WO2023130537A1 - 一种自主驱动的生物分子马达和生物分子马达毛丝 - Google Patents

一种自主驱动的生物分子马达和生物分子马达毛丝 Download PDF

Info

Publication number
WO2023130537A1
WO2023130537A1 PCT/CN2022/077482 CN2022077482W WO2023130537A1 WO 2023130537 A1 WO2023130537 A1 WO 2023130537A1 CN 2022077482 W CN2022077482 W CN 2022077482W WO 2023130537 A1 WO2023130537 A1 WO 2023130537A1
Authority
WO
WIPO (PCT)
Prior art keywords
linkage rod
motor
ring
biomolecular
tube
Prior art date
Application number
PCT/CN2022/077482
Other languages
English (en)
French (fr)
Inventor
雷艳丽
Original Assignee
雷艳丽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210001188.6A external-priority patent/CN114317396A/zh
Priority claimed from CN202210000514.1A external-priority patent/CN114292803A/zh
Application filed by 雷艳丽 filed Critical 雷艳丽
Publication of WO2023130537A1 publication Critical patent/WO2023130537A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the invention relates to the technical field of life sciences, in particular to an autonomously driven biomolecular motor and a biomolecular motor hair.
  • This technology has a unique motor organ - molecular motor, which is structurally composed of a motor on the cell membrane, an extracellular connector device and molecular motor hairs, spanning the inner and outer membranes of the cell and extending to the outside of the cell.
  • Molecular motors contain proton pumps that convert chemical energy into mechanical energy by transporting hydrogen ions.
  • the biomolecular motor rotates and transmits torque to the joint assembly, which in turn is passed to the motor hairs, which in turn drives the rotation of the motor filaments.
  • the motor hairs act like a propeller, spinning to propel the cell forward.
  • Biomolecular motors are the most efficient and sophisticated molecular engines and among the most complex protein machines, capable of 300-2400 revolutions per second.
  • biomolecular motors Due to their high complexity, biomolecular motors have always been a challenge in microbiology, biochemistry, biophysics, and structural biology.
  • a nano-robot driven by a molecular motor and oriented by thrombus antibodies to assist rapid thrombolysis through the rapid rotation of the molecular motor in the thrombus, produces a micro-dynamic stirring
  • the effect of the device, and the use of light-driven molecular motors to realize the controllability of nano-bio-robots accelerate the contact between drugs and fibrin, realize the synergy between the biomechanical effects of nano-bio-robots and drug enzymatic hydrolysis, and accelerate fibrinolysis.
  • the basic and complex structure of the molecular motor in the above technical solution limits the combat speed of the biomolecular motor and cannot achieve a certain operation, thereby limiting scientific research operations, and the volume is too large, which increases the weight of the cell itself and cannot quickly advance the target cell. Moving and increasing the volume also image the transfer of molecular motors.
  • the present invention provides an autonomously driven biomolecular motor and a biomolecular motor hair.
  • the autonomously driven biomolecular motor provided by the first aspect of the present invention solves the basic problem of molecular motor operation.
  • the complex structure limits the combat speed of biomolecular motors and cannot achieve a certain level of operation, thereby limiting scientific research operations, and the size is too large, which increases the weight of the cells themselves, making it impossible to quickly move the target cells, and the increase in size also affects the rotation of molecular motors. matching problem.
  • the second aspect of the present invention provides a biomolecular motor hair that solves the basic complex structure of the molecular motor hair, so that the biomolecular motor can rotate 300-2400 circles per second and the motor hair can be used as a human cell
  • the rapid internal logistics device is applied in multiple scenarios and fields.
  • the first aspect of the present invention provides an autonomously driven biomolecular motor, which is realized through the following technical solutions: an autonomously driven biomolecular motor, the biomotor is built on the cell membrane, and the biomotor includes: a secretion device , C-type stator, MS periplasmic ring, P-type inner membrane ring, L-type outer membrane ring, linkage rod, fixed piece, the P-type inner membrane ring is fixedly arranged on the outer cell plasma membrane, and the L-type outer membrane ring is fixedly arranged on The cell wall, the MS periplasmic ring is fixedly arranged on the plasma membrane of the inner cell, a linkage rod is connected in the middle of the P-type inner membrane ring, a secretion device is connected to the lower end of the linkage rod, and a C-type stator is arranged on the outside of the secretion device. The upper end of the C-shaped stator is fastened and connected with several fixed pieces.
  • the L-shaped outer membrane ring and the MS periplasmic ring are tightly interlocked with each other and have a barrel-like structure.
  • the linkage rod is composed of 46 subunits and has a helical rod-like structure.
  • the P-type intima ring is fastened to the upper end of the secretion device and the top end of the linkage rod.
  • the fixed sheet passes through the inner membrane and is fixedly connected to the cell wall.
  • the secretion apparatus consists of 5 FliP subunits, 1 FliR subunit and 4 FliQ subunits.
  • the drive molecule motor wire is fixedly connected to the end of the linkage rod away from the secretion device, and the end of the drive molecule motor wire close to the linkage rod is fixedly bent.
  • this solution makes the biomolecular motor have a limited combat speed and cannot achieve a certain operation, thereby limiting scientific research operations, and the volume is too large, which increases the weight of the cell itself, making it impossible to quickly Promoting the movement of target cells, the increase in volume also poses the problem of the transfer of molecular motors.
  • the present invention uses biotechnology as the technical fulcrum of the foundation.
  • biomotor technology can change the operating mechanism of existing motors. It is a new type of biomolecular motor technology. Its core technology will be widely used in many fields in the future and has great core competitiveness.
  • a kind of biomolecular motor hair provided by the second aspect of the present invention is:
  • a biomolecular motor hair including a linkage rod and a molecular hair, the linkage rod and the molecular hair are connected to each other through a joint connection mechanism, and the upper ends of the linkage rod are respectively equipped with a No. 1 connecting pipe and a No. 2 connecting pipe.
  • the upper ends of the No. 1 connecting pipe and the No. 2 connecting pipe are connected to the lower end of the joint connecting mechanism, and the joint connecting mechanism includes a connecting hook and a positioning block.
  • flagellins are provided on the outside of the molecular filament.
  • the connecting hook includes an outer tube, a middle tube and an inner tube, the upper ends of the outer tube, the middle tube and the inner tube are respectively connected to the molecular hairs.
  • the lower ends of the outer tube, the middle tube and the inner tube are respectively arranged between the No. 1 connecting pipe and the No. 2 connecting pipe.
  • the lower ends of the outer tube, the middle tube and the inner tube are respectively provided with several positioning blocks on the side close to the No. 1 connecting pipe and the No.
  • One end of the connecting pipe is respectively set in a semicircular arc shape.
  • each of the positioning blocks is engaged and connected with the positioning groove, and the upper end of each of the positioning grooves is respectively provided with a guide groove, and the upper end of each of the guide grooves is respectively set in an arc shape.
  • each positioning block is slidably connected to the guide groove.
  • the biomolecular motor hair provided by the present invention has the following beneficial effects:
  • the present invention adopts biotechnology as the basic technical fulcrum. When the motor rotates rapidly, it does not consume any external energy, and adopts the ability to drive quickly by itself.
  • the drive structure of the biomolecular motor in the present invention is more compact, and the volume is small, which can be applied to the field of targeted drug delivery and the application field of life science.
  • the present invention changes the driving mechanism of the existing mechanical motor, does not require fuel, and can generate power by itself, reducing the pollution of the driving fuel to the environment and increasing the kinetic energy.
  • the present invention relates to the complex structure of the biomolecular motor, but it is easy to operate and use, the propulsion force is controllable, and the propulsion force can be adjusted at any time to improve the use efficiency of the biomolecular motor. At the same time, the volume is small and the application field is extremely wide.
  • biomotor technology can change the operating mechanism of existing motors. It is a new type of biomolecular motor technology. Its core technology will be widely used in many fields in the future and has great core competitiveness.
  • Fig. 1 is the overall structure schematic diagram of the present invention
  • Fig. 2 is the side view structural representation of the present invention
  • Fig. 3 is the sectional structure schematic diagram of line a-a in Fig. 2 of the present invention.
  • Fig. 4 is the structural representation of biomotor in the present invention.
  • Fig. 5 is a schematic diagram of the front view structure of the biomotor in the present invention.
  • Fig. 6 is the sectional structure schematic diagram of line b-b in Fig. 5 of the present invention.
  • Fig. 7 is a schematic diagram of the molecular cluster structure of the biomotor in the present invention.
  • FIG. 8 is a schematic diagram of the overall structure of a biomolecular motor hair of the present invention.
  • FIG. 9 is a schematic diagram of the front view structure of a biomolecular motor hair of the present invention.
  • Fig. 10 is a top view structural schematic diagram of a biomolecular motor hair of the present invention.
  • Fig. 11 is a schematic diagram of the cross-sectional structure at A-A in Fig. 10 of a biomolecular motor hair of the present invention
  • Fig. 12 is a schematic diagram of the enlarged structure at B in Fig. 11 of a biomolecular motor hair of the present invention.
  • Fig. 13 is a schematic diagram showing the enlarged structure of flagellin of a biomolecular motor hair filament according to the present invention.
  • Embodiment 1 of the present invention provides an autonomously driven biomolecular motor
  • the biomotor 5 is constructed on the cell membrane 1, and includes the biomotor 5, and the cell membrane 1 includes a nucleus 3 and a cytoplasm 4.
  • the cytoplasm 4 fills the inside of the cell membrane 1, and the cell nucleus 3 is suspended in the cell nucleus 3.
  • the cell membrane 1 includes: an outer cell plasma membrane 6, a cell wall 7, and an inner cell plasma membrane 8.
  • the cell membrane 1 is sequentially arranged from the inside to the outside Inner cell plasma membrane 8, cell wall 7, outer cell plasma membrane 6, one end of the cell membrane 1 is provided with a biomotor 5, and the biomotor 5 includes: secretion apparatus 501, C-type stator 502, MS periplasmic ring 503, P-type inner membrane ring 504 , an L-shaped outer membrane ring 505, a linkage rod 506, and a fixed piece 507, the P-shaped inner membrane ring 504 is fixed on the outer cell plasma membrane 6, the L-shaped outer membrane ring 505 is fixed on the cell wall 7, and the MS periplasmic ring 503 is fixedly arranged on the inner cell plasma membrane 8, the middle of the P-shaped inner membrane ring 504 is connected with a linkage rod 506, the lower end of the linkage rod 506 is connected with a secretion device 501, and a C-shaped stator 502 is arranged on the outside of the secretion device 501, The upper end of the C-shaped stator 502 is buckled and
  • the biomolecular motor has a highly symmetrical dislocation inside, the RBM2 area at the bottom of the inner membrane ring tightly clamps the secretion apparatus 501, and the ⁇ -collar and RBM3 surround the secretion apparatus and the lower end of the linkage rod 506.
  • the secretion apparatus 501 is composed of 1 FliR subunit, 4 FliQ subunits, and 5 FliP subunits.
  • the secretion device 501 also determines the assembly method of the linkage rod.
  • the secretion device 501 will also secrete various motor assembly proteins, and gradually form a linkage rod 506 , and then form an extracellular driving molecule motor filament 2 .
  • the L-shaped adventitia ring 505 and the MS periplasmic ring 503 are tightly interlocked to form a barrel-like structure.
  • the L-shaped outer membrane ring 505 also has a double-layer ⁇ -barrel structure, and the ⁇ -helices at the top can be arranged horizontally to form an outer membrane binding region.
  • the L-shaped outer membrane ring 505 and the MS periplasmic ring 503 are tightly interlocked with each other and have a barrel-like structure.
  • the L-shaped outer membrane ring 505 is composed of 26 FlgH subunits and has a double-layer ⁇ -barrel structure. The ⁇ -helix at the top is arranged horizontally to form the outer membrane binding region, and the 26 FlgH subunits are further anchored to the outer membrane through the fatty group on the N-terminal cysteine.
  • the periplasmic ring is composed of 26 FlgI monomers, and the FlgI monomer presents a "V" shape and consists of D1, RBM1, and RBM2 three domains.
  • the linkage rod 506 is composed of 46 subunits and has a helical rod-like structure, wherein the distal rod (distal rod) is composed of 24 FlgG and 5 FlgF, and the proximal rod (proximal rod) is composed of 6 FlgC, 5 FlgB and 6 FliE.
  • distal rod distal rod
  • proximal rod proximal rod
  • Different rod proteins have similar basic features, but each has special structural features.
  • Each subunit is interlocked with the surrounding subunits to ensure the high rigidity of the entire linkage rod 506.
  • the GSS region of the FlgG protein forms a "wedge" shape and inserts into the gap on the surface of the distal rod, greatly strengthening the The rigidity of the rod ensures the high-speed rotation and efficient torque transmission of the rod.
  • the L-shaped adventitia ring 505 and the MS periplasmic ring 503 are set on the far end of the linkage rod, and the inner surface of the L-shape adventitia ring 505 is fully negatively charged, just to generate electrostatic mutual repulsion with the fully negatively charged linkage rod 506 distal end, The resistance between the L-shaped adventitia ring 505 and the linkage rod 506 is greatly reduced, ensuring the high-speed rotation of the linkage rod 506 .
  • the MS periplasmic ring 503 surrounds the distal end of the linkage rod 506 and forms a hydrogen bond interaction ring with it.
  • the amino acid residues participating in the formation of this hydrogen bond interaction loop at the far end of the linkage rod 506 are all fixed glutamine, glutamic acid, and asparagine residues, while the residues participating in this hydrogen bond loop on the MS periplasmic loop 503
  • the residues are all invariant residues such as lysine and glutamine, so when the linkage rod 506 rotates, the hydrogen bond reconstruction between the MS periplasmic ring 503 and the distal end of the linkage rod 506 does not require energy loss, so this hydrogen
  • the key ring is like a steel ball in a bearing, which not only ensures that the linkage rod 506 does not deviate when rotating at high speed, but also does not lose energy in torque transmission.
  • the P-type intima ring 504 is fastened to the upper end of the secretion device 501 and the top end of the linkage rod 506.
  • the P-type intima ring 504 is the assembly base of the entire molecular motor, which can not only rotate, but also accept Torque from the proton pump and the cytoplasmic domain ring, and transmits the torque to the linkage rod (rod), the upper ⁇ -collar and RBM3 domains have C34 symmetry, the bottom RBM2 domain adopts C23 symmetry, and the top sticks out 10 polypeptide chains (5 L1 chains and 5 L2 chains).
  • the RBM2 region at the bottom of the P-type inner membrane ring 504 tightly clamps the secretion apparatus 501, ⁇ -collar and RBM3 surround the secretion apparatus 501 and the lower end of the linkage rod 506, and the linkage rod 506 passes through the proximal 11 subunits (6 FliE and 5 FlgB subunit), extending 6 small helical structures and 5 loop structures (loop structures), firmly attached to the inner surface of the P-type inner membrane loop 504.
  • the P-type inner membrane loop 504 protrudes 10 polypeptide chains (5 L1 and 5 L2 polypeptide chains), tightly grasping the middle of the linkage rod 506 .
  • This interaction method overcomes the structural asymmetry between the disc structure of the P-type inner membrane ring 504 and the helical structure of the linkage rod 506, and realizes the conversion of torque transmission from the horizontal direction to the vertical direction.
  • the polypeptide chain and the P-type inner membrane loop 504 are connected by irregular structural regions, and also the irregular structural regions connecting 6 small helical structures and 5 loop structures with the proximal end of the linkage rod. These irregular structural regions not only ensure The flexibility acts as a crawler, so that the torque is transmitted from the P-shaped inner membrane ring 504 to the linkage rod, and then the dense rigid linkage rod further transmits the torque from the proximal end to the distal end.
  • the fixed piece 507 is fixedly connected to the cell wall 7 through the inner membrane, and the fixed piece 507 can overcome the vibration generated by the high-speed rotation of the driving molecular motor wire 2, and fix the whole structure on the cell.
  • the secretion device 501 is composed of 5 FliP subunits, 1 FliR subunit and 4 FliQ subunits.
  • the secretion device 501 secretes various molecular assembly proteins, gradually forming a linkage rod 506, and then forming Bacterial extracellular motor filament 2.
  • the linkage rod 506 is inserted into the inner cavity of the secretion apparatus 501 through the C-terminal helical structure of FliE and FlgB at the lower end to open and activate the secretion apparatus 501, while FliP and FliR are inserted upward into the pocket between FliE and FlgB, and the way FliP and FliR bind to each other determines
  • the helical arrangement of FliE and FlgB is determined, and the close combination of FliP, FliR and FliE and FlgB makes the secretion device 501 and the linkage rod 506 rotate together when the motor works.
  • the end of the linkage rod 506 away from the secretion device 501 is fixedly connected with the motor wire 2 , and the end of the motor wire 2 close to the linkage rod 506 is fixedly bent.
  • the hydrogen bond ring is like the steel ball in the bearing, which not only ensures the fixed position of the linkage rod, but also does not lose the energy in the torque transmission.
  • the biomolecular motor can transfer the mechanical energy converted by the proton pump to the driving molecular motor wire 2 without any loss through the delicate cooperation between the various structural components, and then promote the high-speed rotation of the driving molecular motor wire 2, thereby allowing the cell Do a quick workout.
  • biomolecular motors The structure and mechanism of biomolecular motors is an important breakthrough in the field of microorganisms. This can help people better apply molecular engines in the microcosm, and can provide new inspiration for research on synthetic biology, nanorobots, etc., and also provide new ideas for blocking the migration of pathogenic bacteria.
  • a biomolecular motor hair includes a linkage rod 506 and a molecular hair filament 22.
  • the linkage rod 506 and the molecular hair filament 22 are connected to each other through a joint connection mechanism 23.
  • the upper end of the linkage rod 506 The No. 1 connecting pipe 24 and the No. 2 connecting pipe 25 are respectively installed, and the upper ends of the No. 1 connecting pipe 24 and the No. 2 connecting pipe 25 are connected to the lower end of the joint connecting mechanism 23.
  • the joint connecting mechanism 23 includes a connecting hook 301 and a positioning block 307 .
  • flagellins 201 are provided on the outside of the molecular hair 22 .
  • Molecular motor hairs are composed of molecular hairs 22 and flagellin 201, which are used to push cells, so that cells can move rapidly.
  • the connecting hook 301 When specifically configured, the connecting hook 301 includes an outer tube 302 , a middle tube 303 and an inner tube 304 , and the upper ends of the outer tube 302 , middle tube 303 and inner tube 304 are respectively connected to the molecular hairs 22 .
  • the connecting hook 301 is composed of protein FIGE, and the DO-Dc, D1, and D2 of FIGE respectively correspond to the three-layer tubular structure of the inner tube 304, the middle tube 303 and the outer tube 302, and are used to tighten the molecular hair 22 and the linkage rod 506. connection, so that the torque of the linkage rod 506 is completely transmitted to the joint connection mechanism 23, and then transmitted to the molecular hair 22 by the joint connection mechanism 23, so that the molecular hair 22 is in a high-speed rotation state.
  • the middle pipe 303 and the inner pipe 304 are respectively arranged between the first connecting pipe 24 and the second connecting pipe 25, and the lower ends of the outer pipe 302, the middle pipe 303 and the inner pipe 304 are close to One side of No. 1 connecting pipe 24 and No. 2 connecting pipe 25 are respectively provided with a plurality of positioning blocks 307, and the ends of each positioning block 307 close to No. 1 connecting pipe 24 and No. 2 connecting pipe 25 are respectively set in a semicircular arc shape.
  • the inner tube 304 and the middle tube 303 of the joint connection mechanism 23 are inserted between the No. 1 connecting tube 24 and the No.
  • the joint connection mechanism 23 has a certain flexibility, which is conducive to the flexible transition between the linkage rod 506 and the molecular hair 22, and the outer tube 302 structure of the joint connection mechanism 23 is compatible with the outer tube 302 through charge mutual repulsion and space limitation.
  • the electrostatic force action of the membrane-periplasmic ring together precisely controls the assembly length of the linkage rod 506 .
  • each positioning block 307 is engaged with the positioning groove 306 respectively, and the upper end of each positioning groove 306 is respectively provided with a guide groove 305, and the upper end of each guide groove 305 is respectively set in an arc shape.
  • the tight connection between the inner tube 304 and the middle tube 303 and the No. 1 connecting pipe 24 and the No. 2 connecting pipe 25 is assisted, so that it can carry out the transmission work more stably , more convenient.
  • each positioning block 307 is slidably connected with the guide groove 305 .
  • the positioning block 307 is slid between the guide grooves 305 through an arc to guide the positioning block 307, and then when the positioning block 307 snaps into the positioning groove 306 inside, through the cooperation of the positioning block 307 and the positioning groove 306, the inner tube 304 and the middle tube 303 and the No. 1 connecting tube 24 and the No. 2 connecting tube 25 are tightly connected so that no separation occurs. .
  • the inner tube 304 and the middle tube 303 of the joint connection mechanism 23 are inserted between the No.
  • the cooperation between 306 connects the linkage rod 506 and the joint connection mechanism 23 more tightly, and the outer tube 302 protects the structure of the inner tube 304 and the middle tube 303 on the outside, and due to the D0 and Dc structures of the FlGE monomer
  • the domain is relatively short, and the D2 domain is relatively independent.
  • the joint connection mechanism 23 has a certain degree of flexibility, which is conducive to the flexible transition between the linkage rod 506 and the molecular hair 22.
  • the space limitation and the electrostatic force of the outer membrane-periplasmic ring precisely control the assembly length of the linkage rod 506, and then through the unique structure of the molecular motor and the extraordinar mutual cooperation between the various components, the mechanical energy converted by the proton pump is without loss
  • the energy is quickly transmitted to the molecular motor hairs, making the molecular motor hairs rotate at high speed, so that the cells can move quickly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供一种自主驱动的生物分子马达,涉及生物分子技术领域,所述生物马达构建在细胞膜上,所述生物马达包括:分泌装置、C型定子、MS周质环、P型内膜环、L型外膜环、联动杆、固定片,所述P型内膜环固定设置在外细胞质膜上,所述MS周质环固定设置在内细胞质膜上,所述P型内膜环中间连接有联动杆。

Description

一种自主驱动的生物分子马达和生物分子马达毛丝 技术领域
本发明涉及生命科学技术领域,具体而言,涉及一种自主驱动的生物分子马达和一种生物分子马达毛丝。
背景技术
该项技术拥有独特的运动器官—分子马达,在结构上由细胞膜上的马达、胞外的接头装置和分子马达毛丝组成,横跨细胞的内外膜,延伸到细胞外。分子马达含有质子泵,通过转运氢离子,将化学能转变为机械能。生物分子马达旋转并将扭矩传输给接头装置,然后传给马达毛丝,从而带动马达丝的转动。马达毛丝如同螺旋桨一样,旋转推动细胞向前移动。生物分子马达是最高效、最精密的分子引擎,也是最复杂的蛋白质机器之一,能够每秒钟旋转300-2400圈。由于其高度复杂性,生物分子马达一直是微生物学、生物化学、生物物理和结构生物学研究的难点。如申请号为CN200810240365.6的纳米生物机器人的角度,构建分子马达驱动的,以血栓抗体为导向的辅助快速溶栓的纳米机器人,通过分子马达在血栓局部的快速旋转,产生类似于微动力搅拌器的效应,并采用光驱动分子马达,实现纳米生物机器人的可调控性,加快药物与纤维蛋白的接触,实现纳米生物机器人的生物机械力学效应与药物酶解作用的协同,加速纤维蛋白溶解。
而上述技术方案中的分子马达运转的基础复杂结构,使生物分子马达战速有限,无法达到一定的操作,从而限制科研作业,且体积偏大,增加细胞本身的重量,无法快速的推进目标细胞移动,体积加大 也形象分子马达的转配。
具体实施方式
针对现有技术的不足,本发明提供了一种自主驱动的生物分子马达和一种生物分子马达毛丝,本发明第一方面提供的一种自主驱动的生物分子马达解决了分子马达运转的基础复杂结构,使生物分子马达战速有限,无法达到一定的操作,从而限制科研作业,且体积偏大,增加细胞本身的重量,无法快速的推进目标细胞移动,体积加大也形象分子马达的转配的问题。本发明的第二方面提供的一种生物分子马达毛丝解决了通过分子马达毛丝运转的基础复杂结构,使生物分子马达每秒钟就可旋转300—2400圈和马达毛丝可作为人体细胞的快速体内物流装置,在多场景多领域应用。
本发明的第一方面提供的一种自主驱动的生物分子马达,通过以下技术方案予以实现:一种自主驱动的生物分子马达,所述生物马达构建在细胞膜上,所述生物马达包括:分泌装置、C型定子、MS周质环、P型内膜环、L型外膜环、联动杆、固定片,所述P型内膜环固定设置在外细胞质膜上,所述L型外膜环固定设置在细胞壁,所述MS周质环固定设置在内细胞质膜上,所述P型内膜环中间连接有联动杆,所述联动杆下端连接有分泌装置,所述分泌装置外侧设置有C型定子,所述C型定子上端扣紧连接有若干固定片。
作为优选的,所述L型外膜环与MS周质环彼此相互紧扣并呈桶状结构。
作为优选的,所述联动杆是由46个亚基组成且呈螺旋杆状结构。
作为优选的,所述P型内膜环与分泌装置上端和联动杆顶端扣紧连接。
作为优选的,所述固定片穿过内膜固定连接在细胞壁上。
作为优选的,所述分泌装置由5个FliP亚基、1个FliR亚基和4个FliQ亚基组成。
作为优选的,所述联动杆远离分泌装置的一端固定连接有驱动分子马达丝,所述驱动分子马达丝靠近联动杆的一端呈固定弯折状。
本发明提供的一种自主驱动的生物分子马达,具备以下有益效果:
本方案根据上述背景技术中提出的分子马达运转的基础复杂结构,使生物分子马达战速有限,无法达到一定的操作,从而限制科研作业,且体积偏大,增加细胞本身的重量,无法快速的推进目标细胞移动,体积加大也形象分子马达的转配的问题,而本发明采用生物科技作为基础的技术支点,在马达快速转动时,不消耗任何外部能量,采用拥有自行快速驱动能力;生物分子马达驱动结构更加紧密,体积微小可应用于靶向送药领域和生命科学应用领域;本发明改变现有机械马达的运行驱动机制,不需要燃料,可自我形成动力,减少驱动型燃料对环境的污染并增速动能;本发明涉及生物分子马达的复杂结构但操纵使用简单,推进力可控,且可随时调节推进力度,提高生物分子马达的使用效能,同时体积微小应用领域及其广泛;基于以上三点,生物马达技术可以改变现有马达的运行机制,是一种新型的生物分子马达技术,其核心技术在未来多领域内运用广泛切极具核心竞争力。
本发明的第二方面提供的一种生物分子马达毛丝,采取的技术方 案为:
一种生物分子马达毛丝,包括有联动杆与分子毛丝,所述联动杆与分子毛丝之间通过接头连接机构互相连接,所述联动杆的上端分别安装有一号连接管与二号连接管,所述一号连接管与二号连接管的上端与接头连接机构的下端互相连接,所述接头连接机构包括有连接钩与定位块。
作为优选,所述分子毛丝的外侧设有若干鞭毛蛋白。
作为优选,所述连接钩包括有外管、中管和内管,所述外管、中管和内管的上端分别与分子毛丝之间互相连接。
作为优选,所述外管、中管和内管的下端分别设于一号连接管与二号连接管之间。
作为优选,所述外管、中管和内管的下端并且靠近一号连接管与二号连接管的一侧分别设有若干定位块,每个所述定位块靠近一号连接管与二号连接管的一端分别设为半圆弧形。
作为优选,每个所述定位块分别与定位槽之间卡合连接,每个所述定位槽的上端分别设有引导槽,每个所述引导槽的上端分别设为弧形。
作为优选,每个所述定位块与引导槽之间滑动连接。
与现有技术相比,本发明提供的一种生物分子马达毛丝,具有如下有益效果:
1、本发明采用生物科技作为基础的技术支点,在马达快速转动时,不消耗任何外部能量,采用拥有自行快速驱动能力。
2、本发明中生物分子马达驱动结构更加紧密,体积微小可应用于靶向送药领域和生命科学应用领域。
3、本发明改变现有机械马达的运行驱动机制,不需要燃料,可自我形成动力,减少驱动型燃料对环境的污染并增速动能。
4、本发明涉及生物分子马达的复杂结构但操纵使用简单,推进力可控,且可随时调节推进力度,提高生物分子马达的使用效能,同时体积微小应用领域及其广泛。
5、基于以上四点,生物马达技术可以改变现有马达的运行机制,是一种新型的生物分子马达技术,其核心技术在未来多领域内运用广泛切极具核心竞争力。
附图说明
图1为本发明的整体结构示意图;
图2为本发明的侧视结构示意图;
图3为本发明图2中a-a线的剖面结构示意图;
图4为本发明中生物马达的结构示意图;
图5为本发明中生物马达的正视结构示意图;
图6为本发明图5中b-b线的剖面结构示意图;
图7为本发明中生物马达的分子团结构示意图。
图8为本发明一种生物分子马达毛丝的整体结构示意图;
图9为本发明一种生物分子马达毛丝的正视结构示意图;
图10为本发明一种生物分子马达毛丝的俯视结构示意图;
图11为本发明一种生物分子马达毛丝的图10中A-A处剖面结构 示意图;
图12为本发明一种生物分子马达毛丝的图11中B处放大结构示意图;
图13为本发明一种生物分子马达毛丝的鞭毛蛋白放大结构示意图。
其中,1、细胞膜;2、驱动分子马达丝;22、分子毛丝;201、鞭毛蛋白;23、接头连接机构;301、连接钩;302、外管;303、中管;304、内管;305、引导槽;306、定位槽;307、定位块;24、一号连接管;25、二号连接管;3、细胞核;4、细胞质;5、生物马达;501、分泌装置;502、C型定子;503、MS周质环;504、P型内膜环;505、L型外膜环;506、联动杆;507、固定片;6、外细胞质膜;7、细胞壁;8、内细胞质膜。
公开详细描述
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1至7所示,本发明实施例1提供一种自主驱动的生物分子马达,所述生物马达5构建在细胞膜1上,包生物马达5,所述细胞膜1内部包括有细胞核3和细胞质4,所述细胞质4充满细胞膜1内 部,所述细胞核3悬浮在细胞核3内,所述细胞膜1包括:外细胞质膜6、细胞壁7和内细胞质膜8,所述细胞膜1由内之外依次是内细胞质膜8、细胞壁7、外细胞质膜6,所述细胞膜1一端设置有生物马达5,所述生物马达5包括:分泌装置501、C型定子502、MS周质环503、P型内膜环504、L型外膜环505、联动杆506、固定片507,所述P型内膜环504固定设置在外细胞质膜6上,所述L型外膜环505固定设置在细胞壁7,所述MS周质环503固定设置在内细胞质膜8上,所述P型内膜环504中间连接有联动杆506,所述联动杆506下端连接有分泌装置501,所述分泌装置501外侧设置有C型定子502,所述C型定子502上端扣紧连接有若干固定片507。
本实施例1中,生物分子马达其内部存在着高度对称错位,内膜环底部RBM2区紧紧卡住分泌装置501,β-collar和RBM3则包围着分泌装置、并联动杆506下端。其中,分泌装置501由1个FliR亚基、4个FliQ亚基、和5个FliP亚基组成。作为联动杆的组装平台,分泌装置501还决定着联动杆的组装方式。另外,分泌装置501还会分泌各种马达组装蛋白,并逐步形成联动杆506,进而形成细胞外的驱动分子马达丝2。L型外膜环505和MS周质环503的彼此紧扣,能形成一种桶状结构。而L型外膜环505还具备双层β桶结构,顶端的α螺旋可通过水平排列、形成外膜结合区。
本实施例1中,所述L型外膜环505与MS周质环503彼此相互紧扣并呈桶状结构,L型外膜环505由26个FlgH亚基组成,具有双层β-桶结构,顶端的α螺旋水平排列形成外膜结合区,而26个FlgH 亚基进一步通过N端半胱氨酸上的脂肪基团锚定在外膜上。周质环由26个FlgI单体组成,FlgI单体呈现“V”字形,由D1和RBM1,RBM2三个结构域组成。这三个结构域依次形成了MS周质环503的上、外、下三个亚环结构,彼此相互作用。L型外膜环505和MS周质环503通过FlgH和FlgI单体之间以“1 vs 4”相互作用方式紧密结合,形成完整的、超稳定的C26对称桶状结构,即使在分子解聚后,仍稳定地存在在外细胞质膜6上。
本实施例1中,所述联动杆506是由46个亚基组成且呈螺旋杆状结构,其中远端rod(distal rod)是由24个FlgG和5个FlgF组成,而近端rod(proximal rod)是由6个FlgC,5个FlgB和6个FliE组成。不同的rod蛋白具有相似的基础特征,但各自具备特殊的结构特点。每个亚基跟周围的亚基相互锁定,保证了整个联动杆506高度的刚性,特别是FlgG蛋白的GSS区形成类似“楔子”的形状,***远端rod表面的空隙中,极大地加强了rod的刚性,以保证rod的高速旋转和高效的扭矩传输。
其中,L型外膜环505和MS周质环503套在联动杆的远端,L型外膜环505的内表面全带负电,正好与也全带负电的联动杆506远端产生静电互斥,大大地减小了L型外膜环505与联动杆506之间的阻力,确保了联动杆506的高速旋转。而MS周质环503则围绕联动杆506远端,与之形成一个氢键相互作用环。在联动杆506远端的参与这个氢键相互作用环形成的氨基酸残基全部是固定的谷氨酰胺、谷氨酸、天冬酰胺等残基,而在MS周质环503上参与这个氢键环的残基 都是不变的赖氨酸和谷氨酰胺等残基,因而在联动杆506旋转时,MS周质环503与联动杆506远端之间的氢键重建不需要能量的损耗,所以这个氢键环如同轴承中的钢珠球,既能保证联动杆506高速旋转时不跑偏,而且不损耗扭矩传输中的能量。
本实施例1中,所述P型内膜环504与分泌装置501上端和联动杆506顶端扣紧连接,P型内膜环504是整个分子马达的组装底座,它不仅可以旋转,而且可以接受来自质子泵和胞质区环传来的扭矩,并将扭矩传给联动杆(rod),其上部β-collar和RBM3区具有C34的对称性,底部RBM2区采取C23对称性,而顶部伸出10个多肽链(5条L1链和5条L2链)。P型内膜环504底部RBM2区紧紧地卡住分泌装置501,β-collar和RBM3包围分泌装置501和联动杆506下端,联动杆506通过近端的11个亚基(6个FliE和5个FlgB亚基),延伸出6个小螺旋结构和5个loop结构(环结构),牢牢地贴在P型内膜环504的内表面上。反过来,P型内膜环504伸出10条多肽链(5条L1和5条L2多肽链),紧紧地抓住联动杆506的中部。这种相互作用方式克服了P型内膜环504圆盘结构和联动杆506的螺旋结构之间的结构不对称性,实现了扭矩传输从水平方向到垂直方的转换。多肽链与P型内膜环504通过不规则的结构区连接,同样连接6个小螺旋结构和5个loop结构与联动杆近端的也是不规则的结构区,这些不规则结构区既保证了柔性,又充当了履带作用,从而将扭矩从P型内膜环504传到联动杆上,然后致密的刚性联动杆进一步将扭矩从近端往远端传输。
本实施例1中,所述固定片507穿过内膜固定连接在细胞壁7上,固定片507能够克服驱动分子马达丝2高速转动产生的振动,并将整个结构固定在细胞上。
本实施例1中,所述分泌装置501由5个FliP亚基、1个FliR亚基和4个FliQ亚基组成,分泌装置501分泌各种分子组装蛋白,逐步地形成联动杆506,继而形成细菌胞外的驱动分子马达丝2。联动杆506通过下端FliE和FlgB的C端螺旋结构***分泌装置501内腔中,打开并激活分泌装置501,而FliP和FliR向上嵌入FliE和FlgB之间的口袋里,FliP和FliR相互结合方式决定了FliE和FlgB的螺旋排列方式,而FliP、FliR与FliE和FlgB之间的相互紧密结合促使分泌装置501和联动杆506在马达工作时一同旋转。
本实施例1中,所述联动杆506远离分泌装置501的一端固定连接有驱动分子马达丝2,所述驱动分子马达丝2靠近联动杆506的一端呈固定弯折状。
工作原理:
氢键环就好比轴承中的钢珠球,不仅能保证联动杆位置固定,同时不会损失扭矩传输中的能量。生物分子马达通过各结构元件间的精妙配合,可将质子泵转化来的机械能,并可毫无损耗地传给驱动分子马达丝2,此后便可促进驱动分子马达丝2高速转动,从而让细胞进行快速运动。
生物分子马达结构与机制,是微生物领域重要突破。这可以帮助人们更好地应用微观世界的分子发动机,并可为合成生物学、纳米机 器人等研究提供新的启发,也为阻断病原菌的迁移提供了新的思路。
实施例2
如图8-13所示,一种生物分子马达毛丝,包括有联动杆506与分子毛丝22,联动杆506与分子毛丝22之间通过接头连接机构23互相连接,联动杆506的上端分别安装有一号连接管24与二号连接管25,一号连接管24与二号连接管25的上端与接头连接机构23的下端互相连接,接头连接机构23包括有连接钩301与定位块307。
在具体设置时,分子毛丝22的外侧设有若干鞭毛蛋白201。通过分子毛丝22与鞭毛蛋白201组成分子马达毛丝,用于对细胞进行推动工作,从而使得细胞可以进行快速运动。
在具体设置时,连接钩301包括有外管302、中管303和内管304,外管302、中管303和内管304的上端分别与分子毛丝22之间互相连接。连接钩301由蛋白FIGE组成,FIGE的DO-Dc、D1、D2分别对应内管304、中管303和外管302三层管状结构,用于对分子毛丝22与联动杆506之间进行紧密连接,使得联动杆506的扭矩全部传输给接头连接机构23,然后再由接头连接机构23传递给分子毛丝22,从而使得分子毛丝22进行高速转动状态。
在具体设置时,外管302、中管303和内管304的下端分别设于一号连接管24与二号连接管25之间,外管302、中管303和内管304的下端并且靠近一号连接管24与二号连接管25的一侧分别设有若干定位块307,每个定位块307靠近一号连接管24与二号连接管25的一端分别设为半圆弧形。接头连接机构23的内管304与中管303插 入一号连接管24与二号连接管25之间,然后通过疏水作用与氢键相关交错结合,在通过定位块307与定位槽306之间的配合对联动杆506与接头连接机构23之间更加紧密地进行连接起来,而外管302在外侧保护内管304与中管303的结构,并且由于FlGE单体的D0和Dc结构域较短,且D2结构域相对独立,接头连接机构23具有一定的柔性,有利于联动杆506到分子毛丝22之间的柔性过渡,接头连接机构23的外管302结构通过电荷互斥和空间限制与外膜-周质环的静电力作用一同精密地控制了联动杆506组装长度。
在具体设置时,每个定位块307分别与定位槽306之间卡合连接,每个定位槽306的上端分别设有引导槽305,每个引导槽305的上端分别设为弧形。通过定位块307与定位槽306之间的配合,来辅助内管304与中管303和一号连接管24与二号连接管25之间进行紧密连接,从而使其可以更加稳定的进行传输工作,更加便捷。
在具体设置时,每个定位块307与引导槽305之间滑动连接。通过定位块307与引导槽305之间的弧形,从而使得定位块307通过弧形滑动安装在引导槽305之间,来对定位块307进行引导工作,然后在当定位块307卡入定位槽306的内部后,通过定位块307与定位槽306的配合即对内管304与中管303和一号连接管24与二号连接管25之间进行紧密连接,使其不会产生分离等情况。
该一种生物分子马达毛丝的工作原理:
使用时,首先接头连接机构23的内管304与中管303***一号连接管24与二号连接管25之间,然后通过疏水作用与氢键相关交错 结合,在通过定位块307与定位槽306之间的配合对联动杆506与接头连接机构23之间更加紧密地进行连接起来,而外管302在外侧保护内管304与中管303的结构,并且由于FlGE单体的D0和Dc结构域较短,且D2结构域相对独立,接头连接机构23具有一定的柔性,有利于联动杆506到分子毛丝22之间的柔性过渡,接头连接机构23的外管302结构通过电荷互斥和空间限制与外膜-周质环的静电力作用一同精密地控制了联动杆506组装长度,然后通过分子马达独特的结构和各个元件之间精妙的互相配合,将质子泵转化而来的机械能毫无损耗的迅速传给分子马达毛丝,使得分子马达毛丝进行高速转动,从而使得细胞进行快速移动工作。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还 包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个引用结构”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (14)

  1. 一种自主驱动的生物分子马达,所述生物马达(5)构建在细胞膜(1)上,其特征在于:所述生物马达(5)包括:分泌装置(501)、C型定子(502)、MS周质环(503)、P型内膜环(504)、L型外膜环(505)、联动杆(506)、固定片(507),所述P型内膜环(504)固定设置在外细胞质膜(6)上,所述L型外膜环(505)固定设置在细胞壁(7),所述MS周质环(503)固定设置在内细胞质膜(8)上,所述P型内膜环(504)中间连接有联动杆(506),所述联动杆(506)下端连接有分泌装置(501),所述分泌装置(501)外侧设置有C型定子(502),所述C型定子(502)上端扣紧连接有若干固定片(507)。
  2. 根据权利要求1所述的一种自主驱动的生物分子马达,其特征在于:所述L型外膜环(505)与MS周质环(503)彼此相互紧扣并呈桶状结构。
  3. 根据权利要求1所述的一种自主驱动的生物分子马达,其特征在于:所述联动杆(506)是由46个亚基组成且呈螺旋杆状结构。
  4. 根据权利要求3所述的一种自主驱动的生物分子马达,其特征在于:所述P型内膜环(504)与分泌装置(501)上端和联动杆(506)顶端扣紧连接。
  5. 根据权利要求4所述的一种自主驱动的生物分子马达,其特征在于:所述固定片(507)穿过内膜固定连接在细胞壁(7)上。
  6. 根据权利要求5所述的一种自主驱动的生物分子马达,其特征在于:所述分泌装置(501)由5个FliP亚基、1个FliR亚基和4个FliQ亚基组成。
  7. 根据权利要求1所述的一种自主驱动的生物分子马达,其特征在于:所述联动杆(506)远离分泌装置(501)的一端固定连接有驱动分子马达丝(2),所述驱动分子马达丝(2)靠近联动杆(506)的一端呈固定弯折状。
  8. 一种生物分子马达毛丝,包括有联动杆(506)与分子毛丝(22),所述联动杆(506)与分子毛丝(22)之间通过接头连接机构(23)互相连接,其特征在于:所述联动杆(506)的上端分别安装有一号连接管(24)与二号连接管(25),所述一号连接管(24)与二号连接管(25)的上端与接头连接机构(23)的下端互相连接,所述接头连接机构(23)包括有连接钩(301)与定位块(307)。
  9. 根据权利要求8所述的一种生物分子马达毛丝,其特征在于:所述分子毛丝(22)的外侧设有若干鞭毛蛋白(201)。
  10. 根据权利要求8所述的一种生物分子马达毛丝,其特征在于:所述连接钩(301)包括有外管(302)、中管(303)和内管(304),所述外管(302)、中管(303)和内管(304)的上端分别与分子毛丝(22)之间互相连接。
  11. 根据权利要求10所述的一种生物分子马达毛丝,其特征在于:所述外管(302)、中管(303)和内管(304)的下端分别设于一号连接管(24)与二号连接管(25)之间。
  12. 根据权利要求11所述的一种生物分子马达毛丝,其特征在于:所述外管(302)、中管(303)和内管(304)的下端并且靠近一号连接管(24)与二号连接管(25)的一侧分别设有若干定位块(307), 每个所述定位块(307)靠近一号连接管(24)与二号连接管(25)的一端分别设为半圆弧形。
  13. 根据权利要求12所述的一种生物分子马达毛丝,其特征在于:每个所述定位块(307)分别与定位槽(306)之间卡合连接,每个所述定位槽(306)的上端分别设有引导槽(305),每个所述引导槽(305)的上端分别设为弧形。
  14. 根据权利要求13所述的一种生物分子马达毛丝,其特征在于:每个所述定位块(307)与引导槽(305)之间滑动连接。
PCT/CN2022/077482 2022-01-04 2022-02-23 一种自主驱动的生物分子马达和生物分子马达毛丝 WO2023130537A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210001188.6 2022-01-04
CN202210001188.6A CN114317396A (zh) 2022-01-04 2022-01-04 一种生物分子马达毛丝
CN202210000514.1 2022-01-04
CN202210000514.1A CN114292803A (zh) 2022-01-04 2022-01-04 一种自主驱动的生物分子马达

Publications (1)

Publication Number Publication Date
WO2023130537A1 true WO2023130537A1 (zh) 2023-07-13

Family

ID=87072983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077482 WO2023130537A1 (zh) 2022-01-04 2022-02-23 一种自主驱动的生物分子马达和生物分子马达毛丝

Country Status (1)

Country Link
WO (1) WO2023130537A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1513752A (zh) * 2002-12-31 2004-07-21 中国科学院生物物理研究所 一种生物分子马达磁调控装置
JP2009183159A (ja) * 2008-02-04 2009-08-20 National Institute Of Information & Communication Technology 生体物質通信方法及び生体状態生成方法
CN102798715A (zh) * 2011-05-24 2012-11-28 中国科学院生物物理研究所 一种生物分子马达共振传感器的构建及检测方法
JP2012236812A (ja) * 2011-05-12 2012-12-06 Toshio Fukuda 生物駆動リポソーム
US20190002882A1 (en) * 2015-11-27 2019-01-03 Ait Austrian Institute Of Technology Gmbh Molecular robot
CN113840798A (zh) * 2018-12-05 2021-12-24 加泰罗尼亚生物工程基础研究所 官能化酶驱动的纳米马达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1513752A (zh) * 2002-12-31 2004-07-21 中国科学院生物物理研究所 一种生物分子马达磁调控装置
JP2009183159A (ja) * 2008-02-04 2009-08-20 National Institute Of Information & Communication Technology 生体物質通信方法及び生体状態生成方法
JP2012236812A (ja) * 2011-05-12 2012-12-06 Toshio Fukuda 生物駆動リポソーム
CN102798715A (zh) * 2011-05-24 2012-11-28 中国科学院生物物理研究所 一种生物分子马达共振传感器的构建及检测方法
US20190002882A1 (en) * 2015-11-27 2019-01-03 Ait Austrian Institute Of Technology Gmbh Molecular robot
CN113840798A (zh) * 2018-12-05 2021-12-24 加泰罗尼亚生物工程基础研究所 官能化酶驱动的纳米马达

Similar Documents

Publication Publication Date Title
Carlsen et al. Bio‐hybrid cell‐based actuators for microsystems
Kinosita et al. A rotary molecular motor that can work at near 100% efficiency
CN100525058C (zh) 环形定子多自由度超声电机
Hu et al. Structural basis of torque generation in the bi-directional bacterial flagellar motor
CN107837430B (zh) 一种磁悬浮轴流式自发电人工心脏泵
KR102071169B1 (ko) 자력을 이용한 발전시스템
WO2023130537A1 (zh) 一种自主驱动的生物分子马达和生物分子马达毛丝
Nguyen Synthetic biology engineering of biofilms as nanomaterials factories
Kinosita et al. F1-ATPase: a highly efficient rotary ATP machine
CN109347362B (zh) 基于压电陶瓷扭转振动模式的异向双动子驻波型直线超声波电机
CN105821066A (zh) 一种生产α-酮戊二酸的双酶共表达菌株
CN109921681A (zh) 柱状和盘状混合驱动多自由度超声电机
CN200959578Y (zh) 驻波旋转压电马达
CN108725624B (zh) 一种多足机械人的多步态行走装置及其行走方法
CN1164755C (zh) 一种改善外源基因在大肠杆菌中可溶性表达的方法
CN208376910U (zh) 一种多足机械人的多步态行走装置
CN105969712A (zh) 一种共表达分子伴侣蛋白提高重组大肠杆菌1,2,4-丁三醇产量的方法
Lee et al. Biochemistry of mechanoenzymes: biological motors for nanotechnology
Velasco-Lozano et al. Coupling enzymes and inorganic piezoelectric materials for electricity production from renewable fuels
CN104963834B (zh) 一种压电泵的摆动振子
KR102239379B1 (ko) 자력을 이용한 회전운동장치
CN201164240Y (zh) 一种按摩椅
JPS6389083A (ja) 電歪モ−タ
TWI301354B (zh)
CN112165273B (zh) 基于同向偏心约束和斜压电陶瓷的耦合模态型超声波电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918004

Country of ref document: EP

Kind code of ref document: A1