送随机接入前导码的过程中未被配置豁免LBT,若LBT执行成功,则可以在PRACH发送随机接入前导码,在终端设备中的物理层执行LBT之后,终端设备中的高层可以接收到LBT的执行结果。
S605:在执行LBT失败的情况下,执行LBT的失败处理过程。
在一些实施例中,执行LBT失败是指信道为繁忙状态,当在PRACH上发送随机接入前导码时,可能导致发送失败。
在一些实施例中,LBT的失败处理过程是指信道执行LBT失败之后,针对在PRACH发送随机接入前导码的过程的失败处理策略,该LBT的失败处理过程可以例如包括执行随机接入资源选择过程,或者,也可以是其他任意可能的失败处理策略,对此不做限制。
本公开实施例中,在终端设备被配置先听后说LBT失败恢复配置的情况下,并在PRACH发送随机接入前导码时,执行LBT之后,可以对LBT的执行结果进行获取,其中,LBT执行结果可以为成功或者失败,LBT执行成功是指信道状态空闲,可以触发在PRACH上发送随机接入前导码,LBT执行失败是指信道状态繁忙,此时指示若在PRACH上发送随机接入前导码,则可能导致发送失败。
本公开实施例中,若接收到LBT执行失败的指示结果,则表明执行LBT失败,则可以执行LBT的失败处理过程,可以执行随机接入资源选择过程,其中随机接入资源选择过程的执行可以满足一定的执行条件,该执行条件包括接收到终端设备中的物理层上报的LBT失败指示(该LBT失败指示用于指示执行LBT失败),在PRACH发送随机接入前导码的过程中未被配置豁免先听后说LBT,以及配置了LBT失败恢复配置,若满足随机接入资源选择过程的执行条件,则可以执行随机接入资源选择过程,再次尝试在PRACH发送随机接入前导码。
本实施例中,通过接收基站发送的配置随机接入信道RACH的指示消息,根据指示消息,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT,实现根据基站发送的指示消息确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT,能够有效提升是否被配置豁免LBT的确定准确性和确定及时性,实现根据指示消息及时地触发后续相应的处理逻辑,有效避免了链路异常,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性,通过确定终端设备的地理位置,在地理位置属于目标位置区域的情况下,确定在PRACH发送随机接入前导码的过程中被配置豁免LBT,其中,目标位置区域,是在PRACH发送随机接入前导码的过程豁免LBT的位置区域,在地理位置不属于目标位置区域的情况下,确定在PRACH发送随机接入前导码的过程未配置豁免LBT,从而可以实现由终端设备结合自身地理位置,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT,实现对在PRACH发送随机接入前导码的过程中是否被配置豁免LBT 的灵活确定。
图7是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图。
如图7所示,该发送物理随机接入信道PRACH的方法,包括:S701-S706。
S701:在PRACH发送随机接入前导码的过程中被配置豁免LBT,且参考配置信息是目标配置信息的情况下,对第二功率爬坡计数值进行递增处理,得到第一功率爬坡计数值,第二功率爬坡计数值,是终端设备上一次在PRACH发送随机接入前导码相关的功率爬坡计数值。
在一些实施例中,第一功率爬坡计数值是指终端设备发送PRACH时的功率计数值,在其他参数都相同的情况下,该第一功率爬坡计数值的数值越大,终端设备发送PRACH时的功率越大,第一功率爬坡计数值的数值越小,发送的功率越小。
在一些实施例中,终端设备上一次在PRACH发送随机接入前导码相关的功率爬坡计数值,是指当前在PRACH发送随机接入前导码的过程对应的上一次在PRACH发送随机接入前导码的过程的相关的功率爬坡计数值。
在一些实施例中,第二功率爬坡计数值是指终端设备上一次在PRACH发送随机接入前导码相关的功率爬坡计数值。
在一些实施例中,参考配置信息是指用于确定第一功率爬坡计数值的终端设备配置信息。
在一些实施例中,目标配置信息是指用于是否对第二功率爬坡计数值进行递增处理的判断条件,在参考配置信息是目标配置信息时,可以对第二功率爬坡计数值进行递增处理,得到第一功率爬坡计数值。
本公开实施例中,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,可以根据参考配置信息在目标配置信息中进行比对处理,若参考配置信息是目标配置信息,则可以设定递增步长,并根据递增步长对第二功率爬坡计数值进行递增处理,并将递增处理后的第二功率爬坡计数值作为第一功率爬坡计数值,其中,递增步长可以设置为1,或者可以设置其他任意合理的数值作为递增步长,对此不做限制。
一些实施例中,目标配置信息包括以下任意一种:上一次在PRACH发送随机接入前导码的过程中被配置豁免LBT,上一次在PRACH发送随机接入前导码的过程中,未接收到LBT失败指示,从而可以根据目标配置信息对参考配置信息进行检验,以实现根据目标配置信息和参考配置信息确定第一功率爬坡计数值,使得可以对终端设备在PRACH发送随机接入前导码的功率计数值进行适应性配置。
本公开实施例中,可以预先设置判断条件作为目标配置信息,该目标配置信息可以包括:上一次在PRACH发送随机接入前导码的过程中被配置豁免LBT,上一次在PRACH发送随机接入前导码的过程中,未接收到LBT失败指示,若参考配置信息是任一种目标配置信息,则对第二功率爬坡计数值进行递增处理,将递增处理后的第二功率爬坡计数值作为得到第一功率爬坡计数值。
本公开实施例中,可以利用目标配置信息对参考配置信息进行比对处理,若目标配置信息不包括以下的任意一种:在PRACH发送随机接入前导码的过程中被配置豁免LBT,上一次在PRACH发送随机接入前导码的过程中被配置豁免LBT,上一次在PRACH发送随机接入前导码的过程中,未接收到LBT失败指示,则无需对第二功率爬坡计数值进行递增处理,将未经递增处理的第二功率爬坡计数值作为第一功率爬坡计数值。
S702:若在PRACH发送随机接入前导码的过程中被配置豁免LBT,且参考配置信息不是目标配置信息,则将第二功率爬坡计数值作为第一功率爬坡计数值。
本公开实施例中,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,可以根据参考配置信息在目标配置信息中进行比对处理,若参考配置信息不是目标配置信息,则不对第二功率爬坡计数值进行递增处理,并将第二功率爬坡计数值作为第一功率爬坡计数值
S703:根据第一功率爬坡计数值,确定指示参数。
在一些实施例中,指示参数是指终端设备发送PRACH时的相关功率参数,用于表征终端设备发送PRACH时的功率大小。
本公开实施例中,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,则根据第一功率爬坡计数值,确定指示参数,可以预先设定判断条件,在满足判断条件时,对终端设备上一次发送PRACH的功率爬坡计数值做递增处理,以得到递增处理后的功率爬坡计数值作为第一功率爬坡计数值,而后可以根据第一功率爬坡计数值,确定终端设备发送PRACH时的相关功率参数,并将得到的终端设备发送PRACH时的相关功率参数作为指示参数,其中,在进行递增处理时的递增步长可以为1,或者也可以设置为其他数值的递增步长以进行递增处理,对此不做限制。
本公开实施例在上述确定第一功率爬坡计数值之后,可以根据第一功率爬坡计数值,确定指示参数。
本实施例中,通过在PRACH发送随机接入前导码的过程中被配置豁免LBT,且参考配置信息是目标配置信息,则对第二功率爬坡计数值进行递增处理,得到第一功率爬坡计数值,第二功率爬坡计数值,是终端设备上一次在PRACH发送随机接入前导码相关的功率爬坡计数值,根据第一功率爬坡计数值,确定指示参数,从而可以根据参考配置信息和目标配置信息确定指示参数,由于指示参数用于指示在PRACH发送随机接入前导码时的相关功率,从而可以实现对相关功率的适应性配置,有效地保障在PRACH发送随机接入前导码过程的执行效果。
S704:根据指示参数,在PRACH发送随机接入前导码。
本公开实施例在上述根据第一功率爬坡计数值,确定指示参数之后,可以根据指示参数,在PRACH发送随机接入前导码。
本公开实施例中,在根据指示参数,在PRACH发送随机接入前导码,可以根据指示参数指示的终端设备发送PRACH时的功率,在PRACH发送随机接入前导码。
本公开实施例中,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,在PRACH发送随机接入前导码时是参考指示参数完成随机接入前导码的发送,此时可以不参考LBT的执行结果。
S705:执行LBT。
本公开实施例中,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,则可以由终端设备中的物理层执行LBT,此时在PRACH发送随机接入前导码时是参考指示参数完成随机接入前导码的发送,可以不参考LBT的执行结果,LBT的执行结果用于触发LBT的失败处理过程,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,且参考配置信息不是目标配置信息,则将第二功率爬坡计数值作为第一功率爬坡计数值。
S706:在执行LBT失败的情况下,执行LBT的失败处理过程。
本公开实施例在上述由终端设备中的物理层执行LBT之后,可以得到LBT的执行结果,并将LBT的执行结果上报至终端设备的高层,如果LBT执行失败,则将LBT的失败执行结果上传至终端设备的高层,由终端设备中的高层执行LBT的失败处理过程。
本公开实施例中,由于在PRACH发送随机接入前导码的过程中被配置豁免LBT,则LBT的执行结 果仅用于触发LBT的失败处理过程,LBT的执行结果可不被作为在PRACH发送随机接入前导码的过程的参考。
本实施例中,通过在终端设备被配置先听后说LBT失败恢复配置时,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败时,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性,根据目标配置信息对参考配置信息进行检验,以实现根据目标配置信息和参考配置信息确定第一功率爬坡计数值,使得可以对终端设备在PRACH发送随机接入前导码的功率计数值进行适应性配置。
图8是本公开另一实施例提出的发送物理随机接入信道PRACH的方法的流程示意图。
如图8所示,该发送物理随机接入信道PRACH的方法,包括:S801-S805。
S801:在PRACH发送随机接入前导码的过程中被配置豁免LBT的情况下,根据第一功率爬坡计数值,确定发送PRACH的功率参数。
本公开实施例中,在上述对第二功率爬坡计数值进行递增处理,得到第一功率爬坡计数值,或者将第二功率爬坡计数值作为第一功率爬坡计数值之后,可以根据第一功率爬坡计数值,确定发送PRACH的功率参数。
S802:将发送PRACH的功率参数作为指示参数。
本公开实施例字在上述据第一功率爬坡计数值,确定发送PRACH的功率参数之后,可以将发送PRACH的功率参数作为指示参数。
本公开实施例在将发送PRACH的功率参数作为指示参数之后,可以根据指示参数,在PRACH发送随机接入前导码。
本实施例中,通过在PRACH发送随机接入前导码的过程中被配置豁免LBT的情况下,根据第一功率爬坡计数值,确定发送PRACH的功率参数,将发送PRACH的功率参数作为指示参数,从而可以根据第一功率爬坡计数值确定发送PRACH的功率参数作为指示参数,实现对在PRACH发送随机接入前导码时的发送功率的获取,保障在PRACH发送随机接入前导码的过程的有效执行。
S803:在PRACH发送随机接入前导码的过程中被配置豁免LBT的情况下,根据指示参数,在PRACH发送随机接入前导码。
本公开实施例中,上述将发送PRACH的功率参数作为指示参数之后,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,则可以根据指示参数,在PRACH发送随机接入前导码,从而可以实现根据指示参数中对应的功率参数在PRACH发送随机接入前导码,此时在PRACH发送随机接入前导码的过程可参考指示参数,而不参考LBT的执行结果,从而有效保证在PRACH发送随机接入前导码的过程中被配置豁免LBT时,该过程能够有效地、及时地被执行,且具有较可靠的执行效果。
S804:执行LBT。
本公开实施例中,若在PRACH发送随机接入前导码的过程中被配置豁免LBT,则在终端设备的物理层中执行LBT。
S805:在执行LBT失败的情况下,执行LBT的失败处理过程。
本公开实施例在上述由终端设备中的物理层执行LBT之后,可以得到LBT的执行结果,并将LBT的执行结果上报至终端设备的高层,如果LBT执行失败,则将LBT的失败执行结果上传至终端设备的高 层,由终端设备中的高层执行LBT的失败处理过程。
本实施例中,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性,通过在PRACH发送随机接入前导码的过程中被配置豁免LBT的情况下,根据第一功率爬坡计数值,确定发送PRACH的功率参数,将发送PRACH的功率参数作为指示参数,从而可以根据第一功率爬坡计数值确定发送PRACH的功率参数作为指示参数,实现对在PRACH发送随机接入前导码时的发送功率的获取,保障在PRACH发送随机接入前导码的过程的有效执行。还可以实现根据指示参数中对应的功率参数在PRACH发送随机接入前导码,此时在PRACH发送随机接入前导码的过程可参考指示参数,而不参考LBT的执行结果,从而有效保证在PRACH发送随机接入前导码的过程中被配置豁免LBT时,该过程能够有效地、及时地被执行,且具有较可靠的执行效果。
图9是本公开一实施例提出的发送物理随机接入信道PRACH的装置结构示意图。
如图9所示,该发送物理随机接入信道PRACH的装置80,包括:
第一执行单元901,用于在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT;
第二执行单元902,用于在执行LBT失败的情况下,执行LBT的失败处理过程。
在本公开的一些实施例中,如图10所示,图10是本公开另一实施例提出的发送物理随机接入信道PRACH的装置结构示意图,还包括:
第一发送单元903,用于在PRACH发送随机接入前导码的过程中被配置豁免LBT的情况下,根据指示参数,在PRACH发送随机接入前导码。
在本公开的一些实施例中,还包括:
第二发送单元904,用于在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且执行LBT成功的情况下,在PRACH发送随机接入前导码。
在本公开的一些实施例中,还包括:
第一确定单元905,用于在PRACH发送随机接入前导码的过程中被配置豁免LBT的情况下,根据第一功率爬坡计数值,确定指示参数;
在一些实施例中,若参考配置信息是目标配置信息,对第二功率爬坡计数值进行递增处理,得到第一功率爬坡计数值,第二功率爬坡计数值,是终端设备上一次在PRACH发送随机接入前导码相关的功率爬坡计数值。
在本公开的一些实施例中,还包括:
处理单元906,用于在参考配置信息不是目标配置信息时,将第二功率爬坡计数值作为第一功率爬坡计数值。
在本公开的一些实施例中,目标配置信息包括以下任意一种:
上一次在PRACH发送随机接入前导码的过程中被配置豁免LBT;
上一次在PRACH发送随机接入前导码的过程中,未接收到LBT失败指示。
在本公开的一些实施例中,第一确定单元905,具体用于:
根据第一功率爬坡计数值,确定发送PRACH的功率参数;
将发送PRACH的功率参数作为指示参数。
在本公开的一些实施例中,还包括:
第三执行单元907,用于在接收到LBT失败指示的情况下,执行随机接入资源选择过程。
在本公开的一些实施例中,还包括:
接收单元908,用于接收基站发送的配置随机接入信道RACH或者***广播的指示消息;
第二确定单元909,用于根据指示消息,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT。
在本公开的一些实施例中,还包括:
第三确定单元910,用于根据指示消息,确定终端设备所接入小区是否被配置豁免LBT;或,
第四确定单元911,用于在未接收到指示消息的情况下,确定终端设备所接入小区被配置豁免LBT。
在本公开的一些实施例中,还包括:
第五确定单元912,用于确定终端设备的地理位置;
第六确定单元913,用于在地理位置属于目标位置区域的情况下,确定在PRACH发送随机接入前导码的过程中被配置豁免LBT,其中,目标位置区域,是在PRACH发送随机接入前导码的过程中豁免LBT的位置区域;
第七确定单元914,用于在地理位置不属于目标位置区域的情况下,确定在PRACH发送随机接入前导码的过程中未配置豁免LBT。
在本公开的一些实施例中,第一执行单元901,具体用于:
确定LBT配置信息,其中,LBT配置信息由基站确定,或者LBT配置信息由终端设备确定;
根据LBT配置信息,执行LBT。
在本公开的一些实施例中,LBT配置信息包括:LBT类型,和/或,LBT波束方向。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。
基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本实施例中,通过在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接 入前导码的情况下,执行LBT,在执行LBT失败的情况下,执行LBT的失败处理过程,实现在PRACH发送随机接入前导码的过程中被配置豁免先听后说LBT时,有效地执行LBT失败处理,能够有效地避免链路异常,从而有效地维护链路的稳定性。
图11是本公开另一实施例提出的发送物理随机接入信道PRACH的装置的结构示意图。
参见图11,该发送物理随机接入信道PRACH的装置110,包括存储器1101,收发机1102,处理器1103及用户接口1104:存储器1101,用于存储计算机程序;收发机1102,用于在处理器1103的控制下收发数据;处理器1103,用于读取存储器1101中的计算机程序并执行以下操作:
在终端设备被配置先听后说LBT失败恢复配置的情况下,在PRACH发送随机接入前导码时,执行LBT;
在执行LBT失败的情况下,执行LBT的失败处理过程。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1103代表的一个或多个处理器和存储器1101代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1104还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1103负责管理总线架构和通常的处理,存储器1101可以存储处理器1103在执行操作时所使用的数据。
在一些实施例中,处理器1103可以是CPU(中央处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一方法。处理器与存储器也可以物理上分开布置。
在本公开的一些实施例中,处理器1103,具体用于:
在PRACH发送随机接入前导码的过程中被配置豁免LBT的情况下,根据指示参数,在PRACH发送随机接入前导码。
在本公开的一些实施例中,处理器1103,具体用于:
在PRACH发送随机接入前导码的过程中未被配置豁免LBT,且执行LBT成功的情况下,在PRACH发送随机接入前导码。
在本公开的一些实施例中,处理器1103,具体用于:
在PRACH发送随机接入前导码的过程中被配置豁免LBT的情况下,根据第一功率爬坡计数值,确定指示参数;
在一些实施例中,若参考配置信息是目标配置信息,对第二功率爬坡计数值进行递增处理,得到第一功率爬坡计数值,第二功率爬坡计数值,是终端设备上一次在PRACH发送随机接入前导码相关的功率爬坡计数值。
在本公开的一些实施例中,处理器1103,具体用于:
若参考配置信息不是目标配置信息,则将第二功率爬坡计数值作为第一功率爬坡计数值。
在本公开的一些实施例中,目标配置信息包括以下任意一种:
上一次在PRACH发送随机接入前导码的过程中被配置豁免LBT;
上一次在PRACH发送随机接入前导码的过程中,未接收到LBT失败指示。
在本公开的一些实施例中,处理器1103,具体用于:
根据第一功率爬坡计数值,确定发送PRACH的功率参数;
将发送PRACH的功率参数作为指示参数。
在本公开的一些实施例中,处理器1103,具体用于:
在接收到LBT失败指示的情况下,执行随机接入资源选择过程。
在本公开的一些实施例中,处理器1103,具体用于:
接收基站发送的配置随机接入信道RACH或者***广播的指示消息;
根据指示消息,确定在PRACH发送随机接入前导码的过程中是否被配置豁免LBT。
在本公开的一些实施例中,处理器1103,具体用于:
根据指示消息,确定终端设备所接入小区是否被配置豁免LBT;或,
在未接收到指示消息的情况下,确定终端设备所接入小区被配置豁免LBT。
在本公开的一些实施例中,处理器1103,具体用于:
确定终端设备的地理位置;
在地理位置属于目标位置区域的情况下,确定在PRACH发送随机接入前导码的过程中被配置豁免LBT,其中,目标位置区域,是在PRACH发送随机接入前导码的过程豁免LBT的位置区域;或,
在地理位置不属于目标位置区域的情况下,则确定在PRACH发送随机接入前导码的过程中未配置豁免LBT。
在本公开的一些实施例中,处理器1103,具体用于:
确定LBT配置信息,其中,LBT配置信息由基站确定,或者LBT配置信息由终端设备确定;
根据LBT配置信息,执行LBT。
在本公开的一些实施例中,LBT配置信息包括:LBT类型,和/或,LBT波束方向。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为了实现上述实施例,本公开实施例提出了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行发送物理随机接入信道PRACH的方法。在一些实施例中,该处理器可读存储介质为非瞬时处理器可读存储介质。
为了实现上述实施例,本公开实施例提出了一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现如本公开前述实施例提出的发送物理随机接入信道PRACH的方法。
本公开实施例还提出一种计算机程序,其中该计算机程序包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行如本公开前述实施例提出的发送物理随机接入信道PRACH的方法。
需要说明的是,前述对发送物理随机接入信道PRACH的方法实施例的解释说明也适用于上述实施例 中的装置、非瞬时处理器可读存储介质、计算机程序产品和计算机程序,此处不再赘述。
本领域内的技术人员应明白,本公开的实施例可提供为方法、***、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产 品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
本公开所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本公开要求的保护范围。

Claims (42)

  1. 一种发送物理随机接入信道PRACH的方法,包括:
    在终端设备被配置先听后说LBT失败恢复配置的情况下,在所述PRACH发送随机接入前导码时,执行所述LBT;
    在执行所述LBT失败的情况下,执行所述LBT的失败处理过程。
  2. 如权利要求1所述的方法,包括:
    在所述PRACH发送所述随机接入前导码的过程中被配置豁免所述LBT的情况下,根据指示参数,在所述PRACH发送所述随机接入前导码。
  3. 如权利要求1所述的方法,包括:
    在所述PRACH发送所述随机接入前导码的过程中未被配置豁免所述LBT,且执行所述LBT成功的情况下,在所述PRACH发送所述随机接入前导码。
  4. 如权利要求2所述的方法,包括:
    在所述PRACH发送所述随机接入前导码的过程中被配置豁免所述LBT的情况下,根据第一功率爬坡计数值,确定所述指示参数;
    其中,若参考配置信息是目标配置信息,对第二功率爬坡计数值进行递增处理,得到所述第一功率爬坡计数值,所述第二功率爬坡计数值,是所述终端设备上一次在所述PRACH发送随机接入前导码相关的功率爬坡计数值。
  5. 如权利要求4所述的方法,包括:
    若所述参考配置信息不是所述目标配置信息,则将所述第二功率爬坡计数值作为所述第一功率爬坡计数值。
  6. 如权利要求4或5所述的方法,其中,所述目标配置信息包括以下任意一种:
    所述上一次在所述PRACH发送随机接入前导码的过程中被配置豁免所述LBT;
    所述上一次在所述PRACH发送随机接入前导码的过程中,未接收到LBT失败指示。
  7. 如权利要求4所述的方法,其中,所述根据第一功率爬坡计数值,确定所述指示参数,包括:
    根据所述第一功率爬坡计数值,确定发送所述PRACH的功率参数;
    将所述发送所述PRACH的功率参数作为所述指示参数。
  8. 如权利要求3所述的方法,包括:
    在接收到LBT失败指示的情况下,执行随机接入资源选择过程。
  9. 如权利要求2或3所述的方法,包括:
    接收基站发送的配置随机接入信道RACH或者***广播的指示消息;
    根据所述指示消息,确定在所述PRACH发送所述随机接入前导码的过程中是否被配置豁免所述LBT。
  10. 如权利要求9所述的方法,包括:
    根据所述指示消息,确定所述终端设备所接入小区是否被配置豁免所述LBT;或,
    在未接收到所述指示消息的情况下,确定所述终端设备所接入小区被配置豁免所述LBT。
  11. 如权利要求2或3所述的方法,包括:
    确定所述终端设备的地理位置;
    在所述地理位置属于目标位置区域的情况下,确定在所述PRACH发送所述随机接入前导码的过程中被配置豁免所述LBT,其中,所述目标位置区域,是在所述PRACH发送所述随机接入前导码的过程中豁免所述LBT的位置区域;或,
    在所述地理位置不属于所述目标位置区域的情况下,则确定在所述PRACH发送所述随机接入前导码的过程中未配置豁免所述LBT。
  12. 如权利要求1至11中任一项所述的方法,其中,所述执行所述LBT,包括:
    确定LBT配置信息,其中,所述LBT配置信息由基站确定,或者所述LBT配置信息由所述终端设备确定;
    根据所述LBT配置信息,执行所述LBT。
  13. 如权利要求12所述的方法,其中,所述LBT配置信息包括:LBT类型,和/或,LBT波束方向。
  14. 一种发送物理随机接入信道PRACH的装置,包括:
    第一执行单元,用于在终端设备被配置先听后说LBT失败恢复配置的情况下,在所述PRACH发送随机接入前导码时,执行所述LBT;
    第二执行单元,用于在执行所述LBT失败的情况下,执行所述LBT的失败处理过程。
  15. 如权利要求14所述的装置,还包括:
    第一发送单元,用于在所述PRACH发送随机接入前导码的过程中被配置豁免所述LBT的情况下,根据指示参数,在所述PRACH发送所述随机接入前导码。
  16. 如权利要求14所述的装置,还包括:
    第二发送单元,用于在所述PRACH发送随机接入前导码的过程中未被配置豁免所述LBT,且执行所述LBT成功的情况下,在所述PRACH发送所述随机接入前导码。
  17. 如权利要求15所述的装置,还包括:
    第一确定单元,用于在所述PRACH发送随机接入前导码的过程中被配置豁免所述LBT的情况下,根据第一功率爬坡计数值,确定所述指示参数;
    其中,若参考配置信息是目标配置信息,对第二功率爬坡计数值进行递增处理,得到所述第一功率爬坡计数值,所述第二功率爬坡计数值,是终端设备上一次在所述PRACH发送随机接入前导码相关的功率爬坡计数值。
  18. 如权利要求17所述的装置,还包括:
    处理单元,用于在所述参考配置信息不是所述目标配置信息时,将所述第二功率爬坡计数值作为所述第一功率爬坡计数值。
  19. 如权利要求17或18所述的装置,其中,所述目标配置信息包括以下任意一种:
    所述上一次在所述PRACH发送随机接入前导码的过程中被配置豁免所述LBT;
    所述上一次在所述PRACH发送随机接入前导码的过程中,未接收到LBT失败指示。
  20. 如权利要求17所述的装置,其中,所述第一确定单元,具体用于:
    根据所述第一功率爬坡计数值,确定发送所述PRACH的功率参数;
    将所述发送所述PRACH的功率参数作为所述指示参数。
  21. 如权利要求16所述的装置,还包括:
    第三执行单元,用于在接收到LBT失败指示的情况下,执行随机接入资源选择过程。
  22. 如权利要求15或16所述的装置,还包括:
    接收单元,用于接收基站发送的配置随机接入信道RACH或者***广播的指示消息;
    第二确定单元,用于根据所述指示消息,确定在所述PRACH发送所述随机接入前导码的过程中是否被配置豁免所述LBT。
  23. 如权利要求22所述的装置,还包括:
    第三确定单元,用于根据所述指示消息,确定所述终端设备所接入小区是否被配置豁免所述LBT;或,
    第四确定单元,用于在未接收到所述指示消息的情况下,确定所述终端设备所接入小区被配置豁免所述LBT。
  24. 如权利要求15或16所述的装置,还包括:
    第五确定单元,用于确定所述终端设备的地理位置;
    第六确定单元,用于在所述地理位置属于目标位置区域的情况下,确定在所述PRACH发送所述随机接入前导码的过程中被配置豁免所述LBT,其中,所述目标位置区域,是在所述PRACH发送所述随机接入前导码的过程中豁免所述LBT的位置区域;或,
    第七确定单元,用于在所述地理位置不属于所述目标位置区域的情况下,确定在所述PRACH发送 所述随机接入前导码的过程中未配置豁免所述LBT。
  25. 如权利要求14至24中任一项所述的装置,其中,所述第一执行单元,具体用于:
    确定LBT配置信息,其中,所述LBT配置信息由基站确定,或者所述LBT配置信息由所述终端设备确定;
    根据所述LBT配置信息,执行所述LBT。
  26. 如权利要求25所述的装置,其中,所述LBT配置信息包括:LBT类型,和/或,LBT波束方向。
  27. 一种发送物理随机接入信道PRACH的装置,包括存储器,收发机,处理器:存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在终端设备被配置先听后说LBT失败恢复配置的情况下,在所述PRACH发送随机接入前导码时,执行所述LBT;
    在执行所述LBT失败的情况下,执行所述LBT的失败处理过程。
  28. 如权利要求27所述的装置,其中,所述处理器,具体用于:
    在所述PRACH发送所述随机接入前导码的过程中被配置豁免所述LBT的情况下,根据指示参数,在所述PRACH发送所述随机接入前导码。
  29. 如权利要求27所述的装置,其中,所述处理器,具体用于:
    在所述PRACH发送所述随机接入前导码的过程中未被配置豁免所述LBT,且执行所述LBT成功的情况下,在所述PRACH发送所述随机接入前导码。
  30. 如权利要求28所述的装置,其中,所述处理器,具体用于:
    在所述PRACH发送所述随机接入前导码的过程中被配置豁免所述LBT的情况下,根据第一功率爬坡计数值,确定所述指示参数;
    其中,若参考配置信息是目标配置信息,对第二功率爬坡计数值进行递增处理,得到所述第一功率爬坡计数值,所述第二功率爬坡计数值,是所述终端设备上一次在所述PRACH发送随机接入前导码相关的功率爬坡计数值。
  31. 如权利要求30所述的装置,其中,所述处理器,具体用于:
    若所述参考配置信息不是所述目标配置信息,则将所述第二功率爬坡计数值作为所述第一功率爬坡计数值。
  32. 如权利要求30或31所述的装置,其中,所述目标配置信息包括以下任意一种:
    所述上一次在所述PRACH发送随机接入前导码的过程中被配置豁免所述LBT;
    所述上一次在所述PRACH发送随机接入前导码的过程中,未接收到LBT失败指示。
  33. 如权利要求30所述的装置,其中,所述处理器,具体用于:
    根据所述第一功率爬坡计数值,确定发送所述PRACH的功率参数;
    将所述发送所述PRACH的功率参数作为所述指示参数。
  34. 如权利要求29所述的装置,其中,所述处理器,具体用于:
    在接收到LBT失败指示的情况下,执行随机接入资源选择过程。
  35. 如权利要求28或29所述的装置,其中,所述处理器,具体用于:
    接收基站发送的配置随机接入信道RACH或者***广播的指示消息;
    根据所述指示消息,确定在所述PRACH发送所述随机接入前导码的过程中是否被配置豁免所述LBT。
  36. 如权利要求35所述的装置,其中,所述处理器,具体用于:
    根据所述指示消息,确定所述终端设备所接入小区是否被配置豁免所述LBT;或,
    在未接收到所述指示消息的情况下,确定所述终端设备所接入小区被配置豁免所述LBT。
  37. 如权利要求28或29所述的装置,其中,所述处理器,具体用于:
    确定所述终端设备的地理位置;
    在所述地理位置属于目标位置区域的情况下,确定在所述PRACH发送所述随机接入前导码的过程中被配置豁免所述LBT,其中,所述目标位置区域,是在所述PRACH发送所述随机接入前导码的过程中豁免所述LBT的位置区域;或,
    在所述地理位置不属于所述目标位置区域的情况下,则确定在所述PRACH发送所述随机接入前导码的过程中未配置豁免所述LBT。
  38. 如权利要求27至37中任一项所述的装置,其中,所述处理器,具体用于:
    确定LBT配置信息,其中,所述LBT配置信息由基站确定,或者所述LBT配置信息由所述终端设备确定;
    根据所述LBT配置信息,执行所述LBT。
  39. 如权利要求38所述的装置,其中,所述LBT配置信息包括:LBT类型,和/或,LBT波束方向。
  40. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至13中任一项所述的方法。
  41. 一种计算机程序产品,包括计算机程序,其中所述计算机程序在被处理器执行时实现如权利要 求1至13中任一项所述的方法。
  42. 一种计算机程序,其中所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至13中任一项所述的方法。
PCT/CN2022/138073 2022-01-10 2022-12-09 发送物理随机接入信道prach的方法、装置及存储介质 WO2023130903A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210021895.1 2022-01-10
CN202210021895 2022-01-10
CN202210126392.0A CN116471704A (zh) 2022-01-10 2022-02-10 发送物理随机接入信道prach的方法、装置及存储介质
CN202210126392.0 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023130903A1 true WO2023130903A1 (zh) 2023-07-13

Family

ID=87073063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138073 WO2023130903A1 (zh) 2022-01-10 2022-12-09 发送物理随机接入信道prach的方法、装置及存储介质

Country Status (1)

Country Link
WO (1) WO2023130903A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972327A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 基于非授权频段的信号传输方法和通信设备
CN111800799A (zh) * 2019-08-08 2020-10-20 维沃移动通信有限公司 非授权频段的2步随机接入方法和设备
WO2021214689A1 (en) * 2020-04-21 2021-10-28 Lenovo (Singapore) Pte. Ltd. Incrementing a transmission counter in response to lbt failure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972327A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 基于非授权频段的信号传输方法和通信设备
CN111800799A (zh) * 2019-08-08 2020-10-20 维沃移动通信有限公司 非授权频段的2步随机接入方法和设备
WO2021214689A1 (en) * 2020-04-21 2021-10-28 Lenovo (Singapore) Pte. Ltd. Incrementing a transmission counter in response to lbt failure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) protocol specification (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.321, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V16.7.0, 23 December 2021 (2021-12-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 158, XP052083421 *
MODERATOR (ERICSSON): "Email discussion summary for [98e][205] NR_unlic_RRM_1", 3GPP DRAFT; R4-2103687, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210125 - 20210205, 9 February 2021 (2021-02-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051979590 *

Similar Documents

Publication Publication Date Title
US11064492B2 (en) Resource configuration method and apparatus
WO2020147615A1 (zh) 波束失败恢复方法、终端及基站
US11616625B2 (en) Wireless communication method, terminal, and network device
EP4236424A1 (en) Data transmission control method, apparatus, and storage medium
JP7133568B2 (ja) 無線通信方法及び装置
US20210127286A1 (en) Method for wireless communication, terminal, and non-transitory computer-readable storage medium
CN111465059B (zh) 一种上行信息传输路径确定方法和终端
WO2023011465A1 (zh) Ul定位参考信号的激活方法、装置、终端及网络侧设备
WO2022237540A1 (zh) 信息指示、获取方法及装置
WO2022206678A1 (zh) 数据传输方法、装置及存储介质
WO2023130903A1 (zh) 发送物理随机接入信道prach的方法、装置及存储介质
WO2023273397A1 (zh) 组切换方法、设备、装置及存储介质
EP4236427A1 (en) Array selection method, terminal, network device, and storage medium
CN114501639A (zh) 一种阵面选择方法、终端、网络设备及存储介质
CN116471704A (zh) 发送物理随机接入信道prach的方法、装置及存储介质
WO2024017292A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023241335A1 (zh) 一种组播业务的传输处理方法及装置
WO2023202316A1 (zh) 一种一致性lbt失败的处理方法、终端及网络设备
WO2023185221A1 (zh) Dtx传输方法、网络节点、网络设备和存储介质
WO2023202437A1 (zh) 多播业务的传输方法及装置
WO2023005897A1 (zh) 信息指示方法、获取方法、装置、网络侧设备及终端
WO2023011230A1 (zh) 控制信令监测方法、装置、设备及存储介质
WO2021160035A1 (zh) 无线资源管理测量方法、设备及存储介质
WO2024021953A1 (zh) 直连通信接口数据传输处理方法及装置
WO2023216699A1 (zh) 一种信息处理方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918353

Country of ref document: EP

Kind code of ref document: A1