WO2023127896A1 - Pellet of thermoplastic elastomer composition, resin composition, method for producing pellet of thermoplastic elastomer composition, and method for producing resin composition - Google Patents

Pellet of thermoplastic elastomer composition, resin composition, method for producing pellet of thermoplastic elastomer composition, and method for producing resin composition Download PDF

Info

Publication number
WO2023127896A1
WO2023127896A1 PCT/JP2022/048276 JP2022048276W WO2023127896A1 WO 2023127896 A1 WO2023127896 A1 WO 2023127896A1 JP 2022048276 W JP2022048276 W JP 2022048276W WO 2023127896 A1 WO2023127896 A1 WO 2023127896A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
elastomer composition
block copolymer
liquid rubber
pellets
Prior art date
Application number
PCT/JP2022/048276
Other languages
French (fr)
Japanese (ja)
Inventor
真裕 加藤
大輔 小西
啓光 佐々木
裕太 冨島
巧 長谷川
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2023127896A1 publication Critical patent/WO2023127896A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a pellet of a thermoplastic elastomer composition, a resin composition, a method for producing pellets of a thermoplastic elastomer composition, and a method for producing a resin composition.
  • a block copolymer such as a styrene-based elastomer, containing a polymer block (A) comprising structural units derived from an aromatic vinyl compound and a polymer block (B) comprising structural units derived from a conjugated diene compound, or
  • Thermoplastic elastomer compositions containing hydrogenated materials and liquid rubbers such as liquid polybutadiene and liquid diene rubbers are known (see, for example, Patent Documents 1 and 4).
  • Such a thermoplastic elastomer composition is proposed to be used in applications such as printing plate materials, automobile parts such as tires, civil engineering and construction parts, home appliance parts, sporting goods, miscellaneous goods, wire coatings, medical parts, and footwear. It is It is also known to add liquid polybutadiene to a resin composition for the purpose of preventing liquid components such as cross-linking agents and cross-linking aids from blowing out (see, for example, Patent Documents 2 and 3).
  • Liquid rubber is a viscous substance that has fluidity at room temperature and is difficult to handle. Therefore, the concentration of liquid rubber in a thermoplastic elastomer composition or a resin composition using the same is adjusted to a desired value. However, there are problems such as the liquid rubber bleeding out and the long time required for mixing with the block copolymer. Therefore, the productivity of thermoplastic elastomer compositions and resin compositions tends to decrease. Furthermore, although Patent Documents 5 and 6 do not relate to the use of liquid rubber, they describe the adhesion of dusting powder to pellets of hydrogenated block copolymers.
  • Patent Laid-Open No. 10-310617 Patent No. 3101230
  • Patent Application Laid-Open No. 2001-288332 Patent No. 4189130
  • Japanese Patent Application Laid-Open No. 2002-302588 Patent No. 4070472
  • Japanese Patent Publication No. 2020-521017 International Publication No. 2014/002984 Patent 6140157
  • International Publication No. 2015/098664 Patent 6140301
  • the present invention provides a liquid rubber-containing thermoplastic elastomer composition in a form (e.g., pellets) that is easy to handle, and that can be used for the production of molded articles capable of suppressing bleeding and exhibiting desired mechanical properties.
  • the task is to provide
  • a further object of the present invention is to provide a method for producing the pellets, a composition containing the pellets, and a method for producing the composition.
  • the present inventors have developed a block copolymer (X ) and the liquid rubber component (Y), by adjusting the content ratio of the block copolymer (X) and the liquid rubber component (Y), the compatibility of the two, etc.
  • the present inventors have found that bleeding can be suppressed and desired mechanical properties can be expressed, and have completed the present invention through further studies.
  • the present invention relates to the following [1] to [28].
  • [1] 100 masses of a block copolymer (X) containing a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing a structural unit derived from a conjugated diene compound and 10 parts by mass or more and less than 150 parts by mass of the liquid rubber component (Y), wherein an antiblocking agent is present in contact with the surface of the pellets, Pellets of a thermoplastic elastomer composition, wherein the content of the antiblocking agent, including the amount present on the surface of the pellets, is 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the pellets.
  • thermoplastic elastomer composition according to [1] above, wherein the antiblocking agent has an average particle size of 1 to 15 ⁇ m.
  • the antiblocking agent is at least one selected from the group consisting of polyolefin wax, hydrated magnesium silicate, ethylenebisstearylamide, calcium stearate, magnesium stearate, and silica, above [1] or [ 2], pellets of the thermoplastic elastomer composition.
  • the above [1]-[ 3] a pellet of the thermoplastic elastomer composition according to any one of the above.
  • thermoplastic elastomer composition according to any one of [1] to [7] above, wherein the liquid rubber component (Y) has a weight average molecular weight of 2,000 to 300,000.
  • thermoplastic elastomer according to any one of [1] to [10] above, wherein the polymer block (A) in the block copolymer (X) has a weight average molecular weight of 2,000 to 60,000. Pellets of the composition.
  • thermoplastic elastomer according to any one of [1] to [11] above, wherein the polymer block (B) in the block copolymer (X) has a weight average molecular weight of 10,000 to 200,000. Pellets of the composition.
  • thermoplastic elastomer composition The pellet of the thermoplastic elastomer composition according to any one of ]. [17] The above-mentioned [16], wherein the content of the liquid rubber component (Y) in the thermoplastic elastomer composition is 46 parts by mass or more relative to 100 parts by mass of the block copolymer (X). Pellets of a thermoplastic elastomer composition. [18] The above-mentioned [17], wherein the content of the liquid rubber component (Y) in the thermoplastic elastomer composition is 51 parts by mass or more relative to 100 parts by mass of the block copolymer (X). Pellets of a thermoplastic elastomer composition.
  • a resin composition comprising pellets of the thermoplastic elastomer composition according to any one of [1] to [18] above and a (meth)acrylic monomer.
  • the resin composition according to [19] above further comprising a photopolymerization initiator.
  • thermoplastic elastomer composition according to [22] above, wherein in the step of melt-kneading, the liquid rubber component (Y) is added after the block copolymer (X) is melted, and melt-kneading is performed. method of producing pellets.
  • a twin-screw extruder is used to extrude the liquid rubber component (Y) from the middle of the extrusion route of the twin-screw extruder to the melted block copolymer (X). and melt-kneading the thermoplastic elastomer composition pellets according to [23] above.
  • a method for producing pellets of the thermoplastic elastomer composition according to any one of [1] to [18] above which comprises a solution (X) containing the block copolymer (X) and a first solvent '), and a step of mixing a solution (Y') containing the liquid rubber component (Y) and a second solvent to prepare a mixed solution; and a step of removing the solvent to obtain a resin component.
  • thermoplastic elastomer composition containing a liquid rubber which can be used for the production of molded articles capable of suppressing bleeding and exhibiting desired mechanical properties, is formed into a shape (for example, pellets) that is easy to handle.
  • a method for producing the pellets, a composition containing the pellets, and a method for producing the composition can be provided.
  • Embodiments of the present invention will be described below.
  • the present invention also includes aspects in which the items described in this specification are arbitrarily selected or arbitrarily combined.
  • the definition of being preferred can be arbitrarily selected, and it can be said that the combination of the definitions of being preferred is more preferred.
  • the description "XX to YY” means “XX or more and YY or less”.
  • the lower and upper limits described stepwise can be independently combined. For example, from the statement “preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)” and “more preferred upper limit (60)" to "10 to 60” can also
  • the pellets of the thermoplastic elastomer composition of the present invention contain a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing a structural unit derived from a conjugated diene compound.
  • the amount of the antiblocking agent necessary to suppress the blocking of the pellets of the thermoplastic elastomer composition of the present invention to the extent that there is no problem in handling the pellets is an amount that does not affect the production and physical properties of the molded product. (0.1 to 1.5 parts by mass with respect to 100 parts by mass of pellets). That is, the pellets of the thermoplastic elastomer composition of the present invention are present in a state in which an antiblocking agent is in contact with the surface, and the content of the antiblocking agent including the amount present on the surface of the pellet (the blocking The amount of the inhibitor added (amount to be charged) is 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the pellets.
  • the molded article of the thermoplastic elastomer composition may be used as a product or member in various applications, or may be used, for example, in the form of pellets as a masterbatch of the liquid rubber component (Y). Since the thermoplastic elastomer composition can contain the liquid rubber component (Y) at a high content ratio while suppressing bleeding, it can be suitably used as a masterbatch of the liquid rubber component (Y).
  • masterbatch of liquid rubber component (Y) refers to a thermoplastic elastomer composition prepared by mixing the masterbatch with other components (block copolymer (X), etc.). means a thermoplastic elastomer composition containing a liquid rubber component (Y) at a higher content ratio than the predetermined content ratio so that the liquid rubber component (Y) has a predetermined content ratio in a product or resin composition. .
  • the thermoplastic elastomer composition may contain only the block copolymer (X) and the liquid rubber component (Y), or may contain the block copolymer (X), the liquid rubber component (Y), and others. It may contain a component of.
  • the total content of the block copolymer (X) and the liquid rubber component (Y) in the thermoplastic elastomer composition is preferably 50% by mass or more, more preferably 50% by mass or more, based on the total mass of the thermoplastic elastomer composition. 60% by mass or more, more preferably 70% by mass or more. Moreover, it may be 100% by mass or less, 95% by mass or less, or 90% by mass or less.
  • the total content of block copolymer (X) and liquid rubber component (Y) in the thermoplastic elastomer composition is preferably 50 to 100% by mass with respect to the total mass of the thermoplastic elastomer composition. is.
  • the block copolymer (X) includes a polymer block (A) containing structural units derived from an aromatic vinyl compound and a polymer block (B) containing structural units derived from a conjugated diene compound.
  • the block copolymer (X) may be an unhydrogenated block copolymer (hereinafter sometimes referred to as "unhydrogenated product") or a hydrogenated block copolymer.
  • block copolymer (X) includes a block copolymer before hydrogenation (hereinafter sometimes referred to as “unhydrogenated block copolymer (X0)"), and , a block copolymer obtained by hydrogenating the unhydrogenated block copolymer (X0) (hereinafter sometimes referred to as “hydrogenated block copolymer (X10)").
  • the block copolymer (X) may contain both the unhydrogenated block copolymer (X0) and the hydrogenated block copolymer (X10).
  • each component constituting the block copolymer (X) will be described. It applies to both.
  • the polymer block (A) contains a structural unit derived from an aromatic vinyl compound (hereinafter sometimes referred to as "aromatic vinyl compound unit").
  • aromatic vinyl compounds include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4- Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene, 1-vinylnaphthalene, 2- Examples include vinylnaphthalene, vinylanthracene, N,N-diethyl-4-aminoethyrene, 2-methylstyren
  • the polymer block (A) contains structural units derived from monomers other than the aromatic vinyl compound, such as monomers constituting the polymer block (B) described later. good too.
  • the content of the aromatic vinyl compound unit in the polymer block (A) is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • 100% by mass is particularly preferred.
  • the content of the aromatic vinyl compound units in the polymer block (A) may be 100% by mass or less, 90% by mass or less, or 80% by mass or less. In other words, the content of the aromatic vinyl compound unit in the polymer block (A) is preferably 60-100% by mass.
  • the block copolymer (X) used in the present invention preferably contains a structural unit derived from an aromatic vinyl compound only in the polymer block (A).
  • the content of the structural unit derived from the aromatic vinyl compound in the block copolymer (X) is preferably 3 to 35% by mass, more preferably 5 to 30% by mass, from the viewpoint of flexibility. Preferably, it is more preferably 7 to 25% by mass.
  • the block copolymer (X) may have at least one polymer block (A).
  • the polymer blocks (A) may be the same or different.
  • “polymer blocks are different” means the monomer units constituting the polymer blocks, the weight average molecular weight, the stereoregularity, and the ratio and covalentity of each monomer unit when there are multiple monomer units. It means that at least one of the polymerization modes (random, tapered, block) is different.
  • the block copolymer (X) preferably has two or more polymer blocks (A) from the viewpoint of facilitating pelletization of the thermoplastic elastomer composition.
  • the content of the polymer block (A) in the block copolymer (X) is preferably 35% by mass or less from the viewpoint of flexibility. , More preferably 30% by mass or less, still more preferably 25% by mass or less, and from the viewpoint of mechanical properties, preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 7% by mass or more be. In other words, the content of polymer block (A) in block copolymer (X) is preferably 3 to 35% by mass.
  • the content of the polymer block (A) in the block copolymer (X) is a value determined by 1 H-NMR measurement, more specifically a value measured according to the method described in Examples.
  • the weight average molecular weight (Mw) of the polymer block (A) is preferably from 2,000 to 60,000, more preferably from 3,000 to 50,000, still more preferably from 4,000 to 4,000, from the viewpoint of moldability. 40,000, more preferably 5,000 to 30,000, and even more preferably 5,500 to 20,000.
  • the weight average molecular weight (Mw) of the polymer block (A) can be made within the above range, for example, by adjusting the amount of the aromatic vinyl compound relative to the polymerization initiator used for polymerization.
  • the weight average molecular weight (Mw) of the polymer block (A) can be specifically measured or calculated by the method described in Examples.
  • weight average molecular weights are weight average molecular weights in terms of standard polystyrene obtained by gel permeation chromatography (GPC) measurement, and detailed measurement methods are described in Examples. The described method can be followed.
  • the weight average molecular weight of each polymer block in the block copolymer can be obtained by measuring a sampled liquid each time polymerization of each polymer block is completed in the production process.
  • the total weight average molecular weight of the polymer blocks "A1" and “A2” is the weight average of the block copolymer It was calculated from the molecular weight and the total content of the polymer blocks "A1" and “A2” confirmed by 1 H-NMR measurement, and the weight average molecular weight of the first deactivated polymer block "A1” was calculated by GPC measurement. , the weight average molecular weight of the polymer block "A2" can also be obtained by subtracting this.
  • the polymer block (B) constituting the block copolymer (X) is a structural unit derived from a conjugated diene compound (hereinafter sometimes referred to as a "conjugated diene compound unit") from the viewpoint of molding processability.
  • the polymer block (B) preferably contains 30 mol % or more of conjugated diene compound units.
  • the polymer block (B) preferably contains conjugated diene compound units of 50 mol% or more, still more preferably 65 mol% or more, still more preferably 80 mol% or more, and even more preferably 80 mol% or more.
  • the content is preferably 90 mol % or more, particularly preferably substantially 100 mol %.
  • the content of the conjugated diene compound units in the polymer block (B) may be 100 mol% or less, 90 mol% or less, or 80 mol% or less. In other words, the content of the conjugated diene compound units in the polymer block (B) is preferably 30-100 mol %.
  • the "conjugated diene compound unit” may be a structural unit derived from one type of conjugated diene compound or a structural unit derived from two or more types of conjugated diene compounds.
  • substantially 100 mol % means that the conjugated diene compound that is inevitably present in the process of producing the polymer block (B) is present in addition to the embodiment consisting only of pure conjugated diene compound units. This means that a mode in which structural units other than units are included may also be used.
  • the conjugated diene compound preferably contains isoprene, butadiene, or isoprene and butadiene from the viewpoint of easily exhibiting excellent flexibility.
  • a conjugated diene compound other than isoprene and butadiene may be contained as described later.
  • the content of isoprene in the conjugated diene compound is preferably 20% by mass or more, more preferably 40% by mass or more, still more preferably 45% by mass or more, and even more preferably. is 55% by mass or more, more preferably 75% by mass or more, and particularly preferably 100% by mass.
  • isoprene as the conjugated diene compound.
  • the content of isoprene in the conjugated diene compound may be 100% by mass or less, 75% by mass or less, or 55% by mass or less. In other words, the content of isoprene in the conjugated diene compound is preferably 20-100% by mass.
  • the conjugated diene compound is a mixture of butadiene and isoprene
  • their mixing ratio [isoprene/butadiene] is not particularly limited as long as the effects of the present invention are not impaired, but is preferably 5/95. to 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, and particularly preferably 45/55 to 65/35.
  • the mixing ratio [isoprene/butadiene] in terms of molar ratio is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, especially It is preferably 45/55 to 55/45.
  • conjugated diene compounds examples include hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and myrcene, in addition to the isoprene and butadiene described above.
  • a conjugated diene compound may be used individually by 1 type, and may be used 2 or more types.
  • the block copolymer (X) may have at least one polymer block (B).
  • the polymer blocks (B) may be the same or different.
  • the polymer block (B) has two or more types of structural units, their binding forms are random, tapered, completely alternating, partly blocky, block, or a combination of two or more thereof. It may be.
  • the bonding form of the conjugated diene compound is not particularly limited as long as it does not impair the object and effect of the present invention.
  • the structural units constituting the polymer block (B) are either isoprene units, butadiene units, or mixture units of isoprene and butadiene
  • the bond form of isoprene and butadiene is 1 in the case of butadiene.
  • 2-bond, 1,4-bond, and isoprene can have 1,2-bond, 3,4-bond, and 1,4-bond. Only one type of these binding forms may be present, or two or more types may be present.
  • the amount of 1,2-bonds in the butadiene units in the polymer block (B) is referred to as the amount of vinyl bonds
  • the amount of 1,2-bonds in the isoprene units in the polymer block (B). and the total amount of 3,4-bonds is referred to as the vinyl bond amount
  • the content of the vinyl bond amount in the total bond form of the polymer block (B) is referred to as the "vinyl bond amount of the polymer block (B) (mol%) ”.
  • the 1,2-bond and 3,4-bond amounts can be calculated by 1 H-NMR measurement in the same manner as in the Examples.
  • the total content of 3,4-bond units and 1,2-bond units (that is, vinyl bond content) in the polymer block (B) is preferably 5 mol% or more, and more Preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, still more preferably 65 mol% or more, still more preferably 70 mol% or more, still more preferably 75 mol% or more is. If the vinyl bond amount in the polymer block (B) is 5 mol% or more, it can contribute to the development of the UV curing speed. There is a tendency for the UV curing speed to improve as the temperature increases.
  • the vinyl bond content in the polymer block (B) may be 95 mol % or less, 92 mol % or less, or 90 mol % or less.
  • the vinyl bond content in the polymer block (B) is preferably 5-95 mol %.
  • the vinyl bond content is a value calculated by 1 H-NMR measurement according to the method described in Examples.
  • the polymer block (B) is a structural unit derived from a conjugated diene compound and has a structural unit containing one or more alicyclic skeletons (P) represented by the following formula (P) in the main chain. may be
  • R 1 to R 3 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 11 carbon atoms, and multiple R 1 to R 3 may be the same or different.
  • the number of carbon atoms in the above hydrocarbon group is preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and still more preferably 1 (ie, methyl group).
  • the hydrocarbon group may be a straight chain or branched chain, and may be a saturated or unsaturated hydrocarbon group. From the viewpoint of physical properties and formation of the alicyclic skeleton (P), it is particularly preferred that R 1 to R 3 are each independently a hydrogen atom or a methyl group.
  • the vinyl group in the above formula (P) can be hydrogenated to form a hydrogenated product. Therefore, the meaning of the alicyclic skeleton (P) in the hydrogenated product also includes the skeleton obtained by hydrogenating the vinyl group in the above formula (P).
  • the upper limit of the content of the alicyclic skeleton (P) in the polymer block (B) is not particularly limited as long as it does not impair the effects of the present invention, but from the viewpoint of productivity, it is preferably 40 mol. % or less, more preferably 30 mol % or less, even more preferably 20 mol % or less, even more preferably 18 mol % or less. Also, the content of the alicyclic skeleton (P) in the polymer block (B) may be 0 mol % or more than 0 mol %.
  • the content of the alicyclic skeleton (P) contained in the block copolymer (X) was determined by 13 C-NMR measurement of the block copolymer (X). It is a value obtained from the integral value derived from the skeleton (P).
  • the weight average molecular weight (Mw) of the polymer block (B) is not particularly limited, but the total weight average molecular weight of the polymer blocks (B) in the block copolymer (X) before hydrogenation is preferably 10,000 to 200,000, more preferably 20,000 to 180,000, still more preferably 30,000 to 160,000, still more preferably 35,000 to 140,000, still more preferably 40,000 to 130,000. If the total weight-average molecular weight of the polymer blocks (B) is within the above range, more excellent molding processability is likely to be exhibited.
  • the weight average molecular weight of the polymer block (B) can be specifically measured or calculated by the method described in Examples.
  • the content of the polymer block (B) in the block copolymer (X) is preferably 97% by mass or less, more preferably 95% by mass or less, even more preferably 93% by mass or less, and even more preferably 90% by mass or less. , particularly preferably 85% by mass or less. If the content of the polymer block (B) is 97% by mass or less, it becomes easy to obtain a thermoplastic elastomer composition having mechanical properties, mechanical properties and moldability suitable for various uses.
  • the content of the polymer block (B) in the block copolymer (X) is preferably 65% by mass or more, more preferably 67% by mass or more, still more preferably 70% by mass or more, and even more preferably 75% by mass. % or more, more preferably 80 mass % or more. If the content of the polymer block (B) is 65% by mass or more, a thermoplastic elastomer composition having excellent flexibility can be obtained. In other words, the content of the polymer block (B) in the block copolymer (X) is preferably 65-97% by mass.
  • the polymer block (B) may contain structural units derived from polymerizable monomers other than the conjugated diene compound as long as the objects and effects of the present invention are not hindered.
  • the content of structural units derived from polymerizable monomers other than the conjugated diene compound is preferably less than 70 mol%, more preferably less than 50 mol%, and further Preferably less than 35 mol %, particularly preferably less than 20 mol %.
  • the content of structural units derived from other polymerizable monomers other than the conjugated diene compound is not particularly limited, but may be 0 mol %, may be more than 0 mol %, It may be 5 mol % or more, or 10 mol % or more.
  • the content of structural units derived from polymerizable monomers other than the conjugated diene compound is preferably 0 mol % or more and less than 70 mol %.
  • Examples of other polymerizable monomers include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, N - Aromatic vinyl compounds such as vinylcarbazole, vinylnaphthalene and vinylanthracene, as well as methyl methacrylate, methyl vinyl ether, ⁇ -pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran, 1,3- At least one compound selected from the group consisting of cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene and the like is preferably included.
  • the block copolymer (X) may have at least one polymer block (B). When
  • the hydrogenation rate of the polymer block (B) is preferably 80 mol% or more, more preferably 85 mol% or more, from the viewpoint of heat resistance and weather resistance. More preferably, it is 87 mol % or more.
  • the upper limit is not particularly limited, it may be, for example, 99.8 mol % or less, may be 99.5 mol % or less, or may be 99 mol % or less.
  • the hydrogenation rate of polymer block (B) is preferably 80 to 99.8 mol %.
  • the hydrogenation rate of the polymer block (B) can be set within the above range, for example, by controlling the addition amount of the hydrogenation catalyst and the reaction time.
  • the above hydrogenation rate is a value obtained by measuring the carbon-carbon double bond content in the conjugated diene compound unit in the polymer block (B) by 1 H-NMR measurement after hydrogenation. Specifically, it is a value measured according to the method described in Examples.
  • the block copolymer (X) is not limited in its bonding form as long as the polymer block (A) and the polymer block (B) are bonded. may be any combination form in which two or more of are combined. Among others, the form of bonding between polymer block (A) and polymer block (B) is preferably linear.
  • a diblock copolymer represented by AB When represented by B, a diblock copolymer represented by AB, a triblock copolymer represented by ABA or BAB, represented by ABAB Tetrablock copolymer, pentablock copolymer represented by ABABA or BABABAB, (AB) n Z type copolymer (Z is a coupling and n represents an integer of 3 or more).
  • linear triblock copolymers or diblock copolymers are preferable, and ABA type triblock copolymers are preferably used from the viewpoint of flexibility, ease of production, and the like. .
  • ABA type triblock copolymers include styrene-isoprene-styrene copolymers, styrene-butadiene-styrene copolymers, and styrene-isoprene/butadiene-styrene copolymers. That is, the block copolymer (X) preferably contains a styrene-isoprene-styrene copolymer or a styrene-butadiene-styrene copolymer.
  • the block copolymer (X) may contain polymer blocks other than the polymer blocks (A) and (B) as long as the objects and effects of the present invention are not hindered.
  • the total content of block (A) and polymer block (B) is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably substantially 100% by mass. If it is 90% by mass or more, it becomes easier to obtain a resin composition that tends to exhibit better mechanical properties. In other words, the total content of polymer block (A) and polymer block (B) in block copolymer (X) is preferably 90 to 100% by mass.
  • the weight average molecular weight (Mw) of the block copolymer (X) obtained by gel permeation chromatography in terms of standard polystyrene is preferably 10,000 to 200,000, more preferably 20,000 to 180,000, and further It is preferably 40,000 to 170,000, even more preferably 50,000 to 160,000, particularly preferably 60,000 to 150,000, most preferably 70,000 to 150,000.
  • Mw weight average molecular weight of the block copolymer
  • the weight average molecular weight (Mw) of the block copolymer (X) can be specifically measured or calculated by the method described in Examples.
  • the molecular weight distribution (Mw/Mn) of the block copolymer (X) is preferably 1.00 to 2.00, more preferably 1.00 to 1.60, still more preferably 1.00 to 1.40, and more preferably It is more preferably 1.00 to 1.20. When the molecular weight distribution is within the above range, the block copolymer (X) has little variation in viscosity and is easy to handle.
  • the molecular weight distribution (Mw/Mn) of the block copolymer (X) can be specifically measured or calculated by the method described in Examples.
  • Block copolymer (X) is, for example, an unhydrogenated block copolymer (X0) containing polymer block (A) and polymer block (B), it is preferably produced by a polymerization process obtained by anionic polymerization. can. Furthermore, when the block copolymer (X) is a hydrogenated block copolymer (X10), the carbon-carbon double bond in the conjugated diene compound unit in the unhydrogenated block copolymer (X0) is hydrogenated. It can be manufactured suitably by the process.
  • the unhydrogenated block copolymer (X0) can be produced, for example, by a solution polymerization method, an emulsion polymerization method, a solid phase polymerization method, or the like.
  • a solution polymerization method is preferable, and known methods such as anion polymerization, ionic polymerization such as cationic polymerization, and radical polymerization can be applied.
  • the anionic polymerization method is preferred.
  • an aromatic vinyl compound and a conjugated diene compound are sequentially added in the presence of a solvent, an anionic polymerization initiator, and optionally a Lewis base to obtain a block copolymer, and coupling is performed if necessary. What is necessary is just to add an agent and to make it react.
  • Examples of organic lithium compounds that can be used as polymerization initiators for anionic polymerization in the above method include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and pentyllithium.
  • Examples of dilithium compounds that can be used as polymerization initiators include naphthalenedilithium and dilithiohexylbenzene.
  • Examples of the coupling agent include dichloromethane, dibromomethane, dichloroethane, dibromoethane, dibromobenzene, and phenyl benzoate.
  • the amounts of these polymerization initiators and coupling agents to be used are appropriately determined according to the desired weight-average molecular weight of the block copolymer (X) or the hydrogenated block copolymer (X10).
  • initiators such as alkyllithium compounds and dilithium compounds are used in a proportion of 0.01 to 0.2 parts by mass per 100 parts by mass of the total amount of monomers such as aromatic vinyl compounds and conjugated diene compounds used for polymerization.
  • a coupling agent it is preferably used in a proportion of 0.001 to 0.8 parts by mass per 100 parts by mass of the monomers.
  • the solvent is not particularly limited as long as it does not adversely affect the anionic polymerization reaction.
  • examples include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane and n-pentane; aromatic hydrocarbons such as benzene, toluene and xylene. etc.
  • the polymerization reaction is usually carried out at a temperature of 0 to 100°C, preferably 10 to 70°C, for 0.5 to 50 hours, preferably 1 to 30 hours.
  • Lewis bases that can be used include, for example, ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, 2,2-di(2-tetrahydrofuryl)propane (DTHFP); ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, Glycol ethers such as tetraethylene glycol dimethyl ether; Amines such as triethylamine, N,N,N',N'-tetramethylenediamine, N,N,N',N'-tetramethylethylenediamine (TMEDA) and N-methylmorpholine ; sodium or potassium salts of fatty alcohols such as sodium t-butylate, sodium t-amylate or sodium isopentylate; or sodium or potassium salts of cycloalipha
  • Lewis bases such as potassium salts; and the like.
  • These Lewis bases can be used singly or in combination of two or more.
  • a Lewis base When a Lewis base is used, its amount is preferably in the range of 0.01 to 1,000 molar equivalents per 1 mol of the anionic polymerization initiator.
  • Hydrogenated block copolymer (X10 ) can be made.
  • the hydrogenation reaction the polymer block (B) in the block copolymer (X) and the carbon-carbon double bonds derived from the conjugated diene compound in other polymer blocks that may be present are hydrogenated.
  • a hydrogenated product of the block copolymer (X) that is, a hydrogenated block copolymer (X10).
  • the hydrogen pressure is about 0.1 to 20 MPa, preferably 0.5 to 15 MPa, more preferably 0.5 to 5 MPa
  • the reaction temperature is about 20 to 250° C., preferably 50 to 180° C., more preferably. is 70 to 180° C.
  • Hydrogenation catalysts include, for example, Raney nickel; heterogeneous catalysts in which metals such as Pt, Pd, Ru, Rh, and Ni are supported on carriers such as carbon, alumina, and diatomaceous earth; transition metal compounds, alkylaluminum compounds, and alkyllithium. Examples include Ziegler-based catalysts in combination with compounds and the like; metallocene-based catalysts, and the like.
  • the hydrogenated block copolymer (X10) thus obtained is solidified by pouring the polymerization reaction solution into methanol or the like and then dried by heating or under reduced pressure, or the polymerization reaction solution is immersed in hot water together with steam. It can be obtained by pouring, applying so-called steam stripping in which the solvent is azeotropically removed, and then drying by heating or under reduced pressure.
  • the degree of hydrogenation of the carbon-carbon double bonds in the polymer block (B) when the polymer block (B) is used as a hydrogenated product is specified according to the performance desired in various applications of the resin composition. be able to.
  • the hydrogenation rate of the carbon-carbon double bond in the conjugated diene compound unit in the hydrogenated block copolymer (X10) (the hydrogenation rate in the polymer block (B)) is specifically described in Examples. can be measured or calculated by the method of
  • the liquid rubber component (Y) contained in the thermoplastic elastomer composition is a synthetic rubber having a melt viscosity of 2000 Pa ⁇ s or less at 38°C.
  • the liquid rubber component (Y) may be a non-hydrogenated liquid rubber or a hydrogenated liquid rubber.
  • the "liquid rubber component (Y)” includes liquid rubber before hydrogenation (hereinafter sometimes referred to as unhydrogenated liquid rubber (Y0)) and unhydrogenated liquid rubber (Y0 ) (hereinafter sometimes referred to as hydrogenated liquid rubber (Y10)).
  • the liquid rubber component (Y) may contain both the non-hydrogenated liquid rubber (Y0) and the hydrogenated liquid rubber (Y10).
  • the liquid rubber component (Y) will be described below, but unless otherwise specified, these descriptions apply to both the non-hydrogenated liquid rubber (Y0) and the hydrogenated liquid rubber (Y10).
  • liquid rubber component (Y) examples include liquid diene rubbers such as liquid isoprene rubber, liquid butadiene rubber, and liquid styrene-butadiene rubber.
  • liquid isoprene rubber is preferable from the viewpoint of flexibility of the thermoplastic elastomer composition.
  • Liquid butadiene rubber is preferable from the viewpoint of the mechanical strength of the thermoplastic elastomer composition.
  • the liquid rubber component (Y) contains conjugated diene compound units other than isoprene and butadiene, aromatic vinyl compound units, and the like. It may contain other monomeric units.
  • the liquid rubber component (Y) is preferably a polymer containing at least one of isoprene and butadiene units in an amount of 50 mass % or more based on all monomer units constituting the polymer.
  • the total content of the isoprene units and butadiene units is preferably 60% by mass or more and 100% by mass or less, and 70% by mass or more and 100% by mass or less, based on the total monomer units constituting the liquid diene rubber. is more preferable.
  • the vinyl bond content of the liquid rubber component (Y) is preferably 3 mol % or more, more preferably 10 mol % or more, even more preferably 30 mol % or more, and even more preferably, from the viewpoint of the UV curing speed of the resin composition. is 35 mol% or more, more preferably 40 mol% or more, still more preferably 45 mol% or more, still more preferably 50 mol% or more, still more preferably 55 mol% or more, still more preferably 60 mol% or more , more preferably about 65 mol % or more, preferably 90 mol % or less, more preferably 70 mol % or less.
  • the amount of vinyl bonds is the molar ratio of vinyl units based on all structural units constituting the liquid diene rubber.
  • the 1,2-bond amount is called the vinyl bond amount
  • the total amount of the 1,2-bond amount and the 3,4-bond amount is The amount of vinyl bonds
  • the amount of vinyl bonds is called the amount of vinyl bonds
  • the content of the amount of vinyl bonds in the form of all bonds in the liquid diene rubber is referred to as "the amount of vinyl bonds (mol %) of the liquid diene rubber”.
  • the isopropenylethylene and 1-methyl-1-vinylethylene groups correspond to the vinyl units of the isoprene units
  • the vinylethylene units correspond to the vinyl units of the butadiene units.
  • the vinyl bond content of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
  • the liquid rubber component (Y) can be prepared by a known method, for example, by polymerizing isoprene and/or butadiene and optionally added monomers by a method such as emulsion polymerization or solution polymerization. Among them, the solution polymerization method is particularly preferred.
  • a hydrogenated liquid rubber (Y10) can be obtained.
  • the liquid rubber component (Y) may be either hydrogenated or unhydrogenated, but if the liquid rubber component (Y) is hydrogenated, the melt viscosity at 38° C. can be increased. can.
  • the hydrogenation rate of the liquid rubber component (Y) is preferably 80 mol% or more, more preferably 85 mol, from the viewpoint of heat resistance and weather resistance. % or more, more preferably 87 mol % or more.
  • the upper limit is not particularly limited, it may be, for example, 99.8 mol % or less, or may be 99.5 mol % or less, or 99.0 mol % or less.
  • the hydrogenation rate of the liquid rubber component (Y) is preferably 80 to 99.8 mol%.
  • the hydrogenation rate of the liquid rubber component (Y) can be set within the above range by, for example, controlling the addition amount of the hydrogenation catalyst and the reaction time.
  • the hydrogenation rate of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
  • the weight-average molecular weight of the liquid rubber component (Y) obtained by gel permeation chromatography in terms of standard polystyrene is preferably from 2,000 to 300,000, more preferably from 3,000 to 3,000, from the viewpoint of mechanical strength and dispersibility. 200,000, more preferably 4,000 to 100,000, even more preferably 5,000 to 70,000, particularly preferably 5,500 to 60,000.
  • the weight-average molecular weight of the liquid rubber component (Y) can be set within the above range, for example, by adjusting the amount of the conjugated diene compound relative to the polymerization initiator used for polymerization.
  • the weight average molecular weight of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
  • the 38° C. melt viscosity of the liquid rubber component (Y) is preferably 0.1 to 2,000 Pa ⁇ s, more preferably 0.1 to 2,000 Pa ⁇ s, from the viewpoint of ensuring dispersibility in the block copolymer (X) and mechanical properties. 5 to 1,900 Pa s, more preferably 1 to 1,700 Pa s, still more preferably 2.5 to 1,600 Pa s, still more preferably 5 to 1,500 Pa s, still more preferably 10 to 1,400 Pa ⁇ s, more preferably 20 to 1,300 Pa ⁇ s.
  • liquid rubber component (Y) By using a liquid rubber component (Y) with a high viscosity (melt viscosity at 38°C: 400 to 2,000 Pa s), the mechanical properties of the elastomer composition are improved, and a low viscosity (melt viscosity at 38°C: 0.1
  • the liquid rubber component (Y) having a viscosity of up to 399 Pa ⁇ s) By using the liquid rubber component (Y) having a viscosity of up to 399 Pa ⁇ s), the moldability of the thermoplastic elastomer composition is improved.
  • the 38° C. melt viscosity of the liquid rubber component (Y) can be measured using a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LAB. INC.). The 38° C.
  • melt viscosity of the liquid rubber component (Y) can be controlled within the above range by adjusting the type of conjugated diene compound used, the weight average molecular weight of the polymer, and the hydrogenation rate.
  • the 38° C. melt viscosity of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
  • the molecular weight distribution (Mw/Mn) of the liquid rubber component (Y) is preferably from 1.00 to 2.00, more preferably from 1.00 to 1.60, even more preferably from 1.00 to 1.40, and even more preferably from 1.00 to 1.40. It is preferably 1.00 to 1.20. When the molecular weight distribution is within the above range, the liquid rubber component (Y) has little variation in viscosity and is easy to handle.
  • the molecular weight distribution (Mw/Mn) of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
  • thermoplastic elastomer composition there is no particular limitation as long as the content of the liquid rubber component (Y) is 10 parts by mass or more and less than 150 parts by mass with respect to 100 parts by mass of the block copolymer (X). , the pellets of the thermoplastic elastomer composition of the present invention exhibit the effects of the present invention, and the content of the liquid rubber component (Y) in the resin composition or the like produced using the thermoplastic elastomer composition is sufficiently increased.
  • the content of the liquid rubber component (Y) is preferably 15 to 140 parts by mass with respect to 100 parts by mass of the block copolymer (X).
  • pellets of the thermoplastic elastomer composition of the present invention can contain the liquid rubber component (Y) at a high content ratio while suppressing bleeding is, but not limited to, the block copolymer (X) and the liquid rubber
  • the content ratio with the component (Y) is within a predetermined range, and the compatibility between the liquid rubber component (Y) and the block copolymer (X) is improved.
  • Compatibility between the block copolymer (X) and the liquid rubber component (Y) can be improved by appropriately adjusting the content ratio of the two as well as the balance between the motility caused by the molecular weight and the like. It is possible to
  • the combination of the block copolymer (X) and the liquid rubber component (Y) is not particularly limited as long as it is a combination of the above block copolymer (X) and the above liquid rubber component (Y). , a combination in which the block copolymer (X) is an unhydrogenated block copolymer and the liquid rubber component (Y) is an unhydrogenated liquid rubber; the block copolymer (X) is a block A combination of a hydrogenated copolymer and a combination in which the liquid rubber component (Y) is a hydrogenated liquid rubber is preferred.
  • Pellets of the thermoplastic elastomer composition of the present invention can be obtained, for example, by cutting the thermoplastic elastomer composition immediately after melt-kneading (discharged from the kneading device) with a cutter or the like.
  • the pellets can be used as a masterbatch for the purpose of adjusting the content ratio of each component in the resin composition. That is, by adding a relatively high concentration of the liquid rubber component (Y) to a thermoplastic elastomer composition to prepare a masterbatch, for example, by adding the block copolymer (X) thereto and melt-kneading,
  • the resin composition obtained by diluting the liquid rubber component (Y) to a desired concentration may be used for practical use.
  • an antiblocking agent (dusting powder) is present in contact with the surface of the pellets from the viewpoint of facilitating the prevention of blocking of the pellets.
  • Antiblocking agents include, for example, polyolefin waxes such as polypropylene wax and polyethylene wax; hydrous magnesium silicate (talc); ethylenebisstearylamide; calcium stearate; magnesium stearate;
  • the average particle size of the antiblocking agent is preferably 1 to 15 ⁇ m, more preferably 2 to 14 ⁇ m, and still more preferably 3 to 15 ⁇ m, from the viewpoint of ensuring adhesion to pellets and slipping between pellets. 13 ⁇ m.
  • the average particle size means the median size (D 50 ) measured with a laser diffraction particle size distribution analyzer (eg, Shimadzu Corporation: SALD-7000, etc.).
  • the pellets of the present invention are pellets made of a thermoplastic elastomer composition with excellent compatibility, and the content of the antiblocking agent (dusting powder) (including the amount present on the surface of the pellet) ) is in the range of 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the pellets, the blocking resistance is excellent, and the molded article using the pellets of the present invention exhibits desired mechanical properties. be able to.
  • the amount of the antiblocking agent (dusting powder) is preferably 0.2 to 1.5 parts by mass, more preferably 0.3 to 1.2 parts by mass.
  • the antiblocking agent (dusting powder) is preferably blended in a state adhering to the pellet surface, but may be contained to some extent inside the pellet as long as it does not affect the mechanical properties of the molded product.
  • the amount of dusting powder contained inside the pellet is, for example, 0 to 10% by mass of the total weight of the dusting powder.
  • Silica, etc. contained inside the pellet may correspond to "anti-blocking agent (dusting powder)", and may also correspond to "filler as a component other than anti-blocking agent (dusting powder)".
  • the criteria for determining which silica or the like contained inside the pellet corresponds to are as follows. ⁇ Judgment Criteria> If the silica, etc.
  • the silica, etc. present inside the pellet is not the same component as the anti-blocking agent (dusting powder) attached to the pellet surface, and if it is the same component but has the same average particle size as the blocking agent attached to the pellet surface When different from the antiblocking agent (dusting powder), it corresponds to "filler as a component other than the antiblocking agent (dusting powder)".
  • whether or not it is the same component as the antiblocking agent (dusting powder) attached to the pellet surface should be determined based on the analysis results of particle size distribution measurement by laser analysis or IR analysis. can be done.
  • the blocking resistance of the pellets of the thermoplastic elastomer composition of the present embodiment can be evaluated by applying a predetermined load to the pellets at a predetermined temperature for a predetermined period of time and measuring the blocking strength with a universal material testing machine.
  • a smaller numerical value of blocking strength indicates higher blocking resistance.
  • a preferable numerical range of the blocking strength is 0 to 50N, more preferably 0 to 30N, still more preferably 0 to 20N, as measured by the procedure described in the examples below.
  • thermoplastic elastomer composition may contain components other than the block copolymer (X), the liquid rubber component (Y), and the antiblocking agent.
  • Such components include fillers, silane coupling agents, heat antioxidants, antioxidants, light stabilizers, antistatic agents, release agents, flame retardants, foaming agents, pigments, dyes, brighteners, and the like. mentioned. These components can be the same as those explained in the resin composition described later.
  • thermoplastic elastomer composition By including a filler in the thermoplastic elastomer composition, bleeding can be more effectively suppressed, and the content of the liquid rubber component (Y) in the thermoplastic elastomer composition can be easily increased.
  • the content of the filler in the thermoplastic elastomer composition is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer composition.
  • At least one of an inorganic filler and an organic filler can be used as the filler.
  • Preferred inorganic fillers include silica, silicate compounds and metal oxides, with silica being particularly preferred. Examples of silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, and aluminum silicate.
  • the specific surface area of silica is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, still more preferably 100 m 2 /g or more, and 150 m 2 /g. The above is even more preferable.
  • the upper limit of the specific surface area of silica may be within a range that does not impair the effects of the present invention.
  • Silicas having different specific surface areas may be used in combination. In particular, it is preferable to contain silica having a specific surface area of 150 m 2 /g or more in order to remarkably improve the dispersion of the liquid rubber component (Y).
  • the remarkably excellent dispersion of the liquid rubber component (Y) is achieved when a portion of the silica contained in the thermoplastic elastomer composition (for example, 50% by mass or more of the total amount of silica) is silica having a specific surface area of 150 m 2 /g or more. , it can be expected to develop even when silica having a specific surface area of less than 150 m 2 /g is used in combination.
  • silica with a specific surface area of 400 m 2 /g or less may be used, and silica with a specific surface area of 350 m 2 /g or less may be used.
  • the specific surface area of silica can be measured, for example, by the BET method.
  • the content of silica in the thermoplastic elastomer composition is preferably 1 to 45 parts by mass, more preferably 5 to 40 parts by mass, and 10 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer composition. ⁇ 35 parts by mass is more preferred.
  • the silicate compound is preferably one selected from the group consisting of kaolin, talc, clay, pyrophyllite, mica, montmorillonite, bentonite, wollastonite, sepiolite, xonotlite, zeolite, diatomaceous earth, and halloysite. It is the above silicate compound.
  • the metal oxide is selected from the group consisting of titanium oxide, iron oxide, magnesium oxide, aluminum oxide, cerium oxide, antimony oxide, tin oxide, lead oxide, chromium oxide, cobalt oxide, tungsten oxide, and copper oxide. One or more metal oxides.
  • Preferable organic fillers include particulate organic fillers and/or fiber organic fillers.
  • Preferred examples of the fine particle type organic filler include at least one selected from the group consisting of urethane fine particles, acrylic fine particles, styrene fine particles, acrylic/styrene fine particles, styrene olefin fine particles, fluorine fine particles, polyethylene fine particles and silicone fine particles. of organic fillers.
  • the fine particle type organic filler preferably has an average particle size of 2 to 50 ⁇ m. The average particle size can be measured by a laser diffraction method conforming to JIS Z 8825:2013.
  • Various organic fibers can be used as the fiber-type organic filler.
  • Aramid fiber polyethylene terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber, polyparaphenylene benzoxazole (PBO) fiber, PVA fiber (Vinylon), polyarylene sulfide fiber, 2,6-hydroxynaphthoic acid/ Parahydroxybenzoic acid fiber (Vectran), polyethylene (PE) fiber, polypropylene (PP) fiber, polylactic acid (PLA) fiber, polybutylene succinate (PBS) fiber, polyethylene succinate fiber, syndiotactic-1,2- Preferred examples include synthetic fibers such as polybutadiene (SPB) fibers and polyvinyl chloride (PVC) fibers, and natural (regenerated) fibers such as cotton, hemp, rayon and cellulose fibers.
  • SPB polybutadiene
  • PVC polyvinyl chloride
  • PVA-based fibers vinyl and cellulose fibers are more preferred, and cellulose fibers are even more preferred.
  • organic microfibers made of cellulose fibers for example, cellulose-based microfibers sold under the product name “ARBOCEL” manufactured by Rettenmeyer are preferably exemplified.
  • organic nanofibers made of cellulose fibers for example, cellulose-based nanofibers such as Celish KY-100G (average fiber length: 500 ⁇ m, average fiber diameter: 20 nm, solid content: 10% by mass) manufactured by Daicel Finechem Co., Ltd. are preferably exemplified.
  • the organic fibers can be broadly classified into organic microfibers and organic nanofibers according to their average fiber diameter.
  • the organic microfibers are organic fibers having an average fiber diameter on the order of micrometers, and the average fiber diameter is preferably 1 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, even more preferably 15 to 90 ⁇ m.
  • the average fiber length of the organic microfibers is not particularly limited, but is preferably in the range of 0.1 to 20 mm, more preferably in the range of 0.5 to 15 mm, and even more preferably in the range of 1 to 10 mm. .
  • the organic nanofiber is an organic fiber having an average fiber diameter of nanometer order, and the average fiber diameter is preferably in the range of 1 to 900 nm, more preferably in the range of 1 to 700 nm, further preferably 1 ⁇ 500 nm range.
  • the average fiber length of the organic nanofibers is preferably in the range of 0.1 to 1,000 ⁇ m, more preferably in the range of 1 to 750 ⁇ m, even more preferably in the range of 5 to 600 ⁇ m.
  • the method for producing pellets of the thermoplastic elastomer composition according to the first embodiment of the present invention has a step of melt-kneading the block copolymer (X) and the liquid rubber component (Y) (Step 1-1). .
  • the method for producing pellets of a thermoplastic elastomer composition according to the first embodiment does not require a solvent, and has the advantage that it is easy to produce a wide variety of thermoplastic elastomer compositions in small lots using the same production equipment.
  • the liquid rubber component (Y) is added after the block copolymer (X) is melted, from the viewpoint of facilitating the enhancement of the dispersibility of the liquid rubber component (Y). It is preferable to perform melt-kneading at
  • a twin-screw extruder is used to melt the block copolymer (X) from the viewpoint of easily increasing productivity. It is preferable to add the liquid rubber component (Y) from the middle of the extrusion route and perform melt-kneading.
  • the method for producing pellets of the thermoplastic elastomer composition according to the first embodiment of the present invention comprises step 1-1 (that is, the step of melt-kneading the block copolymer (X) and the liquid rubber component (Y)). ), a step of pelletizing the melt-kneaded product obtained in step 1-1 (step 1-2) may be included.
  • a method of pelletizing in step 1-2 for example, a method of extruding the thermoplastic elastomer composition in a strand from a single-screw or twin-screw extruder and cutting it in water with a rotary blade installed in front of the die.
  • underwater pelletizing or a method of dropping pellets in water after cutting (water ring hot pelletizing); , a method of cutting with a strand cutter; after melting and mixing with an open roll or a Banbury mixer, forming into a sheet with a roll, further cutting the sheet into strips, and then cutting into cubic pellets with a pelletizer; are mentioned.
  • a method for producing pellets of a thermoplastic elastomer composition according to the second embodiment of the present invention comprises a solution (X′) containing a block copolymer (X) and a first solvent, a liquid rubber component (Y ) and a second solvent (Y′) are mixed to prepare a mixed solution (step 2-1); and a step of removing the first and second solvents contained in the mixed solution to obtain a resin component (step 2-2).
  • the first solvent and the second solvent include cyclopentane, cyclohexane, cycloheptane, cyclooctane, and hexane.
  • the first solvent and the second solvent may be the same or different.
  • the use of a solvent reduces the restrictions on the viscosity of the liquid rubber component (Y) that can be used. Therefore, the degree of freedom in designing the thermoplastic elastomer composition can be increased. In addition, it becomes easy to use the high-viscosity liquid rubber component (Y), and it becomes easy to improve physical properties such as mechanical properties of the thermoplastic elastomer composition.
  • the block copolymer (X) and the liquid rubber component (Y) may be added to the common solvent at the same time, or the liquid rubber component (Y) may be added to the common solvent after the block copolymer (X) is added to the common solvent. After adding the liquid rubber component (Y) to the common solvent, the block copolymer (X) may be added to the common solvent. Alternatively, the block copolymer (X) and the liquid rubber component (Y) may be melt-kneaded in advance to prepare a mixture, which may be dissolved in the common solvent.
  • the other components described above may be added at an appropriate timing.
  • a solvent there is no particular limitation as to which of the component to be dissolved and the solvent is added to the other, and the component may be added to the solvent, or the solvent may be added to the solvent. may be added to the above ingredients.
  • the method of obtaining the resin component by removing the solvent contained in the mixed solution includes a method of solidifying the resin component (steam stripping), and a method of raising the mixed solution to a high temperature and high pressure and spraying it under normal pressure. and a spray drying method in which the resin component is taken out.
  • a method for producing pellets of a thermoplastic elastomer composition according to the second embodiment of the present invention comprises: Step 2-1 above (that is, the solution (X′) containing the block copolymer (X) and the first solvent, and the solution (Y′) containing the liquid rubber component (Y) and the second solvent A step of mixing to prepare a mixed solution), The above step 2-2 (that is, the step of removing the solvent from the mixed solution to obtain the resin component); and a step of melt-kneading and pelletizing the resin component (step 2-3).
  • step 2-3 the same method as described in step 1-2 can be adopted.
  • the method for producing pellets of the thermoplastic elastomer composition according to the second embodiment has a high degree of freedom in designing the thermoplastic elastomer composition, makes it easy to use the high-viscosity liquid rubber component (Y), and improves mechanical properties and the like. Pellets of the thermoplastic elastomer composition having high physical properties can be obtained.
  • a method of putting the pellets and an antiblocking agent (dusting powder) into a container and stirring, and adding an antiblocking agent (antiblocking agent) to the cooling water after pelletizing A method of attaching an anti-blocking agent (dusting powder) to the pellet surface by adding dusting powder, a method of adding an anti-blocking agent (dusting powder) from above while the pellets are being transported on a belt conveyor, etc. The process yields pellets with an antiblocking agent (dusting agent).
  • a resin composition according to a preferred embodiment of the present invention comprises pellets of the thermoplastic elastomer composition and a (meth)acrylic monomer.
  • a (meth)acrylic monomer By including the pellets and the (meth)acrylic monomer in the resin composition, it is possible to impart higher mechanical properties to the resin composition, and the resin composition can be made suitable for printing plate materials and the like.
  • (Meth)acrylic monomers include acrylic monomers and methacrylic monomers, and among these, acrylic monomers are preferred from the viewpoint of controlling UV curing.
  • acrylic monomer examples include 1,6-hexanediol diacrylate (HDDA), ethylene glycol diacrylate, 1,3-butanediol diacrylate, tetramethylene glycol diacrylate, propylene glycol diacrylate, trimethylolpropane triacrylate. , tetraethylene glycol diacrylate, pentaerythritol tetraacrylate, sorbitol triacrylate, isocyanuric acid ethylene oxide (EO)-modified triacrylate, polyester acrylate oligomer, and the like. These acrylic monomers may be used singly or in combination of two or more. Among these, 1,6-hexanediol diacrylate (HDDA) is preferable from the viewpoint of flexibility after UV curing.
  • HDDA 1,6-hexanediol diacrylate
  • methacrylic monomer examples include ethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, neopentyl glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,3-butylene glycol methacrylate and the like. These methacrylic monomers may be used singly or in combination of two or more.
  • the content of the (meth)acrylic monomer in the resin composition is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and still more preferably 3 to 20% by mass, from the viewpoint of flexibility after UV curing. %, more preferably 4 to 12 mass %.
  • the resin composition may contain components other than the pellets of the thermoplastic elastomer composition and the (meth)acrylic monomer.
  • Other components include photopolymerization initiators, antioxidants, other additives, and the like.
  • photopolymerization initiator examples include photopolymerization initiators such as alkylphenones, acetophenones, benzoin ethers, benzophenones, thioxanthones, anthraquinones, benzyls, and biacetyls. Specifically, for example, 2,2-dimethoxy-2-phenylacetophenone (Omnirad651: formerly Irgacure651), benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, methyl-O- benzoyl benzoate, 1-hydroxycyclohexylphenyl ketone, and the like.
  • photopolymerization initiators such as alkylphenones, acetophenones, benzoin ethers, benzophenones, thioxanthones, anthraquinones, benzyls, and biacetyls.
  • photopolymerization initiators such as al
  • photopolymerization initiators may be used singly or in combination of two or more.
  • 2,2-dimethoxy-2-phenylacetophenone (Omnirad 651: former Irgacure 651) is preferable from the viewpoint of UV curing speed.
  • the content of the photopolymerization initiator in the resin composition is preferably 0.1 to 10% by mass, more preferably 0.2 to 8% by mass, more preferably 0.5 to 8% by mass, from the viewpoint of UV curing speed. 5% by weight, more preferably 1 to 3% by weight.
  • antioxidants examples include amine-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, and the like.
  • amine antioxidants such as phenylbutylamine, N,N'-di-2-naphthyl-p-phenylenediamine; dibutylhydroxytoluene (BHT), tetrakis[methylene (3,5-di-t- phenolic antioxidants such as butyl-4-hydroxy)hydrocinnamate]methane; thioether-based antioxidants such as bis[2-methyl-4-(3-n-alkylthiopropionyloxy)-5-t-butylphenyl]sulfide Inhibitors; dithiocarbamate-based antioxidants such as nickel dibutyldithiocarbamate; 2-mercaptobenzoylimidazole, benzimidazole-based antioxidants such as zinc salt of 2-mercaptobenzimidazole; dilauryl
  • the content of the antioxidant in the resin composition is preferably 0.1 to 10% by mass, more preferably 0.2 to 8% by mass, and still more preferably 0.5 to 10% by mass. 5% by weight, more preferably 1 to 3% by weight.
  • the resin composition of the present embodiment contains other additives other than those described above, such as a cross-linking agent, a vulcanization accelerator (cross-linking accelerator), a vulcanization aid, as long as the effects of the present invention are not impaired.
  • a cross-linking agent such as a cross-linking agent, a vulcanization accelerator (cross-linking accelerator), a vulcanization aid, as long as the effects of the present invention are not impaired.
  • Softeners, thermal anti-aging agents, light stabilizers, antistatic agents, release agents, flame retardants, foaming agents, pigments, dyes, brighteners, etc. can be added. These additives may be used alone or in combination of two or more.
  • the content of the filler that can be contained in the thermoplastic elastomer composition is not particularly limited. , preferably 0 to 50 parts by mass. Also, the content of the filler with respect to 100 parts by mass of the resin composition is preferably 0 to 35 parts by mass.
  • the content of silica that can be contained in the thermoplastic elastomer composition is not particularly limited. The amount is preferably 0.5 to 45 parts by mass, more preferably 3 to 36 parts by mass, even more preferably 6 to 35 parts by mass.
  • the content of the filler with respect to 100 parts by mass of the resin composition is preferably 0.5 to 31 parts by mass, more preferably 2 to 27 parts by mass, and even more preferably 5 to 26 parts by mass.
  • the content of the silane coupling agent that can be contained in the thermoplastic elastomer composition is preferably 0.01 to 30 parts by mass, more preferably 0.05 to 25 parts by mass, more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the filler. 20 parts by weight is more preferred, and 3 to 15 parts by weight is even more preferred.
  • the content of the silane coupling agent is within the above range, the dispersibility of the filler in the resin composition is improved.
  • the resin composition of the present embodiment preferably has a hardness (hereinafter also referred to as "A hardness") of 95 or less, more preferably 90 or less, and even more preferably 85, according to JIS K 6253-2:2012 Type A durometer method. It is below. Also, the A hardness is preferably 25 or higher, more preferably 30 or higher, and even more preferably 35 or higher. If the A hardness is within the above range, the moldability will be good, and the handleability will also be excellent.
  • the resin composition of the present embodiment can be evaluated for tensile strength according to JIS K 6251:2017.
  • Tensile strength is preferably 30 MPa or less, more preferably 25 MPa or less, still more preferably 20 MPa or less.
  • the tensile strength is preferably 3 MPa or higher, more preferably 5 MPa or higher, and even more preferably 7 MPa or higher. If the tensile strength is within the above range, the durability will be excellent.
  • the resin composition of the present embodiment can be evaluated for tensile breaking strain according to JIS K 6251:2017.
  • the tensile strain at break is preferably 600% or less, more preferably 500% or less, still more preferably 400% or less.
  • the tensile breaking strain is preferably 50% or more, more preferably 100% or more, and still more preferably 150% or more. If the tensile breaking strain is within the above range, the durability will be excellent.
  • expansion rate The expansion coefficient of the resin composition of the present embodiment can be evaluated by the method described in Examples below.
  • the expansion rate is preferably 500% or less, more preferably 450% or less, still more preferably 400% or less. If the expansion coefficient is within the above range, the solvent resistance will be excellent.
  • a method for producing a resin composition according to an embodiment of the present invention comprises: a masterbatch containing a block copolymer (X) and a liquid rubber component (Y) in a predetermined ratio; A step of adjusting the mass of the block copolymer (X) and the mass of the liquid rubber component (Y) in the thermoplastic elastomer composition can be included by mixing at least one of Y).
  • a relatively high proportion of the liquid rubber component (Y) is contained in the thermoplastic elastomer composition, and this is used as a masterbatch of the liquid rubber component, and predetermined amounts of the block copolymer (X) and the liquid rubber component (by melt-kneading with at least one of Y), the liquid rubber component (Y) in the resin composition can be adjusted to a desired mass. Moreover, by this, the block copolymer (X) in the resin composition can also be adjusted to a desired mass. It is also possible to mix with polymers other than the block copolymer (X) and the liquid rubber component (Y). Examples of polymers other than the block copolymer (X) and the liquid rubber component (Y) include solid rubbers such as SBR (styrene-butadiene rubber) and polyolefin resins such as polypropylene.
  • SBR styrene-butadiene rubber
  • polyolefin resins such as polypropylene.
  • the method for producing the resin composition of the present embodiment is not particularly limited. , a Brabender mixer, an open roll, a heating roll, various kneaders, and the like, followed by melt-kneading.
  • a method such as melt-kneading may also be used.
  • the temperature during melt-kneading can be arbitrarily selected usually within the range of 20 to 270°C.
  • the pellets of the thermoplastic elastomer composition of the present invention can provide a thermoplastic elastomer composition that can be used to produce molded articles that can suppress bleeding and exhibit desired mechanical properties in an easy-to-handle shape.
  • printing plate materials, adhesives, tapes, films, sheets, mats, sealing materials, sealing materials, coating materials, potting materials, inks, anti-vibration materials, foams, heat dissipation materials, prepregs, gaskets, packing, etc. can be suitably used for applications in various fields.
  • Silica product name ULTRASIL7000GR, manufactured by Evonik Degussa Japan, wet silica, BET method specific surface area 175 m 2 /g, average particle diameter 14 nm
  • ⁇ Anti-blocking agent> ⁇ Hydrated magnesium silicate (talc): Average particle size D50 : 3.9 ⁇ m or less ⁇ Polypropylene wax: Average particle size D50 : 6.5 to 12.5 ⁇ m ⁇ Silica: average particle size D50 : 13.5 ⁇ m ⁇ Polyethylene wax: Average particle size D 50 : 7.5 to 9.5 ⁇ m
  • the hydrogenation rate of the carbon-carbon double bond in the conjugated diene compound unit in the hydrogenated block copolymer (X3) and the hydrogenated block copolymer (X4) (the hydrogenation rate in the polymer block (B)) is It was calculated by the following formula from the proton peak of the carbon-carbon double bond appearing at 4.5 to 6.0 ppm in the obtained spectrum.
  • Hydrogenation rate (mol%) ⁇ 1 - (number of moles of carbon-carbon double bonds contained per mole of hydrogenated block copolymer (X10)) / (unhydrogenated block copolymer (X0) 1 number of moles of carbon-carbon double bonds contained per mole) ⁇ 100
  • the above-mentioned "the number of moles of carbon-carbon double bonds contained per mole of the unhydrogenated block copolymer (X0)" for calculating the hydrogenation rate is the hydrogenated block copolymer to be measured.
  • a block copolymer before hydrogenation used for producing (X10) was collected as a sample for measurement, and this sample was used for measurement.
  • the ratio of the peak area corresponding to the 3,4-bond unit in the isoprene structural unit, the ratio of the peak area corresponding to the 1,2-bond unit in the isoprene structural unit, to the total peak area of the structural units derived from isoprene and butadiene, and , and the ratio of the peak areas corresponding to the 1,2-bond units in the butadiene structural unit was used to calculate the amount of vinyl bonds (total content of 3,4-bond units and 1,2-bond units).
  • the ratio of the peak area corresponding to the 3,4-bond unit in the isoprene structural unit, the ratio of the peak area corresponding to the 1,2-bond unit in the isoprene structural unit, to the total peak area of the structural units derived from isoprene and butadiene, and , and the ratio of the peak areas corresponding to the 1,2-bond units in the butadiene structural unit was used to calculate the amount of vinyl bonds (total content of 3,4-bond units and 1,2-bond units).
  • styrene (2) was added and polymerized for 1 hour to obtain a reaction liquid containing a polystyrene-polyisoprene-polystyrene triblock copolymer.
  • a Ziegler-type hydrogenation catalyst formed from nickel octylate and trimethylaluminum was added to the reaction solution under a hydrogen atmosphere, and the reaction was allowed to proceed at a hydrogen pressure of 1 MPa and 80° C. for 5 hours.
  • the hydrogenation rate [mol%] in the polymer block (B) is the hydrogenation rate [mol%] of the carbon-carbon double bond relative to the conjugated diene compound unit in the block copolymer (X) before hydrogenation. ] is shown.
  • the block copolymer (X1) of Production Example 1, the block copolymer (X3) of Production Example 3, and the block copolymer (X4) of Production Example 4 are derived from isoprene.
  • the block copolymer (X2) of Production Example 2 has a structural unit derived from butadiene.
  • the block copolymer (X1) of Production Example 1 and the block copolymer (X2) of Production Example 2 are unhydrogenated block copolymers, while the block copolymer of Production Example 3 is The block copolymer (X3) and the block copolymer (X4) of Production Example 4 are hydrogenated block copolymers.
  • unhydrogenated polyisoprene hereinafter also referred to as "unhydrogenated liquid rubber (Y1)"
  • unhydrogenated polyisoprene hereinafter also referred to as "unhydrogenated liquid rubber (Y2)"
  • unhydrogenated polyisoprene hereinafter also referred to as "unhydrogenated liquid rubber (Y3)"
  • unhydrogenated polybutadiene hereinafter also referred to as "unhydrogenated liquid rubber (Y4)"
  • Y4 unhydrogenated liquid rubber
  • unhydrogenated polybutadiene hereinafter also referred to as "unhydrogenated liquid rubber (Y5)”
  • rice field an unhydrogenated polybutadiene
  • unhydrogenated polybutadiene hereinafter also referred to as "unhydrogenated liquid rubber (Y6)"
  • Y6 unhydrogenated liquid rubber
  • unhydrogenated polybutadiene hereinafter also referred to as "unhydrogenated liquid rubber (Y8)"
  • rice field After allowing the reaction solution to cool and release the pressure, it is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated polybutadiene (hereinafter also referred to as "unhydrogenated liquid rubber (Y8)"). rice field.
  • a Ziegler-type hydrogenation catalyst formed from nickel octylate and trimethylaluminum was added to the reaction solution under a hydrogen atmosphere, and the reaction was allowed to proceed at a hydrogen pressure of 1 MPa and 80° C. for 5 hours. After allowing the reaction solution to cool and release the pressure, the catalyst is removed by washing with water, and the product is vacuum-dried to obtain a hydrogenated polyisoprene (hereinafter also referred to as “hydrogenated liquid rubber (Y9)”). rice field.
  • Y9 hydrogenated polyisoprene
  • the liquid rubbers (Y1) to (Y8) of Production Examples 5 to 12 are non-hydrogenated liquid rubbers, while the liquid rubber (Y9) of Production Example 13 is a hydrogenated liquid rubber. .
  • the liquid rubber (Y9) of Production Example 13 has a relatively high molecular weight and a relatively high 38° C. melt viscosity. For this reason, it can be expected to increase the mechanical strength by including it in a thermoplastic elastomer composition or a resin composition. It can be seen that it is difficult to disperse the
  • thermoplastic elastomer composition examples of the thermoplastic elastomer composition, the pellets of the thermoplastic elastomer composition, and the resin composition will be described.
  • pellets of the thermoplastic elastomer composition were produced by the following procedure.
  • the block copolymer (X) is charged, and in Example 16, silica is added in the mass shown in Tables 3 to 5 from a hopper.
  • the liquid rubber component (Y) having the mass shown in Tables 3 to 5 is introduced into the middle stage of the twin-screw extruder.
  • the discharge from the twin-screw extruder is pelletized with an underwater cutter.
  • thermoplastic elastomer composition of each example Pellets of the thermoplastic elastomer composition of each example were preheated at a temperature of 200° C. for 1 minute with a press molding machine “NF-50H” (manufactured by Shindo Kinzoku Kogyo Co., Ltd.) and then heated at the same temperature for 3 minutes at a pressure of 10 MPa.
  • a sheet of length 15 cm ⁇ width 15 cm ⁇ thickness 0.1 cm was produced by pressing, and a dumbbell No. 3 test piece (thickness 1.0 mm) was obtained using a punching blade conforming to JIS K 6251: 2017. .
  • test pieces Six of the obtained test pieces were stacked to a thickness of 6 mm, and the hardness was measured using a type A durometer and a type C durometer indenter, in accordance with JIS K 6253-3: 2012, using an Asker rubber hardness meter manufactured by Kobunshi Keiki Co., Ltd. was measured using In addition, it means that it is excellent in flexibility, so that the numerical value of hardness is small.
  • thermoplastic elastomer composition Pellets of the thermoplastic elastomer composition of each example were preheated at a temperature of 200° C. for 1 minute with a press molding machine “NF-50H” (manufactured by Shindo Kinzoku Kogyo Co., Ltd.) and then heated at the same temperature for 3 minutes at a pressure of 10 MPa.
  • a sheet of length 15 cm ⁇ width 15 cm ⁇ thickness 0.1 cm was produced by pressing, and a dumbbell No. 3 test piece (thickness 1.0 mm) was obtained using a punching blade conforming to JIS K 6251: 2017. .
  • the tensile strength (MPa) and tensile strain at break (%) of the obtained test piece were measured according to JIS K 6251:2017 using "Instron 3345" manufactured by Instron.
  • thermoplastic elastomer compositions of Examples 1 to 14, Examples 16 to 19, Examples 21 to 22, and Examples 24 to 25 had good bleeding evaluation and were liquid. It can be seen that the rubber component (Y) is well dispersed. In particular, as in Example 16, even if the content of the liquid rubber component (Y) is made equal to or greater than the mass of the block copolymer (X) by adding silica, the bleeding of the liquid rubber component is kept within a practically usable range. It can be seen that it can be used as a masterbatch containing a liquid rubber component at a high content rate. By comparing Examples 1, 3, 5, 6 with Examples 8 to 11, the use of block copolymer (X2) instead of block copolymer (X1) more reliably improved transparency (small haze) and bleed suppression can be achieved at the same time.
  • block copolymer (X2) instead of block copolymer (X1) more reliably improved transparency (small haze) and bleed suppression can be achieved at the same time.
  • Examples 1 to 3 and 5 to 8, Comparative Example 1 Using the pellets of the thermoplastic elastomer composition MB13 obtained in Example 13 or the thermoplastic elastomer composition MB14 obtained in Example 14 above, the blocking prevention was carried out according to the following procedure using the materials and amounts shown in Table 6. A pellet in which the agent was attached to the surface of the pellet as dusting powder was prepared, and the blocking strength of the pellet with the antiblocking agent was measured. Table 6 shows the composition of the antiblocking agent-attached pellets and the measurement results.
  • the antiblocking agent-attached pellets of Examples 1 to 3 and Examples 5 to 8 had blocking strengths of 20 N or less at 23°C and 40°C.
  • the pellets of Comparative Example 1 to which no antiblocking agent was adhered had blocking strengths exceeding 200 N at both 23°C and 40°C.
  • Example 4 Reference Example 1
  • a block copolymer and a thermoplastic elastomer composition or a liquid rubber component were charged into a batch mixer (Blastograph EC-50EHT, manufactured by Braventer) at a temperature of 150° C. according to the blending ratio (parts by mass) shown in Table 7, Knead for 5 minutes. Next, an acrylic monomer, a photopolymerization initiator and an antioxidant were added and kneaded for 10 minutes.
  • a resin composition was produced using the pellets with anti-blocking agent produced in Example 3 as the thermoplastic elastomer composition.
  • the antiblocking agent-attached pellets are pellets obtained by mixing the thermoplastic elastomer composition MB14 and the antiblocking agent by the above-described manufacturing method, and the thermoplastic elastomer composition MB14 is an unhydrogenated block copolymer.
  • Combined (X1) and unhydrogenated liquid rubber (Y2) are contained at a mass ratio of 5:5.
  • the rubber sheet of the resin composition obtained above is cured using a UV irradiation machine ("F300 series", "LC6B conveyor” manufactured by Heraeus) (irradiation output 500 mJ/cm 2 , 16 times, The total irradiation dose was 8000 mJ/cm 2 ) to obtain a UV-cured sheet of the resin composition.
  • the physical properties of the obtained UV cured sheet of the resin composition were evaluated according to the following evaluation methods. Table 7 shows the results.
  • the tensile strength (MPa) of the UV-cured sheets of the resin compositions obtained in Example 4 and Reference Example 1 was measured according to JIS K 6251:2017 using "Instron 3345" manufactured by Instron. bottom.
  • Example 7 As shown in Table 7, the use of the pellets of Example 3 improved the dispersibility of the liquid rubber and improved the transparency (haze). By using the pellets of Example 3, transparency was improved, UV curing was facilitated, and various physical properties (hardness, tensile strength, tensile strain at break, swelling rate) were also improved.
  • pellets of a thermoplastic elastomer composition capable of suppressing blocking of the pellets, suppressing the occurrence of bleeding, and obtaining molded articles having improved physical properties, and a method for producing the pellets of the thermoplastic elastomer composition.
  • a resin composition containing pellets of such a thermoplastic elastomer composition and a method for producing the resin composition can be suitably used for applications in various fields such as printing plate materials for printing such as flexographic printing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is, in a shape (for example, a pellet) that can be handled easily, a thermoplastic elastomer composition that contains liquid rubber and that can be used to manufacture a molded article in which bleeding is suppressed and which exhibits desired mechanical characteristics. This pellet is of a thermoplastic elastomer composition that contains: 100 parts by mass of a block copolymer (X) including a polymeric block (A) that has a structural unit derived from an aromatic vinyl compound and a polymeric block (B) that has a structural unit derived from a conjugated diene compound; and not less than 10 parts by mass but less than 150 parts by mass of a liquid rubber component (Y). An antiblocking agent exists in a state of being in contact with the surface of the pellet. The contained amount of the antiblocking agent, including the amount exiting on the surface of the pellet, is 0.1-1.5 parts by mass with respect to 100 parts by mass of the pellet.

Description

熱可塑性エラストマー組成物のペレット、樹脂組成物、熱可塑性エラストマー組成物のペレットの製造方法、及び樹脂組成物の製造方法Pellets of thermoplastic elastomer composition, resin composition, method for producing pellets of thermoplastic elastomer composition, and method for producing resin composition
 本発明は、熱可塑性エラストマー組成物のペレット、樹脂組成物、熱可塑性エラストマー組成物のペレットの製造方法、及び樹脂組成物の製造方法に関する。 The present invention relates to a pellet of a thermoplastic elastomer composition, a resin composition, a method for producing pellets of a thermoplastic elastomer composition, and a method for producing a resin composition.
 スチレン系エラストマー等の、芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、共役ジエン化合物に由来する構造単位からなる重合体ブロック(B)とを含むブロック共重合体又はその水素添加物、及び、液状ポリブタジエンや液状ジエン系ゴム等の液状ゴムを含む熱可塑性エラストマー組成物が知られている(例えば、特許文献1、4参照)。このような熱可塑性エラストマー組成物は、刷版材、タイヤ等の自動車部品、土木及び建築用部材、家電部品、スポーツ用品、雑貨品、ワイヤーコーティング、医療部品、履物等の用途で用いることが提案されている。また、架橋剤や架橋助剤等の液状分の吹き出しを防止する目的で、樹脂組成物に液状ポリブタジエンを配合することも知られている(例えば、特許文献2、3参照)。 A block copolymer, such as a styrene-based elastomer, containing a polymer block (A) comprising structural units derived from an aromatic vinyl compound and a polymer block (B) comprising structural units derived from a conjugated diene compound, or Thermoplastic elastomer compositions containing hydrogenated materials and liquid rubbers such as liquid polybutadiene and liquid diene rubbers are known (see, for example, Patent Documents 1 and 4). Such a thermoplastic elastomer composition is proposed to be used in applications such as printing plate materials, automobile parts such as tires, civil engineering and construction parts, home appliance parts, sporting goods, miscellaneous goods, wire coatings, medical parts, and footwear. It is It is also known to add liquid polybutadiene to a resin composition for the purpose of preventing liquid components such as cross-linking agents and cross-linking aids from blowing out (see, for example, Patent Documents 2 and 3).
 液状ゴムは、常温で流動性を有する粘稠な物質であるため、ハンドリング性に難があり、熱可塑性エラストマー組成物やそれを用いた樹脂組成物において液状ゴムの濃度を所望の値に調整するのに手間を要したり、液状ゴムがブリードアウトしたり、ブロック共重合体との混合に長時間を要したりするという問題があった。このため、熱可塑性エラストマー組成物や樹脂組成物の生産性も低下しやすくなっていた。
 さらに、特許文献5、6には、液状ゴムの使用に関するものではないが、ブロック共重合体の水素添加物のペレットに打ち粉を付着させることが記載されている。
Liquid rubber is a viscous substance that has fluidity at room temperature and is difficult to handle. Therefore, the concentration of liquid rubber in a thermoplastic elastomer composition or a resin composition using the same is adjusted to a desired value. However, there are problems such as the liquid rubber bleeding out and the long time required for mixing with the block copolymer. Therefore, the productivity of thermoplastic elastomer compositions and resin compositions tends to decrease.
Furthermore, although Patent Documents 5 and 6 do not relate to the use of liquid rubber, they describe the adhesion of dusting powder to pellets of hydrogenated block copolymers.
特開平10-310617号公報(特許3101230)Japanese Patent Laid-Open No. 10-310617 (Patent No. 3101230) 特開2001-288332号公報(特許4189130)Japanese Patent Application Laid-Open No. 2001-288332 (Patent No. 4189130) 特開2002-302588号公報(特許4070472)Japanese Patent Application Laid-Open No. 2002-302588 (Patent No. 4070472) 特表2020-521017号公報Japanese Patent Publication No. 2020-521017 国際公開第2014/002984号(特許6140157)International Publication No. 2014/002984 (Patent 6140157) 国際公開第2015/098664号(特許6140301)International Publication No. 2015/098664 (Patent 6140301)
 上記のとおり、液状ゴム自体の取り扱いが難しいことに加えて、熱可塑性エラストマーやその組成物と、液状ゴムとを十分に混合させるためには手間や時間を要することが多い。また、混合時間を短くした場合、成形品において、液状ゴムやその他の成分がブリードしやすくなったり、液状ゴムの分散が不十分であることによって、目的とする力学特性(例えば、硬度、引張強度、引張破壊ひずみ、低 膨張率等)の向上が得られないことがある。 As mentioned above, in addition to the difficulty of handling the liquid rubber itself, it often takes time and effort to sufficiently mix the liquid rubber with the thermoplastic elastomer or its composition. In addition, when the mixing time is shortened, the liquid rubber and other components tend to bleed in the molded product, and the dispersion of the liquid rubber is insufficient. , tensile fracture strain, low expansion rate, etc.) may not be improved.
 そこで、本発明は、ブリードが抑えられ、かつ、所望の力学特性を発現可能な成形品の製造に使用し得る、液状ゴムを含む熱可塑性エラストマー組成物を、取り扱いが容易な形状(例えばペレット)で提供することを課題とする。さらに、該ペレットの製造方法、該ペレットを含む組成物、及び該組成物の製造方法を提供することを課題とする。 Accordingly, the present invention provides a liquid rubber-containing thermoplastic elastomer composition in a form (e.g., pellets) that is easy to handle, and that can be used for the production of molded articles capable of suppressing bleeding and exhibiting desired mechanical properties. The task is to provide A further object of the present invention is to provide a method for producing the pellets, a composition containing the pellets, and a method for producing the composition.
 本発明者らは、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A)及び共役ジエン化合物に由来する構造単位を含有する重合体ブロック(B)を含むブロック共重合体(X)と液状ゴム成分(Y)とを含む組成物における、ブロック共重合体(X)と液状ゴム成分(Y)との含有量比、両者の相容性等を調整することによって、成形品のブリードが抑えられ、かつ、所望の力学特性を発現可能となることを見出し、さらに検討を加えることによって、本発明を完成させるに至った。 The present inventors have developed a block copolymer (X ) and the liquid rubber component (Y), by adjusting the content ratio of the block copolymer (X) and the liquid rubber component (Y), the compatibility of the two, etc. The present inventors have found that bleeding can be suppressed and desired mechanical properties can be expressed, and have completed the present invention through further studies.
 本発明は、下記[1]~[28]に関する。
[1]芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A)及び共役ジエン化合物に由来する構造単位を含有する重合体ブロック(B)を含むブロック共重合体(X)100質量部と、液状ゴム成分(Y)10質量部以上150質量部未満とを含む熱可塑性エラストマー組成物のペレットであって、前記ペレットの表面に、ブロッキング防止剤が接した状態で存在しており、前記ペレットの表面に存在する量も含めた前記ブロッキング防止剤の含有量が、前記ペレット100質量部に対して0.1~1.5質量部である、熱可塑性エラストマー組成物のペレット。
[2]前記ブロッキング防止剤の平均粒子径が1~15μmである、上記[1]に記載の熱可塑性エラストマー組成物のペレット。
[3]前記ブロッキング防止剤は、ポリオレフィン系ワックス、含水珪酸マグネシウム、エチレンビスステアリルアミド、ステアリン酸カルシウム、ステアリン酸マグネシウム、及びシリカからなる群より選択される少なくとも1種である、上記[1]又は[2]に記載の熱可塑性エラストマー組成物のペレット。
[4]前記ブロック共重合体(X)がブロック共重合体の未水素添加物であり、且つ、前記液状ゴム成分(Y)が液状ゴムの未水素添加物である、上記[1]~[3]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[5]前記ブロック共重合体(X)がブロック共重合体の水素添加物であり、且つ、前記液状ゴム成分(Y)が液状ゴムの水素添加物である、上記[1]~[3]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[6]前記液状ゴム成分(Y)の水素添加率が80モル%以上である、上記[5]に記載の熱可塑性エラストマー組成物のペレット。
[7]前記液状ゴム成分(Y)の分子量分布が2.00以下である、上記[1]~[6]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[8]前記液状ゴム成分(Y)の重量平均分子量が2,000~300,000である、上記[1]~[7]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[9]前記液状ゴム成分(Y)の38℃溶融粘度が0.1~2,000Pa・sである、上記[1]~[8]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[10]前記ブロック共重合体(X)の重量平均分子量が10,000~200,000である、上記[1]~[9]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[11]前記ブロック共重合体(X)における重合体ブロック(A)の重量平均分子量が2,000~60,000である、上記[1]~[10]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[12]前記ブロック共重合体(X)における重合体ブロック(B)の重量平均分子量が10,000~200,000である、上記[1]~[11]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[13]前記ブロック共重合体(X)の分子量分布が2.00以下である、上記[1]~[12]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[14]前記ブロック共重合体(X)における重合体ブロック(B)の水素添加率が80モル%以上である、上記[5]に記載の熱可塑性エラストマー組成物のペレット。
[15]前記ブロック共重合体(X)における重合体ブロック(B)のビニル結合量が5~95モル%である、上記[1]~[14]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[16]前記熱可塑性エラストマー組成物における前記液状ゴム成分(Y)の含有量が、前記ブロック共重合体(X)100質量部に対して31質量部以上である、上記[1]~[15]のいずれかに記載の熱可塑性エラストマー組成物のペレット。
[17]前記熱可塑性エラストマー組成物における前記液状ゴム成分(Y)の含有量が、前記ブロック共重合体(X)100質量部に対して46質量部以上である、上記[16]に記載の熱可塑性エラストマー組成物のペレット。
[18]前記熱可塑性エラストマー組成物における前記液状ゴム成分(Y)の含有量が、前記ブロック共重合体(X)100質量部に対して51質量部以上である、上記[17]に記載の熱可塑性エラストマー組成物のペレット。
[19]上記[1]~[18]のいずれかに記載の熱可塑性エラストマー組成物のペレットと、(メタ)アクリルモノマーとを含む、樹脂組成物。
[20]光重合開始剤をさらに含む、上記[19]に記載の樹脂組成物。
[21]酸化防止剤をさらに含む、上記[19]又は[20]に記載の樹脂組成物。
[22]上記[1]~[18]のいずれかに記載の熱可塑性エラストマー組成物のペレットの製造方法であって、前記ブロック共重合体(X)と前記液状ゴム成分(Y)とを溶融混練する工程を含む、熱可塑性エラストマー組成物のペレットの製造方法。
[23]前記溶融混練する工程において、前記ブロック共重合体(X)を溶融した後に前記液状ゴム成分(Y)を添加して溶融混練を行う、上記[22]に記載の熱可塑性エラストマー組成物のペレットの製造方法。
[24]前記溶融混練する工程において、二軸押出機を用いて、溶融した前記ブロック共重合体(X)に対して、前記二軸押出機の押出し経路の途中から前記液状ゴム成分(Y)を添加して溶融混練を行う、上記[23]に記載の熱可塑性エラストマー組成物のペレットの製造方法。
[25]上記[1]~[18]のいずれかに記載の熱可塑性エラストマー組成物のペレットの製造方法であって、前記ブロック共重合体(X)と第1の溶剤とを含む溶液(X’)、及び、前記液状ゴム成分(Y)と第2の溶剤とを含む溶液(Y’)を混合して混合液を調製する工程と、前記混合液に含まれる前記第1及び第2の溶剤を除去して樹脂成分を得る工程と、を含む、熱可塑性エラストマー組成物のペレットの製造方法。
[26]前記樹脂成分を溶融混練してペレット化する工程をさらに含む、上記[25]に記載の熱可塑性エラストマー組成物のペレットの製造方法。
[27]上記[19]~[21]のいずれかに記載の樹脂組成物の製造方法であって、前記ブロック共重合体(X)及び前記液状ゴム成分(Y)を含むマスターバッチと、前記ブロック共重合体(X)及び前記液状ゴム成分(Y)のうち少なくとも一方とを混合することにより、前記熱可塑性エラストマー組成物における前記ブロック共重合体(X)の質量と前記液状ゴム成分(Y)の質量とを調整する工程をさらに含む、樹脂組成物の製造方法。
[28]上記[19]~[21]のいずれかに記載の樹脂組成物の製造方法であって、上記[1]~[18]のいずれかに記載の熱可塑性エラストマー組成物のペレットと、前記ブロック共重合体(X)及び前記液状ゴム成分(Y)のうち少なくとも一方とを混合することにより、前記熱可塑性エラストマー組成物における前記ブロック共重合体(X)の質量と前記液状ゴム成分(Y)の質量とを調整する工程をさらに含む、樹脂組成物の製造方法。
The present invention relates to the following [1] to [28].
[1] 100 masses of a block copolymer (X) containing a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing a structural unit derived from a conjugated diene compound and 10 parts by mass or more and less than 150 parts by mass of the liquid rubber component (Y), wherein an antiblocking agent is present in contact with the surface of the pellets, Pellets of a thermoplastic elastomer composition, wherein the content of the antiblocking agent, including the amount present on the surface of the pellets, is 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the pellets.
[2] Pellets of the thermoplastic elastomer composition according to [1] above, wherein the antiblocking agent has an average particle size of 1 to 15 μm.
[3] The antiblocking agent is at least one selected from the group consisting of polyolefin wax, hydrated magnesium silicate, ethylenebisstearylamide, calcium stearate, magnesium stearate, and silica, above [1] or [ 2], pellets of the thermoplastic elastomer composition.
[4] The above [1]-[ 3], a pellet of the thermoplastic elastomer composition according to any one of the above.
[5] The above [1] to [3], wherein the block copolymer (X) is a hydrogenated block copolymer, and the liquid rubber component (Y) is a hydrogenated liquid rubber. Pellets of the thermoplastic elastomer composition according to any one of .
[6] Pellets of the thermoplastic elastomer composition according to [5] above, wherein the liquid rubber component (Y) has a hydrogenation rate of 80 mol % or more.
[7] The pellet of the thermoplastic elastomer composition according to any one of [1] to [6] above, wherein the liquid rubber component (Y) has a molecular weight distribution of 2.00 or less.
[8] Pellets of the thermoplastic elastomer composition according to any one of [1] to [7] above, wherein the liquid rubber component (Y) has a weight average molecular weight of 2,000 to 300,000.
[9] The pellet of the thermoplastic elastomer composition according to any one of [1] to [8] above, wherein the liquid rubber component (Y) has a melt viscosity at 38°C of 0.1 to 2,000 Pa·s.
[10] The pellet of the thermoplastic elastomer composition according to any one of [1] to [9] above, wherein the block copolymer (X) has a weight average molecular weight of 10,000 to 200,000.
[11] The thermoplastic elastomer according to any one of [1] to [10] above, wherein the polymer block (A) in the block copolymer (X) has a weight average molecular weight of 2,000 to 60,000. Pellets of the composition.
[12] The thermoplastic elastomer according to any one of [1] to [11] above, wherein the polymer block (B) in the block copolymer (X) has a weight average molecular weight of 10,000 to 200,000. Pellets of the composition.
[13] The pellet of the thermoplastic elastomer composition according to any one of [1] to [12] above, wherein the block copolymer (X) has a molecular weight distribution of 2.00 or less.
[14] The pellet of the thermoplastic elastomer composition according to [5] above, wherein the hydrogenation rate of the polymer block (B) in the block copolymer (X) is 80 mol% or more.
[15] The thermoplastic elastomer composition according to any one of [1] to [14] above, wherein the polymer block (B) in the block copolymer (X) has a vinyl bond content of 5 to 95 mol%. pellets.
[16] The above [1] to [15], wherein the content of the liquid rubber component (Y) in the thermoplastic elastomer composition is 31 parts by mass or more relative to 100 parts by mass of the block copolymer (X). ] The pellet of the thermoplastic elastomer composition according to any one of ].
[17] The above-mentioned [16], wherein the content of the liquid rubber component (Y) in the thermoplastic elastomer composition is 46 parts by mass or more relative to 100 parts by mass of the block copolymer (X). Pellets of a thermoplastic elastomer composition.
[18] The above-mentioned [17], wherein the content of the liquid rubber component (Y) in the thermoplastic elastomer composition is 51 parts by mass or more relative to 100 parts by mass of the block copolymer (X). Pellets of a thermoplastic elastomer composition.
[19] A resin composition comprising pellets of the thermoplastic elastomer composition according to any one of [1] to [18] above and a (meth)acrylic monomer.
[20] The resin composition according to [19] above, further comprising a photopolymerization initiator.
[21] The resin composition according to [19] or [20] above, further comprising an antioxidant.
[22] A method for producing pellets of the thermoplastic elastomer composition according to any one of [1] to [18] above, comprising: melting the block copolymer (X) and the liquid rubber component (Y); A method for producing pellets of a thermoplastic elastomer composition, comprising a step of kneading.
[23] The thermoplastic elastomer composition according to [22] above, wherein in the step of melt-kneading, the liquid rubber component (Y) is added after the block copolymer (X) is melted, and melt-kneading is performed. method of producing pellets.
[24] In the melt-kneading step, a twin-screw extruder is used to extrude the liquid rubber component (Y) from the middle of the extrusion route of the twin-screw extruder to the melted block copolymer (X). and melt-kneading the thermoplastic elastomer composition pellets according to [23] above.
[25] A method for producing pellets of the thermoplastic elastomer composition according to any one of [1] to [18] above, which comprises a solution (X) containing the block copolymer (X) and a first solvent '), and a step of mixing a solution (Y') containing the liquid rubber component (Y) and a second solvent to prepare a mixed solution; and a step of removing the solvent to obtain a resin component.
[26] A method for producing pellets of the thermoplastic elastomer composition according to [25] above, further comprising the step of melt-kneading the resin component to pelletize it.
[27] A method for producing a resin composition according to any one of [19] to [21] above, comprising: a master batch containing the block copolymer (X) and the liquid rubber component (Y); By mixing at least one of the block copolymer (X) and the liquid rubber component (Y), the mass of the block copolymer (X) and the liquid rubber component (Y) in the thermoplastic elastomer composition ), further comprising a step of adjusting the mass of the resin composition.
[28] A method for producing the resin composition according to any one of [19] to [21] above, comprising pellets of the thermoplastic elastomer composition according to any one of [1] to [18] above; By mixing at least one of the block copolymer (X) and the liquid rubber component (Y), the mass of the block copolymer (X) in the thermoplastic elastomer composition and the liquid rubber component ( A method for producing a resin composition, further comprising the step of adjusting the mass of Y).
 本発明によれば、ブリードが抑えられ、かつ、所望の力学特性を発現可能な成形品の製造に使用し得る、液状ゴムを含む熱可塑性エラストマー組成物を、取り扱いが容易な形状(例えばペレット)で提供することができる。さらに、該ペレットの製造方法、該ペレットを含む組成物、及び該組成物の製造方法を提供することができる。 According to the present invention, a thermoplastic elastomer composition containing a liquid rubber, which can be used for the production of molded articles capable of suppressing bleeding and exhibiting desired mechanical properties, is formed into a shape (for example, pellets) that is easy to handle. can be provided in Furthermore, a method for producing the pellets, a composition containing the pellets, and a method for producing the composition can be provided.
 以下、本発明の実施形態について説明する。
 本明細書における記載事項を任意に選択した態様又は任意に組み合わせた態様も本発明に含まれる。
 本明細書において、好ましいとする規定は任意に選択でき、好ましいとする規定同士の組み合わせはより好ましいといえる。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
Embodiments of the present invention will be described below.
The present invention also includes aspects in which the items described in this specification are arbitrarily selected or arbitrarily combined.
In this specification, the definition of being preferred can be arbitrarily selected, and it can be said that the combination of the definitions of being preferred is more preferred.
In this specification, the description "XX to YY" means "XX or more and YY or less".
In this specification, for preferred numerical ranges (for example, ranges of content etc.), the lower and upper limits described stepwise can be independently combined. For example, from the statement "preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)" and "more preferred upper limit (60)" to "10 to 60" can also
[熱可塑性エラストマー組成物のペレット]
 本発明の熱可塑性エラストマー組成物のペレットは、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A)及び共役ジエン化合物に由来する構造単位を含有する重合体ブロック(B)を含むブロック共重合体(X)100質量部と、液状ゴム成分(Y)10質量部以上150質量部未満とを含む熱可塑性エラストマー組成物のペレットであって、液状ゴム成分(Y)がブロック共重合体(X)中に十分に分散しているため、液状ゴムを加えることによって生じるペレットのブロッキングも抑制されている。すなわち、本発明の熱可塑性エラストマー組成物のペレットのブロッキングを、ペレットの取り扱い上問題のない程度に抑制するために必要なブロッキング防止剤の量を、成形体の製造および物性に影響を与えない量(ペレット100質量部に対して0.1~1.5質量部)にまで抑えることが可能となっている。すなわち、本発明の熱可塑性エラストマー組成物のペレットは、表面にブロッキング防止剤が接した状態で存在しており、前記ペレットの表面に存在する量も含めた前記ブロッキング防止剤の含有量(前記ブロッキング防止剤の添加量(仕込み量))が、前記ペレット100質量部に対して0.1~1.5質量部である。
[Pellet of Thermoplastic Elastomer Composition]
The pellets of the thermoplastic elastomer composition of the present invention contain a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing a structural unit derived from a conjugated diene compound. Pellets of a thermoplastic elastomer composition containing 100 parts by mass of a block copolymer (X) and 10 parts by mass or more and less than 150 parts by mass of a liquid rubber component (Y), wherein the liquid rubber component (Y) is block copolymerized Since they are sufficiently dispersed in coalescence (X), blocking of pellets caused by adding liquid rubber is also suppressed. That is, the amount of the antiblocking agent necessary to suppress the blocking of the pellets of the thermoplastic elastomer composition of the present invention to the extent that there is no problem in handling the pellets is an amount that does not affect the production and physical properties of the molded product. (0.1 to 1.5 parts by mass with respect to 100 parts by mass of pellets). That is, the pellets of the thermoplastic elastomer composition of the present invention are present in a state in which an antiblocking agent is in contact with the surface, and the content of the antiblocking agent including the amount present on the surface of the pellet (the blocking The amount of the inhibitor added (amount to be charged) is 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the pellets.
<熱可塑性エラストマー組成物>
 上記熱可塑性エラストマー組成物は、その成形体を各種用途における製品や部材として用いてもよいし、例えば、ペレットの形態で、液状ゴム成分(Y)のマスターバッチとして用いてもよい。上記熱可塑性エラストマー組成物は、ブリードを抑制しつつ高い含有比率で液状ゴム成分(Y)を含み得るため、液状ゴム成分(Y)のマスターバッチとして好適に用いることができる。
 なお、本明細書において、「液状ゴム成分(Y)のマスターバッチ」とは、当該マスターバッチを他の成分(ブロック共重合体(X)等)と混合することによって作製される熱可塑性エラストマー組成物や樹脂組成物において、液状ゴム成分(Y)が所定の含有比率となるように、液状ゴム成分(Y)を当該所定の含有比率よりも高い含有比率で含む熱可塑性エラストマー組成物を意味する。
<Thermoplastic elastomer composition>
The molded article of the thermoplastic elastomer composition may be used as a product or member in various applications, or may be used, for example, in the form of pellets as a masterbatch of the liquid rubber component (Y). Since the thermoplastic elastomer composition can contain the liquid rubber component (Y) at a high content ratio while suppressing bleeding, it can be suitably used as a masterbatch of the liquid rubber component (Y).
As used herein, the term "masterbatch of liquid rubber component (Y)" refers to a thermoplastic elastomer composition prepared by mixing the masterbatch with other components (block copolymer (X), etc.). means a thermoplastic elastomer composition containing a liquid rubber component (Y) at a higher content ratio than the predetermined content ratio so that the liquid rubber component (Y) has a predetermined content ratio in a product or resin composition. .
 上記熱可塑性エラストマー組成物は、ブロック共重合体(X)と液状ゴム成分(Y)のみを含むものであってもよいし、ブロック共重合体(X)と液状ゴム成分(Y)とこれ以外の成分を含むものであってもよい。
 上記熱可塑性エラストマー組成物中のブロック共重合体(X)及び液状ゴム成分(Y)の合計含有量は、熱可塑性エラストマー組成物の全質量に対して、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上である。また、100質量%以下であってもよいし、95質量%以下であってもよいし、90質量%以下であってもよい。換言すれば、熱可塑性エラストマー組成物中のブロック共重合体(X)及び液状ゴム成分(Y)の合計含有量は、熱可塑性エラストマー組成物の全質量に対して、好ましくは50~100質量%である。
The thermoplastic elastomer composition may contain only the block copolymer (X) and the liquid rubber component (Y), or may contain the block copolymer (X), the liquid rubber component (Y), and others. It may contain a component of.
The total content of the block copolymer (X) and the liquid rubber component (Y) in the thermoplastic elastomer composition is preferably 50% by mass or more, more preferably 50% by mass or more, based on the total mass of the thermoplastic elastomer composition. 60% by mass or more, more preferably 70% by mass or more. Moreover, it may be 100% by mass or less, 95% by mass or less, or 90% by mass or less. In other words, the total content of block copolymer (X) and liquid rubber component (Y) in the thermoplastic elastomer composition is preferably 50 to 100% by mass with respect to the total mass of the thermoplastic elastomer composition. is.
<<ブロック共重合体(X)>>
 ブロック共重合体(X)は、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を含有する重合体ブロック(B)とを含む。
<<Block copolymer (X)>>
The block copolymer (X) includes a polymer block (A) containing structural units derived from an aromatic vinyl compound and a polymer block (B) containing structural units derived from a conjugated diene compound.
 ブロック共重合体(X)は、水素添加されていないブロック共重合体(以下、「未水素添加物」ということがある)でもよいし、ブロック共重合体の水素添加物でもよい。本明細書において、「ブロック共重合体(X)」には、水素添加される前のブロック共重合体(以下、「未水添ブロック共重合体(X0)」と称することがある)、及び、未水添ブロック共重合体(X0)を水素添加したブロック共重合体(以下、「水添ブロック共重合体(X10)」と称することがある)が含まれる。ブロック共重合体(X)は、未水添ブロック共重合体(X0)と水添ブロック共重合体(X10)の両方を含んでいてもよい。
 以下、ブロック共重合体(X)を構成する各成分について説明するが、特に断りのない限り、これらの説明は、未水添ブロック共重合体(X0)及び水添ブロック共重合体(X10)のいずれにも当てはまる。
The block copolymer (X) may be an unhydrogenated block copolymer (hereinafter sometimes referred to as "unhydrogenated product") or a hydrogenated block copolymer. In the present specification, "block copolymer (X)" includes a block copolymer before hydrogenation (hereinafter sometimes referred to as "unhydrogenated block copolymer (X0)"), and , a block copolymer obtained by hydrogenating the unhydrogenated block copolymer (X0) (hereinafter sometimes referred to as "hydrogenated block copolymer (X10)"). The block copolymer (X) may contain both the unhydrogenated block copolymer (X0) and the hydrogenated block copolymer (X10).
Hereinafter, each component constituting the block copolymer (X) will be described. It applies to both.
(重合体ブロック(A))
 重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位(以下、「芳香族ビニル化合物単位」と称することがある。)を含有する。かかる芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン及びジビニルベンゼン等が挙げられる。これらの芳香族ビニル化合物は、1種を単独で又は2種以上を併用してもよい。これらの中でも、スチレン、α-メチルスチレン、4-メチルスチレンが好ましく、スチレンがより好ましい。
(Polymer block (A))
The polymer block (A) contains a structural unit derived from an aromatic vinyl compound (hereinafter sometimes referred to as "aromatic vinyl compound unit"). Examples of such aromatic vinyl compounds include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4- Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene, 1-vinylnaphthalene, 2- Examples include vinylnaphthalene, vinylanthracene, N,N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene and divinylbenzene. These aromatic vinyl compounds may be used alone or in combination of two or more. Among these, styrene, α-methylstyrene and 4-methylstyrene are preferred, and styrene is more preferred.
 重合体ブロック(A)は、芳香族ビニル化合物以外の単量体、例えば、後述する重合体ブロック(B)を構成する単量体等のその他の単量体に由来する構造単位を含有してもよい。ただし、重合体ブロック(A)中の芳香族ビニル化合物単位の含有量は、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上がより更に好ましく、100質量%であることが特に好ましい。重合体ブロック(A)中の芳香族ビニル化合物単位の含有量は、100質量%以下であってもよいし、90質量%以下であってもよいし、80質量%以下であってもよい。換言すれば、重合体ブロック(A)中の芳香族ビニル化合物単位の含有量は、好ましくは60~100質量%である。
 また、本発明に用いられるブロック共重合体(X)は、重合体ブロック(A)のみに芳香族ビニル化合物に由来する構造単位を含んでいることが、力学物性の観点から好ましい。ブロック共重合体(X)中の芳香族ビニル化合物に由来する構造単位の含有量は、柔軟性の観点から、3~35質量%であることが好ましく、5~30質量%であることがより好ましく、7~25質量%であることがさらに好ましい。
The polymer block (A) contains structural units derived from monomers other than the aromatic vinyl compound, such as monomers constituting the polymer block (B) described later. good too. However, the content of the aromatic vinyl compound unit in the polymer block (A) is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and even more preferably 90% by mass or more. Preferably, 100% by mass is particularly preferred. The content of the aromatic vinyl compound units in the polymer block (A) may be 100% by mass or less, 90% by mass or less, or 80% by mass or less. In other words, the content of the aromatic vinyl compound unit in the polymer block (A) is preferably 60-100% by mass.
From the viewpoint of mechanical properties, the block copolymer (X) used in the present invention preferably contains a structural unit derived from an aromatic vinyl compound only in the polymer block (A). The content of the structural unit derived from the aromatic vinyl compound in the block copolymer (X) is preferably 3 to 35% by mass, more preferably 5 to 30% by mass, from the viewpoint of flexibility. Preferably, it is more preferably 7 to 25% by mass.
 ブロック共重合体(X)は、上記重合体ブロック(A)を少なくとも1つ有していればよい。ブロック共重合体(X)が重合体ブロック(A)を2つ以上有する場合には、それら重合体ブロック(A)は、同一であっても異なっていてもよい。なお、本明細書において「重合体ブロックが異なる」とは、重合体ブロックを構成するモノマー単位、重量平均分子量、立体規則性、及び複数のモノマー単位を有する場合には各モノマー単位の比率及び共重合の形態(ランダム、テーパー、ブロック)のうち少なくとも1つが異なることを意味する。
 ブロック共重合体(X)は、熱可塑性エラストマー組成物のペレタイズを容易にする観点から重合体ブロック(A)を2つ以上有していることが好ましい。
The block copolymer (X) may have at least one polymer block (A). When the block copolymer (X) has two or more polymer blocks (A), the polymer blocks (A) may be the same or different. In the present specification, "polymer blocks are different" means the monomer units constituting the polymer blocks, the weight average molecular weight, the stereoregularity, and the ratio and covalentity of each monomer unit when there are multiple monomer units. It means that at least one of the polymerization modes (random, tapered, block) is different.
The block copolymer (X) preferably has two or more polymer blocks (A) from the viewpoint of facilitating pelletization of the thermoplastic elastomer composition.
 ブロック共重合体(X)における重合体ブロック(A)の含有量(複数の重合体ブロック(A)を有する場合はそれらの合計含有量)は、柔軟性の観点から、好ましくは35質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下であり、また、力学特性の観点から、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上である。換言すれば、ブロック共重合体(X)における重合体ブロック(A)の含有量は、好ましくは3~35質量%である。
 なお、ブロック共重合体(X)における重合体ブロック(A)の含有量は、H-NMR測定により求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
The content of the polymer block (A) in the block copolymer (X) (in the case of having a plurality of polymer blocks (A), the total content thereof) is preferably 35% by mass or less from the viewpoint of flexibility. , More preferably 30% by mass or less, still more preferably 25% by mass or less, and from the viewpoint of mechanical properties, preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 7% by mass or more be. In other words, the content of polymer block (A) in block copolymer (X) is preferably 3 to 35% by mass.
The content of the polymer block (A) in the block copolymer (X) is a value determined by 1 H-NMR measurement, more specifically a value measured according to the method described in Examples.
 重合体ブロック(A)の重量平均分子量(Mw)は、成形加工性の観点から、好ましくは2,000~60,000、より好ましくは3,000~50,000、更に好ましくは4,000~40,000、より更に好ましくは5,000~30,000、より更に好ましくは5,500~20,000である。
 重合体ブロック(A)の重量平均分子量(Mw)は、例えば、重合に用いる重合開始剤に対する芳香族ビニル化合物の量を調整することにより、上記範囲とすることができる。
 なお、重合体ブロック(A)の重量平均分子量(Mw)は、具体的には実施例に記載の方法で測定または算出できる。
The weight average molecular weight (Mw) of the polymer block (A) is preferably from 2,000 to 60,000, more preferably from 3,000 to 50,000, still more preferably from 4,000 to 4,000, from the viewpoint of moldability. 40,000, more preferably 5,000 to 30,000, and even more preferably 5,500 to 20,000.
The weight average molecular weight (Mw) of the polymer block (A) can be made within the above range, for example, by adjusting the amount of the aromatic vinyl compound relative to the polymerization initiator used for polymerization.
The weight average molecular weight (Mw) of the polymer block (A) can be specifically measured or calculated by the method described in Examples.
 なお、本明細書及び特許請求の範囲に記載の「重量平均分子量」は全て、ゲル浸透クロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の重量平均分子量であり、詳細な測定方法は実施例に記載の方法に従うことができる。ブロック共重合体が有する各重合体ブロックの重量平均分子量は、製造工程において各重合体ブロックの重合が終了する都度、サンプリングした液を測定することで求めることができる。また、例えば、2種類の重合体ブロック(A)を「A1」「A2」、1種類の重合体ブロック(B)を「B」で表したときに、A1-B-A2の構造を有するトリブロック共重合体の場合は、重合体ブロック「A1」及び重合体ブロック「B」の重量平均分子量を上記方法により求め、ブロック共重合体の重量平均分子量からそれらを引き算することにより、重合体ブロック「A2」の重量平均分子量を求めることができる。また、他の方法として、上記A1-B-A2構造を有するトリブロック共重合体の場合は、重合体ブロック「A1」及び「A2」の合計の重量平均分子量は、ブロック共重合体の重量平均分子量とH-NMR測定で確認する重合体ブロック「A1」及び「A2」の合計含有量から算出し、GPC測定によって、失活した最初の重合体ブロック「A1」の重量平均分子量を算出し、これを引き算することによって重合体ブロック「A2」の重量平均分子量を求めることもできる。 In addition, all "weight average molecular weights" described in the present specification and claims are weight average molecular weights in terms of standard polystyrene obtained by gel permeation chromatography (GPC) measurement, and detailed measurement methods are described in Examples. The described method can be followed. The weight average molecular weight of each polymer block in the block copolymer can be obtained by measuring a sampled liquid each time polymerization of each polymer block is completed in the production process. Further, for example, when two types of polymer blocks (A) are represented by "A1" and "A2" and one type of polymer block (B) is represented by "B", a tri- In the case of a block copolymer, the weight average molecular weights of the polymer block "A1" and the polymer block "B" are obtained by the above method and subtracted from the weight average molecular weight of the block copolymer to obtain the polymer block. The weight average molecular weight of "A2" can be determined. As another method, in the case of the triblock copolymer having the above A1-B-A2 structure, the total weight average molecular weight of the polymer blocks "A1" and "A2" is the weight average of the block copolymer It was calculated from the molecular weight and the total content of the polymer blocks "A1" and "A2" confirmed by 1 H-NMR measurement, and the weight average molecular weight of the first deactivated polymer block "A1" was calculated by GPC measurement. , the weight average molecular weight of the polymer block "A2" can also be obtained by subtracting this.
(重合体ブロック(B))
 ブロック共重合体(X)を構成する重合体ブロック(B)は、成形加工性等の観点から、共役ジエン化合物に由来する構造単位(以下、「共役ジエン化合物単位」と称すことがある。)を有する。
 重合体ブロック(B)は、共役ジエン化合物単位を30モル%以上含有することが好ましい。なかでも成形加工性の観点から、重合体ブロック(B)は、共役ジエン化合物単位を、より好ましくは50モル%以上、更に好ましくは65モル%以上、より更に好ましくは80モル%以上、より更に好ましくは90モル%以上、特に好ましくは実質的に100モル%含有する。重合体ブロック(B)中の共役ジエン化合物単位の含有量は、100モル%以下であってもよいし、90モル%以下であってもよいし、80モル%以下であってもよい。換言すれば、重合体ブロック(B)中の共役ジエン化合物単位の含有量は、好ましくは30~100モル%である。
 なお、上記「共役ジエン化合物単位」は、共役ジエン化合物1種に由来する構造単位であっても、共役ジエン化合物2種以上に由来する構造単位であってもよい。
 またここで、「実質的に100モル%」とは、純粋な上記共役ジエン化合物単位のみからなる態様に加えて、重合体ブロック(B)を作製する過程で不可避的に存在する上記共役ジエン化合物単位以外の構造単位が含まれている態様であってもよいことを意味する。
(Polymer block (B))
The polymer block (B) constituting the block copolymer (X) is a structural unit derived from a conjugated diene compound (hereinafter sometimes referred to as a "conjugated diene compound unit") from the viewpoint of molding processability. have
The polymer block (B) preferably contains 30 mol % or more of conjugated diene compound units. Among them, from the viewpoint of molding processability, the polymer block (B) preferably contains conjugated diene compound units of 50 mol% or more, still more preferably 65 mol% or more, still more preferably 80 mol% or more, and even more preferably 80 mol% or more. The content is preferably 90 mol % or more, particularly preferably substantially 100 mol %. The content of the conjugated diene compound units in the polymer block (B) may be 100 mol% or less, 90 mol% or less, or 80 mol% or less. In other words, the content of the conjugated diene compound units in the polymer block (B) is preferably 30-100 mol %.
The "conjugated diene compound unit" may be a structural unit derived from one type of conjugated diene compound or a structural unit derived from two or more types of conjugated diene compounds.
Here, "substantially 100 mol %" means that the conjugated diene compound that is inevitably present in the process of producing the polymer block (B) is present in addition to the embodiment consisting only of pure conjugated diene compound units. This means that a mode in which structural units other than units are included may also be used.
 上記共役ジエン化合物は、優れた柔軟性を発現しやすい観点から、好ましくはイソプレン、ブタジエン、又は、イソプレン及びブタジエンを含有する。また共役ジエン化合物として、後述するとおりイソプレン及びブタジエン以外の共役ジエン化合物を含有してもよい。一方で、優れた柔軟性を発現しやすい観点から、共役ジエン化合物におけるイソプレンの含有量が、好ましくは20質量%以上、より好ましくは40質量%以上、更に好ましくは45質量%以上、より更に好ましくは55質量%以上、より更に好ましくは75質量%以上、特に好ましくは100質量%、すなわち共役ジエン化合物としてイソプレンを用いることが特に好ましい。共役ジエン化合物中のイソプレンの含有量は、100質量%以下であってもよいし、75質量%以下であってもよいし、55質量%以下であってもよい。換言すれば、共役ジエン化合物におけるイソプレンの含有量は、好ましくは20~100質量%である。 The conjugated diene compound preferably contains isoprene, butadiene, or isoprene and butadiene from the viewpoint of easily exhibiting excellent flexibility. As the conjugated diene compound, a conjugated diene compound other than isoprene and butadiene may be contained as described later. On the other hand, from the viewpoint of easily expressing excellent flexibility, the content of isoprene in the conjugated diene compound is preferably 20% by mass or more, more preferably 40% by mass or more, still more preferably 45% by mass or more, and even more preferably. is 55% by mass or more, more preferably 75% by mass or more, and particularly preferably 100% by mass. That is, it is particularly preferable to use isoprene as the conjugated diene compound. The content of isoprene in the conjugated diene compound may be 100% by mass or less, 75% by mass or less, or 55% by mass or less. In other words, the content of isoprene in the conjugated diene compound is preferably 20-100% by mass.
 また、共役ジエン化合物がブタジエンとイソプレンの混合物である場合、それらの混合比率[イソプレン/ブタジエン](質量比)は、本発明の効果を損なわない限りにおいて特に制限はないが、好ましくは5/95~95/5、より好ましくは10/90~90/10、更に好ましくは40/60~70/30、特に好ましくは45/55~65/35である。なお、該混合比率[イソプレン/ブタジエン]をモル比で示すと、好ましくは5/95~95/5、より好ましくは10/90~90/10、更に好ましくは40/60~70/30、特に好ましくは45/55~55/45である。 Further, when the conjugated diene compound is a mixture of butadiene and isoprene, their mixing ratio [isoprene/butadiene] (mass ratio) is not particularly limited as long as the effects of the present invention are not impaired, but is preferably 5/95. to 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, and particularly preferably 45/55 to 65/35. The mixing ratio [isoprene/butadiene] in terms of molar ratio is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, especially It is preferably 45/55 to 55/45.
 共役ジエン化合物としては、上記イソプレン及びブタジエン以外に、ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、ミルセン等を挙げることができる。共役ジエン化合物は、1種単独で用いてもよく、2種以上用いてもよい。 Examples of conjugated diene compounds include hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and myrcene, in addition to the isoprene and butadiene described above. A conjugated diene compound may be used individually by 1 type, and may be used 2 or more types.
 またブロック共重合体(X)は、重合体ブロック(B)を少なくとも1つ有していればよい。ブロック共重合体(X)が重合体ブロック(B)を2つ以上有する場合には、それら重合体ブロック(B)は、同一であっても異なっていてもよい。重合体ブロック(B)が、2種以上の構造単位を有している場合は、それらの結合形態はランダム、テーパー、完全交互、一部ブロック状、ブロック、又はそれらの2種以上の組み合わせからなっていてもよい。 Also, the block copolymer (X) may have at least one polymer block (B). When the block copolymer (X) has two or more polymer blocks (B), the polymer blocks (B) may be the same or different. When the polymer block (B) has two or more types of structural units, their binding forms are random, tapered, completely alternating, partly blocky, block, or a combination of two or more thereof. It may be.
 本発明の目的及び効果を損なわない限りにおいて、共役ジエン化合物の結合形態に特に制限はない。例えば、重合体ブロック(B)を構成する構造単位が、イソプレン単位、ブタジエン単位、イソプレン及びブタジエンの混合物単位のいずれかである場合、イソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2-結合、1,4-結合、イソプレンの場合には1,2-結合、3,4-結合、1,4-結合をとることができる。これらの結合形態の1種のみが存在していても、2種以上が存在していてもよい。
 なお、本明細書では、重合体ブロック(B)におけるブタジエン単位においては、1,2-結合量をビニル結合量といい、重合体ブロック(B)におけるイソプレン単位においては、1,2-結合量及び3,4-結合量の合計量をビニル結合量といい、重合体ブロック(B)の全結合形態におけるビニル結合量の含有量を「重合体ブロック(B)のビニル結合量(モル%)」と称する。1,2-結合量及び3,4-結合量は、実施例と同様に、H-NMR測定によって算出できる。
The bonding form of the conjugated diene compound is not particularly limited as long as it does not impair the object and effect of the present invention. For example, when the structural units constituting the polymer block (B) are either isoprene units, butadiene units, or mixture units of isoprene and butadiene, the bond form of isoprene and butadiene is 1 in the case of butadiene. , 2-bond, 1,4-bond, and isoprene can have 1,2-bond, 3,4-bond, and 1,4-bond. Only one type of these binding forms may be present, or two or more types may be present.
In this specification, the amount of 1,2-bonds in the butadiene units in the polymer block (B) is referred to as the amount of vinyl bonds, and the amount of 1,2-bonds in the isoprene units in the polymer block (B). and the total amount of 3,4-bonds is referred to as the vinyl bond amount, and the content of the vinyl bond amount in the total bond form of the polymer block (B) is referred to as the "vinyl bond amount of the polymer block (B) (mol%) ”. The 1,2-bond and 3,4-bond amounts can be calculated by 1 H-NMR measurement in the same manner as in the Examples.
(重合体ブロック(B)のビニル結合量)
 ブロック共重合体においては、重合体ブロック(B)における3,4-結合単位及び1,2-結合単位の含有量(つまりビニル結合量)の合計は、好ましくは5モル%以上であり、より好ましくは50モル%以上、更に好ましくは55モル%以上、より更に好ましくは60モル%以上、より更に好ましくは65モル%以上、より更に好ましくは70モル%以上、より更に好ましくは75モル%以上である。重合体ブロック(B)におけるビニル結合量が5モル%以上であればUV硬化速度の発現に寄与することができ、更に50モル%以上であればUV硬化速度がより良好となり、ビニル結合量が高くなるにしたがいUV硬化速度が向上する傾向がある。
 また、重合体ブロック(B)におけるビニル結合量は、95モル%以下であってもよく、92モル%以下であってもよく、90モル%以下であってもよい。
 換言すれば、重合体ブロック(B)におけるビニル結合量は、好ましくは5~95モル%である。
 ここで、ビニル結合量は、実施例に記載の方法に従って、H-NMR測定によって算出される値である。
(Vinyl bond amount of polymer block (B))
In the block copolymer, the total content of 3,4-bond units and 1,2-bond units (that is, vinyl bond content) in the polymer block (B) is preferably 5 mol% or more, and more Preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, still more preferably 65 mol% or more, still more preferably 70 mol% or more, still more preferably 75 mol% or more is. If the vinyl bond amount in the polymer block (B) is 5 mol% or more, it can contribute to the development of the UV curing speed. There is a tendency for the UV curing speed to improve as the temperature increases.
Also, the vinyl bond content in the polymer block (B) may be 95 mol % or less, 92 mol % or less, or 90 mol % or less.
In other words, the vinyl bond content in the polymer block (B) is preferably 5-95 mol %.
Here, the vinyl bond content is a value calculated by 1 H-NMR measurement according to the method described in Examples.
 重合体ブロック(B)は、共役ジエン化合物に由来する構造単位であって、下記式(P)で表される1種以上の脂環式骨格(P)を主鎖に含む構造単位を有していてもよい。 The polymer block (B) is a structural unit derived from a conjugated diene compound and has a structural unit containing one or more alicyclic skeletons (P) represented by the following formula (P) in the main chain. may be
Figure JPOXMLDOC01-appb-C000001

・・・(P)
Figure JPOXMLDOC01-appb-C000001

... (P)
 上記式(P)中、R~Rは、それぞれ独立に水素原子又は炭素数1~11の炭化水素基を示し、複数あるR~Rはそれぞれ同一でも異なってもよい。上記炭化水素基の炭素数は、好ましくは炭素数1~5であり、より好ましくは1~3であり、更に好ましくは1(すなわち、メチル基)である。また、上記炭化水素基は、直鎖又は分岐鎖であってもよく、飽和又は不飽和炭化水素基であってもよい。物性及び脂環式骨格(P)形成の観点から、R~Rは、それぞれ独立に水素原子又はメチル基であることが特に好ましい。
 なお、ブロック共重合体を水素添加した場合、上記式(P)におけるビニル基は水素添加されて水素添加体となり得る。そのため、水素添加物における脂環式骨格(P)の意味するところには、上記式(P)におけるビニル基が水素添加された骨格も含まれる。
In the above formula (P), R 1 to R 3 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 11 carbon atoms, and multiple R 1 to R 3 may be the same or different. The number of carbon atoms in the above hydrocarbon group is preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and still more preferably 1 (ie, methyl group). Further, the hydrocarbon group may be a straight chain or branched chain, and may be a saturated or unsaturated hydrocarbon group. From the viewpoint of physical properties and formation of the alicyclic skeleton (P), it is particularly preferred that R 1 to R 3 are each independently a hydrogen atom or a methyl group.
When the block copolymer is hydrogenated, the vinyl group in the above formula (P) can be hydrogenated to form a hydrogenated product. Therefore, the meaning of the alicyclic skeleton (P) in the hydrogenated product also includes the skeleton obtained by hydrogenating the vinyl group in the above formula (P).
 重合体ブロック(B)中の脂環式骨格(P)の含有量の上限は、本発明の効果を損なわない範囲内であれば特に制限はないが、生産性の観点から、好ましくは40モル%以下、より好ましくは30モル%以下、更に好ましくは20モル%以下であってもよく、より更に好ましくは18モル%以下であってもよい。また、重合体ブロック(B)中の脂環式骨格(P)の含有量は0モル%であってもよく、0モル%超であってもよい。
 なお、ブロック共重合体(X)に含まれる上記脂環式骨格(P)含有量は、ブロック共重合体(X)の13C-NMR測定により、重合体ブロック(B)中の脂環式骨格(P)由来の積分値から求めた値である。
The upper limit of the content of the alicyclic skeleton (P) in the polymer block (B) is not particularly limited as long as it does not impair the effects of the present invention, but from the viewpoint of productivity, it is preferably 40 mol. % or less, more preferably 30 mol % or less, even more preferably 20 mol % or less, even more preferably 18 mol % or less. Also, the content of the alicyclic skeleton (P) in the polymer block (B) may be 0 mol % or more than 0 mol %.
The content of the alicyclic skeleton (P) contained in the block copolymer (X) was determined by 13 C-NMR measurement of the block copolymer (X). It is a value obtained from the integral value derived from the skeleton (P).
(重合体ブロック(B)の重量平均分子量)
 重合体ブロック(B)の重量平均分子量(Mw)は、特に制限はないが、水素添加前のブロック共重合体(X)が有する重合体ブロック(B)の合計の重量平均分子量が、好ましくは10,000~200,000、より好ましくは20,000~180,000、更に好ましくは30,000~160,000、より更に好ましくは35,000~140,000、より更に好ましくは40,000~130,000である。重合体ブロック(B)の合計の重量平均分子量が、上記範囲内であればより優れた成形加工性を発現しやすくなる。
 なお、重合体ブロック(B)の重量平均分子量は、具体的には実施例に記載の方法で測定または算出できる。
(Weight average molecular weight of polymer block (B))
The weight average molecular weight (Mw) of the polymer block (B) is not particularly limited, but the total weight average molecular weight of the polymer blocks (B) in the block copolymer (X) before hydrogenation is preferably 10,000 to 200,000, more preferably 20,000 to 180,000, still more preferably 30,000 to 160,000, still more preferably 35,000 to 140,000, still more preferably 40,000 to 130,000. If the total weight-average molecular weight of the polymer blocks (B) is within the above range, more excellent molding processability is likely to be exhibited.
The weight average molecular weight of the polymer block (B) can be specifically measured or calculated by the method described in Examples.
(重合体ブロック(B)の含有量)
 ブロック共重合体(X)における重合体ブロック(B)の含有量は、好ましくは97質量%以下、より好ましくは95質量%以下、更に好ましくは93質量%以下、より更に好ましくは90質量%以下、特に好ましくは85質量%以下である。重合体ブロック(B)の含有量が、97質量%以下であれば、各種用途に好適な機械的特性、力学物性、及び成形性を有する熱可塑性エラストマー組成物とすることが容易となる。また、ブロック共重合体(X)における重合体ブロック(B)の含有量は、好ましくは65質量%以上、より好ましくは67質量%以上、更に好ましくは70質量%以上、より更に好ましくは75質量%以上、より更に好ましくは80質量%以上である。重合体ブロック(B)の含有量が、65質量%以上であれば、柔軟性に優れた熱可塑性エラストマー組成物とすることができる。換言すれば、ブロック共重合体(X)における重合体ブロック(B)の含有量は、好ましくは、65~97質量%である。
(Content of polymer block (B))
The content of the polymer block (B) in the block copolymer (X) is preferably 97% by mass or less, more preferably 95% by mass or less, even more preferably 93% by mass or less, and even more preferably 90% by mass or less. , particularly preferably 85% by mass or less. If the content of the polymer block (B) is 97% by mass or less, it becomes easy to obtain a thermoplastic elastomer composition having mechanical properties, mechanical properties and moldability suitable for various uses. The content of the polymer block (B) in the block copolymer (X) is preferably 65% by mass or more, more preferably 67% by mass or more, still more preferably 70% by mass or more, and even more preferably 75% by mass. % or more, more preferably 80 mass % or more. If the content of the polymer block (B) is 65% by mass or more, a thermoplastic elastomer composition having excellent flexibility can be obtained. In other words, the content of the polymer block (B) in the block copolymer (X) is preferably 65-97% by mass.
(重合体ブロック(B)における他の構造単位)
 重合体ブロック(B)は、本発明の目的及び効果の妨げにならない限り、前記共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有していてもよい。この場合、重合体ブロック(B)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは70モル%未満、より好ましくは50モル%未満、更に好ましくは35モル%未満、特に好ましくは20モル%未満である。共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、特に制限はないが、0モル%であってもよいし、0モル%超であってもよいし、5モル%以上であってもよいし、10モル%以上であってもよい。換言すれば、重合体ブロック(B)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは0モル%以上70モル%未満である。
 該他の重合性の単量体としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、N-ビニルカルバゾール、ビニルナフタレン及びビニルアントラセン等の芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエン等からなる群から選択される少なくとも1種の化合物が好ましく挙げられる。
 ブロック共重合体(X)は、上記重合体ブロック(B)を少なくとも1つ有していればよい。ブロック共重合体が重合体ブロック(B)を2つ以上有する場合には、それら重合体ブロック(B)は、同一であっても異なっていてもよい。
(Other Structural Units in Polymer Block (B))
The polymer block (B) may contain structural units derived from polymerizable monomers other than the conjugated diene compound as long as the objects and effects of the present invention are not hindered. In this case, in the polymer block (B), the content of structural units derived from polymerizable monomers other than the conjugated diene compound is preferably less than 70 mol%, more preferably less than 50 mol%, and further Preferably less than 35 mol %, particularly preferably less than 20 mol %. The content of structural units derived from other polymerizable monomers other than the conjugated diene compound is not particularly limited, but may be 0 mol %, may be more than 0 mol %, It may be 5 mol % or more, or 10 mol % or more. In other words, in the polymer block (B), the content of structural units derived from polymerizable monomers other than the conjugated diene compound is preferably 0 mol % or more and less than 70 mol %.
Examples of other polymerizable monomers include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, N - Aromatic vinyl compounds such as vinylcarbazole, vinylnaphthalene and vinylanthracene, as well as methyl methacrylate, methyl vinyl ether, β-pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran, 1,3- At least one compound selected from the group consisting of cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene and the like is preferably included.
The block copolymer (X) may have at least one polymer block (B). When the block copolymer has two or more polymer blocks (B), the polymer blocks (B) may be the same or different.
 重合体ブロック(B)が水素添加物である場合、重合体ブロック(B)の水素添加率は、耐熱性や耐候性の観点から、好ましくは80モル%以上、より好ましくは85モル%以上、更に好ましくは87モル%以上である。上限に特に制限はないが、例えば、99.8モル%以下とすることができ、99.5モル%以下でもよく、99モル%以下でもよい。換言すれば、重合体ブロック(B)の水素添加率は、好ましくは80~99.8モル%である。
 重合体ブロック(B)の水素添加率は、例えば、水素添加触媒の添加量や反応時間を制御することにより、上記範囲にすることができる。
 なお、上記水素添加率は、重合体ブロック(B)中の共役ジエン化合物単位中の炭素-炭素二重結合の含有量を、水素添加後のH-NMR測定によって求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
When the polymer block (B) is a hydrogenated product, the hydrogenation rate of the polymer block (B) is preferably 80 mol% or more, more preferably 85 mol% or more, from the viewpoint of heat resistance and weather resistance. More preferably, it is 87 mol % or more. Although the upper limit is not particularly limited, it may be, for example, 99.8 mol % or less, may be 99.5 mol % or less, or may be 99 mol % or less. In other words, the hydrogenation rate of polymer block (B) is preferably 80 to 99.8 mol %.
The hydrogenation rate of the polymer block (B) can be set within the above range, for example, by controlling the addition amount of the hydrogenation catalyst and the reaction time.
The above hydrogenation rate is a value obtained by measuring the carbon-carbon double bond content in the conjugated diene compound unit in the polymer block (B) by 1 H-NMR measurement after hydrogenation. Specifically, it is a value measured according to the method described in Examples.
(重合体ブロック(A)と重合体ブロック(B)の結合形式)
 ブロック共重合体(X)は、重合体ブロック(A)と重合体ブロック(B)とが結合している限りは、その結合形式は限定されず、直鎖状、分岐状、放射状、又はこれらの2つ以上が組合わさった結合形式のいずれでもよい。なかでも、重合体ブロック(A)と重合体ブロック(B)の結合形式は直鎖状であることが好ましく、その例としては重合体ブロック(A)をAで、また重合体ブロック(B)をBで表したときに、A-Bで示されるジブロック共重合体、A-B-A又はB-A-Bで示されるトリブロック共重合体、A-B-A-Bで示されるテトラブロック共重合体、A-B-A-B-A又はB-A-B-A-Bで示されるペンタブロック共重合体、(A-B)Z型共重合体(Zはカップリング剤残基を表し、nは3以上の整数を表す)等を挙げることができる。なかでも、直鎖状のトリブロック共重合体、又はジブロック共重合体が好ましく、A-B-A型のトリブロック共重合体が、柔軟性、製造の容易性等の観点から好ましく用いられる。
 A-B-A型のトリブロック共重合体として具体的には、スチレン-イソプレン-スチレン共重合体、スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン/ブタジエン-スチレン共重合体が挙げられる。すなわち、ブロック共重合体(X)として、スチレン-イソプレン-スチレン共重合体又はスチレン-ブタジエン-スチレン共重合体を含むことが好ましい。
(Bond form of polymer block (A) and polymer block (B))
The block copolymer (X) is not limited in its bonding form as long as the polymer block (A) and the polymer block (B) are bonded. may be any combination form in which two or more of are combined. Among others, the form of bonding between polymer block (A) and polymer block (B) is preferably linear. When represented by B, a diblock copolymer represented by AB, a triblock copolymer represented by ABA or BAB, represented by ABAB Tetrablock copolymer, pentablock copolymer represented by ABABA or BABABAB, (AB) n Z type copolymer (Z is a coupling and n represents an integer of 3 or more). Among them, linear triblock copolymers or diblock copolymers are preferable, and ABA type triblock copolymers are preferably used from the viewpoint of flexibility, ease of production, and the like. .
Specific examples of ABA type triblock copolymers include styrene-isoprene-styrene copolymers, styrene-butadiene-styrene copolymers, and styrene-isoprene/butadiene-styrene copolymers. That is, the block copolymer (X) preferably contains a styrene-isoprene-styrene copolymer or a styrene-butadiene-styrene copolymer.
 ここで、本明細書においては、同種の重合体ブロックが二官能のカップリング剤等を介して直線状に結合している場合、結合している重合体ブロック全体は1つの重合体ブロックとして取り扱われる。これに従い、上記例示も含め、本来、厳密にはY-Z-Y(Zはカップリング残基を表す)と表記されるべき重合体ブロックは、特に単独の重合体ブロックYと区別する必要がある場合を除き、全体としてYと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはA-B-Z-B-A(Zはカップリング剤残基を表す)と表記されるべきブロック共重合体はA-B-Aと表記され、トリブロック共重合体の一例として取り扱われる。 Here, in the present specification, when polymer blocks of the same type are linearly bonded via a bifunctional coupling agent or the like, the entire bonded polymer blocks are treated as one polymer block. be Accordingly, it is necessary to distinguish the polymer block, which should be strictly represented as YZY (Z represents a coupling residue), from the single polymer block Y, including the above examples. Denoted as a Y as a whole, except in some cases. Polymer blocks of this type containing coupling agent residues are treated as above herein, so that, for example, they contain coupling agent residues and are strictly A-B-Z-B-A ( Z represents a coupling agent residue) is written as ABA and is treated as an example of a triblock copolymer.
(重合体ブロック(A)及び(B)の含有量)
 ブロック共重合体(X)において、本発明の目的及び効果の妨げにならない限り、前記重合ブロック(A)及び(B)以外の他の重合体ブロックを含有していてもよいが、前記重合体ブロック(A)及び前記重合体ブロック(B)の合計含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、特に好ましくは、実質的には100質量%である。90質量%以上であれば、より優れた力学物性を発揮しやすい樹脂組成物を得やすくなる。換言すれば、上記ブロック共重合体(X)における重合体ブロック(A)及び前記重合体ブロック(B)の合計含有量は、好ましくは90~100質量%である。
(Contents of polymer blocks (A) and (B))
The block copolymer (X) may contain polymer blocks other than the polymer blocks (A) and (B) as long as the objects and effects of the present invention are not hindered. The total content of block (A) and polymer block (B) is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably substantially 100% by mass. If it is 90% by mass or more, it becomes easier to obtain a resin composition that tends to exhibit better mechanical properties. In other words, the total content of polymer block (A) and polymer block (B) in block copolymer (X) is preferably 90 to 100% by mass.
(ブロック共重合体(X)の重量平均分子量)
 ブロック共重合体(X)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めた重量平均分子量(Mw)は、好ましくは10,000~200,000、より好ましくは20,000~180,000、更に好ましくは40,000~170,000、より更に好ましくは50,000~160,000、特に好ましくは60,000~150,000、最も好ましくは70,000~150,000である。ブロック共重合体(X)の重量平均分子量(Mw)が10,000以上であれば、耐熱性が高くなり、200,000以下であれば、得られる熱可塑性エラストマー組成物の取扱い性が良好となる。
 なお、ブロック共重合体(X)の重量平均分子量(Mw)は、具体的には実施例に記載の方法で測定または算出できる。
(Weight average molecular weight of block copolymer (X))
The weight average molecular weight (Mw) of the block copolymer (X) obtained by gel permeation chromatography in terms of standard polystyrene is preferably 10,000 to 200,000, more preferably 20,000 to 180,000, and further It is preferably 40,000 to 170,000, even more preferably 50,000 to 160,000, particularly preferably 60,000 to 150,000, most preferably 70,000 to 150,000. When the weight-average molecular weight (Mw) of the block copolymer (X) is 10,000 or more, the heat resistance is high, and when it is 200,000 or less, the resulting thermoplastic elastomer composition has good handleability. Become.
The weight average molecular weight (Mw) of the block copolymer (X) can be specifically measured or calculated by the method described in Examples.
(ブロック共重合体(X)の分子量分布)
 ブロック共重合体(X)の分子量分布(Mw/Mn)は、好ましくは1.00~2.00、より好ましくは1.00~1.60、更に好ましくは1.00~1.40、より更に好ましくは1.00~1.20である。分子量分布が前記範囲内であると、ブロック共重合体(X)の粘度のばらつきが小さく取り扱いが容易である。
 なお、ブロック共重合体(X)の分子量分布(Mw/Mn)は、具体的には実施例に記載の方法で測定または算出できる。
(Molecular weight distribution of block copolymer (X))
The molecular weight distribution (Mw/Mn) of the block copolymer (X) is preferably 1.00 to 2.00, more preferably 1.00 to 1.60, still more preferably 1.00 to 1.40, and more preferably It is more preferably 1.00 to 1.20. When the molecular weight distribution is within the above range, the block copolymer (X) has little variation in viscosity and is easy to handle.
The molecular weight distribution (Mw/Mn) of the block copolymer (X) can be specifically measured or calculated by the method described in Examples.
(ブロック共重合体(X)の製造方法)
 ブロック共重合体(X)が、例えば重合体ブロック(A)及び重合体ブロック(B)を含有する未水添ブロック共重合体(X0)である場合、アニオン重合により得る重合工程により好適に製造できる。更に、ブロック共重合体(X)が水添ブロック共重合体(X10)である場合、未水添ブロック共重合体(X0)中の共役ジエン化合物単位における炭素-炭素二重結合を水素添加する工程により好適に製造できる。
(Method for producing block copolymer (X))
When the block copolymer (X) is, for example, an unhydrogenated block copolymer (X0) containing polymer block (A) and polymer block (B), it is preferably produced by a polymerization process obtained by anionic polymerization. can. Furthermore, when the block copolymer (X) is a hydrogenated block copolymer (X10), the carbon-carbon double bond in the conjugated diene compound unit in the unhydrogenated block copolymer (X0) is hydrogenated. It can be manufactured suitably by the process.
(重合工程)
 未水添ブロック共重合体(X0)は、例えば、溶液重合法、乳化重合法、又は固相重合法等により製造することができる。なかでも溶液重合法が好ましく、例えば、アニオン重合、カチオン重合等のイオン重合法、ラジカル重合法等の公知の方法を適用できる。なかでも、アニオン重合法が好ましい。アニオン重合法では、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物及び共役ジエン化合物を逐次添加して、ブロック共重合体を得、必要に応じてカップリング剤を添加して反応させればよい。
(Polymerization process)
The unhydrogenated block copolymer (X0) can be produced, for example, by a solution polymerization method, an emulsion polymerization method, a solid phase polymerization method, or the like. Among them, a solution polymerization method is preferable, and known methods such as anion polymerization, ionic polymerization such as cationic polymerization, and radical polymerization can be applied. Among them, the anionic polymerization method is preferred. In the anionic polymerization method, an aromatic vinyl compound and a conjugated diene compound are sequentially added in the presence of a solvent, an anionic polymerization initiator, and optionally a Lewis base to obtain a block copolymer, and coupling is performed if necessary. What is necessary is just to add an agent and to make it react.
 上記方法においてアニオン重合の重合開始剤として使用し得る有機リチウム化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウム等が挙げられる。また、重合開始剤として使用し得るジリチウム化合物としては、例えばナフタレンジリチウム、ジリチオヘキシルベンゼン等が挙げられる。
 前記カップリング剤としては、例えばジクロロメタン、ジブロモメタン、ジクロロエタン、ジブロモエタン、ジブロモベンゼン、安息香酸フェニル等が挙げられる。
 これらの重合開始剤及びカップリング剤の使用量は、ブロック共重合体(X)又は水添ブロック共重合体(X10)の所望とする重量平均分子量により適宜決定される。通常は、アルキルリチウム化合物、ジリチウム化合物等の開始剤は、重合に用いる芳香族ビニル化合物及び共役ジエン化合物等の単量体の合計100質量部当たり0.01~0.2質量部の割合で用いられるのが好ましく、カップリング剤を使用する場合は、前記単量体の合計100質量部当たり0.001~0.8質量部の割合で用いられるのが好ましい。
Examples of organic lithium compounds that can be used as polymerization initiators for anionic polymerization in the above method include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and pentyllithium. Examples of dilithium compounds that can be used as polymerization initiators include naphthalenedilithium and dilithiohexylbenzene.
Examples of the coupling agent include dichloromethane, dibromomethane, dichloroethane, dibromoethane, dibromobenzene, and phenyl benzoate.
The amounts of these polymerization initiators and coupling agents to be used are appropriately determined according to the desired weight-average molecular weight of the block copolymer (X) or the hydrogenated block copolymer (X10). Generally, initiators such as alkyllithium compounds and dilithium compounds are used in a proportion of 0.01 to 0.2 parts by mass per 100 parts by mass of the total amount of monomers such as aromatic vinyl compounds and conjugated diene compounds used for polymerization. When a coupling agent is used, it is preferably used in a proportion of 0.001 to 0.8 parts by mass per 100 parts by mass of the monomers.
 溶媒としては、アニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、シクロヘキサン、メチルシクロヘキサン、n-ヘキサン、n-ペンタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。また、重合反応は、通常0~100℃、好ましくは10~70℃の温度で、0.5~50時間、好ましくは1~30時間行う。 The solvent is not particularly limited as long as it does not adversely affect the anionic polymerization reaction. Examples include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane and n-pentane; aromatic hydrocarbons such as benzene, toluene and xylene. etc. The polymerization reaction is usually carried out at a temperature of 0 to 100°C, preferably 10 to 70°C, for 0.5 to 50 hours, preferably 1 to 30 hours.
 また、共役ジエン化合物の重合の際に共触媒としてルイス塩基を添加する方法により、重合体ブロック(B)における上記脂環式骨格(P)の含有量や、3,4-結合及び1,2-結合の含有量を調整することができる。
 用いることのできるルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)等のエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等のグリコールエーテル類;トリエチルアミン、N,N,N’,N’-テトラメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、N-メチルモルホリン等のアミン類;ナトリウムt-ブチレート、ナトリウムt-アミレート又はナトリウムイソペンチレート等の脂肪族アルコールのナトリウム又はカリウム塩、あるいは、ジアルキルナトリウムシクロヘキサノレート、例えば、ナトリウムメントレートのような脂環式アルコールのナトリウム又はカリウム塩等の金属塩;等が挙げられる。
 これらのルイス塩基は、1種単独で又は2種以上を組み合わせて用いることができる。ルイス塩基を使用する場合、その量は、通常、アニオン重合開始剤1モルに対して0.01~1,000モル当量の範囲であることが好ましい。
Further, the content of the alicyclic skeleton (P) in the polymer block (B), the 3,4-bond and 1,2 - The binding content can be adjusted.
Lewis bases that can be used include, for example, ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, 2,2-di(2-tetrahydrofuryl)propane (DTHFP); ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, Glycol ethers such as tetraethylene glycol dimethyl ether; Amines such as triethylamine, N,N,N',N'-tetramethylenediamine, N,N,N',N'-tetramethylethylenediamine (TMEDA) and N-methylmorpholine ; sodium or potassium salts of fatty alcohols such as sodium t-butylate, sodium t-amylate or sodium isopentylate; or sodium or potassium salts of cycloaliphatic alcohols such as dialkyl sodium cyclohexanolate, e.g. metal salts such as potassium salts; and the like.
These Lewis bases can be used singly or in combination of two or more. When a Lewis base is used, its amount is preferably in the range of 0.01 to 1,000 molar equivalents per 1 mol of the anionic polymerization initiator.
(水素添加反応)
 上記の製造方法により得られたブロック共重合体(X)を、不活性有機溶媒中で水添触媒の存在下に水素添加反応(水添反応)することにより、水添ブロック共重合体(X10)を作製することができる。上記水添反応により、ブロック共重合体(X)における重合体ブロック(B)及び、さらに存在してもよい他の重合体ブロック中の共役ジエン化合物由来の炭素-炭素二重結合が水素添加され、ブロック共重合体(X)の水素添加物、すなわち、水添ブロック共重合体(X10)とすることができる。
 水添反応は、水素圧力を0.1~20MPa程度、好ましくは0.5~15MPa、より好ましくは0.5~5MPa、反応温度を20~250℃程度、好ましくは50~180℃、より好ましくは70~180℃、反応時間を通常0.1~100時間程度、好ましくは1~50時間として実施することができる。
 水添触媒としては、例えば、ラネーニッケル;Pt、Pd、Ru、Rh、Ni等の金属をカーボン、アルミナ、珪藻土等の担体に担持させた不均一系触媒;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物等との組み合わせからなるチーグラー系触媒;メタロセン系触媒等が挙げられる。
(Hydrogenation reaction)
Hydrogenated block copolymer (X10 ) can be made. By the hydrogenation reaction, the polymer block (B) in the block copolymer (X) and the carbon-carbon double bonds derived from the conjugated diene compound in other polymer blocks that may be present are hydrogenated. , a hydrogenated product of the block copolymer (X), that is, a hydrogenated block copolymer (X10).
In the hydrogenation reaction, the hydrogen pressure is about 0.1 to 20 MPa, preferably 0.5 to 15 MPa, more preferably 0.5 to 5 MPa, and the reaction temperature is about 20 to 250° C., preferably 50 to 180° C., more preferably. is 70 to 180° C. and the reaction time is usually about 0.1 to 100 hours, preferably 1 to 50 hours.
Hydrogenation catalysts include, for example, Raney nickel; heterogeneous catalysts in which metals such as Pt, Pd, Ru, Rh, and Ni are supported on carriers such as carbon, alumina, and diatomaceous earth; transition metal compounds, alkylaluminum compounds, and alkyllithium. Examples include Ziegler-based catalysts in combination with compounds and the like; metallocene-based catalysts, and the like.
 このようにして得られた水添ブロック共重合体(X10)は、重合反応液をメタノール等に注ぐことにより凝固させた後、加熱又は減圧乾燥させるか、重合反応液をスチームとともに熱水中に注ぎ、溶媒を共沸させて除去するいわゆるスチームストリッピングを施した後、加熱又は減圧乾燥することにより取得することができる。 The hydrogenated block copolymer (X10) thus obtained is solidified by pouring the polymerization reaction solution into methanol or the like and then dried by heating or under reduced pressure, or the polymerization reaction solution is immersed in hot water together with steam. It can be obtained by pouring, applying so-called steam stripping in which the solvent is azeotropically removed, and then drying by heating or under reduced pressure.
 水素添加物とする際の上記重合体ブロック(B)中の炭素-炭素二重結合の水素添加率をどの程度にするかは、樹脂組成物の各種用途において所望される性能に応じて特定することができる。
 なお、水添ブロック共重合体(X10)中の共役ジエン化合物単位における炭素-炭素二重結合の水素添加率(重合体ブロック(B)における水素添加率)は、具体的には実施例に記載の方法で測定または算出できる。
The degree of hydrogenation of the carbon-carbon double bonds in the polymer block (B) when the polymer block (B) is used as a hydrogenated product is specified according to the performance desired in various applications of the resin composition. be able to.
The hydrogenation rate of the carbon-carbon double bond in the conjugated diene compound unit in the hydrogenated block copolymer (X10) (the hydrogenation rate in the polymer block (B)) is specifically described in Examples. can be measured or calculated by the method of
<<液状ゴム成分(Y)>>
 上記熱可塑性エラストマー組成物に含まれる液状ゴム成分(Y)は、38℃における溶融粘度が2000Pa・s以下の合成ゴムである。
 液状ゴム成分(Y)は、水素添加されていない液状ゴムであってもよいし、液状ゴムの水素添加物であってもよい。本明細書において、「液状ゴム成分(Y)」には、水素添加する前の液状ゴム(以下、未水添液状ゴム(Y0)と称することがある)、及び、未水添液状ゴム(Y0)を水素添加した液状ゴム(以下、水添液状ゴム(Y10)と称することがある)が含まれる。液状ゴム成分(Y)は、未水添液状ゴム(Y0)と水添液状ゴム(Y10)の両方を含んでいてもよい。
 以下、液状ゴム成分(Y)について説明するが、特に断りのない限り、これらの説明は、未水添液状ゴム(Y0)及び水添液状ゴム(Y10)のいずれにも当てはまる。
<<Liquid rubber component (Y)>>
The liquid rubber component (Y) contained in the thermoplastic elastomer composition is a synthetic rubber having a melt viscosity of 2000 Pa·s or less at 38°C.
The liquid rubber component (Y) may be a non-hydrogenated liquid rubber or a hydrogenated liquid rubber. In this specification, the "liquid rubber component (Y)" includes liquid rubber before hydrogenation (hereinafter sometimes referred to as unhydrogenated liquid rubber (Y0)) and unhydrogenated liquid rubber (Y0 ) (hereinafter sometimes referred to as hydrogenated liquid rubber (Y10)). The liquid rubber component (Y) may contain both the non-hydrogenated liquid rubber (Y0) and the hydrogenated liquid rubber (Y10).
The liquid rubber component (Y) will be described below, but unless otherwise specified, these descriptions apply to both the non-hydrogenated liquid rubber (Y0) and the hydrogenated liquid rubber (Y10).
 液状ゴム成分(Y)としては、液状イソプレンゴム、液状ブタジエンゴム、液状スチレンブタジエンゴム等の液状ジエン系ゴムが挙げられる。これらの中でも、熱可塑性エラストマー組成物の柔軟性の観点から、液状イソプレンゴムが好ましい。また、熱可塑性エラストマー組成物の力学強度の観点からは、液状ブタジエンゴムが好ましい。
 上記液状ゴム成分(Y)は、38℃における溶融粘度(以下、「38℃溶融粘度」ともいう)の制御の観点から、イソプレンおよびブタジエン以外の共役ジエン化合物単位、および芳香族ビニル化合物単位などの他の単量体単位を含有してもよい。
 上記液状ゴム成分(Y)は、重合体を構成する全単量体単位に対して、50質量%以上のイソプレン及びブタジエン単位の少なくとも一方を含む重合体であることが好ましい。上記イソプレン単位及びブタジエン単位の合計含有量は、液状ジエン系ゴムを構成する全単量体単位に対して、60質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましい。
Examples of the liquid rubber component (Y) include liquid diene rubbers such as liquid isoprene rubber, liquid butadiene rubber, and liquid styrene-butadiene rubber. Among these, liquid isoprene rubber is preferable from the viewpoint of flexibility of the thermoplastic elastomer composition. Liquid butadiene rubber is preferable from the viewpoint of the mechanical strength of the thermoplastic elastomer composition.
From the viewpoint of controlling the melt viscosity at 38° C. (hereinafter also referred to as “38° C. melt viscosity”), the liquid rubber component (Y) contains conjugated diene compound units other than isoprene and butadiene, aromatic vinyl compound units, and the like. It may contain other monomeric units.
The liquid rubber component (Y) is preferably a polymer containing at least one of isoprene and butadiene units in an amount of 50 mass % or more based on all monomer units constituting the polymer. The total content of the isoprene units and butadiene units is preferably 60% by mass or more and 100% by mass or less, and 70% by mass or more and 100% by mass or less, based on the total monomer units constituting the liquid diene rubber. is more preferable.
 上記液状ゴム成分(Y)のビニル結合量は、樹脂組成物のUV硬化速度の観点から、好ましくは3モル%以上、より好ましくは10モル%以上、更に好ましくは30モル%以上、より更に好ましくは35モル%以上、より更に好ましくは40モル%以上、より更に好ましくは45モル%以上、より更に好ましくは50モル%以上、より更に好ましくは55モル%以上、より更に好ましくは60モル%以上、より更に好ましくは約65モル%以上であり、また、好ましくは90モル%以下、より好ましくは70モル%以下である。
 ビニル結合量は、液状ジエン系ゴムを構成する全ての構造単位に基づくビニル単位のモル割合である。液状ジエン系ゴムにおけるブタジエン単位においては、1,2-結合量をビニル結合量といい、液状ジエン系ゴムにおけるイソプレン単位においては、1,2-結合量及び3,4-結合量の合計量をビニル結合量といい、液状ジエン系ゴムの全結合形態におけるビニル結合量の含有量を「液状ジエン系ゴムのビニル結合量(モル%)」と称する。イソプロペニルエチレン基及び1-メチル-1-ビニルエチレン基は、イソプレン単位のビニル単位に対応し、ビニルエチレン単位は、ブタジエン単位のビニル単位に対応する。
 なお、液状ゴム成分(Y)のビニル結合量は、具体的には実施例に記載の方法で測定または算出できる。
The vinyl bond content of the liquid rubber component (Y) is preferably 3 mol % or more, more preferably 10 mol % or more, even more preferably 30 mol % or more, and even more preferably, from the viewpoint of the UV curing speed of the resin composition. is 35 mol% or more, more preferably 40 mol% or more, still more preferably 45 mol% or more, still more preferably 50 mol% or more, still more preferably 55 mol% or more, still more preferably 60 mol% or more , more preferably about 65 mol % or more, preferably 90 mol % or less, more preferably 70 mol % or less.
The amount of vinyl bonds is the molar ratio of vinyl units based on all structural units constituting the liquid diene rubber. In the butadiene unit in the liquid diene rubber, the 1,2-bond amount is called the vinyl bond amount, and in the isoprene unit in the liquid diene rubber, the total amount of the 1,2-bond amount and the 3,4-bond amount is The amount of vinyl bonds is called the amount of vinyl bonds, and the content of the amount of vinyl bonds in the form of all bonds in the liquid diene rubber is referred to as "the amount of vinyl bonds (mol %) of the liquid diene rubber". The isopropenylethylene and 1-methyl-1-vinylethylene groups correspond to the vinyl units of the isoprene units, and the vinylethylene units correspond to the vinyl units of the butadiene units.
The vinyl bond content of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
 液状ゴム成分(Y)は、公知の方法、例えば、イソプレン及び/又はブタジエン及び必要に応じて追加される単量体を、例えば、乳化重合又は溶液重合などの方法により重合することにより調製できる。中でも、溶液重合法が特に好ましい。 The liquid rubber component (Y) can be prepared by a known method, for example, by polymerizing isoprene and/or butadiene and optionally added monomers by a method such as emulsion polymerization or solution polymerization. Among them, the solution polymerization method is particularly preferred.
 また、上記単量体を重合させたもの(つまり、未水添液状ゴム(Y0))を、実施例で後述する水添ブロック共重合体の製造方法と同様の方法で水素添加することにより、水添液状ゴム(Y10)を得ることができる。
 液状ゴム成分(Y)は、水素添加物及び未水素添加物のいずれであってもよいが、液状ゴム成分(Y)が水素添加物であると、38℃における溶融粘度をより高くすることができる。
Further, by hydrogenating the polymerized monomer (that is, unhydrogenated liquid rubber (Y0)) in the same manner as the method for producing a hydrogenated block copolymer described later in Examples, A hydrogenated liquid rubber (Y10) can be obtained.
The liquid rubber component (Y) may be either hydrogenated or unhydrogenated, but if the liquid rubber component (Y) is hydrogenated, the melt viscosity at 38° C. can be increased. can.
 液状ゴム成分(Y)が液状ゴムの水素添加物である場合、液状ゴム成分(Y)の水素添加率は、耐熱性および耐候性の観点から、好ましくは80モル%以上、より好ましくは85モル%以上、更に好ましくは87モル%以上である。上限に特に制限はないが、例えば、99.8モル%以下とすることができ、99.5モル%以下でもよく、99.0モル%以下でもよい。換言すれば、液状ゴム成分(Y)の水素添加率は、好ましくは80~99.8モル%である。
 液状ゴム成分(Y)の水素添加率は、例えば、水素添加触媒の添加量や反応時間を制御することにより、上記範囲にすることができる。
 なお、液状ゴム成分(Y)の水素添加率は、具体的には実施例に記載の方法で測定または算出できる。
When the liquid rubber component (Y) is a hydrogenated liquid rubber, the hydrogenation rate of the liquid rubber component (Y) is preferably 80 mol% or more, more preferably 85 mol, from the viewpoint of heat resistance and weather resistance. % or more, more preferably 87 mol % or more. Although the upper limit is not particularly limited, it may be, for example, 99.8 mol % or less, or may be 99.5 mol % or less, or 99.0 mol % or less. In other words, the hydrogenation rate of the liquid rubber component (Y) is preferably 80 to 99.8 mol%.
The hydrogenation rate of the liquid rubber component (Y) can be set within the above range by, for example, controlling the addition amount of the hydrogenation catalyst and the reaction time.
The hydrogenation rate of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
 液状ゴム成分(Y)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めた重量平均分子量は、機械強度及び分散性の観点から、好ましくは2,000~300,000、より好ましくは3,000~200,000、更に好ましくは4,000~100,000、より更に好ましくは5,000~70,000、特に好ましくは5,500~60,000である。
 液状ゴム成分(Y)の重量平均分子量は、例えば、重合に用いる重合開始剤に対する共役ジエン化合物の量を調整することにより、上記範囲とすることができる。
 なお、液状ゴム成分(Y)の重量平均分子量は、具体的には実施例に記載の方法で測定または算出できる。
The weight-average molecular weight of the liquid rubber component (Y) obtained by gel permeation chromatography in terms of standard polystyrene is preferably from 2,000 to 300,000, more preferably from 3,000 to 3,000, from the viewpoint of mechanical strength and dispersibility. 200,000, more preferably 4,000 to 100,000, even more preferably 5,000 to 70,000, particularly preferably 5,500 to 60,000.
The weight-average molecular weight of the liquid rubber component (Y) can be set within the above range, for example, by adjusting the amount of the conjugated diene compound relative to the polymerization initiator used for polymerization.
The weight average molecular weight of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
 液状ゴム成分(Y)の38℃溶融粘度は、ブロック共重合体(X)への分散性及び力学特性を確保する観点から、好ましくは0.1~2,000Pa・s、より好ましくは0.5~1,900Pa・s、更に好ましくは1~1,700Pa・s、より更に好ましくは2.5~1,600Pa・s、より更に好ましくは5~1,500Pa・s、より更に好ましくは10~1,400Pa・s、より更に好ましくは20~1,300Pa・sである。
 なお、高粘度(38℃溶融粘度:400~2,000Pa・s)の液状ゴム成分(Y)を用いることでエラストマー組成物の力学物性が向上し、低粘度(38℃溶融粘度:0.1~399Pa・s)の液状ゴム成分(Y)を用いることで、熱可塑性エラストマー組成物の成形性が向上する。
 液状ゴム成分(Y)の38℃溶融粘度は、ブルックフィールド粘度計(BROOKFIELD ENGINEERING LABS. INC.製)を用いて測定することができる。
 液状ゴム成分(Y)の38℃溶融粘度は、例えば、使用する共役ジエン化合物の種類やその重合体の重量平均分子量及び水素添加率を調整することで上記範囲とすることができる。
 なお、液状ゴム成分(Y)の38℃溶融粘度は、具体的には実施例に記載の方法で測定または算出できる。
The 38° C. melt viscosity of the liquid rubber component (Y) is preferably 0.1 to 2,000 Pa·s, more preferably 0.1 to 2,000 Pa·s, from the viewpoint of ensuring dispersibility in the block copolymer (X) and mechanical properties. 5 to 1,900 Pa s, more preferably 1 to 1,700 Pa s, still more preferably 2.5 to 1,600 Pa s, still more preferably 5 to 1,500 Pa s, still more preferably 10 to 1,400 Pa·s, more preferably 20 to 1,300 Pa·s.
By using a liquid rubber component (Y) with a high viscosity (melt viscosity at 38°C: 400 to 2,000 Pa s), the mechanical properties of the elastomer composition are improved, and a low viscosity (melt viscosity at 38°C: 0.1 By using the liquid rubber component (Y) having a viscosity of up to 399 Pa·s), the moldability of the thermoplastic elastomer composition is improved.
The 38° C. melt viscosity of the liquid rubber component (Y) can be measured using a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LAB. INC.).
The 38° C. melt viscosity of the liquid rubber component (Y) can be controlled within the above range by adjusting the type of conjugated diene compound used, the weight average molecular weight of the polymer, and the hydrogenation rate.
The 38° C. melt viscosity of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
 液状ゴム成分(Y)の分子量分布(Mw/Mn)は、好ましくは1.00~2.00、より好ましくは1.00~1.60、更に好ましくは1.00~1.40、より更に好ましくは1.00~1.20である。分子量分布が前記範囲内であると、液状ゴム成分(Y)の粘度のばらつきが小さく、取り扱いが容易である。
 なお、液状ゴム成分(Y)の分子量分布(Mw/Mn)は、具体的には実施例に記載の方法で測定または算出できる。
The molecular weight distribution (Mw/Mn) of the liquid rubber component (Y) is preferably from 1.00 to 2.00, more preferably from 1.00 to 1.60, even more preferably from 1.00 to 1.40, and even more preferably from 1.00 to 1.40. It is preferably 1.00 to 1.20. When the molecular weight distribution is within the above range, the liquid rubber component (Y) has little variation in viscosity and is easy to handle.
The molecular weight distribution (Mw/Mn) of the liquid rubber component (Y) can be specifically measured or calculated by the method described in Examples.
 上記熱可塑性エラストマー組成物においては、液状ゴム成分(Y)の含有量がブロック共重合体(X)100質量部に対して、10質量部以上150質量部未満である限り、特に制限はないが、本発明の熱可塑性エラストマー組成物のペレットが本発明の効果を奏し、また、当該熱可塑性エラストマー組成物を用いて作製される樹脂組成物等における液状ゴム成分(Y)の含有量を十分に確保しやすくする観点から、好ましくは15質量部以上、更に好ましくは20質量部以上、より更に好ましくは30質量部以上、より更に好ましくは31質量部以上、より更に好ましくは40質量部以上、より更に好ましくは46質量部以上、より更に好ましくは50質量部以上、特に好ましくは51質量部以上であり、また、ブリード抑制の観点から、好ましくは140質量部以下、より好ましくは120質量部以下、更に好ましくは100質量部以下である。換言すれば、液状ゴム成分(Y)の含有量がブロック共重合体(X)100質量に対して、好ましくは15~140質量部である。 In the thermoplastic elastomer composition, there is no particular limitation as long as the content of the liquid rubber component (Y) is 10 parts by mass or more and less than 150 parts by mass with respect to 100 parts by mass of the block copolymer (X). , the pellets of the thermoplastic elastomer composition of the present invention exhibit the effects of the present invention, and the content of the liquid rubber component (Y) in the resin composition or the like produced using the thermoplastic elastomer composition is sufficiently increased. From the viewpoint of making it easier to secure, preferably 15 parts by mass or more, more preferably 20 parts by mass or more, even more preferably 30 parts by mass or more, even more preferably 31 parts by mass or more, still more preferably 40 parts by mass or more, and more More preferably 46 parts by mass or more, even more preferably 50 parts by mass or more, particularly preferably 51 parts by mass or more, and from the viewpoint of suppressing bleeding, preferably 140 parts by mass or less, more preferably 120 parts by mass or less More preferably, it is 100 parts by mass or less. In other words, the content of the liquid rubber component (Y) is preferably 15 to 140 parts by mass with respect to 100 parts by mass of the block copolymer (X).
 本発明の熱可塑性エラストマー組成物のペレットが、ブリードを抑えつつ高い含有比率で液状ゴム成分(Y)を含み得る理由は、これに限るものではないが、ブロック共重合体(X)と液状ゴム成分(Y)との含有量比が所定範囲内であることがひとつの因子であり、液状ゴム成分(Y)とブロック共重合体(X)との相容性が向上していることによると考えられる。ブロック共重合体(X)と液状ゴム成分(Y)との相容性は、両者の含有量比のほかに、分子量などに起因する運動性における両者のバランス等を適切に調整することによって向上させることが可能である。 The reason why the pellets of the thermoplastic elastomer composition of the present invention can contain the liquid rubber component (Y) at a high content ratio while suppressing bleeding is, but not limited to, the block copolymer (X) and the liquid rubber One of the factors is that the content ratio with the component (Y) is within a predetermined range, and the compatibility between the liquid rubber component (Y) and the block copolymer (X) is improved. Conceivable. Compatibility between the block copolymer (X) and the liquid rubber component (Y) can be improved by appropriately adjusting the content ratio of the two as well as the balance between the motility caused by the molecular weight and the like. It is possible to
 ブロック共重合体(X)と液状ゴム成分(Y)との組み合わせとしては、上述のブロック共重合体(X)と上述の液状ゴム成分(Y)との組み合わせである限り、特に制限はないが、ブロック共重合体(X)がブロック共重合体の未水素添加物であり、且つ、液状ゴム成分(Y)が液状ゴムの未水素添加物である組み合わせ;ブロック共重合体(X)がブロック共重合体の水素添加物であり、且つ、液状ゴム成分(Y)が液状ゴムの水素添加物である組み合わせ;が好適に挙げられる。 The combination of the block copolymer (X) and the liquid rubber component (Y) is not particularly limited as long as it is a combination of the above block copolymer (X) and the above liquid rubber component (Y). , a combination in which the block copolymer (X) is an unhydrogenated block copolymer and the liquid rubber component (Y) is an unhydrogenated liquid rubber; the block copolymer (X) is a block A combination of a hydrogenated copolymer and a combination in which the liquid rubber component (Y) is a hydrogenated liquid rubber is preferred.
 本発明の熱可塑性エラストマー組成物のペレットは、例えば、溶融混練直後の上記熱可塑性エラストマー組成物(混練装置からの吐出物)をカッター等で切断することによって得られる。
 上記ペレットは、樹脂組成物における各成分の含有割合を調整すること等を目的に、マスターバッチとして使用することができる。すなわち、熱可塑性エラストマー組成物中に比較的高濃度の液状ゴム成分(Y)を含有させてマスターバッチとしておき、例えば、これにブロック共重合体(X)を添加して溶融混練することにより、液状ゴム成分(Y)を所望の濃度まで希釈した樹脂組成物として、実使用に供することすることもできる。
Pellets of the thermoplastic elastomer composition of the present invention can be obtained, for example, by cutting the thermoplastic elastomer composition immediately after melt-kneading (discharged from the kneading device) with a cutter or the like.
The pellets can be used as a masterbatch for the purpose of adjusting the content ratio of each component in the resin composition. That is, by adding a relatively high concentration of the liquid rubber component (Y) to a thermoplastic elastomer composition to prepare a masterbatch, for example, by adding the block copolymer (X) thereto and melt-kneading, The resin composition obtained by diluting the liquid rubber component (Y) to a desired concentration may be used for practical use.
<<ブロッキング防止剤>>
 本発明のペレットにおいては、ペレットのブロッキングを防止しやすくする観点から、ペレットの表面にブロッキング防止剤(打ち粉)が接した状態で存在している。
 ブロッキング防止剤(打ち粉)としては、例えば、ポリプロピレンワックス、ポリエチレンワックス等のポリオレフィン系ワックス;含水珪酸マグネシウム(タルク);エチレンビスステアリルアミド;ステアリン酸カルシウム;ステアリン酸マグネシウム;シリカ;などが挙げられる。
<<Anti-blocking agent>>
In the pellets of the present invention, an antiblocking agent (dusting powder) is present in contact with the surface of the pellets from the viewpoint of facilitating the prevention of blocking of the pellets.
Antiblocking agents (dusting powder) include, for example, polyolefin waxes such as polypropylene wax and polyethylene wax; hydrous magnesium silicate (talc); ethylenebisstearylamide; calcium stearate; magnesium stearate;
 上記ブロッキング防止剤(打ち粉)の平均粒子径としては、ペレットへの付着性及びペレット同士の滑り性の確保の観点から、好ましくは1~15μm、より好ましくは2~14μm、更に好ましくは3~13μmである。本明細書において、平均粒子径とは、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所:SALD-7000等)で測定されるメジアン径(D50)を意味する。 The average particle size of the antiblocking agent (dusting powder) is preferably 1 to 15 μm, more preferably 2 to 14 μm, and still more preferably 3 to 15 μm, from the viewpoint of ensuring adhesion to pellets and slipping between pellets. 13 μm. As used herein, the average particle size means the median size (D 50 ) measured with a laser diffraction particle size distribution analyzer (eg, Shimadzu Corporation: SALD-7000, etc.).
 本発明のペレットは、相容性に優れた熱可塑性エラストマー組成物からなるペレットであり、ブロッキング防止剤(打ち粉)の配合量(ペレットの表面に存在する量も含めたブロッキング防止剤の含有量)を、ペレット100質量部に対して、0.1~1.5質量部の範囲にした場合でも、耐ブロッキング性に優れ、本発明のペレットを用いた成形品は所望の力学特性を発現することができる。ブロッキング防止剤(打ち粉)の配合量は、好ましくは0.2~1.5質量部、より好ましくは0.3~1.2質量部である。ブロッキング防止剤(打ち粉)は、ペレット表面に付着した状態で配合されていることが好ましいが、成形品の力学特性に影響を与えない限り、ペレット内部にある程度含まれていても構わない。ペレット内部に含まれる打ち粉の量は、例えば、打ち粉全体の質量の0~10質量%である。
 なお、ペレット内部に含まれるシリカ等は、「ブロッキング防止剤(打ち粉)」に相当する可能性があり、また、「ブロッキング防止剤(打ち粉)以外の成分としてのフィラー」に相当する可能性もあるが、本明細書において、上記ペレット内部に含まれるシリカ等がいずれに相当するかの判断基準は以下のとおりである。
<判断基準>
 ペレット内部に存在するシリカ等が、ペレット表面に付着した状態のブロッキング防止剤(打ち粉)と同一成分であり、かつ同等の平均粒子径である場合は、「ブロッキング防止剤(打ち粉)」に相当するものとする。一方、ペレット内部に存在するシリカ等が、ペレット表面に付着した状態のブロッキング防止剤(打ち粉)と同一成分でない場合、及び、同一成分であるが平均粒子径がペレット表面に付着した状態のブロッキング防止剤(打ち粉)と異なる場合、「ブロッキング防止剤(打ち粉)以外の成分としてのフィラー」に相当するものとする。ここで、ペレット表面に付着した状態のブロッキング防止剤(打ち粉)と同一成分であるか否かは、レーザー解析法による粒子径分布測定やIR分析等による測定の分析結果に基づいて判断することができる。
The pellets of the present invention are pellets made of a thermoplastic elastomer composition with excellent compatibility, and the content of the antiblocking agent (dusting powder) (including the amount present on the surface of the pellet) ) is in the range of 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the pellets, the blocking resistance is excellent, and the molded article using the pellets of the present invention exhibits desired mechanical properties. be able to. The amount of the antiblocking agent (dusting powder) is preferably 0.2 to 1.5 parts by mass, more preferably 0.3 to 1.2 parts by mass. The antiblocking agent (dusting powder) is preferably blended in a state adhering to the pellet surface, but may be contained to some extent inside the pellet as long as it does not affect the mechanical properties of the molded product. The amount of dusting powder contained inside the pellet is, for example, 0 to 10% by mass of the total weight of the dusting powder.
Silica, etc. contained inside the pellet may correspond to "anti-blocking agent (dusting powder)", and may also correspond to "filler as a component other than anti-blocking agent (dusting powder)". However, in this specification, the criteria for determining which silica or the like contained inside the pellet corresponds to are as follows.
<Judgment Criteria>
If the silica, etc. present inside the pellet is the same component as the anti-blocking agent (dusting powder) that adheres to the pellet surface and has the same average particle size, then it is classified as "anti-blocking agent (dusting powder)". shall be equivalent. On the other hand, if the silica, etc. present inside the pellet is not the same component as the anti-blocking agent (dusting powder) attached to the pellet surface, and if it is the same component but has the same average particle size as the blocking agent attached to the pellet surface When different from the antiblocking agent (dusting powder), it corresponds to "filler as a component other than the antiblocking agent (dusting powder)". Here, whether or not it is the same component as the antiblocking agent (dusting powder) attached to the pellet surface should be determined based on the analysis results of particle size distribution measurement by laser analysis or IR analysis. can be done.
<熱可塑性エラストマー組成物のペレットの耐ブロッキング性>
 本実施形態の熱可塑性エラストマー組成物のペレットの耐ブロッキング性は、ペレットに所定温度で所定の荷重を所定時間印加し、万能材料試験機でブロッキング強度を測定することにより評価することができる。
 ブロッキング強度の数値が小さいほど、耐ブロッキング性が高いことを示す。ブロッキング強度の好適な数値範囲は、後述する実施例に記載した手順で測定したときの値で、0~50Nであり、より好ましくは0~30Nであり、更に好ましくは0~20Nである。
<Blocking resistance of pellets of thermoplastic elastomer composition>
The blocking resistance of the pellets of the thermoplastic elastomer composition of the present embodiment can be evaluated by applying a predetermined load to the pellets at a predetermined temperature for a predetermined period of time and measuring the blocking strength with a universal material testing machine.
A smaller numerical value of blocking strength indicates higher blocking resistance. A preferable numerical range of the blocking strength is 0 to 50N, more preferably 0 to 30N, still more preferably 0 to 20N, as measured by the procedure described in the examples below.
<<ブロック共重合体(X)、液状ゴム成分(Y)、及びブロッキング防止剤以外の成分>>
 上記熱可塑性エラストマー組成物には、ブロック共重合体(X)、液状ゴム成分(Y)、及びブロッキング防止剤以外の成分が含まれていてもよい。
 このような成分としては、フィラー、シランカップリング剤、熱老化防止剤、酸化防止剤、光安定剤、帯電防止剤、離型剤、難燃剤、発泡剤、顔料、染料、増白剤等が挙げられる。これらの成分は、後述する樹脂組成物で説明するものと同様のものを用いることができる。
<<Ingredients other than block copolymer (X), liquid rubber component (Y), and antiblocking agent>>
The thermoplastic elastomer composition may contain components other than the block copolymer (X), the liquid rubber component (Y), and the antiblocking agent.
Such components include fillers, silane coupling agents, heat antioxidants, antioxidants, light stabilizers, antistatic agents, release agents, flame retardants, foaming agents, pigments, dyes, brighteners, and the like. mentioned. These components can be the same as those explained in the resin composition described later.
 上記熱可塑性エラストマー組成物にフィラーを含有することにより、ブリードをさらに効果的に抑制することができ、当該熱可塑性エラストマー組成物中の液状ゴム成分(Y)の含有量を高めやすくなる。
 上記熱可塑性エラストマー組成物中のフィラーの含有量は、熱可塑性エラストマー組成物100質量部に対して、好ましくは0~50質量部である。
 フィラーとしては、無機フィラー及び有機フィラーの少なくともいずれかが利用可能である。
 好ましい無機フィラーとしては、シリカ、ケイ酸塩化合物及び金属酸化物等が好ましく、シリカが特に好ましい。
 シリカとしては、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらシリカは、1種を単独で又は2種以上を併用してもよい。
 液状ゴム成分(Y)の分散をより優れさせる観点から、シリカの比表面積は20m/g以上が好ましく、50m/g以上がより好ましく、100m/g以上が更に好ましく、150m/g以上がより更に好ましい。シリカの比表面積の上限値は本発明の効果を損なわない範囲であればよい。上記比表面積の異なるシリカを併用してもよい。特に、液状ゴム成分(Y)の分散をより顕著に優れさせるには、上記比表面積が150m/g以上であるシリカを含有することが好ましい。上記顕著に優れる液状ゴム成分(Y)の分散は、熱可塑性エラストマー組成物が含有するシリカの一部(例えばシリカの総量の50質量%以上)が比表面積150m/g以上のシリカであれば、比表面積150m/g未満のシリカを併用しても発現することが期待できる。上限に特に制限はないが、例えば、比表面積400m/g以下のシリカを用いてもよく、比表面積350m/g以下のシリカを用いてもよい。
 上記シリカの比表面積は、例えばBET法により測定することができる。
 フィラーとしてシリカを用いる場合、熱可塑性エラストマー組成物中のシリカの含有量は、熱可塑性エラストマー組成物100質量部に対して、1~45質量部が好ましく、5~40質量部がより好ましく、10~35質量部が更に好ましい。
By including a filler in the thermoplastic elastomer composition, bleeding can be more effectively suppressed, and the content of the liquid rubber component (Y) in the thermoplastic elastomer composition can be easily increased.
The content of the filler in the thermoplastic elastomer composition is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer composition.
At least one of an inorganic filler and an organic filler can be used as the filler.
Preferred inorganic fillers include silica, silicate compounds and metal oxides, with silica being particularly preferred.
Examples of silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, and aluminum silicate. These silicas may be used alone or in combination of two or more.
From the viewpoint of better dispersion of the liquid rubber component (Y), the specific surface area of silica is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, still more preferably 100 m 2 /g or more, and 150 m 2 /g. The above is even more preferable. The upper limit of the specific surface area of silica may be within a range that does not impair the effects of the present invention. Silicas having different specific surface areas may be used in combination. In particular, it is preferable to contain silica having a specific surface area of 150 m 2 /g or more in order to remarkably improve the dispersion of the liquid rubber component (Y). The remarkably excellent dispersion of the liquid rubber component (Y) is achieved when a portion of the silica contained in the thermoplastic elastomer composition (for example, 50% by mass or more of the total amount of silica) is silica having a specific surface area of 150 m 2 /g or more. , it can be expected to develop even when silica having a specific surface area of less than 150 m 2 /g is used in combination. Although there is no particular upper limit, for example, silica with a specific surface area of 400 m 2 /g or less may be used, and silica with a specific surface area of 350 m 2 /g or less may be used.
The specific surface area of silica can be measured, for example, by the BET method.
When silica is used as a filler, the content of silica in the thermoplastic elastomer composition is preferably 1 to 45 parts by mass, more preferably 5 to 40 parts by mass, and 10 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer composition. ~35 parts by mass is more preferred.
 また、ケイ酸塩化合物は、好ましくはカオリン、タルク、クレー、パイロフィライト、マイカ、モンモリロナイト、ベントナイト、ワラストナイト、セピオライト、ゾノトライト、ゼオライト、ケイソウ土、及びハロイサイトからなる群から選択される1種以上のケイ酸塩化合物である。また、金属酸化物は、酸化チタン、酸化鉄、酸化マグネシウム、酸化アルミニウム、酸化セリウム、酸化アンチモン、酸化スズ、酸化鉛、酸化クロム、酸化コバルト、酸化タングステン、及び酸化銅からなる群から選択される1種以上の金属酸化物である。 The silicate compound is preferably one selected from the group consisting of kaolin, talc, clay, pyrophyllite, mica, montmorillonite, bentonite, wollastonite, sepiolite, xonotlite, zeolite, diatomaceous earth, and halloysite. It is the above silicate compound. Also, the metal oxide is selected from the group consisting of titanium oxide, iron oxide, magnesium oxide, aluminum oxide, cerium oxide, antimony oxide, tin oxide, lead oxide, chromium oxide, cobalt oxide, tungsten oxide, and copper oxide. One or more metal oxides.
 また、好ましい有機フィラーとしては、微粒子型有機フィラー及び/又は繊維型有機フィラーが例示される。前記微粒子型有機フィラーの好ましい例示としては、ウレタン微粒子、アクリル微粒子、スチレン微粒子、アクリル/スチレン系微粒子、スチレンオレフィン微粒子、フッ素系微粒子、ポリエチレン系微粒子及びシリコーン微粒子からなる群より選択される少なくとも1種の有機フィラーが挙げられる。組成物の成形性の観点から、前記微粒子型有機フィラーの好ましい平均粒子径は2~50μmである。なお平均粒子径はJIS Z 8825:2013に準拠したレーザー回折法で測定できる。 Preferable organic fillers include particulate organic fillers and/or fiber organic fillers. Preferred examples of the fine particle type organic filler include at least one selected from the group consisting of urethane fine particles, acrylic fine particles, styrene fine particles, acrylic/styrene fine particles, styrene olefin fine particles, fluorine fine particles, polyethylene fine particles and silicone fine particles. of organic fillers. From the viewpoint of moldability of the composition, the fine particle type organic filler preferably has an average particle size of 2 to 50 μm. The average particle size can be measured by a laser diffraction method conforming to JIS Z 8825:2013.
 前記繊維型有機フィラーとしては、種々の有機繊維が利用可能であり、例えば、6-ナイロン繊維、6,6-ナイロン繊維、4,6-ナイロン繊維、芳香族ポリアミド繊維、パラ系アラミド繊維、メタ系アラミド繊維、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、PVA系繊維(ビニロン)、ポリアリーレンスルフィド系繊維、2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸繊維(ベクトラン)、ポリエチレン(PE)繊維、ポリプロピレン(PP)繊維、ポリ乳酸(PLA)繊維、ポリブチレンサクシネート(PBS)繊維、ポリエチレンサクシネート繊維、シンジオタクティック-1,2-ポリブタジエン(SPB)繊維、ポリ塩化ビニル(PVC)繊維等の合成繊維、綿、麻、レーヨン、セルロース繊維等の天然(再生)繊維等が好ましく例示される。液状ゴム成分(Y)の分散の観点から、PVA系繊維(ビニロン)及びセルロース繊維がより好ましく、セルロース繊維が更に好ましい。セルロース繊維からなる有機ミクロ繊維としては、例えば、レッテンマイヤー製の製品名「ARBOCEL」で販売されているセルロース系ミクロ繊維が好ましく例示される。また、セルロース繊維からなる有機ナノ繊維としては、例えば、ダイセルファインケム株式会社製のセリッシュKY-100G(平均繊維長:500μm、平均繊維径:20nm、固形分:10質量%)等のセルロース系ナノ繊維が好ましく例示される。 Various organic fibers can be used as the fiber-type organic filler. Aramid fiber, polyethylene terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber, polyparaphenylene benzoxazole (PBO) fiber, PVA fiber (Vinylon), polyarylene sulfide fiber, 2,6-hydroxynaphthoic acid/ Parahydroxybenzoic acid fiber (Vectran), polyethylene (PE) fiber, polypropylene (PP) fiber, polylactic acid (PLA) fiber, polybutylene succinate (PBS) fiber, polyethylene succinate fiber, syndiotactic-1,2- Preferred examples include synthetic fibers such as polybutadiene (SPB) fibers and polyvinyl chloride (PVC) fibers, and natural (regenerated) fibers such as cotton, hemp, rayon and cellulose fibers. From the viewpoint of dispersion of the liquid rubber component (Y), PVA-based fibers (vinylon) and cellulose fibers are more preferred, and cellulose fibers are even more preferred. As organic microfibers made of cellulose fibers, for example, cellulose-based microfibers sold under the product name “ARBOCEL” manufactured by Rettenmeyer are preferably exemplified. As organic nanofibers made of cellulose fibers, for example, cellulose-based nanofibers such as Celish KY-100G (average fiber length: 500 μm, average fiber diameter: 20 nm, solid content: 10% by mass) manufactured by Daicel Finechem Co., Ltd. are preferably exemplified.
 前記有機繊維は、その平均繊維径によって、有機ミクロ繊維及び有機ナノ繊維に大別できる。有機ミクロ繊維は平均繊維径がマイクロメートルオーダーの有機繊維であり、その平均繊維径は好ましくは1~200μmであり、10~100μmの範囲がより好ましく、15~90μmの範囲が更に好ましい。また、有機ミクロ繊維の平均繊維長さは、特に限定されるものではないが、0.1~20mmの範囲が好ましく、0.5~15mmの範囲がより好ましく、1~10mmの範囲が更に好ましい。 The organic fibers can be broadly classified into organic microfibers and organic nanofibers according to their average fiber diameter. The organic microfibers are organic fibers having an average fiber diameter on the order of micrometers, and the average fiber diameter is preferably 1 to 200 μm, more preferably 10 to 100 μm, even more preferably 15 to 90 μm. The average fiber length of the organic microfibers is not particularly limited, but is preferably in the range of 0.1 to 20 mm, more preferably in the range of 0.5 to 15 mm, and even more preferably in the range of 1 to 10 mm. .
 また、有機ナノ繊維は平均繊維径がナノメートルオーダーの有機繊維であり、その平均繊維径は、好ましくは1~900nmの範囲であり、より好ましくは1~700nmの範囲であり、更に好ましくは1~500nmの範囲である。有機ナノ繊維の平均繊維長さは0.1~1,000μmの範囲が好ましく、1~750μmの範囲がより好ましく、5~600μmの範囲であることが更に好ましい。 Further, the organic nanofiber is an organic fiber having an average fiber diameter of nanometer order, and the average fiber diameter is preferably in the range of 1 to 900 nm, more preferably in the range of 1 to 700 nm, further preferably 1 ~500 nm range. The average fiber length of the organic nanofibers is preferably in the range of 0.1 to 1,000 μm, more preferably in the range of 1 to 750 μm, even more preferably in the range of 5 to 600 μm.
[熱可塑性エラストマー組成物のペレットの製造方法]
 本発明の第1の実施形態に係る熱可塑性エラストマー組成物のペレットの製造方法は、ブロック共重合体(X)と液状ゴム成分(Y)とを溶融混練する工程(工程1-1)を有する。
 第1の実施形態に係る熱可塑性エラストマー組成物のペレットの製造方法は、溶剤が不要であり、同じ生産設備で、多品種の熱可塑性エラストマー組成物を小ロットで製造しやすいという利点がある。
[Method for Producing Pellets of Thermoplastic Elastomer Composition]
The method for producing pellets of the thermoplastic elastomer composition according to the first embodiment of the present invention has a step of melt-kneading the block copolymer (X) and the liquid rubber component (Y) (Step 1-1). .
The method for producing pellets of a thermoplastic elastomer composition according to the first embodiment does not require a solvent, and has the advantage that it is easy to produce a wide variety of thermoplastic elastomer compositions in small lots using the same production equipment.
 上記溶融混練する工程(工程1-1)においては、液状ゴム成分(Y)の分散性を高めやすくする観点から、ブロック共重合体(X)を溶融した後に液状ゴム成分(Y)を添加して溶融混練を行うことが好ましい。 In the melt-kneading step (step 1-1), the liquid rubber component (Y) is added after the block copolymer (X) is melted, from the viewpoint of facilitating the enhancement of the dispersibility of the liquid rubber component (Y). It is preferable to perform melt-kneading at
 上記溶融混練する工程(工程1-1)においては、生産性を高めやすくする観点から、二軸押出機を用いて、溶融したブロック共重合体(X)に対して、上記二軸押出機の押出し経路の途中から液状ゴム成分(Y)を添加して溶融混練を行うことが好ましい。 In the melt-kneading step (step 1-1), a twin-screw extruder is used to melt the block copolymer (X) from the viewpoint of easily increasing productivity. It is preferable to add the liquid rubber component (Y) from the middle of the extrusion route and perform melt-kneading.
 本発明の第1の実施形態に係る熱可塑性エラストマー組成物のペレットの製造方法は、上記工程1-1(すなわち、ブロック共重合体(X)と液状ゴム成分(Y)とを溶融混練する工程)に加えて、上記工程1-1で得られた溶融混練物をペレット化する工程(工程1-2)を含んでいてもよい。
 工程1-2におけるペレット化の方法としては、例えば、一軸又は二軸押出機から上記熱可塑性エラストマー組成物をストランド状に押出して、ダイ部前面に設置された回転刃により、水中で切断する方法(アンダーウォーターペレタイジング)やカット後にペレットを水中に落とす方法(ウォーターリングホットペレタイジング);一軸又は二軸押出機から上記熱可塑性エラストマー組成物をストランド状に押出して、水冷又は空冷した後、ストランドカッターにより切断する方法;オープンロール、バンバリーミキサーにより溶融混合した後、ロールによりシート状に成形し、更に当該シートを短冊状にカットし、その後、ペレタイザーにより立方状ペレットに切断する方法;などが挙げられる。
The method for producing pellets of the thermoplastic elastomer composition according to the first embodiment of the present invention comprises step 1-1 (that is, the step of melt-kneading the block copolymer (X) and the liquid rubber component (Y)). ), a step of pelletizing the melt-kneaded product obtained in step 1-1 (step 1-2) may be included.
As a method of pelletizing in step 1-2, for example, a method of extruding the thermoplastic elastomer composition in a strand from a single-screw or twin-screw extruder and cutting it in water with a rotary blade installed in front of the die. (underwater pelletizing) or a method of dropping pellets in water after cutting (water ring hot pelletizing); , a method of cutting with a strand cutter; after melting and mixing with an open roll or a Banbury mixer, forming into a sheet with a roll, further cutting the sheet into strips, and then cutting into cubic pellets with a pelletizer; are mentioned.
 本発明の第2の実施形態に係る熱可塑性エラストマー組成物のペレットの製造方法は、ブロック共重合体(X)と第1の溶剤とを含む溶液(X’)、及び、液状ゴム成分(Y)と第2の溶剤とを含む溶液(Y’)を混合して混合液を調製する工程(工程2-1)と、
 上記混合液に含まれる前記第1及び第2の溶剤を除去して樹脂成分を得る工程(工程2-2)と、を有する。
 上記第1の溶剤と第2の溶剤としては、例えば、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ヘキサン等が挙げられる。上記第1の溶剤と第2の溶剤は、同一でもよいし、異なっていてもよい。
 第2の実施形態に係る熱可塑性エラストマー組成物のペレットの製造方法は、溶剤を用いることにより、使用可能な液状ゴム成分(Y)の粘度の制約が小さくなる。このため、熱可塑性エラストマー組成物の設計の自由度を高くすることができる。また、高粘度の液状ゴム成分(Y)を用いやすくなり、熱可塑性エラストマー組成物の力学特性等の物性を高めやすくなる。
A method for producing pellets of a thermoplastic elastomer composition according to the second embodiment of the present invention comprises a solution (X′) containing a block copolymer (X) and a first solvent, a liquid rubber component (Y ) and a second solvent (Y′) are mixed to prepare a mixed solution (step 2-1);
and a step of removing the first and second solvents contained in the mixed solution to obtain a resin component (step 2-2).
Examples of the first solvent and the second solvent include cyclopentane, cyclohexane, cycloheptane, cyclooctane, and hexane. The first solvent and the second solvent may be the same or different.
In the method for producing pellets of the thermoplastic elastomer composition according to the second embodiment, the use of a solvent reduces the restrictions on the viscosity of the liquid rubber component (Y) that can be used. Therefore, the degree of freedom in designing the thermoplastic elastomer composition can be increased. In addition, it becomes easy to use the high-viscosity liquid rubber component (Y), and it becomes easy to improve physical properties such as mechanical properties of the thermoplastic elastomer composition.
 第2の実施形態に係る熱可塑性エラストマー組成物のペレットの製造方法において、第1の溶剤と第2の溶剤が共通の溶剤である場合、ブロック共重合体(X)と液状ゴム成分(Y)とを同時に前記共通の溶剤へ添加してもよいし、ブロック共重合体(X)を前記共通の溶剤に添加した後、液状ゴム成分(Y)を前記共通の溶剤に添加してもよいし、液状ゴム成分(Y)を前記共通の溶剤に添加した後、ブロック共重合体(X)を前記共通の溶剤に添加してもよい。
 また、予め、ブロック共重合体(X)と液状ゴム成分(Y)とを溶融混練して混合物を作製しておき、これを前記共通の溶剤に溶解させてもよい。
 また、上記いずれかの方法において、上述した他の成分を適宜のタイミングで添加してもよい。
 上記各成分を溶剤に溶解させる際、溶解の対象となる成分及び溶剤のうちどちらを他方に対して添加するかについて特に制限はなく、上記成分を上記溶剤に添加してもよいし、上記溶剤を上記成分に添加してもよい。
In the method for producing pellets of the thermoplastic elastomer composition according to the second embodiment, when the first solvent and the second solvent are a common solvent, the block copolymer (X) and the liquid rubber component (Y) may be added to the common solvent at the same time, or the liquid rubber component (Y) may be added to the common solvent after the block copolymer (X) is added to the common solvent. After adding the liquid rubber component (Y) to the common solvent, the block copolymer (X) may be added to the common solvent.
Alternatively, the block copolymer (X) and the liquid rubber component (Y) may be melt-kneaded in advance to prepare a mixture, which may be dissolved in the common solvent.
Moreover, in any of the above methods, the other components described above may be added at an appropriate timing.
When dissolving each of the above components in a solvent, there is no particular limitation as to which of the component to be dissolved and the solvent is added to the other, and the component may be added to the solvent, or the solvent may be added to the solvent. may be added to the above ingredients.
 上記工程2-2において、混合液に含まれる溶剤を除去して樹脂成分を得る方法としては、樹脂成分を凝固(スチームストリッピング)する方法、混合液を高温、高圧にして、常圧下に噴霧して樹脂成分を取出すスプレードライ法等が挙げられる。 In the above step 2-2, the method of obtaining the resin component by removing the solvent contained in the mixed solution includes a method of solidifying the resin component (steam stripping), and a method of raising the mixed solution to a high temperature and high pressure and spraying it under normal pressure. and a spray drying method in which the resin component is taken out.
 本発明の第2の実施形態に係る熱可塑性エラストマー組成物のペレットの製造方法は、
 上記工程2-1(すなわち、ブロック共重合体(X)と第1の溶剤とを含む溶液(X’)、及び、液状ゴム成分(Y)と第2の溶剤とを含む溶液(Y’)を混合して混合液を調製する工程)に加えて、
 上記工程2-2(すなわち、混合液の溶剤を除去して樹脂成分を得る工程)と、
 上記樹脂成分を溶融混練してペレット化する工程(工程2-3)と、を含んでいてもよい。
A method for producing pellets of a thermoplastic elastomer composition according to the second embodiment of the present invention comprises:
Step 2-1 above (that is, the solution (X′) containing the block copolymer (X) and the first solvent, and the solution (Y′) containing the liquid rubber component (Y) and the second solvent A step of mixing to prepare a mixed solution),
The above step 2-2 (that is, the step of removing the solvent from the mixed solution to obtain the resin component);
and a step of melt-kneading and pelletizing the resin component (step 2-3).
 上記工程2-3におけるペレット化の方法は、上述した工程1-2で説明したのと同様の方法を採用することができる。
 第2の実施形態に係る熱可塑性エラストマー組成物のペレットの製造方法は、熱可塑性エラストマー組成物の設計の自由度が高く、高粘度の液状ゴム成分(Y)を用いやすくなり、力学特性等の物性が高い熱可塑性エラストマー組成物のペレットを得ることができる。
As the pelletization method in step 2-3, the same method as described in step 1-2 can be adopted.
The method for producing pellets of the thermoplastic elastomer composition according to the second embodiment has a high degree of freedom in designing the thermoplastic elastomer composition, makes it easy to use the high-viscosity liquid rubber component (Y), and improves mechanical properties and the like. Pellets of the thermoplastic elastomer composition having high physical properties can be obtained.
 上記第1又は第2のペレットの製造方法によって得られたペレットに対して、容器にペレットとブロッキング防止剤(打ち粉)とを投入して撹拌する方法、ペレタイズ後の冷却水にブロッキング防止剤(打ち粉)を添加することにより、ペレット表面にブロッキング防止剤(打ち粉)を付着させる方法、ペレットをベルトコンベアーで輸送している間に上部からブロッキング防止剤(打ち粉)を添加する方法等の方法により、ブロッキング防止剤(打ち粉)の付着したペレットが得られる。 For the pellets obtained by the first or second pellet manufacturing method, a method of putting the pellets and an antiblocking agent (dusting powder) into a container and stirring, and adding an antiblocking agent (antiblocking agent) to the cooling water after pelletizing A method of attaching an anti-blocking agent (dusting powder) to the pellet surface by adding dusting powder, a method of adding an anti-blocking agent (dusting powder) from above while the pellets are being transported on a belt conveyor, etc. The process yields pellets with an antiblocking agent (dusting agent).
[樹脂組成物]
 本発明の好適な実施形態に係る樹脂組成物は、上記熱可塑性エラストマー組成物のペレットと、(メタ)アクリルモノマーとを含む。
 上記樹脂組成物が、上記ペレットと、(メタ)アクリルモノマーとを含むことにより、当該樹脂組成物により高い力学特性を付与することができ、刷版材等に適する樹脂組成物とすることができる。(メタ)アクリルモノマーにはアクリルモノマー及びメタクリルモノマーが含まれるが、これらの中でもUV硬化のコントロールの観点からアクリルモノマーが好ましい。
[Resin composition]
A resin composition according to a preferred embodiment of the present invention comprises pellets of the thermoplastic elastomer composition and a (meth)acrylic monomer.
By including the pellets and the (meth)acrylic monomer in the resin composition, it is possible to impart higher mechanical properties to the resin composition, and the resin composition can be made suitable for printing plate materials and the like. . (Meth)acrylic monomers include acrylic monomers and methacrylic monomers, and among these, acrylic monomers are preferred from the viewpoint of controlling UV curing.
<アクリルモノマー>
 上記アクリルモノマーとしては、例えば、1,6-ヘキサンジオールジアクリレート(HDDA)、エチレングリコールジアクリレート、1,3-ブタンジオールジアクリレート、テトラメチレングリコールジアクリレート、プロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラエチレングリコールジアクリレート、ペンタエリスリトールテトラアクリレート、ソルビトールトリアクリレート、イソシアヌル酸エチレンオキシド(EO)変性トリアクリレート、ポリエステルアクリレートオリゴマーなどが挙げられる。これらのアクリルモノマーは、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、UV硬化後の柔軟性の観点で、1,6-ヘキサンジオールジアクリレート(HDDA)が好ましい。
<Acrylic monomer>
Examples of the acrylic monomer include 1,6-hexanediol diacrylate (HDDA), ethylene glycol diacrylate, 1,3-butanediol diacrylate, tetramethylene glycol diacrylate, propylene glycol diacrylate, trimethylolpropane triacrylate. , tetraethylene glycol diacrylate, pentaerythritol tetraacrylate, sorbitol triacrylate, isocyanuric acid ethylene oxide (EO)-modified triacrylate, polyester acrylate oligomer, and the like. These acrylic monomers may be used singly or in combination of two or more.
Among these, 1,6-hexanediol diacrylate (HDDA) is preferable from the viewpoint of flexibility after UV curing.
<メタクリルモノマー>
 上記メタクリルモノマーとしては、エチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,3-ブチレングリコールメタクリレートなどが挙げられる。これらのメタクリルモノマーは、1種単独で用いてもよく、2種以上を併用してもよい。
<Methacrylic monomer>
Examples of the methacrylic monomer include ethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, neopentyl glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,3-butylene glycol methacrylate and the like. These methacrylic monomers may be used singly or in combination of two or more.
 上記樹脂組成物中の(メタ)アクリルモノマーの含有量は、UV硬化後の柔軟性の観点から、好ましくは1~40質量%、より好ましくは2~30質量%、更に好ましくは3~20質量%、より更に好ましくは4~12質量%である。 The content of the (meth)acrylic monomer in the resin composition is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and still more preferably 3 to 20% by mass, from the viewpoint of flexibility after UV curing. %, more preferably 4 to 12 mass %.
<他の成分>
 上記樹脂組成物には、上記熱可塑性エラストマー組成物のペレット及び上記(メタ)アクリルモノマー以外の成分が含まれていてもよい。他の成分としては、光重合開始剤、酸化防止剤、その他の添加剤等が挙げられる。
<Other ingredients>
The resin composition may contain components other than the pellets of the thermoplastic elastomer composition and the (meth)acrylic monomer. Other components include photopolymerization initiators, antioxidants, other additives, and the like.
(光重合開始剤)
 上記光重合開始剤としては、例えば、アルキルフェノン類、アセトフェノン類、ベンゾインエーテル類、ベンゾフェノン類、チオキサントン類、アントラキノン類、ベンジル類、ビアセチル類等の光重合開始剤を挙げることができる。具体的には、例えば、2,2-ジメトキシ-2-フェニルアセトフェノン(Omnirad651:旧Irgacure651)、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、メチル-O-ベンゾイルベンゾエート、1-ヒドロキシシクロヘキシルフェニルケトンなどが挙げられる。これらの光重合開始剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、UV硬化速度の観点で、2,2-ジメトキシ-2-フェニルアセトフェノン(Omnirad651:旧Irgacure651)が好ましい。
(Photoinitiator)
Examples of the photopolymerization initiator include photopolymerization initiators such as alkylphenones, acetophenones, benzoin ethers, benzophenones, thioxanthones, anthraquinones, benzyls, and biacetyls. Specifically, for example, 2,2-dimethoxy-2-phenylacetophenone (Omnirad651: formerly Irgacure651), benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, methyl-O- benzoyl benzoate, 1-hydroxycyclohexylphenyl ketone, and the like. These photopolymerization initiators may be used singly or in combination of two or more.
Among these, 2,2-dimethoxy-2-phenylacetophenone (Omnirad 651: former Irgacure 651) is preferable from the viewpoint of UV curing speed.
 上記樹脂組成物中の光重合開始剤の含有量は、UV硬化速度の観点から、好ましくは0.1~10質量%、より好ましくは0.2~8質量%、更に好ましくは0.5~5質量%、より更に好ましくは1~3質量%である。 The content of the photopolymerization initiator in the resin composition is preferably 0.1 to 10% by mass, more preferably 0.2 to 8% by mass, more preferably 0.5 to 8% by mass, from the viewpoint of UV curing speed. 5% by weight, more preferably 1 to 3% by weight.
(酸化防止剤)
 上記酸化防止剤としては、例えば、アミン系酸化防止剤、フェノール系酸化防止剤および硫黄系酸化防止剤などが挙げられる。具体的には、フェニルブチルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンなどのアミン系酸化防止剤;ジブチルヒドロキシトルエン(BHT)、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシ)ヒドロシンナメート]メタンなどのフェノール系酸化防止剤;ビス[2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-t-ブチルフェニル]スルフィドなどのチオエーテル系酸化防止剤;ジブチルジチオカルバミン酸ニッケルなどのジチオカルバミン酸塩系酸化防止剤;2-メルカプトベンゾイルイミダゾール、2-メルカプトベンゾイミダゾールの亜鉛塩などのベンゾイミダゾール系酸化防止剤;ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネートなどの硫黄系酸化防止剤などが挙げられる。これらの酸化防止剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、酸化劣化の抑制の観点で、ジブチルヒドロキシトルエン(BHT)が好ましい。
(Antioxidant)
Examples of the antioxidant include amine-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, and the like. Specifically, amine antioxidants such as phenylbutylamine, N,N'-di-2-naphthyl-p-phenylenediamine; dibutylhydroxytoluene (BHT), tetrakis[methylene (3,5-di-t- phenolic antioxidants such as butyl-4-hydroxy)hydrocinnamate]methane; thioether-based antioxidants such as bis[2-methyl-4-(3-n-alkylthiopropionyloxy)-5-t-butylphenyl]sulfide Inhibitors; dithiocarbamate-based antioxidants such as nickel dibutyldithiocarbamate; 2-mercaptobenzoylimidazole, benzimidazole-based antioxidants such as zinc salt of 2-mercaptobenzimidazole; dilauryl thiodipropionate, distearylthio Examples include sulfur-based antioxidants such as dipropionate. These antioxidants may be used singly or in combination of two or more.
Among these, dibutylhydroxytoluene (BHT) is preferable from the viewpoint of suppression of oxidative deterioration.
 上記樹脂組成物中の酸化防止剤の含有量は、酸化劣化の抑制の観点から、好ましくは0.1~10質量%、より好ましくは0.2~8質量%、更に好ましくは0.5~5質量%、より更に好ましくは1~3質量%である。 From the viewpoint of suppressing oxidation deterioration, the content of the antioxidant in the resin composition is preferably 0.1 to 10% by mass, more preferably 0.2 to 8% by mass, and still more preferably 0.5 to 10% by mass. 5% by weight, more preferably 1 to 3% by weight.
(その他の添加剤)
 本実施形態の樹脂組成物には、本発明の効果を損なわない範囲において、上述したもの以外のその他の添加剤、例えば、架橋剤、加硫促進剤(架橋促進剤)、加硫助剤、軟化剤、熱老化防止剤、光安定剤、帯電防止剤、離型剤、難燃剤、発泡剤、顔料、染料、増白剤等を添加することができる。これらの添加剤は、1種を単独で又は2種以上を併用してもよい。
(Other additives)
The resin composition of the present embodiment contains other additives other than those described above, such as a cross-linking agent, a vulcanization accelerator (cross-linking accelerator), a vulcanization aid, as long as the effects of the present invention are not impaired. Softeners, thermal anti-aging agents, light stabilizers, antistatic agents, release agents, flame retardants, foaming agents, pigments, dyes, brighteners, etc. can be added. These additives may be used alone or in combination of two or more.
 前述の熱可塑性エラストマー組成物に含まれ得るフィラーの含有量としては、特に制限はないが、熱可塑性エラストマー組成物のペレット及び(メタ)アクリルモノマーの合計含有量100質量部に対するフィラーの含有量は、好ましくは0~50質量部である。また、樹脂組成物100質量部に対するフィラーの含有量は、好ましくは0~35質量部である。
 また、前述の熱可塑性エラストマー組成物に含まれ得るシリカの含有量としては、特に制限はないが、熱可塑性エラストマー組成物のペレット及び(メタ)アクリルモノマーの合計含有量100質量部に対するフィラーの含有量は、0.5~45質量部が好ましく、3~36質量部がより好ましく、6~35質量部が更に好ましい。また、樹脂組成物100質量部に対するフィラーの含有量は、0.5~31質量部が好ましく、2~27質量部がより好ましく、5~26質量部が更に好ましい。シリカの含有量が上記範囲内であると、優れた引張強度等の機械強度が発現される。
 前述の熱可塑性エラストマー組成物に含まれ得るシランカップリング剤の含有量は、フィラー100質量部に対して0.01~30質量部が好ましく、0.05~25質量部がより好ましく、1~20質量部が更に好ましく、3~15質量部がより更に好ましい。シランカップリング剤の含有量が前記範囲内であると、樹脂組成物中のフィラーの分散性が向上する。
The content of the filler that can be contained in the thermoplastic elastomer composition is not particularly limited. , preferably 0 to 50 parts by mass. Also, the content of the filler with respect to 100 parts by mass of the resin composition is preferably 0 to 35 parts by mass.
The content of silica that can be contained in the thermoplastic elastomer composition is not particularly limited. The amount is preferably 0.5 to 45 parts by mass, more preferably 3 to 36 parts by mass, even more preferably 6 to 35 parts by mass. The content of the filler with respect to 100 parts by mass of the resin composition is preferably 0.5 to 31 parts by mass, more preferably 2 to 27 parts by mass, and even more preferably 5 to 26 parts by mass. When the content of silica is within the above range, excellent mechanical strength such as tensile strength is exhibited.
The content of the silane coupling agent that can be contained in the thermoplastic elastomer composition is preferably 0.01 to 30 parts by mass, more preferably 0.05 to 25 parts by mass, more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the filler. 20 parts by weight is more preferred, and 3 to 15 parts by weight is even more preferred. When the content of the silane coupling agent is within the above range, the dispersibility of the filler in the resin composition is improved.
<樹脂組成物の物性>
(硬度)
 本実施形態の樹脂組成物は、JIS K 6253-2:2012のタイプAデュロメータ法による硬度(以下、「A硬度」ともいう)が、好ましくは95以下、より好ましくは90以下、更に好ましくは85以下である。また、A硬度は、好ましくは25以上、より好ましくは30以上、更に好ましくは35以上である。A硬度が上記範囲であれば成形加工性が良好となり、また、取扱い性にも優れたものとなる。
<Physical properties of the resin composition>
(hardness)
The resin composition of the present embodiment preferably has a hardness (hereinafter also referred to as "A hardness") of 95 or less, more preferably 90 or less, and even more preferably 85, according to JIS K 6253-2:2012 Type A durometer method. It is below. Also, the A hardness is preferably 25 or higher, more preferably 30 or higher, and even more preferably 35 or higher. If the A hardness is within the above range, the moldability will be good, and the handleability will also be excellent.
(引張強度)
 本実施形態の樹脂組成物は、引張強度をJIS K 6251:2017により評価することができる。引張強度が、好ましくは30MPa以下、より好ましくは25MPa以下、更に好ましくは20MPa以下である。また、引張強度は、好ましくは3MPa以上、より好ましくは5MPa以上、更に好ましくは7MPa以上である。引張強度が上記範囲であれば、耐久性に優れたものとなる。
(tensile strength)
The resin composition of the present embodiment can be evaluated for tensile strength according to JIS K 6251:2017. Tensile strength is preferably 30 MPa or less, more preferably 25 MPa or less, still more preferably 20 MPa or less. Also, the tensile strength is preferably 3 MPa or higher, more preferably 5 MPa or higher, and even more preferably 7 MPa or higher. If the tensile strength is within the above range, the durability will be excellent.
(引張破壊ひずみ)
 本実施形態の樹脂組成物は、引張破壊ひずみをJIS K 6251:2017により評価することができる。引張破壊ひずみが、好ましくは600%以下、より好ましくは500%以下、更に好ましくは400%以下である。また、引張破壊ひずみは、好ましくは50%以上、より好ましくは100%以上、更に好ましくは150%以上である。引張破壊ひずみが上記範囲であれば、耐久性に優れたものとなる。
(Tensile breaking strain)
The resin composition of the present embodiment can be evaluated for tensile breaking strain according to JIS K 6251:2017. The tensile strain at break is preferably 600% or less, more preferably 500% or less, still more preferably 400% or less. Also, the tensile breaking strain is preferably 50% or more, more preferably 100% or more, and still more preferably 150% or more. If the tensile breaking strain is within the above range, the durability will be excellent.
(膨張率)
 本実施形態の樹脂組成物は、膨張率を後述する実施例に記載の方法により評価することができる。膨張率が、好ましくは500%以下、より好ましくは450%以下、更に好ましくは400%以下である。膨張率が上記範囲であれば、耐溶剤性に優れたものとなる。
(expansion rate)
The expansion coefficient of the resin composition of the present embodiment can be evaluated by the method described in Examples below. The expansion rate is preferably 500% or less, more preferably 450% or less, still more preferably 400% or less. If the expansion coefficient is within the above range, the solvent resistance will be excellent.
[樹脂組成物の製造方法]
 本発明の実施形態に係る樹脂組成物の製造方法は、ブロック共重合体(X)及び液状ゴム成分(Y)を所定比で含むマスターバッチと、ブロック共重合体(X)及び液状ゴム成分(Y)のうち少なくとも一方とを混合することにより、熱可塑性エラストマー組成物におけるブロック共重合体(X)の質量と液状ゴム成分(Y)の質量とを調整する工程を含むことができる。
 熱可塑性エラストマー組成物に比較的高い割合で液状ゴム成分(Y)を含有させておき、これを液状ゴム成分のマスターバッチとして利用し、所定量のブロック共重合体(X)及び液状ゴム成分(Y)のうち少なくとも一方と溶融混練することで、樹脂組成物中における液状ゴム成分(Y)を所望の質量に調整することができる。また、これによって、樹脂組成物中におけるブロック共重合体(X)も所望の質量に調整することができる。
 また、ブロック共重合体(X)及び液状ゴム成分(Y)以外のポリマーに混合することも可能である。ブロック共重合体(X)及び液状ゴム成分(Y)以外のポリマーとしては、例えば、SBR(スチレン・ブタジエンゴム)などの固形ゴムやポリプロピレンなどのポリオレフィン樹脂が挙げられる。
[Method for producing resin composition]
A method for producing a resin composition according to an embodiment of the present invention comprises: a masterbatch containing a block copolymer (X) and a liquid rubber component (Y) in a predetermined ratio; A step of adjusting the mass of the block copolymer (X) and the mass of the liquid rubber component (Y) in the thermoplastic elastomer composition can be included by mixing at least one of Y).
A relatively high proportion of the liquid rubber component (Y) is contained in the thermoplastic elastomer composition, and this is used as a masterbatch of the liquid rubber component, and predetermined amounts of the block copolymer (X) and the liquid rubber component ( By melt-kneading with at least one of Y), the liquid rubber component (Y) in the resin composition can be adjusted to a desired mass. Moreover, by this, the block copolymer (X) in the resin composition can also be adjusted to a desired mass.
It is also possible to mix with polymers other than the block copolymer (X) and the liquid rubber component (Y). Examples of polymers other than the block copolymer (X) and the liquid rubber component (Y) include solid rubbers such as SBR (styrene-butadiene rubber) and polyolefin resins such as polypropylene.
 本実施形態の樹脂組成物の製造方法に特に制限はなく、上記熱可塑性エラストマー組成物からなるマスターバッチ、及びその他の任意成分を、同時に混練装置、例えば一軸押出機、多軸押出機、バンバリーミキサー、ブラベンダーミキサー、オープンロール、加熱ロール、各種ニーダー等に供給して溶融混練する方法が挙げられる。また、上記マスターバッチ及びその他の任意成分を別々の仕込み口から供給して溶融混練する方法、あるいは熱可塑性エラストマー成分を予め溶融混練し、当該溶融混練物と上記マスターバッチとその他の任意成分とを溶融混練する方法等であってもよい。
 溶融混練時の温度は、通常20~270℃の範囲で任意に選択することができる。
The method for producing the resin composition of the present embodiment is not particularly limited. , a Brabender mixer, an open roll, a heating roll, various kneaders, and the like, followed by melt-kneading. Alternatively, a method of supplying the masterbatch and other optional components from separate inlets and melt-kneading them, or a method of melt-kneading the thermoplastic elastomer components in advance and mixing the melt-kneaded product, the masterbatch, and other optional components. A method such as melt-kneading may also be used.
The temperature during melt-kneading can be arbitrarily selected usually within the range of 20 to 270°C.
 本発明の熱可塑性エラストマー組成物のペレットは、ブリードが抑えられ、かつ、所望の力学特性を発現可能な成形品の製造に使用し得る熱可塑性エラストマー組成物を、取り扱いが容易な形状で提供できることから、刷版材、粘接着剤、テープ、フィルム、シート、マット、シーリング材、封止材、コーティング材、ポッティング材、インク、防振材、発泡体、放熱材、プリプレグ、ガスケット、パッキン等の様々な分野の用途に好適に用いることができる。 The pellets of the thermoplastic elastomer composition of the present invention can provide a thermoplastic elastomer composition that can be used to produce molded articles that can suppress bleeding and exhibit desired mechanical properties in an easy-to-handle shape. printing plate materials, adhesives, tapes, films, sheets, mats, sealing materials, sealing materials, coating materials, potting materials, inks, anti-vibration materials, foams, heat dissipation materials, prepregs, gaskets, packing, etc. can be suitably used for applications in various fields.
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
 以下の実施例、比較例、及び参考例で用いた材料は以下のとおりである。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.
Materials used in the following examples, comparative examples, and reference examples are as follows.
<ブロック共重合体(X)>
・後述する製造例1の未水添ブロック共重合体(X1)
・後述する製造例2の未水添ブロック共重合体(X2)
・後述する製造例3の水添ブロック共重合体(X3)
・後述する製造例4の水添ブロック共重合体(X4)
<液状ゴム成分(Y)>
・後述する製造例5の未水添液状ゴム(Y1)
・後述する製造例6の未水添液状ゴム(Y2)
・後述する製造例7の未水添液状ゴム(Y3)
・後述する製造例8の未水添液状ゴム(Y4)
・後述する製造例9の未水添液状ゴム(Y5)
・後述する製造例10の未水添液状ゴム(Y6)
・後述する製造例11の未水添液状ゴム(Y7)
・後述する製造例12の未水添液状ゴム(Y8)
・後述する製造例13の水添液状ゴム(Y9)
<Block copolymer (X)>
- Unhydrogenated block copolymer (X1) of Production Example 1 described later
- Unhydrogenated block copolymer (X2) of Production Example 2 described later
- Hydrogenated block copolymer (X3) of Production Example 3 described later
- Hydrogenated block copolymer (X4) of Production Example 4 described later
<Liquid rubber component (Y)>
- Unhydrogenated liquid rubber (Y1) of Production Example 5 described later
- Unhydrogenated liquid rubber (Y2) of Production Example 6 described later
- Unhydrogenated liquid rubber (Y3) of Production Example 7 described later
- Unhydrogenated liquid rubber (Y4) of Production Example 8 described later
- Unhydrogenated liquid rubber (Y5) of Production Example 9 described later
- Unhydrogenated liquid rubber (Y6) of Production Example 10 described later
- Unhydrogenated liquid rubber (Y7) of Production Example 11 described later
- Unhydrogenated liquid rubber (Y8) of Production Example 12 described later
- Hydrogenated liquid rubber (Y9) of Production Example 13 described later
<フィラー>
・シリカ:製品名ULTRASIL7000GR、エボニック デグサ ジャパン製、湿式シリカ、BET法比表面積175m/g、平均粒子径 14nm
<Filler>
・ Silica: product name ULTRASIL7000GR, manufactured by Evonik Degussa Japan, wet silica, BET method specific surface area 175 m 2 /g, average particle diameter 14 nm
<ブロッキング防止剤>
・含水珪酸マグネシウム(タルク):平均粒子径D50:3.9μm以下
・ポリプロピレンワックス:平均粒子径D50:6.5~12.5μm
・シリカ:平均粒子径D50:13.5μm
・ポリエチレンワックス:平均粒子径D50:7.5~9.5μm
<Anti-blocking agent>
・Hydrated magnesium silicate (talc): Average particle size D50 : 3.9 μm or less ・Polypropylene wax: Average particle size D50 : 6.5 to 12.5 μm
・Silica: average particle size D50 : 13.5 μm
・Polyethylene wax: Average particle size D 50 : 7.5 to 9.5 μm
<アクリルモノマー>
・1,6-ヘキサンジオールジアクリレート(HDDA):ダイセル・オルネクス株式会社
<Acrylic monomer>
・1,6-Hexanedioldiacrylate (HDDA): Daicel Allnex Co., Ltd.
<光重合開始剤>
・2,2-ジメトキシ-2-フェニルアセトフェノン(Omnirad651:旧Irgacure651):IGM Resins B.V.社製
<酸化防止剤>
・ジブチルヒドロキシトルエン(BHT):東京化成株式会社製
<Photoinitiator>
2,2-dimethoxy-2-phenylacetophenone (Omnirad 651: formerly Irgacure 651): IGM Resins B.V. V. <Antioxidant>
・Dibutylhydroxytoluene (BHT): manufactured by Tokyo Kasei Co., Ltd.
[測定方法]
 製造例で得られた重合体についての各測定方法の詳細は次のとおりである。
(1)重量平均分子量、及び分子量分布の測定
 下記の各項目をGPC(ゲルパーミエーションクロマトグラフィー)により測定した。具体的には、各成分について重量平均分子量(Mw)及び分子量分布(Mw/Mn)をGPCにより、標準ポリスチレン換算分子量で求めた。
・重合体ブロック(A)の重量平均分子量
・重合体ブロック(B)の重量平均分子量
・ブロック重合体(X)の重量平均分子量
・ブロック重合体(X)の分子量分布
・液状ゴム成分(Y)の重量平均分子量
・液状ゴム成分(Y)の分子量分布
 測定装置及び条件は、以下のとおりである。
・装置    :東ソー株式会社製 GPC装置「HLC-8320GPC」
・分離カラム :東ソー株式会社製 カラム「TSKgelSuperHZ4000」
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.7mL/min
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
[Measuring method]
The details of each measurement method for the polymers obtained in the Production Examples are as follows.
(1) Measurement of Weight Average Molecular Weight and Molecular Weight Distribution The following items were measured by GPC (gel permeation chromatography). Specifically, the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of each component were determined by GPC using standard polystyrene equivalent molecular weights.
・Weight average molecular weight of polymer block (A) ・Weight average molecular weight of polymer block (B) ・Weight average molecular weight of block polymer (X) ・Molecular weight distribution of block polymer (X) ・Liquid rubber component (Y) Weight Average Molecular Weight/Molecular Weight Distribution of Liquid Rubber Component (Y) The measuring apparatus and conditions are as follows.
・ Apparatus: GPC apparatus "HLC-8320GPC" manufactured by Tosoh Corporation
・ Separation column: Column “TSKgelSuperHZ4000” manufactured by Tosoh Corporation
・ Eluent: Tetrahydrofuran ・ Eluent flow rate: 0.7 mL / min
・Sample concentration: 5 mg/10 mL
・Column temperature: 40°C
(2)水素添加率の測定方法
(2-1)水添ブロック共重合体(X3)、及び水添ブロック共重合体(X4)をそれぞれ重クロロホルム溶媒(CDCl)に溶解し、H-NMR測定[装置:「AVANCE 400 Nanobay」(Bruker社製)、サンプル濃度:50mg/1mL、測定温度:30℃、積算回数:1,024回]を行った。
 水添ブロック共重合体(X3)及び水添ブロック共重合体(X4)中の共役ジエン化合物単位における炭素-炭素二重結合の水素添加率(重合体ブロック(B)における水素添加率)は、得られたスペクトルの4.5~6.0ppmに現れる炭素-炭素二重結合が有するプロトンのピークから、下記式により算出した。
   水素添加率(モル%)={1-(水添ブロック共重合体(X10)1モルあたりに含まれる炭素-炭素二重結合のモル数)/(未水添ブロック共重合体(X0)1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100
 なお、水素添加率を算出するための上記「未水添ブロック共重合体(X0)1モルあたりに含まれる炭素-炭素二重結合のモル数」は、測定対象となる水添ブロック共重合体(X10)を作製するために用いられる水素添加前のブロック共重合体を測定用サンプルとして分取しておき、このサンプルを用いて測定した。
(2-2)上記(2-1)と同様の手順により、水添液状ゴム(Y9)中の共役ジエン化合物単位における炭素-炭素二重結合の水素添加率を下記式により算出した。
   水素添加率(モル%)={1-(水添液状ゴム(Y10)1モルあたりに含まれる炭素-炭素二重結合のモル数)/(未水添液状ゴム(Y0)1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100
 なお、水素添加率を算出するための上記「未水添液状ゴム(Y0)1モルあたりに含まれる炭素-炭素二重結合のモル数」は、測定対象となる水添液状ゴム(Y10)を作製するために用いられる水素添加前の液状ゴムを測定用サンプルとして分取しておき、このサンプルを用いて測定した。
(2) Method for measuring hydrogenation rate (2-1) Hydrogenated block copolymer (X3) and hydrogenated block copolymer (X4) were each dissolved in a deuterated chloroform solvent (CDCl 3 ), and 1 H- NMR measurement [apparatus: "AVANCE 400 Nanobay" (manufactured by Bruker), sample concentration: 50 mg/1 mL, measurement temperature: 30°C, number of accumulations: 1,024 times] was performed.
The hydrogenation rate of the carbon-carbon double bond in the conjugated diene compound unit in the hydrogenated block copolymer (X3) and the hydrogenated block copolymer (X4) (the hydrogenation rate in the polymer block (B)) is It was calculated by the following formula from the proton peak of the carbon-carbon double bond appearing at 4.5 to 6.0 ppm in the obtained spectrum.
Hydrogenation rate (mol%) = {1 - (number of moles of carbon-carbon double bonds contained per mole of hydrogenated block copolymer (X10)) / (unhydrogenated block copolymer (X0) 1 number of moles of carbon-carbon double bonds contained per mole)}×100
Incidentally, the above-mentioned "the number of moles of carbon-carbon double bonds contained per mole of the unhydrogenated block copolymer (X0)" for calculating the hydrogenation rate is the hydrogenated block copolymer to be measured. A block copolymer before hydrogenation used for producing (X10) was collected as a sample for measurement, and this sample was used for measurement.
(2-2) By the same procedure as in (2-1) above, the hydrogenation rate of the carbon-carbon double bond in the conjugated diene compound unit in the hydrogenated liquid rubber (Y9) was calculated according to the following formula.
Hydrogenation rate (mol%) = {1-(number of moles of carbon-carbon double bonds contained per mole of hydrogenated liquid rubber (Y10)) / (contained per mole of unhydrogenated liquid rubber (Y0) number of moles of carbon-carbon double bonds)} × 100
The above "moles of carbon-carbon double bonds contained per mole of unhydrogenated liquid rubber (Y0)" for calculating the hydrogenation rate is the hydrogenated liquid rubber (Y10) to be measured. The liquid rubber before hydrogenation used for production was taken as a sample for measurement, and the measurement was performed using this sample.
(3)ビニル結合量
(3-1)重合体ブロック(B)のビニル結合量
 水添前のブロック共重合体(X)を重クロロホルム溶媒(CDCl)に溶解してH-NMR測定[装置:「AVANCE 400 Nanobay」(Bruker社製)、測定温度:30℃、積算回数:1024回]を行った。イソプレン及びブタジエン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位に対応するピーク面積の比、イソプレン構造単位における1,2-結合単位に対応するピーク面積の比、及び、ブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、ビニル結合量(3,4-結合単位及び1,2-結合単位の含有量の合計)を算出した。
(3-2)液状ゴム成分(Y)のビニル結合量
 水添前の液状ゴム成分(Y)を重クロロホルム溶媒(CDCl)に溶解してH-NMR測定[装置:「AVANCE 400 Nanobay」(Bruker社製)、測定温度:30℃、積算回数:1024回]を行った。イソプレン及びブタジエン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位に対応するピーク面積の比、イソプレン構造単位における1,2-結合単位に対応するピーク面積の比、及び、ブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、ビニル結合量(3,4-結合単位及び1,2-結合単位の含有量の合計)を算出した。
(3) Vinyl bond content (3-1) Vinyl bond content of polymer block (B) Block copolymer (X) before hydrogenation was dissolved in deuterated chloroform solvent (CDCl 3 ) and measured by 1 H-NMR [ Apparatus: "AVANCE 400 Nanobay" (manufactured by Bruker), measurement temperature: 30°C, number of times of accumulation: 1024 times]. The ratio of the peak area corresponding to the 3,4-bond unit in the isoprene structural unit, the ratio of the peak area corresponding to the 1,2-bond unit in the isoprene structural unit, to the total peak area of the structural units derived from isoprene and butadiene, and , and the ratio of the peak areas corresponding to the 1,2-bond units in the butadiene structural unit was used to calculate the amount of vinyl bonds (total content of 3,4-bond units and 1,2-bond units).
(3-2) Vinyl bond amount of liquid rubber component (Y) Liquid rubber component (Y) before hydrogenation was dissolved in deuterated chloroform solvent (CDCl 3 ) and measured by 1 H-NMR [Apparatus: "AVANCE 400 Nanobay" (manufactured by Bruker), measurement temperature: 30°C, cumulative number of times: 1024]. The ratio of the peak area corresponding to the 3,4-bond unit in the isoprene structural unit, the ratio of the peak area corresponding to the 1,2-bond unit in the isoprene structural unit, to the total peak area of the structural units derived from isoprene and butadiene, and , and the ratio of the peak areas corresponding to the 1,2-bond units in the butadiene structural unit was used to calculate the amount of vinyl bonds (total content of 3,4-bond units and 1,2-bond units).
(4)液状ゴム成分(Y)の38℃溶融粘度
 液状ゴム成分(Y)の38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS. INC.製)により測定した。
(4) 38° C. Melt Viscosity of Liquid Rubber Component (Y) The melt viscosity of the liquid rubber component (Y) at 38° C. was measured with a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LAB. INC.).
[製造例1]未水添ブロック共重合体(X1)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン62.4kg、アニオン重合開始剤として濃度1.0モル/Lのsec-ブチルリチウムのシクロヘキサン溶液0.16kgを仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)2.08kgを加えて1時間重合させ、容器内温度50℃で、ルイス塩基としてテトラヒドロフラン0.36kgを加え、イソプレン16.64kgを5時間かけて加えた後2時間重合させ、更にスチレン(2)2.08kgを加えて1時間重合させることにより、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体を含む反応液を得た。
 該反応液を真空乾燥させることにより、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体の、未水素添加物(以下、X1と称する)を得た。
[Production Example 1] Production of unhydrogenated block copolymer (X1) In a nitrogen-substituted, dried pressure vessel, 62.4 kg of cyclohexane as a solvent and sec- 0.16 kg of a cyclohexane solution of butyllithium was charged.
After raising the temperature inside the pressure vessel to 50° C., 2.08 kg of styrene (1) was added and polymerized for 1 hour. After addition over time, the mixture was polymerized for 2 hours, and then 2.08 kg of styrene (2) was added and polymerized for 1 hour to obtain a reaction liquid containing a polystyrene-polyisoprene-polystyrene triblock copolymer.
By vacuum-drying the reaction solution, an unhydrogenated polystyrene-polyisoprene-polystyrene triblock copolymer (hereinafter referred to as X1) was obtained.
[製造例2]未水添ブロック共重合体(X2)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン62.4kg、アニオン重合開始剤として濃度1.0モル/Lのsec-ブチルリチウムのシクロヘキサン溶液0.48kgを仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン6.66kgを加えて1時間重合させ、容器内温度50℃で、ブタジエン14.14kgを5時間かけて加えた後2時間重合させた。続いてこの重合反応液にカップリング剤としてジクロロジメチルシラン0.03kgを加え1時間反応させることにより、ポリスチレン-ポリブタジエン-ポリスチレントリブロック共重合体を含む反応液を得た。
 該反応液を真空乾燥させることにより、ポリスチレン-ポリブタジエン-ポリスチレントリブロック共重合体の、未水素添加物(以下、X2と称する)を得た。
[Production Example 2] Production of unhydrogenated block copolymer (X2) In a nitrogen-substituted, dried pressure vessel, 62.4 kg of cyclohexane as a solvent and a sec- 0.48 kg of a cyclohexane solution of butyllithium was charged.
After raising the temperature inside the pressure vessel to 50° C., 6.66 kg of styrene was added and polymerized for 1 hour. Subsequently, 0.03 kg of dichlorodimethylsilane was added as a coupling agent to this polymerization reaction solution and reacted for 1 hour to obtain a reaction solution containing a polystyrene-polybutadiene-polystyrene triblock copolymer.
By vacuum drying the reaction solution, an unhydrogenated polystyrene-polybutadiene-polystyrene triblock copolymer (hereinafter referred to as X2) was obtained.
[製造例3]水添ブロック共重合体(X3)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン62.4kg、アニオン重合開始剤として濃度1.0モル/Lのsec-ブチルリチウムのシクロヘキサン溶液0.27kgを仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)1.87kgを加えて1時間重合させ、容器内温度50℃で、イソプレン17.06kgを5時間かけて加えた後2時間重合させ、更にスチレン(2)1.87kgを加えて1時間重合させることにより、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体を含む反応液を得た。
 該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体の水素添加物(以下、X3と称する)を得た。
[Production Example 3] Production of hydrogenated block copolymer (X3) 62.4 kg of cyclohexane as a solvent and sec-butyl having a concentration of 1.0 mol/L as an anionic polymerization initiator were placed in a pressure-resistant container that had been purged with nitrogen and dried. 0.27 kg of a cyclohexane solution of lithium was charged.
After raising the temperature in the pressure vessel to 50°C, 1.87 kg of styrene (1) was added and polymerized for 1 hour. At the vessel temperature of 50°C, 17.06 kg of isoprene was added over 5 hours and polymerized for 2 hours. Furthermore, 1.87 kg of styrene (2) was added and polymerized for 1 hour to obtain a reaction liquid containing a polystyrene-polyisoprene-polystyrene triblock copolymer.
A Ziegler-type hydrogenation catalyst formed from nickel octylate and trimethylaluminum was added to the reaction solution under a hydrogen atmosphere, and the reaction was allowed to proceed at a hydrogen pressure of 1 MPa and 80° C. for 5 hours. After allowing the reaction solution to cool and release the pressure, the catalyst is removed by washing with water and vacuum dried to obtain a hydrogenated polystyrene-polyisoprene-polystyrene triblock copolymer (hereinafter referred to as X3). Obtained.
[製造例4]水添ブロック共重合体(X4)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン62.4kg、アニオン重合開始剤として濃度1.0モル/Lのsec-ブチルリチウムのシクロヘキサン溶液0.20kgを仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)2.18kgを加えて1時間重合させ、容器内温度50℃で、ルイス塩基としてテトラヒドロフラン0.36kgを加え、イソプレン16.43kgを5時間かけて加えた後2時間重合させ、更にスチレン(2)2.18kgを加えて1時間重合させることにより、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体を含む反応液を得た。
 該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体の水素添加物(以下、X4と称する)を得た。
[Production Example 4] Production of hydrogenated block copolymer (X4) 62.4 kg of cyclohexane as a solvent and sec-butyl having a concentration of 1.0 mol/L as an anionic polymerization initiator were placed in a pressure-resistant container that had been purged with nitrogen and dried. 0.20 kg of a cyclohexane solution of lithium was charged.
After raising the temperature in the pressure vessel to 50° C., 2.18 kg of styrene (1) was added and polymerized for 1 hour. After addition over time, the mixture was polymerized for 2 hours, and then 2.18 kg of styrene (2) was added and polymerized for 1 hour to obtain a reaction liquid containing a polystyrene-polyisoprene-polystyrene triblock copolymer.
A Ziegler-type hydrogenation catalyst formed from nickel octylate and trimethylaluminum was added to the reaction solution under a hydrogen atmosphere, and the reaction was allowed to proceed at a hydrogen pressure of 1 MPa and 80° C. for 5 hours. After allowing the reaction solution to cool and release the pressure, the catalyst is removed by washing with water and vacuum dried to obtain a hydrogenated polystyrene-polyisoprene-polystyrene triblock copolymer (hereinafter referred to as X4). Obtained.
 製造例1~4で得られた各ブロック共重合体(X)について、上述した測定手順に従って各種物性の測定を行った。測定結果をその組成とともに表1に示す。 For each block copolymer (X) obtained in Production Examples 1 to 4, various physical properties were measured according to the measurement procedure described above. The measurement results are shown in Table 1 together with the composition.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表1中の注記*1~*3の詳細は以下のとおりである。
 *1:「St-Ip-St」は、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体を示す。「St-Bd-St」は、ポリスチレン-ポリブタジエン-ポリスチレントリブロック共重合体を示す。
 *2:ブロック共重合体(X)中の重合体ブロック(A)の合計含有量[質量%]を示す。
 *3:重合体ブロック(B)における水素添加率[モル%]は、水素添加前のブロック共重合体(X)中の共役ジエン化合物単位に対する炭素-炭素二重結合の水素添加率[モル%]を示す。
The details of notes *1 to *3 in Table 1 are as follows.
*1: “St-Ip-St” indicates a polystyrene-polyisoprene-polystyrene triblock copolymer. "St-Bd-St" denotes a polystyrene-polybutadiene-polystyrene triblock copolymer.
*2: Indicates the total content [% by mass] of the polymer block (A) in the block copolymer (X).
*3: The hydrogenation rate [mol%] in the polymer block (B) is the hydrogenation rate [mol%] of the carbon-carbon double bond relative to the conjugated diene compound unit in the block copolymer (X) before hydrogenation. ] is shown.
 表1に示されるように、製造例1のブロック共重合体(X1)、製造例3のブロック共重合体(X3)、及び製造例4のブロック共重合体(X4)は、イソプレンに由来する構造単位を有し、一方、製造例2のブロック共重合体(X2)は、ブタジエンに由来する構造単位を有している。
 また、表1に示されるように、製造例1のブロック共重合体(X1)及び製造例2のブロック共重合体(X2)は未水添ブロック共重合体であり、一方、製造例3のブロック共重合体(X3)及び製造例4のブロック共重合体(X4)は水添ブロック共重合体である。
As shown in Table 1, the block copolymer (X1) of Production Example 1, the block copolymer (X3) of Production Example 3, and the block copolymer (X4) of Production Example 4 are derived from isoprene. On the other hand, the block copolymer (X2) of Production Example 2 has a structural unit derived from butadiene.
Further, as shown in Table 1, the block copolymer (X1) of Production Example 1 and the block copolymer (X2) of Production Example 2 are unhydrogenated block copolymers, while the block copolymer of Production Example 3 is The block copolymer (X3) and the block copolymer (X4) of Production Example 4 are hydrogenated block copolymers.
[製造例5]未水添液状ゴム(Y1)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン42.9kg、重合開始剤として濃度1.6モル/Lのn-ブチルリチウムのヘキサン溶液0.588kgを仕込み、50℃に昇温した後、イソプレン35.12kgを加えて2時間重合を行い、ポリイソプレンを含む反応液を得た。
 この反応液を放冷、放圧後、濾過し、濾液を濃縮し、更に真空乾燥することにより、ポリイソプレンの未水素添加物(以下、「未水添液状ゴム(Y1)」ともいう)を得た。
[Production Example 5] Production of non-hydrogenated liquid rubber (Y1) Into a pressure vessel that was purged with nitrogen and dried, 42.9 kg of hexane as a solvent and n-butyllithium with a concentration of 1.6 mol/L as a polymerization initiator were added. After 0.588 kg of a hexane solution was charged and the temperature was raised to 50° C., 35.12 kg of isoprene was added and polymerization was performed for 2 hours to obtain a reaction liquid containing polyisoprene.
The reaction solution is allowed to cool, the pressure is released, the filtrate is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated polyisoprene (hereinafter also referred to as "unhydrogenated liquid rubber (Y1)"). Obtained.
[製造例6]未水添液状ゴム(Y2)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン42.9kg、重合開始剤として濃度1.6モル/Lのn-ブチルリチウムのヘキサン溶液0.430kgを仕込み、50℃に昇温した後、イソプレン35.12kgを加えて2時間重合を行い、ポリイソプレンを含む反応液を得た。
 この反応液を放冷、放圧後、濾過し、濾液を濃縮し、更に真空乾燥することにより、ポリイソプレンの未水素添加物(以下、「未水添液状ゴム(Y2)」ともいう)を得た。
[Production Example 6] Production of non-hydrogenated liquid rubber (Y2) Into a pressure vessel that was purged with nitrogen and dried, 42.9 kg of hexane as a solvent and n-butyllithium with a concentration of 1.6 mol/L as a polymerization initiator were added. After 0.430 kg of a hexane solution was charged and the temperature was raised to 50° C., 35.12 kg of isoprene was added and polymerization was performed for 2 hours to obtain a reaction liquid containing polyisoprene.
The reaction solution is allowed to cool, the pressure is released, the filtrate is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated polyisoprene (hereinafter also referred to as "unhydrogenated liquid rubber (Y2)"). Obtained.
[製造例7]未水添液状ゴム(Y3)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン42.9kg、重合開始剤として濃度1.6モル/Lのn-ブチルリチウムのヘキサン溶液3.012kgを仕込み、50℃に昇温した後、ルイス塩基としてテトラヒドロフラン0.24kgを加え、イソプレン35.12kgを加えて2時間重合を行い、ポリイソプレンを含む反応液を得た。
 この反応液を放冷、放圧後、濾過し、濾液を濃縮し、更に真空乾燥することにより、ポリイソプレンの未水素添加物(以下、「未水添液状ゴム(Y3)」ともいう)を得た。
[Production Example 7] Production of non-hydrogenated liquid rubber (Y3) Into a pressure vessel that was purged with nitrogen and dried, 42.9 kg of hexane as a solvent and n-butyllithium with a concentration of 1.6 mol/L as a polymerization initiator were added. After 3.012 kg of a hexane solution was charged and the temperature was raised to 50° C., 0.24 kg of tetrahydrofuran was added as a Lewis base, and 35.12 kg of isoprene was added to carry out polymerization for 2 hours to obtain a reaction solution containing polyisoprene.
The reaction solution is allowed to cool, the pressure is released, the filtrate is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated polyisoprene (hereinafter also referred to as "unhydrogenated liquid rubber (Y3)"). Obtained.
[製造例8]未水添液状ゴム(Y4)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン42.9kg、重合開始剤として濃度1.6モル/Lのn-ブチルリチウムのヘキサン溶液1.065kgを仕込み、50℃に昇温した後、ブタジエン35.12kgを加えて2時間重合を行い、ポリブタジエンを含む反応液を得た。
 この反応液を放冷、放圧後、濾過し、濾液を濃縮し、更に真空乾燥することにより、ポリブタジエンの未水素添加物(以下、「未水添液状ゴム(Y4)」ともいう)を得た。
[Production Example 8] Production of non-hydrogenated liquid rubber (Y4) Into a pressure vessel that was purged with nitrogen and dried, 42.9 kg of hexane as a solvent and n-butyllithium with a concentration of 1.6 mol/L as a polymerization initiator were added. After charging 1.065 kg of a hexane solution and raising the temperature to 50° C., 35.12 kg of butadiene was added and polymerization was carried out for 2 hours to obtain a reaction liquid containing polybutadiene.
After allowing the reaction solution to cool and release the pressure, it is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated polybutadiene (hereinafter also referred to as "unhydrogenated liquid rubber (Y4)"). rice field.
[製造例9]未水添液状ゴム(Y5)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン42.9kg、重合開始剤として濃度1.6モル/Lのn-ブチルリチウムのヘキサン溶液3.956kgを仕込み、50℃に昇温した後、ルイス塩基としてテトラヒドロフラン0.46kgを加え、ブタジエン35.12kgを加えて2時間重合を行い、ポリブタジエンを含む反応液を得た。
 この反応液を放冷、放圧後、濾過し、濾液を濃縮し、更に真空乾燥することにより、ポリブタジエンの未水素添加物(以下、「未水添液状ゴム(Y5)」ともいう)を得た。
[Production Example 9] Production of non-hydrogenated liquid rubber (Y5) Into a pressure vessel that was purged with nitrogen and dried, 42.9 kg of cyclohexane as a solvent and n-butyllithium with a concentration of 1.6 mol/L as a polymerization initiator were added. After charging 3.956 kg of a hexane solution and raising the temperature to 50° C., 0.46 kg of tetrahydrofuran as a Lewis base was added, and 35.12 kg of butadiene was added to carry out polymerization for 2 hours to obtain a reaction liquid containing polybutadiene.
The reaction solution is allowed to cool, the pressure is released, the filtrate is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated polybutadiene (hereinafter also referred to as "unhydrogenated liquid rubber (Y5)"). rice field.
[製造例10]未水添液状ゴム(Y6)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン42.9kg、重合開始剤として濃度1.6モル/Lのn-ブチルリチウムのヘキサン溶液2.946kgを仕込み、50℃に昇温した後、ルイス塩基としてテトラヒドロフラン0.52kgを加え、ブタジエン35.12kgを加えて2時間重合を行い、ポリブタジエンを含む反応液を得た。
 この反応液を放冷、放圧後、濾過し、濾液を濃縮し、更に真空乾燥することにより、ポリブタジエンの未水素添加物(以下、「未水添液状ゴム(Y6)」ともいう)を得た。
[Production Example 10] Production of non-hydrogenated liquid rubber (Y6) Into a pressure vessel that was purged with nitrogen and dried, 42.9 kg of cyclohexane as a solvent and n-butyllithium with a concentration of 1.6 mol/L as a polymerization initiator were added. After 2.946 kg of a hexane solution was charged and the temperature was raised to 50° C., 0.52 kg of tetrahydrofuran as a Lewis base was added, and 35.12 kg of butadiene was added to carry out polymerization for 2 hours to obtain a reaction liquid containing polybutadiene.
After allowing the reaction solution to cool and release the pressure, it is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated polybutadiene (hereinafter also referred to as "unhydrogenated liquid rubber (Y6)"). rice field.
[製造例11]未水添液状ゴム(Y7)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン42.9kg、重合開始剤として濃度1.0モル/Lのsec-ブチルリチウムのシクロヘキサン溶液5.564kgを仕込み、50℃に昇温した後、ルイス塩基としてテトラメチルジアミン0.32kgを加え、スチレン7.38kgとブタジエン27.74kgを加えて2時間重合を行い、スチレンブタジエン共重合体を含む反応液を得た。
 この反応液を放冷、放圧後、濾過し、濾液を濃縮し、更に真空乾燥することにより、スチレンブタジエン共重合体の未水素添加物(以下、「未水添液状ゴム(Y7)」ともいう)を得た。
[Production Example 11] Production of non-hydrogenated liquid rubber (Y7) Into a pressure vessel that was purged with nitrogen and dried, 42.9 kg of cyclohexane as a solvent and sec-butyllithium having a concentration of 1.0 mol/L as a polymerization initiator were added. After 5.564 kg of cyclohexane solution was charged and the temperature was raised to 50° C., 0.32 kg of tetramethyldiamine was added as a Lewis base, 7.38 kg of styrene and 27.74 kg of butadiene were added, and polymerization was carried out for 2 hours, followed by styrene-butadiene copolymerization. A reaction solution containing coalescence was obtained.
The reaction solution is allowed to cool, and after pressure release, is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated styrene-butadiene copolymer (hereinafter also referred to as "unhydrogenated liquid rubber (Y7)"). ) was obtained.
[製造例12]未水添液状ゴム(Y8)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン42.9kg、重合開始剤として濃度1.6モル/Lのn-ブチルリチウムのヘキサン溶液0.952kgを仕込み、50℃に昇温した後、ルイス塩基としてテトラメチルジアミン0.28kgを加え、ブタジエン35.12kgを加えて2時間重合を行い、ポリブタジエンを含む反応液を得た。
 この反応液を放冷、放圧後、濾過し、濾液を濃縮し、更に真空乾燥することにより、ポリブタジエンの未水素添加物(以下、「未水添液状ゴム(Y8)」ともいう)を得た。
[Production Example 12] Production of non-hydrogenated liquid rubber (Y8) Into a pressure vessel that was purged with nitrogen and dried, 42.9 kg of cyclohexane as a solvent and n-butyllithium with a concentration of 1.6 mol/L as a polymerization initiator were added. After charging 0.952 kg of a hexane solution and raising the temperature to 50° C., 0.28 kg of tetramethyldiamine as a Lewis base was added, and 35.12 kg of butadiene was added and polymerized for 2 hours to obtain a reaction liquid containing polybutadiene.
After allowing the reaction solution to cool and release the pressure, it is filtered, and the filtrate is concentrated and further vacuum-dried to obtain an unhydrogenated polybutadiene (hereinafter also referred to as "unhydrogenated liquid rubber (Y8)"). rice field.
[製造例13]水添液状ゴム(Y9)の製造
 窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン42.9kg、重合開始剤として濃度1.6モル/Lのn-ブチルリチウムのヘキサン溶液0.588kgを仕込み、50℃に昇温した後、イソプレン35.12kgを加えて2時間重合を行い、ポリイソプレンを含む反応液を得た。
 該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリイソプレンの水素添加物(以下、「水添液状ゴム(Y9)」ともいう)を得た。
[Production Example 13] Production of hydrogenated liquid rubber (Y9) 42.9 kg of hexane as a solvent and hexane of n-butyllithium having a concentration of 1.6 mol/L as a polymerization initiator were placed in a pressure-resistant container that had been purged with nitrogen and dried. After 0.588 kg of the solution was charged and heated to 50° C., 35.12 kg of isoprene was added and polymerization was performed for 2 hours to obtain a reaction liquid containing polyisoprene.
A Ziegler-type hydrogenation catalyst formed from nickel octylate and trimethylaluminum was added to the reaction solution under a hydrogen atmosphere, and the reaction was allowed to proceed at a hydrogen pressure of 1 MPa and 80° C. for 5 hours. After allowing the reaction solution to cool and release the pressure, the catalyst is removed by washing with water, and the product is vacuum-dried to obtain a hydrogenated polyisoprene (hereinafter also referred to as “hydrogenated liquid rubber (Y9)”). rice field.
 製造例5~12で得られた未水添液状ゴム(Y1)~(Y8)及び製造例13で得られた水添液状ゴム(Y9)について、上述した測定手順に従って各種物性の測定を行った。測定結果をその組成とともに表2に示す。 Various physical properties of the non-hydrogenated liquid rubbers (Y1) to (Y8) obtained in Production Examples 5 to 12 and the hydrogenated liquid rubber (Y9) obtained in Production Example 13 were measured according to the measurement procedure described above. . The measurement results are shown in Table 2 together with the composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表2中の注記*4の詳細は以下のとおりである。
 *4:「Ip」は、ポリイソプレンを示す。「Bd」は、ポリブタジエンを示す。「St/Bd」は、スチレンブタジエンランダム共重合体を示す。
The details of note *4 in Table 2 are as follows.
*4: “Ip” indicates polyisoprene. "Bd" indicates polybutadiene. "St/Bd" indicates a styrene-butadiene random copolymer.
 表2に示されるように、製造例5~12の液状ゴム(Y1)~(Y8)は未水添液状ゴムであり、一方、製造例13の液状ゴム(Y9)は水添液状ゴムである。
 また、表2から明らかなように、製造例13の液状ゴム(Y9)は、分子量が比較的高く、38℃溶融粘度も比較的大きい。このため、熱可塑性エラストマー組成物や樹脂組成物に含有させることで機械強度を高めることが期待できる反面、より低分子量・低粘度の液状ゴム成分に比べて、ブロック共重合体(X)に均一に分散させることが難しいものであることが判る。
As shown in Table 2, the liquid rubbers (Y1) to (Y8) of Production Examples 5 to 12 are non-hydrogenated liquid rubbers, while the liquid rubber (Y9) of Production Example 13 is a hydrogenated liquid rubber. .
Moreover, as is clear from Table 2, the liquid rubber (Y9) of Production Example 13 has a relatively high molecular weight and a relatively high 38° C. melt viscosity. For this reason, it can be expected to increase the mechanical strength by including it in a thermoplastic elastomer composition or a resin composition. It can be seen that it is difficult to disperse the
 次に、熱可塑性エラストマー組成物、熱可塑性エラストマー組成物のペレット、及び樹脂組成物の実施例について説明する。 Next, examples of the thermoplastic elastomer composition, the pellets of the thermoplastic elastomer composition, and the resin composition will be described.
[例1~25]
 ブロック共重合体(X)と液状ゴム成分(Y)とを、二軸押出機(Coperion社製「ZSK-26mc」、L/D=56、シリンダーC1~C14)、及び、ドラムメルター(PHAL BOK SYSTEM社製「BSDM-5」)を表3~5に示した質量使用して、スクリュー回転数500rpm、吐出量10kg/h、ドラムメルター温度100℃の条件下で、表3~5に示す混練温度で溶融混練することにより、熱可塑性エラストマー組成物のペレットを製造した。
 具体的には、以下の手順で熱可塑性エラストマー組成物のペレットを製造した。
[1]例1~15及び例17~25は、ブロック共重合体(X)を、例16は、更にシリカを、表3~5に示す質量でホッパーより投入する。
[2]シリンダーC8より、ドラムメルターを用いて、表3~5に示す質量の液状ゴム成分(Y)を二軸押出機の中段に投入する。
[3]上述の条件で溶融混練を行った後の二軸押出機からの吐出物を、アンダーウォーターカッターでペレット化する。
[Examples 1 to 25]
The block copolymer (X) and the liquid rubber component (Y) were extruded by a twin-screw extruder (“ZSK-26mc” manufactured by Coperion, L/D=56, cylinders C1 to C14) and a drum melter (PHAL BOK). SYSTEM Co., Ltd. "BSDM-5") using the mass shown in Tables 3 to 5, under the conditions of a screw rotation speed of 500 rpm, a discharge rate of 10 kg / h, and a drum melter temperature of 100 ° C., kneading shown in Tables 3 to 5 Pellets of the thermoplastic elastomer composition were produced by melt-kneading at temperature.
Specifically, pellets of the thermoplastic elastomer composition were produced by the following procedure.
[1] In Examples 1 to 15 and 17 to 25, the block copolymer (X) is charged, and in Example 16, silica is added in the mass shown in Tables 3 to 5 from a hopper.
[2] Using a drum melter from cylinder C8, the liquid rubber component (Y) having the mass shown in Tables 3 to 5 is introduced into the middle stage of the twin-screw extruder.
[3] After melt-kneading under the conditions described above, the discharge from the twin-screw extruder is pelletized with an underwater cutter.
 上記で得られた各例のペレットを以下の評価方法に従って評価した。その結果を表3~5に示す。
 なお、例1~14、16~19、21~22、及び24~25は、実施例に該当し、例15、20及び23は、比較例に該当する。
The pellets of each example obtained above were evaluated according to the following evaluation methods. The results are shown in Tables 3-5.
Examples 1 to 14, 16 to 19, 21 to 22, and 24 to 25 correspond to Examples, and Examples 15, 20, and 23 correspond to Comparative Examples.
[評価方法]
(ヘイズ)
 各例の熱可塑性エラストマー組成物のペレットについて、プレス成形装置「NF-50H」(株式会社神藤金属工業所製)により、温度200℃で1分間予熱後、同温度にて圧力10MPaで3分間加圧することで長さ15cm×幅15cm×厚さ0.1cmのシートを作製し、JIS K 7136:2000に準拠して、株式会社村上色彩技術研究所製の「HR-100」を用いて、ヘイズ(%)を測定した。
[Evaluation method]
(Haze)
Pellets of the thermoplastic elastomer composition of each example were preheated at a temperature of 200° C. for 1 minute with a press molding machine “NF-50H” (manufactured by Shindo Kinzoku Kogyo Co., Ltd.) and then heated at the same temperature for 3 minutes at a pressure of 10 MPa. By pressing, a sheet of length 15 cm × width 15 cm × thickness 0.1 cm is produced, and in accordance with JIS K 7136: 2000, using "HR-100" manufactured by Murakami Color Research Laboratory Co., Ltd., haze (%) was measured.
(ブリード)
 各例の熱可塑性エラストマー組成物のペレットについて、その表面のべたつき具合を触手にて確認した。ペレットの表面が、全くべたつかず乾いた状態であり、サラサラした触感である場合は、液状ゴムのブリードがないものと判断し「VG」と評価した。わずかにべたつきが感じられるが実用上差し支えないレベルであれば「G」と評価した。ペレットの表面がベタベタしていて、手にべたつきが残る場合は、液状ゴムのブリードがあるものと判断して不合格「NG」と評価した。
(bleed)
The stickiness of the surface of the pellets of the thermoplastic elastomer composition of each example was checked with a tentacle. When the surface of the pellet was completely non-sticky, dry, and had a smooth touch, it was judged that the liquid rubber did not bleed, and was evaluated as "VG". If the stickiness was felt slightly, but it was at a practically acceptable level, it was evaluated as "G". When the surface of the pellet was sticky and stickiness remained on the hand, it was determined that the liquid rubber had bleed, and was evaluated as unacceptable "NG".
(硬度)
 各例の熱可塑性エラストマー組成物のペレットについて、プレス成形装置「NF-50H」(株式会社神藤金属工業所製)により、温度200℃で1分間予熱後、同温度にて圧力10MPaで3分間加圧することで長さ15cm×幅15cm×厚さ0.1cmのシートを作製し、JIS K 6251:2017に準拠した打ち抜き刃を用い、ダンベル3号形試験片(厚さ1.0mm)を得た。
 得られた試験片を6枚重ねて厚み6mmとし、硬度をタイプAデュロメータ及びタイプCデュロメータの圧子を用い、JIS K 6253-3:2012に準拠して、高分子計器株式会社製アスカーゴム硬度計を用いて測定した。なお、硬度の数値が小さいほど柔軟性に優れることを意味する。
(hardness)
Pellets of the thermoplastic elastomer composition of each example were preheated at a temperature of 200° C. for 1 minute with a press molding machine “NF-50H” (manufactured by Shindo Kinzoku Kogyo Co., Ltd.) and then heated at the same temperature for 3 minutes at a pressure of 10 MPa. A sheet of length 15 cm × width 15 cm × thickness 0.1 cm was produced by pressing, and a dumbbell No. 3 test piece (thickness 1.0 mm) was obtained using a punching blade conforming to JIS K 6251: 2017. .
Six of the obtained test pieces were stacked to a thickness of 6 mm, and the hardness was measured using a type A durometer and a type C durometer indenter, in accordance with JIS K 6253-3: 2012, using an Asker rubber hardness meter manufactured by Kobunshi Keiki Co., Ltd. was measured using In addition, it means that it is excellent in flexibility, so that the numerical value of hardness is small.
(引張強度および引張破壊ひずみ)
 各例の熱可塑性エラストマー組成物のペレットについて、プレス成形装置「NF-50H」(株式会社神藤金属工業所製)により、温度200℃で1分間予熱後、同温度にて圧力10MPaで3分間加圧することで長さ15cm×幅15cm×厚さ0.1cmのシートを作製し、JIS K 6251:2017に準拠した打ち抜き刃を用い、ダンベル3号形試験片(厚さ1.0mm)を得た。得られた試験片をJIS K 6251:2017に準拠して、インストロン社製の「インストロン3345」を用いて引張強度(MPa)および引張破壊ひずみ(%)を測定した。
(Tensile strength and tensile breaking strain)
Pellets of the thermoplastic elastomer composition of each example were preheated at a temperature of 200° C. for 1 minute with a press molding machine “NF-50H” (manufactured by Shindo Kinzoku Kogyo Co., Ltd.) and then heated at the same temperature for 3 minutes at a pressure of 10 MPa. A sheet of length 15 cm × width 15 cm × thickness 0.1 cm was produced by pressing, and a dumbbell No. 3 test piece (thickness 1.0 mm) was obtained using a punching blade conforming to JIS K 6251: 2017. . The tensile strength (MPa) and tensile strain at break (%) of the obtained test piece were measured according to JIS K 6251:2017 using "Instron 3345" manufactured by Instron.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3~5に示されるように、例1~例14、例16~例19、例21~例22、例24~例25の熱可塑性エラストマー組成物は、ブリードの評価が良好であり、液状ゴム成分(Y)が良好に分散していることがうかがえる。特に、例16のように、シリカを添加することによって液状ゴム成分(Y)の含有量を、ブロック共重合体(X)の質量以上としても、液状ゴム成分のブリードを実使用可能な範囲に抑えることができ、高い含有割合で液状ゴム成分を含むマスターバッチとして利用できることが判る。
 例1、3、5、6と例8~11とを比較することにより、ブロック共重合体(X1)の代わりにブロック共重合体(X2)を用いることにより、より確実に、透明性(小さなヘイズ)とブリードの抑制とを両立できることが判った。
As shown in Tables 3 to 5, the thermoplastic elastomer compositions of Examples 1 to 14, Examples 16 to 19, Examples 21 to 22, and Examples 24 to 25 had good bleeding evaluation and were liquid. It can be seen that the rubber component (Y) is well dispersed. In particular, as in Example 16, even if the content of the liquid rubber component (Y) is made equal to or greater than the mass of the block copolymer (X) by adding silica, the bleeding of the liquid rubber component is kept within a practically usable range. It can be seen that it can be used as a masterbatch containing a liquid rubber component at a high content rate.
By comparing Examples 1, 3, 5, 6 with Examples 8 to 11, the use of block copolymer (X2) instead of block copolymer (X1) more reliably improved transparency (small haze) and bleed suppression can be achieved at the same time.
[実施例1~3及び5~8、比較例1]
 上述した例13で得られた熱可塑性エラストマー組成物MB13又は例14で得られた熱可塑性エラストマー組成物MB14のペレットを用いて、表6に示す材料及び使用量で、以下の手順に従って、ブロッキング防止剤が上記ペレットの表面に打ち粉として付着しているペレットを作製し、このブロッキング防止剤付きペレットのブロッキング強度を測定した。表6に、ブロッキング防止剤付きペレットの組成とともに測定結果を示す。
[Examples 1 to 3 and 5 to 8, Comparative Example 1]
Using the pellets of the thermoplastic elastomer composition MB13 obtained in Example 13 or the thermoplastic elastomer composition MB14 obtained in Example 14 above, the blocking prevention was carried out according to the following procedure using the materials and amounts shown in Table 6. A pellet in which the agent was attached to the surface of the pellet as dusting powder was prepared, and the blocking strength of the pellet with the antiblocking agent was measured. Table 6 shows the composition of the antiblocking agent-attached pellets and the measurement results.
<ブロッキング防止剤付きペレットの作製及びブロッキング強度の測定>
(1)熱可塑性エラストマー組成物MB13又は熱可塑性エラストマー組成物MB14のペレットに対して、表6に示す質量のブロッキング防止剤を添加する。続いて、タンブラーを用いて両者を混合して打ち粉することで、ブロッキング防止剤が上記ペレットの表面に付着したブロックキング防止剤付きペレットを作製し、測定用のサンプルとする。
(2)容量100mLの第1のディスポカップの内側に離型剤(トラスコ中山株式会社製α-シリコーンスプレー ALP-S2)を塗布し、上記サンプルを30g入れる。
(3)空の、容量100mLの第2のディスポカップの外側に離型剤(トラスコ中山株式会社製α-シリコーンスプレー ALP-S2)を塗布し、上記第1のディスポカップ内のサンプルの上に載置し、更に第2のディスポカップに1kgの荷重を乗せる。
(4)この状態のまま表6に示す温度で48時間放置する。
(5)48時間後に荷重を外し、室温で2時間放置する。
(6)ディスポカップからサンプルを取り出す。
(7)万能材料試験機インストロン3345(インストロン社製)を用い、圧縮試験により荷重を測定し、最大荷重をブロッキング強度とする。
<Preparation of pellets with antiblocking agent and measurement of blocking strength>
(1) An anti-blocking agent having the mass shown in Table 6 is added to pellets of the thermoplastic elastomer composition MB13 or the thermoplastic elastomer composition MB14. Subsequently, the two are mixed and dusted using a tumbler to prepare a pellet with an antiblocking agent in which the antiblocking agent adheres to the surface of the pellet, and this is used as a sample for measurement.
(2) A mold release agent (α-silicone spray ALP-S2 manufactured by Trusco Nakayama Co., Ltd.) is applied to the inside of a first disposable cup with a capacity of 100 mL, and 30 g of the above sample is placed.
(3) Apply a release agent (α-silicone spray ALP-S2 manufactured by Trusco Nakayama Co., Ltd.) to the outside of an empty second disposable cup with a capacity of 100 mL, and place the sample inside the first disposable cup. Then, a load of 1 kg is placed on the second disposable cup.
(4) Leave in this state at the temperature shown in Table 6 for 48 hours.
(5) Remove the load after 48 hours and leave at room temperature for 2 hours.
(6) Remove the sample from the disposable cup.
(7) Using a universal material testing machine, Instron 3345 (manufactured by Instron), the load is measured by a compression test, and the maximum load is defined as the blocking strength.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6に示すように、実施例1~3及び実施例5~8のブロッキング防止剤付きペレットは、23℃及び40℃のブロッキング強度がいずれも20N以下であった。これに対して、ブロッキング防止剤を付着させていない比較例1のペレットは、23℃及び40℃のブロッキング強度がいずれも200N超であった。 As shown in Table 6, the antiblocking agent-attached pellets of Examples 1 to 3 and Examples 5 to 8 had blocking strengths of 20 N or less at 23°C and 40°C. On the other hand, the pellets of Comparative Example 1 to which no antiblocking agent was adhered had blocking strengths exceeding 200 N at both 23°C and 40°C.
[実施例4、参考例1]
(1)溶融混練(樹脂組成物の製造)
 表7に記載した配合割合(質量部)に従って、温度150℃のバッチ式ミキサー(ブラベンター社製、ブラストグラフEC-50EHT)にブロック共重合体および熱可塑性エラストマー組成物または液状ゴム成分を投入し、5分間混練した。ついでアクリルモノマー、光重合開始剤、酸化防止剤を投入し、10分間混練した。
 実施例4においては、上記熱可塑性エラストマー組成物として、実施例3で作製したブロックキング防止剤付きペレットを使用して樹脂組成物を作製した。なお、前記ブロッキング防止剤付ペレットは、熱可塑性エラストマー組成物MB14とブロッキング防止剤を上述の製法で混合して得られたペレットであり、前記熱可塑性エラストマー組成物MB14は、未水添ブロック共重合体(X1)と未水添液状ゴム(Y2)とを質量比5:5の割合で含む。これに対して、参考例1においては、熱可塑性エラストマー組成物として前記ペレット及び前記熱可塑性エラストマー組成物MB14のいずれも用いずに、未水添ブロック共重合体(X1)と、未水添ブロック共重合体(X2)と、未水添液状ゴム(Y2)とを質量比20:48.5:20の割合で使用することにより樹脂組成物を作製した。
(2)成形(成形体の製造)
 また、上記で得られた樹脂組成物をプレス成形機(株式会社神藤金属工業所製「NF-50H」)を用いてプレス成形(150℃、10MPa、2分)してゴムシート(厚み2mm)を得た。
(3)UV硬化
 上記で得られた樹脂組成物のゴムシートをUV照射機(Heraeus社製「F300シリーズ」、「LC6Bコンベア」)を用いて硬化(照射出力500mJ/cm、回数16回、合計照射量8000mJ/cm)して、樹脂組成物のUV硬化シートを得た。得られた樹脂組成物のUV硬化シートを下記の評価方法に基づき物性を評価した。結果を表7に示す。
[Example 4, Reference Example 1]
(1) Melt-kneading (production of resin composition)
A block copolymer and a thermoplastic elastomer composition or a liquid rubber component were charged into a batch mixer (Blastograph EC-50EHT, manufactured by Braventer) at a temperature of 150° C. according to the blending ratio (parts by mass) shown in Table 7, Knead for 5 minutes. Next, an acrylic monomer, a photopolymerization initiator and an antioxidant were added and kneaded for 10 minutes.
In Example 4, a resin composition was produced using the pellets with anti-blocking agent produced in Example 3 as the thermoplastic elastomer composition. The antiblocking agent-attached pellets are pellets obtained by mixing the thermoplastic elastomer composition MB14 and the antiblocking agent by the above-described manufacturing method, and the thermoplastic elastomer composition MB14 is an unhydrogenated block copolymer. Combined (X1) and unhydrogenated liquid rubber (Y2) are contained at a mass ratio of 5:5. On the other hand, in Reference Example 1, neither the pellets nor the thermoplastic elastomer composition MB14 were used as the thermoplastic elastomer composition, and the unhydrogenated block copolymer (X1) and the unhydrogenated block A resin composition was prepared by using the copolymer (X2) and the unhydrogenated liquid rubber (Y2) at a mass ratio of 20:48.5:20.
(2) Molding (production of molding)
Further, the resin composition obtained above was press-molded (150° C., 10 MPa, 2 minutes) using a press molding machine (“NF-50H” manufactured by Shindo Kinzoku Kogyo Co., Ltd.) to form a rubber sheet (thickness: 2 mm). got
(3) UV curing The rubber sheet of the resin composition obtained above is cured using a UV irradiation machine ("F300 series", "LC6B conveyor" manufactured by Heraeus) (irradiation output 500 mJ/cm 2 , 16 times, The total irradiation dose was 8000 mJ/cm 2 ) to obtain a UV-cured sheet of the resin composition. The physical properties of the obtained UV cured sheet of the resin composition were evaluated according to the following evaluation methods. Table 7 shows the results.
[評価方法]
(ヘイズ)
 実施例4及び参考例1で得られた樹脂組成物のUV硬化シートについて、JIS K 7136:2000に準拠して、株式会社村上色彩技術研究所製の「HR-100」を用いて、ヘイズ(%)を測定した。
(硬度)
 実施例4及び参考例1で得られた樹脂組成物のUV硬化シートからJIS K 6251:2017に準拠した打ち抜き刃を用い、ダンベル3号形試験片(厚さ2mm)を得た。
 得られた試験片を3枚重ねて厚み6mmとし、硬度をタイプAデュロメータの圧子を用い、JIS K 6253-3:2012に準拠して測定した。なお、硬度の数値が小さいほど柔軟性に優れることを意味する。
[Evaluation method]
(Haze)
For the UV cured sheets of the resin compositions obtained in Example 4 and Reference Example 1, haze ( %) was measured.
(hardness)
Dumbbell No. 3 test pieces (thickness: 2 mm) were obtained from the UV-cured sheets of the resin compositions obtained in Example 4 and Reference Example 1 using a punch blade conforming to JIS K 6251:2017.
Three of the obtained test pieces were stacked to a thickness of 6 mm, and the hardness was measured using a type A durometer indenter in accordance with JIS K 6253-3:2012. In addition, it means that it is excellent in flexibility, so that the numerical value of hardness is small.
(引張強度)
 実施例4及び参考例1で得られた樹脂組成物のUV硬化シートについて、JIS K 6251:2017に準拠して、インストロン社製の「インストロン3345」を用いて引張強度(MPa)を測定した。
(tensile strength)
The tensile strength (MPa) of the UV-cured sheets of the resin compositions obtained in Example 4 and Reference Example 1 was measured according to JIS K 6251:2017 using "Instron 3345" manufactured by Instron. bottom.
(引張破壊ひずみ)
 実施例4及び参考例1で得られた樹脂組成物のUV硬化シートについて、JIS K 6251:2017に準拠して、インストロン社製の「インストロン3345」を用いて引張破壊ひずみ(%)を測定した。
(Tensile breaking strain)
For the UV-cured sheets of the resin compositions obtained in Example 4 and Reference Example 1, the tensile breaking strain (%) was measured using "Instron 3345" manufactured by Instron in accordance with JIS K 6251:2017. It was measured.
(膨潤率)
 実施例4及び参考例1で得られた樹脂組成物のUV硬化シートから、30mm×30mmの試験片を切り出し、トルエンに48時間浸漬させた。浸漬前後のUV硬化シートについて、アルファーミラージュ株式会社製の「MDS-300」を用いて体積を測定し、下記の計算式で膨潤率を測定した。
膨潤率(%)=(Vs-V0)/V0×100
Vs:膨潤後の体積
V0:膨潤前の体積
(swelling rate)
From the UV cured sheets of the resin compositions obtained in Example 4 and Reference Example 1, test pieces of 30 mm×30 mm were cut out and immersed in toluene for 48 hours. The volume of the UV cured sheet before and after immersion was measured using "MDS-300" manufactured by Alpha Mirage Co., Ltd., and the swelling rate was measured by the following formula.
Swelling rate (%) = (Vs-V0)/V0 x 100
Vs: volume after swelling V0: volume before swelling
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7に示すように、実施例3のペレットを用いることで、液状ゴムの分散性が向上し、透明性(ヘイズ)が向上した。実施例3のペレットを用いたことにより、透明性が向上したため、UV硬化が進行しやすくなり、各種物性(硬度、引張強度、引張破壊ひずみ、膨潤率)も向上した。 As shown in Table 7, the use of the pellets of Example 3 improved the dispersibility of the liquid rubber and improved the transparency (haze). By using the pellets of Example 3, transparency was improved, UV curing was facilitated, and various physical properties (hardness, tensile strength, tensile strain at break, swelling rate) were also improved.
 ペレットのブロッキングを抑制することができ、ブリードの発生が抑えられて物性が向上した成形品が得られる熱可塑性エラストマー組成物のペレット、及び、該熱可塑性エラストマー組成物のペレットの製造方法を提供する。また、そのような熱可塑性エラストマー組成物のペレットを含む樹脂組成物及び該樹脂組成物の製造方法を提供することができる。
 本発明の熱可塑性エラストマー組成物のペレットは、フレキソ印刷等の印刷用の刷版材等の様々な分野の用途に好適に用いることができる。
Provided are pellets of a thermoplastic elastomer composition capable of suppressing blocking of the pellets, suppressing the occurrence of bleeding, and obtaining molded articles having improved physical properties, and a method for producing the pellets of the thermoplastic elastomer composition. . Further, it is possible to provide a resin composition containing pellets of such a thermoplastic elastomer composition and a method for producing the resin composition.
Pellets of the thermoplastic elastomer composition of the present invention can be suitably used for applications in various fields such as printing plate materials for printing such as flexographic printing.

Claims (27)

  1.  芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A)及び共役ジエン化合物に由来する構造単位を含有する重合体ブロック(B)を含むブロック共重合体(X)100質量部と、液状ゴム成分(Y)10質量部以上150質量部未満とを含む熱可塑性エラストマー組成物のペレットであって、
     前記ペレットの表面に、ブロッキング防止剤が接した状態で存在しており、
     前記ペレットの表面に存在する量も含めた前記ブロッキング防止剤の含有量が、前記ペレット100質量部に対して0.1~1.5質量部である、熱可塑性エラストマー組成物のペレット。
    100 parts by mass of a block copolymer (X) containing a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing a structural unit derived from a conjugated diene compound; Pellets of a thermoplastic elastomer composition containing 10 parts by mass or more and less than 150 parts by mass of a liquid rubber component (Y),
    An antiblocking agent is present in contact with the surface of the pellet,
    Pellets of a thermoplastic elastomer composition, wherein the content of the antiblocking agent, including the amount present on the surface of the pellets, is 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the pellets.
  2.  前記ブロッキング防止剤の平均粒子径が1~15μmである、請求項1に記載の熱可塑性エラストマー組成物のペレット。 The pellets of the thermoplastic elastomer composition according to claim 1, wherein the antiblocking agent has an average particle size of 1 to 15 µm.
  3.  前記ブロッキング防止剤は、ポリオレフィン系ワックス、含水珪酸マグネシウム、エチレンビスステアリルアミド、ステアリン酸カルシウム、ステアリン酸マグネシウム、及びシリカからなる群より選択される少なくとも1種である、請求項1又は2に記載の熱可塑性エラストマー組成物のペレット。 The heat according to claim 1 or 2, wherein the antiblocking agent is at least one selected from the group consisting of polyolefin wax, hydrated magnesium silicate, ethylenebisstearylamide, calcium stearate, magnesium stearate, and silica. Pellets of a plastic elastomer composition.
  4.  前記ブロック共重合体(X)がブロック共重合体の未水素添加物であり、且つ、前記液状ゴム成分(Y)が液状ゴムの未水素添加物である、請求項1~3のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 4. Any one of claims 1 to 3, wherein the block copolymer (X) is an unhydrogenated block copolymer, and the liquid rubber component (Y) is an unhydrogenated liquid rubber. A pellet of the thermoplastic elastomer composition according to any one of the preceding paragraphs.
  5.  前記ブロック共重合体(X)がブロック共重合体の水素添加物であり、且つ、前記液状ゴム成分(Y)が液状ゴムの水素添加物である、請求項1~3のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 The block copolymer (X) according to any one of claims 1 to 3, wherein the block copolymer (X) is a hydrogenated block copolymer, and the liquid rubber component (Y) is a hydrogenated liquid rubber. Pellets of the thermoplastic elastomer composition described.
  6.  前記液状ゴム成分(Y)の水素添加率が80モル%以上である、請求項5に記載の熱可塑性エラストマー組成物のペレット。 The pellets of the thermoplastic elastomer composition according to claim 5, wherein the liquid rubber component (Y) has a hydrogenation rate of 80 mol% or more.
  7.  前記液状ゴム成分(Y)の分子量分布が2.00以下である、請求項1~6のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 The pellets of the thermoplastic elastomer composition according to any one of claims 1 to 6, wherein the liquid rubber component (Y) has a molecular weight distribution of 2.00 or less.
  8.  前記液状ゴム成分(Y)の重量平均分子量が2,000~300,000である、請求項1~7のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 The pellets of the thermoplastic elastomer composition according to any one of claims 1 to 7, wherein the liquid rubber component (Y) has a weight average molecular weight of 2,000 to 300,000.
  9.  前記液状ゴム成分(Y)の38℃溶融粘度が0.1~2,000Pa・sである、請求項1~8のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 The pellets of the thermoplastic elastomer composition according to any one of claims 1 to 8, wherein the liquid rubber component (Y) has a 38°C melt viscosity of 0.1 to 2,000 Pa·s.
  10.  前記ブロック共重合体(X)の重量平均分子量が10,000~200,000である、請求項1~9のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 The pellet of the thermoplastic elastomer composition according to any one of claims 1 to 9, wherein the block copolymer (X) has a weight average molecular weight of 10,000 to 200,000.
  11.  前記ブロック共重合体(X)における重合体ブロック(A)の重量平均分子量が2,000~60,000である、請求項1~10のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 Pellets of the thermoplastic elastomer composition according to any one of claims 1 to 10, wherein the polymer block (A) in the block copolymer (X) has a weight average molecular weight of 2,000 to 60,000. .
  12.  前記ブロック共重合体(X)における重合体ブロック(B)の重量平均分子量が10,000~200,000である、請求項1~11のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 Pellets of the thermoplastic elastomer composition according to any one of claims 1 to 11, wherein the polymer block (B) in the block copolymer (X) has a weight average molecular weight of 10,000 to 200,000. .
  13.  前記ブロック共重合体(X)の分子量分布が2.00以下である、請求項1~12のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 The pellets of the thermoplastic elastomer composition according to any one of claims 1 to 12, wherein the block copolymer (X) has a molecular weight distribution of 2.00 or less.
  14.  前記ブロック共重合体(X)における重合体ブロック(B)の水素添加率が80モル%以上である、請求項5に記載の熱可塑性エラストマー組成物のペレット。 The pellet of the thermoplastic elastomer composition according to claim 5, wherein the hydrogenation rate of the polymer block (B) in the block copolymer (X) is 80 mol% or more.
  15.  前記ブロック共重合体(X)における重合体ブロック(B)のビニル結合量が5~95モル%である、請求項1~14のいずれか1項に記載の熱可塑性エラストマー組成物のペレット。 The pellet of the thermoplastic elastomer composition according to any one of claims 1 to 14, wherein the vinyl bond content of the polymer block (B) in the block copolymer (X) is 5 to 95 mol%.
  16.  前記熱可塑性エラストマー組成物における前記液状ゴム成分(Y)の含有量が、前記ブロック共重合体(X)100質量部に対して31質量部以上である、請求項1~15に記載の熱可塑性エラストマー組成物のペレット。 The thermoplastic according to any one of claims 1 to 15, wherein the content of the liquid rubber component (Y) in the thermoplastic elastomer composition is 31 parts by mass or more with respect to 100 parts by mass of the block copolymer (X). Pellets of elastomer composition.
  17.  前記熱可塑性エラストマー組成物における前記液状ゴム成分(Y)の含有量が、前記ブロック共重合体(X)100質量部に対して46質量部以上である、請求項16に記載の熱可塑性エラストマー組成物のペレット。 17. The thermoplastic elastomer composition according to claim 16, wherein the content of said liquid rubber component (Y) in said thermoplastic elastomer composition is 46 parts by mass or more with respect to 100 parts by mass of said block copolymer (X). Pellets of things.
  18.  前記熱可塑性エラストマー組成物における前記液状ゴム成分(Y)の含有量が、前記ブロック共重合体(X)100質量部に対して51質量部以上である、請求項17に記載の熱可塑性エラストマー組成物のペレット。 18. The thermoplastic elastomer composition according to claim 17, wherein the content of said liquid rubber component (Y) in said thermoplastic elastomer composition is 51 parts by mass or more with respect to 100 parts by mass of said block copolymer (X). Pellets of things.
  19.  請求項1~18のいずれか1項に記載の熱可塑性エラストマー組成物のペレットと、(メタ)アクリルモノマーとを含む、樹脂組成物。 A resin composition comprising pellets of the thermoplastic elastomer composition according to any one of claims 1 to 18 and a (meth)acrylic monomer.
  20.  光重合開始剤をさらに含む、請求項19に記載の樹脂組成物。 The resin composition according to claim 19, further comprising a photopolymerization initiator.
  21.  酸化防止剤をさらに含む、請求項19又は20に記載の樹脂組成物。 The resin composition according to claim 19 or 20, further comprising an antioxidant.
  22.  請求項1~18のいずれか1項に記載の熱可塑性エラストマー組成物のペレットの製造方法であって、
     前記ブロック共重合体(X)と前記液状ゴム成分(Y)とを溶融混練する工程を含む、熱可塑性エラストマー組成物のペレットの製造方法。
    A method for producing pellets of the thermoplastic elastomer composition according to any one of claims 1 to 18,
    A method for producing pellets of a thermoplastic elastomer composition, comprising the step of melt-kneading the block copolymer (X) and the liquid rubber component (Y).
  23.  前記溶融混練する工程において、前記ブロック共重合体(X)を溶融した後に前記液状ゴム成分(Y)を添加して溶融混練を行う、請求項22に記載の熱可塑性エラストマー組成物のペレットの製造方法。 23. Production of pellets of the thermoplastic elastomer composition according to claim 22, wherein in the step of melt-kneading, the block copolymer (X) is melted and then the liquid rubber component (Y) is added and melt-kneaded. Method.
  24.  前記溶融混練する工程において、二軸押出機を用いて、溶融した前記ブロック共重合体(X)に対して、前記二軸押出機の押出し経路の途中から前記液状ゴム成分(Y)を添加して溶融混練を行う、請求項23に記載の熱可塑性エラストマー組成物のペレットの製造方法。 In the melt-kneading step, a twin-screw extruder is used to add the liquid rubber component (Y) to the melted block copolymer (X) from the middle of the extrusion route of the twin-screw extruder. 24. The method for producing pellets of the thermoplastic elastomer composition according to claim 23, wherein the melt-kneading is performed by
  25.  請求項1~18のいずれか1項に記載の熱可塑性エラストマー組成物のペレットの製造方法であって、
     前記ブロック共重合体(X)と第1の溶剤とを含む溶液(X’)、及び、前記液状ゴム成分(Y)と第2の溶剤とを含む溶液(Y’)を混合して混合液を調製する工程と、
     前記混合液に含まれる前記第1及び第2の溶剤を除去して樹脂成分を得る工程と、を含む、熱可塑性エラストマー組成物のペレットの製造方法。
    A method for producing pellets of the thermoplastic elastomer composition according to any one of claims 1 to 18,
    A solution (X') containing the block copolymer (X) and the first solvent and a solution (Y') containing the liquid rubber component (Y) and the second solvent are mixed to obtain a mixed solution. a step of preparing
    and a step of removing the first and second solvents contained in the mixture to obtain a resin component.
  26.  前記樹脂成分を溶融混練してペレット化する工程をさらに含む、請求項25に記載の熱可塑性エラストマー組成物のペレットの製造方法。 The method for producing pellets of the thermoplastic elastomer composition according to claim 25, further comprising a step of melt-kneading and pelletizing the resin component.
  27.  請求項19~21のいずれか1項に記載の樹脂組成物の製造方法であって、
     前記ブロック共重合体(X)及び前記液状ゴム成分(Y)を含むマスターバッチと、前記ブロック共重合体(X)及び前記液状ゴム成分(Y)のうち少なくとも一方とを混合することにより、前記熱可塑性エラストマー組成物における前記ブロック共重合体(X)の質量と前記液状ゴム成分(Y)の質量とを調整する工程をさらに含む、樹脂組成物の製造方法。
    A method for producing the resin composition according to any one of claims 19 to 21,
    By mixing a masterbatch containing the block copolymer (X) and the liquid rubber component (Y) with at least one of the block copolymer (X) and the liquid rubber component (Y), the A method for producing a resin composition, further comprising the step of adjusting the mass of the block copolymer (X) and the mass of the liquid rubber component (Y) in the thermoplastic elastomer composition.
PCT/JP2022/048276 2021-12-28 2022-12-27 Pellet of thermoplastic elastomer composition, resin composition, method for producing pellet of thermoplastic elastomer composition, and method for producing resin composition WO2023127896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214517 2021-12-28
JP2021214517 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127896A1 true WO2023127896A1 (en) 2023-07-06

Family

ID=86999096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048276 WO2023127896A1 (en) 2021-12-28 2022-12-27 Pellet of thermoplastic elastomer composition, resin composition, method for producing pellet of thermoplastic elastomer composition, and method for producing resin composition

Country Status (2)

Country Link
TW (1) TW202336124A (en)
WO (1) WO2023127896A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371136A (en) * 2001-06-15 2002-12-26 Kuraray Co Ltd Thermoplastic elastomer pellet and molded article
WO2007072613A1 (en) * 2005-12-22 2007-06-28 Kraton Jsr Elastomers K.K. Elastomer constituent and photosensitive composition making use of the same
WO2015098664A1 (en) * 2013-12-24 2015-07-02 旭化成ケミカルズ株式会社 Hydrogenated block copolymer pellet, adhesive composition, and surface protective film
JP2015151519A (en) * 2014-02-18 2015-08-24 旭化成ケミカルズ株式会社 Method for producing thermoplastic elastomer pellet
WO2015182695A1 (en) * 2014-05-30 2015-12-03 株式会社クラレ Thermoplastic elastomer pellets, and molded article formed from said pellets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371136A (en) * 2001-06-15 2002-12-26 Kuraray Co Ltd Thermoplastic elastomer pellet and molded article
WO2007072613A1 (en) * 2005-12-22 2007-06-28 Kraton Jsr Elastomers K.K. Elastomer constituent and photosensitive composition making use of the same
WO2015098664A1 (en) * 2013-12-24 2015-07-02 旭化成ケミカルズ株式会社 Hydrogenated block copolymer pellet, adhesive composition, and surface protective film
JP2015151519A (en) * 2014-02-18 2015-08-24 旭化成ケミカルズ株式会社 Method for producing thermoplastic elastomer pellet
WO2015182695A1 (en) * 2014-05-30 2015-12-03 株式会社クラレ Thermoplastic elastomer pellets, and molded article formed from said pellets

Also Published As

Publication number Publication date
TW202336124A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
JP6716612B2 (en) Hydrogenated copolymer, composition and molded article
JP6423276B2 (en) Thermoplastic polymer composition, shoes and outer sole
JP5116644B2 (en) Thermoplastic polymer composition
WO2001085818A1 (en) Block copolymer and composition containing the copolymer
CN111320733A (en) Novel block copolymer and use thereof
JP2020521017A (en) Crosslinkable composition and moldable thermoplastic elastomer product comprising the same
KR20120036815A (en) Method for producing a hydrogenated block copolymer, hydrogenated block copolymer obtained by said production method and composition thereof
WO2023127896A1 (en) Pellet of thermoplastic elastomer composition, resin composition, method for producing pellet of thermoplastic elastomer composition, and method for producing resin composition
JP3985293B2 (en) Block copolymer and method for producing the same
JP4994707B2 (en) Triblock copolymer pellets and polymer composition
JP4675712B2 (en) Polyolefin resin composition
JPWO2019031354A1 (en) Composition for pressure-sensitive adhesive, material for pressure-sensitive adhesive, method for forming pressure-sensitive adhesive, pressure-sensitive adhesive, multilayer film and package
JP3629872B2 (en) Aromatic vinyl-conjugated diene block copolymer and process for producing the same
JP5357875B2 (en) Thermoplastic elastomer composition and molded article thereof
JP2004307585A (en) Composition for foam and foam
JP2004091529A (en) Thermoplastic elastomer composition
EP2042531B1 (en) Block copolymer, composition for resin modification, and modified resin composition
JP2005219397A (en) Eraser
JP7173132B2 (en) Block copolymer composition for flexographic plate
WO2023127895A1 (en) Thermoplastic elastomer composition, pellet of thermoplastic elastomer composition, resin composition, method for producing thermoplastic elastomer composition, and method for producing resin composition
JP4029471B2 (en) Aromatic vinyl-conjugated diene block copolymer and method for producing the same
JP2006249125A (en) Thermoplastic resin composition
WO2021172140A1 (en) Block-copolymer pellets, tacky adhesive composition, and stretch film
JP2004196941A (en) Stretchable material
JP2003138073A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023571065

Country of ref document: JP