WO2023128135A1 - Ae sensor node network system - Google Patents

Ae sensor node network system Download PDF

Info

Publication number
WO2023128135A1
WO2023128135A1 PCT/KR2022/013528 KR2022013528W WO2023128135A1 WO 2023128135 A1 WO2023128135 A1 WO 2023128135A1 KR 2022013528 W KR2022013528 W KR 2022013528W WO 2023128135 A1 WO2023128135 A1 WO 2023128135A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
node
elastic wave
signal processing
housing
Prior art date
Application number
PCT/KR2022/013528
Other languages
French (fr)
Korean (ko)
Inventor
김봉기
김광복
배욱
Original Assignee
주식회사 아이디케이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이디케이 filed Critical 주식회사 아이디케이
Publication of WO2023128135A1 publication Critical patent/WO2023128135A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an AE sensor node network system, and more specifically, to diagnose defects in structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.), a network of multiple AE sensor nodes It is attached to the surface of the structure using a method, and power and signal processing condition information is provided to a plurality of AE sensor nodes in a sequential network manner, so that a plurality of AE sensor nodes can be attached to the structure (high-pressure tank such as a hydrogen tank) according to the same signal processing condition.
  • high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.
  • power and signal processing condition information is provided to a plurality of AE sensor nodes in a sequential network manner, so that a plurality of AE sensor nodes can be attached to the structure (high-pressure tank such as a hydrogen tank) according to the same signal processing condition.
  • the acoustic emission test also referred to as the AE test method, is a non-destructive test method that measures the degree of damage by using an acoustic emission sensor for elastic waves generated when deformation, cracks, leaks, or destruction of an object to be inspected. It has the advantage of being able to detect cracks early.
  • a non-destructive inspection method in which a plurality of acoustic emission sensors (AE Sensors) are installed on an object to be inspected and defects of the object are measured by analyzing elastic waves generated when the object is deformed, cracked, leaked, or destroyed.
  • the non-destructive inspection method using the AE sensor measures and analyzes the elastic wave only according to the signal processing conditions set in the AE sensor, so the signal processing is suitable for the on-site situation.
  • the present invention uses a plurality of AE sensor nodes in a network method to diagnose defects in structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) is installed on the surface of the structure, and power and signal processing condition information is provided to a number of AE sensor nodes in a sequential network manner, so that the plurality of AE sensor nodes measure and analyze elastic waves for structural defect diagnosis according to the same signal processing conditions.
  • structures high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.
  • the elastic wave signal transmitted from the elastic wave measurement target is detected, the detected elastic wave signal is analyzed and processed according to the signal processing condition information transmitted by the network control node 2000 to generate elastic wave analysis result information, and the generated elastic wave analysis result information is a plurality of AE sensor nodes 1000 installed on the elastic wave measurement target so as to be transmitted to the network control node 2000;
  • a network control node (2000) that transmits power and signal processing condition information to the front-end AE sensor node (1001) and receives seismic analysis result information generated by a plurality of AE sensor nodes (1000) from the rear-end AE sensor node (100N) and;
  • a plurality of AE sensor nodes 1000 and a network control node to transmit power and signal processing condition information to the plurality of AE sensor nodes 1000 and to allow the network control node 2000 to collect seismic analysis result information Including a power line communication cable 3000 interconnecting (2000),
  • the front-end AE sensor node 1001 is any one sensor node among a plurality of AE sensor nodes 1000 that receives power and signal processing condition information from the network control node 2000,
  • the rear-end AE sensor node 100N is another sensor node among a plurality of AE sensor nodes 1000 that provides seismic wave analysis result information generated by the plurality of AE sensor nodes 1000 to the network control node 2000 characterized by
  • the present invention attaches and installs a plurality of AE sensor nodes on the surface of a structure (high-pressure tank such as a hydrogen tank, pipeline, bridge, dam, building, tunnel, railroad, etc.) in a network manner to diagnose defects in a structure, Power and signal processing condition information can be provided to the sensor nodes in a sequential network manner, providing an effect of easily modifying the signal processing conditions of the AE sensor nodes according to the site situation where the structure is installed.
  • a structure high-pressure tank such as a hydrogen tank, pipeline, bridge, dam, building, tunnel, railroad, etc.
  • a plurality of AE sensor nodes can measure and analyze elastic waves for fault diagnosis of structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) according to the same signal processing conditions, ,
  • the analysis result information generated by each AE sensor node can be collected in a node network method, so that the analysis result for the structure (high-pressure tank such as a hydrogen tank, pipeline, bridge, dam, building, tunnel, railroad, etc.) It provides the effect of verifying whether information is generated according to the same signal processing conditions.
  • FIG. 1 is an overall configuration diagram of a first embodiment of the present invention
  • FIG. 3 is a detailed configuration diagram of the sensor node 1000 of the present invention
  • 5 is a detailed configuration diagram of an amplifier 300 of the present invention
  • FIG. 7 is a detailed configuration diagram of a power line communication cable 3000 of the present invention
  • the AE sensor node network system (10, hereinafter the present invention) of the present invention uses a plurality of AE sensor nodes to diagnose defects in structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.)
  • structures high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.
  • power and signal processing condition information can be provided to a number of AE sensor nodes in a sequential network manner, so that the signal processing conditions of the AE sensor nodes can be easily modified according to the site situation
  • multiple AE sensor nodes can measure and analyze elastic waves for fault diagnosis of structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) according to the same signal processing conditions,
  • As the analysis result information generated by each AE sensor node can be collected in a node network manner, it is possible to verify whether the analysis result information on the test object is generated according to the same signal processing conditions
  • the AE sensor node network system of the present invention as shown in FIG. 1,
  • the elastic wave signal transmitted from the elastic wave measurement target is detected, the detected elastic wave signal is analyzed and processed according to the signal processing condition information transmitted by the network control node 2000 to generate elastic wave analysis result information, and the generated elastic wave analysis result information is a plurality of AE sensor nodes 1000 installed on the elastic wave measurement target so as to be transmitted to the network control node 2000;
  • a network control node (2000) that transmits power and signal processing condition information to the front-end AE sensor node (1001) and receives seismic analysis result information generated by a plurality of AE sensor nodes (1000) from the rear-end AE sensor node (100N) and;
  • a plurality of AE sensor nodes 1000 and a network control node to transmit power and signal processing condition information to the plurality of AE sensor nodes 1000 and to allow the network control node 2000 to collect seismic analysis result information Including a power line communication cable 3000 interconnecting (2000),
  • the front-end AE sensor node 1001 is any one sensor node among a plurality of AE sensor nodes 1000 that receives power and signal processing condition information from the network control node 2000,
  • the rear-end AE sensor node 100N is another sensor node among a plurality of AE sensor nodes 1000 that provides seismic wave analysis result information generated by the plurality of AE sensor nodes 1000 to the network control node 2000 characterized by
  • the plurality of AE sensor nodes 1000 detect elastic wave signals transmitted from the elastic wave measurement target, analyze and process the detected elastic wave signals according to the signal processing condition information transmitted by the network control node 2000, and obtain elastic wave analysis result information. As shown in FIG. 1, as shown in FIG. include
  • the elastic wave measurement target may be a structure in which structural displacement may occur, such as a high-pressure tank (eg, a hydrogen tank), a pipeline, a bridge, a dam, a building, a tunnel, a railroad, etc. It is a subject that requires safety inspection such as structural displacement inspection.
  • the plurality of AE sensor nodes 1000 installed on the elastic wave measurement target measure elastic waves generated when the elastic wave measurement target is deformed, cracked, leaked, or destroyed using an acoustic emission test method, which is a non-destructive test method. figure out the extent
  • a plurality of AE sensor nodes 1000 are installed on the surface of the elastic wave measurement target in a surface contact state so as to entirely measure elastic waves generated from the elastic wave measurement target without omission.
  • the elastic wave measurement range that can be measured by one AE sensor node 1000 is limited, in the case of a large structure having a large surface area, the entire elastic wave generated in the large structure can be measured with one AE sensor node 1000 without omission. can't
  • multiple elastic wave measurements must be performed on the elastic wave measurement target.
  • multiple AE sensor nodes 1000 are installed on the surface of the elastic wave measurement target to perform to measure elastic waves.
  • the plurality of AE sensor nodes 1000 include a front AE sensor node 1001 and a rear AE sensor node 100N, as shown in FIG. 1 .
  • the front-end AE sensor node 1001 is any one sensor node among a plurality of AE sensor nodes 1000 receiving power and signal processing condition information from the network control node 2000
  • the rear-end AE sensor node 100N is It is any one other sensor node among the plurality of AE sensor nodes 1000 that provides seismic wave analysis result information generated by the plurality of AE sensor nodes 1000 to the network control node 2000 .
  • the front-end AE sensor node 1001 receives power and signal processing condition information from the network control node 2000, it transmits the received power and signal processing condition information to another neighboring sensor node 1002.
  • the front-end AE sensor node 1001 uses the received power as operating power required for signal processing and analysis, processes the elastic wave according to the signal processing condition corresponding to the received signal processing condition information, and generates analysis result information. .
  • the generated analysis result information is transmitted to the neighboring sensor node 1002 .
  • the transmitted analysis result information includes its own identification information (e.g., #1 analysis result information) and transmits it.
  • the sensor node 1002 adjacent to the front-end AE sensor node 1001 receives power and signal processing condition information from the front-end AE sensor node 1001, the power received from other neighboring sensor nodes (1003, not shown) and signal processing condition information.
  • the sensor node 1002 uses the received power as operating power required for signal processing and analysis, processes elastic waves according to signal processing conditions corresponding to the received signal processing condition information, and generates analysis result information.
  • One analysis result information includes its own identification information (eg, #2 analysis result information) and transmits it to another neighboring sensor node (1003, not shown).
  • the sensor node 1002 transmits the analysis result information generated by itself (eg, #2 analysis result information)
  • the sensor node 1002 transmits the analysis result information (eg, #1 analysis result information) transmitted by the front end AE sensor node 1001. send together That is, the analysis result information transmitted to another sensor node (1003, not shown) adjacent to the sensor node 1002 is the analysis result information generated by the front end AE sensor node 1001 (e.g., #1 analysis result information) and the front end This is analysis result information generated by the sensor node 1002 adjacent to the AE sensor node 1001 (eg, #2 analysis result information).
  • the above process is sequentially performed in a node network manner, and the AE sensor node 100N at the end of the plurality of AE sensor nodes 1000 also uses the received power as operating power required for signal processing and analysis, , According to the signal processing condition corresponding to the received signal processing condition information, the elastic wave is processed to generate analysis result information, and its own identification information is included in the generated analysis result information (e.g., #N analysis result information) to network It is transmitted to the control node (2000).
  • the generated analysis result information e.g., #N analysis result information
  • the rear-end AE sensor node 100N transmits the analysis result information it generated (eg, #N analysis result information), the other sensor nodes 1001, 1002, ... 100N-1 located in the front end generate Then, the analysis result information (e.g., #1 analysis result information, #2 analysis result information, ... #N-1 analysis result information) and signal processing condition information transmitted sequentially through the node network method are transmitted together.
  • the analysis result information e.g., #1 analysis result information, #2 analysis result information, ... #N-1 analysis result information
  • signal processing condition information transmitted sequentially through the node network method
  • the information transmitted from the downstream AE sensor node 100N to the network control node 2000 is, as shown in FIG. 1, analysis result information generated by all sensor nodes 1000 (e.g., #1 analysis result information, #2 analysis result information, ...#N analysis result information) and signal processing condition information transmitted from the network control node 2000 to the previous sensor node 1001.
  • analysis result information generated by all sensor nodes 1000 e.g., #1 analysis result information, #2 analysis result information, ...#N analysis result information
  • a plurality of AE sensor nodes (which are configured to detect elastic wave signals transmitted from the elastic wave measurement target, analyze and process the detected elastic wave signals according to the signal processing condition information transmitted by the network control node 2000, and generate information as a result of the elastic wave analysis ( 1000) As shown in FIG. 3, each
  • a sensor unit 200 that generates a signal
  • An amplifier 300 installed in the inner space 110 formed inside the node housing 100 to amplify and process an electrical waveform signal corresponding to the elastic wave generated by the sensor unit 200;
  • a DAQ unit 400 generating analysis result information
  • Power input through the network input port 500, signal processing condition information, seismic wave analysis result information generated by other sensor nodes 1000 and seismic wave analysis result information generated by the DAQ unit 300 are transmitted through the network output port 600 ) It is characterized in that it includes a data transmission control unit 700 output to the outside through.
  • the node housing 100 has an inner space 110 in which a sensor unit 200, an amplification unit 300, and a DAQ unit 400 are installed, and is installed on the elastic wave measurement target.
  • a composition in which a sensor unit 200, an amplification unit 300, and a DAQ unit 400 are installed, and is installed on the elastic wave measurement target.
  • the node housing 100 has an internal space 110 in which the sensor unit 200, the amplification unit 300, and the DAQ unit 400 are inserted and installed, and is inserted and installed in the internal space 110
  • the sensor unit 200, the amplification unit 300, and the DAQ unit 400 are protected from the external environment.
  • the sensor unit 200 is installed in the inner space 110 formed inside the node housing 100 or, as shown in FIG. 2, installed in the elastic wave measurement target around the outside of the node housing 100, and transmitted from the elastic wave measurement target An elastic wave is sensed and an electrical waveform signal corresponding to the detected elastic wave is generated.
  • the sensor unit 200 as shown in FIG. 4,
  • the sensor housing 210 into which the AE sensor 220 is inserted and installed therein;
  • An AE sensor 220 installed inside the sensor housing 210, having a sensing surface 221 formed to detect an elastic wave transmitted from an elastic wave measurement target, and generating an electrical waveform signal corresponding to the detected elastic wave;
  • the wave impedance matching member 230 made of alumina is formed on the sensing surface 221 of the AE sensor 220 and has a certain area in contact with the surface of the elastic wave measurement target.
  • the sensor housing 210 has a configuration in which the AE sensor 220 is inserted and installed inside, and the AE sensor 220 inserted into the sensor housing 210 is protected from impact transmitted from the outside by the node housing 100 described above. It is primarily protected, and is secondarily protected from impact transmitted from the outside by the sensor housing 110 .
  • the AE sensor 220 is installed inside the sensor housing 210, has a sensing surface 221 formed to detect an elastic wave transmitted from an elastic wave measurement target, and generates an electrical waveform signal corresponding to the detected elastic wave. am.
  • the AE sensor 220 is characterized in that it is an acoustic emission sensor (AE sensor).
  • AE sensor acoustic emission sensor
  • the elastic wave measured by the AE sensor 220 of the present invention which is an acoustic emission sensor, is a very fine ultrasonic signal that cannot be detected by humans, and is non-destructive It is often used in inspection methods.
  • the AE sensor 220 is in surface contact with an elastic wave measurement target (eg, a high-pressure tank such as a hydrogen tank, a pipeline, a bridge, a dam, a building, a tunnel, a railroad, etc.) to cause fine deformation, cracks, leakage, or destruction of the elastic wave measurement target It detects the elastic wave generated at the time and converts the detected elastic wave into an electrical waveform signal corresponding to the elastic wave.
  • an elastic wave measurement target eg, a high-pressure tank such as a hydrogen tank, a pipeline, a bridge, a dam, a building, a tunnel, a railroad, etc.
  • the wave impedance matching member 230 is formed on the sensing surface 221 of the AE sensor 220 to increase the reception rate of the elastic wave transmitted from the elastic wave measurement target, and has a certain area in surface contact with the surface of the elastic wave measurement target Alumina is the composition of the material.
  • the elastic wave meets another medium, a wave reflection phenomenon in which part of it is reflected occurs.
  • the elastic wave is transmitted from the elastic wave measuring target to the AE sensor while the sensing surface 221 of the AE sensor 220 is in contact with the elastic wave measuring target.
  • a wave reflection phenomenon in which a part of the elastic wave is reflected from the contact surface occurs, and the elastic wave is not 100% transmitted to the AE sensor 220.
  • the wave impedance matching member 230 is formed on the sensing surface 221 of the AE sensor 220 .
  • the wave impedance matching member 230 made of alumina is present between the elastic wave measurement object and the sensing surface 221 of the AE sensor 220, more elastic waves can be generated than when the wave impedance matching member 230 is not installed. Since the AE sensor 220 can receive it, the elastic wave reception rate is increased.
  • the amount of the elastic wave is much greater than the amount of the elastic wave transmitted through the sensing surface 221 of the AE sensor 220 in the elastic wave measurement object in the absence of the wave impedance matching member 230, as a result, the wave impedance matching member 230
  • the acoustic wave received by the AE sensor 220 is larger when the wave impedance matching member 230 is present than when the wave impedance matching member 230 is not present, so that the acoustic wave reception rate of the AE sensor is increased.
  • the signal extraction terminal 240 is configured to allow the electrical waveform signal generated by the AE sensor 220 to be extracted to the outside, and functions as a kind of connector to which a signal transmission line is coupled.
  • the electrical waveform signal extracted through the signal extraction terminal 240 It is transmitted to the formed sensing data input port 900.
  • the amplifier 300 is installed in the inner space 110 formed inside the node housing 100, and amplifies and processes an electrical waveform signal corresponding to the elastic wave generated by the sensor unit 200. .
  • a cylindrical preamplifier board housing 310 installed on the upper side of the sensor housing 210 and having a hollow 311 formed therein so that the preamplifier board 320 can be installed therein;
  • a preamplifier board 320 installed inside the preamplifier board housing 310 and designed with an amplification circuit for amplifying the electrical waveform signal generated by the AE sensor 220;
  • the preamplifier board housing 310 has a cylindrical shape in which a hollow 311 is formed so that the preamplifier board 320 can be installed therein, and the preamplifier board housing 310 is inserted and installed into the hollow 311.
  • the amplifier board 320 is protected from the external environment.
  • the preamplifier board 320 has an amplification circuit that is sensitive to the external environment and must be protected from the external environment. To this end, it is inserted into the hollow 311 formed inside the preamplifier board housing 310.
  • the preamplifier board 320 is inserted into the hollow 311 formed inside the preamplifier board housing 310, and has an amplification circuit for amplifying the electrical waveform signal transmitted from the AE sensor 220. It is the configuration of the designed boat type.
  • the amplifier circuit designed on the board-type preamplifier board 320 is sensitive to the external environment, it is inserted and installed into the hollow 311 formed inside the preamplifier board housing 310 to be protected.
  • the electrical waveform signal amplified by the preamplifier board 320 is provided to the DAQ unit 400 through a signal transmission line.
  • the slide groove 330 is formed in the hollow 311 so that the preamplifier board 320 can be inserted into the hollow 311 formed inside the preamplifier board housing 310 in a sliding manner. It is an insertion guide groove of a certain length.
  • the board type preamplifier board 320 having a square shape is slid through the slide groove 330 and inserted into the hollow 311 formed inside the preamplifier board housing 310 .
  • the board-type preamplifier board 320 on which the amplifier circuit is designed must be located inside the preamplifier board housing 310 in a stable state for stable signal amplification. To this end, it is fitted into the slide groove 330.
  • the preamplifier board 320 stably positioned inside the preamplifier board housing 310 by being inserted into the slide groove 330 stably amplifies the electrical waveform signal transmitted from the AE sensor 220 .
  • the DAQ unit 400 is installed in the inner space 110 formed inside the node housing 100, and the amplification unit 300 amplifies and processes the electrical waveform signal input through the network input port 400.
  • Signal processing conditions It is a component that analyzes and processes an electrical waveform signal according to information to generate information as a result of seismic wave analysis, and is formed in a board type.
  • the DAQ unit 400 As shown in FIG. 6, the DAQ unit 400
  • the amplified electrical waveform signal provided from the amplification unit 300 is subjected to gain control, noise removal, and digital conversion processing according to signal processing condition information input through the network input port 400, and the digital signal processing unit 420 analyzes and processes the signal.
  • an analog signal processing unit 410 that converts a digital signal in an available state and provides it to the digital signal processing unit 420;
  • It is characterized by including a digital signal processing unit 420 that analyzes and processes the digital signal provided from the analog signal processing unit 410 according to the signal processing condition information input through the network input port 400 to generate seismic analysis result information. .
  • analog signal processing unit 410 and the digital signal processing unit 420 are configured as an embedded logic circuit type on one board.
  • the network input port 500 is formed in the node housing 100 so that the power line communication cable 3000 is connected, and power and signal processing conditions are provided through the connected power line communication cable 3000. Information and the result of seismic wave analysis of neighboring sensor nodes are input.
  • seismic wave analysis result information of neighboring sensor nodes is not input through the network input port 500.
  • the network output port 600 is formed in the node housing 100 so that the power line communication cable 3000 is connected, and power and signal processing conditions are provided through the connected power line communication cable 3000.
  • Information, seismic analysis result information transmitted by neighboring sensor nodes and seismic analysis result information generated by the sensor node where it is installed are output.
  • the sensor node 1000 is the later AE sensor node 1001
  • signal processing condition information and seismic wave analysis result information generated by all sensor nodes are output through the network output port 600.
  • the data transmission control unit 700 includes power input through the network input port 500, signal processing condition information, seismic wave analysis result information generated by other sensor nodes 1000 and seismic wave analysis results generated by the DAQ unit 300 This configuration outputs information to the outside through the network output port 600.
  • the unique identification information of the sensor node 1000 to which it belongs is included in the seismic analysis result information generated by the DAQ unit 400 and output to the outside through the network output port 600.
  • the data transmission control unit 700 installed in the front-end AE sensor node 1001 outputs the network output port 600.
  • the DAQ unit 400 When power and signal processing condition information received from other neighboring sensor nodes 1002 are transmitted and the DAQ unit 400 generates seismic analysis result information, It is transmitted by including the unique identification information of the front-end AE sensor node 1001 where it is installed (eg, #1 analysis result information).
  • the data transmission controller 700 installed in another sensor node 1002 (a sensor node adjacent to the leading AE sensor node 1001) transmits power and signal processing condition information and the leading AE sensor node (through the network input port 500). 1001) when receiving the transmission of seismic analysis result information (e.g., #1 analysis result information) generated, power and signal processing condition information transmitted to another neighboring sensor node (1003, not shown) and the tip AE sensor node (1001 ) to transmit the seismic analysis result information (e.g., #1 analysis result information) generated, and when the DAQ unit 400 generates the seismic analysis result information, the DAQ unit 400 generates the analysis result information.
  • the unique identification information of the installed sensor node 1002 is included (eg, #2 analysis result information) to be transmitted.
  • the above process is sequentially performed in a node network manner, and the data transmission control unit 700 installed in the rear-end AE sensor node 100N at the end of the plurality of AE sensor nodes 1000 through the network input port 500
  • power and signal processing condition information and seismic wave analysis result information generated by other sensor nodes 1000 e.g., #1 analysis result information, #2 analysis result information, ... #N-1 analysis result information
  • Signal processing condition information received from the network control node 2000 and seismic analysis result information generated by other sensor nodes 1000 eg, #1 analysis result information, #2 analysis result information, ...
  • #N-1 analysis result information is transmitted, and when the DAQ unit 400 generates seismic analysis result information, the analysis result information generated by the DAQ unit 400 adds unique identification information of the rear-end AE sensor node 100N where it is installed. Include (e.g., #N analysis result information) to be transmitted.
  • the wave impedance matching member 230 of the sensor unit 200 inserted into the inner space 110 formed inside the node housing 100 can maintain a surface contact state with the surface of the elastic wave measurement target. It is characterized in that it further includes an elastic member 800 installed in the inner space 110 of the node housing 100 to press the sensor housing 210 of the sensor unit 200 so as to be.
  • the elastic member 800 is inside the node housing 100 so that the wave impedance matching member 230 of the sensor unit 200 inserted inside the node housing 100 can maintain surface contact with the surface of the elastic wave measurement target. It is installed in the space 110 and presses the sensor housing 210 of the sensor unit 200 .
  • the wave impedance matching member 230 of the sensor unit 200 should be in surface contact with the surface to be measured for elastic waves.
  • the configuration for this is the elastic member 800.
  • the node housing 100 is attached to the surface of the elastic wave measurement target by a coupling means (eg, a bolt or an elastic band).
  • a coupling means eg, a bolt or an elastic band.
  • the node housing 100 When the node housing 100 is attached to the surface of the elastic wave measurement target by means of a coupling means (eg, a bolt or an elastic band), the node housing 100 is pressed toward the surface of the elastic wave measurement target. At this time, the wave impedance matching member 230 of the sensor unit 200 installed inside the node housing 100, which is pressed toward the surface of the elastic wave measurement target, should also be in surface contact with the elastic wave measurement target surface. The pressing force by the elastic band alone is not sufficient to bring the wave impedance matching member 230 of the sensor unit 200 into surface contact with the surface to be measured for elastic waves.
  • a coupling means eg, a bolt or an elastic band
  • the elastic member 800 when the elastic member 800 is installed on the upper side of the sensor housing 210 of the sensor unit 200 from the inside of the node housing 100, the elastic member 800 ) is contraction-deformed, and the elastic return force of the contracted-deformed elastic member 800 presses the sensor housing 210 downward, so that the surface of the wave impedance matching member 230 of the sensor unit 200 is subjected to elastic wave measurement. The surface contact state for is further maintained.
  • the sensor node 1000 When the sensor unit 200 is installed on a target for measuring elastic waves around the outside of the node housing 100, the sensor node 1000 is provided with the sensor unit 200 installed on the target for measuring elastic waves around the outside of the node housing 100 It is characterized in that it further comprises a sensing data input port 900 formed in the node housing 100 to receive an electrical waveform signal to be input.
  • a signal transmission line is provided between the signal extraction terminal 240 of the sensor unit 200 installed on the elastic wave measurement object around the outside of the node housing 100 and the sensing data input port 900 formed in the node housing 100. Connected, the electrical waveform signal generated by the sensor unit 200 is input to the sensing data input port 900 .
  • the sensing data input port 900 and the preamplifier board 320 of the amplification unit 300 are interconnected with a signal transmission line, so that the electrical waveform signal input through the sensing data input port 900 is transmitted to the amplification unit 300.
  • the network control node 2000 transmits power and signal processing condition information to the front AE sensor node 1001 among the plurality of AE sensor nodes 1000, and among the plurality of AE sensor nodes 1000, the rear AE This is a configuration for receiving seismic analysis result information generated by a plurality of AE sensor nodes 1000 from the sensor node 100N.
  • the power is provided for use by the plurality of AE sensor nodes 1000 as operating power, and the signal processing condition information is used in the process of processing and analyzing elastic wave signals by the plurality of AE sensor nodes 1000.
  • Signal processing and analysis It is characterized in that it is information about various conditions (eg, sampling conditions, amplification gain conditions, etc.) required for
  • a plurality of AE sensors are installed on a defect inspection object, and the elastic waves generated when the inspection object is deformed, cracked, leaked, or destroyed are analyzed and inspected. Defects in the target object, the hydrogen tank, are identified.
  • the AE sensor measures and analyzes elastic waves only according to the signal processing conditions preset in the AE sensor. It was difficult to modify the signal processing conditions. Conventionally, in order to modify the signal processing condition, it is necessary to replace the AE sensor attached to the test object with a new acoustic emission sensor set to a new signal processing condition.
  • the present invention configures a node network with a plurality of AE sensor nodes 1000 and a network control node 2000, and the network control node 2000 provides signal processing condition information suitable for the field situation. is provided to a plurality of AE sensor nodes 1000 in a node network manner, so that the plurality of AE sensor nodes process the same signal for elastic waves for diagnosing defects in a structure to be inspected according to the signal processing conditions provided by the network control node 2000 It is to be able to measure and analyze conditions.
  • the network control node 2000 compares the signal processing condition information transmitted to the front end AE sensor node 1001 with the signal processing condition information transmitted from the rear end AE sensor node 100N, and obtains the signal processing condition transmitted by the network control node 2000. It is characterized in that it is determined whether the elastic wave signals have been analyzed and processed according to the information, and as a result of the determination, the validity of the elastic wave analysis result information generated by the plurality of AE sensor nodes 1000 is verified.
  • the rear-end AE sensor node 100N provides the network control node 2000 with signal processing condition information received by itself in addition to the seismic wave analysis result information generated by the plurality of AE sensor nodes 1000. Characterized in that do.
  • the signal processing conditions used in the plurality of AE sensor nodes 1000 are different for each of the plurality of AE sensor nodes 1000, the same acoustic wave signal collected from the same test object structure is analyzed by different criteria and conditions This causes a problem in which inaccurate analysis results that are not matched with each other are derived.
  • the network control node 2000 compares the signal processing condition information transmitted to the front end AE sensor node 1001 with the signal processing condition information transmitted from the rear end AE sensor node 100N, and transmits According to one signal processing condition information, it is determined whether the elastic wave signals have been analyzed and processed, and as a result of the determination, the validity of the elastic wave analysis result information generated by the plurality of AE sensor nodes 1000 is verified.
  • the seismic wave analysis generated by the plurality of AE sensor nodes 1000 The resulting information is verified as valid as result information analyzed under the same criteria and conditions. If the received signal processing condition information does not match, the seismic analysis result information generated by the plurality of AE sensor nodes 1000 is analyzed according to different criteria and conditions, and is verified to be invalid.
  • the network control node 2000 receives signal processing condition information different from the signal processing condition information provided to the leading AE sensor node 1001 by the network control node 2000 through the rear AE sensor node 100N. In this case, The network control node 2000 verifies that the seismic analysis result information generated by the plurality of AE sensor nodes 1000 is invalid.
  • the power line communication cable 3000 allows power and signal processing condition information to be transmitted to the plurality of AE sensor nodes 1000 and allows the network control node 2000 to collect seismic analysis result information, a plurality of AE sensor nodes 1000 and the network control node 2000 are interconnected.
  • a core portion 3200 composed of a positive core and a negative core formed inside the shield cable 3100;
  • It is characterized in that it is composed of an insulating coating 3300 formed on the outside of the shield cable 3100.
  • Power and data are transmitted through the core part 3200 composed of a positive core and a negative core, and external factors are transmitted through a shield cable 3100 in the form of a cylindrical mesh made of copper.
  • a shield cable 3100 in the form of a cylindrical mesh made of copper.
  • the present invention attaches and installs a plurality of AE sensor nodes on the surface of a structure (high-pressure tank such as a hydrogen tank, pipeline, bridge, dam, building, tunnel, railroad, etc.) in a network manner to diagnose defects in a structure, Since power and signal processing condition information can be provided to sensor nodes in a sequential network manner, it provides the effect of easily modifying the signal processing conditions of AE sensor nodes according to the site situation where the structure is installed, so industrial applicability is also possible. It is a high invention.
  • a structure high-pressure tank such as a hydrogen tank, pipeline, bridge, dam, building, tunnel, railroad, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

In order to diagnose defects in structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.), the present invention relates to an invention that attaches multiple AE sensor nodes on the surface of the structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) in a network manner and provides power and signal processing condition information to the multiple AE sensor nodes in a sequential network manner to enable the multiple AE sensor nodes to measure and analyze elastic waves for defect diagnosis of the structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) under the same signal processing conditions and to make it possible to collect analysis result information generated by each of the multiple AE sensor nodes in a node network manner under the same signal processing conditions. The present invention comprises: multiple AE sensor nodes (1000); a network control node (2000); and a power line communication cable (3000).

Description

AE 센서 노드 네트워크 시스템AE sensor node network system
본 발명은 AE 센서 노드 네트워크 시스템에 관한 것으로, 상세하게는 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)의 결함 진단을 위해, 다수의 AE 센서 노드를 네트워크 방식으로 구조물 표면에 부착 설치 하고, 다수의 AE 센서 노드들로 전력과 신호 처리 조건 정보를 순차적 네트워크 방식으로 제공하여, 다수의 AE 센서 노드들이 동일한 신호 처리 조건에 따라 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)의 결함 진단용 탄성파를 측정 및 분석할 수 있도록 하고, 동일한 신호 처리 조건에 따라 각 AE 센서 노드들이 생성한 분석 결과 정보를 노드 네트워크 방식으로 수집할 수 있도록 하는 기술에 관한 것이다.The present invention relates to an AE sensor node network system, and more specifically, to diagnose defects in structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.), a network of multiple AE sensor nodes It is attached to the surface of the structure using a method, and power and signal processing condition information is provided to a plurality of AE sensor nodes in a sequential network manner, so that a plurality of AE sensor nodes can be attached to the structure (high-pressure tank such as a hydrogen tank) according to the same signal processing condition. , pipelines, bridges, dams, buildings, tunnels, railroads, etc.) to measure and analyze elastic waves for fault diagnosis, and to collect analysis result information generated by each AE sensor node in a node network manner under the same signal processing conditions. It's about technology that makes it possible.
현대사회는 과학 기술이 발달함과 동시에 환경오염 및 지구 온난화가 나날이 심각해지고 있는데, 환경오염과 지구 온난화의 원인 중 하나가 화석연료를 사용하는 자동차, 선박, 항공기, 발전소, 공장에서 배출되는 배기가스와 배기가스에 포함된 이산화탄소라 할 수 있다.In modern society, as science and technology develop, environmental pollution and global warming are becoming more serious day by day. One of the causes of environmental pollution and global warming is exhaust gas emitted from vehicles, ships, aircraft, power plants, and factories that use fossil fuels. and carbon dioxide contained in the exhaust gas.
따라서 이산화탄소 배출을 줄이기 위해, 산업에서 널리 사용되고 있는 화석연료 사용 비중을 낮추어야 하며, 이를 위해, 휘발유, 경유를 사용하는 내연 기관 자동차를 대체하도록 전기 자동차가 개발되어 보급되고 있고, 발전소의 경우, 태양열, 풍력, 조력 등을 이용한 신재생에너지 발전소 등이 건설되어 운영되고 있다.Therefore, in order to reduce carbon dioxide emissions, it is necessary to lower the proportion of fossil fuels widely used in industry. To this end, electric vehicles are being developed and supplied to replace internal combustion engine vehicles that use gasoline and diesel. In the case of power plants, solar heat, New and renewable energy power plants using wind power and tidal power have been built and operated.
한편, 화석연료 중심의 탄소 경제 체제를 벗어나 친환경적인 수소를 주요 에너지원으로 사용하는 수소 경제 체제로의 전환을 시도하고 있다.On the other hand, it is attempting a transition to a hydrogen economy system that uses eco-friendly hydrogen as the main energy source out of a carbon economy system centered on fossil fuels.
특히, 수소 경제 체제를 활성화하려면 고압의 수소를 보관하는 수소 저장 탱크의 안전성 검사가 선행되어야 하며, 이를 위해, 수소 저장 탱크의 안전성 검사를 위한 다양한 기술들이 개발되고 있으며, 그중 하나가 음향방출(Acoustic Emission) 기술을 활용한 수소 저장 탱크의 안전성 검사이다.In particular, in order to activate the hydrogen economy system, safety inspection of hydrogen storage tanks that store high-pressure hydrogen must be preceded. To this end, various technologies for safety inspection of hydrogen storage tanks are being developed, one of which is acoustic emission It is a safety inspection of hydrogen storage tanks using Emission technology.
상기 음향방출 검사는 AE 검사법이라고도 하며, 검사 대상체의 변형, 균열, 누설 또는 파괴 시에 발생하는 탄성파를 음향방출 센서를 이용하여 손상 정도를 측정하는 비파괴검사법으로, 검사 대상체에서 진행되고 있는 미세한 변형이나 균열을 조기에 발견할 수 있는 장점이 있다.The acoustic emission test, also referred to as the AE test method, is a non-destructive test method that measures the degree of damage by using an acoustic emission sensor for elastic waves generated when deformation, cracks, leaks, or destruction of an object to be inspected. It has the advantage of being able to detect cracks early.
종래에는 검사 대상체에 다수의 음향방출 센서(AE Sensor)를 설치하고, 검사 대상체의 변형, 균열, 누설 또는 파괴 시에 발생하는 탄성파를 분석하여 검사 대상체의 결함을 측정하는 비파괴 검사법이 사용되고 있으나, 종래의 음향방출 센서(AE Sensor)를 이용한 비파괴 검사법은 음향방출 센서(AE Sensor)에 사전 세팅된 신호 처리 조건대로만 음향방출 센서(AE Sensor)가 탄성파를 측정하고 분석하기 때문에, 현장 상황에 맞게 신호 처리 조건을 수정하기가 곤란하고(신호 처리 조건 수정을 위해서는 검사 대상체에 부착된 음향방출 센서(AE Sensor)를 일일이 교체해야 하는 번거로움이 있음), 또한, 다수의 음향방출 센서(AE Sensor)에 사전 세팅된 신호 처리 조건들이 상이한 경우, 동일한 검사 대상체에서 수집되는 다수의 탄성파 분석 결과들이 상호 매칭되지 않아 검사 대상체에 대한 정확한 결함 분석이 곤란한 문제들이 있었다.Conventionally, a non-destructive inspection method is used in which a plurality of acoustic emission sensors (AE Sensors) are installed on an object to be inspected and defects of the object are measured by analyzing elastic waves generated when the object is deformed, cracked, leaked, or destroyed. The non-destructive inspection method using the AE sensor measures and analyzes the elastic wave only according to the signal processing conditions set in the AE sensor, so the signal processing is suitable for the on-site situation. It is difficult to modify the conditions (in order to modify the signal processing condition, it is cumbersome to have to replace the AE Sensors attached to the test object one by one), and also, in advance When set signal processing conditions are different, a plurality of seismic analysis results collected from the same test object do not match each other, making it difficult to accurately analyze defects on the test object.
따라서 본 발명은 상기와 같은 종래의 문제를 개선하도록, 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)의 결함 진단을 위해, 다수의 AE 센서 노드를 네트워크 방식으로 구조물 표면에 부착 설치 하고, 다수의 AE 센서 노드들로 전력과 신호 처리 조건 정보를 순차적 네트워크 방식으로 제공하여, 다수의 AE 센서 노드들이 동일한 신호 처리 조건에 따라 구조물의 결함 진단용 탄성파를 측정 및 분석할 수 있도록 하고, 동일한 신호 처리 조건에 따라 각 AE 센서 노드들이 생성한 분석 결과 정보를 노드 네트워크 방식으로 수집할 수 있도록 하는 기술을 제안하고자 한다. 다음은 이와 관련한 종래의 선행기술들이다.Therefore, in order to improve the above conventional problems, the present invention uses a plurality of AE sensor nodes in a network method to diagnose defects in structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) is installed on the surface of the structure, and power and signal processing condition information is provided to a number of AE sensor nodes in a sequential network manner, so that the plurality of AE sensor nodes measure and analyze elastic waves for structural defect diagnosis according to the same signal processing conditions In addition, we propose a technology that enables the collection of analysis result information generated by each AE sensor node in a node network manner according to the same signal processing condition. The following are prior art related to this.
<특허문헌><Patent Document>
1. 대한민국 등록특허공보 제10-0915247호 음향방출센서용 위치조정장치1. Republic of Korea Patent Registration No. 10-0915247 Positioning device for sound emission sensor
2. 대한민국 등록특허공보 제10-1957261호 센서 설치도구2. Republic of Korea Patent Registration No. 10-1957261 sensor installation tool
3. 대한민국 등록특허공보 제10-2045345호 센서 설치도구3. Republic of Korea Patent Registration No. 10-2045345 sensor installation tool
본 발명은 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)의 결함 진단을 위해, 구조물의 결함 진단을 위해, 다수의 AE 센서 노드를 네트워크 방식으로 구조물 표면에 부착 설치 하고, 다수의 AE 센서 노드들로 전력과 신호 처리 조건 정보를 순차적 네트워크 방식으로 제공하여, 다수의 AE 센서 노드들이 동일한 신호 처리 조건에 따라 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)의 결함 진단용 탄성파를 측정 및 분석할 수 있도록 하고, 동일한 신호 처리 조건에 따라 각 AE 센서 노드들이 생성한 분석 결과 정보를 노드 네트워크 방식으로 수집할 수 있도록 하는 것을 목적으로 한다.In order to diagnose defects in structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) It is attached and installed, and power and signal processing condition information is provided to multiple AE sensor nodes in a sequential network manner, so that multiple AE sensor nodes can operate structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, etc.) according to the same signal processing conditions. Dams, buildings, tunnels, railroads, etc.) to measure and analyze elastic waves for fault diagnosis, and to collect analysis result information generated by each AE sensor node in a node network manner under the same signal processing conditions to be
상기와 같은 목적을 달성하기 위해 본 발명인 AE 센서 노드 네트워크 시스템은,In order to achieve the above object, the AE sensor node network system of the present invention,
탄성파 측정 대상에서 전달되는 탄성파 신호를 감지하고, 감지한 탄성파 신호를 네트워크 제어 노드(2000)가 전송한 신호 처리 조건 정보에 따라 분석 처리하여 탄성파 분석 결과 정보를 생성하고, 생성한 탄성파 분석 결과 정보가 네트워크 제어 노드(2000)로 전달되도록, 탄성파 측정 대상에 설치되는 다수의 AE 센서 노드(1000)와;The elastic wave signal transmitted from the elastic wave measurement target is detected, the detected elastic wave signal is analyzed and processed according to the signal processing condition information transmitted by the network control node 2000 to generate elastic wave analysis result information, and the generated elastic wave analysis result information is a plurality of AE sensor nodes 1000 installed on the elastic wave measurement target so as to be transmitted to the network control node 2000;
선단 AE 센서 노드(1001)로 전력과 신호 처리 조건 정보를 전송하고, 후단 AE 센서 노드(100N)로부터 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들을 전달받는 네트워크 제어 노드(2000)와;A network control node (2000) that transmits power and signal processing condition information to the front-end AE sensor node (1001) and receives seismic analysis result information generated by a plurality of AE sensor nodes (1000) from the rear-end AE sensor node (100N) and;
다수의 AE 센서 노드(1000)들로 전력과 신호 처리 조건 정보가 전송되도록 하고 네트워크 제어 노드(2000)가 탄성파 분석 결과 정보들을 수집할 수 있도록, 다수의 AE 센서 노드(1000)들과 네트워크 제어 노드(2000)를 상호 연결하는 전력선 통신 케이블(3000)을 포함하되,A plurality of AE sensor nodes 1000 and a network control node to transmit power and signal processing condition information to the plurality of AE sensor nodes 1000 and to allow the network control node 2000 to collect seismic analysis result information Including a power line communication cable 3000 interconnecting (2000),
상기 선단 AE 센서 노드(1001)는 네트워크 제어 노드(2000)로부터 전력과 신호 처리 조건 정보를 전송받는 다수의 AE 센서 노드(1000) 중, 어느 한 센서 노드이고,The front-end AE sensor node 1001 is any one sensor node among a plurality of AE sensor nodes 1000 that receives power and signal processing condition information from the network control node 2000,
상기 후단 AE 센서 노드(100N)는 네트워크 제어 노드(2000)로 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들을 제공하는 다수의 AE 센서 노드(1000) 중, 다른 어느 한 센서 노드인 것을 특징으로 한다.The rear-end AE sensor node 100N is another sensor node among a plurality of AE sensor nodes 1000 that provides seismic wave analysis result information generated by the plurality of AE sensor nodes 1000 to the network control node 2000 characterized by
본 발명은 구조물의 결함 진단을 위해, 다수의 AE 센서 노드를 네트워크 방식으로 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등) 표면에 부착 설치 하여, 다수의 AE 센서 노드들로 전력과 신호 처리 조건 정보를 순차적 네트워크 방식으로 제공할 수 있어, 구조물이 설치된 현장 상황에 맞게 AE 센서 노드들의 신호 처리 조건을 용이하게 수정할 수 있도록 하는 효과를 제공한다.The present invention attaches and installs a plurality of AE sensor nodes on the surface of a structure (high-pressure tank such as a hydrogen tank, pipeline, bridge, dam, building, tunnel, railroad, etc.) in a network manner to diagnose defects in a structure, Power and signal processing condition information can be provided to the sensor nodes in a sequential network manner, providing an effect of easily modifying the signal processing conditions of the AE sensor nodes according to the site situation where the structure is installed.
또한, 본 발명은 다수의 AE 센서 노드들이 동일한 신호 처리 조건에 따라 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)의 결함 진단용 탄성파를 측정 및 분석할 수 있고, 각 AE 센서 노드들이 생성한 분석 결과 정보를 노드 네트워크 방식으로 수집할 수 있어, 검사 대상체인 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)에 대한 분석 결과 정보가 동일한 신호 처리 조건에 따라 생성되었는지를 검증할 수 있는 효과를 제공한다.In addition, according to the present invention, a plurality of AE sensor nodes can measure and analyze elastic waves for fault diagnosis of structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) according to the same signal processing conditions, , The analysis result information generated by each AE sensor node can be collected in a node network method, so that the analysis result for the structure (high-pressure tank such as a hydrogen tank, pipeline, bridge, dam, building, tunnel, railroad, etc.) It provides the effect of verifying whether information is generated according to the same signal processing conditions.
도 1은 본 발명의 제1 실시예 전체 구성도1 is an overall configuration diagram of a first embodiment of the present invention
도 2는 본 발명의 제2 실시예 전체 구성도2 is an overall configuration diagram of a second embodiment of the present invention
도 3은 본 발명의 센서 노드(1000) 세부 구성도3 is a detailed configuration diagram of the sensor node 1000 of the present invention
도 4는 본 발명의 센서부(200) 세부 구성도4 is a detailed configuration diagram of the sensor unit 200 of the present invention
도 5는 본 발명의 증폭부(300) 세부 구성도5 is a detailed configuration diagram of an amplifier 300 of the present invention
도 6은 본 발명의 DAQ부(400) 세부 구성도6 is a detailed configuration diagram of the DAQ unit 400 of the present invention
도 7은 본 발명의 전력선 통신 케이블(3000) 세부 구성도7 is a detailed configuration diagram of a power line communication cable 3000 of the present invention
<부호의 설명><Description of codes>
10 : AE 센서 노드 네트워크 시스템10: AE sensor node network system
1000 : 다수의 AE 센서 노드1000: multiple AE sensor nodes
2000 : 네트워크 제어 노드2000: network control node
3000 : 전력선 통신 케이블3000: power line communication cable
본 발명의 실시예를 첨부된 도면을 참조하여 상세히 설명한다.An embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 AE 센서 노드 네트워크 시스템(10, 이하 본 발명)은 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)의 결함 진단을 위해, 다수의 AE 센서 노드를 네트워크 방식으로 구조물 표면에 부착 설치 하여, 다수의 AE 센서 노드들로 전력과 신호 처리 조건 정보를 순차적 네트워크 방식으로 제공할 수 있어, 현장 상황에 맞게 AE 센서 노드들의 신호 처리 조건을 용이하게 수정할 수 있도록 하고, 또한, 다수의 AE 센서 노드들이 동일한 신호 처리 조건에 따라 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)의 결함 진단용 탄성파를 측정 및 분석할 수 있고, 각 AE 센서 노드들이 생성한 분석 결과 정보를 노드 네트워크 방식으로 수집할 수 있어, 검사 대상체에 대한 분석 결과 정보가 동일한 신호 처리 조건에 따라 생성되었는지를 검증할 수 있는 발명으로, 다수의 AE 센서 노드(1000), 네트워크 제어 노드(2000), 전력선 통신 케이블(3000)을 포함하는 것을 특징으로 한다.The AE sensor node network system (10, hereinafter the present invention) of the present invention uses a plurality of AE sensor nodes to diagnose defects in structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) By attaching and installing on the surface of the structure in a network manner, power and signal processing condition information can be provided to a number of AE sensor nodes in a sequential network manner, so that the signal processing conditions of the AE sensor nodes can be easily modified according to the site situation In addition, multiple AE sensor nodes can measure and analyze elastic waves for fault diagnosis of structures (high-pressure tanks such as hydrogen tanks, pipelines, bridges, dams, buildings, tunnels, railroads, etc.) according to the same signal processing conditions, As the analysis result information generated by each AE sensor node can be collected in a node network manner, it is possible to verify whether the analysis result information on the test object is generated according to the same signal processing conditions, and a plurality of AE sensor nodes ( 1000), a network control node 2000, and a power line communication cable 3000.
구체적으로, 본 발명인 AE 센서 노드 네트워크 시스템은, 도 1에 도시된 바와 같이,Specifically, the AE sensor node network system of the present invention, as shown in FIG. 1,
탄성파 측정 대상에서 전달되는 탄성파 신호를 감지하고, 감지한 탄성파 신호를 네트워크 제어 노드(2000)가 전송한 신호 처리 조건 정보에 따라 분석 처리하여 탄성파 분석 결과 정보를 생성하고, 생성한 탄성파 분석 결과 정보가 네트워크 제어 노드(2000)로 전달되도록, 탄성파 측정 대상에 설치되는 다수의 AE 센서 노드(1000)와;The elastic wave signal transmitted from the elastic wave measurement target is detected, the detected elastic wave signal is analyzed and processed according to the signal processing condition information transmitted by the network control node 2000 to generate elastic wave analysis result information, and the generated elastic wave analysis result information is a plurality of AE sensor nodes 1000 installed on the elastic wave measurement target so as to be transmitted to the network control node 2000;
선단 AE 센서 노드(1001)로 전력과 신호 처리 조건 정보를 전송하고, 후단 AE 센서 노드(100N)로부터 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들을 전달받는 네트워크 제어 노드(2000)와;A network control node (2000) that transmits power and signal processing condition information to the front-end AE sensor node (1001) and receives seismic analysis result information generated by a plurality of AE sensor nodes (1000) from the rear-end AE sensor node (100N) and;
다수의 AE 센서 노드(1000)들로 전력과 신호 처리 조건 정보가 전송되도록 하고 네트워크 제어 노드(2000)가 탄성파 분석 결과 정보들을 수집할 수 있도록, 다수의 AE 센서 노드(1000)들과 네트워크 제어 노드(2000)를 상호 연결하는 전력선 통신 케이블(3000)을 포함하되,A plurality of AE sensor nodes 1000 and a network control node to transmit power and signal processing condition information to the plurality of AE sensor nodes 1000 and to allow the network control node 2000 to collect seismic analysis result information Including a power line communication cable 3000 interconnecting (2000),
상기 선단 AE 센서 노드(1001)는 네트워크 제어 노드(2000)로부터 전력과 신호 처리 조건 정보를 전송받는 다수의 AE 센서 노드(1000) 중, 어느 한 센서 노드이고,The front-end AE sensor node 1001 is any one sensor node among a plurality of AE sensor nodes 1000 that receives power and signal processing condition information from the network control node 2000,
상기 후단 AE 센서 노드(100N)는 네트워크 제어 노드(2000)로 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들을 제공하는 다수의 AE 센서 노드(1000)중, 다른 어느 한 센서 노드인 것을 특징으로 한다.The rear-end AE sensor node 100N is another sensor node among a plurality of AE sensor nodes 1000 that provides seismic wave analysis result information generated by the plurality of AE sensor nodes 1000 to the network control node 2000 characterized by
상기 다수의 AE 센서 노드(1000)는 탄성파 측정 대상에서 전달되는 탄성파 신호를 감지하고, 감지한 탄성파 신호를 네트워크 제어 노드(2000)가 전송한 신호 처리 조건 정보에 따라 분석 처리하여 탄성파 분석 결과 정보를 생성하고, 생성한 탄성파 분석 결과 정보가 네트워크 제어 노드(2000)로 전달되도록, 탄성파 측정 대상에 설치되는 구성으로, 도 1과 같이, 선단 AE 센서 노드(1001)와 후단 AE 센서 노드(100N)를 포함한다.The plurality of AE sensor nodes 1000 detect elastic wave signals transmitted from the elastic wave measurement target, analyze and process the detected elastic wave signals according to the signal processing condition information transmitted by the network control node 2000, and obtain elastic wave analysis result information. As shown in FIG. 1, as shown in FIG. include
상기 탄성파 측정 대상은 고압 탱크(예: 수소 탱크), 관로, 교량, 댐, 건물, 터널, 철로 등과 같은 구조 변위가 발생 가능한 구조물일 수 있으며, 변형, 균열, 누설 또는 파괴의 위험이 있어 주기적으로 구조 변위 검사와 같은 안전성 검사가 필요한 대상이다.The elastic wave measurement target may be a structure in which structural displacement may occur, such as a high-pressure tank (eg, a hydrogen tank), a pipeline, a bridge, a dam, a building, a tunnel, a railroad, etc. It is a subject that requires safety inspection such as structural displacement inspection.
탄성파 측정 대상에 설치되는 상기 다수의 AE 센서 노드(1000)는 비파괴 검사법인 음향 방출 검사(Acoustic Emission Test)법을 이용해 탄성파 측정 대상의 변형, 균열, 누설 또는 파괴 시에 발생하는 탄성파를 측정하여 손상 정도를 파악한다.The plurality of AE sensor nodes 1000 installed on the elastic wave measurement target measure elastic waves generated when the elastic wave measurement target is deformed, cracked, leaked, or destroyed using an acoustic emission test method, which is a non-destructive test method. figure out the extent
이때, 탄성파 측정 대상에서 발생하는 탄성파를 누락 없이 전체적으로 측정하도록, 다수의 AE 센서 노드(1000)가 탄성파 측정 대상의 표면에 면 접촉 상태로 설치된다.At this time, a plurality of AE sensor nodes 1000 are installed on the surface of the elastic wave measurement target in a surface contact state so as to entirely measure elastic waves generated from the elastic wave measurement target without omission.
즉, 1개의 AE 센서 노드(1000)가 측정 가능한 탄성파 측정 범위는 제한적이어서, 큰 표면적을 갖는 대형 구조물인 경우, 1개의 AE 센서 노드(1000)로는 대형 구조물에서 발생하는 탄성파를 누락 없이 전체적으로 측정할 수 없다.That is, since the elastic wave measurement range that can be measured by one AE sensor node 1000 is limited, in the case of a large structure having a large surface area, the entire elastic wave generated in the large structure can be measured with one AE sensor node 1000 without omission. can't
따라서 탄성파를 누락 없이 전체적으로 측정하기 위해서는 탄성파 측정 대상에 대해 다중으로 탄성파 측정이 이루어져야 하며, 이를 위해, 도 1, 2와 같이, 탄성파 측정 대상 표면에 다수의 AE 센서 노드(1000)를 설치하여 다중으로 탄성파를 측정하는 것이다.Therefore, in order to measure the elastic wave as a whole without omission, multiple elastic wave measurements must be performed on the elastic wave measurement target. For this purpose, as shown in FIGS. 1 and 2, multiple AE sensor nodes 1000 are installed on the surface of the elastic wave measurement target to perform to measure elastic waves.
특히, 다수의 AE 센서 노드(1000)에는 도 1과 같이, 선단 AE 센서 노드(1001)와 후단 AE 센서 노드(100N)가 포함되어 있다.In particular, the plurality of AE sensor nodes 1000 include a front AE sensor node 1001 and a rear AE sensor node 100N, as shown in FIG. 1 .
상기 선단 AE 센서 노드(1001)는 네트워크 제어 노드(2000)로부터 전력과 신호 처리 조건 정보를 전송받는 다수의 AE 센서 노드(1000) 중, 어느 한 센서 노드이고, 상기 후단 AE 센서 노드(100N)는 네트워크 제어 노드(2000)로 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들을 제공하는 다수의 AE 센서 노드(1000)중, 다른 어느 한 센서 노드이다.The front-end AE sensor node 1001 is any one sensor node among a plurality of AE sensor nodes 1000 receiving power and signal processing condition information from the network control node 2000, and the rear-end AE sensor node 100N is It is any one other sensor node among the plurality of AE sensor nodes 1000 that provides seismic wave analysis result information generated by the plurality of AE sensor nodes 1000 to the network control node 2000 .
구체적으로, 선단 AE 센서 노드(1001)는 네트워크 제어 노드(2000)로부터 전력과 신호 처리 조건 정보를 전송받게 되면, 이웃한 다른 센서 노드(1002)로 전송 받은 전력과 신호 처리 조건 정보를 전송한다.Specifically, when the front-end AE sensor node 1001 receives power and signal processing condition information from the network control node 2000, it transmits the received power and signal processing condition information to another neighboring sensor node 1002.
이때, 선단 AE 센서 노드(1001)는 전송받은 전력을 신호 처리와 분석에 필요한 동작 전원으로 사용하고, 전송 받은 신호 처리 조건 정보에 해당하는 신호 처리 조건에 따라 탄성파를 처리하여 분석 결과 정보를 생성한다.At this time, the front-end AE sensor node 1001 uses the received power as operating power required for signal processing and analysis, processes the elastic wave according to the signal processing condition corresponding to the received signal processing condition information, and generates analysis result information. .
생성한 분석 결과 정보를 이웃한 센서 노드(1002)로 전송한다. 이때 전송되는 분석 결과 정보에 자신의 고유 식별 정보를 포함시켜(예:#1 분석 결과 정보) 전송한다.The generated analysis result information is transmitted to the neighboring sensor node 1002 . At this time, the transmitted analysis result information includes its own identification information (e.g., #1 analysis result information) and transmits it.
선단 AE 센서 노드(1001)에 이웃한 센서 노드(1002)는 선단 AE 센서 노드(1001)로부터 전력과 신호 처리 조건 정보를 전송받게 되면, 이웃한 다른 센서 노드(1003, 미도시)로 전송 받은 전력과 신호 처리 조건 정보를 전송한다.When the sensor node 1002 adjacent to the front-end AE sensor node 1001 receives power and signal processing condition information from the front-end AE sensor node 1001, the power received from other neighboring sensor nodes (1003, not shown) and signal processing condition information.
이때, 센서 노드(1002)는 전송받은 전력을 신호 처리와 분석에 필요한 동작 전원으로 사용하고, 전송 받은 신호 처리 조건 정보에 해당하는 신호 처리 조건에 따라 탄성파를 처리하여 분석 결과 정보를 생성하며, 생성한 분석 결과 정보에 자신의 고유 식별 정보를 포함시켜(예:#2 분석 결과 정보) 이웃한 다른 센서 노드(1003, 미도시)로 전송한다.At this time, the sensor node 1002 uses the received power as operating power required for signal processing and analysis, processes elastic waves according to signal processing conditions corresponding to the received signal processing condition information, and generates analysis result information. One analysis result information includes its own identification information (eg, #2 analysis result information) and transmits it to another neighboring sensor node (1003, not shown).
이때, 센서 노드(1002)는 자신이 생성한 분석 결과 정보(예:#2 분석 결과 정보) 전송 시, 선단 AE 센서 노드(1001)가 전송한 분석 결과 정보(예:#1 분석 결과 정보)를 함께 전송한다. 즉, 센서 노드(1002)에 이웃한 다른 센서 노드(1003, 미도시)로 전송되는 분석 결과 정보는 선단 AE 센서 노드(1001)가 생성한 분석 결과 정보(예:#1 분석 결과 정보)와 선단 AE 센서 노드(1001)에 이웃한 센서 노드(1002)가 생성한 분석 결과 정보(예:#2 분석 결과 정보)이다.At this time, when the sensor node 1002 transmits the analysis result information generated by itself (eg, #2 analysis result information), the sensor node 1002 transmits the analysis result information (eg, #1 analysis result information) transmitted by the front end AE sensor node 1001. send together That is, the analysis result information transmitted to another sensor node (1003, not shown) adjacent to the sensor node 1002 is the analysis result information generated by the front end AE sensor node 1001 (e.g., #1 analysis result information) and the front end This is analysis result information generated by the sensor node 1002 adjacent to the AE sensor node 1001 (eg, #2 analysis result information).
상기와 같은 과정이 노드 네트워크 방식으로 순차적으로 진행되며, 다수의 AE 센서 노드(1000) 마지막단에 있는 후단 AE 센서 노드(100N) 역시, 전송받은 전력을 신호 처리와 분석에 필요한 동작 전원으로 사용하고, 전송 받은 신호 처리 조건 정보에 해당하는 신호 처리 조건에 따라 탄성파를 처리하여 분석 결과 정보를 생성하며, 생성한 분석 결과 정보에 자신의 고유 식별 정보를 포함시켜(예:#N 분석 결과 정보) 네트워크 제어 노드(2000)로 전송한다.The above process is sequentially performed in a node network manner, and the AE sensor node 100N at the end of the plurality of AE sensor nodes 1000 also uses the received power as operating power required for signal processing and analysis, , According to the signal processing condition corresponding to the received signal processing condition information, the elastic wave is processed to generate analysis result information, and its own identification information is included in the generated analysis result information (e.g., #N analysis result information) to network It is transmitted to the control node (2000).
이때, 후단 AE 센서 노드(100N)는 자신이 생성한 분석 결과 정보(예:#N 분석 결과 정보) 전송 시, 앞단에 위치한 다른 센서 노드들(1001, 1002,...100N-1)이 생성하여 노드 네트워크 방식으로 순차적 전달된 분석 결과 정보(예:#1 분석 결과 정보, #2 분석 결과 정보,...#N-1 분석 결과 정보)와 신호 처리 조건 정보를 함께 전송한다.At this time, when the rear-end AE sensor node 100N transmits the analysis result information it generated (eg, #N analysis result information), the other sensor nodes 1001, 1002, ... 100N-1 located in the front end generate Then, the analysis result information (e.g., #1 analysis result information, #2 analysis result information, ... #N-1 analysis result information) and signal processing condition information transmitted sequentially through the node network method are transmitted together.
즉, 후단 AE 센서 노드(100N)에서 네트워크 제어 노드(2000)로 전송되는 정보는 도 1에 도시된 바와 같이, 모든 센서 노드(1000)들이 생성한 분석 결과 정보(예:#1 분석 결과 정보, #2 분석 결과 정보,...#N 분석 결과 정보)와 네트워크 제어 노드(2000)가 전단 센서 노드(1001)로 전송 했던 신호 처리 조건 정보이다.That is, the information transmitted from the downstream AE sensor node 100N to the network control node 2000 is, as shown in FIG. 1, analysis result information generated by all sensor nodes 1000 (e.g., #1 analysis result information, #2 analysis result information, ...#N analysis result information) and signal processing condition information transmitted from the network control node 2000 to the previous sensor node 1001.
탄성파 측정 대상에서 전달되는 탄성파 신호를 감지하고, 감지한 탄성파 신호를 네트워크 제어 노드(2000)가 전송한 신호 처리 조건 정보에 따라 분석 처리하여 탄성파 분석 결과 정보를 생성하는 구성인 다수의 AE 센서 노드(1000) 각각은 도 3에 도시된 바와 같이,A plurality of AE sensor nodes (which are configured to detect elastic wave signals transmitted from the elastic wave measurement target, analyze and process the detected elastic wave signals according to the signal processing condition information transmitted by the network control node 2000, and generate information as a result of the elastic wave analysis ( 1000) As shown in FIG. 3, each
내측에 센서부(200), 증폭부(300), DAQ부(400)가 설치되는 내부 공간(110)이 형성되고, 탄성파 측정 대상에 설치되는 노드 하우징(100)과,A node housing 100 having an inner space 110 in which the sensor unit 200, the amplification unit 300, and the DAQ unit 400 are installed and installed on the elastic wave measurement target;
노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되거나 노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치되어, 탄성파 측정 대상에서 전달되는 탄성파를 감지하고, 감지된 탄성파에 대응된 전기적 파형 신호를 생성하는 센서부(200)와,It is installed in the inner space 110 formed inside the node housing 100 or installed on the elastic wave measuring target around the outside of the node housing 100 to detect the elastic wave transmitted from the elastic wave measuring target, and the electrical waveform corresponding to the detected elastic wave. A sensor unit 200 that generates a signal;
노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되어, 센서부(200)가 생성한 탄성파에 대응된 전기적 파형 신호를 증폭 처리하는 증폭부(300)와,An amplifier 300 installed in the inner space 110 formed inside the node housing 100 to amplify and process an electrical waveform signal corresponding to the elastic wave generated by the sensor unit 200;
노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되어, 증폭부(300)가 증폭 처리한 전기적 파형 신호를 네트워크 입력 포트(400)를 통해 입력된 신호 처리 조건 정보에 따라 분석 처리하여 탄성파 분석 결과 정보를 생성하는 DAQ부(400)와,It is installed in the inner space 110 formed inside the node housing 100 and analyzes and processes the electrical waveform signal amplified and processed by the amplification unit 300 according to the signal processing condition information input through the network input port 400 to generate elastic waves. A DAQ unit 400 generating analysis result information;
전력선 통신 케이블(3000)이 연결되도록 노드 하우징(100)에 형성되는 네트워크 입력 포트(500)와,A network input port 500 formed in the node housing 100 to which the power line communication cable 3000 is connected;
전력선 통신 케이블(3000)이 연결되도록 노드 하우징(100)에 형성되는 네트워크 출력 포트(600)와,A network output port 600 formed on the node housing 100 to which the power line communication cable 3000 is connected;
네트워크 입력 포트(500)를 통해 입력된 전력, 신호 처리 조건 정보, 다른 센서 노드(1000)가 생성한 탄성파 분석 결과 정보와 상기 DAQ부(300)가 생성한 탄성파 분석 결과 정보를 네트워크 출력 포트(600)를 통해 외부로 출력시키는 데이터 전송 제어부(700)를 포함하는 것을 특징으로 한다.Power input through the network input port 500, signal processing condition information, seismic wave analysis result information generated by other sensor nodes 1000 and seismic wave analysis result information generated by the DAQ unit 300 are transmitted through the network output port 600 ) It is characterized in that it includes a data transmission control unit 700 output to the outside through.
도 3을 참조하면, 상기 노드 하우징(100)은 내측에 센서부(200), 증폭부(300), DAQ부(400)가 설치되는 내부 공간(110)이 형성되고, 탄성파 측정 대상에 설치되는 구성이다.Referring to FIG. 3, the node housing 100 has an inner space 110 in which a sensor unit 200, an amplification unit 300, and a DAQ unit 400 are installed, and is installed on the elastic wave measurement target. is a composition
상기 노드 하우징(100)은 내측에 센서부(200), 증폭부(300), DAQ부(400)가 삽입 설치되는 내부 공간(110)이 형성되는 구성으로, 내부 공간(110)에 삽입 설치되는 센서부(200), 증폭부(300), DAQ부(400)를 외부 환경으로부터 보호한다.The node housing 100 has an internal space 110 in which the sensor unit 200, the amplification unit 300, and the DAQ unit 400 are inserted and installed, and is inserted and installed in the internal space 110 The sensor unit 200, the amplification unit 300, and the DAQ unit 400 are protected from the external environment.
상기 센서부(200)는 노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되거나, 도 2와 같이, 노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치되어, 탄성파 측정 대상에서 전달되는 탄성파를 감지하고, 감지된 탄성파에 대응된 전기적 파형 신호를 생성하는 구성이다.The sensor unit 200 is installed in the inner space 110 formed inside the node housing 100 or, as shown in FIG. 2, installed in the elastic wave measurement target around the outside of the node housing 100, and transmitted from the elastic wave measurement target An elastic wave is sensed and an electrical waveform signal corresponding to the detected elastic wave is generated.
구체적으로, 상기 센서부(200)는 도 4에 도시된 바와 같이,Specifically, the sensor unit 200, as shown in FIG. 4,
내측에 AE 센서(220)가 삽입 설치되는 센서 하우징(210)과,The sensor housing 210 into which the AE sensor 220 is inserted and installed therein;
센서 하우징(210) 내측에 설치되고, 탄성파 측정 대상에서 전달되는 탄성파를 감지하기 위해 감지 면(221)이 형성되고, 감지된 탄성파에 대응된 전기적 파형 신호를 생성하는 AE 센서(220)와,An AE sensor 220 installed inside the sensor housing 210, having a sensing surface 221 formed to detect an elastic wave transmitted from an elastic wave measurement target, and generating an electrical waveform signal corresponding to the detected elastic wave;
탄성파 측정 대상에서 전달되는 탄성파 수신율을 높이기 위해, AE 센서(220)의 감지 면(221)에 형성되어 탄성파 측정 대상의 표면에 면 접촉하는 일정 면적을 갖는 알루미나 재질의 파동 임피던스 매칭 부재(230)와,In order to increase the elastic wave reception rate transmitted from the elastic wave measurement target, the wave impedance matching member 230 made of alumina is formed on the sensing surface 221 of the AE sensor 220 and has a certain area in contact with the surface of the elastic wave measurement target. ,
AE 센서(220)가 생성한 전기적 파형 신호가 외부로 인출될 수 있도록 하는 신호 인출 단자(240)를 포함하는 것을 특징으로 한다. It is characterized in that it includes a signal extraction terminal 240 that allows the electrical waveform signal generated by the AE sensor 220 to be extracted to the outside.
상기 센서 하우징(210)은 내측에 AE 센서(220)가 삽입 설치되는 구성으로, 센서 하우징(210)에 삽입 설치된 AE 센서(220)는 상술한 노드 하우징(100)에 의해 외부에서 전달되는 충격으로부터 1차적으로 보호되고, 센서 하우징(110)에 의해 외부에서 전달되는 충격으로부터 2차적으로 보호된다.The sensor housing 210 has a configuration in which the AE sensor 220 is inserted and installed inside, and the AE sensor 220 inserted into the sensor housing 210 is protected from impact transmitted from the outside by the node housing 100 described above. It is primarily protected, and is secondarily protected from impact transmitted from the outside by the sensor housing 110 .
상기 AE 센서(220)는 센서 하우징(210) 내측에 설치되고, 탄성파 측정 대상에서 전달되는 탄성파를 감지하기 위해 감지 면(221)이 형성되고, 감지된 탄성파에 대응된 전기적 파형 신호를 생성하는 구성이다.The AE sensor 220 is installed inside the sensor housing 210, has a sensing surface 221 formed to detect an elastic wave transmitted from an elastic wave measurement target, and generates an electrical waveform signal corresponding to the detected elastic wave. am.
상기 AE 센서(220)는 음향방출 센서(AE sensor)인 것을 특징으로 하는데, 음향방출 센서인 본 발명의 AE 센서(220)가 측정하는 탄성파는 사람이 감지할 수 없는 아주 미세한 초음파 신호로서, 비파괴검사법에 많이 사용된다.The AE sensor 220 is characterized in that it is an acoustic emission sensor (AE sensor). The elastic wave measured by the AE sensor 220 of the present invention, which is an acoustic emission sensor, is a very fine ultrasonic signal that cannot be detected by humans, and is non-destructive It is often used in inspection methods.
따라서 상기 AE 센서(220)는 탄성파 측정 대상(예: 수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등)에 면 접촉되어 탄성파 측정 대상의 미세한 변형, 균열, 누설 또는 파괴 시에 발생하는 탄성파를 감지하고, 감지된 탄성파를 탄성파에 대응된 전기적 파형 신호로 변환 생성한다.Therefore, the AE sensor 220 is in surface contact with an elastic wave measurement target (eg, a high-pressure tank such as a hydrogen tank, a pipeline, a bridge, a dam, a building, a tunnel, a railroad, etc.) to cause fine deformation, cracks, leakage, or destruction of the elastic wave measurement target It detects the elastic wave generated at the time and converts the detected elastic wave into an electrical waveform signal corresponding to the elastic wave.
상기 파동 임피던스 매칭 부재(230)는 탄성파 측정 대상에서 전달되는 탄성파의 수신율을 높이기 위해, AE 센서(220)의 감지 면(221)에 형성되어 탄성파 측정 대상의 표면에 면 접촉하는 일정 면적을 갖는 알루미나 재질의 구성이다.The wave impedance matching member 230 is formed on the sensing surface 221 of the AE sensor 220 to increase the reception rate of the elastic wave transmitted from the elastic wave measurement target, and has a certain area in surface contact with the surface of the elastic wave measurement target Alumina is the composition of the material.
탄성파는 다른 매질을 만나는 경우, 일부가 반사되는 파동 반사 현상이 발생하는데, 탄성파 측정 대상에 AE 센서(220)의 감지 면(221)이 면 접촉한 상태에서 탄성파 측정 대상에서 AE 센서로 탄성파가 전달되면, 서로 다른 매질 특성상 탄성파 일부가 접촉면에서 반사하는 파동 반사 현상이 발생해 AE 센서(220)로 탄성파가 100% 전달되지 않는다.When the elastic wave meets another medium, a wave reflection phenomenon in which part of it is reflected occurs. The elastic wave is transmitted from the elastic wave measuring target to the AE sensor while the sensing surface 221 of the AE sensor 220 is in contact with the elastic wave measuring target. In this case, due to the characteristics of different media, a wave reflection phenomenon in which a part of the elastic wave is reflected from the contact surface occurs, and the elastic wave is not 100% transmitted to the AE sensor 220.
따라서 서로 다른 매질인 탄성파 측정 대상과 AE 센서(220)의 감지 면(221) 사이에서 탄성파 반사가 최소화되도록 할 필요가 있으며, 이를 위한 구성이 파동 임피던스 매칭 부재(230)이다.Therefore, it is necessary to minimize acoustic wave reflection between the elastic wave measurement object, which is a different medium, and the sensing surface 221 of the AE sensor 220, and the wave impedance matching member 230 is a component for this purpose.
상기 파동 임피던스 매칭 부재(230)는 도 4에 도시된 바와 같이, AE 센서(220)의 감지 면(221)에 형성된다.As shown in FIG. 4 , the wave impedance matching member 230 is formed on the sensing surface 221 of the AE sensor 220 .
탄성파 측정 대상과 AE 센서(220)의 감지 면(221) 사이에 알루미나 재질의 파동 임피던스 매칭 부재(230)가 존재하게 되면, 상기 파동 임피던스 매칭 부재(230)를 설치하지 않는 경우보다 더 많은 탄성파를 AE 센서(220)가 수신할 수 있어 탄성파 수신율이 높아지게 된다.When the wave impedance matching member 230 made of alumina is present between the elastic wave measurement object and the sensing surface 221 of the AE sensor 220, more elastic waves can be generated than when the wave impedance matching member 230 is not installed. Since the AE sensor 220 can receive it, the elastic wave reception rate is increased.
물론, 알루미나 재질인 파동 임피던스 매칭 부재(230)와 AE 센서(220)의 감지 면(221) 사이에서 일부 탄성파 반사가 발생하지만, 탄성파 측정 대상에서 알루미나 재질인 파동 임피던스 매칭 부재(230)로 투과되는 탄성파 양이, 파동 임피던스 매칭 부재(230)가 없는 경우의 탄성파 측정 대상에서 AE 센서(220)의 감지 면(221)으로 투과되는 탄성파 양보다 훨씬 크기 때문에, 결과적으로, 파동 임피던스 매칭 부재(230)가 없는 경우보다 파동 임피던스 매칭 부재(230)가 있는 경우가 AE 센서(220)가 수신하는 탄성파 양이 많아져 AE 센서의 탄성파 수신율이 높아지게 된다.Of course, some elastic wave reflection occurs between the wave impedance matching member 230 made of alumina and the sensing surface 221 of the AE sensor 220, but the acoustic wave is transmitted from the target to the wave impedance matching member 230 made of alumina. Since the amount of the elastic wave is much greater than the amount of the elastic wave transmitted through the sensing surface 221 of the AE sensor 220 in the elastic wave measurement object in the absence of the wave impedance matching member 230, as a result, the wave impedance matching member 230 The acoustic wave received by the AE sensor 220 is larger when the wave impedance matching member 230 is present than when the wave impedance matching member 230 is not present, so that the acoustic wave reception rate of the AE sensor is increased.
상기 신호 인출 단자(240)는 AE 센서(220)가 생성한 전기적 파형 신호가 외부로 인출될 수 있도록 하는 구성으로, 신호 전송선이 결합하는 일종의 커넥터로서 기능한다.The signal extraction terminal 240 is configured to allow the electrical waveform signal generated by the AE sensor 220 to be extracted to the outside, and functions as a kind of connector to which a signal transmission line is coupled.
특히, 센서부(200)가 도 2와 같이, 노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치되는 경우, 상기 신호 인출 단자(240)를 통해 인출된 전기적 파형 신호는 노드 하우징(100)에 형성되는 센싱 데이터 입력 포트(900)로 전송된다.In particular, when the sensor unit 200 is installed in a target for measuring elastic waves around the outside of the node housing 100 as shown in FIG. 2 , the electrical waveform signal extracted through the signal extraction terminal 240 It is transmitted to the formed sensing data input port 900.
상기 증폭부(300)는 도 5와 같이, 노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되어, 센서부(200)가 생성한 탄성파에 대응된 전기적 파형 신호를 증폭 처리하는 구성이다.As shown in FIG. 5, the amplifier 300 is installed in the inner space 110 formed inside the node housing 100, and amplifies and processes an electrical waveform signal corresponding to the elastic wave generated by the sensor unit 200. .
구체적으로, 상기 증폭부(300)는,Specifically, the amplifier 300,
센서 하우징(210) 상측에 설치되고, 프리앰프 보드(320)가 내측에 설치될 수 있도록 하는 중공(311)이 형성된 원통 형상의 프리앰프 보드 하우징(310)과,A cylindrical preamplifier board housing 310 installed on the upper side of the sensor housing 210 and having a hollow 311 formed therein so that the preamplifier board 320 can be installed therein;
상기 프리앰프 보드 하우징(310) 내측에 삽입 설치되고, AE 센서(220)가 생성한 전기적 파형 신호를 증폭하는 증폭회로가 설계된 프리앰프 보드(320)와,A preamplifier board 320 installed inside the preamplifier board housing 310 and designed with an amplification circuit for amplifying the electrical waveform signal generated by the AE sensor 220;
프리앰프 보드(320)가 슬라이드 방식으로 프리앰프 보드 하우징(310) 내측에 형성된 중공(311)에 삽입될 수 있도록, 중공(311)에 형성되는 일정 길이의 슬라이드 홈(330)을 포함하는 것을 특징으로 한다.It is characterized in that it includes a slide groove 330 of a certain length formed in the hollow 311 so that the preamplifier board 320 can be inserted into the hollow 311 formed inside the preamplifier board housing 310 in a sliding manner. to be
도 5를 참조하면, 상기 프리앰프 보드 하우징(310)은 프리앰프 보드(320)가 내측에 설치될 수 있도록 하는 중공(311)이 형성된 원통 형상의 구성으로, 중공(311)에 삽입 설치되는 프리앰프 보드(320)를 외부 환경으로부터 보호한다. Referring to FIG. 5 , the preamplifier board housing 310 has a cylindrical shape in which a hollow 311 is formed so that the preamplifier board 320 can be installed therein, and the preamplifier board housing 310 is inserted and installed into the hollow 311. The amplifier board 320 is protected from the external environment.
프리앰프 보드(320)에는 외부 환경에 민감한 증폭회로가 설계되어 있어 외부 환경으로부터 보호되어져야 하며, 이를 위해, 프리앰프 보드 하우징(310) 내측에 형성된 중공(311)에 삽입 설치되는 것이다.The preamplifier board 320 has an amplification circuit that is sensitive to the external environment and must be protected from the external environment. To this end, it is inserted into the hollow 311 formed inside the preamplifier board housing 310.
도 5를 참조하면, 상기 프리앰프 보드(320)는 프리앰프 보드 하우징(310) 내측에 형성된 중공(311)에 삽입 설치되고, AE 센서(220)에서 전송된 전기적 파형 신호를 증폭하는 증폭 회로가 설계된 보트 타입의 구성이다.Referring to FIG. 5, the preamplifier board 320 is inserted into the hollow 311 formed inside the preamplifier board housing 310, and has an amplification circuit for amplifying the electrical waveform signal transmitted from the AE sensor 220. It is the configuration of the designed boat type.
보드 타입의 프리앰프 보드(320) 상에 설계된 증폭 회로는 외부 환경에 민감하기 때문에, 프리앰프 보드 하우징(310) 내측에 형성된 중공(311)에 삽입 설치되어 보호된다. 프리앰프 보드(320)에서 증폭된 전기적 파형 신호는 신호 전송선을 통해 DAQ부(400)로 제공된다.Since the amplifier circuit designed on the board-type preamplifier board 320 is sensitive to the external environment, it is inserted and installed into the hollow 311 formed inside the preamplifier board housing 310 to be protected. The electrical waveform signal amplified by the preamplifier board 320 is provided to the DAQ unit 400 through a signal transmission line.
도 5를 참조하면, 상기 슬라이드 홈(330)은 프리앰프 보드(320)가 슬라이드 방식으로 프리앰프 보드 하우징(310) 내측에 형성된 중공(311)에 삽입될 수 있도록, 중공(311)에 형성되는 일정 길이의 삽입 안내 홈이다. 5, the slide groove 330 is formed in the hollow 311 so that the preamplifier board 320 can be inserted into the hollow 311 formed inside the preamplifier board housing 310 in a sliding manner. It is an insertion guide groove of a certain length.
즉, 사각형 형태인 보드 타입의 프리앰프 보드(320)는 슬라이드 홈(330)을 통해 슬라이딩 되어 프리앰프 보드 하우징(310) 내측에 형성된 중공(311)에 삽입된다.That is, the board type preamplifier board 320 having a square shape is slid through the slide groove 330 and inserted into the hollow 311 formed inside the preamplifier board housing 310 .
증폭 회로가 설계된 보드 타입의 프리앰프 보드(320)는 안정된 신호 증폭을 위해 안정된 상태로 프리앰프 보드 하우징(310) 내측에 위치해야 한다. 이를 위해, 슬라이드 홈(330)에 끼워지는 것이다. The board-type preamplifier board 320 on which the amplifier circuit is designed must be located inside the preamplifier board housing 310 in a stable state for stable signal amplification. To this end, it is fitted into the slide groove 330.
즉, 슬라이드 홈(330)에 끼워져 프리앰프 보드 하우징(310) 내측에 안정된 상태로 위치한 프리앰프 보드(320)는 AE 센서(220)에서 전송된 전기적 파형 신호를 안정되게 증폭하게 된다.That is, the preamplifier board 320 stably positioned inside the preamplifier board housing 310 by being inserted into the slide groove 330 stably amplifies the electrical waveform signal transmitted from the AE sensor 220 .
상기 DAQ부(400)는 노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되어, 증폭부(300)가 증폭 처리한 전기적 파형 신호를 네트워크 입력 포트(400)를 통해 입력된 신호 처리 조건 정보에 따라 전기적 파형 신호를 분석 처리하여 탄성파 분석 결과 정보를 생성하는 구성으로, 보드 타입으로 형성된다.The DAQ unit 400 is installed in the inner space 110 formed inside the node housing 100, and the amplification unit 300 amplifies and processes the electrical waveform signal input through the network input port 400. Signal processing conditions It is a component that analyzes and processes an electrical waveform signal according to information to generate information as a result of seismic wave analysis, and is formed in a board type.
상기 DAQ부(400)는 도 6에 도시된 바와 같이,As shown in FIG. 6, the DAQ unit 400
증폭부(300)에서 제공되는 증폭된 전기적 파형 신호를 네트워크 입력 포트(400)를 통해 입력된 신호 처리 조건 정보에 따라 이득 조절, 잡음 제거, 디지털 변환 처리하여, 디지털 신호 처리부(420)가 분석 처리 가능한 상태의 디지털 신호로 변환하여 디지털 신호 처리부(420)로 제공하는 아날로그 신호 처리부(410)와;The amplified electrical waveform signal provided from the amplification unit 300 is subjected to gain control, noise removal, and digital conversion processing according to signal processing condition information input through the network input port 400, and the digital signal processing unit 420 analyzes and processes the signal. an analog signal processing unit 410 that converts a digital signal in an available state and provides it to the digital signal processing unit 420;
아날로그 신호 처리부(410)에서 제공된 디지털 신호를 네트워크 입력 포트(400)를 통해 입력된 신호 처리 조건 정보에 따라 분석 처리하여 탄성파 분석 결과 정보를 생성하는 디지털 신호 처리부(420)를 포함하는 것을 특징으로 한다.It is characterized by including a digital signal processing unit 420 that analyzes and processes the digital signal provided from the analog signal processing unit 410 according to the signal processing condition information input through the network input port 400 to generate seismic analysis result information. .
특히, 상기 아날로그 신호 처리부(410)와 디지털 신호 처리부(420)는 하나의 보드에 임베디드 로직 회로 타입으로 구성되는 것을 특징으로 한다.In particular, the analog signal processing unit 410 and the digital signal processing unit 420 are configured as an embedded logic circuit type on one board.
상기 네트워크 입력 포트(500)는 도 3에 도시된 바와 같이, 전력선 통신 케이블(3000)이 연결되도록 노드 하우징(100)에 형성되는 구성으로, 연결된 전력선 통신 케이블(3000)을 통해 전력, 신호 처리 조건 정보, 이웃한 센서 노드의 탄성파 분석 결과 정보가 입력된다.As shown in FIG. 3, the network input port 500 is formed in the node housing 100 so that the power line communication cable 3000 is connected, and power and signal processing conditions are provided through the connected power line communication cable 3000. Information and the result of seismic wave analysis of neighboring sensor nodes are input.
센서 노드(1000)가 선단 AE 센서 노드(1001)인 경우, 네트워크 입력 포트(500)를 통해 이웃한 센서 노드의 탄성파 분석 결과 정보는 입력되지 않는다.When the sensor node 1000 is the front-end AE sensor node 1001, seismic wave analysis result information of neighboring sensor nodes is not input through the network input port 500.
상기 네트워크 출력 포트(600)는 도 3에 도시된 바와 같이, 전력선 통신 케이블(3000)이 연결되도록 노드 하우징(100)에 형성되는 구성으로, 연결된 전력선 통신 케이블(3000)을 통해 전력, 신호 처리 조건 정보, 이웃한 센서 노드가 전송한 탄성파 분석 결과 정보와 자신이 설치된 센서 노드가 생성한 탄성파 분석 결과 정보가 출력된다As shown in FIG. 3, the network output port 600 is formed in the node housing 100 so that the power line communication cable 3000 is connected, and power and signal processing conditions are provided through the connected power line communication cable 3000. Information, seismic analysis result information transmitted by neighboring sensor nodes and seismic analysis result information generated by the sensor node where it is installed are output.
센서 노드(1000)가 후단 AE 센서 노드(1001)인 경우, 네트워크 출력 포트(600)를 통해 신호 처리 조건 정보, 모든 센서 노드들이 생성한 탄성파 분석 결과 정보가 출력된다.When the sensor node 1000 is the later AE sensor node 1001, signal processing condition information and seismic wave analysis result information generated by all sensor nodes are output through the network output port 600.
상기 데이터 전송 제어부(700)는 네트워크 입력 포트(500)를 통해 입력된 전력, 신호 처리 조건 정보, 다른 센서 노드(1000)가 생성한 탄성파 분석 결과 정보와 DAQ부(300)가 생성한 탄성파 분석 결과 정보를 네트워크 출력 포트(600)를 통해 외부로 출력시키는 구성이다.The data transmission control unit 700 includes power input through the network input port 500, signal processing condition information, seismic wave analysis result information generated by other sensor nodes 1000 and seismic wave analysis results generated by the DAQ unit 300 This configuration outputs information to the outside through the network output port 600.
특히, DAQ부(400)가 생성한 탄성파 분석 결과 정보에 자신이 속한 센서 노드(1000)의 고유 식별 정보를 포함시켜 네트워크 출력 포트(600)를 통해 외부로 출력시키는 것을 특징으로 한다.In particular, it is characterized in that the unique identification information of the sensor node 1000 to which it belongs is included in the seismic analysis result information generated by the DAQ unit 400 and output to the outside through the network output port 600.
구체적으로, 선단 AE 센서 노드(1001)에 설치된 데이터 전송 제어부(700)는 네트워크 입력 포트(500)를 통해 네트워크 제어 노드(2000)로부터 전력과 신호 처리 조건 정보가 입력되면, 네트워크 출력 포트(600)를 통해 이웃한 다른 센서 노드(1002)로 전송 받은 전력과 신호 처리 조건 정보가 전송되도록 하고, DAQ부(400)가 탄성파 분석 결과 정보를 생성하면, DAQ부(400)가 생성한 분석 결과 정보에 자신이 설치된 선단 AE 센서 노드(1001)의 고유 식별 정보를 포함시켜(예:#1 분석 결과 정보) 전송되도록 한다.Specifically, when power and signal processing condition information is input from the network control node 2000 through the network input port 500, the data transmission control unit 700 installed in the front-end AE sensor node 1001 outputs the network output port 600. When power and signal processing condition information received from other neighboring sensor nodes 1002 are transmitted and the DAQ unit 400 generates seismic analysis result information, It is transmitted by including the unique identification information of the front-end AE sensor node 1001 where it is installed (eg, #1 analysis result information).
또 다른 센서 노드(1002)(선단 AE 센서 노드(1001)에 이웃한 센서 노드)에 설치된 데이터 전송 제어부(700)는 네트워크 입력 포트(500)를 통해 전력과 신호 처리 조건 정보와 선단 AE 센서 노드(1001)가 생성한 탄성파 분석 결과 정보(예:#1 분석 결과 정보)를 전송받게 되면, 이웃한 다른 센서 노드(1003, 미도시)로 전송 받은 전력과 신호 처리 조건 정보와 선단 AE 센서 노드(1001)가 생성한 탄성파 분석 결과 정보(예:#1 분석 결과 정보)가 전송되도록 하고, DAQ부(400)가 탄성파 분석 결과 정보를 생성하면, DAQ부(400)가 생성한 분석 결과 정보에 자신이 설치된 센서 노드(1002)의 고유 식별 정보를 포함시켜(예:#2 분석 결과 정보) 전송되도록 한다.The data transmission controller 700 installed in another sensor node 1002 (a sensor node adjacent to the leading AE sensor node 1001) transmits power and signal processing condition information and the leading AE sensor node (through the network input port 500). 1001) when receiving the transmission of seismic analysis result information (e.g., #1 analysis result information) generated, power and signal processing condition information transmitted to another neighboring sensor node (1003, not shown) and the tip AE sensor node (1001 ) to transmit the seismic analysis result information (e.g., #1 analysis result information) generated, and when the DAQ unit 400 generates the seismic analysis result information, the DAQ unit 400 generates the analysis result information. The unique identification information of the installed sensor node 1002 is included (eg, #2 analysis result information) to be transmitted.
상기와 같은 과정이 노드 네트워크 방식으로 순차적으로 진행되며, 다수의 AE 센서 노드(1000) 마지막단에 있는 후단 AE 센서 노드(100N)에 설치된 데이터 전송 제어부(700)는 네트워크 입력 포트(500)를 통해 전력과 신호 처리 조건 정보와 다른 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보(예:#1 분석 결과 정보, #2 분석 결과 정보,...#N-1 분석 결과 정보)를 전송받게 되면, 네트워크 제어 노드(2000)로 전송 받은 신호 처리 조건 정보와 다른 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보(예:#1 분석 결과 정보, #2 분석 결과 정보,...#N-1 분석 결과 정보)가 전송되도록 하고, DAQ부(400)가 탄성파 분석 결과 정보를 생성하면, DAQ부(400)가 생성한 분석 결과 정보에 자신이 설치된 후단 AE 센서 노드(100N)의 고유 식별 정보를 포함시켜(예:#N 분석 결과 정보) 전송되도록 한다.The above process is sequentially performed in a node network manner, and the data transmission control unit 700 installed in the rear-end AE sensor node 100N at the end of the plurality of AE sensor nodes 1000 through the network input port 500 When power and signal processing condition information and seismic wave analysis result information generated by other sensor nodes 1000 (e.g., #1 analysis result information, #2 analysis result information, ... #N-1 analysis result information) are received , Signal processing condition information received from the network control node 2000 and seismic analysis result information generated by other sensor nodes 1000 (eg, #1 analysis result information, #2 analysis result information, ... #N-1 analysis result information) is transmitted, and when the DAQ unit 400 generates seismic analysis result information, the analysis result information generated by the DAQ unit 400 adds unique identification information of the rear-end AE sensor node 100N where it is installed. Include (e.g., #N analysis result information) to be transmitted.
상기 센서 노드(1000)는 노드 하우징(100) 내측에 형성된 내부 공간(110)에 삽입 설치되는 센서부(200)의 파동 임피던스 매칭 부재(230)가 탄성파 측정 대상의 표면에 면 접촉 상태를 유지할 수 있도록, 노드 하우징(100) 내부 공간(110)에 설치되어 센서부(200)의 센서 하우징(210)을 가압하는 탄성 부재(800)를 더 포함하는 것을 특징으로 한다.In the sensor node 1000, the wave impedance matching member 230 of the sensor unit 200 inserted into the inner space 110 formed inside the node housing 100 can maintain a surface contact state with the surface of the elastic wave measurement target. It is characterized in that it further includes an elastic member 800 installed in the inner space 110 of the node housing 100 to press the sensor housing 210 of the sensor unit 200 so as to be.
상기 탄성 부재(800)는 노드 하우징(100) 내측에 삽입 설치된 센서부(200)의 파동 임피던스 매칭 부재(230)가 탄성파 측정 대상의 표면에 면 접촉 상태를 유지할 수 있도록, 노드 하우징(100) 내부 공간(110)에 설치되어 센서부(200)의 센서 하우징(210)을 가압하는 구성이다.The elastic member 800 is inside the node housing 100 so that the wave impedance matching member 230 of the sensor unit 200 inserted inside the node housing 100 can maintain surface contact with the surface of the elastic wave measurement target. It is installed in the space 110 and presses the sensor housing 210 of the sensor unit 200 .
즉, 노드 하우징(100) 내측에 형성된 내부 공간(110)에 센서부(200)가 설치되면, 센서부(200)의 파동 임피던스 매칭 부재(230)는 탄성파 측정 대상 표면에 면 접촉 상태가 유지되어야 하는데, 이를 위한 구성이 탄성 부재(800)이다.That is, when the sensor unit 200 is installed in the inner space 110 formed inside the node housing 100, the wave impedance matching member 230 of the sensor unit 200 should be in surface contact with the surface to be measured for elastic waves. However, the configuration for this is the elastic member 800.
구체적으로, 노드 하우징(100)은 결합 수단(예: 볼트, 탄력 밴드)에 의해 탄성파 측정 대상 표면에 부착 설치된다.Specifically, the node housing 100 is attached to the surface of the elastic wave measurement target by a coupling means (eg, a bolt or an elastic band).
결합 수단(예: 볼트, 탄력 밴드)에 의해 노드 하우징(100)이 탄성파 측정 대상 표면에 부착 설치되면, 노드 하우징(100)은 탄성파 측정 대상 표면 측으로 가압된다. 이때, 탄성파 측정 대상 표면 측으로 가압되는 노드 하우징(100) 내측에 설치된 센서부(200)의 파동 임피던스 매칭 부재(230) 역시 탄성파 측정 대상 표면에 면 접촉 상태가 되어야 하는데, 결합 수단(예: 볼트, 탄력 밴드)에 의한 가압력 만으로는 센서부(200)의 파동 임피던스 매칭 부재(230)가 탄성파 측정 대상 표면에 면 접촉 상태가 되도록 하기에 충분치 않다.When the node housing 100 is attached to the surface of the elastic wave measurement target by means of a coupling means (eg, a bolt or an elastic band), the node housing 100 is pressed toward the surface of the elastic wave measurement target. At this time, the wave impedance matching member 230 of the sensor unit 200 installed inside the node housing 100, which is pressed toward the surface of the elastic wave measurement target, should also be in surface contact with the elastic wave measurement target surface. The pressing force by the elastic band alone is not sufficient to bring the wave impedance matching member 230 of the sensor unit 200 into surface contact with the surface to be measured for elastic waves.
따라서 상기 탄성 부재(800)를 노드 하우징(100) 내측에서 센서부(200)의 센서 하우징(210) 상측에 설치하면, 결합 수단(예: 볼트, 탄력 밴드)에 의한 가압력에 의해 탄성 부재(800)가 수축 변형하고, 수축 변형된 탄성 부재(800)의 탄성 복귀력이 센서 하우징(210)을 하측 방향으로 가압하게 되어, 센서부(200)의 파동 임피던스 매칭 부재(230)의 탄성파 측정 대상 표면에 대한 면 접촉 상태가 더욱 유지된다.Therefore, when the elastic member 800 is installed on the upper side of the sensor housing 210 of the sensor unit 200 from the inside of the node housing 100, the elastic member 800 ) is contraction-deformed, and the elastic return force of the contracted-deformed elastic member 800 presses the sensor housing 210 downward, so that the surface of the wave impedance matching member 230 of the sensor unit 200 is subjected to elastic wave measurement. The surface contact state for is further maintained.
상기 센서부(200)가 노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치되는 경우, 상기 센서 노드(1000)는 노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치된 센서부(200)가 제공하는 전기적 파형 신호를 입력받을 수 있도록, 노드 하우징(100)에 형성되는 센싱 데이터 입력 포트(900)를 더 포함하는 것을 특징으로 한다.When the sensor unit 200 is installed on a target for measuring elastic waves around the outside of the node housing 100, the sensor node 1000 is provided with the sensor unit 200 installed on the target for measuring elastic waves around the outside of the node housing 100 It is characterized in that it further comprises a sensing data input port 900 formed in the node housing 100 to receive an electrical waveform signal to be input.
도 2와 같이, 노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치된 센서부(200)의 신호 인출 단자(240)와 노드 하우징(100)에 형성되는 센싱 데이터 입력 포트(900)에 신호 전송선이 연결되어, 센서부(200)에서 생성된 전기적 파형 신호가 센싱 데이터 입력 포트(900)로 입력된다.As shown in FIG. 2 , a signal transmission line is provided between the signal extraction terminal 240 of the sensor unit 200 installed on the elastic wave measurement object around the outside of the node housing 100 and the sensing data input port 900 formed in the node housing 100. Connected, the electrical waveform signal generated by the sensor unit 200 is input to the sensing data input port 900 .
이때, 센싱 데이터 입력 포트(900)와 증폭부(300)의 프리앰프 보드(320)는 신호 전송선으로 상호 연결되어 있어, 센싱 데이터 입력 포트(900)로 입력된 전기적 파형 신호는 증폭부(300)로 제공된다.At this time, the sensing data input port 900 and the preamplifier board 320 of the amplification unit 300 are interconnected with a signal transmission line, so that the electrical waveform signal input through the sensing data input port 900 is transmitted to the amplification unit 300. is provided as
상기 네트워크 제어 노드(2000)는 다수의 AE 센서 노드(1000)들 중, 선단 AE 센서 노드(1001)로 전력과 신호 처리 조건 정보를 전송하고, 다수의 AE 센서 노드(1000)들 중, 후단 AE 센서 노드(100N)로부터 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들을 전달받는 구성이다.The network control node 2000 transmits power and signal processing condition information to the front AE sensor node 1001 among the plurality of AE sensor nodes 1000, and among the plurality of AE sensor nodes 1000, the rear AE This is a configuration for receiving seismic analysis result information generated by a plurality of AE sensor nodes 1000 from the sensor node 100N.
상기 전력은 다수의 AE 센서 노드(1000)들이 동작 전원으로 사용하도록 제공하는 것이고, 상기 신호 처리 조건 정보는 다수의 AE 센서 노드(1000)들이 탄성파 신호를 처리하고 분석하는 과정에서 사용할 신호 처리 및 분석에 필요한 여러 가지 조건(예: 샘플링 조건, 증폭 이득 조건 등)에 관한 정보인 것을 특징으로 한다.The power is provided for use by the plurality of AE sensor nodes 1000 as operating power, and the signal processing condition information is used in the process of processing and analyzing elastic wave signals by the plurality of AE sensor nodes 1000. Signal processing and analysis It is characterized in that it is information about various conditions (eg, sampling conditions, amplification gain conditions, etc.) required for
음향방출 센서(AE Sensor)를 이용한 종래의 비파괴 검사법은 결함 검사 대상체에 다수의 음향방출 센서(AE Sensor)를 설치하고, 검사 대상체의 변형, 균열, 누설 또는 파괴 시에 발생하는 탄성파를 분석하여 검사 대상체인 수소 탱크의 결함을 파악한다.In the conventional nondestructive inspection method using an AE sensor, a plurality of AE sensors are installed on a defect inspection object, and the elastic waves generated when the inspection object is deformed, cracked, leaked, or destroyed are analyzed and inspected. Defects in the target object, the hydrogen tank, are identified.
그러나 종래의 음향방출 센서(AE Sensor)를 이용한 비파괴 검사법은 음향방출 센서(AE Sensor)에 사전 세팅된 신호 처리 조건대로만 음향방출 센서(AE Sensor)가 탄성파를 측정하고 분석하기 때문에, 현장 상황에 맞게 신호 처리 조건을 수정하기가 곤란하였다. 만일 신호 처리 조건을 수정하기 위해서는 검사 대상체에 부착된 음향방출 센서(AE Sensor)를 새로운 신호 처리 조건으로 세팅된 새로운 음향방출 센서로 일일이 교체해야 하는 번거로움이 종래에는 있었다.However, in the conventional non-destructive inspection method using an AE sensor, the AE sensor measures and analyzes elastic waves only according to the signal processing conditions preset in the AE sensor. It was difficult to modify the signal processing conditions. Conventionally, in order to modify the signal processing condition, it is necessary to replace the AE sensor attached to the test object with a new acoustic emission sensor set to a new signal processing condition.
이러한 종래의 문제점을 해결하기 위해, 본 발명은 다수의 AE 센서 노드(1000)들과 네트워크 제어 노드(2000)로 노드 네트워크를 구성하고, 네트워크 제어 노드(2000)에서 현장 상황에 맞는 신호 처리 조건 정보를 노드 네트워크 방식으로 다수의 AE 센서 노드(1000)들로 제공하여, 다수의 AE 센서 노드들이 네트워크 제어 노드(2000)가 제공한 신호 처리 조건에 따라 검사 대상체인 구조물의 결함 진단용 탄성파를 동일한 신호 처리 조건으로 측정 및 분석할 수 있도록 하는 것이다.In order to solve these conventional problems, the present invention configures a node network with a plurality of AE sensor nodes 1000 and a network control node 2000, and the network control node 2000 provides signal processing condition information suitable for the field situation. is provided to a plurality of AE sensor nodes 1000 in a node network manner, so that the plurality of AE sensor nodes process the same signal for elastic waves for diagnosing defects in a structure to be inspected according to the signal processing conditions provided by the network control node 2000 It is to be able to measure and analyze conditions.
또한, 상기 네트워크 제어 노드(2000)는 선단 AE 센서 노드(1001)로 전송한 신호 처리 조건 정보와 후단 AE 센서 노드(100N)로부터 전달받은 신호 처리 조건 정보를 비교하여, 자신이 전송한 신호 처리 조건 정보에 따라 탄성파 신호들이 분석 처리되었는지를 판단하고, 판단 결과로 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들의 유효성을 검증하는 것을 특징으로 한다.In addition, the network control node 2000 compares the signal processing condition information transmitted to the front end AE sensor node 1001 with the signal processing condition information transmitted from the rear end AE sensor node 100N, and obtains the signal processing condition transmitted by the network control node 2000. It is characterized in that it is determined whether the elastic wave signals have been analyzed and processed according to the information, and as a result of the determination, the validity of the elastic wave analysis result information generated by the plurality of AE sensor nodes 1000 is verified.
이 경우, 상기 후단 AE 센서 노드(100N)는 네트워크 제어 노드(2000)로 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보 이외에 자신이 입력받은 신호 처리 조건 정보를 더 제공하는 것을 특징으로 한다. In this case, the rear-end AE sensor node 100N provides the network control node 2000 with signal processing condition information received by itself in addition to the seismic wave analysis result information generated by the plurality of AE sensor nodes 1000. Characterized in that do.
만일, 다수의 AE 센서 노드(1000)에서 사용되는 신호 처리 조건들이 다수의 AE 센서 노드(1000)별로 상이하게 되면, 동일한 검사 대상체인 구조물에서 수집되는 동일한 탄성파 신호는 서로 다른 기준과 조건에 의해 분석되어 상호 매칭되지 않은 부정확한 분석 결과가 도출되는 문제가 발생한다.If the signal processing conditions used in the plurality of AE sensor nodes 1000 are different for each of the plurality of AE sensor nodes 1000, the same acoustic wave signal collected from the same test object structure is analyzed by different criteria and conditions This causes a problem in which inaccurate analysis results that are not matched with each other are derived.
이를 해결하기 위해, 네트워크 제어 노드(2000)는 자신이 선단 AE 센서 노드(1001)로 전송한 신호 처리 조건 정보와 후단 AE 센서 노드(100N)로부터 전달받은 신호 처리 조건 정보를 비교하여, 자신이 전송한 신호 처리 조건 정보에 따라 탄성파 신호들이 분석 처리되었는지를 판단하고, 판단 결과로 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들의 유효성을 검증하게 된다.To solve this problem, the network control node 2000 compares the signal processing condition information transmitted to the front end AE sensor node 1001 with the signal processing condition information transmitted from the rear end AE sensor node 100N, and transmits According to one signal processing condition information, it is determined whether the elastic wave signals have been analyzed and processed, and as a result of the determination, the validity of the elastic wave analysis result information generated by the plurality of AE sensor nodes 1000 is verified.
즉, 자신이 선단 AE 센서 노드(1001)로 전송한 신호 처리 조건 정보와 후단 AE 센서 노드(100N)로부터 전달받은 신호 처리 조건 정보가 일치하면, 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들은 동일한 기준과 조건에 의해 분석된 결과 정보로서 유효성이 있는 것으로 검증하게 되고, 만일, 자신이 선단 AE 센서 노드(1001)로 전송한 신호 처리 조건 정보와 후단 AE 센서 노드(100N)로부터 전달받은 신호 처리 조건 정보가 일치하지 않으면, 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들은 서로 다른 기준과 조건에 의해 분석된 결과 정보로서 유효성이 없는 것으로 검증하게 된다.That is, if the signal processing condition information transmitted to the front AE sensor node 1001 and the signal processing condition information received from the rear AE sensor node 100N match, the seismic wave analysis generated by the plurality of AE sensor nodes 1000 The resulting information is verified as valid as result information analyzed under the same criteria and conditions. If the received signal processing condition information does not match, the seismic analysis result information generated by the plurality of AE sensor nodes 1000 is analyzed according to different criteria and conditions, and is verified to be invalid.
예를 들어, 전력선 통신 케이블(3000)을 통해 신호 처리 조건 정보가 전송되는 과정에서, 전력선 통신 케이블(3000) 자체의 문제로 인한 데이터 누락이나 손상 등이 발생하거나, AE 센서 노드(1000) 자체에 이상이 발행하게 되면, 노드 네트워크를 구성하는 다수의 AE 센서 노드(1000)들 중, 데이터 누락이나 손상 등이 발생한 지점 이후에 위치한 AE 센서 노드(1000)에서는 네트워크 제어 노드(2000)가 제공한 신호 처리 조건 정보와는 다른 조건으로 탄성파 신호를 처리하고 분석하게 된다.For example, in the process of transmitting signal processing condition information through the power line communication cable 3000, data omission or damage occurs due to a problem of the power line communication cable 3000 itself, or the AE sensor node 1000 itself When an anomaly occurs, among the plurality of AE sensor nodes 1000 constituting the node network, in the AE sensor node 1000 located after the point where data loss or damage occurs, the signal provided by the network control node 2000 The elastic wave signal is processed and analyzed under conditions different from the processing condition information.
이러한 경우, 네트워크 제어 노드(2000)는 자신이 선단 AE 센서 노드(1001)로 제공한 신호 처리 조건 정보와는 다른 신호 처리 조건 정보를 후단 AE 센서 노드(100N)를 통해 전달받게 되며, 이러한 경우, 네트워크 제어 노드(2000)는 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들은 유효성이 없는 것으로 검증하게 되는 것이다.In this case, the network control node 2000 receives signal processing condition information different from the signal processing condition information provided to the leading AE sensor node 1001 by the network control node 2000 through the rear AE sensor node 100N. In this case, The network control node 2000 verifies that the seismic analysis result information generated by the plurality of AE sensor nodes 1000 is invalid.
상기 전력선 통신 케이블(3000)은 다수의 AE 센서 노드(1000)들로 전력과 신호 처리 조건 정보가 전송되도록 하고 네트워크 제어 노드(2000)가 탄성파 분석 결과 정보들을 수집할 수 있도록, 다수의 AE 센서 노드(1000)들과 네트워크 제어 노드(2000)를 상호 연결하는 구성이다.The power line communication cable 3000 allows power and signal processing condition information to be transmitted to the plurality of AE sensor nodes 1000 and allows the network control node 2000 to collect seismic analysis result information, a plurality of AE sensor nodes 1000 and the network control node 2000 are interconnected.
구체적으로, 도 7에 도시된 바와 같이, 전원 라인과 데이터 라인을 같이 사용함과 동시에 전송 데이터의 내잡음성을 향상시킬 수 있도록 하기 위해,Specifically, as shown in FIG. 7, in order to improve the noise resistance of transmission data while simultaneously using the power line and the data line,
구리 재질의 원통형 망사 형태인 쉴드 케이블(3100)과,A shield cable 3100 in the form of a cylindrical mesh made of copper,
쉴드 케이블(3100) 내측에 형성되는 포지티브 코어와 네거티브 코어로 구성되는 코어부(3200)와,A core portion 3200 composed of a positive core and a negative core formed inside the shield cable 3100;
쉴드 케이블(3100) 외측에 형성되는 절연 피복(3300)으로 구성되는 것을 특징으로 한다.It is characterized in that it is composed of an insulating coating 3300 formed on the outside of the shield cable 3100.
포지티브 코어와 네거티브 코어로 구성되는 코어부(3200)를 통해 전력과 데이터(신호 처리 조건 정보, 탄성파 분석 결과 정보)가 전송되고, 구리 재질의 원통형 망사 형태인 쉴드 케이블(3100)을 통해, 외부 요인에 의해 코어부(3200)를 통해 전송되는 정보의 손실이 발생하지 않도록 보호된다.Power and data (signal processing condition information, seismic analysis result information) are transmitted through the core part 3200 composed of a positive core and a negative core, and external factors are transmitted through a shield cable 3100 in the form of a cylindrical mesh made of copper. Thus, information transmitted through the core unit 3200 is protected from loss.
이상에서 본 발명의 기술 사상을 첨부 도면과 함께 서술하였지만, 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니며, 본 발명의 권리 범위는 실시예에 국한되지 않고, 이 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술 사상 범주 내에서 변형한 것까지 포함함은 자명하다 할 것이다.Although the technical idea of the present invention has been described above with the accompanying drawings, this is an illustrative example of a preferred embodiment of the present invention, but does not limit the present invention, and the scope of the present invention is not limited to the embodiments, and this It will be obvious that those skilled in the art include modifications within the scope of the technical idea of the present invention.
본 발명은 구조물의 결함 진단을 위해, 다수의 AE 센서 노드를 네트워크 방식으로 구조물(수소 탱크와 같은 고압 탱크, 관로, 교량, 댐, 건물, 터널, 철로 등) 표면에 부착 설치 하여, 다수의 AE 센서 노드들로 전력과 신호 처리 조건 정보를 순차적 네트워크 방식으로 제공할 수 있어, 구조물이 설치된 현장 상황에 맞게 AE 센서 노드들의 신호 처리 조건을 용이하게 수정할 수 있도록 하는 효과를 제공하므로 산업상 이용 가능성도 높은 발명이다.The present invention attaches and installs a plurality of AE sensor nodes on the surface of a structure (high-pressure tank such as a hydrogen tank, pipeline, bridge, dam, building, tunnel, railroad, etc.) in a network manner to diagnose defects in a structure, Since power and signal processing condition information can be provided to sensor nodes in a sequential network manner, it provides the effect of easily modifying the signal processing conditions of AE sensor nodes according to the site situation where the structure is installed, so industrial applicability is also possible. It is a high invention.

Claims (9)

  1. 탄성파를 이용해 구조물의 구조 변위를 감지하는 AE 센서 노드 네트워크 시스템에 있어서,In the AE sensor node network system for detecting structural displacement of a structure using elastic waves,
    탄성파 측정 대상에서 전달되는 탄성파 신호를 감지하고, 감지한 탄성파 신호를 네트워크 제어 노드(2000)가 전송한 신호 처리 조건 정보에 따라 분석 처리하여 탄성파 분석 결과 정보를 생성하고, 생성한 탄성파 분석 결과 정보가 네트워크 제어 노드(2000)로 전달되도록, 탄성파 측정 대상에 설치되는 다수의 AE 센서 노드(1000)와;The elastic wave signal transmitted from the elastic wave measurement target is detected, the detected elastic wave signal is analyzed and processed according to the signal processing condition information transmitted by the network control node 2000 to generate elastic wave analysis result information, and the generated elastic wave analysis result information is a plurality of AE sensor nodes 1000 installed on the elastic wave measurement target so as to be transmitted to the network control node 2000;
    선단 AE 센서 노드(1001)로 전력과 신호 처리 조건 정보를 전송하고, 후단 AE 센서 노드(100N)로부터 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들을 전달받는 네트워크 제어 노드(2000)와;A network control node (2000) that transmits power and signal processing condition information to the front-end AE sensor node (1001) and receives seismic analysis result information generated by a plurality of AE sensor nodes (1000) from the rear-end AE sensor node (100N) and;
    다수의 AE 센서 노드(1000)들로 전력과 신호 처리 조건 정보가 전송되도록 하고 네트워크 제어 노드(2000)가 탄성파 분석 결과 정보들을 수집할 수 있도록, 다수의 AE 센서 노드(1000)들과 네트워크 제어 노드(2000)를 상호 연결하는 전력선 통신 케이블(3000)을 포함하되,A plurality of AE sensor nodes 1000 and a network control node to transmit power and signal processing condition information to the plurality of AE sensor nodes 1000 and to allow the network control node 2000 to collect seismic analysis result information Including a power line communication cable 3000 interconnecting (2000),
    상기 선단 AE 센서 노드(1001)는 네트워크 제어 노드(2000)로부터 전력과 신호 처리 조건 정보를 전송받는 다수의 AE 센서 노드(1000) 중, 어느 한 AE 센서 노드이고,The front-end AE sensor node 1001 is any one AE sensor node among a plurality of AE sensor nodes 1000 that receives power and signal processing condition information from the network control node 2000,
    상기 후단 AE 센서 노드(100N)는 네트워크 제어 노드(2000)로 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들을 제공하는 다수의 AE 센서 노드(1000)중, 다른 어느 한 AE 센서 노드인 것을 특징으로 하는 AE 센서 노드 네트워크 시스템.The latter AE sensor node 100N is another AE sensor node among a plurality of AE sensor nodes 1000 that provides seismic wave analysis result information generated by the plurality of AE sensor nodes 1000 to the network control node 2000 AE sensor node network system, characterized in that.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 AE 센서 노드(1000)는,The AE sensor node 1000,
    내측에 센서부(200), 증폭부(300), DAQ부(400)가 설치되는 내부 공간(110)이 형성되고, 탄성파 측정 대상에 설치되는 노드 하우징(100)과,A node housing 100 having an inner space 110 in which the sensor unit 200, the amplification unit 300, and the DAQ unit 400 are installed and installed on the elastic wave measurement target;
    노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되거나 노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치되어, 탄성파 측정 대상에서 전달되는 탄성파를 감지하고, 감지된 탄성파에 대응된 전기적 파형 신호를 생성하는 센서부(200)와,It is installed in the inner space 110 formed inside the node housing 100 or installed on the elastic wave measuring target around the outside of the node housing 100 to detect the elastic wave transmitted from the elastic wave measuring target, and the electrical waveform corresponding to the detected elastic wave. A sensor unit 200 that generates a signal;
    노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되어, 센서부(200)가 생성한 탄성파에 대응된 전기적 파형 신호를 증폭 처리하는 증폭부(300)와,An amplifier 300 installed in the inner space 110 formed inside the node housing 100 to amplify and process an electrical waveform signal corresponding to the elastic wave generated by the sensor unit 200;
    노드 하우징(100) 내측에 형성된 내부 공간(110)에 설치되어, 증폭부(300)가 증폭 처리한 전기적 파형 신호를 네트워크 입력 포트(400)를 통해 입력된 신호 처리 조건 정보에 따라 분석 처리하여 탄성파 분석 결과 정보를 생성하는 DAQ부(400)와,It is installed in the inner space 110 formed inside the node housing 100 and analyzes and processes the electrical waveform signal amplified and processed by the amplification unit 300 according to the signal processing condition information input through the network input port 400 to generate elastic waves. A DAQ unit 400 generating analysis result information;
    전력선 통신 케이블(3000)이 연결되도록 노드 하우징(100)에 형성되는 네트워크 입력 포트(500)와,A network input port 500 formed in the node housing 100 to which the power line communication cable 3000 is connected;
    전력선 통신 케이블(3000)이 연결되도록 노드 하우징(100)에 형성되는 네트워크 출력 포트(600)와,A network output port 600 formed on the node housing 100 to which the power line communication cable 3000 is connected;
    네트워크 입력 포트(500)를 통해 입력된 전력, 신호 처리 조건 정보, 다른 센서 노드(1000)가 생성한 탄성파 분석 결과 정보와 DAQ부(400)가 생성한 탄성파 분석 결과 정보를 네트워크 출력 포트(600)를 통해 외부로 출력시키는 데이터 전송 제어부(700)를 포함하는 것을 특징으로 하는 AE 센서 노드 네트워크 시스템.Power input through the network input port 500, signal processing condition information, seismic wave analysis result information generated by other sensor nodes 1000 and seismic wave analysis result information generated by the DAQ unit 400 are transmitted through the network output port 600 AE sensor node network system characterized in that it comprises a data transmission control unit 700 to output to the outside through.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 데이터 전송 제어부(700)는,The data transmission control unit 700,
    DAQ부(400)가 생성한 탄성파 분석 결과 정보에 자신이 속한 센서 노드(1000)의 고유 식별 정보를 포함시켜 네트워크 출력 포트(600)를 통해 외부로 출력시키는 것을 특징으로 하는 AE 센서 노드 네트워크 시스템.The AE sensor node network system characterized in that the unique identification information of the sensor node 1000 to which it belongs is included in the seismic analysis result information generated by the DAQ unit 400 and output to the outside through the network output port 600.
  4. 청구항 2에 있어서,The method of claim 2,
    상기 센서 노드(1000)는,The sensor node 1000,
    노드 하우징(100) 내측에 형성된 내부 공간(110)에 삽입 설치되는 센서부(200)의 파동 임피던스 매칭 부재(230)가 탄성파 측정 대상의 표면에 면 접촉 상태를 유지할 수 있도록, 노드 하우징(100) 내부 공간(110)에 설치되어 센서부(200)의 센서 하우징(210)을 가압하는 탄성 부재(800)를 더 포함하는 것을 특징으로 AE 센서 노드 네트워크 시스템.Node housing 100 so that the wave impedance matching member 230 of the sensor unit 200 inserted into the inner space 110 formed inside the node housing 100 can maintain surface contact with the surface of the elastic wave measurement target The AE sensor node network system further includes an elastic member 800 installed in the inner space 110 to press the sensor housing 210 of the sensor unit 200.
  5. 청구항 2에 있어서,The method of claim 2,
    상기 센서부(200)가 노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치되는 경우,When the sensor unit 200 is installed on an elastic wave measurement target around the outside of the node housing 100,
    상기 AE 센서 노드(1000)는,The AE sensor node 1000,
    노드 하우징(100) 외부 주변의 탄성파 측정 대상에 설치된 센서부(200)가 제공하는 전기적 파형 신호를 입력받을 수 있도록, 노드 하우징(100)에 형성되는 센싱 데이터 입력 포트(900)를 더 포함하는 것을 특징으로 하는 AE 센서 노드 네트워크 시스템.To further include a sensing data input port 900 formed in the node housing 100 to receive an electrical waveform signal provided by the sensor unit 200 installed on the elastic wave measurement target around the outside of the node housing 100. Characterized by AE sensor node network system.
  6. 청구항 2에 있어서,The method of claim 2,
    상기 센서부(200)는,The sensor unit 200,
    내측에 AE 센서(220)가 삽입 설치되는 센서 하우징(210)과,The sensor housing 210 into which the AE sensor 220 is inserted and installed therein;
    센서 하우징(210) 내측에 설치되고, 탄성파 측정 대상에서 전달되는 탄성파를 감지하기 위해 감지 면(221)이 형성되고, 감지된 탄성파에 대응된 전기적 파형 신호를 생성하는 AE 센서(220)와,An AE sensor 220 installed inside the sensor housing 210, having a sensing surface 221 formed to detect an elastic wave transmitted from an elastic wave measurement target, and generating an electrical waveform signal corresponding to the detected elastic wave;
    탄성파 측정 대상에서 전달되는 탄성파 수신율을 높이기 위해, AE 센서(220)의 감지 면(221)에 형성되어 탄성파 측정 대상의 표면에 면 접촉하는 일정 면적을 갖는 알루미나 재질의 파동 임피던스 매칭 부재(230)와,In order to increase the elastic wave reception rate transmitted from the elastic wave measurement target, the wave impedance matching member 230 made of alumina is formed on the sensing surface 221 of the AE sensor 220 and has a certain area in contact with the surface of the elastic wave measurement target. ,
    AE 센서(220)가 생성한 전기적 파형 신호가 외부로 인출될 수 있도록 하는 신호 인출 단자(240)를 포함하는 것을 특징으로 하는 AE 센서 노드 네트워크 시스템. AE sensor node network system characterized in that it comprises a signal extraction terminal 240 that allows the electrical waveform signal generated by the AE sensor 220 to be extracted to the outside.
  7. 청구항 2에 있어서,The method of claim 2,
    상기 증폭부(300)는,The amplifier 300,
    프리앰프 보드(320)가 내측에 설치될 수 있도록 하는 중공(311)이 형성된 원통 형상의 프리앰프 보드 하우징(310)과,A preamplifier board housing 310 having a cylindrical shape having a hollow 311 to allow the preamplifier board 320 to be installed therein,
    상기 프리앰프 보드 하우징(310) 내측에 삽입 설치되고, 센싱부(200)에서 전송된 전기적 파형 신호를 증폭하는 증폭회로가 설계된 프리앰프 보드(320)와,A preamplifier board 320 installed inside the preamplifier board housing 310 and designed with an amplifier circuit for amplifying the electric waveform signal transmitted from the sensing unit 200;
    프리앰프 보드(320)가 슬라이드 방식으로 프리앰프 보드 하우징(310) 내측에 형성된 중공(311)에 삽입될 수 있도록, 중공(311)에 형성되는 일정 길이의 슬라이드 홈(330)을 포함하는 것을 특징으로 하는 AE 센서 노드 네트워크 시스템.It is characterized in that it includes a slide groove 330 of a certain length formed in the hollow 311 so that the preamplifier board 320 can be inserted into the hollow 311 formed inside the preamplifier board housing 310 in a sliding manner. AE sensor node network system to be.
  8. 청구항 1에 있어서,The method of claim 1,
    상기 후단 AE 센서 노드(100N)는 네트워크 제어 노드(2000)로 자신이 입력받은 신호 처리 조건 정보를 더 제공하고,The rear-end AE sensor node 100N further provides signal processing condition information received by it to the network control node 2000,
    상기 네트워크 제어 노드(2000)는,The network control node 2000,
    선단 AE 센서 노드(1001)로 전송한 신호 처리 조건 정보와 후단 AE 센서 노드(100N)로부터 전달받은 신호 처리 조건 정보를 비교하여, 자신이 전송한 신호 처리 조건 정보에 따라 탄성파 신호들이 분석 처리되었는지를 판단하고, 판단 결과로 다수의 AE 센서 노드(1000)들이 생성한 탄성파 분석 결과 정보들의 유효성을 검증하는 것을 특징으로 하는 AE 센서 노드 네트워크 시스템.By comparing the signal processing condition information transmitted to the front-end AE sensor node 1001 with the signal processing condition information transmitted from the rear-end AE sensor node 100N, it is determined whether the elastic wave signals have been analyzed and processed according to the signal processing condition information transmitted by the AE sensor node 100N. An AE sensor node network system characterized in that the judgment is made, and the validity of the seismic analysis result information generated by the plurality of AE sensor nodes (1000) as a result of the judgment is verified.
  9. 청구항 1에 있어서,The method of claim 1,
    상기 전력선 통신 케이블(3000)은,The power line communication cable 3000,
    전원 라인과 데이터 라인을 같이 사용함과 동시에 전송 데이터의 내잡음성을 향상시킬 수 있도록 하기 위해,In order to improve the noise resistance of the transmitted data while using the power line and the data line together,
    구리 재질의 원통형 망사 형태인 쉴드 케이블(3100)과,A shield cable 3100 in the form of a cylindrical mesh made of copper,
    쉴드 케이블(3100) 내측에 형성되는 포지티브 코어와 네거티브 코어로 구성되는 코어부(3200)와,A core portion 3200 composed of a positive core and a negative core formed inside the shield cable 3100;
    쉴드 케이블(3100) 외측에 형성되는 절연 피복(3300)으로 구성되는 것을 특징으로 하는 AE 센서 노드 네트워크 시스템.AE sensor node network system, characterized in that consisting of an insulating coating (3300) formed on the outside of the shield cable (3100).
PCT/KR2022/013528 2021-12-28 2022-09-08 Ae sensor node network system WO2023128135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210189289A KR102398773B1 (en) 2021-12-28 2021-12-28 A AE sonsor node network system
KR10-2021-0189289 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023128135A1 true WO2023128135A1 (en) 2023-07-06

Family

ID=81803366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013528 WO2023128135A1 (en) 2021-12-28 2022-09-08 Ae sensor node network system

Country Status (2)

Country Link
KR (1) KR102398773B1 (en)
WO (1) WO2023128135A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102398773B1 (en) * 2021-12-28 2022-05-17 주식회사 아이디케이 A AE sonsor node network system
KR102497106B1 (en) * 2022-10-17 2023-02-07 주식회사 아이디케이 A system to detect explosion potential of high-pressure vessel by using seismic waves and node network
KR102497110B1 (en) * 2022-10-17 2023-02-08 주식회사 아이디케이 A system for diagnosing integrity of facilities by using sensor of pile-type having IOT function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071519A (en) * 2000-08-25 2002-03-08 Ntn Corp System for monitoring mechanical component
US20090192727A1 (en) * 2006-09-15 2009-07-30 Ford Robert G System and method for monitoring structures for damage using nondestructive inspection techniques
JP2013101065A (en) * 2011-11-09 2013-05-23 Toyota Motor Corp Abnormality detection device of battery pack
JP2017090311A (en) * 2015-11-12 2017-05-25 株式会社東芝 Detection device, detection system and detection method
JP2021197038A (en) * 2020-06-17 2021-12-27 株式会社リコー Measurement system, measurement device, control method for measurement system, and control program for measurement system
KR102398773B1 (en) * 2021-12-28 2022-05-17 주식회사 아이디케이 A AE sonsor node network system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915247B1 (en) 2007-05-18 2009-09-03 한국전기연구원 The position controlling apparatus for calibrating acoustic emission sensors
US10138914B2 (en) 2015-04-16 2018-11-27 Smc Corporation Sensor attachment tool
US11105350B2 (en) 2015-10-08 2021-08-31 Smc Corporation Sensor mounting tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071519A (en) * 2000-08-25 2002-03-08 Ntn Corp System for monitoring mechanical component
US20090192727A1 (en) * 2006-09-15 2009-07-30 Ford Robert G System and method for monitoring structures for damage using nondestructive inspection techniques
JP2013101065A (en) * 2011-11-09 2013-05-23 Toyota Motor Corp Abnormality detection device of battery pack
JP2017090311A (en) * 2015-11-12 2017-05-25 株式会社東芝 Detection device, detection system and detection method
JP2021197038A (en) * 2020-06-17 2021-12-27 株式会社リコー Measurement system, measurement device, control method for measurement system, and control program for measurement system
KR102398773B1 (en) * 2021-12-28 2022-05-17 주식회사 아이디케이 A AE sonsor node network system

Also Published As

Publication number Publication date
KR102398773B1 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023128135A1 (en) Ae sensor node network system
CN111624449B (en) Power equipment partial discharge multichannel optical detection system based on emission spectroscopy
WO2019083144A1 (en) Device and method for detecting failure location of underground cable
WO2016178447A1 (en) Cable fault diagnosing method and system
WO2015126203A2 (en) Data acquisition system and data acquisition method for testing of wind turbine blade
WO2018124518A1 (en) Apparatus for detecting internal defect in transformer
CN107238610A (en) Composite insulator defect nondestructive detection system based on microwave band reflection characteristic
WO2022065595A1 (en) Strength signal measuring method and device for monitoring strength of hydration reaction material structure
WO2013108948A1 (en) Apparatus and method for detecting pipe damage
GB2376077A (en) Pipeline inspection apparatus
CN111751687A (en) Direct current cable partial discharge and fault breakdown positioning system
KR200446596Y1 (en) The Acoustic Emission Signal Acquisition Assembly for Leak Detection of Closure Plug in Heavy Water Reactor
GB2341689B (en) Locating underground power cable faults
WO2022180834A1 (en) Coherent light measuring device, and optical line test system and method
WO2021125828A1 (en) Device and method for testing surface material of steel plate
WO2022139013A1 (en) Motor noise test apparatus and test method using ae sensor
WO2014104563A1 (en) Apparatus and method for measuring nonlinear parameters
WO2024112160A2 (en) Stress corrosion cracking detection reference parameter configuration method and device using acoustic emission sensor
WO2023048345A1 (en) Steel pipe inspection system using sound signal
CN112179297A (en) Composite insulator sheath core displacement detection method based on microwave reflection technology
US20230349499A1 (en) Pipeline inspection systems and methods
WO2023008790A1 (en) Uwb antenna and ble antenna performance test system
CN220290299U (en) Auxiliary alarm device for cable bridge
CN108344888A (en) Small signal circuit detection device and its method in communication line based on circuit transmission
CN117849540A (en) Intelligent explosion-proof method and explosion-proof shell for cable joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916289

Country of ref document: EP

Kind code of ref document: A1