WO2023127920A1 - Information processing method, program, non-transitory computer readable storage medium, and electronic device - Google Patents

Information processing method, program, non-transitory computer readable storage medium, and electronic device Download PDF

Info

Publication number
WO2023127920A1
WO2023127920A1 PCT/JP2022/048400 JP2022048400W WO2023127920A1 WO 2023127920 A1 WO2023127920 A1 WO 2023127920A1 JP 2022048400 W JP2022048400 W JP 2022048400W WO 2023127920 A1 WO2023127920 A1 WO 2023127920A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
data
patient
ventilator
setting
Prior art date
Application number
PCT/JP2022/048400
Other languages
French (fr)
Japanese (ja)
Inventor
孝 中島
直之 石北
Original Assignee
孝 中島
直之 石北
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孝 中島, 直之 石北 filed Critical 孝 中島
Publication of WO2023127920A1 publication Critical patent/WO2023127920A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes

Definitions

  • This disclosure relates to technology for adapting medical devices to patients and technology for analyzing biological data.
  • the inventor has proposed a relief valve that can be opened and closed by changes in air pressure (patient's airway pressure) without requiring an electric drive source (Patent Document 1).
  • This relief valve can be used, for example, as an APL valve (Adjustable pressure limiting valve) provided in a respirator or an inhalation anesthesia machine.
  • the present inventor has proposed a pneumatically driven artificial respirator that applies the operating principle of the relief valve (Japanese Patent Application No. 2020-123336).
  • This artificial respirator also does not require an electric drive source for opening and closing the valve body, and it is epoch-making that it can realize artificial respiration for the patient regardless of the environment where electricity is available. It is a suitable ventilator.
  • the pneumatically driven ventilator mentioned above does not open and close the valve body by electrical control, it is required to appropriately set and use the ventilator from a clinical point of view by observing the patient's condition. In addition, it is necessary to appropriately set the amount of gas to be supplied to the patient according to the condition of the patient.
  • One of the purposes of this disclosure is to provide technology for adapting medical devices to patients.
  • a method comprises, in one or more computing devices, acquiring respiratory data, including expiratory time, inspiratory time, and respiratory rate, of a patient on a ventilator; and controlling airway pressure of said patient. and displaying on a screen setting reference data for setting a valve opening pressure of a valve that opens and closes by air pressure in the artificial respirator.
  • a program according to one aspect is one or more programs configured to be executed by one or more computer devices, said one or more programs comprising instructions for performing said method. .
  • a non-transitory computer-readable storage medium is a non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more computing devices, wherein the one or more is a non-transitory computer-readable storage medium containing instructions for performing the method.
  • An electronic device comprises one or more processors, a memory storing one or more programs configured to be executed by the one or more processors, and a display, wherein the one or more is an electronic device comprising instructions for performing said method.
  • a technique for analyzing biometric data can be provided.
  • FIG. 1 is a block diagram of a system according to one embodiment;
  • FIG. FIG. 4 is an explanatory diagram schematically showing the usage state of the respirator according to one embodiment;
  • 1 is a perspective view including a front, right side, and top view of a ventilator according to one embodiment;
  • FIG. 1 is a perspective view including back, right side, and bottom views of a ventilator according to one embodiment;
  • FIG. 1 is a front view of a ventilator according to one embodiment;
  • FIG. Figure 6 is a rear view of the ventilator of Figure 5;
  • Figure 6 is a right side view of the ventilator of Figure 5;
  • 6 is a plan view of the ventilator of FIG. 5;
  • FIG. 6 is a bottom view of the ventilator of FIG. 5;
  • FIG. 6 is an exploded perspective view including front, right side, and top views of the ventilator of FIG. 5; 6 is an exploded perspective view of the ventilator of FIG. 5 including the front, right side, and bottom;
  • FIG. 21 is a diagram showing data accumulated in a storage unit shown in FIG. 20; It is a figure which shows the functional structure of the EDC server by one Embodiment.
  • FIG. 23 is a diagram showing data accumulated in a storage unit shown in FIG. 22; It is a figure which shows the hardware constitutions of the 2nd computer apparatus by one Embodiment.
  • FIG. 21 is a diagram showing data accumulated in a storage unit shown in FIG. 20; It is a figure which shows the functional structure of the EDC server by one Embodiment.
  • FIG. 23 is a diagram showing data accumulated in a storage unit shown in FIG. 22; It is a figure which shows the hardware constitutions of the 2nd computer apparatus by one Embodiment.
  • FIG. 21 is a diagram showing data accumulated in
  • FIG. 4 is a diagram showing the functional configuration of a setting operation terminal according to one embodiment; 3 is a diagram showing a functional configuration of a viewing terminal according to one embodiment;
  • FIG. 1 is a flowchart illustrating a method of configuring a medical device according to one embodiment; 1 is a flowchart illustrating a method of configuring a medical device according to one embodiment;
  • FIG. 29 is a flowchart continued from FIG. 28;
  • FIG. FIG. 30 is a flowchart continued from FIG. 29;
  • FIG. FIG. 4 is a diagram showing a configuration example of a two-dimensional code reading screen according to one embodiment;
  • FIG. 4 is a diagram showing a configuration example of a patient information input screen according to one embodiment; It is a figure which shows the structural example of the apparatus setting value input screen by one Embodiment. It is a figure which shows the structural example of the sound measurement screen by one Embodiment. It is a figure which shows the structural example of the calculation result screen by one Embodiment.
  • FIG. 4 illustrates the relationship between patient respiration and ventilator action.
  • FIG. 4 is a graph showing changes in sound pressure data;
  • FIG. 4 is a diagram illustrating the closed state of the valve body of the respirator according to one embodiment;
  • FIG. 4 is a diagram illustrating the closed state of the valve body of the respirator according to one embodiment; It is a figure explaining the valve-open state of the valve body of the respirator by one Embodiment.
  • the system 100 can be configured to include a first server 101 , a second server 102 , a first terminal device 103 , a second terminal device 104 , a therapeutic medical device 105 and a diagnostic medical device 106 .
  • the first server 101, the second server 102, the first terminal device 103, and the diagnostic medical device 106 each constitute one aspect of "one computer device", and a plurality of combinations thereof is a "plurality of constitutes one aspect of "computer device”.
  • the system 100 can be configured including a communication network 107 .
  • First server 101 , second server 102 , first terminal device 103 , second terminal device 104 and diagnostic medical device 106 can be configured to be connectable to communication network 107 .
  • the first server 101, the second server 102, and the first terminal device 103 can be configured to be directly connectable via the communication network 107, and can be configured to communicate with each other.
  • the second terminal device 104 can be configured to be directly connectable to the second server 102 via the communication network 107 .
  • the system 100 may include a "medical information processing system 100A" which is a more specific aspect.
  • the first server 101 is a "setting support server” (101A) for supporting setting of the therapeutic medical device 105 used in the clinical setting through communication with the first terminal device 103.
  • the first server 101 is a "setting support server” (101A) for supporting setting of the therapeutic medical device 105 used in the clinical setting through communication with the first terminal device 103.
  • the first server 101 is a "setting support server” (101A) for supporting setting of the therapeutic medical device 105 used in the clinical setting through communication with the first terminal device 103.
  • the second server 102 can include an "EDC (Electronic Data Capture) server" (102A) in the medical information processing system 100A.
  • the EDC server 102A acquires clinical data (research data 102b1) from the setting support server 101A, and performs data cleaning and various data management on the clinical data. This allows the EDC server 102A to configure an EDC system capable of generating, accumulating, and managing research data for observational research. Therefore, the EDC server 102A can be configured to be communicable with the setting support server 101A.
  • the first terminal device 103 can include a "setting operation terminal" (103A) in the medical information processing system 100A.
  • the setting operation terminal 103A can be configured by a computer device that is a hardware resource.
  • the setting operation terminal 103A can be configured by an electronic device such as a smart phone, a tablet terminal, or a laptop computer.
  • the setting operation terminal 103A is used by medical personnel who set various medical devices including the ventilator 105A.
  • the setting operation terminal 103A executes a program (setting support program) for supporting the setting of the medical device, specifically the therapeutic medical device 105 .
  • This program can be provided as a "setting support application” when the setting operation terminal 103A is a smartphone or a tablet terminal.
  • the "setting support application” can be downloaded to the setting operation terminal 103A by a server capable of distributing applications (for example, the setting support server 101A, a server of a medical device manufacturer, a content distribution server, etc.).
  • the setting operation terminal 103A is configured to be able to communicate with the setting support server 101A via the communication network 107.
  • the second terminal device 104 may include a "viewing terminal" (104A) in the medical information processing system 100A.
  • the viewing terminal 104A can be configured by a computer device, which is a hardware resource, such as a smart phone, a tablet terminal, a laptop computer, and the like.
  • the viewing terminal 104A connects to the EDC server 102A via the communication network 107, receives research data for observational research (research data 102b1, etc.) stored there, and has user authority to use the viewing terminal 104A. can be viewed, edited, and managed according to
  • Therapeutic medical equipment 105 may include a "ventilator" (105A) in the medical information processing system 100A.
  • the ventilator 105A will be described below as being pneumatically driven as an example.
  • the therapeutic medical device 105 may further include a gas supply source 105C that supplies, for example, air for inspiration and oxygen.
  • the gas supply source 105C can include not only equipment for supplying gas such as an oxygen cylinder and a compressor, but also facilities for supplying gas such as oxygen pipes and air pipes installed in hospitals.
  • Both the ventilator 105A and the gas supply source 105C must be adjusted appropriately for each patient before use.
  • the setting operation terminal 103A described above displays various information (setting reference data) to be referred to by medical personnel in order to appropriately set the ventilator 105A and gas supply source 105C according to the patient, It supports setting by
  • the diagnostic medical device 106 may include a "biological data measuring device" (106A) in the medical information processing system 100A.
  • the biometric data measuring device 106A can include various measuring and testing equipment for measuring the patient's biophenomena in a clinical setting.
  • the biological data measuring device 106A includes, for example, a lifescope 106A1, various biological sensors 106A2 (eg, an electrocardiograph sensor 106A3, a pulse oximeter ( SpO2 sensor 106A4)) connectable to the lifescope 106A1. ), location information emitting devices (such as GPS devices).
  • various biological sensors 106A2 eg, an electrocardiograph sensor 106A3, a pulse oximeter ( SpO2 sensor 106A4) connectable to the lifescope 106A1.
  • location information emitting devices such as GPS devices.
  • the biological data measuring device 106A may itself have a communication function and be connectable to the communication network 107, or may not itself have a communication function and may be a computer device connected to the biological data measuring device 106A. It may be connectable to the communication network 107 via. In addition, the biological data measuring device 106A can be used without being connected to the communication network 107 regardless of whether or not it has a communication function.
  • the communication network 107 can be configured by, for example, an Internet line or a dedicated line.
  • FIG. 2 schematically shows the state of a patient P who has been intubated and is under artificial respiration.
  • Various therapeutic medical devices 105 and diagnostic medical devices 106 are used for the patient P.
  • FIG. 1
  • the therapeutic medical device 105 includes a ventilator 105A, a breathing circuit 105B, and a gas source 105C.
  • Breathing circuit 105B includes tracheal tube 105B1, gas mixing tube 105B2, air flow regulator 105B3, and oxygen flow regulator 105B4.
  • the gas supply source 105C includes an air supply source 105C1 and an oxygen supply source 105C2. Since FIG. 2 illustrates oral tracheal intubation, therapeutic medical device 105 in other embodiments is not limited to the device used in FIG.
  • an intubation tube in the case of nasal intubation, a tracheotomy tube, a supraglottic device (laryngeal mask), a resuscitation mask, a serpentine connecting to the resuscitation mask, etc. may also be used for therapeutic medical purposes. may be included in device 105;
  • the diagnostic medical device 106 includes a biometric data measuring device 106A, which includes a life scope 21, an electrocardiograph sensor 22a as a biosensor 22, and an SpO 2 sensor 22b. The condition of the patient P is measured by these diagnostic medical devices 106 so that medical personnel can grasp it.
  • FIG. 2 is an example, and the biological data measuring device 106A and the biological sensor 22 are not limited to these devices, and may include, for example, a respiration sensor.
  • a patient P is orally intubated, and a tracheal tube 105B1 is intubated from mouth P1 to trachea P2.
  • the intracorporeal end of the tracheal tube 105B1 is fixed to the trachea P2 by a cuff 105B11.
  • the extracorporeal end of the tracheal tube 105B1 is connected to a main port 12g of the respirator 105A, which will be described later.
  • a gas mixing tube 105B2 is connected to the later-described input port 31a of the ventilator 105A.
  • the gas mixing tube 105B2 is a Y-shaped tube. Its first input is connected to air flow regulator 105B3 and its second input is connected to oxygen flow regulator 105B4.
  • the air flow regulator 105B3 is connected to the air supply source 105C1 (gas supply source 105C).
  • the oxygen flow regulator 105B4 is connected to the oxygen supply source 105C2 (gas supply source 105C).
  • a mixed gas of air and oxygen is supplied to the patient P, and the flow rates of the supplied air and oxygen must be appropriately controlled according to the patient's P condition.
  • a setting operation terminal 103A which will be described later, is used.
  • the respirator 105A includes a housing 2.
  • the housing 2 is configured by combining a plurality of parts, and its overall shape presents a box-like polyhedron.
  • the box-shaped polyhedron is composed of hexahedrons in this embodiment.
  • the outer peripheral surfaces (front, right side, back, left side) and top surface (Fig. 5) of the hexahedron are composed of flat surfaces without any protruding shape elements. Therefore, the housing 2 is compact as a whole, and can be placed in a stable posture so that the respirator 105A does not roll over when placed on a desk or the like.
  • a main port 12g which will be described later, protrudes from the bottom surface of the housing 2 (FIG. 6).
  • the housing 2 includes a main body 3, a dial cover 4, a pressure setting dial 5, a lock release button 6, a holder 7, a pressure setting spring 8, and a valve body 9. , an artificial nasal filter 10 , a valve membrane 11 , a lid 12 and a screw 13 .
  • Ventilator 105A is a new compact pulmonary resuscitator configured to integrate these parts into housing 2 .
  • a relief valve 14 provided in the artificial respirator 105A is composed of a dial cover 4, a pressure setting dial 5, a lock release button 6, a holder 7, a pressure setting spring 8, and a valve body 9.
  • the main body 3 is formed of a box-shaped resin molding.
  • the main body 3 includes [1] an upper surface wall 30, [2] an outer peripheral wall 31, [3] a cylindrical accommodating portion 32 projecting from the back surface of the upper surface wall 30 to the inner side of the outer peripheral wall 31, and [4] an outer peripheral wall. It has a support wall 33 that connects 31 and the housing portion 32 .
  • the upper surface wall 30 has openings at the four corners at which holes 30a through which the screws 13 are inserted.
  • a cylindrical portion 32 a of the housing portion 32 is opened at the center of the upper wall 30 .
  • a plurality of engaging recesses 30b are formed around the opening of the cylindrical portion 32a.
  • a small protrusion 53a provided on a locking piece 53 of the pressure setting dial 5, which will be described later, is locked in the locking recess 30b. That is, when the pressure setting dial 5 is rotated clockwise, the small projection 53a engages with the engagement recess 30b, giving the operator a click feeling. As a result, the operator can confirm that the pressure setting dial 5 is rotated to change the set pressure value.
  • the position of the pressure setting dial 5 can be maintained by engaging the small protrusion 53a with the engaging recess 30b.
  • the relief valve 14 of the artificial respirator 105A has such a rotation click generating portion 15 (small projection 53a, locking recess 30b).
  • the locking recesses 30b are arranged every 1 cmH 2 O from the minimum set pressure value (5 cmH 2 O in this embodiment) to an intermediate set pressure value (20 cmH 2 O in this embodiment).
  • the locking recesses 30b are arranged at intervals of 5 cmH 2 O from the intermediate set pressure value to the maximum set pressure value (45 cmH 2 O in this embodiment).
  • the outer peripheral wall 31 is formed in a cylindrical shape, and is formed in a square tube shape in this embodiment.
  • the outer peripheral wall 31 is formed with an input port 31a and an exhaust port 31b.
  • the input port 31a is a part that introduces the gas to be inhaled into the patient into the housing 2.
  • the input port 31a includes an input port recess 31a1 recessed inside the housing 2 with respect to the first outer surface 31c of the outer peripheral wall 31, and a first connection pipe 31a2 formed inside the input port recess 31a1. have.
  • An introduction port 31a3 opens at the outer end of the first connection pipe 31a2.
  • the inner end (housing-side end) of the first connection pipe 31a2 opens into the later-described ventilation path 16 (input-side ventilation space 34a).
  • the first connection pipe 31a2 can be connected to a pipe for supplying gas (for example, air or a mixed gas of oxygen and air), air or an oxygen cylinder, an air compressor, etc. via an oxygen tube.
  • gas for example, air or a mixed gas of oxygen and air
  • the first connecting pipe 31a2 is tapered such that the outer diameter increases from the outer end to the inner end.
  • the connection part of the oxygen tube does not have a fixed standard, and there is also a bubble tube type tube that is individually cut and used. Therefore, with the tapered first connection pipe 31a2, it is possible to connect these various tubes according to their inner diameters.
  • the intake primary side connection object (pipe or connection port) can be inserted into the gap between the input port concave portion 31a1 and the first connection pipe 31a2. Therefore, the connecting portion between the first connecting pipe 31a2 and the intake primary side connection object can be hidden in the input port concave portion 31a1 and protected against the action of external force. Therefore, it is possible to prevent loosening or disconnection of the respiratory primary side connection object due to unintentional contact of a person or object with the connecting portion.
  • the introduction port 31a3 of the first connection pipe 31a2 is arranged without protruding outside the first outer surface 31c of the outer peripheral wall 31 .
  • the first outer surface 31c of the outer peripheral wall 31, on which the input port 31a is formed can be configured as a flat surface without any protruding shape elements. Therefore, the outer peripheral wall 31 can be made compact as a whole, and can be placed on a desk or the like in a stable posture. Furthermore, since the input port 31a does not protrude, it is possible to reduce the risk of the input port 31a being damaged or broken when dropped.
  • the exhaust port 31b is a part for discharging gas or breath from the housing 2.
  • the exhaust port 31b includes an exhaust port recess 31b1 recessed inside the housing 2 with respect to the second outer surface 31d of the outer peripheral wall 31, and a second connecting pipe 31b2 formed inside the exhaust port recess 31b1. have.
  • the inner end (housing side end) of the second connecting pipe 31b2 opens into a valve chamber 32c1, which will be described later.
  • the second connection pipe 31b2 can be inserted into, for example, a corrugated pipe. However, the second connection pipe 31b2 may be left open without being connected to a corrugated pipe or the like.
  • the second connection pipe 31b2 is formed in a tapered shape with an outer diameter increasing from the tip side to the inner end.
  • corrugated tubes connectable to the second connecting tube 31b2 have inner diameters of 18 mm and 22 mm, but the inner diameter varies slightly depending on the manufacturer. If the second connecting pipe 31b2 has a tapered shape, even if there is variation in the inner diameters of the pipes, the tapered shape allows fitting and reliable connection.
  • the exhaust secondary side connection object (such as a corrugated tube) can be inserted into the gap between the exhaust port concave portion 31b1 and the second connection pipe 31b2. Therefore, the connecting portion between the second connecting pipe 31b2 and the exhaust secondary side connection object can be hidden in the exhaust port concave portion 31b1 and protected against the action of external force. Therefore, it is possible to prevent loosening or disconnection of the exhaust primary side connection object due to unintentional contact of a person or object with the connecting portion.
  • the exhaust port 31b3 of the second connecting pipe 31b2 is arranged without protruding outside the second outer surface 31d of the outer peripheral wall 31 .
  • the second outer surface 31d of the outer peripheral wall 31 on which the exhaust port 31b is formed can be configured as a flat surface without a shape element that greatly protrudes. Therefore, the outer peripheral wall 31 can be made compact as a whole, and can be placed on a desk or the like in a stable posture.
  • the exhaust port 31b3 of the second connection pipe 31b2 does not have an end face shape as if it were cut directly in the radial direction, but a curved concave portion 31b4 that is concave toward the inside of the housing 2 is formed.
  • the curved recessed portion 31b4 is formed in a curved shape obtained by cutting an end face of the exhaust port 31b3 in an arc shape from the tip side toward the inside of the housing 2 .
  • the curved shape is formed, for example, along the shape of the pad of the thumb.
  • a ventilation groove 31e that communicates with the exhaust port 31b3 and reaches the outer end of the second outer surface 31d is formed in the second outer surface 31d having the exhaust port 31b.
  • the ventilation groove 31e is formed by a curved concave surface and extends from both sides of the exhaust port 31b toward the outer end of the second outer surface 31d.
  • the housing portion 32 has a cylindrical portion 32a and a bottom portion 32b. A part of the parts constituting the relief valve 14 such as the holder 7, the pressure setting spring 8, and the valve body 9 are arranged in the housing space 32c surrounded by the cylindrical portion 32a and the bottom portion 32b. In this manner, the housing portion 32 can compactly arrange the components of the relief valve 14 .
  • the inner end (housing side end) of the second connection pipe 31b2 of the exhaust port 31b is open to the inner peripheral surface of the tubular portion 32a.
  • a guide portion 32a1 for guiding movement of the holder 7 along the axial direction of the central axis of the housing portion 32 is provided on the inner peripheral surface of the cylindrical portion 32a.
  • the guide portion 32a1 is formed by a pair of grooves into which a pair of guide protrusions 7c formed on the outer peripheral surface of the holder 7 are inserted. Therefore, the guide protrusion 7c is guided along the guide portion 32a1, so that the holder 7 can move in the inside of the housing portion 32 along the axial direction of the central axis in an unbiased posture.
  • the bottom portion 32b has a valve seat 32b1 and a valve hole 32b2.
  • the valve seat 32b1 has a diameter smaller than that of the bottom surface portion 32b, and is formed in a cylindrical shape protruding toward the accommodation space 32c.
  • the valve hole 32b2 is formed as an inner peripheral surface of the valve seat 32b1 and is formed as a through hole penetrating through the bottom surface portion 32b.
  • a valve chamber 32c1 is formed in the housing space 32c.
  • the valve chamber 32c1 is defined by the space between the bottom surface portion 32b and the holder 7, in which the lower portion of the pressure setting spring 8 and the valve body 9 are arranged.
  • the valve body 9 is configured to be vertically movable inside the valve chamber 32c1.
  • the spatial height of the valve chamber 32c1 changes according to the position of the holder 7 (the position of the bottom surface of the holder 7 facing the valve chamber 32c1) that is movable in the axial direction of the center axis of the housing portion 32.
  • the valve chamber 32c1 is formed at a position where it always communicates with the aforementioned exhaust port 31b.
  • the support walls 33 are formed at a plurality of locations so as to connect the outer peripheral wall 31 and the housing portion 32 .
  • a first ventilation space 34 is formed between adjacent support walls 33 .
  • One of the plurality of first ventilation spaces 34 is formed as an input-side ventilation space 34a.
  • the inner end (housing side end) of the first connecting pipe 31a2 of the input port 31a opens into the input-side ventilation space 34a.
  • the gas flowing in from the input port 31a first enters this input-side ventilation space 34a and flows from there to the first ventilation space 34. As shown in FIG.
  • the support wall 33 has a first support wall 33a, a second support wall 33b, and a third support wall 33c.
  • the first support wall 33a is formed with a first leg portion 33a1 projecting downward
  • the second support wall 33b is also formed with a second leg portion 33b1 projecting downward.
  • the third support wall 33c does not protrude below the bottom surface portion 32b of the housing portion 32, and is formed at the same height position as the bottom surface portion 32b.
  • the first legs 33a1 are formed along the first diagonal line of the housing 2 on both sides of the valve hole 32b2.
  • the first leg portion 33 a 1 is formed with a length exceeding the lower end of the outer peripheral wall 31 .
  • the tip of each first leg 33 a 1 is formed as a first holding part 33 a 2 that passes through the artificial nasal filter 10 and holds the valve membrane 11 . Therefore, the artificial nasal filter 10 is securely held by the first leg portion 33a1.
  • the second legs 33b1 are formed along the second diagonal of the housing 2 on both sides of the valve hole 32b2.
  • the tip of each second leg portion 33b1 is formed as a second holding portion 33b2 that holds the artificial nasal filter 10. As shown in FIG. Therefore, the artificial nasal filter 10 does not flutter even if it receives the patient's exhalation, and the artificial nasal filter 10 can be reliably maintained in its arranged state.
  • the artificial nasal filter 10 is arranged below the support wall 33.
  • the second holding portion 33b2 of the second leg portion 33b1 contacts the artificial nasal filter 10
  • a gap is formed between the artificial nasal filter 10 and the bottom surface portion 32b of the housing portion 32.
  • the gap constitutes the first ventilation space 34
  • the first ventilation space 34 constitutes the ventilation path 16 .
  • the dial cover 4 is made of resin molding, is attached to the top wall 30 of the main body 3, and holds the pressure setting dial 5 rotatably.
  • a display portion 4a is formed on the surface of the dial cover 4 to three-dimensionally display a plurality of numbers and units corresponding to the pressure value to be set.
  • the relief valve 14 of this embodiment operates as an APL valve.
  • the display part 4a is formed in a three-dimensionally protruding shape, it may be formed in a three-dimensionally concave shape. Since the display portion 4a is formed as a part of the resin molded body in this way, the display does not disappear over time.
  • "5" is displayed as the minimum set pressure value, and the respective display portions 4a of "10", “15", “20", “30” and “40” are formed therefrom.
  • "cmH 2 O" indicates the unit of the set pressure value.
  • an arrangement recess 4b for the lock release button 6 is formed on the back surface of the dial cover 4.
  • a guide recess 4b1 for guiding the movement of the lock release button 6 is formed in the arrangement recess 4b.
  • a rotation guide portion 4d is formed on the rear surface of the dial cover 4 at a position adjacent to the circular arrangement opening 4c in which the dial body 50 of the pressure setting dial 5 is arranged.
  • the rotation guide portion 4d is a portion that guides the rotation of the flange portion 51 of the pressure setting dial 5, which will be described later, and prevents it from coming off.
  • the rotation guide portion 4d has a first contact receiving portion 4d1 provided corresponding to the position "5" of the display portion 4a and a second contact receiving portion 4d1 provided corresponding to the position "20" of the display portion 4a.
  • a contact receiving portion 4d2 and a third contact receiving portion 4d3 provided corresponding to the position of "45" which does not exist in the display portion 4a are formed.
  • the pressure setting dial 5 can be freely rotated between the first contact receiving portion 4d1 and the second contact receiving portion 4d2.
  • the pressure setting dial 5 stops rotating when the stopper 52 comes into contact with the first contact receiving portion 4d1, and the minimum set pressure value "5" is set at the stop position.
  • the pressure setting dial 5 stops rotating when the stopper 52 comes into contact with the second contact receiving portion 4d2, and the intermediate set pressure value "20" is set at the stop position.
  • the minimum, intermediate, and maximum set pressure values in this embodiment are examples, and other values may be used.
  • a rotation lock release mechanism 17 (second contact receiving portion 4d2, stopper 52) is provided for restricting the free rotation of the pressure setting dial 5 at a predetermined set pressure value and setting a pressure value exceeding the set pressure value.
  • the pressure setting dial 5 is made of a disk-shaped resin molding, and includes a dial main body 50, a flange portion 51, a stopper 52, and a locking piece 53.
  • the surface of the dial body 50 is provided with two key holes 50a into which the pressure setting keys 18 for rotating the dial body 50 are inserted. A description of the pressure setting key 18 will be given later.
  • a protruding tube 50b is formed on the rear surface of the dial main body 50, and a male thread 50c that is screwed with the female thread 7d of the holder 7 is formed on the outer peripheral surface of the protruding tube 50b.
  • the male thread 50c and the female thread 7d are provided as double threads, and the rotation accuracy of the pressure setting dial 5 is enhanced.
  • These male thread 50c and female thread 7d are configured as pressure setting screws.
  • the inner side of the projecting cylinder 50b is configured as a spring accommodating portion 50d into which the upper end side of the pressure setting spring 8 is inserted.
  • the flange portion 51 is arranged to face the rotation guide portion 4d of the dial cover 4 described above.
  • a stopper 52 and a locking piece 53 are formed in the missing portion of the flange portion 51 where the flange portion 51 is missing.
  • the stopper 52 is formed as a projection extending like a cantilever from the side surface of the dial main body 50 .
  • the stopper 52 has a thick portion 52a and a thin portion 52b.
  • the stopper 52 is configured to be displaceable in the height direction of the flange portion 51 with the base end of the thick portion 52a (the end portion on the dial main body 50 side) as a fulcrum. Therefore, when pressed by the unlocking button 6, it is displaced downward, and the locked state in which the rotation is restricted beyond the step of the second contact receiving portion 4d2 can be released.
  • a set pressure value indicating portion 50 e is formed on the surface of the dial main body 50 at a position corresponding to the stopper 52 .
  • the set pressure value indication part 50e is three-dimensionally formed with a triangular symbol in this embodiment, other shapes may be used as long as the set pressure value can be recognized.
  • the set pressure value indicating portion 50e is shown as a three-dimensionally protruding shape, it may be formed in a three-dimensionally concave shape.
  • the locking piece 53 is formed as a projection extending like a cantilever from the side surface of the dial main body 50 . Therefore, this locking piece 53 is also configured to be displaceable in the height direction of the flange portion 51 with the base end (the end on the dial main body 50 side) as a fulcrum.
  • a small protrusion 53a is formed on the rear surface of the locking piece 53. As shown in FIG. The small protrusion 53a is engaged with the engaging recess 30b of the upper surface wall 30 of the main body 3, so that a click feeling can be generated when the pressure setting dial 5 is rotated.
  • the small projection 53a engages and unlocks the engaging recess 30b by bending and displacing the engaging piece 53 in the height direction of the flange portion 51. As shown in FIG.
  • the unlock button 6 is configured as an "unlock portion” and has a pressing operation portion 6a and a pressing portion 6b.
  • the pressing operation portion 6 a is arranged in the arrangement recess 4 b of the dial cover 4 so as to protrude slightly from the outer peripheral surface of the dial cover 4 . Therefore, the user can easily recognize that the pressing operation portion 6a is a portion to be pressed.
  • the placement recess 4b is formed with the guide recess 4b1, and the guide projection 6b1 provided on the pressing portion 6b is placed there.
  • the lock release button 6 can move smoothly forward and backward in the radial direction toward the center of the pressure setting dial 5 and is prevented from falling out of the housing 2 .
  • An inclined surface portion 6b2 is formed on the pressing portion 6b. The inclined surface portion 6b2 abuts obliquely against the thin portion 52b of the stopper 52 of the pressure setting dial 5, so that smooth downward displacement of the stopper 52 can be induced.
  • the holder 7 has a cylindrical holder main body 7a and a cylindrical protruding portion 7b protruding from the bottom side of the holder main body 7a toward the upper end side.
  • a guide projection 7c is formed on the outer peripheral surface of the holder main body 7a.
  • the guide projections 7c are guided along the guide portions 32a1 of the cylindrical portion 32a of the housing portion 32, so that the holder 7 moves in the housing portion 32 along the axial direction of the central axis in an unbiased posture. can do.
  • a female thread 7d that screws together with the male thread 50c of the pressure setting dial 5 is formed on the inner peripheral surface of the holder main body 7a.
  • the pressure setting dial 5 is rotated clockwise, the female thread 7d is engaged with the male thread 50c, thereby sending the holder body 7a downward.
  • the amount of compression by which the holder 7 compresses the pressure setting spring 8 increases. Therefore, the pressure setting spring 8 requires a higher pressing force for elastic deformation, and the pressure for opening the valve body 9 also increases.
  • the pressure setting dial 5 is rotated counterclockwise, the holder main body 7a is sent upward, and the pressure for opening the valve body 9 is lowered.
  • the upper end side of the pressure setting spring 8 is inserted and placed inside the cylindrical projecting portion 7b.
  • the pressure setting spring 8 is formed as a metal compression coil spring. As described above, the upper end side of the pressure setting spring 8 is inserted inside the cylindrical projecting portion 7b of the holder 7 and held. On the other hand, the lower end side of the pressure setting spring 8 is externally inserted onto the columnar projection 9a2 of the valve body 9 and held.
  • the pressure setting spring 8 of this embodiment is made of metal, it may be made of a resin molded body for the purpose of reducing costs and allowing it to be brought into an MRI room where metal is not allowed.
  • the valve body 9 has a base portion 9a, an annular portion 9b, a cylindrical peripheral wall portion 9c, and a valve shaft 9d.
  • the base portion 9a is formed in a disc shape, and in the closed state abuts against the valve seat 32b1 to block the valve hole 32b2.
  • a portion of the base portion 9a exposed to the valve hole 32b2 in the closed state of the valve body 9 is formed as a first pressure receiving surface portion 9a1 that receives the pressure of inspiration and expiration.
  • the upper surface of the base portion 9a has a columnar projection 9a2 that is inserted into the lower end side of the pressure setting spring 8. As shown in FIG.
  • the annular portion 9b is formed in an annular shape protruding outward from the outer peripheral surface of the base portion 9a.
  • the annular portion 9b constitutes a second pressure-receiving surface portion 9b1 that receives the pressure of the inflowing gas when the valve body 9 is in an open state.
  • a cylindrical peripheral wall portion 9c is formed at the outer peripheral end of the annular portion 9b.
  • the inner peripheral surface portion of the cylindrical peripheral wall portion 9c that is continuous with the second pressure receiving surface portion 9b1 is formed as a portion that receives the gas that has flowed to the second pressure receiving surface portion 9b1 together with the second pressure receiving surface portion 9b1.
  • the cylindrical peripheral wall portion 9c also protrudes to the upper surface side of the annular portion 9b. This is provided to balance the valve body 9 as a whole which opens and closes under the pressure of gas.
  • the cylindrical peripheral wall portion 9 c has a spherical outer peripheral surface 9 c 1 whose upper and lower ends are curved toward the central axis of the valve body 9 . Therefore, even if the valve body 9 is tilted when the valve body 9 opens and closes, the upper edge and the lower edge of the cylindrical peripheral wall portion 9c do not get caught in the valve chamber 32c1. It can be opened and closed. A ventilation gap is formed between the spherical outer peripheral surface 9c1 and the valve chamber 32c1, so that the valve body 9 can be displaced smoothly.
  • the valve shaft 9d is made of a metal rod such as stainless steel, and is constructed as an integral structure with the base portion 9a. In this embodiment, it is configured as an integrally molded body by insert molding. With this configuration, the valve shaft 9d can be firmly integrated with the valve body 9, and the valve shaft 9d is not displaced or detached, and the durability and safety of the valve body 9 are improved. be able to.
  • the valve shaft 9d is arranged along the central axis of the valve body 9, and its upper end slightly protrudes from the upper surface of the columnar projection 9a2.
  • a lower end of the valve shaft 9d is inserted into a bearing portion 12d of the lid 12, which will be described later.
  • the lower end of the valve shaft 9d is held so as not to come off from the bearing portion 12d even when the valve body 9 is opened to the maximum. It moves up and down accurately while being guided by the bearing portion 12d.
  • durability is enhanced so that the valve body 9 can continue to perform accurate opening and closing operations.
  • the valve body 9 operates as follows. When the pressure of gas (inhalation or expiration) acts on the first pressure-receiving surface portion 9a1 and exceeds the valve opening pressure of the valve body 9 (set pressure of the pressure setting spring 8), the valve body 9 moves away from the valve seat 32b1. displace away. This opens the valve body 9 . Next, the inner surfaces of the second pressure-receiving surface portion 9b1 and the cylindrical peripheral wall portion 9c receive the pressure of the gas flowing from the valve seat 32b1, thereby further displacing the valve element 9 in the direction away from the valve seat 32b1. As a result, the pressure-receiving area of the valve body 9 that receives the pressure of the gas is enlarged. Therefore, even though the pressure is released by the gas flowing out from the ventilation gap, the expanded pressure receiving area continues to receive the pressure, thereby suppressing rapid pressure reduction and stably maintaining the open state of the valve body 9. be able to.
  • the artificial nasal filter 10 is formed in a polygonal shape and has an insertion hole 10a provided in the center and a groove 10b through which the first leg 33a1 of the first support wall 33a passes.
  • the artificial nasal filter 10 is arranged between the main port 12g and the exhaust port 31b through which inhaled and exhaled air flows, as will be described later. Therefore, as exhaled air passes through the artificial nasal filter 10, the artificial nasal filter 10 can trap heat and moisture. Passing the intake air through the artificial nasal filter 10 warms and humidifies the intake air, thereby preventing drying of the patient's respiratory tract. In addition, even if foreign matter such as vomit flows backward from the main port 12g, the artificial nasal filter 10 can stop it, so that the normal operation of the relief valve 14 is not impaired.
  • valve membrane 11 spontaneous breathing valve
  • the valve membrane 11 is made of a rubber-like elastic material such as natural rubber, synthetic rubber, thermoplastic elastomer, or thermosetting elastomer.
  • the valve membrane 11 always seals the spontaneous breathing opening 12 e provided in the lid 12 . Then, it functions as a “spontaneous breathing valve” that is opened by being rolled up by the inspiratory pressure when the patient spontaneously breathes and communicates the ventilation path 16 of the housing 2 with the outside of the housing 2 .
  • spontaneous breathing valve When an unconscious patient under mechanical ventilation wakes up, it may become difficult to inhale with artificial respiration, and he or she may suddenly take a large, spontaneous breath. Even if such a case occurs, the valve membrane 11 functions as a spontaneous breathing valve, so that sudden spontaneous breathing can be dealt with, and safe breathing of the patient can be ensured.
  • the lid 12 is made of a resin molding and is combined with the bottom surface of the main body 3 .
  • the lid 12 has an outer peripheral wall 12a and a bottom portion 12b.
  • a space surrounded by the outer peripheral wall 12a and the bottom portion 12b constitutes a second ventilation space 12c.
  • the artificial nasal filter 10 described above is arranged in the second ventilation space 12c.
  • a cylindrical bearing portion 12d is formed protruding from the bottom portion 12b, and the bearing portion 12d is inserted into the insertion hole 10a of the artificial nasal filter 10 to easily position the artificial nasal filter 10 in the center. can be done.
  • Cylindrical screw holes 12a1 into which screws 13 are fastened are formed at the four corners of the outer peripheral wall 12a. By aligning the concave positioning portions 10c at the four corners of the artificial nasal filter 10 with the cylindrical screw holes 12a1, the artificial nasal filter 10 can be easily accommodated in the second ventilation space 12c inside the outer peripheral wall 12a. can do.
  • the respirator 105A is assembled by fastening the screw 13 to the screw hole portion 12a1.
  • a sealing portion 13a is formed on the head of the screw 13 so that the screw 13 cannot be removed and disassembled. This is because if the screw 13 is removed and the respirator 105A is disassembled, the initial performance may not be exhibited.
  • a spontaneous breathing opening 12e, an arrangement concave portion 12f for the valve membrane 11, and a main port 12g are formed in the bottom portion 12b.
  • the spontaneous-breathing openings 12e are each formed as a single opening, and a recess 12f for placing the valve membrane 11 is formed in the inner rim of the spontaneous-breathing openings 12e.
  • the arrangement recess 12f is formed as an annular stepped surface having a height corresponding to the thickness of the valve membrane 11, and the valve membrane 11 is positioned and housed in a state where the entire outer peripheral edge thereof can be in close contact with the arrangement recess 12f.
  • the spontaneous-breathing opening 12e has a support portion 12h extending in its radial direction.
  • the support portion 12h supports the valve membrane 11 at the spontaneous breathing opening 12e and securely holds the valve membrane 11 so that it does not come off to the outside.
  • the support portion 12h and the valve membrane 11 can be fixed with an adhesive or the like, or can be fixed by thermal fusion or ultrasonic fusion. By fixing by thermal fusion or ultrasonic fusion, the fixed portion between the support portion 12h and the valve membrane 11 becomes a fixed structure that is safer for the patient.
  • the valve membrane 11 placed in the spontaneous breathing opening 12e has a first outer surface supported by the support portion 12h and the arrangement recess 12f, and an inner second surface formed by the artificial nasal filter 10 and the first legs. It is supported by the first holding portion 33a2 of 33a1. Of these, the supporting portion 12h and the first holding portion 33a2 are formed at positions overlapping each other in the thickness direction of the artificial nasal filter 10, so that the valve membrane 11 is securely held so as not to be displaced or fall off. be able to.
  • valve membrane 11 When the valve membrane 11 installed in this way is opened, the portion of the valve membrane 11 that is not in contact with the support portion 12h is turned over to open the spontaneous breathing opening 12e. At this time, the valve membrane 11 rolls up so as to elastically deform the artificial nasal filter 10 . In other words, the unrestrained portion of the valve membrane 11 that is not fixed to the support portion 12h is pressed by the artificial nasal filter 10 so as not to roll up when the valve is closed, and the spontaneous breathing opening 12e can be reliably closed.
  • the main port 12g is formed as a cylindrical tube protruding outward from the bottom surface of the lid 12.
  • This main port 12g is, for example, a connection port for a resuscitation mask to be attached to a patient, a connection port for a serpentine tube connected to the resuscitation mask, a nasal or oral endotracheal intubation tube, a tracheotomy tube, a supraglottic instrument (laryn It can be connected to the connection port of the dial mask).
  • the main port 12g is formed as a tapered tube.
  • the main port 12g has a tapered shape with an outer diameter of 21.5 mm on the distal side and 22.5 mm on the proximal side, and an inner diameter of 15.5 mm on the distal side and tapered to 14.5 mm on the proximal side. It has a shape. Since the outer surface of the main port 12g has a tapered shape that expands from the distal end side toward the proximal end side, it is possible to absorb differences and variations in diameters of connection ports of tubes to be connected. In addition, the size of the said outer diameter and inner diameter is an example.
  • the main port 12g is located off the center of the bottom surface portion 12b. If the main port 12g is formed in the center, the main port 12g interferes with the aforementioned bearing portion 12d. In order to avoid interference, it is necessary to secure a ventilation path leading from the ventilation path 16 to the main port 12g, so the lid 12 must be enlarged. On the other hand, in the present embodiment, the main port 12g communicating with the air passage 16 is displaced from the center position of the bottom surface portion 12b to avoid interference between the main port 12g and the bearing portion 12d. Therefore, in this embodiment, the lid 12 does not need to be enlarged, and the lid 12 and the ventilator 105A including the lid 12 can be formed compactly.
  • the main port 12g is no longer aligned with the valve body 9 .
  • the main port 12g and the valve hole 32b2 are formed at positions offset from each other. Therefore, when vomit or phlegm backflows from the main port 12g, it is possible to prevent them from adhering to the valve body 9 and hindering accurate operation.
  • the pressure setting key 18 has a key body 18a and a key portion 18b bifurcating from the key body 18a.
  • the pressure setting key 18 shown in FIG. 1 shows a state in which the tip of the key portion 18b is inserted into the key hole 50a.
  • a clip 18c is formed in the center of the key body 18a so that it can be clipped by inserting it into, for example, the breast pocket of a white coat worn by medical personnel. This prevents the medical staff from losing the pressure setting key 18 .
  • the tip of the key portion 18 b can be inserted into the key hole 50 a of the pressure setting dial 5 .
  • the pressure setting dial 5 can be rotated by pinching and turning the key body 18a with the key portion 18b inserted into the key hole 50a.
  • the key portion 18b can also be used as a disconnect wedge for disconnecting a connector such as a tracheal tube and a connector of a tube such as a catheter.
  • a disconnect wedge for disconnecting a connector such as a tracheal tube and a connector of a tube such as a catheter.
  • the key portion 18b allows the arcuate arch portion 18d to follow the tracheal tube.
  • the outer peripheral wall 31 of the main body 3 has an identification code 19 that holds individual identification information for uniquely identifying the respirator 105A.
  • the identification code 19 is composed of a two-dimensional code in this embodiment, and it can be composed of a colored printed portion, a sticker, or the like on the outer peripheral wall 31 .
  • the ventilator 105A is basically for single use.
  • an appropriate set pressure value (valve opening pressure) of the valve body 9 is set for each patient P using the artificial respirator 105A, and the set pressure value is corrected according to changes in the state of respiratory failure of the patient P. , its history is continuously recorded and managed.
  • each individual ventilator 105A is configured to be identifiable by the identification code 19, so that it can be associated with a single use or a patient who uses it.
  • Recorded as the identification code 19 is a serial number that uniquely identifies each ventilator 105A. All data relating to the ventilator 105A and all data relating to patients and medical personnel who are users thereof are managed in association with their serial numbers.
  • the artificial respirator 105A includes a housing 2.
  • the housing 2 has an input port 31a for introducing gas into the housing 2, and a main port 12g through which the inspiratory gas to be sent to the patient and the patient's exhalation pass. , an exhaust port 31b for discharging gas or exhaled breath from the housing 2, an air passage 16 connecting the input port 31a and the main port 12g, and an exhaust port 31b that opens according to the pressure of the air passage 16. and a relief valve 14 that communicates to release the pressure.
  • the respirator 105A is integrally provided with these components, it does not require an electric drive source, and while it has a simple structure, it is a new pulmonary resuscitator that functions as a respirator by pneumatic drive. device can be provided.
  • the ventilator 105A can be configured as a single-use "disposable ventilator". According to this, it is possible to use the respirator 105A to prevent infectious diseases caused by using the respirator 105A for multiple patients. In this case, furthermore, if all the parts of the respirator 105A are resin moldings, the respirator can be configured as a "disposable respirator” that does not need to be separately discarded into metal members and resin members.
  • the housing 2 further has an artificial nasal filter 10 between the main port 12g and the exhaust port 31b. According to this, since the artificial nasal filter 10 is built inside the housing 2, medical personnel do not need to prepare a device for the artificial nasal filter in addition to the respirator 105A.
  • the housing 2 incorporates an input port 31a, an exhaust port 31b, an air passage 16, and a relief valve 14. Therefore, it is possible to reduce the shape elements protruding outside the housing 2, and to form the respirator 105A compactly.
  • the ventilator 105A of this embodiment has a height including the main port 12g (the length from the upper surface of the dial cover 4 shown in the front view of FIG. 5 to the lower end of the main port 12g), and a width ( The lateral length of the ventilator 105A shown) and the depth (vertical length of the ventilator 105A excluding the unlock button 6 shown in FIG. 8) are 77.2 mm, 50.0 mm, and 50.0 mm, respectively. It is possible to implement as
  • the housing 2 further functions as a spontaneous breathing opening 12e provided in the housing 2 and a "spontaneous breathing valve” that opens according to the inspiratory pressure of the patient's spontaneous breathing and communicates the ventilation path 16 with the outside of the housing 2. and a valve membrane 11 .
  • a spontaneous breathing opening 12e provided in the housing 2
  • a "spontaneous breathing valve” that opens according to the inspiratory pressure of the patient's spontaneous breathing and communicates the ventilation path 16 with the outside of the housing 2.
  • a valve membrane 11 According to this, even if an unconscious patient who is under artificial respiration management by the artificial respirator 105A suddenly regains consciousness and takes a deep breath by spontaneous breathing, the valve membrane 11 can be opened to help the patient inhale.
  • Both the setting support server 101A (first server 101) and the EDC server 102A (second server 102) can be implemented by one or more first computer devices 200.
  • the hardware resource configuration of the first computer device 200 includes a processor 201 , a memory 202 , a communication device 203 and an I/O interface 204 .
  • the processor 201 is a central processing unit, executes program instructions, and controls the overall operation of the first computer device 200 .
  • Processor 201 may consist of one or more.
  • the memory 202 includes a ROM, a RAM, an external storage device, etc., stores various programs, and stores data processed by the processor 201 based on instructions of the programs.
  • Each of the ROM, RAM, external storage device, and the like that constitute the memory 202 can be configured by one or more devices.
  • the program includes a program (server-side setting support program (setting support program)) that executes the medical device setting support method according to one aspect of the present disclosure.
  • the external storage device included in the memory 202 can include a database that stores patient data 101b1 and the like, which will be described later.
  • Communication device 203 controls communication connections made through communication network 107 .
  • the I/O interface 204 controls connections with various devices. Specifically, in the embodiment, various input devices 204a such as a keyboard and a mouse, and a display 204b for displaying information on a screen can be connected.
  • the setting support server 101A can include a control unit 101a, a storage unit 101b, a reception unit 101c, a communication unit 101d, a sound analysis unit 101e, and a generation unit 101f as functional configurations.
  • Each functional unit can be realized by the first computer device 200, which is a hardware resource of the setting support server 101A, executing a program (the setting support program) according to one aspect.
  • the control unit 101a controls data processing performed by the setting support server 101A. Specifically, the processor 201 performs data processing by executing the setting operation program.
  • the storage unit 101b stores patient data 101b1 in the memory 202, for example.
  • Storage unit 101b stores all patient data 101b1 for the serial number of ventilator 105A.
  • the patient data 101b1 includes the following data [I] to [IV].
  • the patient data 101b1 also includes "setting reference data" for setting the valve opening pressure of the valve body 9 of the respirator 105A.
  • the patient basic information 101b2 can include, for example, the following data.
  • the basic patient information 101b2 includes height, weight, and gender. Therefore, it is possible to manage what kind of patient the respirator 105A was used for.
  • the patient's height (BL cm) and gender are known, the 'ideal body weight, IBW' can be calculated using the following formulas 1 and 2 (Appendices. In: Knoben JE, Anderson PO, Troutman WG, editors. Handbook of clinical drug data: Appleton & Lange, 1999. p.1014.).
  • the tidal volume varies depending on the person's physique and gender.
  • Tidal Volume the "tidal volume”
  • setting the tidal volume too high can result in volume injury due to over-expansion of the lungs and baro-injury due to high pressure acting on the lungs.
  • the main patient using the ventilator 105A is in acute respiratory failure requiring endotracheal intubation, and it is difficult to obtain a normal tidal volume before using the ventilator 105A. .
  • the "predicted tidal volume” (Predicted Tidal Volume, Predicted Vt) is obtained by estimating the tidal volume for each patient, and set based on the predicted tidal volume Adjust the pressure value and gas supply volume.
  • Predicted tidal volume can be calculated by Equation 3 below using "ideal body weight" (Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New England Journal of Medicine 2000; 342(18): 1301-8.).
  • the calculation of the predicted tidal volume described above can be performed by the predicted Vt calculation unit 103j1 of the setting operation terminal 103A described later in this embodiment. However, it can also be configured as an embodiment in which the setting support server 101A calculates the predicted tidal volume.
  • a patient number is patient identification information that uniquely identifies a patient in the medical information processing system 100A. As a result, it is possible to manage the usage status of the ventilator 105A and the observation progress of respiratory failure treatment for each patient.
  • the patient number can be managed in association with the patient's personal information including name, address, and the like.
  • the patient's personal information cannot be specified just by looking at the patient number. That is, the patient number is anonymized and attached to the patient's personal information, and is prevented from being leaked without authorization from the setting operation terminal 103A and the viewing terminal 104A.
  • the patient observation study data 101b3 can include, for example, the following data.
  • the patient observation study data 101b3 includes the name of the causative disease ("3", "4", and "5" above).
  • ventilator 105A can be used for patients suffering from similar diseases.
  • Patients to whom the respirator 105A is applicable include, for example, patients with respiratory failure, patients undergoing apnea surgery, and patients undergoing examination procedures under apnea.
  • Patients with respiratory failure include not only ordinary pneumonia but also COVID-19 pneumonia of acute respiratory distress syndrome (ARDS). Examination of examination-treated patients also includes use in MRI examinations.
  • the patient observation study data 101b3 includes the place of use of the ventilator 105A ("6" above). Therefore, it is possible to suggest to medical personnel under what kind of environment the respirator 105A can be effectively used.
  • the patient observation study data 101b3 includes the hospital name and country name of the ventilator 105A ("7" and "8"). For this reason, it is possible to specify hospitals that have used the ventilator 105A and request their cooperation, and it is also possible to manage clinical cases not only in Japan but also in foreign hospitals. In other words, it is possible to investigate the usage status of the ventilator 105A and to conduct joint research observations at multiple facilities in Japan and overseas on patients using the ventilator 105A.
  • the patient observation study data 101b3 includes treatment details during use of the ventilator 105A (above “9"), information on outcome at the time of discontinuation of the ventilator 105A (above “10"), and respiratory failure after discontinuation of use It includes the contents of treatment (above “11"). Therefore, medical personnel can obtain reference information as to what kind of patient the respirator 105A is effective for. In addition, medical personnel can obtain reference information regarding the selection of appropriate equipment to be used in observing the patient's respiratory failure treatment. Furthermore, the medical staff can know the details of treatment performed while using the respirator 105A. Therefore, medical personnel can quickly learn effective ventilation settings and treatment methods by also referring to the outcome of the in-use instructions.
  • the patient observation study data 101b3 includes the presence or absence of adverse events related to the device and their details (above “12" and "13"). Therefore, it is possible to obtain the usefulness of the ventilator 105A according to the patient's disease, requests for improvement of the ventilator 105A based on the results of use in clinical sites, and the like.
  • the patient measurement data 101b4 can include, for example, the following data.
  • Measurer name of the medical practitioner in charge of the measurement
  • Measurement date and time Patient data at the time of measurement (1) height (2) weight (3) gender4.
  • Ventilator setting information (1) Ventilator setting pressure (2) Air flow rate (3)
  • Calculated values (1) FiO 2 (fraction of inspiratory oxygen) (2) respiratory frequency (3) Vt (tidal volume, including predicted Vt and estimated Vt to be described later) (4) MV (Minute Volume, minute ventilation volume. Includes estimated minute ventilation volume (estimated MV) described later.)
  • PEEP Pulositive End Expiratory Pressure, positive end-expiratory pressure ventilation
  • (6) IE ratio inspiratory time expiration time ratio
  • Others (1) Conditions of use (2) Conditions of use (other cases) (3) Percutaneous oxygen saturation (4) End-tidal carbon dioxide partial pressure (5) PaO 2 (Partial pressure of arterial oxygen) (6) PaCO 2 (Partial pressure of arterial carbon dioxide)
  • the patient measurement data 101b4 is recorded for each measurement date and time of "2" above. Therefore, by looking at the history of the patient measurement data 101b4, it is possible to know the observation progress of the patient's respiratory failure treatment.
  • the patient measurement data 101b4 includes data measured by the biological data measuring device 106A (biological sensor 106A2). Therefore, at the time of setting the medical device, it is possible to keep a clinical record including biometric data examined and measured by the diagnostic medical device 106 .
  • the used device data 101b5 can include, for example, the following data.
  • the serial number is for uniquely identifying each ventilator 105A.
  • the ventilator 105A has the identification code 19 on the main body 3 as described above, and the identification code 19 is the serial number.
  • the used equipment data 101b5 includes the usage start date and time. This is recorded to manage the duration of use of ventilator 105A.
  • the used device data 101b5 also includes the date of manufacture and the expiration date. This makes it possible to confirm whether or not the artificial respirator 105A can be used effectively.
  • the reception unit 101c has a function of acquiring data transmitted by the setting operation terminal 103A and the viewing terminal 104A via the communication network 107.
  • the communication unit 101d has a function of connecting to the EDC server 102A, the setting operation terminal 103A, and the viewing terminal 104A via the communication network 107 so as to be able to communicate with each other.
  • the sound analysis unit 101e analyzes the sound generated by the respirator 105A attached to the patient P and extracts a specific sound.
  • the sound analysis unit 101e includes a valve sound analysis unit 101e1 and a gas sound analysis unit 101e2.
  • the valve sound analysis unit 101e1 analyzes the sound data generated by the respirator 105A attached to the patient P, and obtains the sound (valve closing sound) generated when the valve body 9 of the respirator 105A closes.
  • the gas sound analysis unit 101e2 analyzes the sound data generated by the respirator 105A attached to the patient P, and detects the sound (exhalation sound ). A specific sound analysis method performed by the sound analysis unit 101e will be described later.
  • the sound analysis unit 101e predicts at least one of the set pressure value (valve closing pressure) at which the valve body 9 opens and the gas supply volume based on at least one of the frequency and sound pressure of the sound data described above.
  • Frequency and sound pressure can be varied by a combination of lung conditions (dynamic lung compliance), set pressure value, and gas delivery volume. For example, stabilizing the respiratory rate is important in respiratory therapy.
  • the set pressure value and gas supply volume of the respirator are adjusted so that the number of breaths is the same, if the conditions of the lungs are different, the sound (frequency, sound pressure) generated will be different. The inventor has found.
  • the sound analysis unit 101e extracts past sound data of a large number of patients that are similar to the sound data currently being analyzed in terms of at least one of frequency and sound pressure, and corresponds to the past sound data. It is possible to extract at least one of the set pressure value or the gas supply volume to be used and analyze it as a predicted value of the set pressure value and the gas supply volume corresponding to the sound data currently being analyzed.
  • the past sound data of many patients may be stored as patient data 101b1 in the storage unit 101b of the setting support server 101A, or may be stored as research data 102b1 in the storage unit 102b of the EDC server 102A. good.
  • compliance includes dynamic lung compliance (Cydn) and static lung compliance (Cst), dynamic lung compliance can be calculated by tidal volume + (maximum airway pressure - PEEP), static lung compliance It can be calculated by tidal volume + (plateau internal pressure - PEEP), and a certain range of values that can be taken as normal values is known. These values can be calculated from the patient data 101b1 and research data 102b1. Therefore, the sound analysis unit 101e can further have a function of calculating Cydn or Cst as a predicted value.
  • the similarity between the sound data described above is determined by using the frequency and sound pressure of the current sound data as reference values, and judging sound data having frequencies and sound pressures within a certain range with respect to the reference values as approximations. be able to.
  • the reference value may be an actual measurement value, an average value, or a median value.
  • machine learning can be used to determine the presence or absence of similarity.
  • Sound data to be analyzed is used as input data, its frequency or sound pressure is used as a feature value, and the set pressure value or gas supply volume is used as a correct label. It is possible to generate a learning model that outputs a set pressure value or a gas supply amount as input data and output data.
  • the correct label and the output data can also include the aforementioned compliance value.
  • the generation unit 101f executes predetermined arithmetic processing on the sound data analyzed by the sound analysis unit 101e.
  • the generation unit 101f includes a respiratory rate calculation unit 101f1, an expiration time calculation unit 101f2, and an intake time calculation unit 101f3.
  • the respiratory frequency calculator 101f1 calculates the respiratory frequency from a plurality of respiratory cycle sounds.
  • the expiratory time calculator 101f2 calculates the expiratory time (average expiratory time).
  • the intake time calculation unit 101f3 calculates an intake time (average intake time). A specific calculation method performed by the generation unit 101f will be described later.
  • the EDC server 102A has, as a functional configuration, a control unit 102a, a storage unit 102b, a reception unit 102c, a communication unit 102d, an acquisition unit 102e, an editing unit 102f, a statistical analysis unit 102g, a distribution unit 102h, A search portion 102i may be included.
  • Each of these functional units can be realized by the first computer device 200, which is the hardware resource of the EDC server 102A, executing a program (EDC data management program) according to one aspect.
  • the control unit 102a controls data processing performed by the EDC server 102A.
  • the storage unit 102b stores research data 102b1, for example.
  • Storage unit 102b stores research data 102b1 for the serial number of respirator 105A.
  • research data 102b1 can include the following data.
  • the device research data 102b2 can include, for example, the following data.
  • the equipment research data 102b2 includes the individual information of the ventilator 105A, setting information, and data input by the setting operation terminal 103A for setting operation of the ventilator 105A.
  • the position information of the setting operation terminal 103A is obtained when the setting operation program is used on the setting operation terminal 103A.
  • the ventilator 105A can be used in places such as outdoors where electricity is not available, it is possible to collect practical examples of the pneumatically driven ventilator 105A and confirm the usefulness of the ventilator 105A.
  • the device research data 102b2 includes patient measurement data 101b4. This makes it possible to grasp the clinical observation progress of the patient.
  • the patient measurement data 101b4 includes medical device setting information including the ventilator 105A set according to the patient's height, weight, and sex, and the ventilator 105A reset according to changes in the patient's condition. Includes medical device reconfiguration information, patient laboratory measurement data.
  • the medical staff accesses the EDC server 102A from the setting operation terminal 103A and the viewing terminal 104A, and retrieves the information, thereby setting the medical equipment suitable for the patient who will use the ventilator 105A, and Reconfiguration of the medical device to suit changing patient conditions during use of the ventilator 105A can be performed.
  • the device research data 102b2 can be searched by a search unit 102i, which will be described later.
  • the device research data 102b2 can include sound data when sound analysis is performed.
  • the sound data includes collected sound data collected by the setting operation terminal 103A and sound analysis data obtained by sound analysis of the sound data by the setting support server 101A.
  • the statistical analysis data of the patient measurement data 101b4 will be explained in the statistical analysis section 102g.
  • the patient research data 102b3 can include, for example, the following data.
  • Patient research data 102b3 includes patient basic information 101b2 and patient observation research data 101b3. For this reason, medical personnel access the EDC server 102A from the setting operation terminal 103A and the viewing terminal 104A, and search for such information to obtain height, weight, gender, outcome at the time of discontinuation of use of the ventilator 105A, and discontinuation of use. It is possible to treat respiratory failure while referring to the details of respiratory failure treatment later, test measurement data, etc. The patient research data 102b3 can be searched by the search unit 102i, which will be described later.
  • the statistical analysis data of the patient research data 102b3 will be explained in the statistical analysis section 102g.
  • the above device research data 102b2 and patient research data 102b3 are accumulated in the storage unit 102b that can function as an observation research database. Therefore, the search unit 102i can search the device research data 102b2 and the patient research data 102b3 as search target data. Also, the statistical analysis unit 102g can use the device research data 102b2 and the patient research data 102b3 for statistical analysis. The data to be statistically analyzed by the statistical analysis unit 102g and the data after the statistical analysis are both included in the research data 102b1 and accumulated in the storage unit 102b.
  • the receiving unit 102c has a function of receiving viewing requests from the setting operation terminal 103A and the viewing terminal 104A via the communication network 107.
  • the communication unit 102d has a function of connecting to the setting support server 101A, the setting operation terminal 103A, and the viewing terminal 104A via the communication network 107 so as to be able to communicate with each other.
  • the acquisition unit 102e has a function of acquiring data accumulated in the setting support server 101A.
  • the timing at which the acquisition unit 102e connects to the setting support server 101A is when a notification is received from the setting support server 101A, or when the EDC server 102A is operated to issue a transmission request for accumulated data to the setting support server 101A at an arbitrary time. , and/or when a predetermined scheduled date and time arrives.
  • the editing unit 102f has a function of editing data accumulated in the storage unit 102b.
  • the data stored in the storage unit 102b is data obtained from the setting support server 101A, and may contain noise data.
  • the EDC server 102A allows the editing section 102f to edit such noise data stored in the storage section 102b (data cleaning). Editing by the editing unit 102f can be performed by operating the input device 204a provided in the EDC server 102A, and can also be performed by operating the setting operation terminal 103A and the browsing terminal 104A having editing authority.
  • the statistical analysis unit 102g has a function of performing statistical analysis processing on data such as the research data 102b1 accumulated in the storage unit 102b to generate statistical analysis data.
  • the types of statistical analysis that the statistical analysis unit 102g can perform include descriptive statistics and inferential statistics.
  • the statistical analysis unit 102g can include data analysis by machine learning and deep learning.
  • the research data 102b1 includes sound data (collected sound data, sound analysis data) relating to sound analysis, which will be described later.
  • the statistical analysis unit 102g deep-learns these sound data (for example, sound data of breathing cycle sounds) to obtain, for example, the patient's height, sex, causative disease, number of breaths for the progress of the causative disease, expiratory time, It may be possible to predict the patterns and trends of changes in inspiratory time.
  • the statistical analysis unit 102g performs machine learning on the sound data, so that, for example, a predetermined feature value of the sound data is associated with the causative disease or the degree of progression of the causative disease, and the degree of progression of acute respiratory failure. It may be possible to build a model that can be referred to for the diagnosis of Furthermore, although it has been described that the editing unit 102f described above can perform editing work for removing noise data included in the acquisition from the setting support server 101A, this editing work may be replaced by machine learning.
  • Examples of the statistical analysis performed by the statistical analysis unit 102g include the following.
  • Example of statistical analysis for the device research data 102b2 [1.1] The following descriptive statistics and individual summary statistics (transition of each data (1st time, 2nd time, 3rd time%)) ⁇ The number of hits and interval (time) of transition of each data ⁇ Difference between the tidal volume obtained by sound analysis and the predicted tidal volume ⁇ Changes in the difference between the tidal volume obtained by sound analysis and the predicted tidal volume Summary statistics and trends of transcutaneous oxygen saturation measurements Summary statistics and trends of end-tidal carbon dioxide concentration measurements in the respiratory circuit Patient blood gas analysis values (partial pressure values of PaO 2 and PaCO 2 ) Changes (changes in oxygen concentration of gas supplied to artificial respirator 105A, minute ventilation and percutaneous oxygen saturation oxygen, and partial pressure values in blood gas analysis) [1.3] Analysis of relationship between equipment failure information and the above data
  • the distribution unit 102h has a function of distributing the research data 102b1 accumulated in the storage unit 102b.
  • Data can be delivered to the setting support server 101A, the setting operation terminal 103A, and the viewing terminal 104A.
  • the data to be distributed can be research data 102b1 after data cleaning accumulated in the storage unit 102b, and statistical analysis data obtained by statistically analyzing the research data 102b1.
  • the timing of data distribution is when a request is received from the setting support server 101A, the setting operation terminal 103A, and the viewing terminal 104A, when the EDC server 102A is operated at any time to distribute data, and when a planned date and time arrives. when and/or at least one of;
  • the search unit 102i has a function of searching various data stored in the storage unit 102b.
  • patient study data 102b3 includes patient basic information 101b2 and patient observation study data 101b3.
  • the medical staff accesses the EDC server 102A from the setting operation terminal 103A and the viewing terminal 104A, searches the patient research data 102b3, and obtains height, weight, gender, outcome when the use of the ventilator 105A is discontinued, use Treatment for respiratory failure can be performed while referring to the content of respiratory failure treatment after discontinuation, laboratory measurement data, etc.
  • the search unit 102i can also have a feedback function for recommended ventilation settings.
  • a request for recommended ventilation settings set pressure value, gas supply volume, etc.
  • the setting support server 101A sends recommended ventilation to the EDC server 102A.
  • the search unit 102i of the EDC server 102A selects recommended ventilation settings suitable for the patient from clinical data (research data 102b1) accumulated in the storage unit 102b. can be automatically fed back to the setting operation terminal 103A through the setting support server 101A.
  • Lung compliance is determined by the type of disease, for example, lung compression due to increased intrathoracic volume due to pleural effusion or pneumothorax, inflammatory lesions such as pneumonia, airway narrowing or airway obstruction due to asthma, airway foreign bodies, or tumors. Affected by atelectasis, etc.
  • chest wall compression and diaphragm elevation due to thoracic stiffness, obesity, etc. Therefore, by accumulating a large amount of patient data 101b1 and research data 102b1 in the system 100, the patient data such as the diagnosis name, height, and weight are used as input, and the lung compliance value is predicted based on the accumulated data. It will be possible. And the recommendation ventilation setting can be fed back now by adjusting the predicted value with the actual measured value mentioned later. According to this, the recommended ventilation setting is automatically fed back without the need for the medical staff to search the database, so that the ventilator can be set quickly and easily.
  • Both the setting operation terminal 103A (first terminal device 103) and the viewing terminal 104A (second terminal device 104) can be realized by one or more second computer devices 300.
  • the hardware resources of the second computer device 300 include a processor 301, a memory 302, a communication device 303, and an I/O interface 304.
  • the processor 301 is a central processing unit, executes program instructions, and controls the overall operation of the second computer device 300 .
  • Processor 301 may consist of one or more.
  • the memory 302 includes a ROM, a RAM, an external storage device, etc., stores various programs, and stores data processed by the processor 301 based on instructions of the programs. Each of the ROM, RAM, external storage device, and the like that constitute the memory 302 can be configured by one or more devices.
  • the program includes a program (terminal-side setting support program (setting operation program)) that executes the medical device setting support method according to one aspect of the present disclosure.
  • the communication device 303 controls communication connections made through the communication network 107 .
  • the I/O interface 304 controls connections with various devices.
  • various input devices 304a such as a keyboard and a mouse, a display 304b for displaying information on a screen, an imaging device 304c, a GPS device 304d, a microphone 304e, a speaker 304f, and the like can be connected.
  • the imaging device 304c, GPS device 304d, microphone 304e, and speaker 304f are optional hardware resources for the viewing terminal 104A.
  • the setting operation terminal 103A includes a control unit 103a, a storage unit 103b, a reception unit 103c, a communication unit 103d, an input unit 103e, a display unit 103f, a reading unit 103g, and a validity determination unit. 103h, a sound collector 103i, and a calculator 103j.
  • Each functional unit can be realized by the second computer device 300, which is a hardware resource of the setting operation terminal 103A, executing a program according to one aspect (the setting operation program).
  • the control unit 103a controls data processing performed by the setting operation terminal 103A. Specifically, the processor 301 performs data processing by executing the setting operation program.
  • the storage unit 103b holds in the memory 302, for example, the setting operation program and data temporarily stored in the setting operation terminal 103A when executing the setting operation program.
  • the reception unit 103c has a function of acquiring data transmitted by the setting support server 101A and the EDC server 102A via the communication network 107.
  • the communication unit 103d has a function of connecting to the setting support server 101A and the EDC server 102A via the communication network 107 so that they can communicate with each other.
  • the input unit 103e has a function of performing input operations using a keyboard, mouse, touch panel, or the like.
  • the mode of input operation can be, for example, manual input or voice input.
  • the display unit 103f has a function of displaying information on the screen, and includes a display 304b as a hardware resource of the setting operation terminal 103A.
  • the reading unit 103g has a function of reading the identification code 19 provided on the outer peripheral wall 31 of the main body 3 of the respirator 105A, and includes an imaging device 304c that is a hardware resource of the setting operation terminal 103A.
  • an imaging device 304c that is a hardware resource of the setting operation terminal 103A.
  • the setting operation terminal 103A is, for example, a smart phone or a notebook computer
  • a built-in camera provided for them can function as the reading unit 103g.
  • the reading unit 103g may be functionally realized. Therefore, instead of using the built-in camera, an imaging device 304c connected to the setting operation terminal 103A by wire or wirelessly may be used.
  • the reading unit 103g can have a function of automatically reading the display value of the life scope 106A1.
  • the displayed values can be, for example, blood pressure, heart rate, respiratory rate, exhaled carbon dioxide concentration.
  • the reading unit 103g can have a function of analyzing the number of vertical movements (displacements) of the patient's chest and counting the number of respirations based on the analysis. According to these, medical staff can monitor the condition of patients from a remote location, and more appropriate home medical care can be performed.
  • the validity determination unit 103h has a function of determining whether or not the ventilator 105A whose identification code 19 is read by the reading unit 103g can be used effectively. Criteria for efficacy can be expiration date, number of uses, and the like. Of these, the "expiration date" is included in the used device data 101b5 and is set by the expiration date counted from the "manufacturing date" for each serial number.
  • the validity judging section 103h judges whether or not the reading date of the identification code 19 (which is set in the "usage start date and time" of the device data 101b5) is within the validity period. If the expiration date has passed, a warning to call attention is notified by a pop-up screen or the like.
  • the "number of times of use” is determined based on the "usage start date and time” included in the device usage data 101b5. If the "usage start date and time" of the utilization equipment data 101b5 has already been recorded on the reading date of the identification code 19, the validity determination unit 103h determines that the respirator 105A has been used multiple times. is not valid. In this case, similar to the expiration date, a cautionary warning is notified. On the other hand, if there is no record of the "start date and time of use", it is determined that it is the first use and that the respirator 105A can be used effectively.
  • the sound collecting unit 103i has a function of collecting at least sounds (breathing sounds, breathing cycle sounds) generated by the respirator 105A attached to the patient P, and includes a microphone 304e which is a hardware resource of the setting operation terminal 103A.
  • the sounds acquired by the sound collector 103i are the inspiratory gas supplied from the gas supply source 105C and sent to the patient through the ventilator 105A, and the sound from the patient's lungs when the valve body 9 of the ventilator 105A is opened. It is a breathing cycle sound generated by alternately repeating and continuing the exhalation discharged to the outside through the artificial respirator 105A.
  • the breathing cycle sound includes both the breath sound due to mechanical ventilation by the ventilator 105A and the breath sound due to the patient's spontaneous breathing while wearing the ventilator 105A if the patient can breathe spontaneously.
  • the microphone 304e as a hardware resource collects not only breathing cycle sounds but also surrounding environmental sounds. Therefore, the sound collector 103i can include environmental sounds as well as respiratory cycle sounds.
  • the sound collector 103i can have a function of monitoring respiratory cycle sounds from collected sounds and issuing an abnormal respiratory alarm when an abnormality is detected in the respiratory cycle sounds. According to this, the medical staff can immediately know the abnormality of the patient.
  • the abnormal breathing alarm can be generated by the setting operation terminal 103A by emitting a sound or by displaying it on the screen. Further, when an abnormality is detected in the respiratory cycle sound, it is possible to detect the respiratory cycle sound when the respiratory cycle sound is not detected, or when the respiratory cycle sound is unstable (for example, when the expiration time or intake time is long and short and is not stable). .
  • the calculation unit 103j has a function of calculating various biological data.
  • the medical staff can refer to the biological data calculated by the calculation unit 103j and set the medical equipment including the respirator 105A while observing the patient's condition under artificial respiration management.
  • the calculation unit 103j includes a predicted Vt calculation unit 103j1, a FiO2 calculation unit 103j2, a PEEP calculation unit 103j3, an IE ratio calculation unit 103j4, an estimated Vt calculation unit 103j5, and an MV calculation unit 103j6 as functional configurations.
  • the predicted Vt calculation unit 103j1 calculates the "ideal weight” based on the height and sex of the patient input by the input unit 103e, and further calculates the "predicted tidal volume" (Predicted Tidal Volume, Predicted Vt) from the ideal weight. It has the function of calculating. The calculation of the ideal weight and the calculation of the predicted tidal volume are based on the following formulas (reposted).
  • the predicted tidal volume (predicted Vt) is included in the patient measurement data 101b4.
  • "6 ml" in Equation 3 can be set to values other than 6 ml.
  • the predicted tidal volume may be configured to include a predicted Vt calculation unit as a functional configuration of the setting support server 101A.
  • the FiO 2 calculation unit 103j2 has a function of calculating FiO 2 (fraction of inspiratory oxygen, oxygen concentration during inhalation). This FiO2 is a predicted value obtained by calculation, is included in the patient measurement data 101b4, and can be calculated by the following formula.
  • FiO2 (Flow Volume of O2 x Flow Volume of Air x 0.21) / (Flow Volume of O2 + Flow Volume of Air )
  • the PEEP calculator 103j3 has a function of calculating PEEP (Estimated Positive End Expiratory Pressure).
  • PEEP is an estimated PEEP obtained by calculation and included in the patient measurement data 101b4. It has been found by the present inventor's non-clinical tests that PEEP becomes a constant value when the set pressure value (valve opening pressure) of the valve body 9 of the respirator 105A is determined.
  • the PEEP calculation unit 103j3 has a detailed data table showing the corresponding relationship between the set pressure value and the PEEP value, and calculates the PEEP value according to the set pressure value (valve opening pressure) input by the input unit 103e. is calculated (selected).
  • the IE ratio calculator 103j4 has a function of calculating an IE ratio (inspiratory time-expiratory time ratio) based on the inspiratory time and expiratory time calculated by the generating unit 101f of the setting support server 101A.
  • the IE ratio is included in patient measurement data 101b4.
  • the estimated Vt calculation unit 103j5 has a function of calculating an estimated tidal volume (mL) (Estimated Vt) based on the expiratory time, inspiratory time, respiratory rate, and gas supply volume.
  • the estimated tidal volume is included in patient measurement data 101b4.
  • the predicted tidal volume calculated by the aforementioned predicted Vt calculator 103j1 is a theoretical tidal volume obtained based on the patient's ideal body weight.
  • the estimated tidal volume is calculated based on the expiratory time, inspiratory time, respiratory rate, and actual gas supply volume obtained by observing the patient under mechanical ventilation. is the tidal volume.
  • the medical equipment including the respirator 105A is set so as to match the estimated tidal volume with the predicted tidal volume.
  • the estimated tidal volume is the index data for that setting.
  • the estimated tidal volume can be calculated as follows.
  • the inspiratory time I is obtained by the following formula.
  • the estimated tidal volume (mL) can be obtained by the following formula.
  • the MV calculation unit 103j6 has a function of calculating the minute ventilation (Minute Volume).
  • This minute ventilation (L/min) is the estimated minute ventilation (Estimated MV) obtained by calculating based on the estimated tidal volume (L) and respiratory rate RR (breaths/min). , is included in patient measurement data 101b4. That is, the estimated minute ventilation can be calculated as follows.
  • the data can be edited by operating the editing section 102f of the EDC server 102A with the input section 103e.
  • the viewing terminal 104A can include a control unit 104a, a storage unit 104b, a reception unit 104c, a communication unit 104d, an input unit 104e, and a display unit 104f as functional configurations.
  • the control unit 104a controls data processing performed by the viewing terminal 104A.
  • the storage unit 104b holds in the memory 302, for example, a viewing program for viewing the EDC server 102A and data temporarily stored in the viewing terminal 104A when executing the viewing program.
  • the viewing program can be, for example, a web browser, and the data stored in the EDC server 102A can be viewed by entering a viewer ID and password. Note that the viewing program may be a dedicated program instead of the web browser.
  • the reception unit 104c has a function of acquiring data transmitted by the EDC server 102A via the communication network 107.
  • the communication unit 104d has a function of connecting to the EDC server 102A via the communication network 107 so as to be able to communicate with each other.
  • the input unit 104e has a function of performing input operations using a keyboard, mouse, touch panel, and the like.
  • the mode of input operation can be, for example, manual input or voice input.
  • the display unit 104f has a function of displaying information on the screen, and includes a display 304b as a hardware resource of the viewing terminal 104A.
  • the data can be edited by operating the editing unit 102f of the EDC server 102A with the input unit 104e.
  • a medical device setting method (“information processing method” according to one aspect of the present disclosure) performed by the medical information processing system 100A will be described.
  • Medical devices as setting objects exemplified in this embodiment are a ventilator 105A and a gas supply source 105C.
  • a medical device can be configured by performing information processing according to a flowchart according to one embodiment shown in FIG. Further, specific steps from patient information input step S105 to device setting step S113 in FIG. 27 are included in the flow chart according to one embodiment shown in FIGS.
  • a setting support program is downloaded to the setting operation terminal 103A.
  • the setting support program can be downloaded from, for example, the setting support server 101A by the setting operation terminal 103A accessing a predetermined URL.
  • the setting operation terminal 103A is used by medical personnel such as doctors, nurses, and clinical engineers who set up medical equipment.
  • the identification code 19 of the ventilator 105A before being attached to the patient is placed in the imaging frame 400a and read by the reading unit 103g (S101).
  • the validity determination unit 103h determines whether the respirator 105A is valid. If it is determined to be valid, a user agreement screen (not shown) and a user account name and password input screen (not shown) are displayed. The terms of use require the input of gender, height, etc., and obtain consent to the transmission of the GPS information of the setting operation terminal 103A. On the other hand, if the effectiveness determination unit 103h determines that the ventilator 105A is not effective after reading the identification code 19, a pop-up screen or the like notifies that the ventilator 105A is not effective. However, you can choose to continue using it as is, and if you do so, you will be presented with the aforementioned terms of use consent screen. Log in to proceed to the next step.
  • the medical staff operates the input unit 103e to input the patient's height, weight, sex, and patient number in the input fields 401a to 401c. Entering weight is not required.
  • the patient number input field 401d for example, characters, numbers, and symbols for identifying the patient at the hospital to which the medical staff belongs can be used.
  • the medical staff presses a "next" button (not shown).
  • the height, sex, and weight are displayed in the " patient information " column 402a of the device setting value input screen 402, and the predicted Vt is displayed in the " predicted value " column 402b.
  • the predicted tidal volume (display of "Vt: 451") calculated by the calculation unit 103j1 is automatically displayed (S203 in Fig. 28).
  • the medical staff connects the ventilator 105A to the tracheal tube 105B1 attached to the patient.
  • the patient is ventilated with an AMBU bag or the like until the respirator 105A is attached.
  • the initial setting of the artificial respirator 105A is to set the pressure value of the pressure setting dial 5 to "20 cmH 2 O".
  • the initial gas supply volume supplied to the respirator 105A from the gas supply source 105C is assumed to be 12 L/min (air flow rate 9 L/min, oxygen flow rate 3 L/min, FiO 2 : 41%).
  • the artificial respirator 105A confirms that the artificial respirator 105A is operating, and confirms the patient's respiratory rate and the measured value of the SpO 2 sensor 22b (S205 in FIG. 28). If the breathing rate seems too fast, increase the set pressure value of the pressure setting dial 5 in increments of 2.5 cmH 2 O to reduce the breathing rate. The increase is allowed up to 30 cmH2O . Conversely, if the respiratory frequency seems too slow, the set pressure value is decreased in increments of 2.5 cmH 2 O to increase the respiratory frequency. The reduction is allowed up to 10 cmH2O .
  • SpO 2 is less than 92%
  • the oxygen flow rate is increased while maintaining the gas supply rate of 12 L/min until SpO 2 exceeds 92%. The rate at which the oxygen flow rate is increased is until FiO 2 reaches approximately 80%, and the adjustment is performed by the air flow rate regulator 105B3 and the oxygen flow rate regulator 105B4.
  • the medical staff thus sets the set pressure value and gas supply volume of the respirator 105A. Then, when the respiratory rate is appropriate and the SpO2 is above 92%, the next setting operation is performed.
  • the medical staff inputs the numerical values previously set to the medical device in the "set pressure", “air flow rate”, and “oxygen flow rate” of the " device setting " column 402c shown in FIG. 33 (S207 in FIG. 28).
  • the FiO 2 calculation unit 103j2 automatically calculates FiO 2 , and the calculation result is displayed in “FiO 2 " in the " calculated value " column 402d.
  • the PEEP calculator 103j3 acquires the PEEP value corresponding to the input set pressure value by referring to the data table, and displays it in "PEEP” of the " estimated value " column 402e.
  • the medical staff can perform the setting operation while confirming whether FiO2 and PEEP are within appropriate ranges according to the patient's condition. Since FiO2 and PEEP are automatically calculated, it is possible to quickly judge whether the setting is appropriate and to perform the setting operation quickly and accurately.
  • the patient's condition is checked by using the check boxes in the " condition check " column 402f shown in FIG. Do not proceed to the next operation unless all check items are checked. This makes it possible to visualize the patient's condition to be confirmed by medical personnel and prevent forgetting to confirm it. It should be noted that not proceeding to the next operation unless all check boxes in the " status check " column 402f are checked functions as an alert to the medical staff. In addition, if all check boxes are not checked, a pop-up screen or the like may be displayed to prompt the medical staff to check the status, thereby alerting the medical staff.
  • a “stable breathing cycle” is a state in which it can be judged that there is almost no variation in the breathing cycle, that is, the number of breaths, the inspiratory time, and the expiratory time.
  • the ideal target value for exhaled carbon dioxide concentration is 40 mmHg. However, specifically, it is a numerical value determined by a doctor according to the underlying pathology, and is usually adjusted within a range of approximately 30 mmHg to 50 mmHg. This exhaled carbon dioxide concentration can be measured by a capnometer or the like as the biosensor 106A2 connected to a breathing circuit (not shown).
  • the display unit 103f of the setting operation terminal 103A displays a sound measurement screen 403 as shown in FIG. 34A, for example.
  • a manual measurement screen 406 for example as shown in Figure 34D, is displayed.
  • the sound collecting unit 103i starts recording.
  • the "Record” button 403a is pressed while the microphone 304e of the setting operation terminal 103A is brought close to the ventilator 105A, the sound measurement screen 404 shown in FIG. 34B is displayed and “Recording” is displayed. After recording breath sounds of a plurality of continuous breathing cycles of about 3 to 4 times, pressing the "stop” button 404a returns to the sound measurement screen 403 shown in FIG. 34A. Recorded sound data is held in the storage unit 103b.
  • sound data is transmitted from the communication unit 103d through the communication network 107 to the setting support server 101A.
  • the reception unit 101c receives sound data.
  • the control unit 101a stores the sound data in the storage unit 101b in association with the corresponding serial number of the respirator 105A. Also, the control unit 101a sends the sound data to the sound analysis unit 101e.
  • sound analysis is performed by a valve sound analysis unit 101e1 and a gas sound analysis unit 101e2.
  • FIG. 36 is a graph showing the relationship between changes in ventilation volume and changes in pressure (airway pressure) in respiration.
  • 38, 39, and 40 are schematic diagrams that simplify the internal structure of the respirator 105A and explain the operation to facilitate understanding of the operation of the respirator 105A. Therefore, the contents of FIGS. 38-40 are different from the cross-sectional views of the ventilator 105A shown in FIGS. 7 and 8 previously shown.
  • a respiratory cycle consists of an inspiratory phase and an expiratory phase in succession.
  • the valve body 9 of the artificial respirator 105A is in contact with the valve seat 32b1 to close the valve hole 32b2.
  • Gas (mixed gas) supplied from the gas supply source 105C flows into the ventilator 105A through the input port 31a and is inhaled into the patient's lungs through the tracheal tube 105B1 connected to the main port 12g. Therefore, when the valve is closed, the tidal volume and pressure (intraairway pressure) in FIG. 36 gradually increase.
  • the pressure reaches the peak pressure PH, that is, the set pressure value (valve opening pressure) at which the valve element 9 opens, and the point of arrival is the end of the intake phase.
  • the total ventilation volume from the start of the inspiratory phase to the time when the set pressure value is reached is the tidal volume Vt. 38 and 39 both show the closed state of the valve body 9, but in FIG. A high value is shown.
  • the exhalation phase starts.
  • the valve element 9 is separated from the valve seat 32b1 and floats. Then, the patient's exhaled breath flowing from the main port 12g and the gas from the gas supply source 105C supplied to the input port 31a are discharged from the exhaust port 31b to the outside of the ventilator 105A, thereby closing the patient's respiratory tract. The internal pressure will also decrease.
  • the valve body 9 is closed. The time when the valve is closed is the end of the expiratory phase, and the pressure at that time becomes the PEEP value PL.
  • the ventilator 105A forms the patient's respiratory cycle by entering an inspiratory phase when the valve is closed and an expiratory phase when the valve is open.
  • FIG. 37 is a graph showing changes in sound pressure data extracted from sound data. Observation of changes in sound pressure in the sound data reveals that when the valve body 9 is closed, a contact sound is generated in which the valve body 9 contacts the valve seat 32b1. This contact sound is generated as a sound having a momentarily high sound pressure when the valve body 9 made of a resin molded body biased by the pressure setting spring 8 comes into contact with the valve seat 32b1 made of a resin molded body.
  • This contact sound with high sound pressure can be regarded as the closing sound of the valve body 9 closing, that is, the start point of the intake phase.
  • the valve sound analysis unit 101e1 detects the first sound whose sound pressure exceeds the first threshold value T1 from the breathing cycle sounds of the sound data, and identifies it as the valve closing sound of the valve body 9 (at the start of the inspiratory phase). It has the function to
  • the patient's exhaled air flowing from the main port 12g and the gas from the gas supply source 105C supplied to the input port 31a are combined to be discharged from the ventilator 105A through the exhaust port 31b. released to the outside of the This gas exhaust sound (expiratory sound) has a sound pressure different from that of the sound (inspiratory sound) generated when the mixed gas is taken into the lungs. That is, in general, expiratory sound has a higher sound pressure than inspiratory sound. Therefore, the gas sound analysis unit 101e2 has a function of specifying the occurrence time of the second sound whose sound pressure exceeds the second threshold value T2 from the breathing cycle sound of the sound data as the expiration time.
  • sounds other than the valve closing sound and the gas exhaust sound are environmental sounds of the place where the respirator 105A is used. .
  • the generation unit 101f of the setting support server 101A generates respiration data ( respiratory rate, mean expiratory time, mean inspiratory time).
  • the breathing frequency calculation unit 101f1 divides 60 seconds by the average value (seconds) of the time between valve closing sounds (“breathing time” in FIG. 37) specified by the valve sound analysis unit 101e1. Calculate the respiratory rate RR (breaths/minute).
  • the expiration time calculation unit 101f2 calculates the average value of the difference time (seconds) from the start of the gas exhaust sound specified by the gas sound analysis unit 101e2 to the next valve closing sound as the average expiration time.
  • the inspiratory time calculation unit 101f3 calculates the time (seconds) by subtracting the expiratory time (seconds) specified by the gas exhaust sound from the average value (seconds) of the time between the valve closing sounds as the average inspiratory time.
  • the breathing data calculated by the generation unit 101f of the setting support server 101A as described above is stored in the storage unit 101b by the control unit 101a in association with the serial number of the ventilator 105A. Also, the control unit 101a transmits the respiratory data to the setting operation terminal 103A through the communication unit 101d. In the setting operation terminal 103A, the reception unit 103c acquires the respiration data, and the respiration data is output to the display unit 103f. That is, as shown in FIG. 34C, the sound measurement screen 405 displays the average expiratory time and the average inspiratory time. Then, if the average expiratory time and average inspiratory time can be determined to be appropriate, press the "register and calculate" button 405b to proceed to the calculation result display screen 407 of FIG. On the other hand, pressing a "switch to manual measurement” button 405a can also transition to a manual measurement screen 406.
  • FIG. 34C the sound measurement screen 405 displays the average expiratory time and the average inspiratory time.
  • Manual measurement is effective in cases such as when abnormal values appear in the mean expiratory time and mean inspiratory time due to environmental sound noise in sound analysis.
  • the clinician observes the patient's breathing cycle and measures the seconds of "inspiration 1", “expiration 1", “inspiration 2”, and “expiration 2", as shown in Figure 34D. Manually enter each on the manual measurement screen 406 . Then, when the "average expiration/intake time calculation" button 406a is pressed, each input data is transmitted to the setting support server 101A, and the respiratory frequency calculation unit 101f1 calculates the respiratory frequency per minute (RR (times/minute)).
  • RR respiratory frequency per minute
  • the expiration time calculator 101f2 calculates the average expiration time (seconds), and the intake time calculator 101f3 calculates the average inspiration time (seconds).
  • Respiration data which are the calculation results thereof, are transmitted to the setting operation terminal 103A and output to the display section 103f.
  • a manual measurement screen 406 shown in FIG. 34D automatically displays the calculated average expiratory time and average inspiratory time. Then, if the average expiratory time and average inspiratory time can be determined to be appropriate, press the "register and calculate" button 406b to proceed to the calculation result display screen 407 of FIG.
  • the calculation result display screen 407 shown in FIG. 35 displays, for example, a "device setting" column 407a, a “calculated value” column 407b, a “predicted value” column 407c, and an "estimated value” column 407d.
  • a "device setting” column 407a displays, for example, a "device setting” column 407a, a "calculated value” column 407b, a "predicted value” column 407c, and an "estimated value” column 407d.
  • All the data displayed on the calculation result display screen 407 become one setting operation history accumulated in chronological order with respect to the serial number. All the data are stored in the storage unit 101b of the setting support server 101A as patient data 101b1.
  • the "equipment setting" column 407a displays the set pressure value, air flow rate, and oxygen flow rate of the respirator 105A. These are all entered on the device setting value input screen 402 .
  • the "calculated value" column 407b displays the aforementioned average inspiratory time, average expiratory time, IE ratio, and respiratory rate.
  • the IE ratio inspiratory time expiratory time ratio
  • the IE ratio calculator 103j4 of the setting operation terminal 103A is calculated by the IE ratio calculator 103j4 of the setting operation terminal 103A.
  • the "predicted value” column 407c displays the FiO 2 (%) calculated by the FiO 2 calculator 103j2 and the predicted tidal volume (predicted Vt) calculated by the predicted Vt calculator 103j1.
  • the estimated tidal volume (predicted Vt) calculated by the estimated Vt calculation unit 103j5 the estimated minute ventilation (L/min) calculated by the MV calculation unit 103j6, and the PEEP calculation unit
  • PEEP PEEP
  • the calculation result display screen 407 displays a list of information necessary for patient respiratory management and information that should be used as a reference for treating respiratory failure. As an example, the determination of the taking air volume is explained.
  • Medical personnel must change the settings of the ventilator 105A and gas supply source 105C while monitoring the patient's condition.
  • the medical information processing system 100A and the setting support program are also useful in such cases.
  • the setting of the tidal volume needs to be repeated many times until it is appropriate for the patient.
  • the setting of the tidal volume starts from connector 1 in FIG. 29 continuing from FIG. 28 (S213).
  • the medical practitioner compares the estimated tidal volume and the predicted tidal volume on the calculation result display screen 407 . If the values are the same (S215), there is no need to continue setting the tidal volume, so the need for adjusting the respiratory frequency is examined (S217). If the adjustment of the number of breaths is unnecessary, the setting is completed. If it is necessary to set the number of breaths, the process proceeds to connector 2 (S219) in FIG.
  • step S215 if the estimated tidal volume is higher than the predicted tidal volume, the set pressure value of the ventilator 105A is decreased by 2.5 cmH2O (S221, S223). For lungs of the same hardness, the same set pressure value will result in the same tidal volume. However, the taking air volume can be increased by increasing the set pressure value, and even if the gas supply volume is changed, the taking air volume does not change. Therefore, by lowering the set pressure value, the estimated taking air volume is adjusted to approach the predicted taking air volume.
  • the set pressure value of the ventilator 105A is increased by 2.5 cmH 2 O (S221, S225), and the estimated tidal volume is less than the predicted tidal volume. Adjust to approximate the ventilation volume.
  • the setting of the number of breaths starts from connector 2 (S219) in FIG.
  • the medical staff refers to the number of breaths obtained by sound analysis displayed on the calculation result display screen 407, and determines whether or not the number of breaths is appropriate (S229). If the respiratory rate is appropriate, proceed to Blood Gas Analysis (BGA) (S231).
  • BGA Blood Gas Analysis
  • the gas supply volume is adjusted according to the condition (S233). Specifically, when the number of breaths is high, the amount of gas supplied to the artificial respirator 105A is reduced to reduce the number of breaths. This also reduces the minute ventilation (estimated MV). On the other hand, when the breathing frequency is low, the gas supply volume is increased to increase the breathing frequency. This also increases the minute ventilation (estimated MV). After this, the process proceeds to blood gas analysis from step 231 .
  • a blood gas analysis (BGA) is performed in order to know the patient's oxygen condition, ventilation condition, and the like.
  • the medical practitioner confirms whether there is an abnormality in the numerical value of PaCO 2 (Partial pressure of arterial carbon dioxide) (S231). If hypocapnia is recognized, the amount of gas supplied to the respirator 105A is reduced (S235). On the other hand, if it is recognized that there is hypercapnia, the amount of gas supply is increased (S235).
  • PaCO 2 Partial pressure of arterial carbon dioxide
  • the medical staff confirms the values of PaO 2 (Partial pressure of arterial oxygen) and SpO 2 by blood gas analysis (S237). If the PaO2 value is low and the SpO2 is less than 92%, the oxygen percentage is increased to raise the FiO2 (S239). On the other hand, when the value of PaO2 is low and SpO2 is 96% or more, the proportion of oxygen is decreased to lower FiO2 (S239).
  • PaO 2 Partial pressure of arterial oxygen
  • SpO 2 blood gas analysis
  • the setting operation terminal 103A can easily and quickly generate breathing data such as breathing time, breathing frequency, average expiration time, and average inspiration time by sound analysis, and can display the breathing data on the screen. Therefore, it is possible to greatly reduce the work burden on the medical staff, and it is possible to set the medical equipment quickly and accurately.
  • one or a plurality of computer devices (the setting support server 101A, the setting operation terminal 103A), the expiration time of the patient using the respirator 105A, the inhalation time, the respiratory rate and setting reference data for setting the valve opening pressure of the valve body 9 provided in the artificial respirator 105A to control the airway pressure of the patient (for example, the number of breaths, the average expiration displaying time, mean inspiratory time, predicted Vt, estimated Vt, etc.) on a screen (402, 407).
  • the respiratory data and displaying the setting reference data on the screen it is possible to easily and quickly comprehend the biometric data necessary for the setting of the medical equipment, and the setting of the medical equipment can be performed quickly and accurately. can be done.
  • the method further includes acquiring sound data of multiple breath cycle sounds.
  • the respiratory data is acquired by acquiring the sound data of the respiratory cycle sounds a plurality of times, so that the respiratory data can be acquired easily and quickly by the sound analysis.
  • the method further includes acquiring a closing sound generated when the valve body 9 closes from the respiratory cycle sound. According to this, since the valve closing sound can be obtained from the respiratory cycle sound, the valve closing sound can be used for sound analysis for obtaining respiratory data.
  • the method further includes obtaining the respiratory rate based on a first time interval between successively occurring valve closing sounds. According to this, it is possible to realize a new method of acquiring the number of breaths by using the valve closing sound.
  • the method further includes obtaining gas exhaust sounds from the breathing cycle sounds. According to this, since the gas exhaust sound can be obtained from the breathing cycle sound, the gas exhaust sound can be used for sound analysis for obtaining respiratory data.
  • the method further includes obtaining the expiratory time from a second length of time that is the duration of the gas exhaust sound. According to this, a new method of acquiring the expiration time can be realized by using the gas exhaust sound.
  • the method includes acquiring sound data of a plurality of respiratory cycle sounds generated by the artificial respirator 105A, acquiring a valve closing sound generated when the valve body 9 closes from the respiratory cycle sounds, and continuously acquiring a first time that is a time interval between the valve closing sounds generated by the breathing cycle sound, acquiring a gas exhaust sound from the breathing cycle sound, and acquiring a second time that is a duration of the gas exhaust sound. and obtaining an inspiration time from the first time and the second time.
  • a new method of acquiring breathing data such as the number of breaths and the expiration time can be realized.
  • the method includes obtaining sound data of a plurality of respiratory cycle sounds generated by the artificial respirator 105A, and obtaining a first sound (valve closing sound) from the respiratory cycle sounds whose sound pressure exceeds a first threshold value T1. ) is detected as the valve closing time of the valve body 9, and the time of occurrence of a second sound (gas exhaust sound) whose sound pressure exceeds the second threshold value T2 from the breathing cycle sound is the expiration time. specifying as time. According to this, the closing time of the valve body 9 and the expiratory time can be acquired from the respiratory cycle sound.
  • the method includes obtaining predicted tidal volume data predicted from the height of the patient; obtaining estimated tidal volume data for the patient from the respiration data and the gas delivery;
  • the computer device (setting operation terminal 103A) further includes displaying on a screen the predicted tidal volume data and the estimated tidal volume data as the setting reference data. According to this, since the predicted tidal volume and the estimated tidal volume are displayed on the screen, it is possible to set the medical device with the setting goal of bringing the estimated tidal volume closer to the predicted tidal volume. .
  • the setting reference data includes the valve opening pressure, the gas supply volume supplied to the patient through the respirator, the respiration data, and the predicted tidal volume corresponding to the height of the patient. data and/or estimated tidal volume data calculated based on said respiration data and said gas delivery volume. According to this, it is possible to refer to the setting reference data displayed on the screen to set the medical equipment (the respirator 105A, the gas supply source 105C), which is convenient.
  • the method further includes displaying a screen (equipment setting input screen 402) for checking the condition of the patient using the ventilator 105A. According to this, it is possible not to forget to check the patient's condition.
  • the method includes obtaining individual identification information (serial number) for individually identifying the ventilator 105A, patient identification information for identifying the patient, and the individual identification information for the ventilator used by the patient. and storing in association with. According to this, the ventilator 105A and the patient can be linked and managed.
  • the method further includes obtaining the individual identification information by reading an identification code 19 provided on the ventilator 105A with an imaging device 304c. According to this, the individual identification information of the ventilator 105A can be easily acquired using, for example, the camera of the smartphone.
  • One or more programs configured to be executed by one or more computer devices (200, 300), said one or more programs comprising instructions for performing any of the above methods Configurable.
  • the program can include at least one of the setting support program of the setting support server 101A, the EDC data management program of the EDC server 102A, and the setting operation program of the setting operation terminal 103A.
  • a non-transitory computer readable storage medium (202, 302) storing one or more programs configured to be executed by one or more computing devices (200, 300), said one or more A program may be configured to include instructions for performing any of the methods described above.
  • an electronic device comprising one or more processors 201, 301 and a memory 202 storing one or more programs configured to be executed by said one or more processors 201, 301; 302 and displays 205b, 304b, wherein the one or more programs include instructions for performing any of the methods.
  • the setting operation terminal 103A is a smart phone, but the setting operation terminal 103A may be a tablet, a notebook PC, a desktop PC, a dedicated device, or the like.
  • the setting operation screens (400 to 407) can also be changed by the computer device (300) used as the setting operation terminal 103A.
  • the operation screens (400 to 407) of the setting operation terminal 103A shown in the above embodiment are examples. Therefore, the operation screen may have a different configuration.
  • the device setting value input screen 402 is a vertically long screen that requires scrolling. Therefore, for example, the " state check " column 402f and the description column 402g of "enter reason for remeasurement" may be configured as separate screens so that scrolling is not required.
  • the biological data acquired by the biological data measuring device 106A was not displayed on the setting operation terminal 103A.
  • the data may be configured to be taken into the setting operation terminal 103A.
  • the biometric data measuring device 106A may be able to directly communicate with the setting operation terminal 103A by short-range wireless communication such as BLUETOOTH (registered trademark) or by cable connection.
  • the biometric data measuring device 106A may transmit the biometric data to the setting support server 101A via the communication network 107, and the setting support server 101A may transmit the biometric data to the setting operation terminal 103A.
  • the ventilator 105A was exemplified, but usable ventilators are not limited to this.
  • a pneumatically driven relief valve in a ventilator equipped with a ventilator body (gas supply source, exhalation valve, intake valve, etc.) and a breathing circuit (patient connection tube (Y-tube), heated humidifier, hosiery, etc.) (APL valve) may be provided.
  • a relief valve for example, one disclosed in Japanese Patent No. 6780861 can be exemplified, and the relief valve can be used by being connected to a breathing circuit.
  • a ventilator it is also possible to set medical equipment that involves the sound analysis described in the above embodiment.
  • a pneumatically driven respirator (general name defined by the Pharmaceuticals and Medical Devices Agency as a mechanical device (06) respiratory assist device, a highly controlled medical device "single use for artificial respiration)
  • a ventilator that can be classified as a “pulmonary resuscitator” such as a “gas-type lung resuscitator” was exemplified. It can also be applied to a ventilator that can be classified under the general name “general-purpose ventilator” defined by General Organization as mechanical equipment (06) Respiratory aid, highly controlled medical equipment.).
  • the sound analysis described in the above embodiment can be applied even if the valve body is an electromagnetic valve as long as the valve closing sound is generated.
  • the ventilator that can be included as a component of the present invention generates an operating sound such as a valve closing sound, and as long as the operating sound can identify the opening and closing operation of the valve body, exhalation or inspiration, the gas supply
  • the control method is not limited.
  • the valve closing sound as used in the present specification and claims refers to the contact of the valve body 9 with the valve seat 32b1. It is a concept that includes not only the generated contact sound but also other sounds generated when the valve body 9 closes.
  • the system 100 without the EDC server 102A may be configured as the medical information processing system 100A.
  • the setting support server 101A shown in the above embodiment may have a single-unit configuration or a multiple-unit configuration as a hardware configuration.
  • the setting support program may also be configured as a divided program.
  • the setting support program, the EDC data management program, the setting operation program, and the browsing program were exemplified, but one or more of them can be understood as a program according to one aspect of the present disclosure.
  • valve sound analysis unit 101e1 identifies a sound having a sound pressure exceeding the first threshold value T1 as a valve closing sound in the sound pressure data, but it is not limited to this.
  • a threshold range having predetermined upper and lower limits, it is possible to reduce erroneous determination of the valve closing sound.
  • valve closing sound and the gas exhaust sound may be identified by frequency conversion analysis of sound data.
  • the valve closing sound and gas exhaust sound described in the above embodiments can be regarded as physical quantities having specific frequencies and frequency bands. Therefore, for the sound data, a first sound having a first frequency (including the specific frequency and a predetermined frequency band) specified as the valve closing sound is detected, and a second sound specified as the gas exhaust sound is detected. (including a specific frequency and a predetermined frequency band).
  • frequency analysis and sound pressure analysis may be used together.
  • 100 system 100A medical information processing system, 101 first server (computer device), 101A setting support server (computer device), 102 second server (computer device), 102A EDC server (computer device), 103 first Terminal device (computer device), 103A Setting operation terminal (computer device), 104 Second terminal device (computer device), 104A Viewing terminal (computer device), 105 Medical equipment for treatment, 105A Respirator, 105B Breathing circuit, 105C gas supply source, 106 diagnostic medical device (computer device), 200 first computer device, 300 second computer device

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Provided is a technique for adapting medical equipment to a patient. This method for setting medical equipment comprises: acquiring, on one or more computer devices, respiration data including one of expiration time, inspiration time, and respiratory frequency of a patient using a ventilator 105A; and displaying a screen image showing setting reference data for setting a valve opening pressure of a valve body 9 provided in the ventilator 105A to control the airway pressure of the patient.

Description

情報処理方法、プログラム、非一時的コンピュータ可読記憶媒体及び電子デバイスInformation processing method, program, non-transitory computer-readable storage medium and electronic device
 本開示は、医療機器を患者に適応させる技術、生体データを解析するための技術に関する。 This disclosure relates to technology for adapting medical devices to patients and technology for analyzing biological data.
 本発明者は、電気的な駆動源を必要とせず、空気圧(患者の気道内圧)の変化により開閉可能なリリーフ弁を提案している(特許文献1)。このリリーフ弁は、例えば人工呼吸器や吸入麻酔器に備えるAPLバルブ(Adjustable pressure limiting valve)として用いることができる。さらに本発明者は、そのリリーフ弁の作動原理を応用した空気圧駆動の人工呼吸器を提案している(特願2020-123336)。この人工呼吸器も弁体を開閉するための電気的な駆動源を必要とせず、電気を利用できる環境であるか否かに拘わらず、患者の人工呼吸を実現することができる、画期的な人工呼吸器である。 The inventor has proposed a relief valve that can be opened and closed by changes in air pressure (patient's airway pressure) without requiring an electric drive source (Patent Document 1). This relief valve can be used, for example, as an APL valve (Adjustable pressure limiting valve) provided in a respirator or an inhalation anesthesia machine. Furthermore, the present inventor has proposed a pneumatically driven artificial respirator that applies the operating principle of the relief valve (Japanese Patent Application No. 2020-123336). This artificial respirator also does not require an electric drive source for opening and closing the valve body, and it is epoch-making that it can realize artificial respiration for the patient regardless of the environment where electricity is available. It is a suitable ventilator.
特許第6780861号公報Japanese Patent No. 6780861
 前述した空気圧駆動の人工呼吸器は、電気的な制御によって弁体の開閉を行わないことから、患者の状態観察による臨床的見地から人工呼吸器を適切に設定し使用することが求められる。また、患者に供給するガス供給気量も、患者の状態に応じて適切に設定することが必要である。 Since the pneumatically driven ventilator mentioned above does not open and close the valve body by electrical control, it is required to appropriately set and use the ventilator from a clinical point of view by observing the patient's condition. In addition, it is necessary to appropriately set the amount of gas to be supplied to the patient according to the condition of the patient.
 本開示は、医療機器を患者に適応させるための技術の提供を目的の一つとする。 One of the purposes of this disclosure is to provide technology for adapting medical devices to patients.
 一態様による方法は、1又は複数のコンピュータ装置において、人工呼吸器を使用する患者の呼気時間、吸気時間、呼吸回数のいずれかを含む呼吸データを取得することと、前記患者の気道内圧を制御するために前記人工呼吸器において空気圧により開閉する弁体の開弁圧を設定するための設定参照用データを画面表示することと、を含む、方法である。 A method according to one aspect comprises, in one or more computing devices, acquiring respiratory data, including expiratory time, inspiratory time, and respiratory rate, of a patient on a ventilator; and controlling airway pressure of said patient. and displaying on a screen setting reference data for setting a valve opening pressure of a valve that opens and closes by air pressure in the artificial respirator.
 一態様によるプログラムは、1又は複数のコンピュータ装置によって実行されるように構成された1又は複数のプログラムであって、前記1又は複数のプログラムは、前記方法を実行する命令を含む、プログラムである。 A program according to one aspect is one or more programs configured to be executed by one or more computer devices, said one or more programs comprising instructions for performing said method. .
 一態様による非一時的コンピュータ可読記憶媒体は、1又は複数のコンピュータ装置によって実行されるように構成された1又は複数のプログラムを記憶する非一時的コンピュータ可読記憶媒体であって、前記1又は複数のプログラムは、前記方法を実行する命令を含む、非一時的コンピュータ可読記憶媒体である。 A non-transitory computer-readable storage medium according to one aspect is a non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more computing devices, wherein the one or more is a non-transitory computer-readable storage medium containing instructions for performing the method.
 一態様による電子デバイスは、1又は複数のプロセッサと、前記1又は複数のプロセッサによって実行されるように構成された1又は複数のプログラムを記憶するメモリと、ディスプレイと、を備え、前記1又は複数のプログラムは、前記方法を実行する命令を含む、電子デバイスである。 An electronic device according to one aspect comprises one or more processors, a memory storing one or more programs configured to be executed by the one or more processors, and a display, wherein the one or more is an electronic device comprising instructions for performing said method.
 本開示の一態様によれば、医療機器を適切に使用するための技術を提供することができる。 According to one aspect of the present disclosure, it is possible to provide techniques for appropriately using medical equipment.
 本開示の一態様によれば、生体データを解析する技術を提供することができる。 According to one aspect of the present disclosure, a technique for analyzing biometric data can be provided.
 本開示の一態様によれば、空気圧駆動の人工呼吸器を使用することにより得られる生体データを含む各種データを利用するための技術を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a technique for using various data including biological data obtained by using a pneumatically driven respirator.
一実施形態によるシステムの構成図である。1 is a block diagram of a system according to one embodiment; FIG. 一実施形態による人工呼吸器の使用状態を模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing the usage state of the respirator according to one embodiment; 一実施形態による人工呼吸器の正面、右側面、平面を含む斜視図である。1 is a perspective view including a front, right side, and top view of a ventilator according to one embodiment; FIG. 一実施形態による人工呼吸器の背面、右側面、底面を含む斜視図である。1 is a perspective view including back, right side, and bottom views of a ventilator according to one embodiment; FIG. 一実施形態による人工呼吸器の正面図である。1 is a front view of a ventilator according to one embodiment; FIG. 図5の人工呼吸器の背面図である。Figure 6 is a rear view of the ventilator of Figure 5; 図5の人工呼吸器の右側面図である。Figure 6 is a right side view of the ventilator of Figure 5; 図5の人工呼吸器の平面図である。6 is a plan view of the ventilator of FIG. 5; FIG. 図5の人工呼吸器の底面図である。6 is a bottom view of the ventilator of FIG. 5; FIG. 図6のX-X断面図である。FIG. 7 is a cross-sectional view taken along the line XX of FIG. 6; 図5のXI-XI断面図である。6 is a cross-sectional view taken along line XI-XI of FIG. 5; FIG. 人工呼吸器のダイヤルカバーの背面斜視図である。Fig. 3 is a rear perspective view of the dial cover of the respirator; 図5の人工呼吸器の本体の平面図である。6 is a plan view of the body of the ventilator of FIG. 5; FIG. 図5の人工呼吸器の本体の底面図である。6 is a bottom view of the body of the ventilator of FIG. 5; FIG. 図8のXV-XV線で断面し左に90°回転させた状態を示すダイヤルカバーと圧力設定ダイヤルの断面図である。FIG. 9 is a cross-sectional view of the dial cover and the pressure setting dial, taken along line XV-XV of FIG. 8 and rotated 90 degrees to the left; 図15のXVI部の部分拡大図である。16 is a partially enlarged view of the XVI section of FIG. 15; FIG. 図5の人工呼吸器の正面、右側面、平面を含む分解斜視図。FIG. 6 is an exploded perspective view including front, right side, and top views of the ventilator of FIG. 5; 図5の人工呼吸器の正面、右側面、底面を含む分解斜視図。6 is an exploded perspective view of the ventilator of FIG. 5 including the front, right side, and bottom; FIG. 一実施形態による第1のコンピュータ装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of the 1st computer apparatus by one Embodiment. 一実施形態による設定支援サーバの機能構成を示す図である。It is a figure which shows the functional structure of the setting assistance server by one Embodiment. 図20の記憶部に蓄積するデータを示す図である。FIG. 21 is a diagram showing data accumulated in a storage unit shown in FIG. 20; 一実施形態によるEDCサーバの機能構成を示す図である。It is a figure which shows the functional structure of the EDC server by one Embodiment. 図22の記憶部に蓄積するデータを示す図である。FIG. 23 is a diagram showing data accumulated in a storage unit shown in FIG. 22; 一実施形態による第2のコンピュータ装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of the 2nd computer apparatus by one Embodiment. 一実施形態による設定操作端末の機能構成を示す図である。FIG. 4 is a diagram showing the functional configuration of a setting operation terminal according to one embodiment; 一実施形態による閲覧端末の機能構成を示す図である。3 is a diagram showing a functional configuration of a viewing terminal according to one embodiment; FIG. 一実施形態による医療機器の設定方法を示すフローチャートである。1 is a flowchart illustrating a method of configuring a medical device according to one embodiment; 一実施形態による医療機器の設定方法を示すフローチャートである。1 is a flowchart illustrating a method of configuring a medical device according to one embodiment; 図28に続くフローチャートである。FIG. 29 is a flowchart continued from FIG. 28; FIG. 図29に続くフローチャートである。FIG. 30 is a flowchart continued from FIG. 29; FIG. 一実施形態による二次元コード読込画面の構成例を示す図である。FIG. 4 is a diagram showing a configuration example of a two-dimensional code reading screen according to one embodiment; 一実施形態による患者情報入力画面の構成例を示す図である。FIG. 4 is a diagram showing a configuration example of a patient information input screen according to one embodiment; 一実施形態による機器設定値入力画面の構成例を示す図である。It is a figure which shows the structural example of the apparatus setting value input screen by one Embodiment. 一実施形態による音測定画面の構成例を示す図である。It is a figure which shows the structural example of the sound measurement screen by one Embodiment. 一実施形態による計算結果画面の構成例を示す図である。It is a figure which shows the structural example of the calculation result screen by one Embodiment. 患者の呼吸と人工呼吸器の動作との関係を示す図である。FIG. 4 illustrates the relationship between patient respiration and ventilator action. 音圧データの変化を示すグラフ図である。FIG. 4 is a graph showing changes in sound pressure data; 一実施形態による人工呼吸器の弁体の閉弁状態を説明する図である。FIG. 4 is a diagram illustrating the closed state of the valve body of the respirator according to one embodiment; 一実施形態による人工呼吸器の弁体の閉弁状態を説明する図である。FIG. 4 is a diagram illustrating the closed state of the valve body of the respirator according to one embodiment; 一実施形態による人工呼吸器の弁体の開弁状態を説明する図である。It is a figure explaining the valve-open state of the valve body of the respirator by one Embodiment.
 以下、本開示の一態様を具体的に説明する。しかしながら、その説明は、本開示の範囲を限定することを意図するものではなく、例示的な実施形態を説明する記載として理解すべきものである。以下の説明は、特許請求の範囲を不当に限定するものではなく、本実施形態で説明される構成の全てが解決手段として必須であるとは限らない。 One aspect of the present disclosure will be specifically described below. However, the description is not intended to limit the scope of the present disclosure, but should be understood as a description of exemplary embodiments. The following description does not unduly limit the scope of the claims, and not all of the configurations described in the present embodiment are essential as solutions.
 以下の説明で「上」、「下」、「左」、「右」の方向を示す用語は、説明の便宜のために使用するものであり、使用方法、使用態様を示すものではない。本明細書及び特許請求の範囲に記載する「第1」、「第2」などの用語は、発明や実施形態の異なる構成要素を区別するための識別用語として使用するものであり、特定の順序や優劣などを示すものではない。 The terms "up", "down", "left", and "right" in the following explanation are used for convenience of explanation, and do not indicate the method of use or mode of use. The terms "first", "second", etc., used in the specification and claims are used as identification terms to distinguish different elements of the inventions and embodiments, and are not in any particular order. It does not indicate superiority or inferiority.
 以下の説明で使用される用語は、特定の実施形態を説明することのみを目的とし、本開示の範囲を限定することを意図するものではない。本明細書及び特許請求の範囲に記載する一態様による構成要素は、単数形又は複数形であることを文脈上明確に記載しない限り、複数形も含むことが意図される。すなわち、単数形の「a、an」、及び「the」は、文脈上明白に記載しない限り、複数形も含むことが意図される。用語「及び/又は」は、関連する列挙された要素のうちの1つ以上のいずれか及び全ての考えられる組み合わせを指し、かつこれを含むことが意図される。本明細書及び特許請求の範囲に記載する用語「含む(includes)」、「含む(including)」、「含む、備える(comprises)」、及び/又は「含む、備える(comprising)」は、特徴、動作、要素、ステップの存在を特定するものであるが、1つ以上の他の特徴、動作、要素、ステップ及び/又はそれらのグループの存在又は追加を除外するものではない用語として用いられている。 The terms used in the following description are for the purpose of describing specific embodiments only and are not intended to limit the scope of the present disclosure. Elements according to one aspect described in this specification and claims are intended to include the plural forms as well, unless the context clearly dictates otherwise. That is, the singular forms "a, an," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. The term "and/or" refers to and is intended to include any and all possible combinations of one or more of the associated listed elements. The terms “includes,” “including,” “comprises,” and/or “comprising” as used herein and in the claims refer to features, Used as a term that identifies the presence of an action, element, step, but does not exclude the presence or addition of one or more other features, actions, elements, steps and/or groups thereof .
システムの全体構成の説明〔図1〕Description of the overall system configuration [Fig. 1]
 システム100は、第1のサーバ101、第2のサーバ102、第1の端末装置103、第2の端末装置104、治療用医療機器105、診断用医療機器106を含んで構成できる。また、第1のサーバ101、第2のサーバ102、第1の端末装置103、診断用医療機器106は、それぞれ「1つのコンピュータ装置」の一態様を構成し、それらの複数の組み合わせは「複数のコンピュータ装置」の一態様を構成する。 The system 100 can be configured to include a first server 101 , a second server 102 , a first terminal device 103 , a second terminal device 104 , a therapeutic medical device 105 and a diagnostic medical device 106 . In addition, the first server 101, the second server 102, the first terminal device 103, and the diagnostic medical device 106 each constitute one aspect of "one computer device", and a plurality of combinations thereof is a "plurality of constitutes one aspect of "computer device".
 システム100は、通信ネットワーク107を含んで構成できる。第1のサーバ101、第2のサーバ102、第1の端末装置103、第2の端末装置104、診断用医療機器106は、通信ネットワーク107に接続可能に構成できる。第1のサーバ101と、第2のサーバ102及び第1の端末装置103とは、通信ネットワーク107を介して直接接続可能に構成でき、相互に通信可能に構成できる。第2の端末装置104は、第2のサーバ102に対して通信ネットワーク107を介して直接接続可能に構成できる。 The system 100 can be configured including a communication network 107 . First server 101 , second server 102 , first terminal device 103 , second terminal device 104 and diagnostic medical device 106 can be configured to be connectable to communication network 107 . The first server 101, the second server 102, and the first terminal device 103 can be configured to be directly connectable via the communication network 107, and can be configured to communicate with each other. The second terminal device 104 can be configured to be directly connectable to the second server 102 via the communication network 107 .
システム100の一態様としての医療情報処理システム100Aの全体構成Overall configuration of medical information processing system 100A as one aspect of system 100
 システム100は、さらに具体的な一態様である「医療情報処理システム100A」を含みうる。医療情報処理システム100Aにおいて、第1のサーバ101は、第1の端末装置103との通信によって、臨床現場で使用する治療用医療機器105の設定を支援するための「設定支援サーバ」(101A)を含みうる。 The system 100 may include a "medical information processing system 100A" which is a more specific aspect. In the medical information processing system 100A, the first server 101 is a "setting support server" (101A) for supporting setting of the therapeutic medical device 105 used in the clinical setting through communication with the first terminal device 103. can include
 第2のサーバ102は、医療情報処理システム100Aにおける「EDC(Electronic Data Capture)サーバ」(102A)を含みうる。EDCサーバ102Aは、設定支援サーバ101Aから臨床データ(研究用データ102b1)を取得し、臨床データに対してデータクリーニングと各種のデータマネジメントを実行する。これによってEDCサーバ102Aは、観察研究のための研究データを生成、蓄積、管理することのできるEDCシステムを構成できる。したがって、EDCサーバ102Aは、設定支援サーバ101Aとの間で通信可能として構成できる。 The second server 102 can include an "EDC (Electronic Data Capture) server" (102A) in the medical information processing system 100A. The EDC server 102A acquires clinical data (research data 102b1) from the setting support server 101A, and performs data cleaning and various data management on the clinical data. This allows the EDC server 102A to configure an EDC system capable of generating, accumulating, and managing research data for observational research. Therefore, the EDC server 102A can be configured to be communicable with the setting support server 101A.
 第1の端末装置103は、医療情報処理システム100Aにおける「設定操作端末」(103A)を含みうる。設定操作端末103Aは、ハードウェア資源であるコンピュータ装置により構成できる。設定操作端末103Aは、具体的には、例えばスマートフォン、タブレット端末、ラップトップコンピュータなどの電子デバイスで構成することができる。 The first terminal device 103 can include a "setting operation terminal" (103A) in the medical information processing system 100A. The setting operation terminal 103A can be configured by a computer device that is a hardware resource. Specifically, the setting operation terminal 103A can be configured by an electronic device such as a smart phone, a tablet terminal, or a laptop computer.
 設定操作端末103Aは、人工呼吸器105Aを含む各種の医療機器の設定を行う医療者が使用する。設定操作端末103Aは、医療機器、具体的には治療用医療機器105の設定を支援するためのプログラム(設定支援プログラム)を実行する。このプログラムは、設定操作端末103Aが、スマートフォンやタブレット端末の場合には「設定支援アプリ」として提供できる。「設定支援アプリ」は、アプリを配信可能なサーバ(例えば設定支援サーバ101A、医療機器メーカーのサーバ、コンテンツ配信サーバなど)によって設定操作端末103Aにダウンロードすることができる。設定操作端末103Aは、通信ネットワーク107を介して設定支援サーバ101Aに対して通信可能に構成されている。設定操作端末103Aを使って医療機器の設定を行う際には、設定支援サーバ101Aとの間でデータの送受信が行われる。医療者は、設定操作端末103Aの設定支援プログラムの画面に表示される情報と患者の状態を見て、治療用医療機器105の各種の設定を行う。 The setting operation terminal 103A is used by medical personnel who set various medical devices including the ventilator 105A. The setting operation terminal 103A executes a program (setting support program) for supporting the setting of the medical device, specifically the therapeutic medical device 105 . This program can be provided as a "setting support application" when the setting operation terminal 103A is a smartphone or a tablet terminal. The "setting support application" can be downloaded to the setting operation terminal 103A by a server capable of distributing applications (for example, the setting support server 101A, a server of a medical device manufacturer, a content distribution server, etc.). The setting operation terminal 103A is configured to be able to communicate with the setting support server 101A via the communication network 107. FIG. When setting the medical device using the setting operation terminal 103A, data is transmitted and received with the setting support server 101A. The medical staff looks at the information displayed on the screen of the setting support program of the setting operation terminal 103A and the patient's condition, and makes various settings for the medical device 105 for treatment.
 第2の端末装置104は、医療情報処理システム100Aにおける「閲覧端末」(104A)を含みうる。閲覧端末104Aは、ハードウェア資源であるコンピュータ装置、すなわち例えばスマートフォン、タブレット端末、ラップトップコンピュータなどで構成することができる。閲覧端末104Aは、通信ネットワーク107を介してEDCサーバ102Aに接続し、そこに蓄積されている観察研究のための研究データ(研究用データ102b1など)を受信し、閲覧端末104Aを使用するユーザ権限に応じて、表示し、編集し、管理することができる。 The second terminal device 104 may include a "viewing terminal" (104A) in the medical information processing system 100A. The viewing terminal 104A can be configured by a computer device, which is a hardware resource, such as a smart phone, a tablet terminal, a laptop computer, and the like. The viewing terminal 104A connects to the EDC server 102A via the communication network 107, receives research data for observational research (research data 102b1, etc.) stored there, and has user authority to use the viewing terminal 104A. can be viewed, edited, and managed according to
 治療用医療機器105は、医療情報処理システム100Aにおける「人工呼吸器」(105A)を含みうる。人工呼吸器105Aは、以下の説明ではその一例として空気圧駆動のものについて説明する。 Therapeutic medical equipment 105 may include a "ventilator" (105A) in the medical information processing system 100A. The ventilator 105A will be described below as being pneumatically driven as an example.
 治療用医療機器105は、さらに例えば、吸気用の空気、酸素を供給する気体供給源105Cを含みうる。気体供給源105Cは、酸素ボンベ、コンプレッサーなどの気体供給用の器材だけでなく、病院内に設置されている酸素配管、空気配管のような気体供給用の設備を含みうる。 The therapeutic medical device 105 may further include a gas supply source 105C that supplies, for example, air for inspiration and oxygen. The gas supply source 105C can include not only equipment for supplying gas such as an oxygen cylinder and a compressor, but also facilities for supplying gas such as oxygen pipes and air pipes installed in hospitals.
 人工呼吸器105Aも気体供給源105Cも、ともに患者ごとに適切に調整して使用することが必須である。前述の設定操作端末103Aは、それらの人工呼吸器105Aや気体供給源105Cを患者に応じて適切に設定するために医療者が参照する各種情報(設定参照用データ)を表示して、医療者による設定を支援するものである。 Both the ventilator 105A and the gas supply source 105C must be adjusted appropriately for each patient before use. The setting operation terminal 103A described above displays various information (setting reference data) to be referred to by medical personnel in order to appropriately set the ventilator 105A and gas supply source 105C according to the patient, It supports setting by
 診断用医療機器106は、医療情報処理システム100Aにおける「生体データ計測装置」(106A)を含みうる。生体データ計測装置106Aは、臨床現場で患者の生体現象を計測するための各種の計測検査機器を含みうる。 The diagnostic medical device 106 may include a "biological data measuring device" (106A) in the medical information processing system 100A. The biometric data measuring device 106A can include various measuring and testing equipment for measuring the patient's biophenomena in a clinical setting.
 より具体的には、生体データ計測装置106Aには、例えば、ライフスコープ106A1、ライフスコープ106A1に接続可能な各種の生体センサ106A2(例えば、心電計センサ106A3、パルスオキシメータ(SpOセンサ106A4))、位置情報発信デバイス(GPSデバイスなど)を含みうる。 More specifically, the biological data measuring device 106A includes, for example, a lifescope 106A1, various biological sensors 106A2 (eg, an electrocardiograph sensor 106A3, a pulse oximeter ( SpO2 sensor 106A4)) connectable to the lifescope 106A1. ), location information emitting devices (such as GPS devices).
 生体データ計測装置106Aは、それ自体が通信機能を備えており、通信ネットワーク107に接続可能なものでも、又はそれ自体が通信機能を備えておらず、生体データ計測装置106Aを接続したコンピュータ装置を介して通信ネットワーク107に接続可能なものでもよい。また、生体データ計測装置106Aは、通信機能の有無に拘わらず、通信ネットワーク107に対して接続せずに使用できる。 The biological data measuring device 106A may itself have a communication function and be connectable to the communication network 107, or may not itself have a communication function and may be a computer device connected to the biological data measuring device 106A. It may be connectable to the communication network 107 via. In addition, the biological data measuring device 106A can be used without being connected to the communication network 107 regardless of whether or not it has a communication function.
 通信ネットワーク107は、例えばインターネット回線、専用回線にて構成可能である。 The communication network 107 can be configured by, for example, an Internet line or a dedicated line.
治療用医療機器105及び診断用医療機器106の説明〔図2~図18〕Description of therapeutic medical device 105 and diagnostic medical device 106 [Figs. 2 to 18]
 図2は、気管挿管されて人工呼吸管理下にある患者Pの状態を模式的に示している。患者Pには、様々な治療用医療機器105と診断用医療機器106が使用されている。 Fig. 2 schematically shows the state of a patient P who has been intubated and is under artificial respiration. Various therapeutic medical devices 105 and diagnostic medical devices 106 are used for the patient P. FIG.
治療用医療機器105
 治療用医療機器105は、人工呼吸器105Aと、呼吸回路105Bと、気体供給源105Cとを含む。呼吸回路105Bは、気管チューブ105B1、ガス混合用チューブ105B2、空気流量調整器105B3、酸素流量調整器105B4を含む。気体供給源105Cは、空気供給源105C1、酸素供給源105C2を含む。図2では、経口による気管挿管を例示するものであるため、他の実施態様での治療用医療機器105は図2で使用する器材に限定されるものではない。患者Pに対する空気の供給処置に応じて、経鼻挿管の場合の挿管チューブ、気管切開チューブ、声門上器具(ラリンジアルマスク)、蘇生用マスク、蘇生用マスクに接続する蛇管なども、治療用医療機器105に含みうる。
Medical device 105 for treatment
The therapeutic medical device 105 includes a ventilator 105A, a breathing circuit 105B, and a gas source 105C. Breathing circuit 105B includes tracheal tube 105B1, gas mixing tube 105B2, air flow regulator 105B3, and oxygen flow regulator 105B4. The gas supply source 105C includes an air supply source 105C1 and an oxygen supply source 105C2. Since FIG. 2 illustrates oral tracheal intubation, therapeutic medical device 105 in other embodiments is not limited to the device used in FIG. Depending on the air supply procedure for the patient P, an intubation tube in the case of nasal intubation, a tracheotomy tube, a supraglottic device (laryngeal mask), a resuscitation mask, a serpentine connecting to the resuscitation mask, etc. may also be used for therapeutic medical purposes. may be included in device 105;
診断用医療機器106
 診断用医療機器106は、生体データ計測装置106Aを含み、これにはライフスコープ21、生体センサ22としての心電計センサ22a、SpOセンサ22bを含む。患者Pの状態は、これらの診断用医療機器106によって測定されて、医療者が把握できるようにされている。なお、図2は例示であり、生体データ計測装置106A、生体センサ22は、それらの器材に限定されず、例えば呼吸センサなども含みうる。
diagnostic medical device 106
The diagnostic medical device 106 includes a biometric data measuring device 106A, which includes a life scope 21, an electrocardiograph sensor 22a as a biosensor 22, and an SpO 2 sensor 22b. The condition of the patient P is measured by these diagnostic medical devices 106 so that medical personnel can grasp it. Note that FIG. 2 is an example, and the biological data measuring device 106A and the biological sensor 22 are not limited to these devices, and may include, for example, a respiration sensor.
治療用医療機器105,診断用医療機器106の使用の一態様
 図2の例示では患者Pに経口挿管されており、口P1から気管P2に気管チューブ105B1が挿管されている。気管チューブ105B1の体内側端部は、カフ105B11によって気管P2に対して固定されている。気管チューブ105B1の体外側端部は、人工呼吸器105Aにおける後述のメインポート12gに接続されている。
Aspects of Use of Medical Device for Treatment 105 and Medical Device for Diagnosis 106 In the example of FIG. 2, a patient P is orally intubated, and a tracheal tube 105B1 is intubated from mouth P1 to trachea P2. The intracorporeal end of the tracheal tube 105B1 is fixed to the trachea P2 by a cuff 105B11. The extracorporeal end of the tracheal tube 105B1 is connected to a main port 12g of the respirator 105A, which will be described later.
 人工呼吸器105Aにおける後述のインプットポート31aには、ガス混合用チューブ105B2が接続されている。ガス混合用チューブ105B2はY字管である。その第1の入力端は空気流量調整器105B3に接続され、第2の入力端は酸素流量調整器105B4に接続されている。そして、空気流量調整器105B3は、空気供給源105C1(気体供給源105C)に接続される。酸素流量調整器105B4は、酸素供給源105C2(気体供給源105C)に接続されている。患者Pには、空気と酸素の混合ガスが供給され、供給する空気と酸素の流量は患者Pの状態に応じて適切に管理される必要がある。そのために後述する設定操作端末103Aを利用する。 A gas mixing tube 105B2 is connected to the later-described input port 31a of the ventilator 105A. The gas mixing tube 105B2 is a Y-shaped tube. Its first input is connected to air flow regulator 105B3 and its second input is connected to oxygen flow regulator 105B4. The air flow regulator 105B3 is connected to the air supply source 105C1 (gas supply source 105C). The oxygen flow regulator 105B4 is connected to the oxygen supply source 105C2 (gas supply source 105C). A mixed gas of air and oxygen is supplied to the patient P, and the flow rates of the supplied air and oxygen must be appropriately controlled according to the patient's P condition. For this purpose, a setting operation terminal 103A, which will be described later, is used.
人工呼吸器105Aの全体構成Overall configuration of respirator 105A
 人工呼吸器105Aは、筐体2を備える。筐体2は、複数の部品を組み合わせて構成されており、その全体形状は箱状の多面体を呈する。箱状の多面体は、本実施形態では6面体で構成されている。6面体の外周面(正面、右側面、背面、左側面)と天面(図5)は、大きく突出する形状要素が無い平面で構成されている。そのため筐体2は、全体としてコンパクトに形成されており、また人工呼吸器105Aを机の上などに置いた際に転がらないよう安定した姿勢で置くことができる。筐体2の底面(図6)には、後述するメインポート12gが突出している。 The respirator 105A includes a housing 2. The housing 2 is configured by combining a plurality of parts, and its overall shape presents a box-like polyhedron. The box-shaped polyhedron is composed of hexahedrons in this embodiment. The outer peripheral surfaces (front, right side, back, left side) and top surface (Fig. 5) of the hexahedron are composed of flat surfaces without any protruding shape elements. Therefore, the housing 2 is compact as a whole, and can be placed in a stable posture so that the respirator 105A does not roll over when placed on a desk or the like. A main port 12g, which will be described later, protrudes from the bottom surface of the housing 2 (FIG. 6).
筐体2の説明Description of housing 2
 筐体2は、図17、図18で示すように、本体3と、ダイヤルカバー4と、圧力設定ダイヤル5と、ロック解除ボタン6と、ホルダ7と、圧力設定ばね8と、弁体9と、人工鼻フィルタ10と、弁膜11と、蓋12と、ねじ13とを有する。人工呼吸器105Aは、筐体2にそれらの部品を一体に備えるように構成した新しいコンパクトな肺人工蘇生器である。人工呼吸器105Aに備えるリリーフ弁14は、ダイヤルカバー4、圧力設定ダイヤル5、ロック解除ボタン6、ホルダ7、圧力設定ばね8、弁体9により構成されている。 As shown in FIGS. 17 and 18, the housing 2 includes a main body 3, a dial cover 4, a pressure setting dial 5, a lock release button 6, a holder 7, a pressure setting spring 8, and a valve body 9. , an artificial nasal filter 10 , a valve membrane 11 , a lid 12 and a screw 13 . Ventilator 105A is a new compact pulmonary resuscitator configured to integrate these parts into housing 2 . A relief valve 14 provided in the artificial respirator 105A is composed of a dial cover 4, a pressure setting dial 5, a lock release button 6, a holder 7, a pressure setting spring 8, and a valve body 9.
本体3の説明Description of main body 3
 本体3は、箱状の樹脂成形体にて形成されている。本体3は、〔1〕上面壁30と、〔2〕外周壁31と、〔3〕上面壁30の裏面から外周壁31の内側に突出する筒状の収容部32と、〔4〕外周壁31と収容部32とを繋ぐ支持壁33とを有する。 The main body 3 is formed of a box-shaped resin molding. The main body 3 includes [1] an upper surface wall 30, [2] an outer peripheral wall 31, [3] a cylindrical accommodating portion 32 projecting from the back surface of the upper surface wall 30 to the inner side of the outer peripheral wall 31, and [4] an outer peripheral wall. It has a support wall 33 that connects 31 and the housing portion 32 .
〔1〕上面壁30[1] Top wall 30
 上面壁30は、四隅にねじ13の挿通孔30aの孔端が開口している。上面壁30の中心には収容部32の筒状部32aが開口している。筒状部32aの開口の周囲には複数の係止凹部30bが形成されている。係止凹部30bには、後述する圧力設定ダイヤル5の係止片53に設けた小突起53aが係止する。すなわち、圧力設定ダイヤル5を時計回りに回転させると小突起53aが係止凹部30bと係止して、操作者に対してクリック感を発生させる。これにより圧力設定ダイヤル5が回転して設定する圧力値が変化することを、操作者が確認することができる。また、小突起53aが係止凹部30bと係止することで、圧力設定ダイヤル5の位置を維持することができる。人工呼吸器105Aのリリーフ弁14は、このような回転クリック発生部15(小突起53a、係止凹部30b)を有する。係止凹部30bは、最小の設定圧力値(本実施形態では5cmHO)から中間の設定圧力値(本実施形態では20cmHO)に至るまで1cmHOごとに配置されている。また係止凹部30bは、中間の設定圧力値から最大の設定圧力値(本実施形態では45cmHO)に至るまでは、5cmHOごとに配置されている。 The upper surface wall 30 has openings at the four corners at which holes 30a through which the screws 13 are inserted. A cylindrical portion 32 a of the housing portion 32 is opened at the center of the upper wall 30 . A plurality of engaging recesses 30b are formed around the opening of the cylindrical portion 32a. A small protrusion 53a provided on a locking piece 53 of the pressure setting dial 5, which will be described later, is locked in the locking recess 30b. That is, when the pressure setting dial 5 is rotated clockwise, the small projection 53a engages with the engagement recess 30b, giving the operator a click feeling. As a result, the operator can confirm that the pressure setting dial 5 is rotated to change the set pressure value. Further, the position of the pressure setting dial 5 can be maintained by engaging the small protrusion 53a with the engaging recess 30b. The relief valve 14 of the artificial respirator 105A has such a rotation click generating portion 15 (small projection 53a, locking recess 30b). The locking recesses 30b are arranged every 1 cmH 2 O from the minimum set pressure value (5 cmH 2 O in this embodiment) to an intermediate set pressure value (20 cmH 2 O in this embodiment). The locking recesses 30b are arranged at intervals of 5 cmH 2 O from the intermediate set pressure value to the maximum set pressure value (45 cmH 2 O in this embodiment).
〔2〕外周壁31[2] Peripheral wall 31
 外周壁31は、筒状に形成されており、本実施形態では角筒状に形成されている。外周壁31には、インプットポート31aと排気ポート31bが形成されている。 The outer peripheral wall 31 is formed in a cylindrical shape, and is formed in a square tube shape in this embodiment. The outer peripheral wall 31 is formed with an input port 31a and an exhaust port 31b.
 インプットポート31aは、筐体2に対して患者に吸気する気体を導入する部位である。インプットポート31aは、外周壁31の第1の外面31cに対して筐体2の内側に凹むインプットポート用凹部31a1と、インプットポート用凹部31a1の内側に形成された第1の接続管31a2とを有する。第1の接続管31a2の外側端には導入口31a3が開口する。第1の接続管31a2の内側端(筐体側端)は、後述する通気路16(インプット側通気空間34a)に開口している。 The input port 31a is a part that introduces the gas to be inhaled into the patient into the housing 2. The input port 31a includes an input port recess 31a1 recessed inside the housing 2 with respect to the first outer surface 31c of the outer peripheral wall 31, and a first connection pipe 31a2 formed inside the input port recess 31a1. have. An introduction port 31a3 opens at the outer end of the first connection pipe 31a2. The inner end (housing-side end) of the first connection pipe 31a2 opens into the later-described ventilation path 16 (input-side ventilation space 34a).
 第1の接続管31a2は、気体(例えば、空気や酸素と空気の混合ガス)を供給する配管や、空気または酸素ボンベ、エアコンプレッサーなどと酸素チューブを介して接続することができる。 The first connection pipe 31a2 can be connected to a pipe for supplying gas (for example, air or a mixed gas of oxygen and air), air or an oxygen cylinder, an air compressor, etc. via an oxygen tube.
 第1の接続管31a2は、前記外側端から前記内側端にかけて外径が拡大するテーパー形状に形成されている。酸素チューブの接続部は規格が一定ではなく、個別にカットして用いるバブルチューブタイプのチューブもある。このためテーパー形状の第1の接続管31a2であれば、それらの様々なチューブをその内径に応じて接続することが可能である。 The first connecting pipe 31a2 is tapered such that the outer diameter increases from the outer end to the inner end. The connection part of the oxygen tube does not have a fixed standard, and there is also a bubble tube type tube that is individually cut and used. Therefore, with the tapered first connection pipe 31a2, it is possible to connect these various tubes according to their inner diameters.
 吸気用一次側接続対象物(配管や接続口)は、インプットポート用凹部31a1と第1の接続管31a2との隙間に入り込ませることができる。したがって、第1の接続管31a2と吸気用一次側接続対象物との接続部分は、インプットポート用凹部31a1に隠されて外力の作用に対して保護することができる。このため、人や物が意図せず接続部分に接触することによって、呼吸用一次側接続対象物が緩んだり外れたりするのを防ぐことができる。 The intake primary side connection object (pipe or connection port) can be inserted into the gap between the input port concave portion 31a1 and the first connection pipe 31a2. Therefore, the connecting portion between the first connecting pipe 31a2 and the intake primary side connection object can be hidden in the input port concave portion 31a1 and protected against the action of external force. Therefore, it is possible to prevent loosening or disconnection of the respiratory primary side connection object due to unintentional contact of a person or object with the connecting portion.
 第1の接続管31a2の導入口31a3は、外周壁31の第1の外面31cよりも外に突出せずに配置されている。これによりインプットポート31aが形成されている外周壁31の第1の外面31cは、大きく突出する形状要素が無い平面として構成できる。したがって外周壁31を全体としてコンパクトに形成することができ、また机の上などに安定した姿勢で置くことができる。さらに、インプットポート31aが突出していないので、落としたときにインプットポート31aが破損したり折れたりするリスクを減らすことができる。 The introduction port 31a3 of the first connection pipe 31a2 is arranged without protruding outside the first outer surface 31c of the outer peripheral wall 31 . As a result, the first outer surface 31c of the outer peripheral wall 31, on which the input port 31a is formed, can be configured as a flat surface without any protruding shape elements. Therefore, the outer peripheral wall 31 can be made compact as a whole, and can be placed on a desk or the like in a stable posture. Furthermore, since the input port 31a does not protrude, it is possible to reduce the risk of the input port 31a being damaged or broken when dropped.
 排気ポート31bは、筐体2から気体又は呼気を排出する部位である。排気ポート31bは、外周壁31の第2の外面31dに対して筐体2の内側に凹む排気ポート用凹部31b1と、排気ポート用凹部31b1の内側に形成された第2の接続管31b2とを有する。第2の接続管31b2の内側端(筐体側端)は、後述する弁室32c1に開口している。 The exhaust port 31b is a part for discharging gas or breath from the housing 2. The exhaust port 31b includes an exhaust port recess 31b1 recessed inside the housing 2 with respect to the second outer surface 31d of the outer peripheral wall 31, and a second connecting pipe 31b2 formed inside the exhaust port recess 31b1. have. The inner end (housing side end) of the second connecting pipe 31b2 opens into a valve chamber 32c1, which will be described later.
 第2の接続管31b2は、例えば蛇管などに差し込むことができる。しかしながら、第2の接続管31b2は、蛇管などを接続せずに開放しておいてもよい。 The second connection pipe 31b2 can be inserted into, for example, a corrugated pipe. However, the second connection pipe 31b2 may be left open without being connected to a corrugated pipe or the like.
 第2の接続管31b2は、先端側から前記内側端にかけて外径が拡大するテーパー形状に形成されている。例えば、第2の接続管31b2に接続可能な蛇管は、内径18mmと22mmのものが流通しているが、メーカーによって僅かに内径にばらつきが見られる。テーパー形状の第2の接続管31b2であれば、それらの内径にばらつきが見られる場合でも、テーパー形状によってフィットさせて確実に接続することができる。 The second connection pipe 31b2 is formed in a tapered shape with an outer diameter increasing from the tip side to the inner end. For example, corrugated tubes connectable to the second connecting tube 31b2 have inner diameters of 18 mm and 22 mm, but the inner diameter varies slightly depending on the manufacturer. If the second connecting pipe 31b2 has a tapered shape, even if there is variation in the inner diameters of the pipes, the tapered shape allows fitting and reliable connection.
 排気用二次側接続対象物(蛇管など)は、排気ポート用凹部31b1と第2の接続管31b2との隙間に入り込ませることができる。したがって、第2の接続管31b2と排気用二次側接続対象物との接続部分は、排気ポート用凹部31b1に隠されて外力の作用に対して保護することができる。このため、人や物が意図せず接続部分に接触することによって、排気用一次側接続対象物が緩んだり外れたりするのを防ぐことができる。 The exhaust secondary side connection object (such as a corrugated tube) can be inserted into the gap between the exhaust port concave portion 31b1 and the second connection pipe 31b2. Therefore, the connecting portion between the second connecting pipe 31b2 and the exhaust secondary side connection object can be hidden in the exhaust port concave portion 31b1 and protected against the action of external force. Therefore, it is possible to prevent loosening or disconnection of the exhaust primary side connection object due to unintentional contact of a person or object with the connecting portion.
 第2の接続管31b2の排気口31b3は、外周壁31の第2の外面31dよりも外に突出せずに配置されている。これにより排気ポート31bが形成されている外周壁31の第2の外面31dは、大きく突出する形状要素が無い平面として構成できる。したがって外周壁31を全体としてコンパクトに形成することができ、また机の上などに安定した姿勢で置くことができる。 The exhaust port 31b3 of the second connecting pipe 31b2 is arranged without protruding outside the second outer surface 31d of the outer peripheral wall 31 . As a result, the second outer surface 31d of the outer peripheral wall 31 on which the exhaust port 31b is formed can be configured as a flat surface without a shape element that greatly protrudes. Therefore, the outer peripheral wall 31 can be made compact as a whole, and can be placed on a desk or the like in a stable posture.
 第2の接続管31b2の排気口31b3は、径方向で直接的に切断したような端面形状ではなく、筐体2の内側に向けて凹む湾曲凹部31b4が形成されている。湾曲凹部31b4は、排気口31b3の端面を先端側から筐体2の内側に向けて円弧状に切り取ったような湾曲形状に形成されている。その湾曲形状は、例えば親指の腹の形状に沿うような形状として形成されている。例えば、人工呼吸器105Aの使用中に気管、気管支、肺に喀痰などの異物が存在することが判明し、それを上気道側に誘導し除去することで患者の呼吸を楽にしたい場合がある。このような場合には、親指で排気口31b3を全閉することで吸気をし続けて、気道内圧が瞬間的に高めるように、患者の肺を膨張させる。次に親指を離すと、リリーフ弁14が開いて排気ポート31bから排気される。すると瞬間的に昇圧された気道圧力が減圧され、膨張した肺が瞬間的に縮むことにより、異物を上気道側に誘導させることができる。こうした異物の誘導処置を行う際に、排気口31b3に湾曲凹部31b4が形成されていると、例えば親指の腹を正しく沿わせて閉塞させることができるので、容易かつ確実に誘導処置を行うことができる。 The exhaust port 31b3 of the second connection pipe 31b2 does not have an end face shape as if it were cut directly in the radial direction, but a curved concave portion 31b4 that is concave toward the inside of the housing 2 is formed. The curved recessed portion 31b4 is formed in a curved shape obtained by cutting an end face of the exhaust port 31b3 in an arc shape from the tip side toward the inside of the housing 2 . The curved shape is formed, for example, along the shape of the pad of the thumb. For example, it may be found that foreign matter such as sputum is present in the trachea, bronchi, or lungs while the artificial respirator 105A is in use, and it may be desired to guide the foreign matter toward the upper respiratory tract and remove it to facilitate the patient's breathing. In such a case, by fully closing the exhaust port 31b3 with the thumb, the patient continues to inhale and inflate the patient's lungs so that the airway pressure increases momentarily. Next, when the thumb is released, the relief valve 14 opens and the air is exhausted from the exhaust port 31b. Then, the airway pressure, which has been increased instantaneously, is reduced, and the inflated lungs are instantaneously contracted, thereby guiding the foreign matter to the upper respiratory tract side. When performing such foreign matter guidance treatment, if the exhaust port 31b3 is formed with the curved concave portion 31b4, for example, the pad of the thumb can be correctly placed along the block and closed, so that the guidance treatment can be performed easily and reliably. can.
 排気ポート31bを有する第2の外面31dには、排気口31b3と連通し且つ第2の外面31dの外端に到達する通気溝31eが形成されている。通気溝31eは、湾曲する凹面により形成されており、排気ポート31bを中心とする両側から第2の外面31dの外端に向けて伸長している。このような通気溝31eを設けることで、排気口31b3が、例えば壁面、体の一部、衣類、枕などと密着して意図せず塞がれそうになっても、通気溝31eによって排気経路を確保することができ、完全に排気が遮断されることなく安全に使用できる。なお、通気溝31eは、排気ポート31bの両側に設けているが、片側だけとしてもよい。 A ventilation groove 31e that communicates with the exhaust port 31b3 and reaches the outer end of the second outer surface 31d is formed in the second outer surface 31d having the exhaust port 31b. The ventilation groove 31e is formed by a curved concave surface and extends from both sides of the exhaust port 31b toward the outer end of the second outer surface 31d. By providing such a ventilation groove 31e, even if the exhaust port 31b3 is in close contact with, for example, a wall surface, a part of the body, clothes, a pillow, etc. and is about to be unintentionally blocked, the ventilation groove 31e allows the exhaust path to be removed. can be ensured and can be used safely without completely shutting off the exhaust. Although the ventilation grooves 31e are provided on both sides of the exhaust port 31b, they may be provided only on one side.
〔3〕収容部32[3] Accommodating portion 32
 収容部32は、筒状部32aと底面部32bとを有する。筒状部32aと底面部32bとで囲まれた収容空間32cには、ホルダ7、圧力設定ばね8、弁体9などのリリーフ弁14を構成する部品の一部が配置されている。このように収容部32は、リリーフ弁14の構成部品をコンパクトに配置することができる。 The housing portion 32 has a cylindrical portion 32a and a bottom portion 32b. A part of the parts constituting the relief valve 14 such as the holder 7, the pressure setting spring 8, and the valve body 9 are arranged in the housing space 32c surrounded by the cylindrical portion 32a and the bottom portion 32b. In this manner, the housing portion 32 can compactly arrange the components of the relief valve 14 .
 筒状部32aの内周面には、排気ポート31bの第2の接続管31b2の内側端(筐体側端)が開口している。筒状部32aの内周面には、ホルダ7が収容部32の中心軸の軸方向に沿って移動するのを案内するガイド部32a1が設けられている。ガイド部32a1は、ホルダ7の外周面に形成されている一対のガイド突起7cを挿入する一対の溝により形成されている。したがって、ホルダ7は、ガイド突起7cがガイド部32a1に沿って案内されることにより、偏りのない姿勢で収容部32の内部を前記中心軸の軸方向に沿って移動することができる。 The inner end (housing side end) of the second connection pipe 31b2 of the exhaust port 31b is open to the inner peripheral surface of the tubular portion 32a. A guide portion 32a1 for guiding movement of the holder 7 along the axial direction of the central axis of the housing portion 32 is provided on the inner peripheral surface of the cylindrical portion 32a. The guide portion 32a1 is formed by a pair of grooves into which a pair of guide protrusions 7c formed on the outer peripheral surface of the holder 7 are inserted. Therefore, the guide protrusion 7c is guided along the guide portion 32a1, so that the holder 7 can move in the inside of the housing portion 32 along the axial direction of the central axis in an unbiased posture.
 底面部32bは、弁座32b1と弁孔32b2とを有する。弁座32b1は、底面部32bの直径よりも小径に形成されており、収容空間32cに向けて突出する円筒状に形成されている。弁孔32b2は弁座32b1の内周面として形成されており、底面部32bを貫通する貫通孔として形成されている。 The bottom portion 32b has a valve seat 32b1 and a valve hole 32b2. The valve seat 32b1 has a diameter smaller than that of the bottom surface portion 32b, and is formed in a cylindrical shape protruding toward the accommodation space 32c. The valve hole 32b2 is formed as an inner peripheral surface of the valve seat 32b1 and is formed as a through hole penetrating through the bottom surface portion 32b.
 収容空間32cには、弁室32c1が形成されている。弁室32c1は、底面部32bとホルダ7との間の空間によって形成されており、そこには圧力設定ばね8の下側部分と弁体9とが配置されている。弁体9は、弁室32c1の内部を上下方向に移動可能に構成されている。弁室32c1の空間高さは、収容部32の中心軸の軸方向に移動可能であるホルダ7の位置(弁室32c1に面するホルダ7の底面の位置)に応じて変化する。しかしながら、弁室32c1は、前述した排気ポート31bと常時連通する位置に形成されている。 A valve chamber 32c1 is formed in the housing space 32c. The valve chamber 32c1 is defined by the space between the bottom surface portion 32b and the holder 7, in which the lower portion of the pressure setting spring 8 and the valve body 9 are arranged. The valve body 9 is configured to be vertically movable inside the valve chamber 32c1. The spatial height of the valve chamber 32c1 changes according to the position of the holder 7 (the position of the bottom surface of the holder 7 facing the valve chamber 32c1) that is movable in the axial direction of the center axis of the housing portion 32. FIG. However, the valve chamber 32c1 is formed at a position where it always communicates with the aforementioned exhaust port 31b.
〔4〕支持壁33[4] Support wall 33
 支持壁33は、外周壁31と収容部32とを繋ぐように複数箇所に形成されている。隣接する支持壁33どうしの間には、第1の通気空間34が形成されている。複数の第1の通気空間34のうちの一つは、インプット側通気空間34aとして形成されている。インプット側通気空間34aには、インプットポート31aの第1の接続管31a2の内側端(筐体側端)が開口している。インプットポート31aから流入する気体は、先ずこのインプット側通気空間34aに入り込み、そこから第1の通気空間34に流れる。 The support walls 33 are formed at a plurality of locations so as to connect the outer peripheral wall 31 and the housing portion 32 . A first ventilation space 34 is formed between adjacent support walls 33 . One of the plurality of first ventilation spaces 34 is formed as an input-side ventilation space 34a. The inner end (housing side end) of the first connecting pipe 31a2 of the input port 31a opens into the input-side ventilation space 34a. The gas flowing in from the input port 31a first enters this input-side ventilation space 34a and flows from there to the first ventilation space 34. As shown in FIG.
 支持壁33は、第1の支持壁33aと、第2の支持壁33bと、第3の支持壁33cとを有する。このうち、第1の支持壁33aには下方に突出する第1の脚部33a1が形成されており、第2の支持壁33bにも下方に突出する第2の脚部33b1が形成されている。第3の支持壁33cは、収容部32の底面部32bよりも下方に突出しておらず、底面部32bと同じ高さ位置で形成されている。 The support wall 33 has a first support wall 33a, a second support wall 33b, and a third support wall 33c. Among these, the first support wall 33a is formed with a first leg portion 33a1 projecting downward, and the second support wall 33b is also formed with a second leg portion 33b1 projecting downward. . The third support wall 33c does not protrude below the bottom surface portion 32b of the housing portion 32, and is formed at the same height position as the bottom surface portion 32b.
 第1の脚部33a1は、弁孔32b2を中心とする両側に筐体2の第1の対角線上に沿って形成されている。第1の脚部33a1は、外周壁31の下端を超える長さで形成されている。各第1の脚部33a1の先端は、人工鼻フィルタ10を通過して弁膜11を押さえる第1の保持部33a2として形成されている。したがって人工鼻フィルタ10は、第1の脚部33a1により確実に保持される。 The first legs 33a1 are formed along the first diagonal line of the housing 2 on both sides of the valve hole 32b2. The first leg portion 33 a 1 is formed with a length exceeding the lower end of the outer peripheral wall 31 . The tip of each first leg 33 a 1 is formed as a first holding part 33 a 2 that passes through the artificial nasal filter 10 and holds the valve membrane 11 . Therefore, the artificial nasal filter 10 is securely held by the first leg portion 33a1.
 第2の脚部33b1は、弁孔32b2を中心とする両側に筐体2の第2の対角線上に沿って形成されている。各第2の脚部33b1の先端は、人工鼻フィルタ10を押さえる第2の保持部33b2として形成されている。したがって患者の呼気を受けても人工鼻フィルタ10がバタつくことがなく、人工鼻フィルタ10はその配置した状態を確実に維持することができる。 The second legs 33b1 are formed along the second diagonal of the housing 2 on both sides of the valve hole 32b2. The tip of each second leg portion 33b1 is formed as a second holding portion 33b2 that holds the artificial nasal filter 10. As shown in FIG. Therefore, the artificial nasal filter 10 does not flutter even if it receives the patient's exhalation, and the artificial nasal filter 10 can be reliably maintained in its arranged state.
 筐体2では、支持壁33の下側に人工鼻フィルタ10が配置される。第2の脚部33b1の第2の保持部33b2が人工鼻フィルタ10と当接すると、人工鼻フィルタ10と収容部32の底面部32bとの間に隙間が形成される。その隙間が第1の通気空間34を構成し、第1の通気空間34は通気路16を構成することとなる。 In the housing 2, the artificial nasal filter 10 is arranged below the support wall 33. When the second holding portion 33b2 of the second leg portion 33b1 contacts the artificial nasal filter 10, a gap is formed between the artificial nasal filter 10 and the bottom surface portion 32b of the housing portion 32. As shown in FIG. The gap constitutes the first ventilation space 34 , and the first ventilation space 34 constitutes the ventilation path 16 .
ダイヤルカバー4の説明Explanation of dial cover 4
 ダイヤルカバー4は、樹脂成形体で形成されており、本体3の上面壁30に取付けられて、圧力設定ダイヤル5を回転可能に保持する。 The dial cover 4 is made of resin molding, is attached to the top wall 30 of the main body 3, and holds the pressure setting dial 5 rotatably.
 ダイヤルカバー4の表面には、設定する圧力値に対応する複数の数字や単位を立体的に表示する表示部4aが形成されている。本実施形態のリリーフ弁14は、APL弁として動作するものである。表示部4aは、立体的に突出する形状で形成する例を示しているが、立体的に凹む凹形状で形成してもよい。このように表示部4aは、樹脂成形体の一部として構成されているので、経年により表示が消失することがない。本実施形態では、最小の設定圧力値として「5」が表示され、そこから「10」、「15」、「20」、「30」、「40」の各表示部4aが形成されている。「cmHO」は、設定圧力値の単位を示している。 A display portion 4a is formed on the surface of the dial cover 4 to three-dimensionally display a plurality of numbers and units corresponding to the pressure value to be set. The relief valve 14 of this embodiment operates as an APL valve. Although the display part 4a is formed in a three-dimensionally protruding shape, it may be formed in a three-dimensionally concave shape. Since the display portion 4a is formed as a part of the resin molded body in this way, the display does not disappear over time. In the present embodiment, "5" is displayed as the minimum set pressure value, and the respective display portions 4a of "10", "15", "20", "30" and "40" are formed therefrom. "cmH 2 O" indicates the unit of the set pressure value.
 ダイヤルカバー4の裏面には、ロック解除ボタン6の配置凹部4bが形成されている。配置凹部4bには、ロック解除ボタン6の移動をガイドするガイド凹部4b1が形成されている。 On the back surface of the dial cover 4, an arrangement recess 4b for the lock release button 6 is formed. A guide recess 4b1 for guiding the movement of the lock release button 6 is formed in the arrangement recess 4b.
 ダイヤルカバー4の裏面には、圧力設定ダイヤル5のダイヤル本体50を配置する円状の配置開口4cと隣接する位置に、回転ガイド部4dが形成されている。回転ガイド部4dは、後述する圧力設定ダイヤル5のフランジ部51の回転をガイドするとともに、その脱離を防ぐ部位である。回転ガイド部4dには、表示部4aの「5」の位置に対応して設けた第1の当接受け部4d1と、表示部4aの「20」の位置に対応して設けた第2の当接受け部4d2と、表示部4aとしては存在しない「45」の位置に対応して設けた第3の当接受け部4d3とが形成されている。 A rotation guide portion 4d is formed on the rear surface of the dial cover 4 at a position adjacent to the circular arrangement opening 4c in which the dial body 50 of the pressure setting dial 5 is arranged. The rotation guide portion 4d is a portion that guides the rotation of the flange portion 51 of the pressure setting dial 5, which will be described later, and prevents it from coming off. The rotation guide portion 4d has a first contact receiving portion 4d1 provided corresponding to the position "5" of the display portion 4a and a second contact receiving portion 4d1 provided corresponding to the position "20" of the display portion 4a. A contact receiving portion 4d2 and a third contact receiving portion 4d3 provided corresponding to the position of "45" which does not exist in the display portion 4a are formed.
 第1の当接受け部4d1と第2の当接受け部4d2との間では、圧力設定ダイヤル5を自由に回転することができる。圧力設定ダイヤル5は、ストッパー52が第1の当接受け部4d1と当接することで回転を停止し、その停止位置で最小の設定圧力値「5」が設定される。圧力設定ダイヤル5は、ストッパー52が第2の当接受け部4d2と当接することで回転を停止し、その停止位置で中間の設定圧力値「20」が設定される。なお、本実施形態における最小、中間、最大の設定圧力値は例示であって他の値でもよい。 The pressure setting dial 5 can be freely rotated between the first contact receiving portion 4d1 and the second contact receiving portion 4d2. The pressure setting dial 5 stops rotating when the stopper 52 comes into contact with the first contact receiving portion 4d1, and the minimum set pressure value "5" is set at the stop position. The pressure setting dial 5 stops rotating when the stopper 52 comes into contact with the second contact receiving portion 4d2, and the intermediate set pressure value "20" is set at the stop position. Note that the minimum, intermediate, and maximum set pressure values in this embodiment are examples, and other values may be used.
 この中間の設定圧力値「20」を超える圧力値を設定するには、ストッパー52が第2の当接受け部4d2の段差を乗り越える必要がある。そのためには、操作者がロック解除ボタン6を圧力設定ダイヤル5の中央に向けて押し込むことで、ストッパー52を下方に押し下げる。これによってストッパー52が当該段差を乗り越えることができる。そして段差を乗り越えた状態のまま圧力設定ダイヤル5を回転させることで、最大の設定圧力値「45」まで圧力設定ダイヤル5をさらに回転させることができる。 In order to set a pressure value exceeding this intermediate set pressure value "20", it is necessary for the stopper 52 to climb over the step of the second contact receiving portion 4d2. For this purpose, the operator presses the lock release button 6 toward the center of the pressure setting dial 5 to push the stopper 52 downward. This allows the stopper 52 to climb over the step. By rotating the pressure setting dial 5 in the state where the step is overcome, the pressure setting dial 5 can be further rotated to the maximum set pressure value "45".
 このように所定の設定圧力値で圧力設定ダイヤル5の自由回転を規制し、それを超える圧力値を設定するための回転ロック解除機構17(第2の当接受け部4d2、ストッパー52)を備えることで、気道内圧を誤って高く設定し過ぎることが無いようにすることができる。 In this way, a rotation lock release mechanism 17 (second contact receiving portion 4d2, stopper 52) is provided for restricting the free rotation of the pressure setting dial 5 at a predetermined set pressure value and setting a pressure value exceeding the set pressure value. Thus, it is possible to prevent the airway pressure from being erroneously set too high.
圧力設定ダイヤル5の説明Explanation of pressure setting dial 5
 圧力設定ダイヤル5は、円盤形状の樹脂成形体で形成されており、ダイヤル本体50、フランジ部51、ストッパー52、係止片53が形成されている。 The pressure setting dial 5 is made of a disk-shaped resin molding, and includes a dial main body 50, a flange portion 51, a stopper 52, and a locking piece 53.
 ダイヤル本体50の表面には、ダイヤル本体50を回転操作するための圧力設定キー18を差し込む2つのキー孔50aが設けられている。圧力設定キー18の説明は後述する。ダイヤル本体50の裏面には、突出筒50bが形成されており、その外周面にはホルダ7の雌ねじ7dと螺合する雄ねじ50cが形成されている。雄ねじ50cと雌ねじ7dは二条ねじとして設けられており、圧力設定ダイヤル5の回転精度を高められている。これらの雄ねじ50cと雌ねじ7dは、圧力設定ねじとして構成されている。 The surface of the dial body 50 is provided with two key holes 50a into which the pressure setting keys 18 for rotating the dial body 50 are inserted. A description of the pressure setting key 18 will be given later. A protruding tube 50b is formed on the rear surface of the dial main body 50, and a male thread 50c that is screwed with the female thread 7d of the holder 7 is formed on the outer peripheral surface of the protruding tube 50b. The male thread 50c and the female thread 7d are provided as double threads, and the rotation accuracy of the pressure setting dial 5 is enhanced. These male thread 50c and female thread 7d are configured as pressure setting screws.
 突出筒50bの内側は、圧力設定ばね8の上端側を挿入するばね収容部50dとして構成されている。 The inner side of the projecting cylinder 50b is configured as a spring accommodating portion 50d into which the upper end side of the pressure setting spring 8 is inserted.
 フランジ部51は、前述したダイヤルカバー4の回転ガイド部4dに対向して配置される。フランジ部51には、フランジ部51を欠如する欠如部にストッパー52と係止片53が形成されている。 The flange portion 51 is arranged to face the rotation guide portion 4d of the dial cover 4 described above. A stopper 52 and a locking piece 53 are formed in the missing portion of the flange portion 51 where the flange portion 51 is missing.
 ストッパー52は、ダイヤル本体50の側面から片持ち梁状に伸長する突起として形成されている。ストッパー52は、厚肉部52aと薄肉部52bとが形成されている。圧力設定ダイヤル5を回転操作すると、このストッパー52が前述の第1の当接受け部4d1、第2の当接受け部4d2、第3の当接受け部4d3に対して当接して回転量を規制することができる。そして、ストッパー52は、厚肉部52aの基端(ダイヤル本体50側の端部)を支点として、フランジ部51の高さ方向で変位可能として構成されている。したがって、ロック解除ボタン6の押圧を受けると下方に変位して、第2の当接受け部4d2の段差を超えて回転が規制されたロック状態を解除することができる。 The stopper 52 is formed as a projection extending like a cantilever from the side surface of the dial main body 50 . The stopper 52 has a thick portion 52a and a thin portion 52b. When the pressure setting dial 5 is rotated, the stopper 52 comes into contact with the first contact receiving portion 4d1, the second contact receiving portion 4d2, and the third contact receiving portion 4d3 to reduce the amount of rotation. can be regulated. The stopper 52 is configured to be displaceable in the height direction of the flange portion 51 with the base end of the thick portion 52a (the end portion on the dial main body 50 side) as a fulcrum. Therefore, when pressed by the unlocking button 6, it is displaced downward, and the locked state in which the rotation is restricted beyond the step of the second contact receiving portion 4d2 can be released.
 ダイヤル本体50の表面には、ストッパー52に対応する位置に設定圧力値指示部50eが形成されている。設定圧力値指示部50eは、本実施形態では三角形状の記号で立体的に形成されているが、設定圧力値を認識できれば良いためその他の形状でも良い。なお、設定圧力値指示部50eは、立体的に突出する形状とする例を示しているが、立体的に凹む凹形状で形成してもよい。 A set pressure value indicating portion 50 e is formed on the surface of the dial main body 50 at a position corresponding to the stopper 52 . Although the set pressure value indication part 50e is three-dimensionally formed with a triangular symbol in this embodiment, other shapes may be used as long as the set pressure value can be recognized. Although the set pressure value indicating portion 50e is shown as a three-dimensionally protruding shape, it may be formed in a three-dimensionally concave shape.
 係止片53は、ダイヤル本体50の側面から片持ち梁状に伸長する突起として形成されている。したがって、この係止片53も基端(ダイヤル本体50側の端部)を支点として、フランジ部51の高さ方向で変位可能として構成されている。そして係止片53の裏面には小突起53aが形成されている。この小突起53aは、前述した本体3の上面壁30の係止凹部30bと係止することで、圧力設定ダイヤル5を回転操作したときにクリック感を発生することができる。小突起53aは係止片53がフランジ部51の高さ方向で撓んで変位することで、係止凹部30bに対する係止及び係止解除を行う。 The locking piece 53 is formed as a projection extending like a cantilever from the side surface of the dial main body 50 . Therefore, this locking piece 53 is also configured to be displaceable in the height direction of the flange portion 51 with the base end (the end on the dial main body 50 side) as a fulcrum. A small protrusion 53a is formed on the rear surface of the locking piece 53. As shown in FIG. The small protrusion 53a is engaged with the engaging recess 30b of the upper surface wall 30 of the main body 3, so that a click feeling can be generated when the pressure setting dial 5 is rotated. The small projection 53a engages and unlocks the engaging recess 30b by bending and displacing the engaging piece 53 in the height direction of the flange portion 51. As shown in FIG.
ロック解除ボタン6の説明Description of unlock button 6
 ロック解除ボタン6は、「ロック解除部」として構成されており、押圧操作部6aと、押圧部6bとを有する。押圧操作部6aは、ダイヤルカバー4の外周面からわずかに突出するように、ダイヤルカバー4の配置凹部4bに配置されている。したがって、押圧操作部6aが押す操作を行う部分であることを、使用者が容易に認識することができる。 The unlock button 6 is configured as an "unlock portion" and has a pressing operation portion 6a and a pressing portion 6b. The pressing operation portion 6 a is arranged in the arrangement recess 4 b of the dial cover 4 so as to protrude slightly from the outer peripheral surface of the dial cover 4 . Therefore, the user can easily recognize that the pressing operation portion 6a is a portion to be pressed.
 前述のように配置凹部4bにはガイド凹部4b1が形成されており、そこには押圧部6bに設けたガイド突起6b1が配置される。これによりロック解除ボタン6は、圧力設定ダイヤル5の中心に向かう径方向でスムーズに進退動することができ、また筐体2からの脱落が防止される。押圧部6bには、傾斜面部6b2が形成されている。この傾斜面部6b2が圧力設定ダイヤル5のストッパー52の薄肉部52bに対して斜めに当接することで、ストッパー52の下方向へのスムーズな変位を誘導することができる。 As described above, the placement recess 4b is formed with the guide recess 4b1, and the guide projection 6b1 provided on the pressing portion 6b is placed there. As a result, the lock release button 6 can move smoothly forward and backward in the radial direction toward the center of the pressure setting dial 5 and is prevented from falling out of the housing 2 . An inclined surface portion 6b2 is formed on the pressing portion 6b. The inclined surface portion 6b2 abuts obliquely against the thin portion 52b of the stopper 52 of the pressure setting dial 5, so that smooth downward displacement of the stopper 52 can be induced.
ホルダ7の説明Explanation of holder 7
 ホルダ7は、円筒状のホルダ本体7aと、ホルダ本体7aの底面側から上端側に向けて突出する円筒状突出部7bとを有する。 The holder 7 has a cylindrical holder main body 7a and a cylindrical protruding portion 7b protruding from the bottom side of the holder main body 7a toward the upper end side.
 ホルダ本体7aの外周面には、ガイド突起7cが形成されている。ホルダ7は、ガイド突起7cが収容部32の筒状部32aのガイド部32a1に沿って案内されることにより、偏りのない姿勢で収容部32の内部を前記中心軸の軸方向に沿って移動することができる。 A guide projection 7c is formed on the outer peripheral surface of the holder main body 7a. The guide projections 7c are guided along the guide portions 32a1 of the cylindrical portion 32a of the housing portion 32, so that the holder 7 moves in the housing portion 32 along the axial direction of the central axis in an unbiased posture. can do.
 ホルダ本体7aの内周面には、圧力設定ダイヤル5の雄ねじ50cと螺合する雌ねじ7dが形成されている。圧力設定ダイヤル5を時計周りに回転させると、雌ねじ7dが雄ねじ50cと螺合することで、ホルダ本体7aが下方に送られる。この場合、ホルダ7が圧力設定ばね8を圧縮する圧縮量が大きくなる。したがって圧力設定ばね8は、弾性変形に必要な押圧力が高くなり、弁体9を開放する圧力も高くなる。これとは逆に圧力設定ダイヤル5を反時計回りに回転させると、ホルダ本体7aが上方に送られることで、弁体9を開放する圧力が低くなる。 A female thread 7d that screws together with the male thread 50c of the pressure setting dial 5 is formed on the inner peripheral surface of the holder main body 7a. When the pressure setting dial 5 is rotated clockwise, the female thread 7d is engaged with the male thread 50c, thereby sending the holder body 7a downward. In this case, the amount of compression by which the holder 7 compresses the pressure setting spring 8 increases. Therefore, the pressure setting spring 8 requires a higher pressing force for elastic deformation, and the pressure for opening the valve body 9 also increases. Conversely, when the pressure setting dial 5 is rotated counterclockwise, the holder main body 7a is sent upward, and the pressure for opening the valve body 9 is lowered.
 円筒状突出部7bの内側には、圧力設定ばね8の上端側が挿入されて配置される。 The upper end side of the pressure setting spring 8 is inserted and placed inside the cylindrical projecting portion 7b.
圧力設定ばね8の説明Description of the pressure setting spring 8
 圧力設定ばね8は、金属製の圧縮コイルばねとして形成されている。前述のように圧力設定ばね8の上端側はホルダ7の円筒状突出部7bの内側に挿入されて保持される。他方、圧力設定ばね8の下端側は、弁体9の柱状突起9a2に外挿されて保持される。なお、本実施形態の圧力設定ばね8は金属製のものを例示したが、低コスト化、金属の持ち込みができないMRI室への持ち込みを可能とする目的で樹脂成形体としてもよい。 The pressure setting spring 8 is formed as a metal compression coil spring. As described above, the upper end side of the pressure setting spring 8 is inserted inside the cylindrical projecting portion 7b of the holder 7 and held. On the other hand, the lower end side of the pressure setting spring 8 is externally inserted onto the columnar projection 9a2 of the valve body 9 and held. Although the pressure setting spring 8 of this embodiment is made of metal, it may be made of a resin molded body for the purpose of reducing costs and allowing it to be brought into an MRI room where metal is not allowed.
弁体9の説明Description of the valve body 9
 弁体9は、基部9aと、環状部9bと、円筒状周壁部9cと、弁軸9dとを有する。 The valve body 9 has a base portion 9a, an annular portion 9b, a cylindrical peripheral wall portion 9c, and a valve shaft 9d.
 基部9aは、円盤状に形成されており、閉状態で弁座32b1と当接して弁孔32b2を閉塞している。弁体9の閉状態で、基部9aのうち弁孔32b2に晒されている部分は、吸気や呼気の圧力を受ける第1の受圧面部9a1として形成されている。基部9aの上面には、圧力設定ばね8の下端側に挿入する柱状突起9a2を有する。 The base portion 9a is formed in a disc shape, and in the closed state abuts against the valve seat 32b1 to block the valve hole 32b2. A portion of the base portion 9a exposed to the valve hole 32b2 in the closed state of the valve body 9 is formed as a first pressure receiving surface portion 9a1 that receives the pressure of inspiration and expiration. The upper surface of the base portion 9a has a columnar projection 9a2 that is inserted into the lower end side of the pressure setting spring 8. As shown in FIG.
 環状部9bは、基部9aの外周面から外方に突出する円環状に形成されている。環状部9bは、弁体9が開状態となった際に、流入する気体の圧力を受ける第2の受圧面部9b1を構成している。 The annular portion 9b is formed in an annular shape protruding outward from the outer peripheral surface of the base portion 9a. The annular portion 9b constitutes a second pressure-receiving surface portion 9b1 that receives the pressure of the inflowing gas when the valve body 9 is in an open state.
 環状部9bの外周端には円筒状周壁部9cが形成されている。円筒状周壁部9cにおける第2の受圧面部9b1と連続する内周面部分は、第2の受圧面部9b1に流れてきた気体を、第2の受圧面部9b1とともに受け止める部位として形成されている。円筒状周壁部9cは、環状部9bの上面側にも突出している。これは気体の圧力を受けて開閉動作する弁体9の全体としてのバランスを取るために設けられている。 A cylindrical peripheral wall portion 9c is formed at the outer peripheral end of the annular portion 9b. The inner peripheral surface portion of the cylindrical peripheral wall portion 9c that is continuous with the second pressure receiving surface portion 9b1 is formed as a portion that receives the gas that has flowed to the second pressure receiving surface portion 9b1 together with the second pressure receiving surface portion 9b1. The cylindrical peripheral wall portion 9c also protrudes to the upper surface side of the annular portion 9b. This is provided to balance the valve body 9 as a whole which opens and closes under the pressure of gas.
 円筒状周壁部9cは、上端及び下端が弁体9の中心軸側に湾曲する球面状外周面9c1を有している。このため弁体9が開閉動作する際に、仮に弁体9が斜めに傾くことがあったとしても、円筒状周壁部9cの上端縁と下端縁とが弁室32c1に引っ掛からずに、適切に開閉動作させることができる。また、球面状外周面9c1と弁室32c1との間には、通気間隙が形成されており、弁体9はスムーズに変位することができる。 The cylindrical peripheral wall portion 9 c has a spherical outer peripheral surface 9 c 1 whose upper and lower ends are curved toward the central axis of the valve body 9 . Therefore, even if the valve body 9 is tilted when the valve body 9 opens and closes, the upper edge and the lower edge of the cylindrical peripheral wall portion 9c do not get caught in the valve chamber 32c1. It can be opened and closed. A ventilation gap is formed between the spherical outer peripheral surface 9c1 and the valve chamber 32c1, so that the valve body 9 can be displaced smoothly.
 弁軸9dは、ステンレスなどの金属棒で形成されており、基部9aと一体構造として構成されている。本実施形態では、インサート成形にて一体成形体として構成している。これによれば弁軸9dを弁体9に対して強固に一体化することができ、弁軸9dが位置ずれしたり、外れたりする問題がなく、弁体9の耐久性と安全性を高めることができる。 The valve shaft 9d is made of a metal rod such as stainless steel, and is constructed as an integral structure with the base portion 9a. In this embodiment, it is configured as an integrally molded body by insert molding. With this configuration, the valve shaft 9d can be firmly integrated with the valve body 9, and the valve shaft 9d is not displaced or detached, and the durability and safety of the valve body 9 are improved. be able to.
 弁軸9dは、弁体9の中心軸に沿って配置されており、その上端は柱状突起9a2の上面からわずかに突出している。弁軸9dの下端は、後述する蓋12の軸受け部12dに挿入されている。後述のように弁体9が開閉動作をする際には、弁体9が最も大きく開いても、弁軸9dの下端は軸受け部12dから抜けないように保持されており、且つ弁軸9dは軸受け部12dのガイドを受けながら正確に上下動するようになっている。このように弁軸9dの下端を軸受け部12dに挿入して保持することで、弁体9の正確な開閉動作を継続して行い続けることができるよう耐久性を高めている。 The valve shaft 9d is arranged along the central axis of the valve body 9, and its upper end slightly protrudes from the upper surface of the columnar projection 9a2. A lower end of the valve shaft 9d is inserted into a bearing portion 12d of the lid 12, which will be described later. As will be described later, when the valve body 9 opens and closes, the lower end of the valve shaft 9d is held so as not to come off from the bearing portion 12d even when the valve body 9 is opened to the maximum. It moves up and down accurately while being guided by the bearing portion 12d. By inserting and holding the lower end of the valve shaft 9d in the bearing portion 12d in this manner, durability is enhanced so that the valve body 9 can continue to perform accurate opening and closing operations.
 弁体9は、次のように動作する。気体(吸気又は呼気)の圧力が第1の受圧面部9a1に作用し、その圧力が弁体9の開弁圧(圧力設定ばね8の設定圧力)を超えると、弁体9が弁座32b1から離れるように変位する。これにより弁体9が開く。次に、第2の受圧面部9b1と円筒状周壁部9cの内面が、弁座32b1から流入する気体の圧力を受けることで、さらに弁体9は弁座32b1から離れる方向に変位する。これにより気体の圧力を受ける弁体9の受圧面積は拡大する。したがって、通気間隙から気体が流出することで圧力を開放しながらも、拡大した受圧面積で圧力を受け続けることで、急激な減圧を抑制しつつ弁体9の開弁状態を安定して維持することができる。 The valve body 9 operates as follows. When the pressure of gas (inhalation or expiration) acts on the first pressure-receiving surface portion 9a1 and exceeds the valve opening pressure of the valve body 9 (set pressure of the pressure setting spring 8), the valve body 9 moves away from the valve seat 32b1. displace away. This opens the valve body 9 . Next, the inner surfaces of the second pressure-receiving surface portion 9b1 and the cylindrical peripheral wall portion 9c receive the pressure of the gas flowing from the valve seat 32b1, thereby further displacing the valve element 9 in the direction away from the valve seat 32b1. As a result, the pressure-receiving area of the valve body 9 that receives the pressure of the gas is enlarged. Therefore, even though the pressure is released by the gas flowing out from the ventilation gap, the expanded pressure receiving area continues to receive the pressure, thereby suppressing rapid pressure reduction and stably maintaining the open state of the valve body 9. be able to.
人工鼻フィルタ10の説明Description of the Nose Filter 10
 人工鼻フィルタ10は、多角形状に形成されており、中央に設けた挿通孔10aと、前述した第1の支持壁33aの第1の脚部33a1が通過する溝部10bとを有する。人工鼻フィルタ10は、後述するように、吸気と呼気が流れるメインポート12gと排気ポート31bとの間に配置される。このため人工鼻フィルタ10を呼気が通過する際に、人工鼻フィルタ10が込みの熱と水分を捕捉することができる。そして吸気が人工鼻フィルタ10を通過することで、吸気を加温及び加湿して、患者の気道の乾燥を防ぐことができる。また、嘔吐物などの異物がメインポート12gから逆流してきても、人工鼻フィルタ10で止めることができ、リリーフ弁14の正常な動作を損ねないようにすることができる。 The artificial nasal filter 10 is formed in a polygonal shape and has an insertion hole 10a provided in the center and a groove 10b through which the first leg 33a1 of the first support wall 33a passes. The artificial nasal filter 10 is arranged between the main port 12g and the exhaust port 31b through which inhaled and exhaled air flows, as will be described later. Therefore, as exhaled air passes through the artificial nasal filter 10, the artificial nasal filter 10 can trap heat and moisture. Passing the intake air through the artificial nasal filter 10 warms and humidifies the intake air, thereby preventing drying of the patient's respiratory tract. In addition, even if foreign matter such as vomit flows backward from the main port 12g, the artificial nasal filter 10 can stop it, so that the normal operation of the relief valve 14 is not impaired.
 人工鼻フィルタ10は、シート状のフィルタ用のシート材から複数個取る際に、例えば人工鼻フィルタ10が円形であると無駄な材料ロスが発生してしまう。これに対して人工鼻フィルタ10は多角形状であるため、材料取りする際のロスを減らすことができる。筐体2を角型としているのは、このような背景もある。 When a plurality of artificial nasal filters 10 are taken from a sheet-shaped filter sheet material, for example, if the artificial nasal filters 10 are circular, wasteful material loss will occur. On the other hand, since the artificial nose filter 10 has a polygonal shape, it is possible to reduce loss during material removal. This is also the reason why the housing 2 is square.
弁膜11(自発呼吸弁)の説明Description of valve membrane 11 (spontaneous breathing valve)
 弁膜11は、天然ゴム、合成ゴム、熱可塑性エラストマー、熱硬化性エラストマーなどのゴム状弾性体で形成されている。弁膜11は、蓋12に設けた自発呼吸用開口12eを常時密閉している。そして患者が自発呼吸する吸気圧により捲れることで開いて、筐体2の通気路16と筐体2の外とを連通する「自発呼吸弁」として機能する。人工呼吸管理下にある意識の無い患者が覚醒した際に、人工呼吸による吸気では苦しくなり、突然大きく自発的に息を吸うことがある。そのような場合が生じても、弁膜11が自発呼吸弁として機能することで、突発的な自発呼吸にも対応することができ、患者の安全な呼吸を確保することができる。 The valve membrane 11 is made of a rubber-like elastic material such as natural rubber, synthetic rubber, thermoplastic elastomer, or thermosetting elastomer. The valve membrane 11 always seals the spontaneous breathing opening 12 e provided in the lid 12 . Then, it functions as a “spontaneous breathing valve” that is opened by being rolled up by the inspiratory pressure when the patient spontaneously breathes and communicates the ventilation path 16 of the housing 2 with the outside of the housing 2 . When an unconscious patient under mechanical ventilation wakes up, it may become difficult to inhale with artificial respiration, and he or she may suddenly take a large, spontaneous breath. Even if such a case occurs, the valve membrane 11 functions as a spontaneous breathing valve, so that sudden spontaneous breathing can be dealt with, and safe breathing of the patient can be ensured.
蓋12の説明Description of lid 12
 蓋12は、樹脂成形体で形成されており、本体3の底面に組み合わされる。蓋12は外周壁12aと底面部12bとを有する。外周壁12aと底面部12bとによって囲まれた空間は、第2の通気空間12cを構成している。蓋12が本体3と組み合わされることで、本体3の第1の通気空間34と蓋12の第2の通気空間12cとが一体化された空間となり、通気路16を形成する。 The lid 12 is made of a resin molding and is combined with the bottom surface of the main body 3 . The lid 12 has an outer peripheral wall 12a and a bottom portion 12b. A space surrounded by the outer peripheral wall 12a and the bottom portion 12b constitutes a second ventilation space 12c. By combining the lid 12 with the main body 3 , the first ventilation space 34 of the main body 3 and the second ventilation space 12 c of the lid 12 become an integrated space, forming the ventilation path 16 .
 第2の通気空間12cには、前述した人工鼻フィルタ10が配置される。底面部12bには円筒状の軸受け部12dが突出して形成されており、軸受け部12dが人工鼻フィルタ10の挿通孔10aに挿通されることで、人工鼻フィルタ10を容易に中央に位置決めすることができる。また、外周壁12aの四隅には、ねじ13が締結される筒状のねじ孔部12a1が形成されている。人工鼻フィルタ10の四隅にある凹形状の位置決め部10cを筒状のねじ孔部12a1に位置合わせすることで、人工鼻フィルタ10を外周壁12aの内側の第2の通気空間12cに容易に収容することができる。そして、ねじ13がねじ孔部12a1に締結されることで、人工呼吸器105Aが組み合わさる。ねじ13の頭の上は封止部13aが形成され、ねじ13を外して分解できないようにしている。ねじ13を外して人工呼吸器105Aを分解してしまうと、初期の性能を発揮できなくなるおそれがあるからである。 The artificial nasal filter 10 described above is arranged in the second ventilation space 12c. A cylindrical bearing portion 12d is formed protruding from the bottom portion 12b, and the bearing portion 12d is inserted into the insertion hole 10a of the artificial nasal filter 10 to easily position the artificial nasal filter 10 in the center. can be done. Cylindrical screw holes 12a1 into which screws 13 are fastened are formed at the four corners of the outer peripheral wall 12a. By aligning the concave positioning portions 10c at the four corners of the artificial nasal filter 10 with the cylindrical screw holes 12a1, the artificial nasal filter 10 can be easily accommodated in the second ventilation space 12c inside the outer peripheral wall 12a. can do. Then, the respirator 105A is assembled by fastening the screw 13 to the screw hole portion 12a1. A sealing portion 13a is formed on the head of the screw 13 so that the screw 13 cannot be removed and disassembled. This is because if the screw 13 is removed and the respirator 105A is disassembled, the initial performance may not be exhibited.
 底面部12bには、自発呼吸用開口12eと、弁膜11の配置凹部12fと、メインポート12gが形成されている。 A spontaneous breathing opening 12e, an arrangement concave portion 12f for the valve membrane 11, and a main port 12g are formed in the bottom portion 12b.
 自発呼吸用開口12eは、本実施形態では2つ形成されている。自発呼吸用開口12eは、それぞれ単一の開口として形成されており、自発呼吸用開口12eの内側口縁には弁膜11の配置凹部12fが形成されている。配置凹部12fは、弁膜11の厚み分の高さを有する環状段差面として形成されており、弁膜11はその外周縁を全周にわたって配置凹部12fと密着可能な状態で位置決めされて収容されている。自発呼吸用開口12eには、その径方向に架け渡した支持部12hを有する。支持部12hは、自発呼吸用開口12eにあって弁膜11を支持しており、弁膜11が外に脱離しないように確実に保持している。支持部12hと弁膜11とは接着剤などにより固定し、または熱融着や超音波融着により固定することができる。熱融着や超音波融着により固定すれば、支持部12hと弁膜11との固着部位は、より患者にとって安全な固定構造となる。 Two spontaneous breathing openings 12e are formed in this embodiment. The spontaneous-breathing openings 12e are each formed as a single opening, and a recess 12f for placing the valve membrane 11 is formed in the inner rim of the spontaneous-breathing openings 12e. The arrangement recess 12f is formed as an annular stepped surface having a height corresponding to the thickness of the valve membrane 11, and the valve membrane 11 is positioned and housed in a state where the entire outer peripheral edge thereof can be in close contact with the arrangement recess 12f. . The spontaneous-breathing opening 12e has a support portion 12h extending in its radial direction. The support portion 12h supports the valve membrane 11 at the spontaneous breathing opening 12e and securely holds the valve membrane 11 so that it does not come off to the outside. The support portion 12h and the valve membrane 11 can be fixed with an adhesive or the like, or can be fixed by thermal fusion or ultrasonic fusion. By fixing by thermal fusion or ultrasonic fusion, the fixed portion between the support portion 12h and the valve membrane 11 becomes a fixed structure that is safer for the patient.
 自発呼吸用開口12eに配置された弁膜11は、外面側の第1の面を支持部12hと配置凹部12fによって支持され、内面側の第2の面を人工鼻フィルタ10と第1の脚部33a1の第1の保持部33a2によって支持されている。このうち支持部12hと第1の保持部33a2とは、人工鼻フィルタ10の厚み方向で重なる位置に形成されているため、弁膜11が位置ずれしたり脱落したりしないように、確実に挟持することができる。 The valve membrane 11 placed in the spontaneous breathing opening 12e has a first outer surface supported by the support portion 12h and the arrangement recess 12f, and an inner second surface formed by the artificial nasal filter 10 and the first legs. It is supported by the first holding portion 33a2 of 33a1. Of these, the supporting portion 12h and the first holding portion 33a2 are formed at positions overlapping each other in the thickness direction of the artificial nasal filter 10, so that the valve membrane 11 is securely held so as not to be displaced or fall off. be able to.
 このように設置される弁膜11が開弁する際には、支持部12hと接触していない弁膜11の部分が捲れるようにして自発呼吸用開口12eを開放する。このとき弁膜11は、人工鼻フィルタ10を弾性変形させるように捲れ上がる。つまり、弁膜11における支持部12hと固着しない非拘束部分は、閉弁状態では人工鼻フィルタ10により捲れ上がらないように押さえ付けられており、自発呼吸用開口12eを確実に閉塞することができる。 When the valve membrane 11 installed in this way is opened, the portion of the valve membrane 11 that is not in contact with the support portion 12h is turned over to open the spontaneous breathing opening 12e. At this time, the valve membrane 11 rolls up so as to elastically deform the artificial nasal filter 10 . In other words, the unrestrained portion of the valve membrane 11 that is not fixed to the support portion 12h is pressed by the artificial nasal filter 10 so as not to roll up when the valve is closed, and the spontaneous breathing opening 12e can be reliably closed.
 メインポート12gは、蓋12の底面から外向きに突出する円筒形状の筒として形成されている。このメインポート12gは、例えば、患者に装着する蘇生用マスクの接続口、蘇生用マスクに接続した蛇管の接続口、経鼻もしくは経口による気管内挿管チューブや、気管切開チューブ、声門上器具(ラリンジアルマスク)の接続口などに接続することができる。メインポート12gは、テーパー形状の筒として形成されている。本実施形態では、メインポート12gの外径は先端側が21.5mmで基端側が22.5mmに拡大するテーパー形状であり、内径は先端側が15.5mmで基端側が14.5mmに縮小するテーパー形状となっている。メインポート12gの外形面が、先端側から基端側に向けて拡大するテーパー形状であるため、接続対象とするチューブの接続口の口径の違いやバラツキを吸収することができる。なお、上記外径及び内径のサイズは例示である。 The main port 12g is formed as a cylindrical tube protruding outward from the bottom surface of the lid 12. This main port 12g is, for example, a connection port for a resuscitation mask to be attached to a patient, a connection port for a serpentine tube connected to the resuscitation mask, a nasal or oral endotracheal intubation tube, a tracheotomy tube, a supraglottic instrument (laryn It can be connected to the connection port of the dial mask). The main port 12g is formed as a tapered tube. In this embodiment, the main port 12g has a tapered shape with an outer diameter of 21.5 mm on the distal side and 22.5 mm on the proximal side, and an inner diameter of 15.5 mm on the distal side and tapered to 14.5 mm on the proximal side. It has a shape. Since the outer surface of the main port 12g has a tapered shape that expands from the distal end side toward the proximal end side, it is possible to absorb differences and variations in diameters of connection ports of tubes to be connected. In addition, the size of the said outer diameter and inner diameter is an example.
 メインポート12gは、底面部12bの中心からずらした位置にある。メインポート12gを中心に形成すると、メインポート12gは前述の軸受け部12dと干渉してしまう。干渉を避けるには、通気路16からメインポート12gに通じる通気経路を確保する必要があり、そのために蓋12を大型化する必要がある。これに対して本実施形態では、通気路16と連通するメインポート12gを底面部12bの中心位置からずらすことで、メインポート12gが軸受け部12dと干渉するのを避けている。したがって、本実施形態では、蓋12を大型化する必要が無く、蓋12と蓋12を含む人工呼吸器105Aをコンパクトに形成することができる。また、メインポート12gを中心位置からずらすことで、メインポート12gが弁体9と一直線上に位置しなくなる。換言すれば、メインポート12gと弁孔32b2とは、互いにオフセットした位置に形成されている。そのため吐物や痰がメインポート12gから逆流した場合に、それらが弁体9に付着して正確な動作を妨げるのを抑制することができる。 The main port 12g is located off the center of the bottom surface portion 12b. If the main port 12g is formed in the center, the main port 12g interferes with the aforementioned bearing portion 12d. In order to avoid interference, it is necessary to secure a ventilation path leading from the ventilation path 16 to the main port 12g, so the lid 12 must be enlarged. On the other hand, in the present embodiment, the main port 12g communicating with the air passage 16 is displaced from the center position of the bottom surface portion 12b to avoid interference between the main port 12g and the bearing portion 12d. Therefore, in this embodiment, the lid 12 does not need to be enlarged, and the lid 12 and the ventilator 105A including the lid 12 can be formed compactly. In addition, by shifting the main port 12g from the center position, the main port 12g is no longer aligned with the valve body 9 . In other words, the main port 12g and the valve hole 32b2 are formed at positions offset from each other. Therefore, when vomit or phlegm backflows from the main port 12g, it is possible to prevent them from adhering to the valve body 9 and hindering accurate operation.
圧力設定キー18の説明Explanation of pressure setting key 18
 圧力設定キー18は、図1で示すようにキー本体18aと、キー本体18aから二股状に伸長するキー部18bとを有する。なお、図1に示す圧力設定キー18は、キー部18bの先端をキー孔50aに差し込んだ状態を示している。 As shown in FIG. 1, the pressure setting key 18 has a key body 18a and a key portion 18b bifurcating from the key body 18a. The pressure setting key 18 shown in FIG. 1 shows a state in which the tip of the key portion 18b is inserted into the key hole 50a.
 キー本体18aの中央にはクリップ18cが形成されており、例えば医療者が着用する白衣の胸ポケットに差し込んでクリップ止めできるようにされている。これにより医療者が圧力設定キー18を紛失してしまうのを防止することができる。 A clip 18c is formed in the center of the key body 18a so that it can be clipped by inserting it into, for example, the breast pocket of a white coat worn by medical personnel. This prevents the medical staff from losing the pressure setting key 18 .
 キー部18bは、その先端を圧力設定ダイヤル5のキー孔50aに挿入可能となっている。キー部18bをキー孔50aに挿入した状態でキー本体18aを摘まんで回すことで、圧力設定ダイヤル5を回転することができる。 The tip of the key portion 18 b can be inserted into the key hole 50 a of the pressure setting dial 5 . The pressure setting dial 5 can be rotated by pinching and turning the key body 18a with the key portion 18b inserted into the key hole 50a.
 キー部18bは、気管チューブなどのコネクタとカテーテルなどのチューブのコネクタとの接続を解除するディスコネクトウェッジとしても使用することができる。キー部18bをディスコネクトウェッジとして使用する際には、キー部18bは、円弧状のアーチ部18dを気管チューブに沿わせることができる。 The key portion 18b can also be used as a disconnect wedge for disconnecting a connector such as a tracheal tube and a connector of a tube such as a catheter. When the key portion 18b is used as a disconnect wedge, the key portion 18b allows the arcuate arch portion 18d to follow the tracheal tube.
識別コード19の説明Description of identification code 19
 本体3の外周壁31には、人工呼吸器105Aを一意に識別するための個体識別情報を保持する識別コード19を有する。識別コード19は、本実施形態では二次元コードにより構成されており、それは外周壁31に着色した印刷部、シールなどにより構成することができる。人工呼吸器105Aは、基本的に単回使用するものである。また、人工呼吸器105Aを使用する患者Pごとに適切な弁体9の設定圧力値(開弁圧)が設定され、さらに患者Pの呼吸不全の状態の変化に応じて設定圧力値が修正され、その履歴が継続的に記録され管理される。そのため、人工呼吸器105Aの個体をそれぞれ識別コード19により特定可能に構成することで、単回使用や使用患者に対する関連付けを行えるようにしている。識別コード19として記録されているのは、個々の人工呼吸器105Aを一意に識別するシリアルナンバーである。人工呼吸器105Aに関するすべてのデータと、その使用者である患者や医療者に関するすべてのデータは、そのシリアルナンバーに対して関連付けられて管理される。 The outer peripheral wall 31 of the main body 3 has an identification code 19 that holds individual identification information for uniquely identifying the respirator 105A. The identification code 19 is composed of a two-dimensional code in this embodiment, and it can be composed of a colored printed portion, a sticker, or the like on the outer peripheral wall 31 . The ventilator 105A is basically for single use. In addition, an appropriate set pressure value (valve opening pressure) of the valve body 9 is set for each patient P using the artificial respirator 105A, and the set pressure value is corrected according to changes in the state of respiratory failure of the patient P. , its history is continuously recorded and managed. For this reason, each individual ventilator 105A is configured to be identifiable by the identification code 19, so that it can be associated with a single use or a patient who uses it. Recorded as the identification code 19 is a serial number that uniquely identifies each ventilator 105A. All data relating to the ventilator 105A and all data relating to patients and medical personnel who are users thereof are managed in association with their serial numbers.
人工呼吸器105Aの効果Effect of ventilator 105A
 以下、主要な実施形態の構成を取り上げてそれに対応する効果を説明する。 In the following, the configurations of the main embodiments will be taken up and the corresponding effects will be explained.
 人工呼吸器105Aは、筐体2を備えており、筐体2は筐体2に気体を導入するインプットポート31aと、患者に送る前記気体である吸気と患者の呼気とが通過するメインポート12gと、筐体2から気体又は呼気を排出する排気ポート31bと、インプットポート31aとメインポート12gとを繋ぐ通気路16と、通気路16の圧力に応じて開いて通気路16を排気ポート31bと連通させて圧力を開放するリリーフ弁14とを有する。このように人工呼吸器105Aは、それらの構成要素を一体に備えるため、電気的な駆動源を必要とせず、簡易な構造でありながら、空気圧駆動により人工呼吸器として機能する新しい肺人工蘇生器用のデバイスを提供することができる。 The artificial respirator 105A includes a housing 2. The housing 2 has an input port 31a for introducing gas into the housing 2, and a main port 12g through which the inspiratory gas to be sent to the patient and the patient's exhalation pass. , an exhaust port 31b for discharging gas or exhaled breath from the housing 2, an air passage 16 connecting the input port 31a and the main port 12g, and an exhaust port 31b that opens according to the pressure of the air passage 16. and a relief valve 14 that communicates to release the pressure. In this way, since the respirator 105A is integrally provided with these components, it does not require an electric drive source, and while it has a simple structure, it is a new pulmonary resuscitator that functions as a respirator by pneumatic drive. device can be provided.
 人工呼吸器105Aは、単回使用の「使い捨て人工呼吸器」として構成することができる。これによれば、人工呼吸器105Aを複数の患者で使い回すことにより生じる感染症の予防に役立てることができる。この場合、さらに、人工呼吸器105Aのすべての部品が樹脂成形体であれば、金属部材と樹脂部材とに分けた分別廃棄が不要な「使い捨て人工呼吸器」として構成することができる。 The ventilator 105A can be configured as a single-use "disposable ventilator". According to this, it is possible to use the respirator 105A to prevent infectious diseases caused by using the respirator 105A for multiple patients. In this case, furthermore, if all the parts of the respirator 105A are resin moldings, the respirator can be configured as a "disposable respirator" that does not need to be separately discarded into metal members and resin members.
 筐体2は、さらに、メインポート12gと排気ポート31bとの間に人工鼻フィルタ10を有する。これによれば、筐体2の内部に人工鼻フィルタ10を内蔵するため、医療者は人工呼吸器105Aに加えて人工鼻フィルタ用のデバイスを用意しなくてもよい。 The housing 2 further has an artificial nasal filter 10 between the main port 12g and the exhaust port 31b. According to this, since the artificial nasal filter 10 is built inside the housing 2, medical personnel do not need to prepare a device for the artificial nasal filter in addition to the respirator 105A.
 筐体2は、インプットポート31a、排気ポート31b、通気路16、リリーフ弁14を内蔵している。したがって、筐体2の外に突出する形状要素を少なくすることができ、人工呼吸器105Aをコンパクトに形成することができる。一例として本実施形態の人工呼吸器105Aは、例えばメインポート12gを含む高さ(図5の正面図で示すダイヤルカバー4の上面からメインポート12gの下端までの長さ)、幅(図8で示す人工呼吸器105Aの横方向の長さ)、奥行き(図8で示すロック解除ボタン6を除く人工呼吸器105Aの縦方向の長さ)を、それぞれ77.2mm、50.0mm、50.0mmとして実施することが可能である。 The housing 2 incorporates an input port 31a, an exhaust port 31b, an air passage 16, and a relief valve 14. Therefore, it is possible to reduce the shape elements protruding outside the housing 2, and to form the respirator 105A compactly. As an example, the ventilator 105A of this embodiment has a height including the main port 12g (the length from the upper surface of the dial cover 4 shown in the front view of FIG. 5 to the lower end of the main port 12g), and a width ( The lateral length of the ventilator 105A shown) and the depth (vertical length of the ventilator 105A excluding the unlock button 6 shown in FIG. 8) are 77.2 mm, 50.0 mm, and 50.0 mm, respectively. It is possible to implement as
 筐体2は、さらに、筐体2に設けた自発呼吸用開口12eと、患者が自発呼吸する吸気圧により開いて通気路16を筐体2の外と連通する「自発呼吸弁」として機能する弁膜11とを有する。これによれば、人工呼吸器105Aにより人工呼吸管理下にある意識が無い患者が突然意識を取り戻し、自発呼吸により深呼吸をした場合でも、弁膜11が開いて患者の吸気を助けることができる。 The housing 2 further functions as a spontaneous breathing opening 12e provided in the housing 2 and a "spontaneous breathing valve" that opens according to the inspiratory pressure of the patient's spontaneous breathing and communicates the ventilation path 16 with the outside of the housing 2. and a valve membrane 11 . According to this, even if an unconscious patient who is under artificial respiration management by the artificial respirator 105A suddenly regains consciousness and takes a deep breath by spontaneous breathing, the valve membrane 11 can be opened to help the patient inhale.
設定支援サーバ101A、EDCサーバ102Aのハードウェア資源(第1のコンピュータ装置200)の構成(図19)Configuration of hardware resources (first computer device 200) of setting support server 101A and EDC server 102A (FIG. 19)
 設定支援サーバ101A(第1のサーバ101)、EDCサーバ102A(第2のサーバ102)は、いずれも、1又は複数の第1のコンピュータ装置200により実現することができる。図19で示すように、第1のコンピュータ装置200のハードウェア資源の構成は、プロセッサ201と、メモリ202と、通信デバイス203と、I/Oインターフェース204とを備える。 Both the setting support server 101A (first server 101) and the EDC server 102A (second server 102) can be implemented by one or more first computer devices 200. As shown in FIG. 19 , the hardware resource configuration of the first computer device 200 includes a processor 201 , a memory 202 , a communication device 203 and an I/O interface 204 .
 プロセッサ201は、中央演算処理装置であり、プログラムの命令を実行し、第1のコンピュータ装置200の全体の動作を制御する。プロセッサ201は、1又は複数で構成できる。メモリ202は、ROM、RAM、外部記憶装置などを含み、各種のプログラムを記憶するとともに、プロセッサ201がプログラムの命令に基づき処理するデータなどを記憶する。メモリ202を構成するROM、RAM、外部記憶装置などは、それぞれ1又は複数のデバイスにて構成できる。プログラムには、本開示の一態様による医療機器の設定支援方法を実行するプログラム(サーバ側設定支援プログラム(設定支援プログラム))を含む。メモリ202に含まれる外部記憶装置は、後述する患者データ101b1などを記憶するデータベースを含むことができる。通信デバイス203は、通信ネットワーク107を介して行う通信接続を制御する。I/Oインターフェース204は、各種デバイスとの接続を制御し、実施形態では具体的にはキーボードやマウスなどの各種の入力デバイス204aと、情報を画面表示するディスプレイ204bなどが接続されうる。 The processor 201 is a central processing unit, executes program instructions, and controls the overall operation of the first computer device 200 . Processor 201 may consist of one or more. The memory 202 includes a ROM, a RAM, an external storage device, etc., stores various programs, and stores data processed by the processor 201 based on instructions of the programs. Each of the ROM, RAM, external storage device, and the like that constitute the memory 202 can be configured by one or more devices. The program includes a program (server-side setting support program (setting support program)) that executes the medical device setting support method according to one aspect of the present disclosure. The external storage device included in the memory 202 can include a database that stores patient data 101b1 and the like, which will be described later. Communication device 203 controls communication connections made through communication network 107 . The I/O interface 204 controls connections with various devices. Specifically, in the embodiment, various input devices 204a such as a keyboard and a mouse, and a display 204b for displaying information on a screen can be connected.
設定支援サーバ101Aの機能構成(図20、21)Functional Configuration of Setting Support Server 101A (FIGS. 20 and 21)
 設定支援サーバ101Aは、図20で示すように、機能的構成として、制御部101a、記憶部101b、受付部101c、通信部101d、音解析部101e、生成部101fを含むことができる。各機能部は、設定支援サーバ101Aのハードウェア資源である第1のコンピュータ装置200が、一態様によるプログラム(前記設定支援プログラム)を実行することで実現できる。 As shown in FIG. 20, the setting support server 101A can include a control unit 101a, a storage unit 101b, a reception unit 101c, a communication unit 101d, a sound analysis unit 101e, and a generation unit 101f as functional configurations. Each functional unit can be realized by the first computer device 200, which is a hardware resource of the setting support server 101A, executing a program (the setting support program) according to one aspect.
 制御部101aは、設定支援サーバ101Aで行われるデータ処理を制御する。具体的にはプロセッサ201が前記設定操作プログラムを実行することでデータ処理を行う。 The control unit 101a controls data processing performed by the setting support server 101A. Specifically, the processor 201 performs data processing by executing the setting operation program.
 記憶部101bは、例えば患者データ101b1をメモリ202に記憶する。記憶部101bは、人工呼吸器105Aのシリアルナンバーに対してすべての患者データ101b1を記憶する。図21で示すように、患者データ101b1には、以下のデータ〔I〕~〔IV〕を含む。また、患者データ101b1には、人工呼吸器105Aの弁体9の開弁圧を設定するための「設定参照用データ」が含まれる。 The storage unit 101b stores patient data 101b1 in the memory 202, for example. Storage unit 101b stores all patient data 101b1 for the serial number of ventilator 105A. As shown in FIG. 21, the patient data 101b1 includes the following data [I] to [IV]. The patient data 101b1 also includes "setting reference data" for setting the valve opening pressure of the valve body 9 of the respirator 105A.
〔I〕患者基本情報101b2
〔II〕患者観察研究データ101b3
〔III〕患者測定データ101b4
〔IV〕利用機器データ101b5
[I] Patient basic information 101b2
[II] Patient observation study data 101b3
[III] Patient measurement data 101b4
[IV] Used equipment data 101b5
〔I〕患者基本情報101b2は、例えば以下のデータを含むことができる。 [I] The patient basic information 101b2 can include, for example, the following data.
1.身長
2.体重
3.性別
4.患者番号
1. Height 2. weight3. Gender4. patient number
 患者基本情報101b2は、身長、体重、性別を含む。このためどのような患者に人工呼吸器105Aが使用されたのかを管理することができる。また、患者の身長(BL cm)、性別が分かれば、以下の数式1、2により「理想体重」(Ideal body weight, IBW)を演算することができる(Appendices. In: Knoben JE, Anderson PO, Troutman WG, editors. Handbook of clinical drug data: Appleton & Lange, 1999. p.1014.)。 The basic patient information 101b2 includes height, weight, and gender. Therefore, it is possible to manage what kind of patient the respirator 105A was used for. In addition, if the patient's height (BL cm) and gender are known, the 'ideal body weight, IBW' can be calculated using the following formulas 1 and 2 (Appendices. In: Knoben JE, Anderson PO, Troutman WG, editors. Handbook of clinical drug data: Appleton & Lange, 1999. p.1014.).
[数1]Male Ideal body weight (IBW) kg = 50.0 + 0.91 × (BL cm - 152.4) kg
[数2]Female Ideal body weight (IBW) kg = 45.5 + 0.91 × (BL cm - 152.4) kg
[Formula 1] Male Ideal body weight (IBW) kg = 50.0 + 0.91 × (BL cm - 152.4) kg
[Number 2] Female Ideal body weight (IBW) kg = 45.5 + 0.91 × (BL cm - 152.4) kg
 一回換気量は人の体格や性別によって異なる。人工呼吸器105Aを適切に使用するには、患者ごとの「一回換気量」(Tidal Volume)に応じて、弁体9が開く設定圧力値(開弁圧)を設定することが必要である。例えば一回換気量を過剰に大きく設定すると、肺を大きく拡張しすぎることによる容量傷害と、肺に高圧が作用することによる圧傷害が生じうる。人工呼吸器105Aを使用する主な患者は、気管内挿管が必要な急性呼吸不全状態であり、人工呼吸器105Aの使用前に一回換気量の正常値を取得しておくのが困難である。そこで、人工呼吸器105Aを使用する際には、患者ごとに一回換気量を推定した「予測一回換気量」(Predicted Tidal Volume, Predicted Vt)を求め、その予測一回換気量に基づき設定圧力値、ガス供給気量を調整する。予測一回換気量は、「理想体重」を使う以下の数式3により演算できる(Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New England Journal of Medicine 2000; 342(18): 1301-8.)。 The tidal volume varies depending on the person's physique and gender. In order to properly use the ventilator 105A, it is necessary to set the set pressure value (valve opening pressure) at which the valve body 9 opens according to the "tidal volume" (Tidal Volume) for each patient. . For example, setting the tidal volume too high can result in volume injury due to over-expansion of the lungs and baro-injury due to high pressure acting on the lungs. The main patient using the ventilator 105A is in acute respiratory failure requiring endotracheal intubation, and it is difficult to obtain a normal tidal volume before using the ventilator 105A. . Therefore, when using the ventilator 105A, the "predicted tidal volume" (Predicted Tidal Volume, Predicted Vt) is obtained by estimating the tidal volume for each patient, and set based on the predicted tidal volume Adjust the pressure value and gas supply volume. Predicted tidal volume can be calculated by Equation 3 below using "ideal body weight" (Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New England Journal of Medicine 2000; 342(18): 1301-8.).
[数3]Predicted Vt = IBW × 6 ml / 回 [Number 3] Predicted Vt = IBW × 6 ml / times
 以上の予測一回換気量の演算は、本実施形態では後述する設定操作端末103Aの予測Vt演算部103j1によって行うことができる。但し、設定支援サーバ101Aで予測一回換気量を演算する実施形態としても構成できる。 The calculation of the predicted tidal volume described above can be performed by the predicted Vt calculation unit 103j1 of the setting operation terminal 103A described later in this embodiment. However, it can also be configured as an embodiment in which the setting support server 101A calculates the predicted tidal volume.
 患者番号は、医療情報処理システム100Aにおいて、患者を一意に識別する患者識別情報である。これにより患者ごとに人工呼吸器105Aの使用実態や呼吸不全治療の観察経過を管理することができる。患者番号は、氏名、住所などを含む患者個人情報と紐付けて管理することができる。但し、患者番号を見ただけでは、患者個人情報を特定することはできない。すなわち患者番号は、患者個人情報に対して匿名化されて付されており、設定操作端末103Aや閲覧端末104Aからの権限なき流出が予防されている。 A patient number is patient identification information that uniquely identifies a patient in the medical information processing system 100A. As a result, it is possible to manage the usage status of the ventilator 105A and the observation progress of respiratory failure treatment for each patient. The patient number can be managed in association with the patient's personal information including name, address, and the like. However, the patient's personal information cannot be specified just by looking at the patient number. That is, the patient number is anonymized and attached to the patient's personal information, and is prevented from being leaked without authorization from the setting operation terminal 103A and the viewing terminal 104A.
〔II〕患者観察研究データ101b3は、例えば以下のデータを含むことができる。 [II] The patient observation study data 101b3 can include, for example, the following data.
1.オプトアウトの有無
2.患者の年齢
3.人工呼吸器105Aを使用した原因病名
4.その他の病名1
5.その他の病名2
6.人工呼吸器105Aの使用場所(下記より選択)
  (1)救急車及びその周囲(2)救命救急室(3)ICU(4)手術室(5)MRI室(6)その他の検査室(7)ICU以外の病室(8)その他の場所
7.人工呼吸器105Aを使用する病院名
8.人工呼吸器105Aを使用する国名
9.人工呼吸器105Aの使用中の治療内容(テキスト入力による自由記述)
10.使用中止時の転帰(下記より選択)
  (1)改善(2)不変(3)悪化(4)死亡
11.使用中止後の呼吸不全治療(下記より選択)
  (1)なし(2)酸素投与のみ(3)NPPV(Noninvasive Positive Pressure Ventilation、非侵襲的陽圧換気療法)に変更(4)他の人工呼吸器に変更(5)ECMO(Extracorporeal membrane oxygenation、体外式膜型人工肺)(6)その他
12.機器に関連する有害事象(下記より選択)
  (1)なし(2)あり
13.機器に関連する有害事象の内容(テキスト入力による自由記述。)
1. Presence or absence of opt-out2. Age of the patient3. 3. Name of disease caused by using artificial respirator 105A. Other disease name 1
5. Other disease name 2
6. Place of use of ventilator 105A (select from below)
(1) Ambulance and its surroundings (2) Critical care room (3) ICU (4) Operating room (5) MRI room (6) Other examination room (7) Hospital room other than ICU (8) Other place7. Name of hospital using ventilator 105A8. 9. Name of the country where the ventilator 105A is used. Contents of treatment during use of ventilator 105A (free description by text input)
10. Outcome upon discontinuation of use (select from below)
(1) improved (2) unchanged (3) worsened (4) died 11. Respiratory failure treatment after discontinuation of use (select from below)
(1) None (2) Oxygen administration only (3) Change to NPPV (Noninvasive Positive Pressure Ventilation) (4) Change to another ventilator (5) ECMO (Extracorporeal membrane oxygenation) Membrane Oxygenator) (6) Others 12. Device-related adverse events (select from below)
(1) None (2) Yes 13. Contents of adverse events related to the device (free description by text input.)
 患者観察研究データ101b3は、原因病名を含む(前記「3」「4」「5」)。このため同様の疾病に罹患している患者に対して人工呼吸器105Aを使用しうることを医療者に示唆することができる。人工呼吸器105Aの適応患者の病態は、例えば、呼吸不全患者、無呼吸下で行う手術患者、無呼吸下で行う検査処置患者などである。呼吸不全の患者には通常の肺炎のみならず、急性呼吸促迫症候群(ARDS(Acute Respiratory Distress Syndrome))のCOVID-19肺炎などが含まれる。また、検査処置患者の検査には、MRI検査での使用も含まれる。 The patient observation study data 101b3 includes the name of the causative disease ("3", "4", and "5" above). Thus, it can be suggested to medical personnel that ventilator 105A can be used for patients suffering from similar diseases. Patients to whom the respirator 105A is applicable include, for example, patients with respiratory failure, patients undergoing apnea surgery, and patients undergoing examination procedures under apnea. Patients with respiratory failure include not only ordinary pneumonia but also COVID-19 pneumonia of acute respiratory distress syndrome (ARDS). Examination of examination-treated patients also includes use in MRI examinations.
 患者観察研究データ101b3は、人工呼吸器105Aの使用場所を含む(前記「6」)。このため人工呼吸器105Aをどのような環境下で有効に使用できるかを医療者に示唆することができる。前記患者観察研究データ101b3は、人工呼吸器105Aの病院名や国名を含む(前記「7」「8」)。このため人工呼吸器105Aの使用実績のある病院を特定して協力を要請することが可能であり、また国内だけでなく外国病院での臨床事例も管理することが可能となる。つまり、人工呼吸器105Aの使用実態の調査及び使用患者に関する国内外の多施設での共同研究観察を行うことが可能となる。 The patient observation study data 101b3 includes the place of use of the ventilator 105A ("6" above). Therefore, it is possible to suggest to medical personnel under what kind of environment the respirator 105A can be effectively used. The patient observation study data 101b3 includes the hospital name and country name of the ventilator 105A ("7" and "8"). For this reason, it is possible to specify hospitals that have used the ventilator 105A and request their cooperation, and it is also possible to manage clinical cases not only in Japan but also in foreign hospitals. In other words, it is possible to investigate the usage status of the ventilator 105A and to conduct joint research observations at multiple facilities in Japan and overseas on patients using the ventilator 105A.
 患者観察研究データ101b3は、人工呼吸器の105Aの使用中の治療内容(前記「9」)、人工呼吸器105Aの使用中止時の転帰に関する情報(前記「10」)、使用中止後の呼吸不全治療の内容(前記「11」)を含む。このため医療者は、どのような患者に対して人工呼吸器105Aが有効であるかの参考情報を得ることができる。また医療者は、患者の呼吸不全治療の観察経過における適正な使用機器の選定に関する参考情報などを得ることができる。さらに医療者は、人工呼吸器105Aの使用中に行われた治療内容を知ることができる。したがって医療者は、使用中指示の転帰をも参照することで、有効な換気設定と治療方法とを早く知ることができる。 The patient observation study data 101b3 includes treatment details during use of the ventilator 105A (above "9"), information on outcome at the time of discontinuation of the ventilator 105A (above "10"), and respiratory failure after discontinuation of use It includes the contents of treatment (above "11"). Therefore, medical personnel can obtain reference information as to what kind of patient the respirator 105A is effective for. In addition, medical personnel can obtain reference information regarding the selection of appropriate equipment to be used in observing the patient's respiratory failure treatment. Furthermore, the medical staff can know the details of treatment performed while using the respirator 105A. Therefore, medical personnel can quickly learn effective ventilation settings and treatment methods by also referring to the outcome of the in-use instructions.
 患者観察研究データ101b3は、機器に関する有害事象の有無とその内容を含む(前記「12」「13」)。このため患者の疾病に応じた人工呼吸器105Aの有用性や、臨床現場での使用実績に基づく人工呼吸器105Aの改善要望などを得ることができる。 The patient observation study data 101b3 includes the presence or absence of adverse events related to the device and their details (above "12" and "13"). Therefore, it is possible to obtain the usefulness of the ventilator 105A according to the patient's disease, requests for improvement of the ventilator 105A based on the results of use in clinical sites, and the like.
〔III〕 患者測定データ101b4は、例えば以下のデータを含むことができる。 [III] The patient measurement data 101b4 can include, for example, the following data.
1.測定者(測定を担当した医療者の氏名)
2.測定日時
3.測定時患者データ
  (1)身長(2)体重(3)性別
4.人工呼吸器設定情報
  (1)人工呼吸器の設定圧(2)空気流量(3)酸素流量
5.計算値
  (1)FiO(Fraction of inspiratory oxygen、吸入中酸素濃度)(2)呼吸回数(3)Vt(Tidal Volume、一回換気量。後述する予測Vt、推定Vtを含む。)(4)MV(Minute Volume、分時換気量。後述する推定分時換気量(推定MV)を含む。)(5)PEEP(Positive End Expiratory Pressure、呼気終末陽圧換気)(6)IE比(吸気時間呼気時間比)
6.その他
  (1)使用状況(2)使用状況(その他の場合)(3)経皮酸素飽和度(4)呼気終末二酸化炭素分圧(5)PaO(Partial pressure of arterial Oxygen、動脈血酸素分圧)(6)PaCO(Partial pressure of arterial Carbon dioxide、動脈血炭酸ガス分圧)
1. Measurer (name of the medical practitioner in charge of the measurement)
2. Measurement date and time3. Patient data at the time of measurement (1) height (2) weight (3) gender4. Ventilator setting information (1) Ventilator setting pressure (2) Air flow rate (3) Oxygen flow rate5. Calculated values (1) FiO 2 (fraction of inspiratory oxygen) (2) respiratory frequency (3) Vt (tidal volume, including predicted Vt and estimated Vt to be described later) (4) MV (Minute Volume, minute ventilation volume. Includes estimated minute ventilation volume (estimated MV) described later.) (5) PEEP (Positive End Expiratory Pressure, positive end-expiratory pressure ventilation) (6) IE ratio (inspiratory time expiration time ratio)
6. Others (1) Conditions of use (2) Conditions of use (other cases) (3) Percutaneous oxygen saturation (4) End-tidal carbon dioxide partial pressure (5) PaO 2 (Partial pressure of arterial oxygen) (6) PaCO 2 (Partial pressure of arterial carbon dioxide)
 患者測定データ101b4は、上記「2」の測定日時ごとに記録されている。したがって、この患者測定データ101b4の履歴を見れば、患者の呼吸不全治療の観察経過を知ることができる。患者測定データ101b4には、生体データ計測装置106A(生体センサ106A2)により測定したデータが含まれる。そのため医療機器の設定の際に、診断用医療機器106で検査し測定した生体データを含めて、臨床記録として残しておくことができる。 The patient measurement data 101b4 is recorded for each measurement date and time of "2" above. Therefore, by looking at the history of the patient measurement data 101b4, it is possible to know the observation progress of the patient's respiratory failure treatment. The patient measurement data 101b4 includes data measured by the biological data measuring device 106A (biological sensor 106A2). Therefore, at the time of setting the medical device, it is possible to keep a clinical record including biometric data examined and measured by the diagnostic medical device 106 .
〔IV〕利用機器データ101b5は、例えば以下のデータを含むことができる。 [IV] The used device data 101b5 can include, for example, the following data.
1.シリアルナンバー
2.使用開始日時
3.製造日
4.有効期限
1. serial number2. Date and time of start of use3. Date of manufacture4. date of expiry
 シリアルナンバーは、個々の人工呼吸器105Aを一意に識別するためのものである。人工呼吸器105Aは、前述のように本体3に識別コード19を有しており、この識別コード19として記録されているのがシリアルナンバーである。 The serial number is for uniquely identifying each ventilator 105A. The ventilator 105A has the identification code 19 on the main body 3 as described above, and the identification code 19 is the serial number.
 利用機器データ101b5は、使用開始日時を含む。これは人工呼吸器105Aの使用期間を管理するために記録される。また利用機器データ101b5は、製造日、有効期限を含む。これにより人工呼吸器105Aが有効に使用できるものか否かを確認することができる。 The used equipment data 101b5 includes the usage start date and time. This is recorded to manage the duration of use of ventilator 105A. The used device data 101b5 also includes the date of manufacture and the expiration date. This makes it possible to confirm whether or not the artificial respirator 105A can be used effectively.
 受付部101cは、通信ネットワーク107を介して、設定操作端末103A、閲覧端末104Aが送信したデータを取得する機能を有する。 The reception unit 101c has a function of acquiring data transmitted by the setting operation terminal 103A and the viewing terminal 104A via the communication network 107.
 通信部101dは、通信ネットワーク107を介して、EDCサーバ102A、設定操作端末103A、閲覧端末104Aと相互に通信可能に接続する機能を有する。 The communication unit 101d has a function of connecting to the EDC server 102A, the setting operation terminal 103A, and the viewing terminal 104A via the communication network 107 so as to be able to communicate with each other.
 音解析部101eは、患者Pに装着されている人工呼吸器105Aが発生する音を解析して特定の音を抽出する。具体的には、音解析部101eは、弁音解析部101e1とガス音解析部101e2とを含む。弁音解析部101e1は、患者Pに装着されている人工呼吸器105Aが発生する音データを解析して、人工呼吸器105Aの弁体9が閉弁時に発する音(閉弁音)を取得する。ガス音解析部101e2は、患者Pに装着されている人工呼吸器105Aが発生する音データを解析して、患者Pの呼気が人工呼吸器105Aを通過して排出されるときの音(呼気音)を取得する。音解析部101eが行う具体的な音解析の方法は後述する。 The sound analysis unit 101e analyzes the sound generated by the respirator 105A attached to the patient P and extracts a specific sound. Specifically, the sound analysis unit 101e includes a valve sound analysis unit 101e1 and a gas sound analysis unit 101e2. The valve sound analysis unit 101e1 analyzes the sound data generated by the respirator 105A attached to the patient P, and obtains the sound (valve closing sound) generated when the valve body 9 of the respirator 105A closes. . The gas sound analysis unit 101e2 analyzes the sound data generated by the respirator 105A attached to the patient P, and detects the sound (exhalation sound ). A specific sound analysis method performed by the sound analysis unit 101e will be described later.
 また音解析部101eは、前述した音データの周波数又は音圧の少なくとも何れかのデータに基づき、弁体9が開く設定圧力値(閉弁圧)とガス供給気量の少なくとも何れかを予測する機能を有することができる。周波数と音圧は、肺の条件(動的肺コンプライアンス)、設定圧力値、ガス供給気量の組合せにより変化しうる。例えば呼吸回数を安定させることは呼吸治療において重要なことである。ところが呼吸回数が同じになるように人工呼吸器の設定圧力値とガス供給気量を調整しても、肺の条件が異なる場合には、発生する音(周波数、音圧)が異なることを、本発明者は見出している。 The sound analysis unit 101e predicts at least one of the set pressure value (valve closing pressure) at which the valve body 9 opens and the gas supply volume based on at least one of the frequency and sound pressure of the sound data described above. can have a function. Frequency and sound pressure can be varied by a combination of lung conditions (dynamic lung compliance), set pressure value, and gas delivery volume. For example, stabilizing the respiratory rate is important in respiratory therapy. However, even if the set pressure value and gas supply volume of the respirator are adjusted so that the number of breaths is the same, if the conditions of the lungs are different, the sound (frequency, sound pressure) generated will be different. The inventor has found.
 音解析部101eは、現在解析対象とする音データと、周波数又は音圧の少なくとも何れかの観点で近似している、多数の患者の過去の音データを抽出し、その過去の音データに対応する設定圧力値又はガス供給気量の少なくとも何れかを抽出し、それを現在解析対象とする音データに対応する設定圧力値とガス供給気量の予測値として解析することができる。 The sound analysis unit 101e extracts past sound data of a large number of patients that are similar to the sound data currently being analyzed in terms of at least one of frequency and sound pressure, and corresponds to the past sound data. It is possible to extract at least one of the set pressure value or the gas supply volume to be used and analyze it as a predicted value of the set pressure value and the gas supply volume corresponding to the sound data currently being analyzed.
 この場合、多数の患者の過去の音データは、設定支援サーバ101Aの記憶部101bに患者データ101b1として蓄積したものでもよいし、EDCサーバ102Aの記憶部102bに研究用データ102b1に蓄積したものでもよい。 In this case, the past sound data of many patients may be stored as patient data 101b1 in the storage unit 101b of the setting support server 101A, or may be stored as research data 102b1 in the storage unit 102b of the EDC server 102A. good.
 なお、コンプライアンスには、動的肺コンプライアンス(Cydn)と静的肺コンプライアンス(Cst)があり、動的肺コンプライアンスは一回換気量+(最高気道内圧-PEEP)により算出でき、静的肺コンプライアンスは一回換気量+(プラトー内圧-PEEP)により算出でき、それぞれ正常値として取ることができる一定範囲の値が知られている。それらの値は、患者データ101b1と研究用データ102b1から算出することが可能である。そのため音解析部101eは、さらにCydn又はCstを予測値として算出する機能を有することができる。 In addition, compliance includes dynamic lung compliance (Cydn) and static lung compliance (Cst), dynamic lung compliance can be calculated by tidal volume + (maximum airway pressure - PEEP), static lung compliance It can be calculated by tidal volume + (plateau internal pressure - PEEP), and a certain range of values that can be taken as normal values is known. These values can be calculated from the patient data 101b1 and research data 102b1. Therefore, the sound analysis unit 101e can further have a function of calculating Cydn or Cst as a predicted value.
 前述した音データどうしの近似性は、現在の音データの周波数と音圧を基準値とし、その基準値に対して一定範囲に含まれる周波数や音圧を有する音データを近似するものとして判定することができる。なお、基準値は、実測値、平均値、中央値でもよい。 The similarity between the sound data described above is determined by using the frequency and sound pressure of the current sound data as reference values, and judging sound data having frequencies and sound pressures within a certain range with respect to the reference values as approximations. be able to. Note that the reference value may be an actual measurement value, an average value, or a median value.
 さらに、近似性の有無を判定するために機械学習を利用することができる。解析対象とする音データを入力データとし、その周波数又は音圧を特徴量とし、設定圧力値と又はガス供給気量を正解ラベルとし、それら教師データとして教師あり学習をすることにより、音データを入力データとし、設定圧力値と又はガス供給気量を出力データとして出力する学習モデルを生成することができる。なお、正解ラベルや出力データには、前述したコンプライアンスの値を含めることもできる。 Furthermore, machine learning can be used to determine the presence or absence of similarity. Sound data to be analyzed is used as input data, its frequency or sound pressure is used as a feature value, and the set pressure value or gas supply volume is used as a correct label. It is possible to generate a learning model that outputs a set pressure value or a gas supply amount as input data and output data. Note that the correct label and the output data can also include the aforementioned compliance value.
 生成部101fは、音解析部101eが解析した音データに対して所定の演算処理を実行する。具体的には、生成部101fは、呼吸回数演算部101f1、呼気時間演算部101f2、吸気時間演算部101f3を含む。呼吸回数演算部101f1は、複数回の呼吸サイクル音から呼吸回数を演算する。呼気時間演算部101f2は、呼気時間(平均呼気時間)を演算する。吸気時間演算部101f3は、吸気時間(平均吸気時間)を演算する。生成部101fが行う具体的な演算方法は後述する。 The generation unit 101f executes predetermined arithmetic processing on the sound data analyzed by the sound analysis unit 101e. Specifically, the generation unit 101f includes a respiratory rate calculation unit 101f1, an expiration time calculation unit 101f2, and an intake time calculation unit 101f3. The respiratory frequency calculator 101f1 calculates the respiratory frequency from a plurality of respiratory cycle sounds. The expiratory time calculator 101f2 calculates the expiratory time (average expiratory time). The intake time calculation unit 101f3 calculates an intake time (average intake time). A specific calculation method performed by the generation unit 101f will be described later.
EDCサーバ102Aの機能構成(図22、23)Functional configuration of EDC server 102A (FIGS. 22 and 23)
 EDCサーバ102Aは、図22で示すように、機能的構成として、制御部102a、記憶部102b、受付部102c、通信部102d、取得部102e、編集部102f、統計解析部102g、配信部102h、検索部102iを含むことができる。それらの各機能部は、EDCサーバ102Aのハードウェア資源である第1のコンピュータ装置200が、一態様によるプログラム(EDCデータマネジメントプログラム)を実行することで実現できる。 As shown in FIG. 22, the EDC server 102A has, as a functional configuration, a control unit 102a, a storage unit 102b, a reception unit 102c, a communication unit 102d, an acquisition unit 102e, an editing unit 102f, a statistical analysis unit 102g, a distribution unit 102h, A search portion 102i may be included. Each of these functional units can be realized by the first computer device 200, which is the hardware resource of the EDC server 102A, executing a program (EDC data management program) according to one aspect.
 制御部102aは、EDCサーバ102Aで行われるデータ処理を制御する。 The control unit 102a controls data processing performed by the EDC server 102A.
 記憶部102bは、例えば研究用データ102b1を記憶する。記憶部102bは、人工呼吸器105Aのシリアルナンバーに対して研究用データ102b1を記憶する。図23で示すように、研究用データ102b1は、以下のデータを含むことができる。 The storage unit 102b stores research data 102b1, for example. Storage unit 102b stores research data 102b1 for the serial number of respirator 105A. As shown in FIG. 23, research data 102b1 can include the following data.
〔I〕機器研究データ102b2
〔II〕患者研究データ102b3
[I] Equipment research data 102b2
[II] Patient study data 102b3
〔I〕機器研究データ102b2は、例えば以下のデータを含むことができる。 [I] The device research data 102b2 can include, for example, the following data.
1.利用機器データ101b5に含まれる各データ
2.設定操作端末103AのGPS情報
3.患者測定データ101b4に含まれる各データ
4.音解析を行った場合の音データ
5.患者測定データ101b4の統計解析データ
1. Each data included in the used device data 101b52. GPS information of the setting operation terminal 103A3. Each data contained in the patient measurement data 101b44. Sound data when sound analysis is performed5. Statistical analysis data of patient measurement data 101b4
 機器研究データ102b2は、人工呼吸器105Aの個体情報、設定情報、人工呼吸器105Aなどの設定操作を行うために設定操作端末103Aによって入力したデータなどを含むものである。設定操作端末103AのGPS情報は、設定操作端末103Aで設定操作プログラムを使用する際に、設定操作端末103Aの位置情報を取得する。これにより世界における人工呼吸器105Aの使用場所を把握できる。特に、人工呼吸器105Aは野外などの電気を利用できない場所でも使用できるので、空気圧駆動の人工呼吸器105Aの活用事例を収集して、人工呼吸器105Aの有用性を確認することができる。 The equipment research data 102b2 includes the individual information of the ventilator 105A, setting information, and data input by the setting operation terminal 103A for setting operation of the ventilator 105A. As for the GPS information of the setting operation terminal 103A, the position information of the setting operation terminal 103A is obtained when the setting operation program is used on the setting operation terminal 103A. As a result, it is possible to grasp the place where the respirator 105A is used in the world. In particular, since the ventilator 105A can be used in places such as outdoors where electricity is not available, it is possible to collect practical examples of the pneumatically driven ventilator 105A and confirm the usefulness of the ventilator 105A.
 機器研究データ102b2は、患者測定データ101b4を含む。これにより患者の臨床観察の経過を把握することができる。特に、患者測定データ101b4は、患者の身長、体重、性別に応じて設定した人工呼吸器105Aを含む医療機器の設定情報や、患者の容態の変化に応じて再設定した人工呼吸器105Aを含む医療機器の再設定情報、患者の検査測定データを含む。このため医療者は、設定操作端末103Aや閲覧端末104AからEDCサーバ102Aにアクセスし、それらの情報を検索することで、これから人工呼吸器105Aを使用する患者に適した医療機器の設定と、すでに人工呼吸器105Aを使用中の患者の状態の変化に適した医療機器の再設定とを行うことができる。なお、機器研究データ102b2の検索は、後述する検索部102iで行うことができる。 The device research data 102b2 includes patient measurement data 101b4. This makes it possible to grasp the clinical observation progress of the patient. In particular, the patient measurement data 101b4 includes medical device setting information including the ventilator 105A set according to the patient's height, weight, and sex, and the ventilator 105A reset according to changes in the patient's condition. Includes medical device reconfiguration information, patient laboratory measurement data. For this reason, the medical staff accesses the EDC server 102A from the setting operation terminal 103A and the viewing terminal 104A, and retrieves the information, thereby setting the medical equipment suitable for the patient who will use the ventilator 105A, and Reconfiguration of the medical device to suit changing patient conditions during use of the ventilator 105A can be performed. Note that the device research data 102b2 can be searched by a search unit 102i, which will be described later.
 機器研究データ102b2は、音解析を行った場合の音データを含めることができる。音データは、設定操作端末103Aが集音した集音データと、その音データを設定支援サーバ101Aにより音解析して得られた音解析データとを含む。 The device research data 102b2 can include sound data when sound analysis is performed. The sound data includes collected sound data collected by the setting operation terminal 103A and sound analysis data obtained by sound analysis of the sound data by the setting support server 101A.
 患者測定データ101b4の統計解析データについては、統計解析部102gで説明する。 The statistical analysis data of the patient measurement data 101b4 will be explained in the statistical analysis section 102g.
〔II〕患者研究データ102b3は、例えば以下のデータを含むことができる。 [II] The patient research data 102b3 can include, for example, the following data.
1.患者基本情報101b2に含む各データ
2.患者観察研究データ101b3に含む各データ
3.患者観察研究データ101b3の統計解析データ
1. Each data included in patient basic information 101b2; Each data included in the patient observation study data 101b33. Statistical Analysis Data of Patient Observation Study Data 101b3
 患者研究データ102b3は、患者基本情報101b2と患者観察研究データ101b3を含む。このため医療者は、設定操作端末103Aや閲覧端末104AからEDCサーバ102Aにアクセスし、それらの情報を検索することで、身長、体重、性別、人工呼吸器105Aの使用中止時の転帰、使用中止後の呼吸不全治療の内容、検査測定データなどを参考にしながら、呼吸不全治療にあたることができる。なお、患者研究データ102b3の検索は、後述する検索部102iで行うことができる。 Patient research data 102b3 includes patient basic information 101b2 and patient observation research data 101b3. For this reason, medical personnel access the EDC server 102A from the setting operation terminal 103A and the viewing terminal 104A, and search for such information to obtain height, weight, gender, outcome at the time of discontinuation of use of the ventilator 105A, and discontinuation of use. It is possible to treat respiratory failure while referring to the details of respiratory failure treatment later, test measurement data, etc. The patient research data 102b3 can be searched by the search unit 102i, which will be described later.
 患者研究データ102b3の統計解析データについては、統計解析部102gで説明する。 The statistical analysis data of the patient research data 102b3 will be explained in the statistical analysis section 102g.
 以上の機器研究データ102b2と患者研究データ102b3は、観察研究データベースとして機能しうる記憶部102bに蓄積されている。したがって検索部102iは、機器研究データ102b2と患者研究データ102b3とを検索対象データとして検索することが可能である。また、統計解析部102gは、機器研究データ102b2と患者研究データ102b3とを統計解析に利用することが可能である。そして、統計解析部102gが統計解析の対象とするデータと、統計解析後のデータは、いずれも研究用データ102b1に含まれており、記憶部102bに蓄積されている。 The above device research data 102b2 and patient research data 102b3 are accumulated in the storage unit 102b that can function as an observation research database. Therefore, the search unit 102i can search the device research data 102b2 and the patient research data 102b3 as search target data. Also, the statistical analysis unit 102g can use the device research data 102b2 and the patient research data 102b3 for statistical analysis. The data to be statistically analyzed by the statistical analysis unit 102g and the data after the statistical analysis are both included in the research data 102b1 and accumulated in the storage unit 102b.
 受付部102cは、通信ネットワーク107を介して、設定操作端末103A、閲覧端末104Aから閲覧要求を受け付ける機能を有する。 The receiving unit 102c has a function of receiving viewing requests from the setting operation terminal 103A and the viewing terminal 104A via the communication network 107.
 通信部102dは、通信ネットワーク107を介して、設定支援サーバ101A、設定操作端末103A、閲覧端末104Aと相互に通信可能に接続する機能を有する。 The communication unit 102d has a function of connecting to the setting support server 101A, the setting operation terminal 103A, and the viewing terminal 104A via the communication network 107 so as to be able to communicate with each other.
 取得部102eは、設定支援サーバ101Aに蓄積されているデータを取得する機能を有する。取得部102eが設定支援サーバ101Aに接続するタイミングは、設定支援サーバ101Aから通知を受けたとき、任意のときにEDCサーバ102Aを操作して設定支援サーバ101Aに蓄積データの送信リクエストを出したとき、計画された所定の日時が到来したとき、の少なくともいずれかのとき、とすることができる。 The acquisition unit 102e has a function of acquiring data accumulated in the setting support server 101A. The timing at which the acquisition unit 102e connects to the setting support server 101A is when a notification is received from the setting support server 101A, or when the EDC server 102A is operated to issue a transmission request for accumulated data to the setting support server 101A at an arbitrary time. , and/or when a predetermined scheduled date and time arrives.
 編集部102fは、記憶部102bに蓄積されているデータを編集する機能を有する。記憶部102bに蓄積するデータは、設定支援サーバ101Aから取得したデータであり、その中にはノイズデータが含まれていることがある。EDCサーバ102Aは、そうした記憶部102bに蓄積されているノイズデータなどを、編集部102fによって編集できるようにしている(データクリーニング)。編集部102fによる編集は、EDCサーバ102Aに備える入力デバイス204aを操作することにより行えるほか、編集権限を有する設定操作端末103A、閲覧端末104Aを操作することによっても行える。 The editing unit 102f has a function of editing data accumulated in the storage unit 102b. The data stored in the storage unit 102b is data obtained from the setting support server 101A, and may contain noise data. The EDC server 102A allows the editing section 102f to edit such noise data stored in the storage section 102b (data cleaning). Editing by the editing unit 102f can be performed by operating the input device 204a provided in the EDC server 102A, and can also be performed by operating the setting operation terminal 103A and the browsing terminal 104A having editing authority.
 統計解析部102gは、記憶部102bが蓄積する研究用データ102b1などのデータに対して統計による解析処理を行って統計解析データを生成する機能を有する。統計解析部102gが行える統計分析の種類には、記述統計、推測統計を含む。 The statistical analysis unit 102g has a function of performing statistical analysis processing on data such as the research data 102b1 accumulated in the storage unit 102b to generate statistical analysis data. The types of statistical analysis that the statistical analysis unit 102g can perform include descriptive statistics and inferential statistics.
 さらに、統計解析部102gは、機械学習、ディープラーニングによるデータ解析を含むことができる。前述したように、研究用データ102b1には、後述する音解析に関する音データ(集音データ、音解析データ)が含まれる。統計解析部102gが、これらの音データ(例えば、呼吸サイクル音の音データ)をディープラーニングすることによって、例えば、患者の身長、性別、原因疾病、原因疾病の進行状況に対する呼吸回数、呼気時間、吸気時間の変化のパターンや傾向を予測できる可能性がある。また、統計解析部102gが、前記音データに対して機械学習を行うことによって、例えば、音データの所定の特徴量を、原因疾病や原因疾病の進行の程度に関連付けた急性呼吸不全の進行度合いの診断のために参照することのできるモデルを構築できる可能性がある。さらに、前述の編集部102fでは、設定支援サーバ101Aから取得に含まれるノイズデータを除去するための編集作業ができることを説明したが、この編集作業は機械学習によって代替できる可能性がある。 Furthermore, the statistical analysis unit 102g can include data analysis by machine learning and deep learning. As described above, the research data 102b1 includes sound data (collected sound data, sound analysis data) relating to sound analysis, which will be described later. The statistical analysis unit 102g deep-learns these sound data (for example, sound data of breathing cycle sounds) to obtain, for example, the patient's height, sex, causative disease, number of breaths for the progress of the causative disease, expiratory time, It may be possible to predict the patterns and trends of changes in inspiratory time. In addition, the statistical analysis unit 102g performs machine learning on the sound data, so that, for example, a predetermined feature value of the sound data is associated with the causative disease or the degree of progression of the causative disease, and the degree of progression of acute respiratory failure. It may be possible to build a model that can be referred to for the diagnosis of Furthermore, although it has been described that the editing unit 102f described above can perform editing work for removing noise data included in the acquisition from the setting support server 101A, this editing work may be replaced by machine learning.
 統計解析部102gが行う統計解析を例示すると、例えば以下のものを列挙できる。 Examples of the statistical analysis performed by the statistical analysis unit 102g include the following.
〔1〕機器研究データ102b2に対する統計解析の例
〔1.1〕データ全体、使用状況ごと、GPS地域ごと、性別ごと、身長ごとの各以下の記述統計
・個々の要約統計量(各データの推移(1回目、2回目、3回目・・・))
・各データの推移の該当数と間隔(時間)
 ・音解析による一回換気量と予測一回換気量との差異
 ・音解析による一回換気量と予測一回換気量との差異の推移別
〔1.2〕設定操作端末103Aに対する入力データがある場合
・経皮酸素飽和度測定値の要約統計と推移
・呼吸回路中の終末呼気炭酸ガス濃度測定値の要約統計と推移
・患者血液ガス分析値(PaO、PaCOの分圧値)の推移(人工呼吸器105Aのガス供給気の酸素濃度、分時換気量と経皮酸素飽和度酸素、血液ガス分析の分圧値の推移)
〔1.3〕機器の不具合情報と上記データとの関連性の解析
[1] Example of statistical analysis for the device research data 102b2 [1.1] The following descriptive statistics and individual summary statistics (transition of each data (1st time, 2nd time, 3rd time...))
・The number of hits and interval (time) of transition of each data
・Difference between the tidal volume obtained by sound analysis and the predicted tidal volume ・Changes in the difference between the tidal volume obtained by sound analysis and the predicted tidal volume Summary statistics and trends of transcutaneous oxygen saturation measurements Summary statistics and trends of end-tidal carbon dioxide concentration measurements in the respiratory circuit Patient blood gas analysis values (partial pressure values of PaO 2 and PaCO 2 ) Changes (changes in oxygen concentration of gas supplied to artificial respirator 105A, minute ventilation and percutaneous oxygen saturation oxygen, and partial pressure values in blood gas analysis)
[1.3] Analysis of relationship between equipment failure information and the above data
〔2〕患者研究データ102b3に対する統計解析の例
〔2.1〕使用場所別、疾患別、施設別の人工呼吸器105Aの使用日数時間、転帰の要約統計
〔2.2〕患者データごと、すなわち、使用場所別、疾患別、転帰別の医療機器側のデータ(分時換気量、一回換気量、酸素濃度、性別、身長別、PaO、PaCOの分圧値、終末呼気炭酸ガス濃度)の要約統計
[2] Example of statistical analysis for patient research data 102b3 [2.1] Days and hours of use of ventilator 105A by location, by disease, by facility, summary statistics of outcomes [2.2] For each patient data, i.e. , medical device data by place of use, by disease, by outcome ) summary statistics
 配信部102hは、記憶部102bに蓄積されている研究用データ102b1を配信する機能を有する。データの配信先は、設定支援サーバ101A、設定操作端末103A、閲覧端末104Aとすることができる。配信対象のデータは、記憶部102bに蓄積されているデータクリーニング後の研究用データ102b1、研究用データ102b1を統計解析した統計解析データとすることができる。データ配信のタイミングは、設定支援サーバ101A、設定操作端末103A、閲覧端末104Aからのリクエストを受けたとき、任意のときにEDCサーバ102Aを操作して配信するとき、計画された所定の日時が到来したとき、の少なくともいずれかのとき、とすることができる。 The distribution unit 102h has a function of distributing the research data 102b1 accumulated in the storage unit 102b. Data can be delivered to the setting support server 101A, the setting operation terminal 103A, and the viewing terminal 104A. The data to be distributed can be research data 102b1 after data cleaning accumulated in the storage unit 102b, and statistical analysis data obtained by statistically analyzing the research data 102b1. The timing of data distribution is when a request is received from the setting support server 101A, the setting operation terminal 103A, and the viewing terminal 104A, when the EDC server 102A is operated at any time to distribute data, and when a planned date and time arrives. when and/or at least one of;
 検索部102iは、記憶部102bに蓄積されている各種データを検索する機能を有する。前述のように、患者研究データ102b3は、患者基本情報101b2と患者観察研究データ101b3を含む。このため医療者は、設定操作端末103Aや閲覧端末104AからEDCサーバ102Aにアクセスし、患者研究データ102b3を検索することで、身長、体重、性別、人工呼吸器105Aの使用中止時の転帰、使用中止後の呼吸不全治療の内容、検査測定データなどを参考にしながら、呼吸不全治療にあたることができる。 The search unit 102i has a function of searching various data stored in the storage unit 102b. As described above, patient study data 102b3 includes patient basic information 101b2 and patient observation study data 101b3. For this reason, the medical staff accesses the EDC server 102A from the setting operation terminal 103A and the viewing terminal 104A, searches the patient research data 102b3, and obtains height, weight, gender, outcome when the use of the ventilator 105A is discontinued, use Treatment for respiratory failure can be performed while referring to the content of respiratory failure treatment after discontinuation, laboratory measurement data, etc.
 また検索部102iは、推奨換気設定のフィードバック機能を有することができる。設定操作端末103Aから患者データを送信し、さらに設定支援サーバ101Aに対して推奨換気設定(設定圧力値、ガス供給気量など)を要求すると、設定支援サーバ101AはEDCサーバ102Aに対して推奨換気設定の自動フィードバックを要求することができる。前述の患者データとしては、例えば診断名、身長、体重などを選択できる。EDCサーバ102Aの検索部102iは、設定支援サーバ101Aから受付けた前記患者データに基づき、記憶部102bに膨大に蓄積されている臨床データ(研究用データ102b1)から、前記患者に適した推奨換気設定を、設定支援サーバ101Aを通じて設定操作端末103Aに自動フィードバックすることができる。肺コンプライアンスは、疾病の種類、例えば、胸水や気胸などによる胸腔内容量増加に伴う肺の圧迫や、肺炎などの炎症性病変、また、喘息、気道内異物、腫瘍などによる気道狭窄や気道閉塞、無気肺などによって影響を受ける。さらに、胸郭の固さ、肥満による胸壁の圧迫や横隔膜の挙上にも影響を受けうる。このためシステム100に沢山の患者データ101b1、研究用データ102b1が蓄積されることにより、診断名、身長、体重等の前記患者データをインプットとして、その蓄積されたデータに基づいて肺コンプライアンス値を予測しうることになる。そして、その予測値を後述する実測値とすり合わせることによって、推奨換気設定がフィードバックできるようになる。これによれば医療者がデータベースを検索しなくても推奨換気設定が自動フィードバックされるので、迅速かつ容易に人工呼吸器等の設定を行うことができる。 The search unit 102i can also have a feedback function for recommended ventilation settings. When patient data is transmitted from the setting operation terminal 103A and a request for recommended ventilation settings (set pressure value, gas supply volume, etc.) is made to the setting support server 101A, the setting support server 101A sends recommended ventilation to the EDC server 102A. You can request automatic feedback of your settings. As the aforementioned patient data, for example, diagnosis name, height, weight, etc. can be selected. Based on the patient data received from the setting support server 101A, the search unit 102i of the EDC server 102A selects recommended ventilation settings suitable for the patient from clinical data (research data 102b1) accumulated in the storage unit 102b. can be automatically fed back to the setting operation terminal 103A through the setting support server 101A. Lung compliance is determined by the type of disease, for example, lung compression due to increased intrathoracic volume due to pleural effusion or pneumothorax, inflammatory lesions such as pneumonia, airway narrowing or airway obstruction due to asthma, airway foreign bodies, or tumors. Affected by atelectasis, etc. In addition, chest wall compression and diaphragm elevation due to thoracic stiffness, obesity, etc. Therefore, by accumulating a large amount of patient data 101b1 and research data 102b1 in the system 100, the patient data such as the diagnosis name, height, and weight are used as input, and the lung compliance value is predicted based on the accumulated data. It will be possible. And the recommendation ventilation setting can be fed back now by adjusting the predicted value with the actual measured value mentioned later. According to this, the recommended ventilation setting is automatically fed back without the need for the medical staff to search the database, so that the ventilator can be set quickly and easily.
設定操作端末103A、閲覧端末104Aのハードウェア資源(第2のコンピュータ装置300)の構成(図24)Configuration of hardware resources (second computer device 300) of setting operation terminal 103A and viewing terminal 104A (Fig. 24)
 設定操作端末103A(第1の端末装置103)、閲覧端末104A(第2の端末装置104)は、いずれも、1又は複数の第2のコンピュータ装置300により実現することができる。図24で示すように、第2のコンピュータ装置300のハードウェア資源は、プロセッサ301と、メモリ302と、通信デバイス303と、I/Oインターフェース304とを備える。 Both the setting operation terminal 103A (first terminal device 103) and the viewing terminal 104A (second terminal device 104) can be realized by one or more second computer devices 300. As shown in FIG. 24, the hardware resources of the second computer device 300 include a processor 301, a memory 302, a communication device 303, and an I/O interface 304.
 プロセッサ301は、中央演算処理装置であり、プログラムの命令を実行し、第2のコンピュータ装置300の全体の動作を制御する。プロセッサ301は、1又は複数で構成できる。メモリ302は、ROM、RAM、外部記憶装置などを含み、各種のプログラムを記憶するとともに、プロセッサ301がプログラムの命令に基づき処理するデータなどを記憶する。メモリ302を構成するROM、RAM、外部記憶装置などは、それぞれ1又は複数のデバイスにて構成できる。プログラムには、本開示の一態様による医療機器の設定支援方法を実行するプログラム(端末側設定支援プログラム(設定操作プログラム))を含む。通信デバイス303は、通信ネットワーク107を介して行う通信接続を制御する。I/Oインターフェース304は、各種デバイスとの接続を制御する。本実施形態では、具体的にはキーボードやマウスなどの各種の入力デバイス304a、情報を画面表示するディスプレイ304b、撮像デバイス304c、GPSデバイス304d、マイク304e、スピーカ304fなどが接続されうる。なお、撮像デバイス304c、GPSデバイス304d、マイク304e、スピーカ304fは、閲覧端末104Aについては任意のハードウェア資源である。 The processor 301 is a central processing unit, executes program instructions, and controls the overall operation of the second computer device 300 . Processor 301 may consist of one or more. The memory 302 includes a ROM, a RAM, an external storage device, etc., stores various programs, and stores data processed by the processor 301 based on instructions of the programs. Each of the ROM, RAM, external storage device, and the like that constitute the memory 302 can be configured by one or more devices. The program includes a program (terminal-side setting support program (setting operation program)) that executes the medical device setting support method according to one aspect of the present disclosure. The communication device 303 controls communication connections made through the communication network 107 . The I/O interface 304 controls connections with various devices. Specifically, in this embodiment, various input devices 304a such as a keyboard and a mouse, a display 304b for displaying information on a screen, an imaging device 304c, a GPS device 304d, a microphone 304e, a speaker 304f, and the like can be connected. Note that the imaging device 304c, GPS device 304d, microphone 304e, and speaker 304f are optional hardware resources for the viewing terminal 104A.
設定操作端末103Aの機能構成(図25)Functional Configuration of Setting Operation Terminal 103A (FIG. 25)
 設定操作端末103Aは、図25で示すように、機能的構成として、制御部103a、記憶部103b、受付部103c、通信部103d、入力部103e、表示部103f、読取部103g、有効性判定部103h、集音部103i、演算部103jを含むことができる。各機能部は、設定操作端末103Aのハードウェア資源である第2のコンピュータ装置300が、一態様によるプログラム(前記設定操作プログラム)を実行することで実現できる。 As shown in FIG. 25, the setting operation terminal 103A includes a control unit 103a, a storage unit 103b, a reception unit 103c, a communication unit 103d, an input unit 103e, a display unit 103f, a reading unit 103g, and a validity determination unit. 103h, a sound collector 103i, and a calculator 103j. Each functional unit can be realized by the second computer device 300, which is a hardware resource of the setting operation terminal 103A, executing a program according to one aspect (the setting operation program).
 制御部103aは、設定操作端末103Aで行われるデータ処理を制御する。具体的にはプロセッサ301が前記設定操作プログラムを実行することでデータ処理を行う。 The control unit 103a controls data processing performed by the setting operation terminal 103A. Specifically, the processor 301 performs data processing by executing the setting operation program.
 記憶部103bは、例えば前記設定操作プログラムと、前記設定操作プログラムを実行する際に設定操作端末103Aで一時記憶するデータとをメモリ302に保持する。 The storage unit 103b holds in the memory 302, for example, the setting operation program and data temporarily stored in the setting operation terminal 103A when executing the setting operation program.
 受付部103cは、通信ネットワーク107を介して、設定支援サーバ101A、EDCサーバ102Aが送信したデータを取得する機能を有する。 The reception unit 103c has a function of acquiring data transmitted by the setting support server 101A and the EDC server 102A via the communication network 107.
 通信部103dは、通信ネットワーク107を介して、設定支援サーバ101A、EDCサーバ102Aと相互に通信可能に接続する機能を有する。 The communication unit 103d has a function of connecting to the setting support server 101A and the EDC server 102A via the communication network 107 so that they can communicate with each other.
 入力部103eは、キーボード、マウス、タッチパネルなどにより入力操作を行う機能を有する。入力操作の態様は、例えば手入力、音声入力とすることができる。 The input unit 103e has a function of performing input operations using a keyboard, mouse, touch panel, or the like. The mode of input operation can be, for example, manual input or voice input.
 表示部103fは、情報を画面に表示する機能を有し、設定操作端末103Aのハードウェア資源としてのディスプレイ304bを含む。 The display unit 103f has a function of displaying information on the screen, and includes a display 304b as a hardware resource of the setting operation terminal 103A.
 読取部103gは、人工呼吸器105Aの本体3の外周壁31に設けられている識別コード19を読み取る機能を有し、設定操作端末103Aのハードウェア資源である撮像デバイス304cを含む。設定操作端末103Aが、例えばスマートフォンやノートパソコンである場合には、それらに備える内蔵カメラが読取部103gとして機能しうる。なお、読取部103gは機能的に実現されればよい。したがって内蔵カメラではなく、設定操作端末103Aに有線又は無線により接続した撮像デバイス304cを利用してもよい。 The reading unit 103g has a function of reading the identification code 19 provided on the outer peripheral wall 31 of the main body 3 of the respirator 105A, and includes an imaging device 304c that is a hardware resource of the setting operation terminal 103A. When the setting operation terminal 103A is, for example, a smart phone or a notebook computer, a built-in camera provided for them can function as the reading unit 103g. Note that the reading unit 103g may be functionally realized. Therefore, instead of using the built-in camera, an imaging device 304c connected to the setting operation terminal 103A by wire or wirelessly may be used.
 さらに読取部103gは、ライフスコープ106A1の表示値を自動読取りにより取得する機能を有することができる。表示値は、例えば血圧、心拍数、呼吸回数、呼気二酸化炭素濃度とすることができる。さらにまた読取部103gは、患者の胸部の上下運動(変位)の回数を解析して、それに基づき呼吸回数をカウントする機能を有することができる。これらによれば、医療者が離れた場所から患者の様子をモニタリングすることが可能となり、またより適切な在宅診療も行うことができる。 Furthermore, the reading unit 103g can have a function of automatically reading the display value of the life scope 106A1. The displayed values can be, for example, blood pressure, heart rate, respiratory rate, exhaled carbon dioxide concentration. Furthermore, the reading unit 103g can have a function of analyzing the number of vertical movements (displacements) of the patient's chest and counting the number of respirations based on the analysis. According to these, medical staff can monitor the condition of patients from a remote location, and more appropriate home medical care can be performed.
 有効性判定部103hは、読取部103gによって識別コード19を読み取られた人工呼吸器105Aが、有効に使用可能なものであるか否かを判定する機能を有する。有効性の判定基準は、有効期限、使用回数などとすることができる。このうち「有効期限」は、利用機器データ101b5に含まれており、シリアルナンバーごとの「製造日」からカウントされる期限によって設定される。有効性判定部103hは、識別コード19の読取り日(利用機器データ101b5の「使用開始日時」に設定される。)が有効期限内か否かを判定する。有効期限を超過している場合には、ポップアップ画面などによって、注意を促す警告を通知する。 The validity determination unit 103h has a function of determining whether or not the ventilator 105A whose identification code 19 is read by the reading unit 103g can be used effectively. Criteria for efficacy can be expiration date, number of uses, and the like. Of these, the "expiration date" is included in the used device data 101b5 and is set by the expiration date counted from the "manufacturing date" for each serial number. The validity judging section 103h judges whether or not the reading date of the identification code 19 (which is set in the "usage start date and time" of the device data 101b5) is within the validity period. If the expiration date has passed, a warning to call attention is notified by a pop-up screen or the like.
 「使用回数」は、利用機器データ101b5に含まれる「使用開始日時」に基づいて判定する。有効性判定部103hは、識別コード19の読取り日に、すでに利用機器データ101b5の「使用開始日時」が既に記録されている場合には、複数回の使用であると判定し、人工呼吸器105Aが有効ではないと判定する。この場合は有効期限と同様に、注意を促す警告を通知する。他方、「使用開始日時」の記録が無い場合には、初めての使用であると判定し、人工呼吸器105Aが有効に使用できると判定する。 The "number of times of use" is determined based on the "usage start date and time" included in the device usage data 101b5. If the "usage start date and time" of the utilization equipment data 101b5 has already been recorded on the reading date of the identification code 19, the validity determination unit 103h determines that the respirator 105A has been used multiple times. is not valid. In this case, similar to the expiration date, a cautionary warning is notified. On the other hand, if there is no record of the "start date and time of use", it is determined that it is the first use and that the respirator 105A can be used effectively.
 集音部103iは、少なくとも患者Pに装着した人工呼吸器105Aが発生する音(呼吸音、呼吸サイクル音)を収集する機能を有し、設定操作端末103Aのハードウェア資源であるマイク304eを含む。集音部103iが取得する音は、気体供給源105Cから供給される気体が人工呼吸器105Aを通過して患者に送られる吸気と、人工呼吸器105Aの弁体9が開いて患者の肺から人工呼吸器105Aを通じて外部に排出される呼気とが交互に繰り返して連続することで発生する呼吸サイクル音である。したがって、呼吸サイクル音には、人工呼吸器105Aによる機械的人工呼吸による呼吸音と、患者が自発呼吸できる場合には人工呼吸器105Aを装着した状態での患者の自発呼吸による呼吸音の双方が含まれうる。なお、ハードウェア資源としてのマイク304eは、呼吸サイクル音だけでなく周辺の環境音も収集するものである。したがって集音部103iには、呼吸サイクル音のみならず環境音も含まれうる。 The sound collecting unit 103i has a function of collecting at least sounds (breathing sounds, breathing cycle sounds) generated by the respirator 105A attached to the patient P, and includes a microphone 304e which is a hardware resource of the setting operation terminal 103A. . The sounds acquired by the sound collector 103i are the inspiratory gas supplied from the gas supply source 105C and sent to the patient through the ventilator 105A, and the sound from the patient's lungs when the valve body 9 of the ventilator 105A is opened. It is a breathing cycle sound generated by alternately repeating and continuing the exhalation discharged to the outside through the artificial respirator 105A. Therefore, the breathing cycle sound includes both the breath sound due to mechanical ventilation by the ventilator 105A and the breath sound due to the patient's spontaneous breathing while wearing the ventilator 105A if the patient can breathe spontaneously. can be included. Note that the microphone 304e as a hardware resource collects not only breathing cycle sounds but also surrounding environmental sounds. Therefore, the sound collector 103i can include environmental sounds as well as respiratory cycle sounds.
 集音部103iには、収集する音から呼吸サイクル音をモニタリングし、呼吸サイクル音に異常を検知した場合に呼吸異常アラームを発出する機能を有することができる。これによれば医療者が患者の異常を即座に知ることができる。呼吸異常アラームは、設定操作端末103Aが音を発出したり、画面表示したりすることができる。また、呼吸サイクル音に異常を検知した場合とは、呼吸サイクル音が検出できない場合、呼吸サイクル音が不安定な場合(例えば、呼気時間や吸気時間が長短し安定しない場合)とすることができる。 The sound collector 103i can have a function of monitoring respiratory cycle sounds from collected sounds and issuing an abnormal respiratory alarm when an abnormality is detected in the respiratory cycle sounds. According to this, the medical staff can immediately know the abnormality of the patient. The abnormal breathing alarm can be generated by the setting operation terminal 103A by emitting a sound or by displaying it on the screen. Further, when an abnormality is detected in the respiratory cycle sound, it is possible to detect the respiratory cycle sound when the respiratory cycle sound is not detected, or when the respiratory cycle sound is unstable (for example, when the expiration time or intake time is long and short and is not stable). .
 演算部103jは、各種の生体データを演算する機能を有する。医療者は、演算部103jで演算された生体データを参照し、人工呼吸管理下にある患者の状態を観察しながら、人工呼吸器105Aを含む医療機器の設定を行うことができる。演算部103jは、図25で示すように、機能的構成として、予測Vt演算部103j1、FiO演算部103j2、PEEP演算部103j3、IE比演算部103j4、推定Vt演算部103j5、MV演算部103j6を含むことができる。 The calculation unit 103j has a function of calculating various biological data. The medical staff can refer to the biological data calculated by the calculation unit 103j and set the medical equipment including the respirator 105A while observing the patient's condition under artificial respiration management. As shown in FIG. 25, the calculation unit 103j includes a predicted Vt calculation unit 103j1, a FiO2 calculation unit 103j2, a PEEP calculation unit 103j3, an IE ratio calculation unit 103j4, an estimated Vt calculation unit 103j5, and an MV calculation unit 103j6 as functional configurations. can include
 予測Vt演算部103j1は、入力部103eによって入力された患者の身長、性別に基づき「理想体重」を演算し、さらにその理想体重から「予測一回換気量」(Predicted Tidal Volume, Predicted Vt)を演算する機能を有する。理想体重の演算と、予測一回換気量の演算は、以下の数式による(再掲)。 The predicted Vt calculation unit 103j1 calculates the "ideal weight" based on the height and sex of the patient input by the input unit 103e, and further calculates the "predicted tidal volume" (Predicted Tidal Volume, Predicted Vt) from the ideal weight. It has the function of calculating. The calculation of the ideal weight and the calculation of the predicted tidal volume are based on the following formulas (reposted).
[数1]Male Ideal body weight (IBW) kg = 50.0 + 0.91 × (BL cm - 152.4) kg
[数2]Female Ideal body weight (IBW) kg = 45.5 + 0.91 × (BL cm - 152.4) kg
[数3]Predicted Vt = IBW × 6 ml / 回
[Formula 1] Male Ideal body weight (IBW) kg = 50.0 + 0.91 × (BL cm - 152.4) kg
[Number 2] Female Ideal body weight (IBW) kg = 45.5 + 0.91 × (BL cm - 152.4) kg
[Formula 3] Predicted Vt = IBW × 6 ml / time
 予測一回換気量(予測Vt)は、患者測定データ101b4に含まれる。予測Vt演算部103j1では、数式3の「6 ml」は、6ml以外にも設定可能となっている。但し、予測一回換気量は、設定支援サーバ101Aの機能的構成として予測Vt演算部を備える構成としてもよい。 The predicted tidal volume (predicted Vt) is included in the patient measurement data 101b4. In the predicted Vt calculator 103j1, "6 ml" in Equation 3 can be set to values other than 6 ml. However, the predicted tidal volume may be configured to include a predicted Vt calculation unit as a functional configuration of the setting support server 101A.
 FiO演算部103j2は、FiO(Fraction of inspiratory oxygen、吸入中酸素濃度)を演算する機能を有する。このFiOは、計算により得られる予測値であり、患者測定データ101b4に含まれ、次の数式により演算できる。 The FiO 2 calculation unit 103j2 has a function of calculating FiO 2 (fraction of inspiratory oxygen, oxygen concentration during inhalation). This FiO2 is a predicted value obtained by calculation, is included in the patient measurement data 101b4, and can be calculated by the following formula.
[数4]FiO = (酸素流量(Flow Volume of O2) × 空気流量(Flow Volume of Air) × 0.21) / (酸素流量(Flow Volume of O2) + 空気流量(Flow Volume of Air) [Formula 4] FiO2 = (Flow Volume of O2 x Flow Volume of Air x 0.21) / (Flow Volume of O2 + Flow Volume of Air )
 PEEP演算部103j3は、PEEP(Estimated Positive End Expiratory Pressure、呼気終末陽圧換気)を演算する機能を有する。このPEEPは、計算により得られる推定PEEP(Estimated PEEP)であり、患者測定データ101b4に含まれる。PEEPは、人工呼吸器105Aの弁体9の設定圧力値(開弁圧)が決定されると、それに応じて一定の値になることが、本発明者の非臨床試験により判明している。PEEP演算部103j3は、設定圧力値とPEEPの値との対応関係を示す詳細なデータテーブルを保有しており、入力部103eによって入力された設定圧力値(開弁圧)に応じてPEEPの値を演算(選択)する。 The PEEP calculator 103j3 has a function of calculating PEEP (Estimated Positive End Expiratory Pressure). This PEEP is an estimated PEEP obtained by calculation and included in the patient measurement data 101b4. It has been found by the present inventor's non-clinical tests that PEEP becomes a constant value when the set pressure value (valve opening pressure) of the valve body 9 of the respirator 105A is determined. The PEEP calculation unit 103j3 has a detailed data table showing the corresponding relationship between the set pressure value and the PEEP value, and calculates the PEEP value according to the set pressure value (valve opening pressure) input by the input unit 103e. is calculated (selected).
 IE比演算部103j4は、設定支援サーバ101Aの生成部101fによって演算された吸気時間と呼気時間に基づいてIE比(吸気時間呼気時間比)を演算する機能を有する。IE比は、患者測定データ101b4に含まれる。 The IE ratio calculator 103j4 has a function of calculating an IE ratio (inspiratory time-expiratory time ratio) based on the inspiratory time and expiratory time calculated by the generating unit 101f of the setting support server 101A. The IE ratio is included in patient measurement data 101b4.
 推定Vt演算部103j5は、呼気時間、吸気時間、呼吸回数、ガス供給気量に基づき推定一回換気量(mL)(Estimated Vt、推定Vt)を演算する機能を有する。推定一回換気量は、患者測定データ101b4に含まれる。前述の予測Vt演算部103j1によって演算される予測一回換気量は、患者の理想体重に基づき求められる理論上の一回換気量である。これに対して、推定一回換気量は、人工呼吸管理下にある患者を観察して得られる呼気時間、吸気時間、呼吸回数、実際のガス供給気量に基づき計算して求められる計算上の一回換気量である。したがって、推定一回換気量を予測一回換気量に合わせ込んでいくように、人工呼吸器105Aを含む医療機器を設定する。推定一回換気量は、その設定のための指標データである。推定一回換気量は、以下のように演算できる。 The estimated Vt calculation unit 103j5 has a function of calculating an estimated tidal volume (mL) (Estimated Vt) based on the expiratory time, inspiratory time, respiratory rate, and gas supply volume. The estimated tidal volume is included in patient measurement data 101b4. The predicted tidal volume calculated by the aforementioned predicted Vt calculator 103j1 is a theoretical tidal volume obtained based on the patient's ideal body weight. On the other hand, the estimated tidal volume is calculated based on the expiratory time, inspiratory time, respiratory rate, and actual gas supply volume obtained by observing the patient under mechanical ventilation. is the tidal volume. Therefore, the medical equipment including the respirator 105A is set so as to match the estimated tidal volume with the predicted tidal volume. The estimated tidal volume is the index data for that setting. The estimated tidal volume can be calculated as follows.
 呼気時間を「E(秒)」、吸気時間を「I(秒)」とし、呼吸回数を「RR(回/分)」とすると、吸気時間Iは次式により得られる。 If the expiratory time is "E (seconds)", the inspiratory time is "I (seconds)", and the respiratory rate is "RR (times/minute)", the inspiratory time I is obtained by the following formula.
[数5]I = (60 / RR) - E [Number 5] I = (60 / RR) - E
 そして患者に供給するガス供給気量を「F(L/分)」とすると、推定一回換気量(mL)は次式により求めることができる。 Then, if the amount of gas supplied to the patient is "F (L/min)", the estimated tidal volume (mL) can be obtained by the following formula.
[数6]推定Vt = (F / 60) × I [Formula 6] Estimated Vt = (F / 60) × I
 MV演算部103j6は、分時換気量(Minute Volume)を演算する機能を有する。この分時換気量(L/分)は、推定一回換気量(L)と呼吸回数RR(回/分)に基づき計算して得られる推定分時換気量(Estimated MV、推定MV)であり、患者測定データ101b4に含まれる。即ち、推定分時換気量は、以下のように演算できる。 The MV calculation unit 103j6 has a function of calculating the minute ventilation (Minute Volume). This minute ventilation (L/min) is the estimated minute ventilation (Estimated MV) obtained by calculating based on the estimated tidal volume (L) and respiratory rate RR (breaths/min). , is included in patient measurement data 101b4. That is, the estimated minute ventilation can be calculated as follows.
[数7]推定MV = 推定Vt × RR [Formula 7] Estimated MV = Estimated Vt × RR
 設定操作端末103AのユーザがEDCサーバ102Aに蓄積するデータに対する編集権限を有する場合は、入力部103eによってEDCサーバ102Aの編集部102fを操作することにより、データを編集することができる。 When the user of the setting operation terminal 103A has the authority to edit the data stored in the EDC server 102A, the data can be edited by operating the editing section 102f of the EDC server 102A with the input section 103e.
閲覧端末104Aの機能構成(図26)Functional configuration of viewing terminal 104A (FIG. 26)
 閲覧端末104Aは、図26で示すように、機能的構成として、制御部104a、記憶部104b、受付部104c、通信部104d、入力部104e、表示部104fを含むことができる。 As shown in FIG. 26, the viewing terminal 104A can include a control unit 104a, a storage unit 104b, a reception unit 104c, a communication unit 104d, an input unit 104e, and a display unit 104f as functional configurations.
 制御部104aは、閲覧端末104Aで行われるデータ処理を制御する。 The control unit 104a controls data processing performed by the viewing terminal 104A.
 記憶部104bは、例えばEDCサーバ102Aを閲覧するための閲覧プログラムと、閲覧プログラムを実行する際に閲覧端末104Aで一時記憶するデータとをメモリ302に保持する。閲覧プログラムは、例えばWebブラウザとすることができ、閲覧者IDとパスワードの入力により、EDCサーバ102Aに蓄積されているデータを閲覧できる。なお、閲覧プログラムは、Webブラウザではなく専用プログラムで構成してもよい。 The storage unit 104b holds in the memory 302, for example, a viewing program for viewing the EDC server 102A and data temporarily stored in the viewing terminal 104A when executing the viewing program. The viewing program can be, for example, a web browser, and the data stored in the EDC server 102A can be viewed by entering a viewer ID and password. Note that the viewing program may be a dedicated program instead of the web browser.
 受付部104cは、通信ネットワーク107を介して、EDCサーバ102Aが送信したデータを取得する機能を有する。 The reception unit 104c has a function of acquiring data transmitted by the EDC server 102A via the communication network 107.
 通信部104dは、通信ネットワーク107を介して、EDCサーバ102Aと相互に通信可能に接続する機能を有する。 The communication unit 104d has a function of connecting to the EDC server 102A via the communication network 107 so as to be able to communicate with each other.
 入力部104eは、キーボード、マウス、タッチパネルなどにより入力操作を行う機能を有する。入力操作の態様は、例えば手入力、音声入力とすることができる。 The input unit 104e has a function of performing input operations using a keyboard, mouse, touch panel, and the like. The mode of input operation can be, for example, manual input or voice input.
 表示部104fは、情報を画面に表示する機能を有し、閲覧端末104Aのハードウェア資源としてのディスプレイ304bを含む。 The display unit 104f has a function of displaying information on the screen, and includes a display 304b as a hardware resource of the viewing terminal 104A.
 閲覧端末104AのユーザがEDCサーバ102Aに蓄積するデータに対する編集権限を有する場合は、入力部104eによってEDCサーバ102Aの編集部102fを操作することにより、データを編集することができる。 If the user of the viewing terminal 104A has the right to edit the data stored in the EDC server 102A, the data can be edited by operating the editing unit 102f of the EDC server 102A with the input unit 104e.
医療機器の設定方法〔図27~図40〕How to set the medical device [Figures 27 to 40]
 医療情報処理システム100Aで行う医療機器の設定方法(本開示の一態様による「情報処理方法」)を説明する。本実施形態で例示する設定対象物としての医療機器は、人工呼吸器105Aと気体供給源105Cである。医療機器は、図27で示す一実施形態によるフローチャートに沿って情報処理を行うことにより、設定することができる。また、図27の患者情報入力ステップS105から機器設定S113までの具体的なステップは、図28~図30で示す一実施形態によるフローチャートに含まれている。 A medical device setting method (“information processing method” according to one aspect of the present disclosure) performed by the medical information processing system 100A will be described. Medical devices as setting objects exemplified in this embodiment are a ventilator 105A and a gas supply source 105C. A medical device can be configured by performing information processing according to a flowchart according to one embodiment shown in FIG. Further, specific steps from patient information input step S105 to device setting step S113 in FIG. 27 are included in the flow chart according to one embodiment shown in FIGS.
〔1〕二次元コード読取り(図27のS101、図31) [1] Two-dimensional code reading (S101 in FIG. 27, FIG. 31)
 まず初めに、設定操作端末103Aに設定支援プログラムをダウンロードする。なお、以下の説明では設定操作端末103Aとしてスマートフォンを利用する例を説明する。設定支援プログラムは、設定操作端末103Aが所定のURLにアクセスすることで、例えば設定支援サーバ101Aからダウンロードできる。設定操作端末103Aを使用するのは、医療機器の設定を行う医師、看護師、臨床工学技士などの医療者である。 First, a setting support program is downloaded to the setting operation terminal 103A. In the following description, an example of using a smart phone as the setting operation terminal 103A will be described. The setting support program can be downloaded from, for example, the setting support server 101A by the setting operation terminal 103A accessing a predetermined URL. The setting operation terminal 103A is used by medical personnel such as doctors, nurses, and clinical engineers who set up medical equipment.
 設定支援プログラムを起動すると、例えば図31で示すような、二次元コード読込画面400が表示される。患者に装着する前の人工呼吸器105Aの識別コード19を撮影枠400aに配置し、読取部103gによって読み取る(S101)。 When the setting support program is started, a two-dimensional code reading screen 400 as shown in FIG. 31, for example, is displayed. The identification code 19 of the ventilator 105A before being attached to the patient is placed in the imaging frame 400a and read by the reading unit 103g (S101).
〔2〕利用規約表示とログイン操作(図27のS103) [2] Terms of Use Display and Login Operation (S103 in FIG. 27)
 識別コード19を読み取ると、有効性判定部103hが人工呼吸器105Aを有効なものか否かを判定する。そして有効と判定した場合には、次に図示しない利用規約の同意画面と、ログイン情報としてのユーザアカウント名とパスワードの入力画面とが表示される。利用規約は、性別、身長などの入力が必要であることと、設定操作端末103AのGPS情報が送信されることに対する同意を得るものである。他方、識別コード19の読取後、有効性判定部103hが人工呼吸器105Aを有効ではないと判定した場合には、人工呼吸器105Aが有効でないことが、ポップアップ画面などによって通知される。ただし、そのまま使用を続行することを選択することができ、続行する場合には、前述の利用規約の同意画面が表示される。ログインすると次のステップに進む。 When the identification code 19 is read, the validity determination unit 103h determines whether the respirator 105A is valid. If it is determined to be valid, a user agreement screen (not shown) and a user account name and password input screen (not shown) are displayed. The terms of use require the input of gender, height, etc., and obtain consent to the transmission of the GPS information of the setting operation terminal 103A. On the other hand, if the effectiveness determination unit 103h determines that the ventilator 105A is not effective after reading the identification code 19, a pop-up screen or the like notifies that the ventilator 105A is not effective. However, you can choose to continue using it as is, and if you do so, you will be presented with the aforementioned terms of use consent screen. Log in to proceed to the next step.
〔3〕患者情報入力(図27のS105、図28のS201、図32) [3] Patient information input (S105 in FIG. 27, S201 in FIG. 28, FIG. 32)
 次に、医療者は患者情報を入力する。設定操作端末103Aの表示部103fには、例えば図32で示すような、患者情報入力画面401が表示される。医療者は、入力部103eを操作して入力欄401a~401cに患者の身長、体重、性別、患者番号を入力する。体重の入力は必須ではない。患者番号の入力欄401dには、例えば医療者の属する病院で当該患者を識別するための文字、数字、記号とすることができる。医療者は、患者情報の入力を終えてから、図示しない「次へ」ボタンを押す。 Next, the medical staff enters patient information. A patient information input screen 401 as shown in FIG. 32, for example, is displayed on the display unit 103f of the setting operation terminal 103A. The medical staff operates the input unit 103e to input the patient's height, weight, sex, and patient number in the input fields 401a to 401c. Entering weight is not required. In the patient number input field 401d, for example, characters, numbers, and symbols for identifying the patient at the hospital to which the medical staff belongs can be used. After completing the input of the patient information, the medical staff presses a "next" button (not shown).
〔4〕機器設定値入力(図27のS107、図28のS203~S207、図33) [4] Device setting value input (S107 in FIG. 27, S203 to S207 in FIG. 28, FIG. 33)
 次に、医療者は機器設定値を入力する。上記「次へ」ボタンを押すと、設定操作端末103Aの表示部103fには、例えば図33で示すような、機器設定値入力画面402が表示される。患者情報入力画面401で身長、性別を入力すると、機器設定値入力画面402の「患者情報」欄402aには、身長、性別、体重が表示され、さらに「予測値」欄402bには、予測Vt演算部103j1が演算した予測一回換気量(「Vt:451」の表示)が自動表示される(図28のS203)。 The medical practitioner then enters the device settings. When the "next" button is pressed, a device setting value input screen 402 as shown in FIG. 33, for example, is displayed on the display section 103f of the setting operation terminal 103A. When height and sex are entered on the patient information input screen 401, the height, sex, and weight are displayed in the " patient information " column 402a of the device setting value input screen 402, and the predicted Vt is displayed in the " predicted value " column 402b. The predicted tidal volume (display of "Vt: 451") calculated by the calculation unit 103j1 is automatically displayed (S203 in Fig. 28).
 ここで医療者は、人工呼吸器105Aを患者に装着している気管チューブ105B1に接続する。なお、患者は、人工呼吸器105Aを装着するまでは、アンビューバッグなどで換気されている。人工呼吸器105Aの初期設定は、圧力設定ダイヤル5の設定圧力値を「20cmHO」とする。また、気体供給源105Cが人工呼吸器105Aに供給する初期ガス供給気量は、12L/分(空気流量9L/分、酸素流量3L/分、FiO:41%)とする。 Here, the medical staff connects the ventilator 105A to the tracheal tube 105B1 attached to the patient. The patient is ventilated with an AMBU bag or the like until the respirator 105A is attached. The initial setting of the artificial respirator 105A is to set the pressure value of the pressure setting dial 5 to "20 cmH 2 O". The initial gas supply volume supplied to the respirator 105A from the gas supply source 105C is assumed to be 12 L/min (air flow rate 9 L/min, oxygen flow rate 3 L/min, FiO 2 : 41%).
 そして、人工呼吸器105Aが動作していることを確認し、患者の呼吸回数とSpOセンサ22bの測定値とを確認する(図28のS205)。呼吸回数が速すぎるようにみえる場合には、圧力設定ダイヤル5の設定圧力値を2.5cmHO刻みで増加させて、呼吸回数を減らすようにする。その増加は30cmHOまで可能とする。逆に呼吸回数が遅すぎるようにみえる場合には、設定圧力値を2.5cmHO刻みで低下させて、呼吸回数を増やすようにする。その低下は10cmHOまで可能とする。また、SpOが92%未満である場合には、ガス供給気量12L/分を維持しつつ、SpOが92%を超えるまで酸素流量の割合を増やしていく。酸素流量を増やす割合は、FiOが80%程度となるまでであり、その調整は空気流量調整器105B3、酸素流量調整器105B4によって行う。 Then, it confirms that the artificial respirator 105A is operating, and confirms the patient's respiratory rate and the measured value of the SpO 2 sensor 22b (S205 in FIG. 28). If the breathing rate seems too fast, increase the set pressure value of the pressure setting dial 5 in increments of 2.5 cmH 2 O to reduce the breathing rate. The increase is allowed up to 30 cmH2O . Conversely, if the respiratory frequency seems too slow, the set pressure value is decreased in increments of 2.5 cmH 2 O to increase the respiratory frequency. The reduction is allowed up to 10 cmH2O . When SpO 2 is less than 92%, the oxygen flow rate is increased while maintaining the gas supply rate of 12 L/min until SpO 2 exceeds 92%. The rate at which the oxygen flow rate is increased is until FiO 2 reaches approximately 80%, and the adjustment is performed by the air flow rate regulator 105B3 and the oxygen flow rate regulator 105B4.
 医療者は、このようにして人工呼吸器105Aの設定圧力値とガス供給気量の設定とを行う。そして呼吸回数が適切であり、SpOが92%を超える状態が得られてから、次の設定操作を行う。 The medical staff thus sets the set pressure value and gas supply volume of the respirator 105A. Then, when the respiratory rate is appropriate and the SpO2 is above 92%, the next setting operation is performed.
次に、医療者は、図33で示す「機器設定」欄402cの「設定圧」「空気流量」「酸素流量」に、それぞれ先ほど医療機器に設定した数値を入力する(図28のS207)。それらの数値が入力されると、FiO演算部103j2がFiOを自動計算し、計算結果が「計算値」欄402dの「FiO」に表示する。また、PEEP演算部103j3は、データテーブルを参照して、入力された設定圧力値に対応するPEEPの値を取得して、それを「推定値」欄402eの「PEEP」に表示する。したがって医療者は、患者の臨床観察を前提とし、患者の状態に応じてFiOやPEEPが適正範囲に収まっているかを確認しながら、設定操作を行うことができる。そしてFiOやPEEPが自動計算されるので、迅速に設定の適否を判断することができ、設定操作を迅速かつ正確に行うことができる。 Next, the medical staff inputs the numerical values previously set to the medical device in the "set pressure", "air flow rate", and "oxygen flow rate" of the " device setting " column 402c shown in FIG. 33 (S207 in FIG. 28). When these numerical values are input, the FiO 2 calculation unit 103j2 automatically calculates FiO 2 , and the calculation result is displayed in "FiO 2 " in the " calculated value " column 402d. Further, the PEEP calculator 103j3 acquires the PEEP value corresponding to the input set pressure value by referring to the data table, and displays it in "PEEP" of the " estimated value " column 402e. Therefore, on the premise of clinical observation of the patient, the medical staff can perform the setting operation while confirming whether FiO2 and PEEP are within appropriate ranges according to the patient's condition. Since FiO2 and PEEP are automatically calculated, it is possible to quickly judge whether the setting is appropriate and to perform the setting operation quickly and accurately.
 患者の状態のチェックは、図33で示す「状態チェック」欄402fのチェックボックスにより行う。すべてのチェック項目のチェックを行わなければ、次の操作に進めないようにする。これにより医療者として確認すべき患者の状態を可視化し、その確認忘れを予防できる。なお、「状態チェック」欄402fのすべてのチェックボックスをチェックしなければ、次の操作に進まないことは、医療者に対するアラートとして機能する。また、すべてのチェックボックスにチェックしない場合には、状態チェックを促すためのポップアップ画面などを表示することで、医療者に対するアラートとしてもよい。 The patient's condition is checked by using the check boxes in the " condition check " column 402f shown in FIG. Do not proceed to the next operation unless all check items are checked. This makes it possible to visualize the patient's condition to be confirmed by medical personnel and prevent forgetting to confirm it. It should be noted that not proceeding to the next operation unless all check boxes in the " status check " column 402f are checked functions as an alert to the medical staff. In addition, if all check boxes are not checked, a pop-up screen or the like may be displayed to prompt the medical staff to check the status, thereby alerting the medical staff.
 チェック項目の「呼吸数が正常である」をチェックすると、患者の状態に応じて人工呼吸器105Aの設定圧力値を変えることで、呼吸回数を適正と判断できる状態に調整できたことを確認したことになる。「呼吸サイクルが安定している」とは、呼吸サイクル、すなわち呼吸回数、吸気時間、呼気時間にほとんど変動がないと判断できる状態である。「呼気二酸化炭素濃度が目標値より低い」に関して、呼気二酸化炭素濃度の目標値の理想は40mmHgである。しかしながら、具体的には基礎となる病態に応じて医師が判断する数値であり、通常は概ね30mmHg~50mmHgの範囲で調整する。この呼気二酸化炭素濃度は、図示しない呼吸回路に接続された生体センサ106A2としてのカプノメータなどにより測定できる。 By checking the check item "Respiratory rate is normal", it was confirmed that by changing the set pressure value of the ventilator 105A according to the patient's condition, it was possible to adjust the respiratory rate to a state that can be judged to be appropriate. It will be. A "stable breathing cycle" is a state in which it can be judged that there is almost no variation in the breathing cycle, that is, the number of breaths, the inspiratory time, and the expiratory time. Regarding "exhaled carbon dioxide concentration lower than target value", the ideal target value for exhaled carbon dioxide concentration is 40 mmHg. However, specifically, it is a numerical value determined by a doctor according to the underlying pathology, and is usually adjusted within a range of approximately 30 mmHg to 50 mmHg. This exhaled carbon dioxide concentration can be measured by a capnometer or the like as the biosensor 106A2 connected to a breathing circuit (not shown).
 「再測定事由を記入」の記述欄402gは、テキスト入力による自由記述が可能であり、音解析を行った後に、再度、医療機器を設定して音解析を行う場合に、再び測定する理由などを記入するものである。このように再測定事由を記録として残すことで、患者の病態に応じて設定圧力値とガス供給気量を設定する際に注意すべき事項や、設定圧力値やガス供給気量を所定値に決定した理由などを、研究用データ102b1として残すことができる。 In the description field 402g of "enter the reason for remeasurement", free description by text input is possible, and when the sound analysis is performed again by setting the medical device after performing the sound analysis, the reason for remeasurement, etc. is to be entered. By recording the reason for remeasurement in this way, it is possible to identify points to note when setting the set pressure value and gas supply volume according to the patient's pathology, and how to adjust the set pressure value and gas supply volume to the prescribed values. The reason for the decision can be left as research data 102b1.
 「状態チェック」欄402fのすべてのチェック項目をチェックすると、「音測定」ボタン402hと「手動測定」ボタン402iがアクティブとなって入力が可能となる。医療者はそのいずれかを選択する操作を行う。 When all the check items in the " status check " column 402f are checked, the "sound measurement" button 402h and the "manual measurement" button 402i are activated to enable input. A medical practitioner performs an operation to select one of them.
〔5〕音解析(図27のS109、図28のS209、図34、図36~図40) [5] Sound analysis (S109 in FIG. 27, S209 in FIG. 28, FIGS. 34, 36 to 40)
 「音測定」ボタン402hを押した場合には、設定操作端末103Aの表示部103fには、例えば図34Aで示すような音測定画面403が表示される。「手動測定」ボタンを押した場合には、例えば図34Dで示すような手動測定画面406が表示される。 When the "sound measurement" button 402h is pressed, the display unit 103f of the setting operation terminal 103A displays a sound measurement screen 403 as shown in FIG. 34A, for example. When the "manual measurement" button is pressed, a manual measurement screen 406, for example as shown in Figure 34D, is displayed.
〔5.1〕音測定 [5.1] Sound measurement
 音測定画面403の「録音」ボタン403aを押すと、集音部103iが録音を開始する。設定操作端末103Aのマイク304eを人工呼吸器105Aに近づけた状態で「録音」ボタン403aを押すと、図34Bで示す音測定画面404に遷移して「録音中」が表示される。3~4回程度の連続する複数の呼吸サイクルの呼吸音を録音してから「停止」ボタン404aを押すと、図34Aで示す音測定画面403に戻る。録音した音データは記憶部103bに保持される。 When the "record" button 403a on the sound measurement screen 403 is pressed, the sound collecting unit 103i starts recording. When the "Record" button 403a is pressed while the microphone 304e of the setting operation terminal 103A is brought close to the ventilator 105A, the sound measurement screen 404 shown in FIG. 34B is displayed and "Recording" is displayed. After recording breath sounds of a plurality of continuous breathing cycles of about 3 to 4 times, pressing the "stop" button 404a returns to the sound measurement screen 403 shown in FIG. 34A. Recorded sound data is held in the storage unit 103b.
 音測定画面403の「平均呼気吸気時間計算」ボタン403bを押すと、音データが通信部103dから通信ネットワーク107を通じて設定支援サーバ101Aに送信される。設定支援サーバ101Aでは、受付部101cが音データを受け付ける。制御部101aは、音データを対応する人工呼吸器105Aのシリアルナンバーと関連付けて、記憶部101bに記憶する。また、制御部101aは、音データを音解析部101eに送る。音解析部101eでは、弁音解析部101e1とガス音解析部101e2とによって音解析が行われる。 When the "average expiratory/inspiratory time calculation" button 403b on the sound measurement screen 403 is pressed, sound data is transmitted from the communication unit 103d through the communication network 107 to the setting support server 101A. In the setting support server 101A, the reception unit 101c receives sound data. The control unit 101a stores the sound data in the storage unit 101b in association with the corresponding serial number of the respirator 105A. Also, the control unit 101a sends the sound data to the sound analysis unit 101e. In the sound analysis unit 101e, sound analysis is performed by a valve sound analysis unit 101e1 and a gas sound analysis unit 101e2.
〔5.2〕呼吸と人工呼吸器105Aの動作との関係〔図36~図40〕 [5.2] Relationship between respiration and operation of respirator 105A [Figs. 36 to 40]
 音解析を説明する前に、患者の呼吸と人工呼吸器105Aの動作との関係について説明する。図36は、呼吸における換気量の変化と圧力(気道内圧)の変化との関係を示すグラフである。また、図38、図39、図40は、人工呼吸器105Aの動作の理解を容易にするために、人工呼吸器105Aの内部構造を簡略化して動作を説明する模式図である。したがって、図38~図40の内容は、先に示した図7、図8で示す人工呼吸器105Aの断面図とは異なっている。 Before explaining the sound analysis, the relationship between the patient's breathing and the operation of the respirator 105A will be explained. FIG. 36 is a graph showing the relationship between changes in ventilation volume and changes in pressure (airway pressure) in respiration. 38, 39, and 40 are schematic diagrams that simplify the internal structure of the respirator 105A and explain the operation to facilitate understanding of the operation of the respirator 105A. Therefore, the contents of FIGS. 38-40 are different from the cross-sectional views of the ventilator 105A shown in FIGS. 7 and 8 previously shown.
 呼吸サイクルは、吸気相と呼気相とが連続して構成される。吸気相では、図38、図39で模式的に示すように、人工呼吸器105Aの弁体9が弁座32b1と接触しており、弁孔32b2を閉じている。気体供給源105Cから供給される気体(混合ガス)は、インプットポート31aを通じて人工呼吸器105Aの中に流入し、メインポート12gに接続された気管チューブ105B1を通じて患者の肺に吸気される。したがって、閉弁時は、図36の1回換気量と圧力(気道内圧)が徐々に増加していく。そして圧力は、ピーク圧PH、すなわち弁体9が開く設定圧力値(開弁圧)に到達し、その到達時点が吸気相の終末となる。また吸気相の開始から設定圧力値への到達時点までの合計換気量は一回換気量Vtとなる。なお、図38と図39はいずれも弁体9の閉状態を示しているが、図39は圧力設定ダイヤル5を操作して圧力設定ばね8を圧縮変形させることで、図38よりも設定圧力値を高く設定した状態を示している。 A respiratory cycle consists of an inspiratory phase and an expiratory phase in succession. In the inspiratory phase, as schematically shown in FIGS. 38 and 39, the valve body 9 of the artificial respirator 105A is in contact with the valve seat 32b1 to close the valve hole 32b2. Gas (mixed gas) supplied from the gas supply source 105C flows into the ventilator 105A through the input port 31a and is inhaled into the patient's lungs through the tracheal tube 105B1 connected to the main port 12g. Therefore, when the valve is closed, the tidal volume and pressure (intraairway pressure) in FIG. 36 gradually increase. Then, the pressure reaches the peak pressure PH, that is, the set pressure value (valve opening pressure) at which the valve element 9 opens, and the point of arrival is the end of the intake phase. The total ventilation volume from the start of the inspiratory phase to the time when the set pressure value is reached is the tidal volume Vt. 38 and 39 both show the closed state of the valve body 9, but in FIG. A high value is shown.
 圧力のピーク圧PHが設定圧力値(開弁圧)に到達すると、呼気相が開始する。人工呼吸器105Aは、図40で示すように、弁体9が弁座32b1から離れて浮上する。すると、メインポート12gから流れてくる患者の呼気と、インプットポート31aに供給される気体供給源105Cからの気体とが、排気ポート31bから人工呼吸器105Aの外部に放出され、それにより患者の気道内圧も低下していく。患者の気道内圧が弁体9の設定圧力値よりも低下した時点で弁体9が閉じる。この閉弁時が呼気相の終末となり、そのときの圧力がPEEPの値PLとなる。 When the peak pressure PH reaches the set pressure value (valve opening pressure), the exhalation phase starts. In the respirator 105A, as shown in FIG. 40, the valve element 9 is separated from the valve seat 32b1 and floats. Then, the patient's exhaled breath flowing from the main port 12g and the gas from the gas supply source 105C supplied to the input port 31a are discharged from the exhaust port 31b to the outside of the ventilator 105A, thereby closing the patient's respiratory tract. The internal pressure will also decrease. When the patient's airway pressure drops below the set pressure value of the valve body 9, the valve body 9 is closed. The time when the valve is closed is the end of the expiratory phase, and the pressure at that time becomes the PEEP value PL.
 人工呼吸器105Aは、閉弁状態で吸気相となり、開弁状態で呼気相となることによって、患者の呼吸サイクルを形成する。 The ventilator 105A forms the patient's respiratory cycle by entering an inspiratory phase when the valve is closed and an expiratory phase when the valve is open.
〔5.3〕音解析 [5.3] Sound analysis
 以上のような呼吸と人工呼吸器105Aとの動作との関係を前提として、設定支援サーバ101Aの音解析部101eが行う音解析について説明する。 Assuming the relationship between respiration and the operation of the respirator 105A as described above, the sound analysis performed by the sound analysis unit 101e of the setting support server 101A will be described.
 図37は、音データから抽出した音圧データの変化を示すグラフである。音データにおける音圧の変化を観察すると、弁体9の閉弁時には弁体9が弁座32b1に対して接触する接触音が発生する。この接触音は、圧力設定ばね8に付勢された樹脂成形体でなる弁体9が樹脂成形体でなる弁座32b1と接触することによって瞬間的に高い音圧を有する音として発生する。この音圧が高い接触音を弁体9が閉じた閉弁音、すなわち吸気相の開始時点として捉えることが可能である。弁音解析部101e1は、音データの呼吸サイクル音から音圧が第1の閾値T1を超える第1の音を検知し、それを弁体9の閉弁音(吸気相の開始時点)として特定する機能を有する。 FIG. 37 is a graph showing changes in sound pressure data extracted from sound data. Observation of changes in sound pressure in the sound data reveals that when the valve body 9 is closed, a contact sound is generated in which the valve body 9 contacts the valve seat 32b1. This contact sound is generated as a sound having a momentarily high sound pressure when the valve body 9 made of a resin molded body biased by the pressure setting spring 8 comes into contact with the valve seat 32b1 made of a resin molded body. This contact sound with high sound pressure can be regarded as the closing sound of the valve body 9 closing, that is, the start point of the intake phase. The valve sound analysis unit 101e1 detects the first sound whose sound pressure exceeds the first threshold value T1 from the breathing cycle sounds of the sound data, and identifies it as the valve closing sound of the valve body 9 (at the start of the inspiratory phase). It has the function to
 前述のように、呼気相では、メインポート12gから流れてくる患者の呼気と、インプットポート31aに供給される気体供給源105Cからの気体とが合わさった呼気が、排気ポート31bから人工呼吸器105Aの外部に放出される。このガス排気音(呼気音)は、肺に混合ガスを取り入れる吸気時に発生する音(吸気音)とは異なる音圧を有している。すなわち、一般的には、呼気音は吸気音よりも音圧が高くなる。そこで、ガス音解析部101e2は、音データの呼吸サイクル音から音圧が第2の閾値T2を超える第2の音の発生時間を呼気時間として特定する機能を有する。 As described above, in the expiratory phase, the patient's exhaled air flowing from the main port 12g and the gas from the gas supply source 105C supplied to the input port 31a are combined to be discharged from the ventilator 105A through the exhaust port 31b. released to the outside of the This gas exhaust sound (expiratory sound) has a sound pressure different from that of the sound (inspiratory sound) generated when the mixed gas is taken into the lungs. That is, in general, expiratory sound has a higher sound pressure than inspiratory sound. Therefore, the gas sound analysis unit 101e2 has a function of specifying the occurrence time of the second sound whose sound pressure exceeds the second threshold value T2 from the breathing cycle sound of the sound data as the expiration time.
 なお、図37で示す音圧データのグラフで、閉弁音とガス排気音以外の音(閾値T1、T2よりも低い音圧の音)は、人工呼吸器105Aの使用場所の環境音である。 In the graph of the sound pressure data shown in FIG. 37, sounds other than the valve closing sound and the gas exhaust sound (sounds of sound pressure lower than the thresholds T1 and T2) are environmental sounds of the place where the respirator 105A is used. .
〔5.4〕呼吸データの演算 [5.4] Calculation of respiration data
 設定支援サーバ101Aの生成部101fは、呼吸サイクル音を解析することにより音解析部101eが特定した閉弁音の発生時間(時点)と、ガス排気音の発生時間(長さ)から呼吸データ(呼吸回数、平均呼気時間、平均吸気時間)を生成する。 The generation unit 101f of the setting support server 101A generates respiration data ( respiratory rate, mean expiratory time, mean inspiratory time).
 具体的には、呼吸回数演算部101f1は、60秒を、弁音解析部101e1によって特定された閉弁音間の時間(図37の「呼吸時間」)の平均値(秒)で除することにより、呼吸回数RR(回/分)を計算する。 Specifically, the breathing frequency calculation unit 101f1 divides 60 seconds by the average value (seconds) of the time between valve closing sounds (“breathing time” in FIG. 37) specified by the valve sound analysis unit 101e1. Calculate the respiratory rate RR (breaths/minute).
 呼気時間演算部101f2は、ガス音解析部101e2によって特定されたガス排出音の開始時点から次の閉弁音の発生時点の差分時間(秒)の平均値を平均呼気時間として計算する。 The expiration time calculation unit 101f2 calculates the average value of the difference time (seconds) from the start of the gas exhaust sound specified by the gas sound analysis unit 101e2 to the next valve closing sound as the average expiration time.
 吸気時間演算部101f3は、閉弁音間の時間の平均値(秒)からガス排出音によって特定される呼気時間(秒)を引いた時間(秒)を平均吸気時間として計算する。 The inspiratory time calculation unit 101f3 calculates the time (seconds) by subtracting the expiratory time (seconds) specified by the gas exhaust sound from the average value (seconds) of the time between the valve closing sounds as the average inspiratory time.
〔5.5〕呼吸データの表示(図28のS211、図34C) [5.5] Display of respiration data (S211 in FIG. 28, FIG. 34C)
 以上のようにして設定支援サーバ101Aの生成部101fが計算した呼吸データは、制御部101aが、人工呼吸器105Aのシリアルナンバーと関連付けて、記憶部101bに記憶する。また、制御部101aは、呼吸データを、通信部101dを通じて設定操作端末103Aに送信する。設定操作端末103Aでは、受付部103cが呼吸データを取得し、呼吸データは表示部103fに出力される。すなわち、図34Cで示すように、音測定画面405に平均呼気時間と平均吸気時間が表示される。そして、平均呼気時間と平均吸気時間を妥当と判断できる場合には、「登録して計算する」ボタン405bを押して、図35の計算結果表示画面407に進む。他方、「手動測定に切り替える」ボタン405aを押すと、手動測定画面406に遷移することもできる。 The breathing data calculated by the generation unit 101f of the setting support server 101A as described above is stored in the storage unit 101b by the control unit 101a in association with the serial number of the ventilator 105A. Also, the control unit 101a transmits the respiratory data to the setting operation terminal 103A through the communication unit 101d. In the setting operation terminal 103A, the reception unit 103c acquires the respiration data, and the respiration data is output to the display unit 103f. That is, as shown in FIG. 34C, the sound measurement screen 405 displays the average expiratory time and the average inspiratory time. Then, if the average expiratory time and average inspiratory time can be determined to be appropriate, press the "register and calculate" button 405b to proceed to the calculation result display screen 407 of FIG. On the other hand, pressing a "switch to manual measurement" button 405a can also transition to a manual measurement screen 406. FIG.
〔5.6〕手動測定(図34D) [5.6] Manual measurement (Fig. 34D)
 手動測定は、音解析では環境音のノイズによって平均呼気時間、平均吸気時間に異常値が出てしまう場合などに有効である。手動測定では、医療者が患者の呼吸サイクルを観察して、「吸気1回目」、「呼気1回目」、「吸気2回目」、「呼気2回目」の各秒を計測し、図34Dで示す手動測定画面406にそれぞれ手入力する。そして、「平均呼気吸気時間計算」ボタン406aを押すと、各入力データが設定支援サーバ101Aに送信されて、呼吸回数演算部101f1が1分あたりの呼吸回数(RR(回/分))を計算し、呼気時間演算部101f2が平均呼気時間(秒)を計算し、吸気時間演算部101f3が平均吸気時間(秒)を計算する。それらの計算結果である呼吸データは、設定操作端末103Aに送信され、表示部103fに出力される。図34Dで示す手動測定画面406には、平均呼気時間と平均吸気時間の計算値が自動表示される。そして、平均呼気時間と平均吸気時間を妥当と判断できる場合には、「登録して計算する」ボタン406bを押して、図35の計算結果表示画面407に進む。 Manual measurement is effective in cases such as when abnormal values appear in the mean expiratory time and mean inspiratory time due to environmental sound noise in sound analysis. In manual measurements, the clinician observes the patient's breathing cycle and measures the seconds of "inspiration 1", "expiration 1", "inspiration 2", and "expiration 2", as shown in Figure 34D. Manually enter each on the manual measurement screen 406 . Then, when the "average expiration/intake time calculation" button 406a is pressed, each input data is transmitted to the setting support server 101A, and the respiratory frequency calculation unit 101f1 calculates the respiratory frequency per minute (RR (times/minute)). Then, the expiration time calculator 101f2 calculates the average expiration time (seconds), and the intake time calculator 101f3 calculates the average inspiration time (seconds). Respiration data, which are the calculation results thereof, are transmitted to the setting operation terminal 103A and output to the display section 103f. A manual measurement screen 406 shown in FIG. 34D automatically displays the calculated average expiratory time and average inspiratory time. Then, if the average expiratory time and average inspiratory time can be determined to be appropriate, press the "register and calculate" button 406b to proceed to the calculation result display screen 407 of FIG.
〔6〕計算結果表示(図27のS111、図28のS211、図35) [6] Calculation result display (S111 in FIG. 27, S211 in FIG. 28, and FIG. 35)
 図35で示す計算結果表示画面407には、例えば「機器設定」欄407a、「計算値」欄407b、「予測値」欄407c、「推定値」欄407dが表示される。この計算結果表示画面407に進んだ時点で、計算結果表示画面407に表示されているすべてのデータは、シリアルナンバーに対して時系列で蓄積される1つの設定操作履歴となる。そして、そのすべてのデータは患者データ101b1として設定支援サーバ101Aの記憶部101bに蓄積される。 The calculation result display screen 407 shown in FIG. 35 displays, for example, a "device setting" column 407a, a "calculated value" column 407b, a "predicted value" column 407c, and an "estimated value" column 407d. When proceeding to the calculation result display screen 407, all the data displayed on the calculation result display screen 407 become one setting operation history accumulated in chronological order with respect to the serial number. All the data are stored in the storage unit 101b of the setting support server 101A as patient data 101b1.
 「機器設定」欄407aには、人工呼吸器105Aの設定圧力値、空気流量、酸素流量が表示される。これらはいずれも機器設定値入力画面402で入力したものである。 The "equipment setting" column 407a displays the set pressure value, air flow rate, and oxygen flow rate of the respirator 105A. These are all entered on the device setting value input screen 402 .
 「計算値」欄407bには、前述した平均吸気時間、平均呼気時間、IE比、呼吸回数が表示される。このうちIE比(吸気時間呼気時間比)は、設定操作端末103AのIE比演算部103j4によって計算される。 The "calculated value" column 407b displays the aforementioned average inspiratory time, average expiratory time, IE ratio, and respiratory rate. Of these, the IE ratio (inspiratory time expiratory time ratio) is calculated by the IE ratio calculator 103j4 of the setting operation terminal 103A.
 「予測値」欄407cには、FiO演算部103j2が計算したFiO(%)と、予測Vt演算部103j1が計算した予測一回換気量(予測Vt)とが表示される。 The "predicted value" column 407c displays the FiO 2 (%) calculated by the FiO 2 calculator 103j2 and the predicted tidal volume (predicted Vt) calculated by the predicted Vt calculator 103j1.
 「推定値」欄407dには、推定Vt演算部103j5が計算した推定一回換気量(予測Vt)と、MV演算部103j6が計算した推定分時換気量(L/分)と、PEEP演算部103j3が計算したPEEPの値(cmHO)とが表示される。 In the "estimated value" column 407d, the estimated tidal volume (predicted Vt) calculated by the estimated Vt calculation unit 103j5, the estimated minute ventilation (L/min) calculated by the MV calculation unit 103j6, and the PEEP calculation unit The value of PEEP (cmH 2 O) calculated by 103j3 is displayed.
 計算結果表示画面407には、患者の呼吸管理に必要な情報と呼吸不全治療を施すための参考とすべき情報とが一覧表示される。その例として一回換気量の確定とを説明する。 The calculation result display screen 407 displays a list of information necessary for patient respiratory management and information that should be used as a reference for treating respiratory failure. As an example, the determination of the taking air volume is explained.
〔7〕機器設定の追求(図27のS113、図29、図30) [7] Pursuit of device settings (S113 of FIG. 27, FIG. 29, and FIG. 30)
 医療者は、患者の状態を監視しながら、人工呼吸器105Aや気体供給源105Cなどの設定を変えなければならない。その場合にも医療情報処理システム100A、設定支援プログラムは有用である。 Medical personnel must change the settings of the ventilator 105A and gas supply source 105C while monitoring the patient's condition. The medical information processing system 100A and the setting support program are also useful in such cases.
〔7.1〕一回換気量の設定の追求(図29) [7.1] Pursuit of setting the tidal volume (Fig. 29)
 一回換気量の設定は、患者にとって適正となるまで何度も繰り返して行う必要がある。一回換気量の設定は、図28から続く図29の結合子1から始まる(S213)。医療者は、計算結果表示画面407の推定一回換気量と予測一回換気量とを比較する。値が同じ場合には(S215)、一回換気量の設定を継続する必要はないので、呼吸回数を調整の要否を検討する(S217)。呼吸回数の調整が不要であれば、設定を終了する。呼吸回数の設定が必要な場合は、図30の結合子2(S219)に進む。  The setting of the tidal volume needs to be repeated many times until it is appropriate for the patient. The setting of the tidal volume starts from connector 1 in FIG. 29 continuing from FIG. 28 (S213). The medical practitioner compares the estimated tidal volume and the predicted tidal volume on the calculation result display screen 407 . If the values are the same (S215), there is no need to continue setting the tidal volume, so the need for adjusting the respiratory frequency is examined (S217). If the adjustment of the number of breaths is unnecessary, the setting is completed. If it is necessary to set the number of breaths, the process proceeds to connector 2 (S219) in FIG.
 ステップS215に戻り、推定一回換気量が予測一回換気量よりも高い場合には、人工呼吸器105Aの設定圧力値を2.5cmHO下げる(S221、S223)。同じ硬さの肺の場合、同一の設定圧力値であれば、同一の一回換気量となる。しかし、設定圧力値を上げると一回換気量を増やすことができ、ガス供給気量を変えても一回換気量は変化しない。そこで、設定圧力値を下げることで、推定一回換気量を予測一回換気量に近づけるように調整する。 Returning to step S215, if the estimated tidal volume is higher than the predicted tidal volume, the set pressure value of the ventilator 105A is decreased by 2.5 cmH2O (S221, S223). For lungs of the same hardness, the same set pressure value will result in the same tidal volume. However, the taking air volume can be increased by increasing the set pressure value, and even if the gas supply volume is changed, the taking air volume does not change. Therefore, by lowering the set pressure value, the estimated taking air volume is adjusted to approach the predicted taking air volume.
 そして、推定一回換気量が予測一回換気量よりも低い場合には、人工呼吸器105Aの設定圧力値を2.5cmHO上げて(S221、S225)、推定一回換気量が予測一回換気量に近づけるように調整する。 Then, when the estimated tidal volume is lower than the predicted tidal volume, the set pressure value of the ventilator 105A is increased by 2.5 cmH 2 O (S221, S225), and the estimated tidal volume is less than the predicted tidal volume. Adjust to approximate the ventilation volume.
 以上のようにして人工呼吸器105Aの設定圧力値を修正したならば、「呼吸器の設定をやりなおす」ボタン407eを押す。すると、操作手順は、図28の結合子3(S227)に戻り、機器設定値入力画面402からの設定操作を再び行う。そして、こうした推定一回換気量の設定を繰り返し行って、予測一回換気量に合わせ込めたら、推定一回換気量の設定が完了する。 After correcting the set pressure value of the ventilator 105A as described above, press the "reset ventilator setting" button 407e. Then, the operation procedure returns to connector 3 (S227) in FIG. 28, and the setting operation from the device setting value input screen 402 is performed again. Then, by repeating the setting of such an estimated taking ventilation volume and matching it with the predicted taking ventilation volume, the setting of the estimated taking ventilation volume is completed.
〔8〕呼吸回数の設定の追求(図30) [8] Pursuit of setting the number of breaths (Fig. 30)
 呼吸回数についても患者にとって適正となるまで何度も繰り返して行う必要がある。呼吸回数の設定は、図30の結合子2(S219)から始まる。医療者は、計算結果表示画面407に表示されている音解析による呼吸回数を参照し、呼吸回数が適切か否かを判断する(S229)。呼吸回数が適切な場合は、血液ガス分析(Blood Gas Analysis;BGA)に進む(S231)。 It is also necessary to repeat the number of breaths until it is appropriate for the patient. The setting of the number of breaths starts from connector 2 (S219) in FIG. The medical staff refers to the number of breaths obtained by sound analysis displayed on the calculation result display screen 407, and determines whether or not the number of breaths is appropriate (S229). If the respiratory rate is appropriate, proceed to Blood Gas Analysis (BGA) (S231).
 他方、呼吸回数が適切でない場合には、その状態に応じたガス供給気量の調整を行う(S233)。具体的には、呼吸回数が多い場合には、人工呼吸器105Aに供給するガス供給気量を低下させて、呼吸回数を減らすようにする。これにより分時換気量(推定MV)も低下する。これに対して、呼吸回数が少ない場合には、ガス供給気量を増加させて、呼吸回数を増やす。これにより分時換気量(推定MV)も増加する。この後はステップ231からの血液ガス分析に進む。 On the other hand, if the respiratory rate is not appropriate, the gas supply volume is adjusted according to the condition (S233). Specifically, when the number of breaths is high, the amount of gas supplied to the artificial respirator 105A is reduced to reduce the number of breaths. This also reduces the minute ventilation (estimated MV). On the other hand, when the breathing frequency is low, the gas supply volume is increased to increase the breathing frequency. This also increases the minute ventilation (estimated MV). After this, the process proceeds to blood gas analysis from step 231 .
 さらに、患者の酸素状態、換気状態などを知るために血液ガス分析(Blood Gas Analysis;BGA)を行う。医療者は、PaCO(Partial pressure of arterial Carbon dioxide、動脈血炭酸ガス分圧)の数値の異常の有無を確認する(S231)。低炭酸ガス血症があると認められる場合には、人工呼吸器105Aに供給するガス供給気量を低下させる(S235)。他方、高炭酸ガス血症があると認められる場合には、ガス供給気量を増加させる(S235)。 Furthermore, a blood gas analysis (BGA) is performed in order to know the patient's oxygen condition, ventilation condition, and the like. The medical practitioner confirms whether there is an abnormality in the numerical value of PaCO 2 (Partial pressure of arterial carbon dioxide) (S231). If hypocapnia is recognized, the amount of gas supplied to the respirator 105A is reduced (S235). On the other hand, if it is recognized that there is hypercapnia, the amount of gas supply is increased (S235).
 さらに、医療者は、血液ガス分析によるPaO(Partial pressure of arterial Oxygen、動脈血酸素分圧)とSpOの値を確認する(S237)。PaOの数値が低く、SpOが92%未満の場合は、酸素の割合を増やしてFiOを上昇させる(S239)。他方、PaOの数値が低く、SpOが96%以上の場合は、酸素の割合を減らしてFiOを低下させる(S239)。 Furthermore, the medical staff confirms the values of PaO 2 (Partial pressure of arterial oxygen) and SpO 2 by blood gas analysis (S237). If the PaO2 value is low and the SpO2 is less than 92%, the oxygen percentage is increased to raise the FiO2 (S239). On the other hand, when the value of PaO2 is low and SpO2 is 96% or more, the proportion of oxygen is decreased to lower FiO2 (S239).
 そして、再度一回換気量を調整するか否かを検討する(S241)。調整が不要な場合は、設定操作を終了する。他方、調整が必要な場合には、図35で示す「呼吸器の設定をやりなおす」ボタン407eを押す。すると、設定手順は、図28の結合子3(S227)に戻り、機器設定値入力画面402からの設定操作を繰り返し行う。以上のような設定操作を繰り返し行うことで、最終的には推定一回換気量が予測一回換気量と実施的に差が無い状態となり、呼吸回数と分時換気量も適切であり、血液ガス分析の観点でも問題が無いと認められることによって、設定が完了する。 Then, it is considered whether or not to adjust the tidal volume again (S241). If no adjustment is required, exit the setting operation. On the other hand, if adjustment is necessary, press the "redo ventilator setting" button 407e shown in FIG. Then, the setting procedure returns to connector 3 (S227) in FIG. 28, and the setting operation from the device setting value input screen 402 is repeated. By repeating the above setting operations, the estimated tidal volume and the predicted tidal volume will eventually come to a state where there is practically no difference, and the respiratory rate and minute ventilation are also appropriate, and the blood The setting is completed when it is recognized that there is no problem from the viewpoint of gas analysis.
 人工呼吸器105Aの設定圧力値やガス供給気量の設定を行う際には、実際の患者の状態を観察し、多数の患者の生体データ(患者測定データ101b4など)に注意しながら進める必要がある。しかしながら、前記実施形態のシステム100、医療情報処理システム100A、プログラム(設定支援プログラム、設定操作プログラム)、方法によれば、設定操作端末103Aに表示される設定操作画面(400~407)に沿って設定操作を進めていけばよいので、容易に医療機器(人工呼吸器105A、気体供給源105C)の設定を進めることができる。特に、設定操作端末103Aでは、音解析によって呼吸時間、呼吸回数、平均呼気時間、平均吸気時間などの呼吸データを容易且つ迅速に生成することが可能であり、その呼吸データを画面表示できる。したがって、医療者の作業負担を大きく減らすことができ、医療機器の設定を迅速且つ正確に行うことが可能となる。 When setting the set pressure value and gas supply volume of the ventilator 105A, it is necessary to observe the actual patient's condition and pay attention to the biological data of many patients (patient measurement data 101b4, etc.). be. However, according to the system 100, medical information processing system 100A, program (setting support program, setting operation program), and method of the above-described embodiment, along the setting operation screens (400 to 407) displayed on the setting operation terminal 103A, Since it is sufficient to proceed with the setting operation, it is possible to easily proceed with the setting of the medical equipment (respirator 105A, gas supply source 105C). In particular, the setting operation terminal 103A can easily and quickly generate breathing data such as breathing time, breathing frequency, average expiration time, and average inspiration time by sound analysis, and can display the breathing data on the screen. Therefore, it is possible to greatly reduce the work burden on the medical staff, and it is possible to set the medical equipment quickly and accurately.
一実施形態による効果Effect of one embodiment
 以下、一実施形態の構成に基づく効果の例を説明する。 Examples of effects based on the configuration of one embodiment will be described below.
 上記実施形態では、方法であって、1又は複数のコンピュータ装置(設定支援サーバ101A、設定操作端末103A)において、人工呼吸器105Aを使用する患者の呼気時間、吸気時間、呼吸回数のいずれかを含む呼吸データを取得することと、前記患者の気道内圧を制御するために前記人工呼吸器105Aに備える弁体9の開弁圧を設定するための設定参照用データ(例えば、呼吸回数、平均呼気時間、平均吸気時間、予測Vt、推定Vtなど)を画面(402、407)で表示することと、を含む、方法を開示する。これによれば、呼吸データを取得し、設定参照用データを画面表示することにより、医療機器の設定に必要な生体データを容易且つ迅速に把握することができ、医療機器の設定を迅速且つ正確に行うことができる。 In the above embodiment, in the method, one or a plurality of computer devices (the setting support server 101A, the setting operation terminal 103A), the expiration time of the patient using the respirator 105A, the inhalation time, the respiratory rate and setting reference data for setting the valve opening pressure of the valve body 9 provided in the artificial respirator 105A to control the airway pressure of the patient (for example, the number of breaths, the average expiration displaying time, mean inspiratory time, predicted Vt, estimated Vt, etc.) on a screen (402, 407). According to this, by acquiring the respiratory data and displaying the setting reference data on the screen, it is possible to easily and quickly comprehend the biometric data necessary for the setting of the medical equipment, and the setting of the medical equipment can be performed quickly and accurately. can be done.
 前記方法は、複数回の呼吸サイクル音の音データを取得すること、をさらに含む。これによれば、複数回の呼吸サイクル音の音データを取得することで、前記呼吸データを取得するので、音解析により容易且つ迅速に呼吸データを取得できる。 The method further includes acquiring sound data of multiple breath cycle sounds. According to this, the respiratory data is acquired by acquiring the sound data of the respiratory cycle sounds a plurality of times, so that the respiratory data can be acquired easily and quickly by the sound analysis.
 前記方法は、前記呼吸サイクル音から前記弁体9が閉弁時に発生する閉弁音を取得すること、をさらに含む。これによれば、呼吸サイクル音から閉弁音を取得できるので、閉弁音を、呼吸データを取得するための音解析に利用することができる。 The method further includes acquiring a closing sound generated when the valve body 9 closes from the respiratory cycle sound. According to this, since the valve closing sound can be obtained from the respiratory cycle sound, the valve closing sound can be used for sound analysis for obtaining respiratory data.
 前記方法は、連続して発生する前記閉弁音どうしの時間間隔である第1の時間に基づき、前記呼吸回数を取得すること、をさらに含む。これによれば、前記閉弁音を利用することによって呼吸回数を取得するという新しい方法を実現できる。 The method further includes obtaining the respiratory rate based on a first time interval between successively occurring valve closing sounds. According to this, it is possible to realize a new method of acquiring the number of breaths by using the valve closing sound.
 前記方法は、前記呼吸サイクル音からガス排気音を取得すること、をさらに含む。これによれば、呼吸サイクル音からガス排気音を取得できるので、ガス排気音を、呼吸データを取得するための音解析に利用することができる。 The method further includes obtaining gas exhaust sounds from the breathing cycle sounds. According to this, since the gas exhaust sound can be obtained from the breathing cycle sound, the gas exhaust sound can be used for sound analysis for obtaining respiratory data.
 前記方法は、前記ガス排気音の継続時間である第2の時間の長さから、前記呼気時間を取得すること、をさらに含む。これによれば、前記ガス排気音を利用することによって、呼気時間を取得するという新しい方法を実現できる。 The method further includes obtaining the expiratory time from a second length of time that is the duration of the gas exhaust sound. According to this, a new method of acquiring the expiration time can be realized by using the gas exhaust sound.
 前記方法は、前記人工呼吸器105Aが発生する複数の呼吸サイクル音の音データを取得することと、前記呼吸サイクル音から前記弁体9が閉弁時に発生する閉弁音を取得し、連続して発生する前記閉弁音どうしの時間間隔である第1の時間を取得することと、前記呼吸サイクル音からガス排気音を取得し、前記ガス排気音の継続時間である第2の時間を取得することと、前記第1の時間と前記第2の時間とから吸気時間を取得することと、をさらに含む。これによれば、前記閉弁音や前記ガス排気音を利用することによって、呼吸回数や呼気時間などの呼吸データを取得するという新しい方法を実現できる。 The method includes acquiring sound data of a plurality of respiratory cycle sounds generated by the artificial respirator 105A, acquiring a valve closing sound generated when the valve body 9 closes from the respiratory cycle sounds, and continuously acquiring a first time that is a time interval between the valve closing sounds generated by the breathing cycle sound, acquiring a gas exhaust sound from the breathing cycle sound, and acquiring a second time that is a duration of the gas exhaust sound. and obtaining an inspiration time from the first time and the second time. According to this, by using the valve closing sound and the gas exhaust sound, a new method of acquiring breathing data such as the number of breaths and the expiration time can be realized.
 前記方法は、前記人工呼吸器105Aが発生する複数回の呼吸サイクル音の音データを取得することと、前記呼吸サイクル音から音圧が第1の閾値T1を超える第1の音(閉弁音)を検知したときを前記弁体9の閉弁時として特定することと、前記呼吸サイクル音から音圧が第2の閾値T2を超える第2の音(ガス排気音)の発生時間を前記呼気時間として特定することと、をさらに含む。これによれば、弁体9の閉弁時と呼気時間とを呼吸サイクル音から取得できる。 The method includes obtaining sound data of a plurality of respiratory cycle sounds generated by the artificial respirator 105A, and obtaining a first sound (valve closing sound) from the respiratory cycle sounds whose sound pressure exceeds a first threshold value T1. ) is detected as the valve closing time of the valve body 9, and the time of occurrence of a second sound (gas exhaust sound) whose sound pressure exceeds the second threshold value T2 from the breathing cycle sound is the expiration time. specifying as time. According to this, the closing time of the valve body 9 and the expiratory time can be acquired from the respiratory cycle sound.
 前記方法は、前記患者の身長から予測される予測一回換気量データを取得することと、前記呼吸データと前記ガス供給気量とから前記患者の推定一回換気量データを取得することと、前記コンピュータ装置(設定操作端末103A)が、前記設定参照用データとして、前記予測一回換気量データと前記推定一回換気量データとを画面表示することと、をさらに含む。これによれば、予測一回換気量と推定一回換気量が画面表示されるので、推定一回換気量を予測一回換気量に近づけることを設定目標として、医療機器を設定することができる。 The method includes obtaining predicted tidal volume data predicted from the height of the patient; obtaining estimated tidal volume data for the patient from the respiration data and the gas delivery; The computer device (setting operation terminal 103A) further includes displaying on a screen the predicted tidal volume data and the estimated tidal volume data as the setting reference data. According to this, since the predicted tidal volume and the estimated tidal volume are displayed on the screen, it is possible to set the medical device with the setting goal of bringing the estimated tidal volume closer to the predicted tidal volume. .
 前記方法は、前記設定参照用データが、前記開弁圧と、前記人工呼吸器を通じて前記患者に供給するガス供給気量と、前記呼吸データと、前記患者の身長に対応する予測一回換気量データと、前記呼吸データと前記ガス供給気量に基づき演算される推定一回換気量データと、の少なくともいずれかを含む。これによれば、画面表示された設定参照用データを参照して、医療機器(人工呼吸器105A、気体供給源105C)の設定を行うことができて便利である。 In the method, the setting reference data includes the valve opening pressure, the gas supply volume supplied to the patient through the respirator, the respiration data, and the predicted tidal volume corresponding to the height of the patient. data and/or estimated tidal volume data calculated based on said respiration data and said gas delivery volume. According to this, it is possible to refer to the setting reference data displayed on the screen to set the medical equipment (the respirator 105A, the gas supply source 105C), which is convenient.
 前記方法は、前記人工呼吸器105Aを使用する前記患者の状態チェックを行う画面(機器設定値入力画面402)を表示すること、をさらに含む。これによれば、患者の状態チェックを忘れないようにできる。 The method further includes displaying a screen (equipment setting input screen 402) for checking the condition of the patient using the ventilator 105A. According to this, it is possible not to forget to check the patient's condition.
 前記方法は、前記人工呼吸器105Aを個体識別する個体識別情報(シリアルナンバー)を取得することと、前記患者を識別する患者識別情報と、前記患者が使用する前記人工呼吸器の前記個体識別情報とを関連付けて記憶することと、をさらに含む。これによれば人工呼吸器105Aと患者とを紐づけて管理することができる。 The method includes obtaining individual identification information (serial number) for individually identifying the ventilator 105A, patient identification information for identifying the patient, and the individual identification information for the ventilator used by the patient. and storing in association with. According to this, the ventilator 105A and the patient can be linked and managed.
 前記方法は、撮像デバイス304cによって前記人工呼吸器105Aに設けた識別コード19を読み取ることにより前記個体識別情報を取得すること、をさらに含む。これによれば、例えばスマートフォンのカメラを使って、人工呼吸器105Aの個体識別情報を容易に取得することができる。 The method further includes obtaining the individual identification information by reading an identification code 19 provided on the ventilator 105A with an imaging device 304c. According to this, the individual identification information of the ventilator 105A can be easily acquired using, for example, the camera of the smartphone.
 1又は複数のコンピュータ装置(200、300)によって実行されるように構成された1又は複数のプログラムであって、前記1又は複数のプログラムは、前記いずれかの方法を実行する命令を含むように構成できる。なお、プログラムは、設定支援サーバ101Aの設定支援プログラムと、EDCサーバ102AのEDCデータマネジメントプログラムと、設定操作端末103Aの設定操作プログラムのすくなくともいずれかを含むものとすることができる。 One or more programs configured to be executed by one or more computer devices (200, 300), said one or more programs comprising instructions for performing any of the above methods Configurable. The program can include at least one of the setting support program of the setting support server 101A, the EDC data management program of the EDC server 102A, and the setting operation program of the setting operation terminal 103A.
 1又は複数のコンピュータ装置(200、300)によって実行されるように構成された1又は複数のプログラムを記憶する、非一時的コンピュータ可読記憶媒体(202、302)であって、前記1又は複数のプログラムは、前記いずれかの方法を実行する命令を含むように構成できる。 A non-transitory computer readable storage medium (202, 302) storing one or more programs configured to be executed by one or more computing devices (200, 300), said one or more A program may be configured to include instructions for performing any of the methods described above.
 電子デバイス(200、300)であって、1又は複数のプロセッサ201、301と、前記1又は複数のプロセッサ201、301によって実行されるように構成された1又は複数のプログラムを記憶するメモリ202、302と、ディスプレイ205b、304bと、を備え、前記1又は複数のプログラムは、前記いずれかの方法を実行する命令を含む。 an electronic device (200, 300) comprising one or more processors 201, 301 and a memory 202 storing one or more programs configured to be executed by said one or more processors 201, 301; 302 and displays 205b, 304b, wherein the one or more programs include instructions for performing any of the methods.
変形例Modification
 以上、一実施形態について詳細に説明したが、本発明の構成及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。したがってこのような変形例は、全て本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語とともに記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。以下、いくつかの変形例について説明する。 Although one embodiment has been described in detail above, those skilled in the art will easily understand that many modifications that do not substantially deviate from the configuration and effects of the present invention are possible. Therefore, all such modifications are intended to be included in the scope of the present invention. For example, in the specification or drawings, a term described at least once with a different, broader or synonymous term can be replaced with the different term anywhere in the specification or drawings. Some modifications will be described below.
 前記実施形態では、設定支援サーバ101Aが音解析部101eを有する例を示したが、設定操作端末103Aに、音解析部101e、又は音解析部101eの弁音解析部101e1かガス音解析部101e2かの少なくともいずれかを備える構成としてもよい。 In the above-described embodiment, an example in which the setting support server 101A has the sound analysis unit 101e is shown. It is good also as a structure provided with at least one of this.
 前記実施形態では、設定操作端末103Aがスマートフォンである例を示したが、設定操作端末103Aはタブレット、ノートPC、デスクトップPC、専用デバイスなどにより構成してもよい。この場合、設定操作の画面(400~407)も設定操作端末103Aとして使用するコンピュータ装置(300)によって変更することができる。 In the above embodiment, the setting operation terminal 103A is a smart phone, but the setting operation terminal 103A may be a tablet, a notebook PC, a desktop PC, a dedicated device, or the like. In this case, the setting operation screens (400 to 407) can also be changed by the computer device (300) used as the setting operation terminal 103A.
 前記実施形態で示した設定操作端末103Aの操作画面(400~407)は一例である。したがって異なる構成の操作画面としてもよい。例えば、機器設定値入力画面402は、スクロールが必要な縦長画面である。したがって、スクロール操作が不要となるように、例えば、「状態チェック」欄402fと「再測定事由を記入」の記述欄402gは別画面として構成してもよい。 The operation screens (400 to 407) of the setting operation terminal 103A shown in the above embodiment are examples. Therefore, the operation screen may have a different configuration. For example, the device setting value input screen 402 is a vertically long screen that requires scrolling. Therefore, for example, the " state check " column 402f and the description column 402g of "enter reason for remeasurement" may be configured as separate screens so that scrolling is not required.
 前記実施形態では、生体データ計測装置106Aにより取得した生体データが設定操作端末103Aでは表示されない例を示したが、生体データ計測装置106Aを設定操作端末103Aと通信可能に接続して、測定した生体データを設定操作端末103Aに取り込むように構成してもよい。この場合、生体データ計測装置106Aは、例えばBLUETOOTH(登録商標)などの近距離無線通信によって又はケーブル接続によって、設定操作端末103Aと直接通信可能としてもよい。また、生体データ計測装置106Aは、通信ネットワーク107を介して設定支援サーバ101Aに生体データを送信し、設定支援サーバ101Aが生体データを設定操作端末103Aに送信するようにしてもよい。 In the above embodiment, an example was shown in which the biological data acquired by the biological data measuring device 106A was not displayed on the setting operation terminal 103A. The data may be configured to be taken into the setting operation terminal 103A. In this case, the biometric data measuring device 106A may be able to directly communicate with the setting operation terminal 103A by short-range wireless communication such as BLUETOOTH (registered trademark) or by cable connection. Alternatively, the biometric data measuring device 106A may transmit the biometric data to the setting support server 101A via the communication network 107, and the setting support server 101A may transmit the biometric data to the setting operation terminal 103A.
 前記実施形態では、人工呼吸器105Aを例示したが、使用可能な人工呼吸器はそれに限られるものではない。人工呼吸器本体(気体供給源、呼気弁、吸気弁など)と呼吸回路(患者接続管(Y字管)、加温加湿器、蛇管など)とを備える人工呼吸器に、空気圧駆動のリリーフ弁(APLバルブ)を備えるように構成してもよい。そのようなリリーフ弁としては、例えば日本国特許第6780861号に開示されたものを例示でき、リリーフ弁は呼吸回路に接続して使用することができる。こうした人工呼吸器でも前記実施形態で説明した音解析を伴う医療機器の設定を行うことが可能である。さらに、前記実施形態では空気圧駆動の人工呼吸器(独立行政法人医薬品医療機器総合機構が、機械器具(06)呼吸補助器、高度管理医療機器として規定する一般的名称「人工呼吸用の単回使用ガス式肺人工蘇生器」などの「肺人工蘇生器」に区分されうる人工呼吸器。)を例示したが、患者へのガス供給を電磁弁により制御する人工呼吸器(独立行政法人医薬品医療機器総合機構が機械器具(06)呼吸補助器、高度管理医療機器として規定する一般的名称「汎用人工呼吸器」に区分されうる人工呼吸器。)についても適用することができる。特に前記実施形態で説明した音解析は、弁体が電磁弁であっても閉弁音が発生する限り、適用可能である。したがって、本発明の構成要素として含みうる人工呼吸器は、閉弁音などの作動音が発生し、その作動音によって弁体の開閉動作や、呼気又は吸気を特定しうる限り、そのガス供給の制御方式は限定されない。なお、前記実施形態では音解析で閉弁音を特定する例を示したが、本明細書及び特許請求の範囲でいう「閉弁音」は、弁体9が弁座32b1と接触することで発生する接触音だけでなく、弁体9が閉じるときに発生する他の音を含む概念である。 In the above embodiment, the ventilator 105A was exemplified, but usable ventilators are not limited to this. A pneumatically driven relief valve in a ventilator equipped with a ventilator body (gas supply source, exhalation valve, intake valve, etc.) and a breathing circuit (patient connection tube (Y-tube), heated humidifier, hosiery, etc.) (APL valve) may be provided. As such a relief valve, for example, one disclosed in Japanese Patent No. 6780861 can be exemplified, and the relief valve can be used by being connected to a breathing circuit. With such a ventilator, it is also possible to set medical equipment that involves the sound analysis described in the above embodiment. Furthermore, in the above-described embodiment, a pneumatically driven respirator (general name defined by the Pharmaceuticals and Medical Devices Agency as a mechanical device (06) respiratory assist device, a highly controlled medical device "single use for artificial respiration") A ventilator that can be classified as a “pulmonary resuscitator” such as a “gas-type lung resuscitator” was exemplified. It can also be applied to a ventilator that can be classified under the general name “general-purpose ventilator” defined by General Organization as mechanical equipment (06) Respiratory aid, highly controlled medical equipment.). In particular, the sound analysis described in the above embodiment can be applied even if the valve body is an electromagnetic valve as long as the valve closing sound is generated. Therefore, the ventilator that can be included as a component of the present invention generates an operating sound such as a valve closing sound, and as long as the operating sound can identify the opening and closing operation of the valve body, exhalation or inspiration, the gas supply The control method is not limited. In the above-described embodiment, an example of specifying the valve closing sound by sound analysis was shown, but the "valve closing sound" as used in the present specification and claims refers to the contact of the valve body 9 with the valve seat 32b1. It is a concept that includes not only the generated contact sound but also other sounds generated when the valve body 9 closes.
 前記実施形態では、EDCサーバ102Aを備える例を示したが、これを備えないシステム100、医療情報処理システム100Aとして構成してもよい。 In the above embodiment, an example including the EDC server 102A was shown, but the system 100 without the EDC server 102A may be configured as the medical information processing system 100A.
 前記実施形態で示す設定支援サーバ101Aは、ハードウェア構成としては、1台構成でも複数台構成でもよい。複数台構成の場合、設定支援プログラムについても、分割したプログラムの構成としてもよい。 The setting support server 101A shown in the above embodiment may have a single-unit configuration or a multiple-unit configuration as a hardware configuration. In the case of a multi-device configuration, the setting support program may also be configured as a divided program.
 前記実施形態では、設定支援プログラム、EDCデータマネジメントプログラム、設定操作プログラム、閲覧プログラムを例示したが、その1つ又は複数を、本開示の一態様によるプログラムとして把握することができる。 In the above embodiment, the setting support program, the EDC data management program, the setting operation program, and the browsing program were exemplified, but one or more of them can be understood as a program according to one aspect of the present disclosure.
 前記実施形態では、弁音解析部101e1が音圧データで第1の閾値T1を超える音圧を有する音を閉弁音として特定する例を示したが、これに限定されない。例えば、弁体9と弁座32b1との接触音の音圧が、所定範囲でしか発生しない場合には、上限の閾値と下限の閾値とを設定し、その範囲の音圧を持つ音を閉弁音として特定してもよい。音圧データで閉弁音とガス排気音以外の音は環境音であるが、使用場所によっては、第1の閾値T1を超えるノイズが発生することも想定される。そのため所定の上限と下限を有する閾値範囲を設定することで、閉弁音の誤判定を低減することが可能である。 In the above-described embodiment, an example was shown in which the valve sound analysis unit 101e1 identifies a sound having a sound pressure exceeding the first threshold value T1 as a valve closing sound in the sound pressure data, but it is not limited to this. For example, when the sound pressure of the contact sound between the valve body 9 and the valve seat 32b1 is generated only within a predetermined range, an upper threshold value and a lower threshold value are set, and sounds having sound pressure within that range are closed. It may be specified as a valve sound. Sounds other than the valve closing sound and the gas exhaust sound in the sound pressure data are environmental sounds, but depending on the place of use, it is assumed that noise exceeding the first threshold value T1 is generated. Therefore, by setting a threshold range having predetermined upper and lower limits, it is possible to reduce erroneous determination of the valve closing sound.
 前記実施形態では、弁音解析部101e1が音圧データで閉弁音とガス排気音とを特定する音圧変換解析の例を示したが、これに限定されない。例えば、音データの周波数変換解析によって閉弁音とガス排気音とを特定してもよい。前記実施形態で説明した閉弁音やガス排気音は、特定の周波数や周波数帯域を持つ物理量として捉えることが可能である。したがって、音データについて、閉弁音として特定される第1の周波数(特定周波数のほか所定の周波数帯域を含む。)を有する第1の音を検知し、またガス排気音として特定される第2の周波数(特定周波数のほか所定の周波数帯域を含む。)を有する第2の音を検知する周波数解析を行うことができる。このような周波数解析によって閉弁音及びガス排気音を特定し、呼気時間、吸気時間などを特定することが可能である。また、周波数解析と音圧解析とを併用してもよい。 In the above embodiment, an example of sound pressure conversion analysis in which the valve sound analysis unit 101e1 identifies the valve closing sound and the gas exhaust sound using sound pressure data was shown, but the present invention is not limited to this. For example, the valve closing sound and the gas exhaust sound may be identified by frequency conversion analysis of sound data. The valve closing sound and gas exhaust sound described in the above embodiments can be regarded as physical quantities having specific frequencies and frequency bands. Therefore, for the sound data, a first sound having a first frequency (including the specific frequency and a predetermined frequency band) specified as the valve closing sound is detected, and a second sound specified as the gas exhaust sound is detected. (including a specific frequency and a predetermined frequency band). By such frequency analysis, it is possible to specify the valve closing sound and the gas exhaust sound, and to specify the expiration time, the intake time, and the like. Further, frequency analysis and sound pressure analysis may be used together.
100 システム、100A 医療情報処理システム、101 第1のサーバ(コンピュータ装置)、101A 設定支援サーバ(コンピュータ装置)、102 第2のサーバ(コンピュータ装置)、102A EDCサーバ(コンピュータ装置)、103 第1の端末装置(コンピュータ装置)、103A 設定操作端末(コンピュータ装置)、104 第2の端末装置(コンピュータ装置)、104A 閲覧端末(コンピュータ装置)、105 治療用医療機器、105A 人工呼吸器、105B 呼吸回路、105C 気体供給源、106 診断用医療機器(コンピュータ装置)、200 第1のコンピュータ装置、300 第2のコンピュータ装置 100 system, 100A medical information processing system, 101 first server (computer device), 101A setting support server (computer device), 102 second server (computer device), 102A EDC server (computer device), 103 first Terminal device (computer device), 103A Setting operation terminal (computer device), 104 Second terminal device (computer device), 104A Viewing terminal (computer device), 105 Medical equipment for treatment, 105A Respirator, 105B Breathing circuit, 105C gas supply source, 106 diagnostic medical device (computer device), 200 first computer device, 300 second computer device

Claims (17)

  1. 方法であって、
     1又は複数のコンピュータ装置において、
      人工呼吸器を使用する患者の呼気時間、吸気時間、呼吸回数のいずれかを含む呼吸データを取得することと、
      前記患者の気道内圧を制御するために前記人工呼吸器に備える弁体の開弁圧を設定するための設定参照用データを画面表示することと、を含む、
    方法。
    a method,
    on one or more computer devices,
    obtaining respiration data including any of exhalation time, inspiratory time, and respiratory rate for a patient on a ventilator;
    displaying on a screen setting reference data for setting a valve opening pressure of a valve element provided in the respirator to control the airway pressure of the patient;
    Method.
  2. 複数回の呼吸サイクル音の音データを取得すること、をさらに含む、
    請求項1記載の方法。
    obtaining sound data for multiple breath cycle sounds;
    The method of claim 1.
  3. 前記呼吸サイクル音から前記弁体が閉弁時に発生する閉弁音を取得すること、をさらに含む、
    請求項2記載の方法。
    Obtaining a closing sound generated when the valve body closes from the breathing cycle sound,
    3. The method of claim 2.
  4. 連続して発生する前記閉弁音どうしの時間間隔である第1の時間に基づき、前記呼吸回数を取得すること、をさらに含む、
    請求項3記載の方法。
    further comprising obtaining the respiratory rate based on a first time interval between consecutively occurring valve closing sounds;
    4. The method of claim 3.
  5. 前記呼吸サイクル音からガス排気音を取得すること、をさらに含む、
    請求項2記載の方法。
    further comprising obtaining a gas exhaust sound from the breathing cycle sound;
    3. The method of claim 2.
  6. 前記ガス排気音の継続時間である第2の時間の長さから、前記呼気時間を取得すること、をさらに含む、
    請求項5記載の方法。
    further comprising obtaining the exhalation time from a second length of time that is the duration of the gas exhaust sound;
    6. The method of claim 5.
  7. 前記人工呼吸器が発生する複数の呼吸サイクル音の音データを取得することと、
    前記呼吸サイクル音から前記弁体が閉弁時に発生する閉弁音を取得し、連続して発生する前記閉弁音どうしの時間間隔である第1の時間を取得することと、
    前記呼吸サイクル音からガス排気音を取得し、前記ガス排気音の継続時間である第2の時間を取得することと、
    前記第1の時間と前記第2の時間とから吸気時間を取得することと、をさらに含む、
    請求項1記載の方法。
    obtaining sound data of a plurality of respiratory cycle sounds generated by the ventilator;
    obtaining a valve-closing sound generated when the valve body closes from the breathing cycle sound, and obtaining a first time that is a time interval between the valve-closing sounds that are continuously generated;
    obtaining a gas exhaust sound from the breathing cycle sound and obtaining a second time duration of the gas exhaust sound;
    obtaining an inspiration time from the first time and the second time;
    The method of claim 1.
  8. 前記人工呼吸器が発生する複数回の呼吸サイクル音の音データを取得することと、
    前記呼吸サイクル音から音圧が第1の閾値を超える第1の音を検知したときを前記弁体の閉弁時として特定することと、
    前記呼吸サイクル音から音圧が第2の閾値を超える第2の音の発生時間を前記呼気時間として特定することと、をさらに含む、
    請求項1記載の方法。
    obtaining sound data of a plurality of respiratory cycle sounds generated by the ventilator;
    identifying a time when a first sound having a sound pressure exceeding a first threshold is detected from the respiratory cycle sounds as a time when the valve body is closed;
    determining as the exhalation time a time of occurrence of a second sound at which the sound pressure exceeds a second threshold from the respiratory cycle sounds;
    The method of claim 1.
  9. 前記人工呼吸器が発生する複数回の呼吸サイクル音の音データを取得することと、
    前記呼吸サイクル音から第1の周波数を有する第1の音を検知したときを前記弁体の閉弁時として特定することと、
    前記呼吸サイクル音から第2の周波数を有する第2の音の発生時間を前記呼気時間として特定することと、をさらに含む、
    請求項1記載の方法。
    obtaining sound data of a plurality of respiratory cycle sounds generated by the ventilator;
    identifying a time when a first sound having a first frequency is detected from the respiratory cycle sounds as a closing time of the valve body;
    identifying a time of occurrence of a second sound having a second frequency from the respiratory cycle sounds as the exhalation time;
    The method of claim 1.
  10. 前記患者の身長から予測される予測一回換気量データを取得することと、
    前記呼吸データと前記患者に供給するガス供給気量とから前記患者の推定一回換気量データを取得することと、
    前記コンピュータ装置が、前記設定参照用データとして、前記予測一回換気量データと前記推定一回換気量データとを画面表示することと、をさらに含む、
    請求項1記載の方法。
    obtaining predicted tidal volume data predicted from the height of the patient;
    obtaining estimated tidal volume data for the patient from the respiration data and gas delivery volume delivered to the patient;
    further comprising the computer device displaying on a screen the predicted tidal volume data and the estimated tidal volume data as the setting reference data;
    The method of claim 1.
  11. 前記設定参照用データは、
     前記開弁圧と、
     前記人工呼吸器を通じて前記患者に供給するガス供給気量と、
     前記呼吸データと、
     前記患者の身長に対応する予測一回換気量データと、
     前記呼吸データと前記ガス供給気量に基づき演算される推定一回換気量データとの少なくともいずれかを含む、
    請求項1記載の方法。
    The setting reference data is
    the valve opening pressure;
    a gas supply volume supplied to the patient through the ventilator;
    the respiratory data;
    predicted tidal volume data corresponding to the height of the patient;
    at least one of the respiration data and estimated tidal volume data calculated based on the gas delivery volume;
    The method of claim 1.
  12. 前記人工呼吸器を使用する前記患者の状態チェックを行う画面を表示することと、をさらに含む、
    請求項1記載の方法。
    displaying a screen for performing a condition check of the patient on the ventilator;
    The method of claim 1.
  13. 前記人工呼吸器を個体識別する個体識別情報を取得することと、
    前記患者を識別する患者識別情報と、前記患者が使用する前記人工呼吸器の前記個体識別情報とを関連付けて記憶することと、をさらに含む、
    請求項1記載の方法。
    Acquiring individual identification information for individual identification of the respirator;
    further comprising associating and storing patient identification information identifying the patient and the individual identification information of the ventilator used by the patient;
    The method of claim 1.
  14. 撮像デバイスによって前記人工呼吸器に設けた識別コードを読み取ることにより前記個体識別情報を取得することと、をさらに含む、
    請求項13記載の方法。
    obtaining the individual identification information by reading an identification code provided on the ventilator with an imaging device;
    14. The method of claim 13.
  15. 1又は複数のコンピュータ装置によって実行されるように構成された1又は複数のプログラムであって、
    前記1又は複数のプログラムは、請求項1~14のいずれか1項記載の方法を実行する命令を含む、
    プログラム。
    One or more programs configured to be executed by one or more computer devices,
    The one or more programs comprise instructions for performing the method of any one of claims 1-14,
    program.
  16. 1又は複数のコンピュータ装置によって実行されるように構成された1又は複数のプログラムを記憶する、非一時的コンピュータ可読記憶媒体であって、
    前記1又は複数のプログラムは、請求項1~14のいずれか1項記載の方法を実行する命令を含む、
    非一時的コンピュータ可読記憶媒体。
    A non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more computing devices,
    The one or more programs comprise instructions for performing the method of any one of claims 1-14,
    A non-transitory computer-readable storage medium.
  17. 1又は複数のプロセッサと、
    前記1又は複数のプロセッサによって実行されるように構成された1又は複数のプログラムを記憶するメモリと、
    ディスプレイと、を備える電子デバイスであって、
    前記1又は複数のプログラムは、請求項1~14いずれか1項記載の方法を実行する命令を含む、
    電子デバイス。
    one or more processors;
    a memory storing one or more programs configured to be executed by the one or more processors;
    An electronic device comprising a display,
    The one or more programs comprise instructions for performing the method of any one of claims 1-14,
    electronic device.
PCT/JP2022/048400 2021-12-28 2022-12-27 Information processing method, program, non-transitory computer readable storage medium, and electronic device WO2023127920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-215061 2021-12-28
JP2021215061 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127920A1 true WO2023127920A1 (en) 2023-07-06

Family

ID=86999141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048400 WO2023127920A1 (en) 2021-12-28 2022-12-27 Information processing method, program, non-transitory computer readable storage medium, and electronic device

Country Status (1)

Country Link
WO (1) WO2023127920A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237190A (en) * 1992-02-29 1993-09-17 Sanyo Denshi Kogyo Kk Respiration tuning type gas supplying device
JP2016521621A (en) * 2013-06-13 2016-07-25 ケアフュージョン 303、インコーポレイテッド Analytics on ventilated patients
JP2020531176A (en) * 2017-08-25 2020-11-05 レスメド・プロプライエタリー・リミテッド Methods and devices for the treatment of respiratory illness
JP2021001695A (en) * 2015-12-31 2021-01-07 直之 石北 Relief valve and method of manufacturing relief valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237190A (en) * 1992-02-29 1993-09-17 Sanyo Denshi Kogyo Kk Respiration tuning type gas supplying device
JP2016521621A (en) * 2013-06-13 2016-07-25 ケアフュージョン 303、インコーポレイテッド Analytics on ventilated patients
JP2021001695A (en) * 2015-12-31 2021-01-07 直之 石北 Relief valve and method of manufacturing relief valve
JP2020531176A (en) * 2017-08-25 2020-11-05 レスメド・プロプライエタリー・リミテッド Methods and devices for the treatment of respiratory illness

Similar Documents

Publication Publication Date Title
Lenglet et al. Humidified high flow nasal oxygen during respiratory failure in the emergency department: feasibility and efficacy
US20190117930A1 (en) Assistive capnography device
US10252020B2 (en) Ventilator with biofeedback monitoring and control for improving patient activity and health
JP6200430B2 (en) Method and apparatus for monitoring and controlling pressure assist devices
CN110520043A (en) The system and method for carrying out respiration measurement using breathing gas sample
CN107647868A (en) System and method for determining sleep stage
CN110035697A (en) It recovers and takes a breath asynchronous monitor
JP2011104403A (en) Method and apparatus for monitoring cardiovascular condition of patient with sleep disordered breathing
US20230380699A1 (en) Advanced Respiratory Monitor and System
US20230082966A1 (en) Devices and methods for predicting, identifying and/or managing pneumonia or other health status
US20140100470A1 (en) Digital inspirometer system
WO2019152699A1 (en) Devices and methods for monitoring physiologic parameters
WO2023127920A1 (en) Information processing method, program, non-transitory computer readable storage medium, and electronic device
AU2022211837A1 (en) Advanced respiratory monitor and system
US11596326B2 (en) Systems and methods for metabolic monitoring
CN114569093A (en) Lung-clearing and phlegm-discharging equipment for department of respiration
CN116547028A (en) Respiratory distress management device, system and method
JP7257127B2 (en) Medical image display method and program
CN209153678U (en) A kind of detection device of contactless dynamic detection breathing
WO2022223676A1 (en) System for identifying a condition of a user
Shen et al. Mechanical Ventilators and Monitors: An Abridged Guide for Engineers
Arvizu-Munoz Enabling Low Tidal Volume and High Respiratory Rate Therapy Through Low-Cost Mechanical Ventilation
WO2023110992A1 (en) Generating an indicator of chronic obstructive pulmonary disease
WO2023212486A2 (en) Modular respiratory sensor integration block system
Chambers Bay Corporation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916142

Country of ref document: EP

Kind code of ref document: A1