WO2023130884A1 - 侧行链路中波束训练的方法和装置 - Google Patents

侧行链路中波束训练的方法和装置 Download PDF

Info

Publication number
WO2023130884A1
WO2023130884A1 PCT/CN2022/137401 CN2022137401W WO2023130884A1 WO 2023130884 A1 WO2023130884 A1 WO 2023130884A1 CN 2022137401 W CN2022137401 W CN 2022137401W WO 2023130884 A1 WO2023130884 A1 WO 2023130884A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
reference signal
indication information
time unit
information
Prior art date
Application number
PCT/CN2022/137401
Other languages
English (en)
French (fr)
Inventor
焦瑞晟
何泓利
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210045043.6A external-priority patent/CN116455540A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023130884A1 publication Critical patent/WO2023130884A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and device for beam training in sidelinks.
  • Sidelink is a protocol designed for direct communication between devices and devices (device to device, D2D) in 3GPP.
  • the sidelink includes two mainstream working modes, including transmission mode 1 (transmission mode 1) and transmission mode 2 (transmission mode 2).
  • transmission mode 1 requires network equipment to schedule communication resources;
  • transmission mode 2 does not require network equipment to schedule communication resources, and terminal equipment can communicate by itself through resource sensing (sensing) and resource selection (selection).
  • transmission mode 2 is used for SL communication in consideration of possible large wear loss.
  • the transmitting end user equipment transmits the channel state information reference signal (channel state information reference signal, CSI-RS) on the physical sidelink shared channel (physical sidelink shared channel, PSSCH) for channel state Information (channel state information, CSI) measurement.
  • the Tx UE While sending the SL CSI-RS, the Tx UE will also indicate the receiving end user equipment (receiver user equipment, Rx UE) in the CSI request (CSI request) field of the sidelink control information 2 (SCI2) ) to measure and report the CSI.
  • the Rx UE completes the CSI measurement, it will report the measured CSI through the PSSCH.
  • the enhancement of SL in the millimeter wave frequency band (frequency range 2, FR2) has become one of the topics of discussion.
  • Tx UE and/or Rx UE need to transmit signals through directional beams.
  • beam training is required.
  • beam training is generally performed with the help of periodic reference signals, and the Rx UE can know when the beam measurement ends.
  • the time-frequency resources used for beam training are obtained by Tx UE through resource perception/resource selection, and it cannot be guaranteed that the time-frequency resources used for beam training are periodic or equally spaced. Therefore, the Rx UE cannot know the start and end time of the Tx UE beam scanning in advance, and there is no fixed reporting time of the measurement results, which brings difficulties to the coordination between the Tx UE and the Rx UE during the beam training process.
  • the present application provides a method and device for beam training in a sidelink, which can realize coordination between a first device and a second device during the beam training process.
  • a method for beam training in a sidelink is provided, and the method may be executed by a terminal device or a chip or a chip system on a terminal device side.
  • the method includes: the first device sends N pieces of first control information to the second device respectively in N time units, the first control information includes first indication information, and the first indication information is used to indicate that the first A time interval between a time unit associated with the control information and the last time unit associated with the first control information, where N is a positive integer; the first device receives the measurement result reported by the second device, and the measurement result Including second indication information, the second indication information is used to indicate the identification of one or more reference signals in the reference signals associated with the M first control information, and the N first control information includes the M first Control information, where M is a positive integer less than or equal to N.
  • the first indication information in the first control information sent by the first device to the second device may indicate the time unit for sending the first control information and the time unit for sending the last first control information or the time unit for sending the last first control information.
  • a time interval between time units of reference signals associated with control information, or indicating the time unit for sending the reference signal associated with the first control information and the time unit for sending the last first control information or sending the last first control information The time interval between the time units of the associated reference signal, according to which the second device can determine the end time of the beam training of the first device. Therefore, the method can realize cooperation between the first device and the second device during the beam training process.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information, or a reference signal associated with the first control information One or more reference signals scheduled for the first control information.
  • the second indication information is used to indicate the identity of one or more reference signals among the M reference signals associated with the first control information and the one or more or the reference signal received power of multiple reference signals.
  • the first control information further includes third indication information, and the third indication information is used to instruct the second device to report the measurement result
  • the first device sends to the second device the time unit range used to instruct the second device to report the measurement result through the first control information, which can avoid the second device not reporting the measurement result for a long time or receiving the reference signal measured by the second device Power expired.
  • the first device may determine whether to perform beam training again according to whether the measurement result reported by the second device is received within the time unit range.
  • the method before the first device receives the measurement result reported by the second device within the range of the time unit, the method further includes: The first device receives second control information within the range of the time unit, where the second control information includes an identifier of a first spatial receiving filter, and the identifier of the first spatial receiving filter is used for the first A device uses the first spatial domain receiving filter to receive the measurement result; the first device receiving the measurement result reported by the second device within the range of the time unit includes: the first device receiving the measurement result within the time unit range. Within the range of the time unit, use the first spatial domain receiving filter to receive the measurement result.
  • the identification of the first spatial domain reception filter is that the reference signal received power of the reference signal associated with the M first control information is greater than or equal to a preset
  • the threshold is determined by the identification of the reference signal.
  • the second device sends the identifier of the first spatial receiving filter to the first device through the second control information
  • the first spatial receiving filter is that the received power of the corresponding reference signal in different spatial receiving filters of the first device is greater than Or a spatial receiving filter equal to a preset threshold, that is, the first spatial receiving filter is a spatial receiving filter with better transmission performance in the first device, and the first device uses the first spatial receiving filter to receive the data sent by the second device.
  • the measurement result can improve the accuracy of the measurement result received by the first device.
  • the first control information further includes fourth indication information, and the fourth indication information is used to indicate that the time unit for sending the first control information is The sequence numbers in the N time units.
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal; or, The identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal; or, the reference signal The identifier is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal; or, the identifier of the reference signal is determined according to the first control information associated with the reference signal determined by the sequence number indicated by the fourth indication information in and the sequence number of the sub-time unit for sending the reference signal.
  • the first control information further includes sixth indication information, and the sixth indication information is used to indicate that the reference signal associated with the first control information Whether one or more of the reference signals are transmitted using the same spatial domain transmit filter.
  • the identification of the reference signals is based on the associated The identification of the reference signal is determined according to the time interval indicated by the first indication information in the first control information of the reference signal, or the identification of the reference signal is determined according to the fourth indication information in the first control information associated with the reference signal Indicated by the serial number determined.
  • the second device may switch different spatial domain receiving filters to receive one or more reference signals in the reference signals associated with the first control information.
  • the identification of the reference signals is based on the The time interval indicated by the first indication information in the first control information of the signal and the sequence number of the sub-time unit for sending the reference signal, or, the identification of the reference signal is determined according to the first control associated with the reference signal.
  • the sequence number indicated by the fourth indication information in the information is determined by the sequence number of the sub-time unit for sending the reference signal.
  • the measurement result further includes fifth indication information, and the fifth indication information is used to indicate that the unused airspace reception in the second device The number of filters or whether all spatial receive filters are used by the second device.
  • the first device may determine whether a next round of beam training needs to be performed according to the fifth indication information in the measurement result.
  • the first control information further includes seventh indication information, and the sixth indication information is used to indicate that the time unit for sending the first control information is beam training unit of time.
  • the second control information further includes eighth indication information, and the seventh indication information is used to indicate that the time unit for sending the second control information is the beam reporting time unit .
  • a method for beam training in a sidelink is provided, and the method may be executed by a terminal device or a chip or a chip system on a terminal device side.
  • the method includes: the second device respectively receives N pieces of first control information from the first device in N time units, the first control information includes first indication information, and the first indication information is used to indicate the The time interval between the time unit associated with the first control information and the last time unit associated with the first control information, where N is a positive integer; the second device reports a measurement result to the first device, and the measurement The result includes second indication information, where the second indication information is used to indicate identities of one or more reference signals among the M reference signals associated with the first control information, where M is a positive integer less than or equal to N.
  • the first indication information in the first control information received by the second device from the first device may indicate the time unit for sending the first control information and the time unit for sending the last first control information or the time unit for sending the last first control information.
  • the time interval between the time units of the reference signal scheduled by the last first control information, or indicating the time unit for sending the reference signal associated with the first control information and the time unit for sending the last first control information or sending the last first control information A time interval between time units of the reference signal associated with the control information, and the second device can determine the end time of the beam training according to the time interval. Therefore, the method can realize cooperation between the first device and the second device during the beam training process.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information, or a reference signal associated with the first control information One or more reference signals scheduled for the first control information.
  • the second indication information is used to indicate the identity of one or more reference signals among the M reference signals associated with the first control information and the one or more or the reference signal received power of multiple reference signals.
  • the first control information further includes third indication information, and the third indication information is used to instruct the second device to report the measurement result.
  • the time unit range: the second device reporting the measurement result to the first device includes: the second device reporting the measurement result to the first device within the time unit range.
  • the second device reports the measurement result to the first device within the time unit for reporting the measurement result indicated by the third indication information, which can prevent the second device from not reporting the measurement result or the reference signal received power measured by the second device for a long time. Expired.
  • the first device may also determine whether to perform beam training again according to whether the measurement result reported by the second device is received within the time unit range.
  • the method before the second device reports the measurement result to the first device within the range of the time unit, the method further includes: The second device sends second control information to the first device within the range of the time unit, the second control information includes the identifier of the first spatial receiving filter, and the identifier of the first spatial receiving filter The identifier is used for the first device to receive the measurement result by using the first spatial domain receiving filter.
  • the identification of the first spatial domain reception filter is that the reference signal received power of the reference signal associated with the M first control information is greater than or equal to a preset The threshold is determined by the identification of the reference signal.
  • the second device sends the identifier of the first spatial receiving filter to the first device through the second control information
  • the first spatial receiving filter is that the received power of the corresponding reference signal in different spatial receiving filters of the first device is greater than Or a spatial receiving filter equal to a preset threshold, that is, the first spatial receiving filter is a spatial receiving filter with better transmission performance in the first device, and the first device uses the first spatial receiving filter to receive the data sent by the second device.
  • the measurement result can improve the accuracy of the measurement result received by the first device.
  • the first control information further includes fourth indication information, and the fourth indication information is used to indicate that the time unit for sending the first control information is The sequence numbers in the N time units.
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal; or, The identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal; or, the reference signal The identifier is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal; or, the identifier of the reference signal is determined according to the first control information associated with the reference signal determined by the sequence number indicated by the fourth indication information in and the sequence number of the sub-time unit for sending the reference signal.
  • the first control information further includes sixth indication information, and the sixth indication information is used to indicate that the reference signal associated with the first control information Whether one or more of the reference signals are transmitted using the same spatial domain transmit filter.
  • the identification of the reference signals is based on the associated The identification of the reference signal is determined according to the time interval indicated by the first indication information in the first control information of the reference signal, or the identification of the reference signal is determined according to the fourth indication information in the first control information associated with the reference signal Indicated by the serial number determined.
  • the second device may switch different spatial domain receiving filters to receive one or more reference signals in the reference signals associated with the first control information.
  • the identification of the reference signals is based on the The time interval indicated by the first indication information in the first control information of the signal and the sequence number of the sub-time unit for sending the reference signal, or, the identification of the reference signal is determined according to the first control associated with the reference signal.
  • the sequence number indicated by the fourth indication information in the information is determined by the sequence number of the sub-time unit for sending the reference signal.
  • the measurement result further includes fifth indication information, and the fifth indication information is used to indicate that the unused airspace reception in the second device The number of filters or whether all spatial receive filters are used by the second device.
  • the first device may determine whether a next round of beam training needs to be performed according to the fifth indication information in the measurement result.
  • the first control information further includes seventh indication information, and the sixth indication information is used to indicate that the time unit for sending the first control information is beam training unit of time.
  • the second control information further includes eighth indication information, and the seventh indication information is used to indicate that the time unit for sending the second control information is the beam reporting time unit .
  • a third aspect provides a communication device, which can be applied to the first device described in the first aspect, and the device includes: a sending module, configured to send Nth A piece of control information, where the first control information includes first indication information, and the first indication information is used to indicate the distance between the time unit associated with the first control information and the last time unit associated with the first control information A time interval, where N is a positive integer; the receiving module is configured to receive the measurement result reported by the second device, the measurement result includes second indication information, and the second indication information is used to indicate M pieces of first control information An identifier of one or more reference signals in the associated reference signals, the N pieces of first control information include the M pieces of first control information, where M is a positive integer less than or equal to N.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information, or a reference signal associated with the first control information One or more reference signals scheduled for the first control information.
  • the second indication information is used to indicate the identity of one or more reference signals among the M reference signals associated with the first control information and the one or more or the reference signal received power of multiple reference signals.
  • the first control information further includes third indication information, and the third indication information is used to instruct the second device to report the measurement result.
  • the receiving module is specifically configured to, within the time unit range, receive the measurement result reported by the second device.
  • the receiving module is further configured to receive second control information within the range of the time unit, and the second control information includes the first airspace receiving filter
  • the identifier of the first spatial receiving filter is used by the receiving module to receive the measurement result by using the first spatial receiving filter; the receiving module is specifically used to, within the range of the time unit, use The first spatial domain receive filter receives the measurement result.
  • the identification of the first spatial domain reception filter is that the reference signal received power of the reference signal associated with the M first control information is greater than or equal to a preset The threshold is determined by the identification of the reference signal.
  • the first control information further includes fourth indication information, and the fourth indication information is used to indicate that the time unit for sending the first control information is The sequence numbers in the N time units.
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal; or, The identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal; or, the reference signal The identifier is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal; or, the identifier of the reference signal is determined according to the first control information associated with the reference signal determined by the sequence number indicated by the fourth indication information in and the sequence number of the sub-time unit for sending the reference signal.
  • the first control information further includes sixth indication information, and the sixth indication information is used to indicate that the reference signal associated with the first control information Whether one or more of the reference signals are transmitted using the same spatial domain transmit filter.
  • the measurement result further includes fifth indication information, and the fifth indication information is used to indicate that the unused airspace reception in the second device number of filters.
  • a communication device which can be applied to the second device described in the second aspect, and the device includes: a receiving module, configured to receive Nth messages from the first device in N time units A piece of control information, where the first control information includes first indication information, and the first indication information is used to indicate the distance between the time unit associated with the first control information and the last time unit associated with the first control information A time interval, where N is a positive integer; a sending module, configured to report a measurement result to the first device, and the measurement result includes second indication information, and the second indication information is used to indicate M first control An identifier of one or more reference signals in the information-associated reference signals, where M is a positive integer less than or equal to N.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information, or a reference signal associated with the first control information One or more reference signals scheduled for the first control information.
  • the second indication information is used to indicate the identity of one or more reference signals among the M reference signals associated with the first control information and the one or more or the reference signal received power of multiple reference signals.
  • the first control information further includes third indication information, and the third indication information is used to indicate the time when the sending module reports the measurement result Unit range; the sending module is specifically configured to, within the time unit range, report the measurement result to the first device.
  • the sending module is further configured to, within the range of the time unit, send second control information to the first device, the second control information includes an identifier of the first spatial domain receiving filter, where the identifier of the first spatial domain receiving filter is used for the first device to receive the measurement result by using the first spatial domain receiving filter.
  • the identification of the first spatial domain reception filter is that the reference signal received power of the reference signal associated with the M first control information is greater than or equal to a preset The threshold is determined by the identification of the reference signal.
  • the first control information further includes fourth indication information, and the fourth indication information is used to indicate that the time unit for sending the first control information is at The sequence numbers in the N time units.
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal; or, The identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal; or, the reference signal The identifier is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal; or, the identifier of the reference signal is determined according to the first control information associated with the reference signal determined by the sequence number indicated by the fourth indication information in and the sequence number of the sub-time unit for sending the reference signal.
  • the first control information further includes sixth indication information, and the sixth indication information is used to indicate that the reference signal associated with the first control information Whether one or more of the reference signals are transmitted using the same spatial domain transmit filter.
  • the measurement result further includes fifth indication information, and the fifth indication information is used to indicate an unused spatial domain receiving filter in the receiving module number of devices.
  • a communication device including: a processor and a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the communication device performs the following A method in one aspect or any possible implementation of the first aspect.
  • a communication device including: a processor and a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the communication device performs the above The method in the second aspect or any possible implementation of the second aspect.
  • a communication device including: an input-output interface and a logic circuit, the input-output interface is used to obtain input information and/or output information; the logic circuit is used to perform any or any of the above-mentioned aspects In the method described in any possible implementation manner, the input information is processed and/or the output information is generated.
  • a communication system including: the first device of the method described in the first aspect or the second aspect, other communication devices that communicate with the first device, a second device, and a communication device that communicates with the second device other communication equipment for communication.
  • a computer-readable storage medium stores a computer program; when the computer program runs on a computer, the computer executes any one of the above-mentioned first aspect and the first aspect.
  • a computer-readable storage medium stores a computer program; when the computer program runs on a computer, the computer executes any one of the above-mentioned second aspect and the second aspect.
  • a computer program product including instructions is provided, and when the instructions are executed by a computer, the communication device implements the method in the above-mentioned first aspect and any possible implementation manner of the first aspect.
  • a computer program product including instructions is provided, and when the instructions are executed by a computer, the communication device implements the method in the above-mentioned second aspect and any possible implementation manner of the second aspect.
  • the first indication information in the first control information sent by the first device to the second device may indicate the time unit for sending the first control information and the time unit for sending the last first control information.
  • the time interval between the time units for sending the last reference signal associated with the first control information the second device receives the first control information sent by the first device, and according to the first indication information in the first control information indicates The time interval determines when beam training ends. Therefore, the method can realize cooperation between the first device and the second device during the beam training process.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application.
  • Fig. 2 is a schematic interaction flowchart of a method for beam training in a sidelink according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of time intervals indicated by first indication information in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a frame structure for sending first control information, an AGC signal, and a reference signal by a first device in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of beam measurement according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of reporting a measurement result according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another beam measurement according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of another reporting measurement result according to the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another beam measurement and reporting of measurement results according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of another communication device according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various communication systems, such as long term evolution (long term evolution, LTE), advanced long term evolution (advanced long term evolution, LTE-A) system, universal mobile telecommunications system (universal mobile telecommunications system , UMTS), the 3rd generation partnership project (the 3rd generation partnership project, 3GPP) related cellular system, the 5th generation (5th generation, 5G) mobile communication system, sidelink (sidelink, SL) or future emerging New communication systems, etc.
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • LTE-A advanced long term evolution
  • Universal mobile telecommunications system Universal mobile telecommunications system
  • 3rd generation partnership project the 3rd generation partnership project, 3GPP
  • 5th generation (5th generation, 5G) mobile communication system sidelink (sidelink, SL) or future emerging New communication systems, etc.
  • a communication system applicable to this application includes one or more sending ends and one or more receiving ends.
  • the signal transmission between the sending end and the receiving end may be transmitted through radio waves, or may be transmitted through transmission media such as visible light, laser, infrared, and optical fiber.
  • both the sending end and the receiving end may be terminal devices.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), a user equipment (user equipment, UE), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant ( personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • the user equipment includes vehicle user equipment.
  • the network device may be an evolved Node B (evolved Node B, eNB), a radio network controller (radio network controller, RNC), a Node B (Node B, NB), a base station controller (base station controller, BSC) ), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system in the connection Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be a new air interface (new radio, A gNB or transmission point (for example, TRP or TP) in NR), one or a group (including multiple) antenna panels of a base station in NR, or a network node constituting a gNB or a transmission point, such as
  • the BBU and radio frequency unit can be integrated in the same device, and the device is connected to the antenna array through a cable (such as but not limited to a feeder).
  • the BBU can also be set separately from the RFU, and the two are connected through an optical fiber, and communicate through, for example but not limited to, a common public radio interface (CPRI) protocol.
  • CPRI common public radio interface
  • the RFU is usually called a remote radio unit (RRU), which is connected to the antenna array by cables.
  • the RRU can also be integrated with the antenna array, for example, active antenna unit (active antenna unit, AAU) products currently on the market adopt this structure.
  • the BBU can be further decomposed into multiple parts.
  • the BBU can be further subdivided into a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) according to the real-time performance of the processed services.
  • CU is responsible for processing non-real-time protocols and services
  • DU is responsible for processing physical layer protocols and real-time services.
  • some physical layer functions can be separated from the BBU or DU and integrated in the AAU.
  • FIG. 1 a schematic diagram of a system architecture applicable to this embodiment of the present application is shown.
  • the system includes a plurality of terminal devices.
  • Direct communication (PC5) interface communication is supported between terminal devices, that is, transmission through sidelinks is supported.
  • the sidelink is a protocol designed for direct communication between devices (device to device, D2D) in 3GPP.
  • the sidelink includes two mainstream working modes, including transmission mode 1 and transmission mode 2.
  • transmission mode 1 requires network equipment to schedule communication resources; transmission mode 2 does not require network equipment to schedule communication resources, and terminal equipment/users can communicate by themselves through resource awareness and resource selection.
  • transmission mode 2 can reduce the deployment cost of network equipment, and on the other hand, it can also be applied in places where network signals are difficult to cover. Therefore, in the indoor commercial scenario that the embodiment of the present application focuses on, considering that the penetration loss (penetration loss) may be relatively large, the transmission mode 2 is used for sidelink communication.
  • the channels in NR SL mainly include physical sidelink control channel (physical sidelink control channel, PSCCH), physical sidelink shared channel (physical sidelink shared channel, PSSCH), physical sidelink feedback channel (physical sidelink feedback channel, PSFCH).
  • PSCCH is used for the transmission of sidelink control information 1 (SCI 1)
  • SCI 1 includes the modulation and coding scheme (modulation and coding scheme, MCS) of the data transmitted on the associated/scheduled PSSCH ), data priority, and time-frequency resources occupied by the PSSCH, etc.
  • PSSCH is used for the transmission of SCI 2 and data information; this channel also carries a series of reference signals such as CSI-RS and phase tracing reference signal (PT-RS).
  • the PSFCH is used for transmission of hybrid automatic repeat request (HARQ) feedback information of data.
  • HARQ hybrid automatic repeat request
  • the Tx UE transmits SL CSI-RS on the PSSCH for CSI measurement.
  • CSI channel state information
  • NR SL only supports unicast CSI-RS transmission.
  • the SL CSI-RS pattern is based on the CSI-RS pattern of the cellular network in R15, and its resource mapping method is also consistent with that in R15, but it supports up to two ports, because the PSSCH in SL transmits up to two streams of data.
  • Each physical resource block (PRB) in PSSCH transmits the same CSI-RS pattern, and the SL CSI-RS does not share the same pattern with the demodulation reference signal (DMRS) in PSCCH, SCI2 or PSSCH symbol.
  • Tx UE While sending SL CSI-RS, Tx UE will also instruct Rx UE to measure and report CSI in the CSI request (CSI request) field of SCI 2. After the Rx UE completes the CSI measurement, it will report the measured CSI through the PSSCH. Different from the cellular network, the measurement and reporting of CSI in SL are generally aperiodic. In order to avoid the expiration of CSI information, there is a longest delay for Rx UE to report CSI, which is called latency bound. The delay boundary is configured by the link interface PC5-radio resource control (RRC) between terminal devices, and is sent by the Tx UE to the Rx-UE.
  • RRC link interface PC5-radio resource control
  • the enhancement of SL in the millimeter wave frequency band (frequency range 2, FR2) has become one of the topics of discussion.
  • Tx UE and/or Rx UE need to transmit signals through directional beams.
  • beam training is required. In the embodiment of this application, we mainly consider the initial beam training before the RRC connection is established.
  • beam training is generally performed with the help of periodic reference signals.
  • SSB signal synchronization block
  • beacon beacon
  • initial beam training is done via SSB, where each synchronization signal block is sent by a beam.
  • the SSB in the cellular network is periodic, and its period is two frames (20ms), and the SSBs in one period are all in the same half frame.
  • SSB has a predefined transmission pattern, which is determined by the operating frequency band and subcarrier spacing. Therefore, the Rx UE can determine which positions measure the quality of the beam through the SSB within the 20ms period through the above mode, and when the measurement ends.
  • the access point transmits a beacon in the beacon transmission interval (beacon transmission interval, BTI) of a beacon interval (beacon interval, BI), thereby configuring network side information and performing AP Send beam training.
  • BTI beacon transmission interval
  • BI beacon interval
  • the AP does not switch the transmit antenna array in one BTI, multiple BTIs are often required to complete the transmit beam training.
  • the transmit sector sweep span (TXSS Span) field indicates how many BIs the AP needs to scan all the transmit beams.
  • the BI period is generally 100ms, after the terminal device decodes the TXSS Span field, it can calculate how long it will take for the AP beam scan to end.
  • the time slots for beam training are likely to be aperiodic/non-continuous. Therefore, it is impossible to inform Rx-UE of the end time of beam training through a counting method similar to TXSS Span.
  • the time-frequency resources used for beam training are periodic or equally spaced, because the time-frequency resources used for beam training are obtained by Tx UE through resource awareness/resource selection , which makes it impossible for the Rx UE to know the start and end time of the Tx UE beam scanning in advance, and there is no fixed reporting time of the measurement results, which brings difficulties to the coordination between the Tx UE and the Rx UE during the beam training process.
  • the embodiment of the present application proposes a beam training method in the sidelink, which can realize the coordination between Tx UE and Rx UE in the beam training process.
  • This method is applicable to indoor commercial scenarios on FR2.
  • the Tx UE and Rx UE for beam training have been synchronized by a synchronization source, but the RRC connection has not been established yet.
  • the first device may be a Tx UE
  • the second device may be a Rx UE
  • FIG. 2 a schematic interaction flowchart of a method 200 for beam training in a sidelink provided by an embodiment of the present application is shown.
  • the first device sends N pieces of first control information to the second device respectively in N time units.
  • the N pieces of first control information correspond to the N time units one by one.
  • the first control information includes first indication information, and the first control information includes first indication information.
  • the indication information is used to indicate the time interval between the time unit associated with the first control information and the last time unit associated with the first control information, and the second device can know the time unit at which the beam training ends through the first indication information, wherein , N is a positive integer.
  • the first control information may be SCI 1 and/or SCI 2, and the time unit associated with the first control information is a beam training time unit.
  • At least two pieces of first control information among the N pieces of first control information are different. It can be understood that, among the N pieces of first control information, at least two of the first control information are associated with different spatial domain transmission filters, or, among the N pieces of first control information, at least two of the first control information are associated with different DMRS ports.
  • the time unit associated with the first control information may be a time unit for sending the first control information, or may be a time unit for sending a reference signal associated with the first control information.
  • the time unit associated with the last first control information may be the time unit for sending the last first control information, or the time unit for sending the reference signal associated with the last first control information.
  • the time interval between the time unit associated with the first control information and the time unit associated with the last first control information may be the time unit for sending the first control information and the time unit for sending the last first control information
  • the time interval between them may be the time interval between the time unit for sending the reference signal associated with the first control information and the time unit for sending the last reference signal associated with the first control information, or it may be the time interval for sending the first control information
  • the time interval between the time unit and the time unit for sending the reference signal associated with the last first control information may also be the time interval between the time unit for sending the reference signal associated with the first control information and the time unit for sending the last first control information time interval between. This application does not specifically limit it.
  • the time interval indicated by the first indication information may be the time interval between the end of the time unit associated with the first control information and the end of the time unit associated with the last control information, and the second device may be informed when the beam training ends through the first indication information .
  • FIG. 3 a schematic diagram of time intervals indicated by the first indication information in the embodiment of the present application is shown.
  • the time interval indicated by the first indication information may also be the time interval between the end of the time unit associated with the first control information and the end of the time unit associated with the last control information; the time interval indicated by the first indication information may also be is the time interval between the beginning of the time unit associated with the first control information and the end of the time unit associated with the last control information, and the time interval indicated by the first indication information can also be the time interval between the end of the time unit associated with the first control information and the end of the last control information The time interval between the start of the time unit of information association. This application does not specifically limit it.
  • the first control information further includes a demodulation reference signal of the first control information; or, the first control information further includes scheduling information of the reference signal. That is to say, the reference signal used for measuring the spatial domain transmit filter of the first device may be carried in the first control information, or may be scheduled to be sent through the first control information.
  • the time unit indicated by the scheduling information of the reference signal may be after the time unit for sending the first control information.
  • the time unit indicated by the scheduling information of the reference signal is after the time unit of sending the first control information, it can be understood that the first control information schedules the reference signal on the data channel across time units.
  • the second device performs blind detection on the first control information, and after the second device detects the first control information, it transmits the scheduling information of the reference signal in the first control information to
  • the indicated time unit switches the spatial domain receiving filter to receive the reference signal on the data channel respectively, in order to reserve enough time for the second device to switch the spatial domain receiving filter, including the time for the second device to decode the first control information and switch the spatial domain
  • the time of receiving the filter, the first control information in this application can schedule the reference signal on the data channel across time units.
  • the time unit for sending the first control information may be adjacent to the time unit for sending the reference signal scheduled by the first control information, or may be separated by one or more time units. Depends on resource awareness and resource selection.
  • the time unit for sending the first control information and the time unit for sending the reference signal scheduled by the first control information may also be the same time unit.
  • a time unit may be one or several symbols, one or several time slots (slot), one or several mini-slots (mini-slot), one or several subframes, or one or several frames.
  • One or more time units can be continuous in time or discrete.
  • the second device receives N pieces of first control information from the first device in N time units, where the N time units are in one-to-one correspondence with the N pieces of first control information.
  • the second device may use a predefined spatial domain receiving filter to receive the first control information sent by the first device, or may use a pre-configured spatial domain receiving filter to receive the first control information sent by the first device, wherein the pre-configured
  • the defined spatial domain receiving filter is a default or self-selected spatial domain receiving filter of the second device, and the preconfigured spatial domain receiving filter may be a spatial domain receiving filter determined in the latest beam training.
  • the second device measures the demodulation reference signal sent by the first device to obtain the reference signal received power (reference signal received power (RSRP)/signal to interference noise ratio (signal to interference noise ratio, SINR)/received signal strength indicator (received signal strength indicator, RSSI) and other information.
  • reference signal received power reference signal received power
  • SINR interference noise ratio
  • RSSI received signal strength indicator
  • the first device sends one or more reference signals to the second device in the time unit indicated by the reference signal scheduling information in the first control information, and the one or more The plurality of reference signals are used by the second device to measure the spatial domain transmit filter of the first device.
  • the second device receives the one or more reference signals sent by the first device at the time unit indicated by the scheduling information of the reference signal in the first control information.
  • Implementation mode 1 The time unit for sending the first control information and the time unit for sending the reference signal scheduled by the first control information are across time units.
  • the first device sends one or more time units scheduled by the first control information.
  • the spatial domain transmit filters of two reference signals may be the same or different.
  • the first control information may also include sixth indication information, where the sixth indication information is used to indicate whether one or more reference signals in the reference signals associated with the first control information are transmitted using the same spatial domain transmission filter. of.
  • the sixth indication information in the first control information indicates that one or more reference signals in the reference signals associated with the first control information are sent using the same spatial domain transmit filter
  • the second device in the first control information In the time unit indicated by the scheduling information of the reference signal, the spatial receiving filter is switched to receive one or more reference signals sent by the first device.
  • the first device switches the spatial domain transmit filter to send one or more reference signals to the second device/the second device switches the spatial domain receive filter to receive one or more reference signals transmitted by the first device, it may cause the second
  • the total energy of the signal received by the device has a large change. Therefore, the first device sends one or more automatic gain control (automatic gain control, AGC) signals before sending each reference signal, which can alleviate the signal received by the second device.
  • AGC automatic gain control
  • the first device may send the AGC signal to the second device in at least one first symbol in the time unit indicated by the scheduling information of the reference signal in the first control information;
  • the reference signal is sent to the second device by using the spatial transmission filter for sending the AGC signal, wherein the first symbol and the second symbol are consecutive symbols, and the first symbol before the second symbol.
  • FIG. 4 shows a schematic diagram of a frame structure in which the first device sends the first control information, the AGC signal and the reference signal in the embodiment of the present application.
  • the reference signal is sent by the first device on the PSSCH, and the time domain resource of the PSSCH used to send the reference signal includes a time unit indicated by the scheduling information of the reference signal.
  • the reference signal may be a CSI-RS or a sidelink-signal synchronization block (sidelink-signal synchronization block, SL-SSB).
  • the CSI-RS may be configured by the system or configured for the resource pool.
  • the second device detects the first control information sent by the first device by using a predefined or preconfigured spatial receiving filter, it detects the first control information in the time unit indicated by the scheduling information of the reference signal in the first control information.
  • RSRP/SINR/RSSI of one or more reference signals scheduled by the first control information RSRP/SINR/RSSI of one or more reference signals scheduled by the first control information.
  • Implementation mode 2 The time unit for sending the first control information and the time unit for sending the reference signal scheduled by the first control information are the same time unit. In this case, considering that the second device does not have time to demodulate the sixth indication information in the first control information to determine whether to switch to a different spatial domain receiving filter, therefore, it can be defaulted to adopt the The spatial domain transmit filter is different. Correspondingly, the second device may use the same predefined/preconfigured spatial domain receiving filter to receive one or more reference signals scheduled by the first control information in the time unit indicated by the scheduling information of the reference signals in the first control information .
  • the first control information includes a demodulation reference signal of the first control information.
  • the first control information and the demodulation reference signal of the first control information are sent using the same spatial domain sending filter.
  • the first control information may be carried on the PSCCH or on the PSSCH.
  • the first control information may be carried in RRC signaling, sent together with the RRC connection request, and carried on the PSSCH.
  • the second device receives the first control information sent by the first device by using a predefined or preconfigured spatial domain receiving filter, and measures a demodulation reference signal of the first control information.
  • the second device reports a measurement result to the first device, where the measurement result includes second indication information, where the second indication information is used to indicate the identity of one or more reference signals among the M reference signals associated with the first control information .
  • the N pieces of first control information include M pieces of first control information, and M is a positive integer less than or equal to N. It should be understood that the second device may only receive part of the first control information in the N pieces of first control information, or the second device may receive all the first control information in the N pieces of first control information, and the second device receives All received first control information is referred to as M pieces of first control information.
  • the second indication information may only indicate the identity of one reference signal among the M reference signals associated with the first control information, and the RSRP/SINR/RSSI of the reference signal is the largest.
  • the second indication information may also indicate identities of multiple reference signals among the M reference signals associated with the first control information, and the RSRP/SINR/RSSI of the multiple reference signals are greater than or equal to a certain threshold.
  • the second indication information further indicates identities of one or more reference signals among the M reference signals associated with the first control information and RSRP/SINR/RSSI of the one or more reference signals.
  • the second indication information may indicate the identities of the M reference signals associated with the first control information and the RSRP/SINR/RSSI of the M reference signals associated with the first control information, that is, the RSRP/SINR/RSSI of all the reference signals measured by the second device. RSRP/SINR/RSSI of all reference signals identified and measured. This embodiment of the present application does not specifically limit it.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information.
  • the reference signals associated with the first control information are one or more reference signals scheduled by the first control information; the sub-time units for sending the one or more reference signals scheduled by the first control information are different.
  • the first control information further includes third indication information
  • the third indication information is used to indicate the time unit range for the second device to report the measurement result
  • the time unit range for reporting the measurement result can be understood as a report window (report window)
  • the starting point of the time unit range may be the starting point of the time unit for sending the n-th first control information among the N pieces of first control information, where n is a positive integer less than or equal to N.
  • the starting point of the time unit range may also be the starting point of the time unit for sending the first first control information among the N pieces of first control information.
  • the third indication information may also only indicate the deadline for the second device to report the measurement result. The deadline can be determined by the system frame number and time slot number.
  • the first device sends the second device the time unit range used to instruct the second device to report the measurement result through the first control information, which can prevent the second device from reporting the measurement result for a long time or the RSRP/SINR/RSSI measured by the second device from expiring .
  • the second device reports the measurement result to the first device within the time unit range for reporting the measurement result indicated by the third indication information.
  • the second device determines the reporting time of the measurement result through resource awareness and resource selection within the time unit range for reporting the measurement result indicated by the third indication information
  • the unit selects a certain airspace transmission filter to send the second control information to the first device, and the airspace transmission filter may be the airspace transmission filter with the largest RSRP/SINR/RSSI of the reference signal measured by the second device or the second device pre-set Defined/preconfigured transmit filters.
  • the second control information includes the identifier of the first spatial receiving filter of the first device and the scheduling information of the measurement results, and the identifier of the spatial receiving filter is used to instruct the first device to use the first spatial receiving filter to receive the first 2.
  • the second control information can be SCI 1 and/or SCI 2, and can also be carried in the PSSCH. It should be understood that, for a certain filter of the first device or the second device, the spatial receiving filter and the spatial transmitting filter are the same filter.
  • the first spatial domain receiving filter may be a spatial domain receiving filter for transmitting reference signals whose reference signal received power of M reference signals associated with the first control information is greater than or equal to a preset threshold.
  • the first spatial domain receiving filter may be a spatial domain receiving filter for transmitting the reference signal with the highest received power of the reference signal of the M reference signals associated with the first control information.
  • the preset threshold may be predefined, may be determined by the second device, or may be determined and indicated to the second device by the first device, which is not specifically limited.
  • the second device determines a series of The time unit for reporting measurement results. At least one of the above time units is within the range of the time unit indicated by the first device for reporting the measurement result.
  • the second device transmits the second control information and the measurement result by using multiple spatial domain transmission filters in the above time unit.
  • the first device does not have time to demodulate the identifier of the first spatial receiving filter included in the second control information. Therefore, in implementation manners 2 and 3, the second control information no longer includes the identifier of the first spatial domain receiving filter.
  • the first device will use the same predefined/preconfigured airspace receiving filter to receive the second control information sent by the second device and the measurement result scheduled by the second control information.
  • the first device receives the measurement result reported by the second device.
  • the measurement result includes second indication information, where the second indication information is used to indicate identities of one or more reference signals among the M reference signals associated with the first control information.
  • the second indication information also indicates identities of one or more reference signals among the M reference signals associated with the first control information and RSRP/SINR/RSSI of the one or more reference signals.
  • the first control information may further include third indication information, where the third indication information is used to indicate a time unit range within which the second device reports the measurement result. Specifically, the first device receives the measurement result reported by the second device within the time unit range for reporting the measurement result indicated by the third indication information.
  • the first device Before the first device receives the measurement result reported by the second device, the first device may use a predefined spatial domain receiving filter to receive the second control information from the second device within the time unit range of reporting the measurement result, or The second control information from the second device is received by using a preconfigured spatial domain receiving filter.
  • the predefined spatial domain receiving filter is a default or selected spatial domain receiving filter of the first device, and the preconfigured spatial domain receiving filter may be a spatial domain receiving filter determined in the latest beam training.
  • the second control information includes the identification of the first spatial receiving filter of the first device and the scheduling information of the measurement results, the measurement results of the first device in the second control information In the time unit indicated by the scheduling information, the first airspace receiving filter is used to receive the measurement result reported by the second device.
  • the second device sends to the first device the identifier of the first airspace receiving filter for instructing the first device to use the first airspace receiving filter to receive the measurement result reported by the second device through the second control information.
  • the identifier of the spatial domain receiving filter is determined according to the identifiers of the reference signals whose reference signal received powers of the M reference signals associated with the first control information are greater than or equal to a preset threshold.
  • the first spatial receiving filter is a spatial receiving filter with better transmission performance in the first device. The first device uses the first spatial receiving filter to receive the measurement result sent by the second device, which can improve the reception of the measurement result by the first device. accuracy.
  • the first control information may further include fourth indication information, which is used to indicate the sequence number of the time unit sending the first control information in N time units, that is, the fourth The indication information is used to indicate which time unit in the current round of beam training the time unit for sending the first control information is.
  • the value of the sequence number may be in the forward sequence 0-N-1 or 1-N, or in the reverse sequence N-1-0 or N-1, etc.
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal; or, the identifier of the reference signal is determined according to the first control information associated with the reference signal or, the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal or, the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal. It should be understood that there is a one-to-one correspondence between the time interval indicated by the first indication information and the sequence number indicated by the fourth indication information.
  • One piece of first control information may schedule one or more reference signals, and each reference signal is sent in a sub-time unit in the time unit associated with the first control information. For example, when the time unit is a time slot, the sub-time unit may be a symbol.
  • the first control information may further include sixth indication information, where the sixth indication information is used to indicate whether one or more reference signals in the reference signals associated with the first control information are transmitted using the same spatial domain transmission filter.
  • the reference signal The identity is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal, or the identity of the reference signal is determined according to the fourth indication information in the first control information associated with the reference signal determined by the serial number.
  • the second device may switch different spatial domain receiving filters to receive one or more reference signals in the reference signals associated with the first control information.
  • the identification of the reference signals is based on the The time interval indicated by the first indication information in the first control information of the signal and the sequence number of the sub-time unit for sending the reference signal, or, the identification of the reference signal is determined according to the first control information associated with the reference signal The sequence number indicated by the four indication information and the sequence number of the sub-time unit for sending the reference signal are determined.
  • the identifier of the reference signal is based on the first The time interval indicated by the indication information and the serial number of the sub-time unit that sends the reference signal are determined, or, the identification of the reference signal is based on the sequence number indicated by the fourth indication information in the first control information associated with the reference signal and the number of the sub-time unit that sends the reference signal It is determined by the sequence number of the sub-time unit of the reference signal.
  • the identifier of the reference signal may be determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal; or, the identifier of the reference signal may be determined according to the time interval associated with the reference signal determined by the sequence number indicated by the fourth indication information in the first control information.
  • the first device may determine, according to the identifier of the reference signal, a spatial domain transmission filter for transmitting the reference signal. Therefore, after receiving the measurement result reported by the second device, the first device may determine a spatial domain transmission filter with better transmission performance in the first device according to the identifier of the reference signal in the measurement result.
  • the first device may also determine different airspaces in the first device according to the identifiers of one or more reference signals among the M reference signals associated with the first control information in the measurement result and the RSRP/SINR/RSSI of the one or more reference signals RSRP/SINR/RSSI corresponding to the transmit filter respectively.
  • the second device may add a transmission configuration indicator (transmission configuration indicator, TCI) field in the second control information, and the TCI field may be The value of is the time interval indicated by the first indication information in a certain first control information.
  • TCI transmission configuration indicator
  • the value range of the time interval indicated by the first indication information may be larger than the sequence number indicated by the fourth indication information, then the time interval indicated by the first indication information
  • the reporting overhead is also large.
  • the second device can indicate the identity of the first spatial receiving filter used by the first device to receive the measurement result by sending the sequence number indicated by the fourth indication information, so that the overhead can be reduced .
  • the value of the TCI field may be a sequence number indicated by fourth indication information in certain first control information.
  • the number of reference signals transmitted by the first device using each spatial domain transmit filter may not exactly match the number of spatial domain receive filters of the second device .
  • the number of reference signals sent by the first device using each spatial domain transmit filter may be smaller than the number of spatial domain receive filters of the second device. Therefore, the second device may use the measurement result to inform the first device whether the scanning of the spatial receiving filter of the second device is completed, so as to trigger the first device to perform a next round of beam training.
  • the measurement result may further include fifth indication information, where the fifth indication information is used to indicate the number of unused spatial reception filters in the second device or whether the second device uses all the spatial reception filters. device. For example, if the second device uses all the spatial receiving filters, the fifth indication information may be used to indicate that the second device uses all the spatial receiving filters.
  • the fifth indication information may be indicated by one bit, for example: "1" indicates that the number of unused spatial receiving filters in the second device is greater than 0, and "0" indicates that the second device uses all the spatial receiving filters. Alternatively, “0" represents that the number of unused spatial receiving filters in the second device is greater than 0, and “1” represents that the second device uses all spatial receiving filters. This application does not specifically limit it.
  • the first device may determine whether to perform a next round of beam training according to the fifth indication information in the measurement result. If the fifth indication information indicates that the number of unmeasured spatial reception filters in the second device is greater than or equal to 1, or the fifth indication information indicates that some spatial reception filters in the second device are not used, the first device determines to perform The next round of beam training.
  • the first device does not receive the measurement result reported by the second device within the time unit of reporting the measurement result, it also considers that this round of beam training is unsuccessful, and the first device will continue to perform resource sensing and Resource selection for the next round of beam training.
  • the first control information may further include seventh indication information, where the seventh indication information is used to indicate that the time unit for sending the first control information is a beam training time unit. Therefore, if the second device detects the first control information, it knows that the current time unit is a beam training time unit, and according to the time unit associated with the first control information indicated by the first indication information and the last first control information The time interval between associated time units determines the time unit at which beam training ends.
  • the second control information may further include eighth indication information, where the eighth indication information is used to indicate that the time unit for sending the second control information is the beam reporting time unit. Therefore, if the first device detects the second control information, it knows that the current time unit is a beam reporting time unit.
  • the first indication information in the first control information sent by the first device to the second device may indicate the time unit for sending the first control information and the time unit for sending the last first control information.
  • the time interval between the time units for sending the last reference signal associated with the first control information the second device receives the first control information sent by the first device, and according to the first indication information in the first control information indicates The time interval determines when beam training ends. Therefore, the method can realize cooperation between the first device and the second device during the beam training process.
  • FIG. 5 a schematic diagram of a beam measurement according to an embodiment of the present application is shown, which is applicable to the first implementation manner above. Take the time unit as a time slot and the sub-time unit as a symbol as an example.
  • the first device sends the first control information to the second device and the reference signal associated with the first control information is sent by using the trained spatial domain transmission filter; the second device receives the first control information sent by the first device by using the preset
  • the reference signal associated with the first control information sent by the second device received by the defined spatial domain transmit filter is received by using the trained spatial domain receive filter.
  • the spatial domain transmit filter may be understood as a transmit beam
  • the spatial domain receive filter may be understood as a receive beam.
  • FIG. 6 a schematic diagram of reporting a measurement result according to an embodiment of the present application is shown, which is applicable to the first implementation manner above. Take the time unit as a time slot and the sub-time unit as a symbol as an example.
  • the second control information sent by the second device to the first device and the measurement results are sent using the trained airspace transmission filter; the second control information sent by the second device is received by the first device using a predefined airspace transmission filter Yes, the first device may receive the measurement result sent by the second device by using the spatial domain receiving filter indicated by the second control information or the spatial domain receiving filter predefined by the second device.
  • FIG. 7 a schematic diagram of another beam measurement according to the embodiment of the present application is shown, which is applicable to the second implementation manner above.
  • the first device sends the first control information to the second device and the reference signal associated with the first control information is sent by using a trained spatial domain transmission filter; the second device receives the first control information and the first control information sent by the first device.
  • a reference signal associated with the control information is received using a predefined spatial domain transmit filter.
  • FIG. 8 it shows another schematic diagram of reporting measurement results according to the embodiment of the present application, which is applicable to the second implementation manner above. Take the time unit as a time slot and the sub-time unit as a symbol as an example.
  • the second device sends the second control information and measurement results to the first device using the trained airspace transmission filter; the first device receives the second control information and measurement results sent by the second device using a predefined airspace transmission received by the filter.
  • FIG. 9 shows another schematic diagram of beam measurement and reporting of measurement results according to the embodiment of the present application, which is applicable to the third implementation manner above.
  • the first device sends the first control information to the second device and the reference signal associated with the first control information is sent by using a trained spatial domain transmission filter; the second device receives the first control information and the first control information sent by the first device.
  • a reference signal associated with the control information is received using a predefined spatial domain transmit filter.
  • the second control information sent by the second device to the first device and the measurement results are sent using the trained airspace transmission filter; the second control information sent by the second device is received by the first device using a predefined airspace transmission filter Yes, the measurement result sent by the second device received by the first device is received by using the trained spatial domain receiving filter.
  • FIG. 10 shows a schematic block diagram of a communication device 1000 according to the embodiment of the present application.
  • the apparatus may be applied to the first device in the embodiment of the present application.
  • the communication device 1000 includes:
  • a sending module 1010 configured to send N pieces of first control information to the second device respectively in N time units, where the first control information includes first indication information, and the first indication information is used to indicate that the first The time interval between the time unit associated with the control information and the last time unit associated with the first control information, where N is a positive integer;
  • the receiving module 1020 is configured to receive the measurement result reported by the second device, the measurement result includes second indication information, and the second indication information is used to indicate one or more of the M reference signals associated with the first control information Referring to the identifier of the signal, the N pieces of first control information include the M pieces of first control information, where M is a positive integer less than or equal to N.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information, or the reference signal associated with the first control information is one or more a reference signal.
  • the second indication information is used to indicate identities of one or more reference signals among the M reference signals associated with the first control information and reference signal received power of the one or more reference signals.
  • the first control information further includes third indication information, where the third indication information is used to indicate a time unit range for the second device to report the measurement result;
  • the receiving module 1020 is specifically configured to, within the range of the time unit, receive the measurement result reported by the second device.
  • the receiving module 1020 is further configured to receive second control information within the range of the time unit, where the second control information includes the identifier of the first spatial receiving filter, and the first spatial receiving filter The identifier of the receiver is used for the receiving module to receive the measurement result by using the first spatial receiving filter;
  • the receiving module 1020 is specifically configured to, within the range of the time unit, use the first spatial domain receiving filter to receive the measurement result.
  • the identifier of the first spatial receiving filter is determined according to the identifiers of reference signals whose reference signal received powers of the M reference signals associated with the first control information are greater than or equal to a preset threshold.
  • the first control information further includes fourth indication information, where the fourth indication information is used to indicate a sequence number of the time unit sending the first control information in the N time units.
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal; or,
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal; or,
  • the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal; or,
  • the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal.
  • the first control information further includes sixth indication information, and the sixth indication information is used to indicate whether one or more reference signals in the reference signals associated with the first control information are sent in the same airspace sent by the filter.
  • the measurement result further includes fifth indication information, where the fifth indication information is used to indicate the number of unused spatial domain receiving filters in the second device.
  • FIG. 11 shows a schematic block diagram of a communication device 1100 in the embodiment of the present application.
  • the apparatus may be applied to the second device in the embodiment of the present application.
  • the communication device 1100 includes:
  • the receiving module 1110 is configured to receive N pieces of first control information from the first device in N time units, the first control information includes first indication information, and the first indication information is used to indicate the first The time interval between the time unit associated with the control information and the last time unit associated with the first control information, where N is a positive integer;
  • a sending module 1120 configured to report a measurement result to the first device, where the measurement result includes second indication information, and the second indication information is used to indicate one or more of the M pieces of reference signals associated with the first control information IDs of reference signals, where M is a positive integer less than or equal to N.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information, or the reference signal associated with the first control information is one or more a reference signal.
  • the second indication information is used to indicate identities of one or more reference signals among the M reference signals associated with the first control information and reference signal received power of the one or more reference signals.
  • the first control information further includes third indication information, where the third indication information is used to instruct the sending module to report the time unit range of the measurement result;
  • the sending module 1120 is specifically configured to report the measurement result to the first device within the range of the time unit.
  • the sending module 1120 is further configured to, within the range of the time unit, send second control information to the first device, where the second control information includes an identifier of the first airspace receiving filter, The identifier of the first spatial domain reception filter is used by the first device to receive the measurement result by using the first spatial domain reception filter.
  • the identifier of the first spatial receiving filter is determined according to the identifiers of reference signals whose reference signal received powers of the M reference signals associated with the first control information are greater than or equal to a preset threshold.
  • the first control information further includes fourth indication information, where the fourth indication information is used to indicate a sequence number of the time unit sending the first control information in the N time units.
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal; or,
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal; or,
  • the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal; or,
  • the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal.
  • the first control information further includes sixth indication information, and the sixth indication information is used to indicate whether one or more reference signals in the reference signals associated with the first control information are sent in the same airspace sent by the filter.
  • the measurement result further includes fifth indication information, where the fifth indication information is used to indicate the number of unused spatial receiving filters in the receiving module.
  • Embodiment 1 a communication device, comprising: a sending module, configured to send N pieces of first control information to a second device respectively in N time units, where the first control information includes first indication information, and the first The indication information is used to indicate the time interval between the time unit associated with the first control information and the last time unit associated with the first control information, where N is a positive integer;
  • the receiving module is configured to receive the measurement result reported by the second device, the measurement result includes second indication information, and the second indication information is used to indicate one or more reference signals in the M reference signals associated with the first control information An identifier of a signal, where the N pieces of first control information include the M pieces of first control information, where M is a positive integer less than or equal to N.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information, or the reference signal associated with the first control information is the first One or more reference signals to control information scheduling.
  • the second indication information is used to indicate the identity of one or more reference signals among the reference signals associated with the M first control information and the The reference signal received power of one or more reference signals.
  • the first control information further includes third indication information, and the third indication information is used to instruct the second device to report the time unit range of the measurement result;
  • the receiving module is specifically configured to, within the range of the time unit, receive the measurement result reported by the second device.
  • the receiving module is further configured to receive second control information within the range of the time unit, where the second control information includes the identifier of the first spatial receiving filter, so The identification of the first spatial receiving filter is used for the receiving module to receive the measurement result by using the first spatial receiving filter;
  • the receiving module is specifically configured to, within the range of the time unit, use the first spatial domain receiving filter to receive the measurement result.
  • the identification of the first spatial domain reception filter is based on reference signals whose reference signal reception power of the reference signals associated with the M first control information is greater than or equal to a preset threshold Identified.
  • the first control information further includes fourth indication information, and the fourth indication information is used to instruct to send the first control information.
  • Embodiment 8 according to any one of Embodiment 1 to Embodiment 7, the identification of the reference signal is based on the time interval indicated by the first indication information in the first control information associated with the reference signal determined; or,
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal; or,
  • the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal; or,
  • the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal.
  • the measurement result further includes fifth indication information, and the fifth indication information is used to indicate that the second device has not been The number of spatial receive filters to use.
  • the first control information further includes sixth indication information, and the sixth indication information is used to indicate that the first control information Whether one or more reference signals in the associated reference signals are transmitted using the same spatial domain transmit filter.
  • Embodiment 1 another communication apparatus includes: a receiving module, configured to receive N pieces of first control information from a first device in N time units, where the first control information includes first indication information, and the The first indication information is used to indicate the time interval between the time unit associated with the first control information and the last time unit associated with the first control information, where N is a positive integer;
  • a sending module configured to report a measurement result to the first device, where the measurement result includes second indication information, and the second indication information is used to indicate one or more of the M reference signals associated with the first control information
  • An identifier of a reference signal where M is a positive integer less than or equal to N.
  • the reference signal associated with the first control information is a demodulation reference signal of the first control information, or the reference signal associated with the first control information is the first One or more reference signals to control information scheduling.
  • the second indication information is used to indicate the identity of one or more reference signals among the reference signals associated with the M first control information and the one or more Reference signal received power of multiple reference signals.
  • the first control information further includes third indication information, and the third indication information is used to instruct the sending module to report the The time unit range of the measurement result; the sending module is specifically configured to report the measurement result to the first device within the time unit range.
  • the sending module is further configured to, within the range of the time unit, send second control information to the first device, and the second control information includes the first airspace An identifier of a receiving filter, where the identifier of the first spatial domain receiving filter is used by the first device to receive the measurement result by using the first spatial domain receiving filter.
  • the identification of the first spatial domain reception filter is based on reference signals whose reference signal reception power of the reference signals associated with the M first control information is greater than or equal to a preset threshold Identified.
  • the first control information further includes fourth indication information, and the fourth indication information is used to instruct to send the first control information.
  • Embodiment 8 according to any one of Embodiment 1 to Embodiment 7, the identification of the reference signal is based on the time interval indicated by the first indication information in the first control information associated with the reference signal determined; or,
  • the identifier of the reference signal is determined according to the time interval indicated by the first indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal; or,
  • the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal; or,
  • the identifier of the reference signal is determined according to the sequence number indicated by the fourth indication information in the first control information associated with the reference signal and the sequence number of the sub-time unit for sending the reference signal.
  • the measurement result further includes fifth indication information, and the fifth indication information is used to indicate that the receiving module is not used The number of spatial domain receive filters.
  • the first control information further includes sixth indication information, and the sixth indication information is used to indicate that the first control information Whether one or more reference signals in the associated reference signals are transmitted using the same spatial domain transmit filter.
  • the embodiment of the present application provides a communication device 1200, as shown in Fig. 12, which shows a schematic block diagram of the communication device 1200 in the embodiment of the present application.
  • the communication device 1200 includes: a processor 1210, a memory 1220 and a communication interface 1230;
  • the memory 1220 is used to store executable instructions
  • the processor 1210 is coupled to the memory 1220 through the communication interface 1230, and the processor 1210 is configured to invoke and execute the executable instructions in the memory 1220, so as to implement the method in the embodiment of the present application.
  • the communication device may be the first device or the second device in this embodiment of the present application.
  • the above-mentioned processor 1210 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Program logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the embodiment of the present application further provides a communication device, the communication device includes an input and output interface and a logic circuit, the input and output interface is used to obtain input information and/or output information; the logic circuit is used to perform the above-mentioned
  • the method in any method embodiment performs processing and/or generates output information according to input information.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program for implementing the method in the above method embodiment is stored.
  • a computer program for implementing the method in the above method embodiment is stored.
  • the computer program runs on the computer, the computer can implement the methods in the above method embodiments.
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer program code, and when the computer program code is run on the computer, the method in the above method embodiment is executed.
  • the embodiment of the present application also provides a chip, including a processor, the processor is connected to a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the The chip executes the method in the above method embodiment.
  • the term "and/or” in this application is only an association relationship describing associated objects, indicating that there may be three relationships, for example, A and/or B may indicate: A exists alone, and A and B exist simultaneously , there are three cases of B alone.
  • the character "/" in this article generally means that the contextual objects are an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A , B and C, can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, C and B exist simultaneously, A, B and C exist simultaneously, these seven kinds Condition.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种侧行链路中波束训练的方法和装置,能够实现在波束训练过程中第一设备与第二设备之间的协同。该方法包括:第一设备在N个时间单元分别向第二设备发送N个第一控制信息,第一控制信息中包括第一指示信息,该第一指示信息用于指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔;第一设备接收第二设备上报的测量结果,该测量结果中包括第二指示信息,该第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,N个第一控制信息包括该M个第一控制信息,N为正整数,M为小于或等于N的正整数。

Description

侧行链路中波束训练的方法和装置
本申请要求申请日为2022年01月10日、申请号为202210022278.3、发明名称为“一种扩展现实业务的传输方法及装置”的专利申请的优先权以及申请日为2022年01月14日、申请号为202210045043.6、发明名称为“侧行链路中波束训练的方法和装置”的专利申请的优先权,其全部内容通过引用的方式包含于本申请之中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种侧行链路中波束训练的方法和装置。
背景技术
侧行链路(sidelink,SL)是3GPP中针对设备与设备(device to device,D2D)之间直接通信设计的协议。在新无线(new radio,NR)R16版本中,侧行链路包括两种主流的工作模式,包括传输模式1(transmission mode 1)和传输模式2(transmission mode 2)。其中,传输模式1需要网络设备调度通信资源;传输模式2不需要网络设备调度通信资源,终端设备可以自行通过资源感知(sensing)和资源选择(selection)进行通信。目前,在室内商用场景下,考虑到可能有较大的穿损,因此采用传输模式2进行SL通信。
发送端用户设备(transmitter user equipment,Tx UE)在物理侧行链路共享信道(physical sidelink shared channel,PSSCH)上传输信道状态信息参考信号(channel state information reference signal,CSI-RS)用于信道状态信息(channel state information,CSI)测量。Tx UE在发送SL CSI-RS的同时,也会在侧行链路控制信息2(sidelink control information 2,SCI2)的CSI请求(CSI request)字段中指示接收端用户设备(receiver user equipment,Rx UE)进行CSI的测量和上报。当Rx UE完成CSI测量后,会通过PSSCH上报测量的CSI。
在R18中,SL在毫米波频段(frequency range 2,FR2)上的增强成为讨论的课题之一。在毫米波频段上,为了克服高路损,Tx UE和/或Rx UE需要通过定向波束传输信号。为了确定收发端之间最佳的波束对,需要进行波束训练。在蜂窝网络和802.11ad中,针对FR2的初始波束连接,一般都借助周期性的参考信号进行波束训练,Rx UE可以得知波束测量何时结束。目前,在传输模式2的SL通信模式下,用于波束训练的时频资源是Tx UE通过资源感知/资源选择得到的,无法保证用于波束训练的时频资源是周期的或者等间隔的。因此,Rx UE无法事先得知Tx UE波束扫描的起止时间,也没有固定的测量结果的上报时间,给波束训练过程中Tx UE和Rx UE的协同带来困难。
发明内容
本申请提供了一种侧行链路中波束训练的方法和装置,能够实现在波束训练过程中第一设备与第二设备之间的协同。
第一方面,提供一种侧行链路中波束训练的方法,该方法可以由终端设备或终端设备侧的芯片或芯片***执行。该方法包括:第一设备在N个时间单元分别向第二设备发送N 个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;所述第一设备接收第二设备上报的测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,所述N个第一控制信息包括所述M个第一控制信息,其中,M为小于或等于N的正整数。
基于上述方案,第一设备向第二设备发送的第一控制信息中的第一指示信息可以指示发送该第一控制信息的时间单元与发送最后一个第一控制信息的时间单元或发送最后一个第一控制信息关联的参考信号的时间单元之间的时间间隔,或,指示发送第一控制信息关联的参考信号的时间单元与发送最后一个第一控制信息的时间单元或发送最后一个第一控制信息关联的参考信号的时间单元之间的时间间隔,第二设备根据该时间间隔可以确定第一设备波束训练结束的时间。因此,该方法能够实现在波束训练过程中第一设备与第二设备之间的协同。
结合第一方面,在第一方面的某些实现方式中,所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制信息调度的一个或多个参考信号。
结合第一方面,在第一方面的某些实现方式中,所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
结合第一方面,在第一方面的某些实现方式中,所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述第二设备上报所述测量结果的时间单元范围;所述第一设备接收第二设备上报的测量结果,包括:所述第一设备在所述时间单元范围内,接收所述第二设备上报的所述测量结果。
应理解,第一设备通过第一控制信息向第二设备发送用于指示第二设备上报测量结果的时间单元范围,可以避免第二设备长时间未上报测量结果或第二设备测量的参考信号接收功率过期。第一设备可以根据时间单元范围内是否收到第二设备上报的测量结果,确定是否需要重新进行波束训练。
结合第一方面,在第一方面的某些实现方式中,在所述第一设备在所述时间单元范围内,接收所述第二设备上报的所述测量结果之前,所述方法还包括:所述第一设备在所述时间单元范围内接收第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于所述第一设备采用所述第一空域接收滤波器接收所述测量结果;所述第一设备在所述时间单元范围内,接收所述第二设备上报的测量结果,包括:所述第一设备在所述时间单元范围内,采用所述第一空域接收滤波器接收所述测量结果。
结合第一方面,在第一方面的某些实现方式中,所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
应理解,第二设备通过第二控制信息向第一设备发送第一空域接收滤波器的标识,该第一空域接收滤波器为第一设备的不同空域接收滤波器中对应的参考信号接收功率大于 或等于预设阈值的空域接收滤波器,即第一空域接收滤波器为第一设备中传输性能较好的空域接收滤波器,第一设备采用该第一空域接收滤波器接收第二设备发送的测量结果,可以提高该第一设备接收测量结果的准确性。
结合第一方面,在第一方面的某些实现方式中,所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
结合第一方面,在第一方面的某些实现方式中,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
结合第一方面,在第一方面的某些实现方式中,所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
应理解,若所述第六指示信息指示所述第一控制信息关联的参考信号中的一个或多个参考信号是采用同一空域接收滤波器发送的,则所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的,或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的。该情况下,第二设备可以切换不同的空域接收滤波器接收第一控制信息关联的参考信号中的一个或多个参考信号。
若所述第六指示信息指示所述第一控制信息关联的参考信号中的一个或多个参考信号是采用不同的空域接收滤波器发送的,则所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的,或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
结合第一方面,在第一方面的某些实现方式中,所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述第二设备中未被使用的的空域接收滤波器的数量或所述第二设备是否使用了所有空域接收滤波器。第一设备可以根据测量结果中的第五指示信息,确定是否需要进行下一轮的波束训练。
结合第一方面,在第一方面的某些实现方式中,所述第一控制信息中还包括第七指示信息,所述第六指示信息用于指示发送第一控制信息的时间单元是波束训练时间单元。
结合第一方面,在第一方面的某些实现方式中,第二控制信息中还包括第八指示信息,所述第七指示信息用于指示发送第二控制信息的时间单元是波束上报时间单元。
第二方面,提供一种侧行链路中波束训练的方法,该方法可以由终端设备或终端设备侧的芯片或芯片***执行。该方法包括:第二设备在N个时间单元分别接收来自第一设备的N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时 间间隔,其中,N为正整数;所述第二设备向所述第一设备上报测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,其中,M为小于或等于N的正整数。
基于上述技术方案,第二设备接收到的来自第一设备的第一控制信息中的第一指示信息可以指示发送该第一控制信息的时间单元与发送最后一个第一控制信息的时间单元或发送最后一个第一控制信息调度的参考信号的时间单元之间的时间间隔,或,指示发送第一控制信息关联的参考信号的时间单元与发送最后一个第一控制信息的时间单元或发送最后一个第一控制信息关联的参考信号的时间单元之间的时间间隔,第二设备根据该时间间隔可以确定波束训练结束的时间。因此,该方法能够实现在波束训练过程中第一设备与第二设备之间的协同。
结合第二方面,在第二方面的某些实现方式中,所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制信息调度的一个或多个参考信号。
结合第二方面,在第二方面的某些实现方式中,所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
结合第二方面,在第二方面的某些实现方式中,所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述第二设备上报所述测量结果的时间单元范围;所述第二设备向所述第一设备上报测量结果,包括:所述第二设备在所述时间单元范围内,向所述第一设备上报所述测量结果。
应理解,第二设备在第三指示信息指示的上报测量结果的时间单元范围内向第一设备上报测量结果,可以避免该第二设备长时间未上报测量结果或第二设备测量的参考信号接收功率过期。第一设备也可以根据时间单元范围内是否收到第二设备上报的测量结果,确定是否需要重新进行波束训练。
结合第二方面,在第二方面的某些实现方式中,在所述第二设备在所述时间单元范围内,向所述第一设备上报所述测量结果之前,所述方法还包括:所述第二设备在所述时间单元范围内,向所述第一设备发送第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于所述第一设备采用所述第一空域接收滤波器接收所述测量结果。
结合第二方面,在第二方面的某些实现方式中,所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
应理解,第二设备通过第二控制信息向第一设备发送第一空域接收滤波器的标识,该第一空域接收滤波器为第一设备的不同空域接收滤波器中对应的参考信号接收功率大于或等于预设阈值的空域接收滤波器,即第一空域接收滤波器为第一设备中传输性能较好的空域接收滤波器,第一设备采用该第一空域接收滤波器接收第二设备发送的测量结果,可以提高该第一设备接收测量结果的准确性。
结合第二方面,在第二方面的某些实现方式中,所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元 中的序列号。
结合第二方面,在第二方面的某些实现方式中,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
结合第二方面,在第二方面的某些实现方式中,所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
应理解,若所述第六指示信息指示所述第一控制信息关联的参考信号中的一个或多个参考信号是采用同一空域接收滤波器发送的,则所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的,或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的。该情况下,第二设备可以切换不同的空域接收滤波器接收第一控制信息关联的参考信号中的一个或多个参考信号。
若所述第六指示信息指示所述第一控制信息关联的参考信号中的一个或多个参考信号是采用不同的空域接收滤波器发送的,则所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的,或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
结合第二方面,在第二方面的某些实现方式中,所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述第二设备中未被使用的的空域接收滤波器的数量或所述第二设备是否使用了所有空域接收滤波器。第一设备可以根据测量结果中的第五指示信息,确定是否需要进行下一轮的波束训练。
结合第二方面,在第二方面的某些实现方式中,所述第一控制信息中还包括第七指示信息,所述第六指示信息用于指示发送第一控制信息的时间单元是波束训练时间单元。
结合第二方面,在第二方面的某些实现方式中,第二控制信息中还包括第八指示信息,所述第七指示信息用于指示发送第二控制信息的时间单元是波束上报时间单元。
第三方面,提供了一种通信装置,该装置可以应用于第一方面所述的第一设备中,该装置包括:发送模块,用于在N个时间单元分别向第二设备发送N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;接收模块,用于接收第二设备上报的测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,所述N个第一控制信息包括所述M个第一控制信息,其中,M为小于或等于N的正整数。
结合第三方面,在第三方面的某些实现方式中,所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制 信息调度的一个或多个参考信号。
结合第三方面,在第三方面的某些实现方式中,所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
结合第三方面,在第三方面的某些实现方式中,所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述第二设备上报所述测量结果的时间单元范围;所述接收模块具体用于,在所述时间单元范围内,接收所述第二设备上报的所述测量结果。
结合第三方面,在第三方面的某些实现方式中,所述接收模块还用于,在所述时间单元范围内接收第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于接收模块采用所述第一空域接收滤波器接收所述测量结果;所述接收模块具体用于,在所述时间单元范围内,采用所述第一空域接收滤波器接收所述测量结果。
结合第三方面,在第三方面的某些实现方式中,所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
结合第三方面,在第三方面的某些实现方式中,所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
结合第三方面,在第三方面的某些实现方式中,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
结合第三方面,在第三方面的某些实现方式中,所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
结合第三方面,在第三方面的某些实现方式中,所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述第二设备中未被使用的的空域接收滤波器的数量。
第四方面,提供了一种通信装置,该装置可以应用于第二方面所述的第二设备中,该装置包括:接收模块,用于在N个时间单元接收来自第一设备的N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;发送模块,用于向所述第一设备上报测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,其中,M为小于或等于N的正整数。
结合第四方面,在第四方面的某些实现方式中,所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制 信息调度的一个或多个参考信号。
结合第四方面,在第四方面的某些实现方式中,所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
结合第四方面,在第四方面的某些实现方式中,所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述发送模块上报所述测量结果的时间单元范围;所述发送模块具体用于,在所述时间单元范围内,向所述第一设备上报所述测量结果。
结合第四方面,在第四方面的某些实现方式中,所述发送模块还用于,在所述时间单元范围内,向所述第一设备发送第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于所述第一设备采用所述第一空域接收滤波器接收所述测量结果。
结合第四方面,在第四方面的某些实现方式中,所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
结合第四方面,在第四方面的某些实现方式中,所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
结合第四方面,在第四方面的某些实现方式中,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
结合第四方面,在第四方面的某些实现方式中,所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
结合第四方面,在第四方面的某些实现方式中,所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述接收模块中未被使用的的空域接收滤波器的数量。
第五方面,提供一种通信设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述通信设备执行如第一方面或第一方面任意可能的实现方式中的方法。
第六方面,提供一种通信设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述通信设备执行如第二方面或第二方面任意可能的实现方式中的方法。
第七方面,提供了一种通信装置,包括:输入输出接口和逻辑电路,该输入输出接口,用于获取输入信息和/或输出信息;该逻辑电路用于执行上述任一方面或任一方面任意可能的实现方式所述的方法,根据输入信息进行处理和/或生成输出信息。
第八方面,提供了一种通信***,包括:第一方面或第二方面所述方法的第一设备以 及与所述第一设备通信的其他通信设备、第二设备以及与所述第二设备通信的其他通信设备。
第九方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序;所述计算机程序在计算机上运行时,使得计算机执行上述第一方面以及第一方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序;所述计算机程序在计算机上运行时,使得计算机执行上述第二方面以及第二方面中任一种可能实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现上述第一方面以及第一方面中任一种可能实现方式中的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现上述第二方面以及第二方面中任一种可能实现方式中的方法。
在本申请实施例提供的技术方案中,第一设备向第二设备发送的第一控制信息中的第一指示信息可以指示发送该第一控制信息的时间单元与发送最后一个第一控制信息的时间单元或发送最后一个第一控制信息调度的参考信号的时间单元之间的时间间隔,或,指示发送第一控制信息关联的参考信号的时间单元与发送最后一个第一控制信息的时间单元或发送最后一个第一控制信息关联的参考信号的时间单元之间的时间间隔,第二设备接收第一设备发送的该第一控制信息,并根据该第一控制信息中的第一指示信息指示的时间间隔可以确定波束训练结束的时间。因此,该方法能够实现在波束训练过程中第一设备与第二设备之间的协同。
附图说明
图1是本申请实施例适用的***架构示意图。
图2是本申请实施例的侧行链路中波束训练的方法的示意***互流程图。
图3是本申请实施例中的第一指示信息指示的时间间隔示意图。
图4是本申请实施例中第一设备发送第一控制信息、AGC信号和参考信号的帧结构示意图。
图5是本申请实施例的一种波束测量的示意图。
图6是本申请实施例的一种上报测量结果的示意图。
图7是本申请实施例的另一种波束测量的示意图。
图8是本申请实施例的另一种上报测量结果的示意图。
图9是本申请实施例的另一种波束测量和上报测量结果的示意图。
图10是本申请实施例的一种通信装置的示意性框图。
图11是本申请实施例的另一种通信装置的示意性框图。
图12是本申请实施例的一种通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信***,例如长期演进***(long term evolution, LTE)、先进的长期演进(advanced long term evolution,LTE-A)***、通用移动通信***((universal mobile telecommunication system,UMTS)、第三代合作伙伴计划(the 3rd generation partnership project,3GPP)相关的蜂窝***、第五代(5th generation,5G)移动通信***、侧行链路(sidelink,SL)或者将来出现的新的通信***等。
适用于本申请的通信***,包括一个或多个发送端,以及一个或多个接收端。其中,发送端和接收端之间的信号传输,可以是通过无线电波来传输,也可以通过可见光、激光、红外以及光纤等传输媒介来传输。示例性地,发送端和接收端都可以为终端设备。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动台(mobile station,MS)、用户单元(subscriber unit)、用户设备(user equipment,UE)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。其中,用户设备包括车辆用户设备。
示例性地,网络设备可以是演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为新空口(new radio,NR)中的gNB或传输点(例如,TRP或TP),NR中的基站的一个或一组(包括多个)天线面板,或者,还可以为构成gNB或传输点的网络节点,例如基带单元(building baseband unit,BBU)或分布式单元(distributed unit,DU)等,或者,网络设备还可以为车载设备、可穿戴设备以及5G网络中的网络设备,或者未来演进的PLMN网络中的网络设备等,不作限定。
网络设备的产品形态十分丰富。例如,在产品实现过程中,BBU可以与射频单元(radio frequency unit,RFU)集成在同一设备内,该设备通过线缆(例如但不限于馈线)连接至天线阵列。BBU还可以与RFU分离设置,二者之间通过光纤连接,通过例如但不限于,通用公共射频接口(common public radio interface,CPRI)协议进行通信。在这种情况下,RFU通常称为射频拉远单元(remote radio unit,RRU),其通过线缆连接至天线阵列。此外,RRU还可以与天线阵列集成在一起,例如,目前市场上的有源天线单元(active antenna unit,AAU)产品就采用了这种结构。
此外,BBU可以进一步分解为多个部分。例如,可以按照所处理业务的实时性将BBU进一步细分为集中单元(centralized unit,CU)和分布单元(distribute unit,DU)。CU负责处理非实时协议和服务,DU负责处理物理层协议和实时服务。更进一步的,部分物理层功能还可以从BBU或者DU中分离出来,集成在AAU中。
如图1所示,出示了本申请实施例适用的***架构示意图。该***包括多个终端设备。终端设备之间支持直接通信(PC5)接口通信,即支持通过侧行链路进行传输。
SL是3GPP中针对设备与设备(device to device,D2D)之间直接通信设计的协议。 在NR R16版本中,侧行链路包括两种主流的工作模式,包括传输模式1和传输模式2。其中,传输模式1需要网络设备调度通信资源;传输模式2不需要网络设备调度通信资源,终端设备/用户可以自行通过资源感知和资源选择进行通信。传输模式2一方面能够降低网络设备的部署成本,另一方面还可以应用在网络信号难以覆盖的地方。因此,在本申请实施例关注的室内商用场景下,考虑到穿透损耗(penetration loss)可能较大,故采用传输模式2进行侧行链路通信。
NR SL中的信道主要包括了物理侧行链路控制信道(physical sidelink control channel,PSCCH),物理侧行链路共享信道(physical sidelink shared channel,PSSCH),物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)。其中,PSCCH用于侧行链路控制信息1(sidelink control information 1,SCI 1)的传输,SCI 1包含了其关联/调度的PSSCH上传输的数据的调制与编码方式(modulation and coding scheme,MCS)、数据优先级以及PSSCH占据的时频资源等。PSSCH用于SCI 2以及数据信息的传输;该信道上还承载了CSI-RS、相位追踪参考信号(phase tracing reference signal,PT-RS)等一系列参考信号。PSFCH用于数据的混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息的传输。
为了获知信道状态信息(channel state information,CSI),以更好地确定Tx UE的参数,例如MCS、功率等,Tx UE在PSSCH上传输SL CSI-RS用于CSI测量。目前,NR SL仅支持单播的CSI-RS传输。SL CSI-RS图样基于R15中蜂窝网络的CSI-RS图样,其资源映射方式也与R15中的一致,但最多支持两端口,这是因为在SL中PSSCH最多传输两流数据。PSSCH中的每个物理资源块(physical resource block,PRB)传输相同的CSI-RS图样,且SL CSI-RS不与PSCCH、SCI2或PSSCH中的解调参考信号(demodulation reference signal,DMRS)共用同一符号。Tx UE在发送SL CSI-RS的同时,也会在SCI 2的CSI请求(CSI request)字段中指示Rx UE进行CSI的测量和上报。当Rx UE完成CSI测量后,会通过PSSCH上报测量的CSI。与蜂窝网络不同,SL中CSI的测量和上报一般都是非周期的。为了避免CSI信息过期,Rx UE上报CSI有一个最长的时延,称为延迟边界(latency bound)。该延迟边界由终端设备之间的链路接口PC5-无线资源控制(radio resource control,RRC)配置好,并由Tx UE发送给Rx-UE。
在R18中,SL在毫米波频段(frequency range 2,FR2)上的增强成为讨论的课题之一。在毫米波频段上,为了克服高路损,Tx UE和/或Rx UE需要通过定向波束传输信号。为了确定收发端之间最佳的波束对,需要进行波束训练。在本申请实施例中,我们主要考虑RRC连接建立之前的初始波束训练。
在蜂窝网络和802.11ad中,针对FR2的初始波束连接,一般都借助周期性的参考信号进行波束训练。下面对通过同步信号块(signal synchronization block,SSB)进行初始波束训练和通过信标(beacon)进行初始波束训练进行简单介绍。
一、通过SSB进行初始波束训练
在蜂窝网络中,初始波束训练是通过SSB完成的,其中,每个同步信号块由一个波束发送。蜂窝网络中的SSB具备周期性,其周期为两帧(20ms),且一个周期内的SSB都处于同一个半帧内。此外,SSB具有预定义的发送模式,该模式由工作频段和子载波间隔确定。因此,Rx UE可以通过上述模式确定20ms周期内哪些位置通过SSB对波束的质 量进行测量,以及测量何时结束。
SL中并不是每个Tx UE都会作为同步源发送SSB。当Tx UE不发送SSB时,则无法采用上述方法。
二、通过beacon进行初始波束训练
在802.11ad中,接入点(access point,AP)在一个信标间隔(beacon interval,BI)的信标发送期(beacon transmission interval,BTI)中传输beacon,从而配置网络侧信息并进行AP的发送波束训练。考虑到一个BTI中AP不切换发送天线阵列,因此往往需要多个BTI才能完成发送波束训练。在AP发送的beacon帧中,发送扇区扫描扩展(transmittor sector sweep span,TXSS Span)字段指示了AP一共需要多少个BI才能扫描完所有的发送波束。考虑到BI周期一般为100ms,故当终端设备解码TXSS Span字段后,即可推算出多长时间以后AP波束扫描结束。
SL中,波束训练的时隙很有可能是非周期/非连续的,因此,无法通过类似于TXSS Span的计数方式来告知Rx-UE波束训练结束的时间。
目前,在传输模式2的SL通信模式下,无法保证用于波束训练的时频资源是周期的或者等间隔的,因为用于波束训练的时频资源是Tx UE通过资源感知/资源选择得到的,这使得Rx UE无法事先得知Tx UE波束扫描的起止时间,也没有固定的测量结果的上报时间,给波束训练过程中Tx UE和Rx UE的协同带来困难。
为此,本申请实施例提出了一种侧行链路中波束训练的方法,能够实现在波束训练过程中Tx UE与Rx UE之间的协同。该方法适用于FR2上的室内商用场景,该场景下波束训练的Tx UE与Rx UE已经由某一同步源做好了同步,但是尚未建立RRC连接。
在本申请实施例中,第一设备可以为Tx UE,第二设备可以为Rx UE。
如图2所示,出示了本申请实施例提出的侧行链路中波束训练的方法200的示意***互流程图。
210,第一设备在N个时间单元分别向第二设备发送N个第一控制信息,N个第一控制信息与N个时间单元一一对应,第一控制信息中包括第一指示信息,第一指示信息用于指示第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,第二设备通过该第一指示信息可以获知波束训练结束的时间单元,其中,N为正整数。第一控制信息可以为SCI 1和/或SCI 2,第一控制信息关联的时间单元为波束训练时间单元。
N个第一控制信息中至少两个第一控制信息是不同的。可以理解为,N个第一控制信息中至少两个第一控制信息关联的空域发送滤波器不同,或者,N个第一控制信息中至少两个第一控制信息关联的DMRS端口不同。
第一控制信息关联的时间单元,可以是发送第一控制信息的时间单元,也可以是发送该第一控制信息关联的参考信号的时间单元。最后一个第一控制信息关联的时间单元,可以是发送最后一个第一控制信息的时间单元,也可以是发送最后一个第一控制信息关联的参考信号的时间单元。
示例性地,第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,可以是发送第一控制信息的时间单元与发送最后一个第一控制信息的时间单元之间的时间间隔,可以是发送第一控制信息关联的参考信号的时间单元与发送最后一 个第一控制信息关联的参考信号的时间单元之间的时间间隔,还可以是发送第一控制信息的时间单元与发送最后一个第一控制信息关联的参考信号的时间单元之间的时间间隔,还可以是发送第一控制信息关联的参考信号的时间单元与发送最后一个第一控制信息的时间单元之间的时间间隔。本申请对此不做具体限定。
第一指示信息指示的时间间隔可以是第一控制信息关联的时间单元与最后一个控制信息关联的时间单元结束之间的时间间隔,通过该第一指示信息可以告知第二设备何时波束训练结束。如图3所示,出示了本申请实施例中的第一指示信息指示的时间间隔示意图。可选的,第一指示信息指示的时间间隔也可以是第一控制信息关联的时间单元结束与最后一个控制信息关联的时间单元结束之间的时间间隔;第一指示信息指示的时间间隔还可以是第一控制信息关联的时间单元开始与最后一个控制信息关联的时间单元结束之间的时间间隔,第一指示信息指示的时间间隔还可以是第一控制信息关联的时间单元结束与最后一个控制信息关联的时间单元开始之间的时间间隔。本申请对此不做具体限定。
示例性地,第一控制信息中还包括该第一控制信息的解调参考信号;或者,第一控制信息中还包括参考信号的调度信息。也就是说,用于对第一设备的空域发送滤波器进行测量的参考信号,可以是携带在第一控制信息中的,也可以是通过第一控制信息调度发送的。可选的,参考信号的调度信息指示的时间单元可以在发送第一控制信息的时间单元之后。
其中,参考信号的调度信息指示的时间单元在发送第一控制信息的时间单元之后,可以理解为,第一控制信息跨时间单元调度数据信道上的参考信号。应理解,第一设备在发送第一控制信息之后,第二设备对第一控制信息进行盲检,第二设备检测到第一控制信息之后,将在第一控制信息中的参考信号的调度信息指示的时间单元切换空域接收滤波器分别接收数据信道上的参考信号,为了给第二设备进行空域接收滤波器的切换预留足够的时间,包括第二设备解码第一控制信息的时间和切换空域接收滤波器的时间,本申请中的第一控制信息可以跨时间单元调度数据信道上的参考信号。
可选的,发送第一控制信息的时间单元与发送该第一控制信息调度的参考信号的时间单元之间可以是相邻的,也可以是间隔一个或多个时间单元,具体根据第一设备的资源感知和资源选择而定。可选的,发送第一控制信息的时间单元与发送该第一控制信息调度的参考信号的时间单元也可以是同一时间单元。
时间单元可以为一个或若干个符号、一个或若干个时隙(slot),一个或若干个微时隙(mini-slot)、一个或若干个子帧,或,一个或若干个帧等。一个或多个时间单元可以是在时间上连续的,也可以是离散的。
220,第二设备在N个时间单元接收来自第一设备的N个第一控制信息,N个时间单元与N个第一控制信息一一对应。具体地,第二设备可以采用预定义的空域接收滤波器接收第一设备发送的第一控制信息,也可以采用预配置的空域接收滤波器接收第一设备发送的第一控制信息,其中,预定义的空域接收滤波器是第二设备默认的或自己选取的空域接收滤波器,预配置的空域接收滤波器可以是最近一次波束训练确定的空域接收滤波器。
若第一控制信息中还包括该第一控制信息的解调参考信息,则第二设备对第一设备发送的该解调参考信号进行测量,获得该解调参考信号的参考信号接收功率(reference signal received power,RSRP)/信号与干扰加噪声比(signal to interference noise ratio,SINR)/ 接收的信号强度指示(received signal strength indicator,RSSI)等信息。
若第一控制信息中还包括参考信号的调度信息,则第一设备在第一控制信息中的参考信号的调度信息指示的时间单元,向第二设备发送一个或多个参考信号,该一个或多个参考信号用于第二设备对第一设备的空域发送滤波器进行测量。对应地,第二设备在第一控制信息中的参考信号的调度信息指示的时间单元,接收第一设备发送的一个或多个参考信号。
实现方式一:发送第一控制信息的时间单元与发送该第一控制信息调度的参考信号的时间单元之间是跨时间单元,该情况下,第一设备发送第一控制信息调度的一个或多个参考信号的空域发送滤波器可能是相同的,也可能是不同的。该情况下,第一控制信息中还可以包括第六指示信息,该第六指示信息用于指示该第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
若第一控制信息中的第六指示信息指示该第一控制信息关联的参考信号中的一个或多个参考信号采用同一空域发送滤波器发送的情况下,第二设备在第一控制信息中的参考信号的调度信息指示的时间单元,切换空域接收滤波器接收第一设备发送的一个或多个参考信号。
考虑到第一设备切换空域发送滤波器向第二设备发送一个或多个参考信号/第二设备切换空域接收滤波器来接收第一设备发送的一个或多个参考信号,可能会导致该第二设备接收到的信号总能量有较大的变化,因此,第一设备在发送每个参考信号之前发送一个或者多个自动增益控制(automatic gain control,AGC)信号,可以缓解第二设备接收到的信号总能量变化较大对模数转换造成的不利影响。
可选的,第一设备可以在第一控制信息中的参考信号的调度信息指示的时间单元中的至少一个第一符号,向第二设备发送AGC信号;第一设备在第一控制信息中的参考信号的调度信息指示的时间单元中的第二符号,采用发送该AGC信号的空域发送滤波器向第二设备发送参考信号,其中,第一符号与第二符号是连续的符号,第一符号在第二符号之前。如图4所示,出示了本申请实施例中第一设备发送第一控制信息、AGC信号和参考信号的帧结构示意图。
参考信号是第一设备在PSSCH发送的,用于发送参考信号的PSSCH的时域资源包括参考信号的调度信息指示的时间单元。示例性地,参考信号可以是CSI-RS或侧行链路同步信号块(sidelink-signal synchronization block,SL-SSB)。其中,CSI-RS可以是***配置的或针对资源池配置的。
具体地,第二设备采用预定义的或预配置的空域接收滤波器若检测到第一设备发送的第一控制信息,便在第一控制信息中的参考信号的调度信息指示的时间单元,检测该第一控制信息调度的一个或多个参考信号的RSRP/SINR/RSSI。
实现方式二:发送第一控制信息的时间单元与发送该第一控制信息调度的参考信号的时间单元之间是相同时间单元。该情况下,考虑到第二设备来不及解调第一控制信息中的第六指示信息来确定是否切换不同的空域接收滤波器,因此,可以默认同一第一控制信息调度的多个参考信号所采用的空域发送滤波器是不同的。对应地,第二设备可以在第一控制信息中的参考信号的调度信息指示的时间单元,采用同一预定义/预配置的空域接收滤波器接收该第一控制信息调度的一个或多个参考信号。
实现方式三:第一控制信息中包括该第一控制信息的解调参考信号。该情况下,该第一控制信息和该第一控制信息的解调参考信号是采用同一空域发送滤波器发送的。该第一控制信息可以承载在PSCCH上,也可以承载在PSSCH上。例如,第一设备与第二设备建立RRC连接的过程中,该第一控制信息可以由RRC信令携带,与RRC连接请求一同发送,都承载在PSSCH上。对应地,第二设备采用预定义的或预配置空域接收滤波器接收第一设备发送的第一控制信息,并对该第一控制信息的解调参考信号进行测量。230,第二设备向第一设备上报测量结果,该测量结果中包括第二指示信息,该第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识。其中,N个第一控制信息包括M个第一控制信息,M为小于或等于N的正整数。应理解,第二设备可能只接收到N个第一控制信息中的部分第一控制信息,第二设备也可能接收到N个第一控制信息中的全部第一控制信息,将第二设备接收到的所有第一控制信息称为M个第一控制信息。
例如,第二指示信息可以仅指示M个第一控制信息关联的参考信号中一个参考信号的标识,该参考信号的RSRP/SINR/RSSI是最大的。又例如,第二指示信息也可以指示M个第一控制信息关联的参考信号中多个参考信号的标识,该多个参考信号的RSRP/SINR/RSSI大于或等于某阈值。
可选的,第二指示信息还指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识和该一个或多个参考信号的RSRP/SINR/RSSI。例如,第二指示信息可以指示M个第一控制信息关联的参考信号的标识和该M个第一控制信息关联的参考信号的RSRP/SINR/RSSI,即第二设备测量到的所有参考信号的标识和测量到的所有参考信号的RSRP/SINR/RSSI。本申请实施例对此不做具体限定。
示例性地,第一控制信息关联的参考信号为第一控制信息的解调参考信号。或者,第一控制信息关联的参考信号为第一控制信息调度的一个或多个参考信号;发送第一控制信息调度的该一个或多个参考信号的子时间单元是不同的。
示例性地,第一控制信息中还包括第三指示信息,第三指示信息用于指示第二设备上报测量结果的时间单元范围,上报测量结果的时间单元范围可以理解为上报窗(report window)。其中,该时间单元范围的起始点可以为发送N个第一控制信息中第n个第一控制信息的时间单元的起始点,其中,n为小于或等于N的正整数。例如,该时间单元范围的起始点也可以为发送N个第一控制信息中第一个第一控制信息的时间单元的起始点。可选的,第三指示信息也可以仅指示第二设备上报测量结果的截止时间。该截止时间可以由***帧号和时隙号确定。
第一设备通过第一控制信息向第二设备发送用于指示第二设备上报测量结果的时间单元范围,可以避免第二设备长时间未上报测量结果或第二设备测量的RSRP/SINR/RSSI过期。
具体地,第二设备在第三指示信息指示的上报测量结果的时间单元范围内,向第一设备上报测量结果。
在上述实现方式一中,在第二设备向第一设备上报测量结果之前,第二设备在第三指示信息指示的上报测量结果的时间单元范围内,通过资源感知和资源选择确定测量结果上报时间单元,选择某一空域发送滤波器向第一设备发送第二控制信息,该空域发送滤波器 可以是第二设备测量到参考信号的RSRP/SINR/RSSI最大的空域发送滤波器或第二设备预定义/预配置的发送滤波器。该第二控制信息中包括第一设备的第一空域接收滤波器的标识和测量结果的调度信息,该一空域接收滤波器的标识用于指示第一设备采用该第一空域接收滤波器接收第二设备将要上报的测量结果。第二控制信息可以为SCI 1和/或SCI 2,也可以承载在PSSCH中。应理解,针对第一设备或第二设备的某一滤波器来说,空域接收滤波器和空域发送滤波器是同一滤波器。
示例性地,第一空域接收滤波器可以为发送M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的空域接收滤波器。示例性地,第一空域接收滤波器可以为发送M个第一控制信息关联的参考信号的参考信号接收功率最高的参考信号的空域接收滤波器。该预设阈值可以为预定义的,可以是第二设备确定的,也可以是第一设备确定并指示给第二设备的,对此不做具体限定。
在上述实现方式二和三中,在第二设备向第一设备上报测量结果之前,第二设备在第三指示信息指示的上报测量结果的时间单元范围内,通过资源感知和资源选择确定一系列测量结果上报的时间单元。上述时间单元中至少一个时间单元位于第一设备所指示的上报测量结果的时间单元范围内。第二设备在上述时间单元上采用多个空域发送滤波器发送第二控制信息以及测量结果。考虑到同时隙调度时,第一设备来不及解调第二控制信息中包括的第一空域接收滤波器的标识。故在实现方式二和三中,第二控制信息不再包括第一空域接收滤波器的标识。第一设备将采用同一预定义/预配置的空域接收滤波器接收第二设备发送的第二控制信息以及第二控制信息调度的测量结果。
240,第一设备接收第二设备上报的测量结果。该测量结果中包括第二指示信息,该第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识。可选的,该第二指示信息还指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识和该一个或多个参考信号的RSRP/SINR/RSSI。
示例性地,第一控制信息中还可以包括第三指示信息,第三指示信息用于指示第二设备上报测量结果的时间单元范围。具体地,第一设备在第三指示信息指示的上报测量结果的时间单元范围内,接收第二设备上报的测量结果。
第一设备在接收第二设备上报的测量结果之前,该第一设备在上报测量结果的时间单元范围内,可以采用预定义的空域接收滤波器接收来自第二设备的第二控制信息,也可以采用预配置的空域接收滤波器接收来自第二设备的第二控制信息。其中,预定义的空域接收滤波器是第一设备默认的或选取的空域接收滤波器,预配置的空域接收滤波器可以是最近一次波束训练确定的空域接收滤波器。
若第一设备接收到第二控制信息,该第二控制信息中包括第一设备的第一空域接收滤波器的标识和测量结果的调度信息,则第一设备在第二控制信息中的测量结果的调度信息指示的时间单元,采用第一空域接收滤波器接收第二设备上报的测量结果。
应理解,第二设备通过第二控制信息向第一设备发送用于指示第一设备采用第一空域接收滤波器接收第二设备上报的测量结果的第一空域接收滤波器的标识,该第一空域接收滤波器的标识是根据M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。第一空域接收滤波器为第一设备中传输性能较好的空域接收滤波器,第一设备采用该第一空域接收滤波器接收第二设备发送的测量结果,可以 提高该第一设备接收测量结果的准确性。
示例性地,第一控制信息中还可以包括第四指示信息,该第四指示信息用于指示发送第一控制信息的时间单元在N个时间单元中的序列号,也就是说,该第四指示信息用于指示发送第一控制信息的时间单元是本轮波束训练中的第几个时间单元。例如,该序列号的取值可以是正序0~N-1或1~N,也可以是倒序N-1~0或N~1等。
可选的,参考信号的标识是根据关联该参考信号的第一控制信息中的第一指示信息指示的时间间隔确定的;或,参考信号的标识是根据关联该参考信号的第一控制信息中的第四指示信息指示的序列号确定的;或,参考信号的标识是根据关联该参考信号的第一控制信息中的第一指示信息指示的时间间隔和发送该参考信号的子时间单元序号确定的;或,参考信号的标识是根据关联该参考信号的第一控制信息中的第四指示信息指示的序列号和发送该参考信号的子时间单元序号确定的。应理解,第一指示信息指示的时间间隔与第四指示信息指示的序列号是一一对应的。一个第一控制信息可以调度一个或多个参考信号,每个参考信号是在该第一控制信息关联的时间单元中的一个子时间单元发送的。例如,当时间单元为时隙时,子时间单元可以为符号。
第一控制信息中还可以包括第六指示信息,该第六指示信息用于指示第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
在上述实现方式一中,若第一控制信息中的第六指示信息指示该第一控制信息关联的参考信号中的一个或多个参考信号是采用同一空域接收滤波器发送的,则参考信号的标识是根据关联该参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的,或,参考信号的标识是根据关联该参考信号的第一控制信息中的第四指示信息指示的所述序列号确定的。该情况下,第二设备可以切换不同的空域接收滤波器接收第一控制信息关联的参考信号中的一个或多个参考信号。
若第一控制信息中的第六指示信息指示该第一控制信息关联的参考信号中的一个或多个参考信号是采用不同的空域接收滤波器发送的,则参考信号的标识是根据关联该参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送该参考信号的子时间单元序号确定的,或,参考信号的标识是根据关联该参考信号的第一控制信息中的第四指示信息指示的序列号和发送该参考信号的子时间单元序号确定的。
在上述实现方式二中,由于第一控制信息调度的多个参考信号所采用的空域发送滤波器是不同的,因此,参考信号的标识是根据关联该参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送该参考信号的子时间单元序号确定的,或,参考信号的标识是根据关联该参考信号的第一控制信息中的第四指示信息指示的序列号和发送该参考信号的子时间单元序号确定的。
在上述实现方式三中,参考信号的标识可以是根据关联该参考信号的第一控制信息中的第一指示信息指示的时间间隔确定的;或,参考信号的标识可以是根据关联该参考信号的第一控制信息中的第四指示信息指示的序列号确定的。
第一设备根据参考信号的标识可以确定发送该参考信号的空域发送滤波器。因此,第一设备接收到第二设备上报的测量结果后,可以根据测量结果中的参考信号的标识,确定该第一设备中传输性能较好的空域发送滤波器。第一设备也可以根据测量结果中M个第一控制信息关联的参考信号中一个或多个参考信号的标识和该一个或多个参考信号的 RSRP/SINR/RSSI,确定第一设备中不同空域发送滤波器分别对应的RSRP/SINR/RSSI。
第二控制信息中包括的第一空域接收滤波器的标识具体示例,例如,第二设备可以在第二控制信息中新增一个传输配置指示(transmission configuration indicator,TCI)字段,可以令该TCI字段的取值为某一个第一控制信息中的第一指示信息指示的时间间隔。
考虑到波束训练的时间单元很有可能是非周期/非连续的,第一指示信息指示的时间间隔的取值范围可能比第四指示信息指示的序列号大,则第一指示信息指示的时间间隔的上报开销也大,在该情况下,第二设备可以通过发送第四指示信息指示的序列号来指示第一设备用于接收测量结果的第一空域接收滤波器的标识,从而可以减小开销。例如,TCI字段的取值可以为某一个第一控制信息中的第四指示信息指示的序列号。
由于波束训练时隙中的参考信号是每个资源池预先配置好的,第一设备采用每个空域发送滤波器发送的参考信号的数量不一定与第二设备的空域接收滤波器的数量完全匹配。例如,第一设备采用每个空域发送滤波器发送的参考信号的数量可能小于第二设备的空域接收滤波器的数量。因此,第二设备可以通过测量结果来告知第一设备该第二设备的空域接收滤波器是否扫描结束,从而可以触发第一设备进行下一轮的波束训练。
示例性地,测量结果中还可以包括第五指示信息,该第五指示信息用于指示第二设备中未被使用的的空域接收滤波器的数量或第二设备是否使用了所有的空域接收滤波器。例如,若第二设备使用了所有空域接收滤波器,则第五指示信息可以用于指示第二设备使用了所有的空域接收滤波器。
第五指示信息可以通过一个比特来指示,例如:“1”代表第二设备中未被使用的空域接收滤波器的数量大于0,“0”代表第二设备使用了所有的空域接收滤波器。或者,“0”代表第二设备中未被使用的空域接收滤波器的数量大于0,“1”代表第二设备使用了所有的空域接收滤波器。本申请对此不做具体限定。
对应地,第一设备可以根据测量结果中的第五指示信息,确定是否需要进行下一轮的波束训练。若第五指示信息指示第二设备中未测量的空域接收滤波器的数量大于或等于1,或,第五指示信息指示第二设备中的部分空域接收滤波器没有使用,则第一设备确定进行下一轮的波束训练。
可选的,若第一设备在上报测量结果的时间单元范围内,没有接收到第二设备上报的测量结果,则也认为这一轮的波束训练没有成功,第一设备会继续进行资源感知和资源选择,以进行下一轮的波束训练。
可选的,第一控制信息中还可以包括第七指示信息,该第七指示信息用于指示发送第一控制信息的时间单元是波束训练时间单元。因此,第二设备若检测到第一控制信息,便得知当前时间单元是一个波束训练时间单元,并根据第一指示信息指示的该第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,确定出波束训练结束的时间单元。
可选的,第二控制信息中还可以包括第八指示信息,该第八指示信息用于指示发送第二控制信息的时间单元是波束上报时间单元。因此,第一设备若检测到第二控制信息,便得知当前时间单元是一个波束上报时间单元。
在本申请实施例提供的技术方案中,第一设备向第二设备发送的第一控制信息中的第一指示信息可以指示发送该第一控制信息的时间单元与发送最后一个第一控制信息的时 间单元或发送最后一个第一控制信息调度的参考信号的时间单元之间的时间间隔,或,指示发送第一控制信息关联的参考信号的时间单元与发送最后一个第一控制信息的时间单元或发送最后一个第一控制信息关联的参考信号的时间单元之间的时间间隔,第二设备接收第一设备发送的该第一控制信息,并根据该第一控制信息中的第一指示信息指示的时间间隔可以确定波束训练结束的时间。因此,该方法能够实现在波束训练过程中第一设备与第二设备之间的协同。
如图5所示,出示了本申请实施例的一种波束测量的示意图,适用于上述实现方式一。以时间单元为时隙、子时间单元为符号为例。第一设备向第二设备发送第一控制信息和该第一控制信息关联的参考信号都是采用训练的空域发送滤波器发送的;第二设备接收第一设备发送的第一控制信息是采用预定义的空域发送滤波器接收的,第二设备接收第一设备发送的第一控制信息关联的参考信号是采用训练的空域接收滤波器接收的。其中,空域发送滤波器可以理解为发送波束,空域接收滤波器可以理解为接收波束。
如图6所示,出示了本申请实施例的一种上报测量结果的示意图,适用于上述实现方式一。以时间单元为时隙、子时间单元为符号为例。第二设备向第一设备发送第二控制信息和测量结果都是采用训练的空域发送滤波器发送的;第一设备接收第二设备发送的第二控制信息是采用预定义的空域发送滤波器接收的,第一设备接收第二设备发送的测量结果可以是采用第二控制信息指示的空域接收滤波器或第二设备预定义的空域接收滤波器接收的。
如图7所示,出示了本申请实施例的另一种波束测量的示意图,适用于上述实现方式二。以时间单元为时隙、子时间单元为符号为例。第一设备向第二设备发送第一控制信息和该第一控制信息关联的参考信号都是采用训练的空域发送滤波器发送的;第二设备接收第一设备发送的第一控制信息和该第一控制信息关联的参考信号是采用预定义的空域发送滤波器接收的。
如图8所示,出示了本申请实施例的另一种上报测量结果的示意图,适用于上述实现方式二。以时间单元为时隙、子时间单元为符号为例。第二设备向第一设备发送第二控制信息和测量结果都是采用训练的空域发送滤波器发送的;第一设备接收第二设备发送的第二控制信息和测量结果是采用预定义的空域发送滤波器接收的。
如图9所示,出示了本申请实施例的另一种波束测量和上报测量结果的示意图,适用于上述实现方式三。第一设备向第二设备发送第一控制信息和该第一控制信息关联的参考信号都是采用训练的空域发送滤波器发送的;第二设备接收第一设备发送的第一控制信息和该第一控制信息关联的参考信号是采用预定义的空域发送滤波器接收的。
第二设备向第一设备发送第二控制信息和测量结果都是采用训练的空域发送滤波器发送的;第一设备接收第二设备发送的第二控制信息是采用预定义的空域发送滤波器接收的,第一设备接收第二设备发送的测量结果是采用训练的空域接收滤波器接收的。
本申请实施例提出了一种通信装置,如图10所示,出示了本申请实施例的一种通信装置1000的示意性框图。该装置可以应用于本申请实施例中的第一设备。该通信装置1000包括:
发送模块1010,用于在N个时间单元分别向第二设备发送N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的 时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;
接收模块1020,用于接收第二设备上报的测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,所述N个第一控制信息包括所述M个第一控制信息,其中,M为小于或等于N的正整数。
可选的,所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制信息调度的一个或多个参考信号。
可选的,所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
可选的,所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述第二设备上报所述测量结果的时间单元范围;
所述接收模块1020具体用于,在所述时间单元范围内,接收所述第二设备上报的所述测量结果。
可选的,所述接收模块1020还用于,在所述时间单元范围内接收第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于接收模块采用所述第一空域接收滤波器接收所述测量结果;
所述接收模块1020具体用于,在所述时间单元范围内,采用所述第一空域接收滤波器接收所述测量结果。
可选的,所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
可选的,所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
可选的,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
可选的,所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
可选的,所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述第二设备中未被使用的的空域接收滤波器的数量。本申请实施例提出了一种通信装置,如图11所示,出示了本申请实施例的一种通信装置1100的示意性框图。该装置可以应用于本申请实施例中的第二设备。该通信装置1100包括:
接收模块1110,用于在N个时间单元接收来自第一设备的N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的 时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;
发送模块1120,用于向所述第一设备上报测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,其中,M为小于或等于N的正整数。
可选的,所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制信息调度的一个或多个参考信号。
可选的,所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
可选的,所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述发送模块上报所述测量结果的时间单元范围;
所述发送模块1120具体用于,在所述时间单元范围内,向所述第一设备上报所述测量结果。
可选的,所述发送模块1120还用于,在所述时间单元范围内,向所述第一设备发送第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于所述第一设备采用所述第一空域接收滤波器接收所述测量结果。
可选的,所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
可选的,所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
可选的,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
可选的,所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
可选的,所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述接收模块中未被使用的的空域接收滤波器的数量。
实施例一,一种通信装置,包括:发送模块,用于在N个时间单元分别向第二设备发送N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;
接收模块,用于接收第二设备上报的测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,所述N个第一控制信息包括所述M个第一控制信息,其中,M为小于或等于N的 正整数。
实施例二,根据所述实施例一,所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制信息调度的一个或多个参考信号。
实施例三,根据所述实施例一或所述实施例二,所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
实施例四,根据所述实施例一至所述实施例三中任一实施例,所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述第二设备上报所述测量结果的时间单元范围;
所述接收模块具体用于,在所述时间单元范围内,接收所述第二设备上报的所述测量结果。
实施例五,根据所述实施例四,所述接收模块还用于,在所述时间单元范围内接收第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于接收模块采用所述第一空域接收滤波器接收所述测量结果;
所述接收模块具体用于,在所述时间单元范围内,采用所述第一空域接收滤波器接收所述测量结果。
实施例六,根据所述实施例五,所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
实施例七,根据所述实施例一至所述实施例六中任一实施例,所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
实施例八,根据所述实施例一至所述实施例七中任一实施例,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
实施例九,根据所述实施例一至所述实施例八中任一实施例,所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述第二设备中未被使用的空域接收滤波器的数量。
实施例十,根据所述实施例一至所述实施例九中任一实施例,所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
实施例一,另一种通信装置,包括:接收模块,用于在N个时间单元接收来自第一设备的N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于 指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;
发送模块,用于向所述第一设备上报测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,其中,M为小于或等于N的正整数。
实施例二,根据所述实施例一,所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制信息调度的一个或多个参考信号。
实施例三,根据所述实施例一或实施例二,所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
实施例四,根据所述实施例一至所述实施例三中任一实施例,所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述发送模块上报所述测量结果的时间单元范围;所述发送模块具体用于,在所述时间单元范围内,向所述第一设备上报所述测量结果。
实施例五,根据所述实施例四,所述发送模块还用于,在所述时间单元范围内,向所述第一设备发送第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于所述第一设备采用所述第一空域接收滤波器接收所述测量结果。
实施例六,根据所述实施例五,所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
实施例七,根据所述实施例一至所述实施例六中任一实施例,所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
实施例八,根据所述实施例一至所述实施例七中任一实施例,所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,
所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
实施例九,根据所述实施例一至所述实施例八中任一实施例,所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述接收模块中未被使用的的空域接收滤波器的数量。
实施例十,根据所述实施例一至所述实施例九中任一实施例,所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。本申请实施例提供了一种通信设 备1200,如图12所示,出示了本申请实施例的一种通信设备1200的示意性框图。
该通信设备1200包括:处理器1210、存储器1220和通信接口1230;
存储器1220用于存储可执行指令;
处理器1210通过通信接口1230与存储器1220耦合,处理器1210用于调用并运行所述存储器1220中的所述可执行指令,以实现本申请实施例中的方法。该通信设备可以是本申请实施例中的第一设备或第二设备。
上述的处理器1210可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,本申请实施例还提供了一种通信设备,该通信设备包括输入输出接口和逻辑电路,该输入输出接口用于获取输入信息和/或输出信息;该逻辑电路,用于执行上述任一方法实施例中的方法,根据输入信息进行处理和/或生成输出信息。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机上运行时,使得该计算机可以实现上述方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得上述方法实施例中的方法被执行。
本申请实施例还提供了一种芯片,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述芯片执行上述方法实施例中的方法。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员 可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种侧行链路中波束训练的方法,其特征在于,包括:
    第一设备在N个时间单元分别向第二设备发送N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;
    所述第一设备接收第二设备上报的测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,所述N个第一控制信息包括所述M个第一控制信息,其中,M为小于或等于N的正整数。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制信息调度的一个或多个参考信号。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述第二设备上报所述测量结果的时间单元范围;
    所述第一设备接收第二设备上报的测量结果,包括:所述第一设备在所述时间单元范围内,接收所述第二设备上报的所述测量结果。
  5. 根据权利要求4所述的方法,其特征在于,
    在所述第一设备在所述时间单元范围内,接收所述第二设备上报的所述测量结果之前,所述方法还包括:所述第一设备在所述时间单元范围内接收第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于所述第一设备采用所述第一空域接收滤波器接收所述测量结果;
    所述第一设备在所述时间单元范围内,接收所述第二设备上报的测量结果,包括:所述第一设备在所述时间单元范围内,采用所述第一空域接收滤波器接收所述测量结果。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,
    所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,
    所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信 息指示的所述序列号确定的;或,
    所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,
    所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述第二设备中未被使用的空域接收滤波器的数量。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,
    所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
  11. 一种侧行链路中波束训练的方法,其特征在于,包括:
    第二设备在N个时间单元接收来自第一设备的N个第一控制信息,所述第一控制信息中包括第一指示信息,所述第一指示信息用于指示所述第一控制信息关联的时间单元与最后一个第一控制信息关联的时间单元之间的时间间隔,其中,N为正整数;
    所述第二设备向所述第一设备上报测量结果,所述测量结果中包括第二指示信息,所述第二指示信息用于指示M个第一控制信息关联的参考信号中一个或多个参考信号的标识,其中,M为小于或等于N的正整数。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一控制信息关联的参考信号为所述第一控制信息的解调参考信号,或所述第一控制信息关联的参考信号为所述第一控制信息调度的一个或多个参考信号。
  13. 根据权利要求11或12所述的方法,其特征在于,
    所述第二指示信息用于指示所述M个第一控制信息关联的参考信号中一个或多个参考信号的标识和所述一个或多个参考信号的参考信号接收功率。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,
    所述第一控制信息中还包括第三指示信息,所述第三指示信息用于指示所述第二设备上报所述测量结果的时间单元范围;
    所述第二设备向所述第一设备上报测量结果,包括:所述第二设备在所述时间单元范围内,向所述第一设备上报所述测量结果。
  15. 根据权利要求14所述的方法,其特征在于,在所述第二设备在所述时间单元范围内,向所述第一设备上报所述测量结果之前,所述方法还包括:
    所述第二设备在所述时间单元范围内,向所述第一设备发送第二控制信息,所述第二控制信息中包括第一空域接收滤波器的标识,所述第一空域接收滤波器的标识用于所述第一设备采用所述第一空域接收滤波器接收所述测量结果。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第一空域接收滤波器的标识是根据所述M个第一控制信息关联的参考信号的参考信号接收功率大于或等于预设阈值的参考信号的标识确定的。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,
    所述第一控制信息中还包括第四指示信息,所述第四指示信息用于指示发送所述第一控制信息的时间单元在所述N个时间单元中的序列号。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,
    所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔确定的;或,
    所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第一指示信息所指示的时间间隔和发送所述参考信号的子时间单元序号确定的;或,
    所述参考信号的标识是根据关联所述参考信号的第一控制信息中的所述第四指示信息指示的所述序列号确定的;或,
    所述参考信号的标识是根据关联所述参考信号的第一控制信息中的第四指示信息指示的所述序列号和发送所述参考信号的子时间单元序号确定的。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,
    所述测量结果中还包括第五指示信息,所述第五指示信息用于指示所述第二设备中未被使用的空域接收滤波器的数量。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,
    所述第一控制信息中还包括第六指示信息,所述第六指示信息用于指示所述第一控制信息关联的参考信号中的一个或多个参考信号是否采用同一空域发送滤波器发送的。
  21. 一种通信设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述通信设备执行如权利要求1至20中任一项所述的方法。
  22. 一种通信设备,其特征在于,包括:输入输出接口和逻辑电路;
    所述输入输出接口,用于获取输入信息和/或输出信息;
    所述逻辑电路用于执行权利要求1至20中任一项所述的方法,根据所述输入信息进行处理和/或生成所述输出信息。
  23. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机程序;
    所述计算机程序在计算机上运行时,使得计算机执行权利要求1至20中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被执行时,使得如权利要求1至20任一项所述的方法被实现。
PCT/CN2022/137401 2022-01-10 2022-12-08 侧行链路中波束训练的方法和装置 WO2023130884A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210022278.3 2022-01-10
CN202210022278 2022-01-10
CN202210045043.6 2022-01-14
CN202210045043.6A CN116455540A (zh) 2022-01-10 2022-01-14 侧行链路中波束训练的方法和装置

Publications (1)

Publication Number Publication Date
WO2023130884A1 true WO2023130884A1 (zh) 2023-07-13

Family

ID=87073052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137401 WO2023130884A1 (zh) 2022-01-10 2022-12-08 侧行链路中波束训练的方法和装置

Country Status (1)

Country Link
WO (1) WO2023130884A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092697A (zh) * 2017-05-11 2018-05-29 中兴通讯股份有限公司 信号的传输方法和装置
US20180331739A1 (en) * 2017-04-21 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Beam training for a wireless device
CN108988916A (zh) * 2017-08-11 2018-12-11 电信科学技术研究院有限公司 一种波束训练方法及装置、通信***
WO2019120476A1 (en) * 2017-12-18 2019-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Beam training for a radio transceiver device
CN110581725A (zh) * 2018-06-08 2019-12-17 华为技术有限公司 用于波束训练的方法和通信装置
US20210127381A1 (en) * 2019-10-24 2021-04-29 Qualcomm Incorporated Sidelink groupcast beam training

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331739A1 (en) * 2017-04-21 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Beam training for a wireless device
CN108092697A (zh) * 2017-05-11 2018-05-29 中兴通讯股份有限公司 信号的传输方法和装置
CN108988916A (zh) * 2017-08-11 2018-12-11 电信科学技术研究院有限公司 一种波束训练方法及装置、通信***
WO2019120476A1 (en) * 2017-12-18 2019-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Beam training for a radio transceiver device
CN110581725A (zh) * 2018-06-08 2019-12-17 华为技术有限公司 用于波束训练的方法和通信装置
US20210127381A1 (en) * 2019-10-24 2021-04-29 Qualcomm Incorporated Sidelink groupcast beam training

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "NR sidelink synchronization mechanism", 3GPP DRAFT; R1-1903336_NR SIDELINK SYNCHRONIZATION MECHANISM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 22 February 2019 (2019-02-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051601013 *

Similar Documents

Publication Publication Date Title
US20210204298A1 (en) System and Method for Configuring Channel State Information in a Communications System
EP3834502B1 (en) Apparatus and methods for signaling in power save mode
JP6804649B2 (ja) 無線通信システムにおいて端末の無線リンクモニタリングを行う方法及びそれをサポートする装置
US10911997B2 (en) Radio resource management (RRM) measurement for new radio (NR) network
JP7063387B2 (ja) 設定情報の送受信方法、装置及び通信システム
US11864038B2 (en) Method and user equipment for performing initial beam alignment during random access (RACH) procedure
CN108282212B (zh) 一种信道状态信息处理的方法、装置和***
WO2020103793A1 (zh) 波束上报的方法和通信装置
WO2020063334A1 (zh) 一种控制信道波束指示方法及设备
WO2020164454A1 (zh) 信号传输方法和通信装置
CN115136530A (zh) 用于非相干联合传输的csi反馈
US20210337551A1 (en) System and Method for Power Savings in Discontinuous Transmission Operation
CN112368954B (zh) 用于不连续接收的链路恢复的***和方法
US11848719B2 (en) Method for reporting measurement result of interference measurement and apparatus
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
WO2018127149A1 (zh) 一种信道状态信息处理的方法、装置和***
WO2022024079A1 (en) Indication of tci states for aperiodic csi-rs with low configuration overhead
CN113424621A (zh) 上报csi的方法和终端设备
TW201906437A (zh) 用於新無線電( nr) 網路的無線電資源管理( rrm) 測量
CN106792776B (zh) 一种波束处理方法和基站
WO2023130884A1 (zh) 侧行链路中波束训练的方法和装置
US20230060444A1 (en) System Information Message Transmission Indication
CN116455540A (zh) 侧行链路中波束训练的方法和装置
WO2014166388A1 (zh) 协作发射集的确定方法和基站
CN111525988A (zh) 一种反馈方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022918334

Country of ref document: EP

Effective date: 20240703