WO2023127381A1 - 通信装置、基地局、通信システム、及び通信方法 - Google Patents

通信装置、基地局、通信システム、及び通信方法 Download PDF

Info

Publication number
WO2023127381A1
WO2023127381A1 PCT/JP2022/044164 JP2022044164W WO2023127381A1 WO 2023127381 A1 WO2023127381 A1 WO 2023127381A1 JP 2022044164 W JP2022044164 W JP 2022044164W WO 2023127381 A1 WO2023127381 A1 WO 2023127381A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
ntn
terrestrial
communication
service area
Prior art date
Application number
PCT/JP2022/044164
Other languages
English (en)
French (fr)
Inventor
悠貴 外園
祥久 岸山
日向 小原
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023127381A1 publication Critical patent/WO2023127381A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to interference avoidance technology in wireless communication systems.
  • the 3GPP registered trademark
  • 3GPP Third Generation Partnership Project
  • a standardization project calls for large-capacity systems, high-speed We are studying and creating technical specifications that satisfy data transmission speed, low delay, simultaneous connection of many terminals, low cost, power saving, etc.
  • NTN Non-terrestrial networks
  • HAPS High Altitude Platform Station
  • HAPS High Altitude Platform Station
  • High Altitude Pseudo Satellite High Altitude Pseudo Satellite
  • interference between communications on the terrestrial network and communications on the NTN service link may significantly reduce the communication quality at terminals, for example.
  • the present invention has been made in view of the above points, and aims to provide a technique for avoiding interference between communications on the terrestrial network and communications on NTN service links.
  • a communication unit that performs communication in a service link of a non-terrestrial network; a control unit for controlling the direction or size of the beam formed by the communication unit to avoid interference between communications on the service link and communications on the terrestrial network.
  • a technique for avoiding interference between communications on the terrestrial network and communications on NTN service links.
  • FIG. 1 is a first diagram for explaining a non-terrestrial network
  • FIG. FIG. 4 is a second diagram for explaining a non-terrestrial network
  • FIG. 4 is a diagram for explaining a retransmission type
  • FIG. FIG. 4 is a diagram for explaining re-molding
  • FIG. 2 is a diagram for explaining interference between NTN service links and a terrestrial network
  • FIG. 2 is a diagram for explaining interference between NTN service links and a terrestrial network
  • FIG. 2 is a diagram for explaining interference between NTN service links and a terrestrial network
  • FIG. 2 is a diagram for explaining interference between NTN service links and a terrestrial network
  • FIG. 2 is a diagram for explaining interference between NTN service links and a terrestrial network
  • FIG. 4 is a diagram for explaining Example 1;
  • FIG. 4 is a diagram for explaining Example 1;
  • FIG. 11 is a diagram for explaining Example 2; FIG. 4 is a diagram for explaining Example 1 of an operation sequence; FIG. FIG. 11 is a diagram for explaining Example 2 of an operation sequence; It is a figure which shows an example of functional structure of the communication apparatus in embodiment of this invention. It is a figure showing an example of functional composition of a base station in an embodiment of the invention. It is a figure which shows an example of the hardware configuration of the communication apparatus or base station in embodiment of this invention. It is a figure showing an example of composition of vehicles in an embodiment of the invention.
  • a known technique may be used as appropriate for the wireless communication system according to the embodiment of the present disclosure.
  • the known technology may be, for example, 5G or Beyond 5G. Note that the technology of the present disclosure is applicable not only to 5G and the like, but also to any wireless communication system.
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other (for example, Flexible Duplex etc.) method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • configure of a parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or that a certain device is configured to another device. It may be that a parameter is set to the device.
  • FIG. 1 is a first diagram for explaining a non-terrestrial network (NTN: Non-Terrestrial Network).
  • NTN Non-Terrestrial Network
  • Non-terrestrial networks use non-terrestrial devices, such as satellites, to provide service to areas not covered by terrestrial networks, primarily for cost reasons.
  • NTN can provide more reliable services. For example, it is assumed to be applied to IoT (Inter of things), ships, buses, trains, and critical communications. NTN also has scalability through efficient multicast or broadcast.
  • a satellite 10A can retransmit a signal transmitted from a base station 10C to serve areas where base stations are not deployed, such as mountainous terrain. .
  • the terrestrial network (eg, terrestrial 5G network) may be configured as described below.
  • the terrestrial network includes one or more base stations 10E and terminals 20.
  • the base station 10E is a communication device that provides one or more cells (service areas) and wirelessly communicates with the terminal 20 .
  • a physical resource of a radio signal is defined in the time domain and the frequency domain.
  • the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks.
  • the base station 10E transmits synchronization signals and system information to the terminal 20.
  • FIG. Synchronization signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH, and is also called broadcast information.
  • the base station 10E transmits control signals or data to the terminal 20 on DL (Downlink) and receives control signals or data from the terminal 20 on UL (Uplink). Both the base station 10E and the terminal 20 can perform beamforming to transmit and receive signals. Also, both the base station 10E and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Also, both the base station 10E and the terminal 20 may communicate via SCell (Secondary Cell) and PCell (Primary Cell) by CA (Carrier Aggregation). A base station in a terrestrial network may also be called a terrestrial base station.
  • SCell Secondary Cell
  • PCell Primary Cell
  • CA Carrier Aggregation
  • the terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module.
  • the terminal 20 uses various communication services provided by the wireless communication system by receiving a control signal or data from the base station 10E on the DL and transmitting the control signal or data to the base station 10E on the UL.
  • FIG. 2 is a second diagram for explaining the non-terrestrial network (NTN). As shown in FIG. 2, NTN makes it possible to provide various services to areas that could not be covered by conventional mobile communication networks (terrestrial NW).
  • NTN non-terrestrial network
  • NTN is realized by satellites in space or airborne vehicles.
  • a GEO satellite may be a satellite located at an altitude of 35,786 km and having a geostationary orbit.
  • a LEO satellite may be a satellite located at an altitude of 500-2000 km and orbiting with a period of 88-127 minutes.
  • the HAPS may be a vehicle that is positioned at an altitude of 8-50 km and performs a turning flight, or it may be a vehicle that performs a separate flight.
  • Satellites or flying objects are equipped with repeaters (repeaters, relay stations) or base stations, and beams are formed by the repeaters or base stations to communicate with equipment on the ground.
  • An area formed on the ground by a beam of a satellite or an air vehicle in NTN may be called a "service area” or a "beam area.”
  • Non-terrestrial objects that make up the NTN, such as satellites or air vehicles, may be referred to as non-terrestrial objects.
  • FIGS. 3 and 4 show the case where the non-terrestrial object is a satellite.
  • 3 and 4 show NTN based on NR (5G).
  • the configurations shown in FIGS. 3 and 4 are examples, and the NTN to which the technology of the present invention can be applied is not limited to the configurations shown in FIGS.
  • FIG. 3 shows an example of a transparent NTN in which the non-terrestrial object 10A has a repeater.
  • the NTN has a ground-based base station 10C, a ground-based NTN gateway (GW) 10B, and a non-ground object 10A.
  • GW ground-based NTN gateway
  • data transmitted from the core network (CN) 10D to the terminal 20 is first transmitted from the core network 10 to the base station 10C. Then, the base station 10C transmits the received data to the non-ground object 10A by a downlink radio signal through the NTN gateway 10B. Then, the non-terrestrial 10A relays (transfers) the received downlink radio signal to the terminal 20 using a repeater.
  • the data transmitted from the terminal 20 to the core network 10D is first transmitted from the terminal 20 to the non-ground object 10A as an uplink radio signal. Then, the non-terrestrial object 10A relays (transfers) the received uplink radio signal to the NTN gateway 10B using a repeater. Then, the NTN gateway 10B transmits the received uplink radio signal to the base station 10C wirelessly or by wire. The base station 10C then transmits the data received from the NTN gateway 10B to the core network 10D.
  • FIG. 4 shows an example of a regenerative NTN in which a non-terrestrial object 10A has a base station 10C.
  • the NTN has a ground-based NTN gateway 10B and a non-terrestrial object 10A with a base station 10C.
  • data transmitted from the core network 10D to the terminal 20 is first transmitted from the core network 10D to the base station 10C of the non-ground object 10A by radio waves (radio signals) by the NTN gateway 10B. Then, the base station 10C of the non-terrestrial object 10A generates a downlink radio signal based on the received data and transmits the generated radio signal to the terminal 20.
  • radio waves radio signals
  • the data transmitted from the terminal 20 to the core network 10D is first transmitted from the terminal 20 to the non-ground object 10A as an uplink radio signal.
  • the base station 10C of the non-terrestrial object 10A then transmits the received data to the core network 10D via the NTN gateway 10B.
  • the non-terrestrial object 10A, the repeater mounted on the non-terrestrial object 10A, and the base station 10C mounted on the non-terrestrial object 10A are collectively referred to as "NTN device 10N". That is, the NTN device 10N may be a non-terrestrial object 10A including a repeater or a base station, a repeater mounted on the non-terrestrial object 10A, or mounted on the non-terrestrial object 10A. It may be the base station 10C. Also, the "NTN device 10N" may be called a "communication device”.
  • NTN gateway 10B and “NTN gateway 10B + base station 10C” are collectively referred to as “NTN ground station 40".
  • NTN ground station 40 the base station in the terrestrial network.
  • base station 10E the base station in the terrestrial network.
  • a link between the NTN ground station 40 and the NTN equipment 10N is called a feeder link, and a link between the terminal 20 and the NTN equipment 10N is called a service link.
  • FIG. 5 shows a system configuration example including NTN and terrestrial NW in this embodiment.
  • the NTN device 10N supports multiple beams and can form an area on the ground with each of the multiple beams.
  • the NTN device 10N uses multi-beams to apply different beams to the feeder link and the service link to support them on the same frequency.
  • NTN service area the area formed on the ground by the beam applied to the service link
  • a transceiver service area an area formed on the ground by the ground base station 10E
  • a “NTN service area” may be called an “NTN cell”
  • a “terrestrial service area” may be called a “terrestrial cell”.
  • an NTN service area 50 is formed by beams in service links.
  • a terrestrial service area 60 is formed by the terrestrial base station 10E.
  • terminals 20 and CPE stations 30 that communicate with the terrestrial base station 10E in the terrestrial service area 60.
  • the location of terminal 20 also corresponds to NTN service area 50 .
  • the "CPE station 30" may be regarded as a type of terminal and may be called a terminal.
  • the terrestrial NW (terrestrial service area 60) and NTN service links share the same frequency (same frequency band).
  • the shared frequency is, for example, millimeter waves such as 38 GHz band or 28 GHz band.
  • the shared frequency is not limited to the 38 GHz band, the 28 GHz band, or the like.
  • the shared frequency may be a frequency band lower than 28 GHz or a frequency band higher than 38 GHz.
  • FIGS. 6 to 9 show HAPS as an example of the NTN device 10N. Also, in NTN, only service links (SL) are shown. Also, the direction from the HAPS to the ground is defined as down, and the direction from the ground to the HAPS is defined as up.
  • FIG. 6 is a diagram showing interference example A.
  • both the terrestrial base station 10E and the HAPS 10N use FDD, and the same frequency is used for uplinks, and the same frequency is used for downlinks.
  • S1 to S4 may occur.
  • S1 to S4 in FIG. 6 correspond to S1 to S4 below.
  • FIG. 7 is a diagram showing interference example B.
  • the ground base station 10E uses TDD, and its frequency is the same as the downlink SL frequency of the HAPS 10N.
  • S1 to S4 may occur.
  • S1 to S4 in FIG. 7 correspond to S1 to S4 below.
  • Downlink SL signals and a terminal connected to the terrestrial base station 10E 20A uplink signals are interference sources that interfere with each other. Specifically, there are the following (i) and (ii).
  • FIG. 8 is a diagram showing interference example C.
  • the ground base station 10E uses TDD, and its frequency is the same as the frequency of the uplink SL of HAPS 10N.
  • S1 to S4 may occur.
  • S1 to S4 in FIG. 8 correspond to S1 to S4 below.
  • Uplink SL signals and terrestrial base stations 10E downlink signals are interference sources that interfere with each other, and specifically, there are the following (i) and (ii).
  • the CPE station 30 corresponds to the case where the terminal 20 in the interference examples A to C described above is replaced with the CPE station 30 . In other words, the CPE station 30 may experience the interference described in the interference examples A to C above.
  • FIG. 9 shows interference case A for CPE station 30 as an example. It is assumed that the access link (AL) between the CPE station 30 and the terminal 20 uses a frequency different from that of the HAPS 10N and the terrestrial base station 10E.
  • HAPS10N the frequency of HAPS10N will be explained.
  • FL and SL may have the same frequency, or may have different frequencies.
  • interference avoidance includes reducing interference in addition to completely removing interference.
  • Example 1 of the interference avoidance technique according to the present embodiment will be described with reference to FIG.
  • the configuration shown in FIG. 10 is applicable to both the transparent type and the regenerative type.
  • the NTN device 10N controls the direction of the beam forming the NTN service area 50 (or the size of the beam, or the size and direction of the beam), so that communication (service to avoid interference between communications on the link) and communications on the ground service area 60. For example, avoid overlap between the NTN service area 50 and the terrestrial service area 60 .
  • the "beam” in the present embodiment means a beam from the NTN equipment 10N to the ground (transmission beam of the NTN equipment 10N) and a beam from the ground to the NTN equipment 10N (receiving beam of the NTN equipment 10N). beam).
  • the size of the beam may be the size of the NTN service area formed on the ground by the beam (the radius of a circle, etc.).
  • the "NTN service area” may be a range in which a signal reaches the ground from the NTN device 10N with a reception strength equal to or higher than a certain threshold. Also, the “NTN service area” may be a range on the ground where a signal with a predetermined transmission power reaches the NTN device 10N from the ground.
  • the "terrestrial service area” may be a range in which a signal reaches the ground from the terrestrial base station 10E with a reception strength greater than or equal to a certain threshold. Also, the “terrestrial service area” may be a range on the ground where a signal with a predetermined transmission power reaches the terrestrial base station 10E from the ground.
  • the NTN service area 50 in the NTN service link is formed at a position away from the terrestrial service area 60 . Thereby, for example, interference between the terminal 20A existing in the terrestrial service area 60 and the terminal 20B existing in the NTN service area 50 can be avoided.
  • control is an example of control for not directing the beam of the NTN device 10N to the vicinity of the terrestrial base station 10E.
  • control the CPE stations 30 around the terrestrial base station 10E it is also possible to control the CPE stations 30 around the terrestrial base station 10E not to communicate with the NTN device 10N.
  • Examples of specific control methods include Examples 1 and 2 below.
  • the position information of the ground base station 10E is transmitted from the NTN ground station 40 to the NTN equipment 10N, and control is executed so that the NTN equipment 10N does not direct the beam to that position.
  • the NTN device 10N controls the beam so that there is no overlap between the terrestrial service area 60 and the NTN service area 50 .
  • the control is, for example, beam direction control, beam size control, or beam direction and size control.
  • the source of the location information of the ground base station 10E may be the ground base station 10E, the NTN ground station 40, any node device in the core network, or the terminal 20. or an application server in a data network.
  • Example 2 In the NTN equipment 10N, the position of each terrestrial base station 10E is set in advance, and the NTN equipment 10N performs control so as not to direct the beam to the position of the terrestrial base station 10E.
  • the contents of control are the same as in example 1.
  • Example 2 (Interference avoidance technology: Example 2)
  • Example 2 of the interference avoidance technique according to the present embodiment will be described with reference to FIG.
  • the configuration shown in FIG. 11 is also applicable to both the transparent type and the regenerative type.
  • the size (eg, radius) of the ground service area 60 is adjusted so that the NTN device 10N does not direct the beam to the ground service area 60 (which may be called a beam irradiation prohibited area).
  • the size of the ground service area 60 is adjusted so that there is no overlap between the ground service area 60 and the NTN service area 50 . Thereby, for example, interference between the terminal 20A existing in the terrestrial service area 60 and the terminal 20B existing in the NTN service area 50 can be avoided.
  • Examples of specific control methods for adjusting the size of the ground service area 60 include the following examples 1 and 2.
  • the ground base station 10E actively (autonomously) controls the area size depending on the communication quality on the ground base station 10E side.
  • the terrestrial base station 10E detects interference from the NTN (e.g., interference due to the DL signal of the NT device 10N, interference due to the UL signal of the terminal 20B) from the communication quality information reported from the terminal 20A existing in the terrestrial service area 60. is detected, control is performed to reduce the size of the ground service area 60 .
  • the NTN e.g., interference due to the DL signal of the NT device 10N, interference due to the UL signal of the terminal 20B
  • the NTN device 10N instructs the terrestrial base station 10E to adjust the size of the terrestrial service area 60, and the terrestrial base station 10E adjusts the size of the terrestrial service area 60 according to the instruction.
  • Instructions from the NTN equipment 10N to the ground base station 10E are sent via, for example, the NTN ground station 40 and the core NW 10D.
  • the base station 10C on the ground adjusts the size of the ground service area 60 to the ground base station 10E via the core NW 10D. may be instructed to do so.
  • the NTN device 10N knows in advance the position of the terrestrial base station 10E. Then, for example, when the NTN device 10N determines that the beam will be directed near the terrestrial base station 10E based on its own aerial route, the terrestrial base station 10E is configured to reduce the size of the terrestrial service area 60. to carry out the instructions to
  • Example 1 and Example 2 Information sharing method, between the NTN side (e.g. NTN ground station 40, NTN device 10N) and the terrestrial NW (e.g. terrestrial base station 10E, core NW 10D node device), the position of the terrestrial base station Information, information on beam irradiation prohibited areas, or information on both of these may be shared.
  • the position information of the terrestrial base station, the information of the beam irradiation prohibited area, or the information of both of them will be referred to as position/area information.
  • FIG. 11 shows an image of sharing position/area information between the NTN ground station 40 and the ground base station 10E.
  • the node device of the core NW 10D may collect location/area information about multiple ground base stations and transmit it to the NTN device 10N via the NTN ground station 40.
  • FIG. 12 Next, examples 1 and 2 of an operation sequence according to the present embodiment will be described with reference to FIGS. 12 and 13.
  • FIG. Basically, the operation corresponding to the first embodiment will be explained in the case of FIG. 12, and the operation corresponding to the second embodiment will be explained in the case of FIG. However, as will be described later, it is also possible to perform the operation of the second embodiment in the case of FIG. 12, and it is also possible to perform the operation of the first embodiment in the case of FIG.
  • Example 1 An operation sequence example 1 will be described with reference to FIG.
  • the ground base station 10E determines that the interference avoidance operation by the NTN device 10N is necessary.
  • the terrestrial base station 10E determines that the interference avoidance operation by the NTN device 10N is necessary based on the interference report received from the terminal 20 in the terrestrial service area 60.
  • FIG. 1 An operation sequence example 1 will be described with reference to FIG.
  • the ground base station 10E determines that the interference avoidance operation by the NTN device 10N is necessary.
  • the terrestrial base station 10E determines that the interference avoidance operation by the NTN device 10N is necessary based on the interference report received from the terminal 20 in the terrestrial service area 60.
  • the ground base station 10E determines that the interference avoidance operation by the NTN equipment 10N is necessary at the time when the NTN equipment 10N approaches the ground base station 10E. You may
  • the terrestrial base station 10E transmits the location/area information of the terrestrial base station 10E.
  • the location information of the ground base station 10E the location information acquired by the GNSS function of the ground base station 10E may be transmitted.
  • the location/area information of the ground base station 10E is transmitted to the NTN ground station 40 via the core NW 10D, transmitted from the NTN ground station 40 to the NTN equipment 10N, and the NTN equipment 10N receives the location/area information ( S103, S104).
  • a control signal for example, is used to transmit information from the NTN ground station 40 to the NTN device 10N.
  • the NTN device 10N adjusts the beam direction/size as described in the first embodiment by applying the interference avoidance technique based on the received position/area information.
  • the NTN device 10N returns a response indicating that the interference avoidance technique has been applied to the ground base station 10E (S106, S107, S108).
  • the terrestrial base station 10E determines the size of the terrestrial service area 60. It may be determined that adjustment is necessary, and the size may be adjusted as described in the second embodiment.
  • both the control of the beam direction/size by the NTN device 10N and the control of the size of the terrestrial service area 60 by the terrestrial base station 10E are performed, for example, in S106 to S108 includes the beam direction/size control result (eg, the position and size of the NTN service area after control) by the NTN device 10N.
  • the terrestrial base station 10E which has received the control result in S108, adjusts the size of the terrestrial service area 60, for example, when determining that beam adjustment by the NTN device 10N alone is not sufficient for interference avoidance.
  • Example 2 of the operation sequence will be described with reference to FIG.
  • the NTN device 10N determines that interference avoidance operation by the ground base station 10E is necessary. For example, when the NTN equipment 10N detects that the NTN service area 50 is approaching the terrestrial service area 60 based on the aerial (space) route of the NTN equipment 10N, the interference avoidance operation by the ground base station 10E is performed. determine that it is necessary.
  • the NTN device 10N transmits an instruction signal (which may also be called a control signal) instructing the ground base station 10E to apply the interference avoidance technique.
  • the instruction signal reaches the ground base station 10E via the NTN ground station 40 and core NW 10D (S203, S204).
  • the terrestrial base station 10E that has received the instruction signal adjusts the size of the terrestrial service area 60 as described in the second embodiment by applying the interference avoidance technique in S205.
  • the ground base station 10E returns a response indicating that the interference avoidance technique has been applied to the NTN device 10N (S206, S207, S208).
  • the "NTN device 10N” may be replaced with the "base station 10C" on the ground.
  • communication is performed between the base station 10C and the ground base station 10E not via the NTN ground station 40 but via the core NW 10D.
  • the NTN device 10N changes the direction/size of the beam. It may be determined that adjustment is necessary, and the direction/size may be adjusted as described in the first embodiment.
  • the NTN device 10N contains the result of control of the terrestrial service area 60 by the terrestrial base station 10E (eg, the size of the area after control).
  • the NTN device 10N that has received the control result in S208 adjusts the direction/size of the beam, for example, when determining that the size adjustment by the terrestrial base station 10E alone is not sufficient for interference avoidance.
  • the NTN equipment 10N and the terrestrial base station 10E include functionality to implement the above-described embodiments.
  • the NTN device 10N and the terrestrial base station 10E may each include only the functions proposed in any of the embodiments.
  • FIG. 14 is a diagram showing an example of the functional configuration of the NTN device 10N. It is assumed that the NTN device 10N shown in FIG. 14 is a repeater mounted on a non-terrestrial object, a base station mounted on a non-terrestrial object, or a functional unit related to communication in a non-terrestrial object. ing. As shown in FIG. 14, the NTN device 10N has a transmission section 110, a reception section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 14 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary. You may call "the transmission part 110+receiving part 120" a communication part.
  • the transmission unit 110 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 120 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. Also, both the transmitter 110 and the receiver 120 can control the direction/size of the beam according to commands from the controller 140 .
  • the setting unit 130 stores various types of setting information received from other devices by the receiving unit 120 in the storage device, and reads them from the storage device as necessary.
  • the setting unit 130 also stores preset setting information.
  • the control unit 140 controls the entire NTN device 10N. Also, the control unit 140 controls the beam. Also, the transmitting unit 110 and the receiving unit 120 may be called a transmitter and a receiver, respectively. You may call the control part 140 a processor or a controller.
  • FIG. 15 is a diagram showing an example of the functional configuration of the terrestrial base station 10E. Also, the configuration of the base station 10C on the ground is the same as the configuration shown in FIG. As shown in FIG. 15, the terrestrial base station 10E has a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 15 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the “transmitting unit 210 + receiving unit 220” may be called a communication unit.
  • the transmission unit 210 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal.
  • the receiving unit 220 also has a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals.
  • the transmitting unit 210 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20 .
  • Both the transmitting unit 210 and the receiving unit 220 can adjust (control) the size of the service area according to a command from the control unit 240. Moreover, both the transmission unit 210 and the reception unit 220 include a function of communicating with the core NW.
  • the setting unit 230 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them from the storage device as necessary.
  • the control unit 240 performs overall control of the terrestrial base station 10E. Also, the control unit 240 adjusts the size of the service area. Also, the transmitting section 210 and the receiving section 220 may be called a transmitter and a receiver, respectively. Control unit 240 may also be referred to as a processor or controller.
  • This application discloses at least a communication device, a base station, a communication system, and a communication method as described in the following sections.
  • (Section 1) a communication unit for communicating on a service link of a non-terrestrial network; a control unit for controlling the direction or size of the beam formed by the communication unit to avoid interference between communications on the service link and communications on the terrestrial network.
  • (Section 2) 2. The communication device according to claim 1, wherein the control unit controls the direction or size of the beam based on location information of base stations in the terrestrial network.
  • (Section 3) a communication unit that communicates with terminals in the service area of the terrestrial network; a control unit for controlling the size of the service area formed by the communication unit to avoid interference between communications on service links of non-terrestrial networks and communications in the service area.
  • (Section 4) 4. The base station according to claim 3, wherein the controller adjusts the size of the service area autonomously or based on instructions transmitted from communication devices in the non-terrestrial network.
  • (Section 5) a first communication unit that communicates with a terminal in the service area of the terrestrial network; a first control unit for controlling the size of the service area formed by the first communication unit to avoid interference between communications on service links of a non-terrestrial network and communications in the service area.
  • a base station a base station; a second communication unit that communicates via the service link; a second controller that controls the direction or size of the beam formed by the second communication unit to avoid interference between the communication on the service link and the communication on the service area; and , communication system.
  • (Section 6) obtaining location information of a base station in a terrestrial network; controlling the direction or size of a beam on the service link to avoid interference between communications on the service link of a non-terrestrial network and communications on the service area formed by the base station.
  • any of the above configurations provides techniques for avoiding interference between communications on the terrestrial network and communications on NTN's service links.
  • the position information of the base station in the terrestrial network is used, so the control target becomes clear.
  • control can be realized in various ways.
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, examining, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the NTN device 10N, the terrestrial base station 10E, etc. may function as a computer that performs the processing of the wireless communication method of the present disclosure.
  • FIG. 16 is a diagram showing an example of hardware configurations of an NTN device 10N and a ground base station 10E according to an embodiment of the present disclosure.
  • the NTN device 10N and the ground base station 10E described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. may be
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the NTN device 10N and the terrestrial base station 10E may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the NTN device 10N and the ground base station 10E is performed by the processor 1001 by loading predetermined software (program) on hardware such as the processor 1001 and the storage device 1002, and the communication by the communication device 1004 is performed. or controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 140 shown in FIG. 14 may be implemented by a control program stored in the storage device 1002 and operated by the processor 1001 .
  • the control unit 240 shown in FIG. 15 may be implemented by a control program stored in the storage device 1002 and operated by the processor 1001 .
  • FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing the communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021-2029. , an information service unit 2012 and a communication module 2013 .
  • Each aspect/embodiment described in the present disclosure may be applied to a communication device mounted on vehicle 2001, and may be applied to communication module 2013, for example.
  • the function of the ground base station 10E or the function of the terminal 20 may be provided in the communication module 2013.
  • the driving unit 2002 is configured by, for example, an engine, a motor, or a hybrid of the engine and the motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031 , a memory (ROM, RAM) 2032 and a communication port (IO port) 2033 . Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010 .
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • the signals from the various sensors 2021 to 2029 include the current signal from the current sensor 2021 that senses the current of the motor, the rotation speed signal of the front and rear wheels acquired by the rotation speed sensor 2022, and the front wheel acquired by the air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal obtained by vehicle speed sensor 2024, acceleration signal obtained by acceleration sensor 2025, accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, brake pedal sensor 2026 obtained by There are a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service unit 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and one or more devices for controlling these devices. ECU.
  • the information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide passengers of the vehicle 2001 with various multimedia information and multimedia services.
  • Driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), camera, positioning locator (e.g., GNSS, etc.), map information (e.g., high-definition (HD) map, automatic driving vehicle (AV) map, etc. ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, AI processors, etc., to prevent accidents and reduce the driver's driving load. and one or more ECUs for controlling these devices.
  • the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via communication ports.
  • the communication module 2013 communicates with the vehicle 2001 through the communication port 2033, the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the electronic Data is transmitted and received between the microprocessor 2031 and memory (ROM, RAM) 2032 in the control unit 2010 and the sensors 2021-29.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 2013 may be internal or external to electronic control unit 2010 .
  • the external device may be, for example, a base station, mobile station, NTN device 10, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 receives the rotation speed signal of the front and rear wheels obtained by the rotation speed sensor 2022, the air pressure signal of the front and rear wheels obtained by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal obtained by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 2028 are also transmitted to an external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service unit 2012 provided in the vehicle 2001 .
  • Communication module 2013 also stores various information received from external devices in memory 2032 available to microprocessor 2031 .
  • the microprocessor 2031 controls the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, and the axle 2009 provided in the vehicle 2001.
  • sensors 2021 to 2029 and the like may be controlled.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the NTN device 10N and the ground base station 10E are explained using functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are stored in random access memory (RAM), flash memory, read-only memory, respectively. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer, a decimal number)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems, and any extensions, modifications, creations, and provisions based on these systems. It may be applied to
  • a specific operation performed by the NTN device 10N or the terrestrial base station 10E in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with the terminal 20 may be performed by the base station 10E and other network nodes other than the base station 10E (eg, but not limited to MME or S-GW).
  • the base station 10E may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean value (Boolean: true or false), or may be performed by comparing numerical values (e.g. , comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station may have the functions that the above-described user terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure);
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” can include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) may represent a subset of contiguous common resource blocks (RBs) for a certain numerology on a certain carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and terminal 20 may not expect to transmit or receive a given signal/channel outside the active BWP.
  • terminal 20 may not expect to transmit or receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be read as "BWP”.
  • radio frames, subframes, slots, minislots and symbols are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信装置において、非地上ネットワークのサービスリンクにおける通信を行う通信部と、前記サービスリンクにおける通信と地上ネットワークにおける通信との間の干渉を回避するために、前記通信部により形成されるビームの方向又はサイズを制御する制御部とを備える。

Description

通信装置、基地局、通信システム、及び通信方法
 本発明は、無線通信システムにおける干渉回避技術に関連するものである。
 標準化プロジェクトである3GPP(登録商標)(Third Generation Partnership Project)では、LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)において、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術の仕様の検討及び作成を行っている。
 また、近年、高高度疑似衛星(HAPS、High Altitude Platform Station、またはHigh Altitude Pseudo Satellite)等を用いた非地上ネットワーク(NTN、Non-terrestrial networks)により、山間部、僻地及び海上等のエリアをカバーできるようにする技術が検討されている(例えば、非特許文献1を参照)。
小西 他,"HAPS移動通信システムにおける下りリンク周波数共用に関する一検討",電子情報通信学会総合大会,B-17-1,2020年
 地上ネットワークとNTNのサービスリンクとが同一周波数を共用する場合、地上ネットワークにおける通信とNTNのサービスリンクにおける通信との間の干渉により、例えば端末における通信品質が大きく低下する可能性がある。
 本発明は上記の点に鑑みてなされたものであり、地上ネットワークにおける通信とNTNのサービスリンクにおける通信との間の干渉を回避するための技術を提供することを目的とする。
 開示の技術によれば、非地上ネットワークのサービスリンクにおける通信を行う通信部と、
 前記サービスリンクにおける通信と地上ネットワークにおける通信との間の干渉を回避するために、前記通信部により形成されるビームの方向又はサイズを制御する制御部と
 を備える通信装置が提供される。
 開示の技術によれば、地上ネットワークにおける通信とNTNのサービスリンクにおける通信との間の干渉を回避するための技術が提供される。
非地上ネットワークについて説明するための第一の図である。 非地上ネットワークについて説明するための第二の図である。 再送信型を説明するための図である。 再生成型を説明するための図である。 NTNのサービスリンクと地上ネットワークとの間の干渉を説明するための図である。 NTNのサービスリンクと地上ネットワークとの間の干渉を説明するための図である。 NTNのサービスリンクと地上ネットワークとの間の干渉を説明するための図である。 NTNのサービスリンクと地上ネットワークとの間の干渉を説明するための図である。 NTNのサービスリンクと地上ネットワークとの間の干渉を説明するための図である。 実施例1を説明するための図である。 実施例2を説明するための図である。 動作シーケンスの例1を説明するための図である。 動作シーケンスの例2を説明するための図である。 本発明の実施の形態における通信装置の機能構成の一例を示す図である。 本発明の実施の形態における基地局の機能構成の一例を示す図である。 本発明の実施の形態における通信装置又は基地局のハードウェア構成の一例を示す図である。 本発明の実施の形態における車両の構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本開示の実施の形態の無線通信システムには、適宜、公知技術が使用されてもよい。当該公知技術は、例えば、5G、Beyond 5Gでもよい。なお、本開示の技術は、5G等に限らず、どのような無線通信システムにも適用可能である。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、ある装置から別の装置へパラメータが設定されることであってもよい。
 (非地上ネットワークについて)
 図1は、非地上ネットワーク(NTN:Non-Terrestrial Network)について説明するための第一の図である。非地上ネットワークとは、衛星等の非地上に存在する装置を使用して、地上ネットワークでは主にコスト面でカバーできないエリアにサービスを提供するものである。また、NTNによって、より信頼性の高いサービスを供給することができる。例えば、IoT(Inter of things)、船舶、バス、列車、クリティカルな通信に適用することが想定される。また、NTNは、効率的なマルチキャスト又はブロードキャストによるスケーラビリティを有する。
 NTNの例として、図1に示されるように、衛星10Aは、基地局10Cから送信される信号を再送信して、例えば山岳地帯等の基地局が配置されないエリアにサービスを提供することができる。
 なお、地上ネットワーク(例えば地上の5Gネットワーク)は、以下に記載するような構成であってもよい。地上ネットワークは、1又は複数の基地局10E及び端末20を含む。基地局10Eは、1つ以上のセル(サービスエリア)を提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10Eは、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。
 基地局10Eは、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10E及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10E及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10E及び端末20はいずれも、CA(Carrier Aggregation)によるSCell(Secondary Cell)及びPCell(Primary Cell)を介して通信を行ってもよい。なお、地上ネットワークにおける基地局を地上基地局と呼んでもよい。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。端末20は、DLで制御信号又はデータを基地局10Eから受信し、ULで制御信号又はデータを基地局10Eに送信することで、無線通信システムにより提供される各種通信サービスを利用する。
 図2は、非地上ネットワーク(NTN)について説明するための第二の図である。図2に示すように、NTNにより、これまでの移動通信ネットワーク(地上NW)ではカバーできなかったエリアへの様々なサービス提供が可能となる。
 特にミリ波の面的な展開(面積カバー率100%)は、地上NWのみで実現するよりも、NTN+地上NWの組み合わせで実現する方が経済的である可能性がある。
 図2に示されるように、NTNは、宇宙における衛星又は空中における飛行体によって実現される。例えばGEOの衛星は、高度35,786kmに位置し、静止軌道を有する衛星であってもよい。例えばLEOの衛星は、高度500-2000kmに位置し、周期88-127分で周回する衛星であってもよい。例えば、HAPSは、高度8-50kmに位置し、旋回飛行を行う飛行体であってもよく、別の飛行を行う飛行体であってもよい。
 衛星あるいは飛行体には、中継器(リピータ、リレー局)あるいは基地局が搭載され、当該中継器あるいは当該基地局により、ビームが形成され、地上の装置と通信を行う。なお、NTNにおける衛星あるいは飛行体のビームにより地上に形成されるエリアを、「サービスエリア」、「ビームエリア」と呼んでもよい。衛星あるいは飛行体などのNTNを構成する非地上にある物体を非地上物体と呼んでもよい。
 以下、図3、図4を参照して、NTNの構成例を説明する。図3、図4ともに、一例として、非地上物体が衛星である場合を示している。また、図3、図4は、NR(5G)に基づくNTNを示している。なお、図3、図4に示す構成は例であり、本発明の技術を適用可能なNTNは図3、図4の構成に限られない。
 <再送信(transparent)型の例>
 図3は、非地上物体10Aが中継器を有する再送信(transparent)型のNTNの例を示している。図3の例では、NTNは、地上に設置される基地局10C、地上に設置されるNTNゲートウェイ(GW)10B、及び非地上物体10Aを有する。
 図3の例では、コアネットワーク(CN)10Dから端末20に送信されるデータは、まず、コアネットワーク10から基地局10Cに送信される。そして、基地局10Cは、受信したデータをNTNゲートウェイ10Bにより非地上の物体10Aにダウンリンクの無線信号で送信する。そして、非地上の10Aは、受信したダウンリンクの無線信号を中継器により端末20に中継(転送)する。
 また、端末20からコアネットワーク10Dに送信されるデータは、まず、端末20から非地上物体10Aにアップリンクの無線信号で送信される。そして、非地上物体10Aは、受信したアップリンクの無線信号を中継器によりNTNゲートウェイ10Bに中継(転送)する。そして、NTNゲートウェイ10Bは、受信したアップリンクの無線信号を、無線または有線により基地局10Cに送信する。そして、基地局10Cは、NTNゲートウェイ10Bから受信したデータをコアネットワーク10Dに送信する。
 <再生成(regenerative)型の例>
 図4は、非地上物体10Aが基地局10Cを有する再生成(regenerative)型のNTNの例を示している。図4の例では、NTNは、地上に設置されるNTNゲートウェイ10B、及び基地局10Cを有する非地上物体10Aを有している。
 図4の例では、コアネットワーク10Dから端末20宛てに送信されたデータは、まず、コアネットワーク10DからNTNゲートウェイ10Bにより非地上物体10Aの基地局10Cに電波(無線信号)で送信される。そして、非地上物体10Aの基地局10Cは、受信したデータに基づいてダウンリンクの無線信号を生成し、生成した無線信号を端末20に送信する。
 また、端末20からコアネットワーク10Dに送信されるデータは、まず、端末20から非地上物体10Aにアップリンクの無線信号で送信される。そして、非地上物体10Aの基地局10Cは、受信したデータを、NTNゲートウェイ10Bを介してコアネットワーク10Dに送信する。
 以下の説明においては、非地上物体10A、非地上物体10Aに搭載される中継器、及び、非地上物体10Aに搭載される基地局10Cを総称して「NTN装置10N」と呼ぶことにする。つまり、NTN装置10Nは、中継器又は基地局を備える非地上物体10Aであってもよいし、非地上物体10Aに搭載される中継器であってもよいし、非地上物体10Aに搭載される基地局10Cであってもよい。また、「NTN装置10N」を「通信装置」と呼んでもよい。
 また、NTNゲートウェイ10B、及び、「NTNゲートウェイ10B+基地局10C」を総称して「NTN地上局40」と呼ぶ。また、地上ネットワークにおける基地局を「地上基地局10E」と呼ぶ。
 NTN地上局40とNTN装置10Nとの間のリンクをフィーダリンクと呼び、端末20とNTN装置10Nとの間のリンクをサービスリンクと呼ぶ。
 (課題について)
 図5に、本実施の形態におけるNTNと地上NWを含むシステム構成例を示す。図5の例において、NTN装置10Nは、マルチビームをサポートしており、複数のビームのそれぞれで地上にエリアを形成することが可能である。図5では、一例として、NTN装置10Nは、マルチビームを用いて、フィーダリンクとサービスリンクに異なるビームを適用し、同一周波数でこれらをサポートする場合を示している。
 以下では、サービスリンクに適用されるビームにより地上に形成されるエリアを「NTNサービスエリア」と呼ぶことにする。また、地上基地局10Eにより地上に形成されるエリアを「地上サービスエリア」と呼ぶことにする。「NTNサービスエリア」を「NTNセル」と呼んでもよいし、「地上サービスエリア」を「地上セル」と呼んでもよい。
 図5の例において、サービスリンクにおけるビームによりNTNサービスエリア50が形成されている。また、地上基地局10Eにより、地上サービスエリア60が形成されている。
 また、地上サービスエリア60で地上基地局10Eと通信する端末20、及びCPE局30が存在する。端末20の位置は、NTNサービスエリア50にも該当する。なお、「CPE局30」を端末の一種と考えて、「CPE局30」を端末と呼んでもよい。
 本実施の形態では、地上NW(地上サービスエリア60)とNTNのサービスリンクが同一周波数(同一周波数帯)を共用することを想定する。共用周波数は、例えば、38GHz帯あるいは28GHz帯等のミリ波である。ただし、本実施の形態において、共用周波数は38GHz帯あるいは28GHz帯等に限定されない。共用周波数は、28GHzよりも低い周波数帯であってもよいし、38GHzよりも高い周波数帯であってもよい。
 上記のように、地上NWとNTNとで同一周波数を共用する場合、システム間の干渉により端末20等における通信品質が大きく低下する恐れある。
 図6~図9を参照して、地上NWとNTNのサービスリンクとの間で生じ得る干渉の例を説明する。なお、図6~図9では、NTN装置10Nの例としてHAPSを示している。また、NTNにおいてはサービスリンク(SL)のみを示している。また、HAPSから地上への方向を下りとし、地上からHAPSへの方向を上りとする。
 <干渉例A>
 図6は、干渉例Aを示す図である。干渉例Aでは、地上基地局10EとHAPS10NはいずれもFDDを使用し、上り同士が同一周波数であり、下り同士も同一周波数であるとする。
 この場合、以下のS1~S4の干渉が生じ得る。図6におけるS1~S4は、下記のS1~S4に対応する。
 S1)下りSL信号間の干渉
 S2)下りSL信号と地上基地局10Eの下り信号が互いに干渉源となる干渉
 S3)上りSL信号間の干渉
 S4)上りSL信号と地上基地局10Eに接続する端末20Aの上り信号が互いに干渉源となる干渉
 <干渉例B>
 図7は、干渉例Bを示す図である。干渉例Bでは、地上基地局10EがTDDを使用し、その周波数がHAPS10Nの下りSLの周波数と同一である。
 この場合、以下のS1~S4の干渉が生じ得る。図7におけるS1~S4は、下記のS1~S4に対応する。
 S1)下りSL信号間の干渉
 S2)下りSL信号と地上基地局10Eの下り信号が互いに干渉源となる干渉
 S3)上りSL信号間の干渉
 S4)下りSL信号と地上基地局10Eに接続する端末20Aの上り信号が互いに干渉源となる干渉であり、具体的には、下記の(i)と(ii)がある。
 S4の(i)下りSL信号が地上基地局10Eに与える干渉
 S4の(ii)地上基地局10Eに接続する端末20Aの上り信号が別の端末20Bに与える干渉
 <干渉例C>
 図8は、干渉例Cを示す図である。干渉例Cでは、地上基地局10EがTDDを使用し、その周波数がHAPS10Nの上りSLの周波数と同一である。
 この場合、以下のS1~S4の干渉が生じ得る。図8におけるS1~S4は、下記のS1~S4に対応する。
 S1)下りSL信号間の干渉
 S2)上りSL信号間の干渉
 S3)上りSL信号と地上基地局10Eに接続する端末20Aの上り信号が互いに干渉源となる干渉
 S4)上りSL信号と地上基地局10Eの下り信号が互いに干渉源となる干渉であり、具体的には、下記の(i)と(ii)がある。
 S4の(i)地上基地局10Eの下り信号がHAPS10Nに与える干渉
 S4の(ii)上りSL信号が地上基地局10Eに接続する端末20Aに与える干渉
 <CPE局について>
 CPE局30については、上述した干渉例A~Cにおける端末20をCPE局30に置き換えた場合に相当する。つまり、CPE局30については、上述した干渉例A~Cで説明した干渉が生じ得る。図9は、一例として、CPE局30についての干渉例Aを示す。なお、CPE局30と端末20との間のアクセスリンク(AL)は、HAPS10N及び地上基地局10Eの周波数とは異なる別周波数を使用することを想定している。
 ここで、HAPS10Nの周波数について説明する。例えば、FLの上下でFDD、SLの上下でFDDを使用する場合を想定する。FLとSLが同じ周波数であってもよいし、違う周波数であってもよい。
 FLとSLが同じ周波数である場合、FLの下り、SLの下りで干渉が起こり得る。上りについても同様である。FLとSLが異なる周波数である場合、FLとSLが同じ周波数である場合に生じていた干渉は生じない。
 本実施の形態では、NTNに期待されるユースケースを実現する性能を満たしつつ、地上ネットワークへの影響が許容範囲となるような干渉回避手法について説明する。なお、「干渉回避」には、干渉を完全に除去することに加えて、干渉を低減することも含まれる。
 (干渉回避技術:実施例1)
 図10を参照して、本実施の形態における干渉回避技術の実施例1を説明する。図10に示す構成は、再送信(transparent)型と、再生成(regenerative)型のいずれにも適用可能である。
 実施例1では、NTN装置10Nが、NTNサービスエリア50を形成するビームの方向(又は、ビームのサイズ、又は、ビームのサイズと方向)を制御することで、NTNサービスエリア50での通信(サービスリンクでの通信)と地上サービスエリア60での通信との間の干渉を回避する。例えば、NTNサービスエリア50と地上サービスエリア60との間に重複が生じないようにする。
 なお、本実施の形態における「ビーム」とは、NTN装置10Nから地上への方向のビーム(NTN装置10Nの送信ビーム)、及び、地上からNTN装置10Nへの方向のビーム(NTN装置10Nの受信ビーム)のいずれであってもよい。また、ビームのサイズとは、ビームにより地上に形成されるNTNサービスエリアのサイズ(円とした場合の半径等)であってもよい。
 また、「NTNサービスエリア」は、NTN装置10Nから地上へ、ある閾値以上の受信強度で信号が届く範囲であってもよい。また、「NTNサービスエリア」は、地上からNTN装置10Nへ、所定の送信電力の信号が届く地上の範囲であってもよい。
 また、「地上サービスエリア」は、地上基地局10Eから地上へ、ある閾値以上の受信強度で信号が届く範囲であってもよい。また、「地上サービスエリア」は、地上から地上基地局10Eへ、所定の送信電力の信号が届く地上の範囲であってもよい。
 図10の例では、地上サービスエリア60から離れた位置に、NTNのサービスリンクにおけるNTNサービスエリア50が形成されている。これにより、例えば、地上サービスエリア60に存在する端末20Aと、NTNサービスエリア50に存在する端末20Bとの間の干渉を回避できる。
 上記の制御は、NTN装置10Nのビームを地上基地局10Eの周辺に向けないようにする制御の例である。このような制御の他、地上基地局10E周辺のCPE局30がNTN装置10Nと通信しないように制御することも可能である。
 具体的な制御方法として、例えば、下記の例1、例2がある。
 <例1>
 地上基地局10Eの位置情報をNTN地上局40からNTN装置10Nへ伝送し、NTN装置10Nがその位置へビームを向けないよう制御を実行する。具体的には、例えば、NTN装置10Nは、地上サービスエリア60とNTNサービスエリア50との間に重複する部分が生じないように、ビームを制御する。当該制御は、例えば、ビームの方向の制御、ビームのサイズの制御、あるいは、ビームの方向とサイズの制御である。
 地上基地局10Eの位置情報の送信元は、地上基地局10Eであってもよいし、NTN地上局40であってもよいし、コアネットワークにおける任意のノード装置であってもよいし、端末20であってもよいし、データネットワークにおけるアプリケーションサーバであってもよい。
 <例2>
 NTN装置10Nにおいて、各地上基地局10Eの位置を事前に設定しておき、NTN装置10Nが、地上基地局10Eの位置へビームを向けないよう制御を実行する。制御内容は例1と同様である。
 以上説明した実施例1の方法によれば、地上基地局10Eでのエリア制御を行うことなく、干渉回避を実現できる。
 (干渉回避技術:実施例2)
 図11を参照して、本実施の形態における干渉回避技術の実施例2を説明する。図11に示す構成も、再送信(transparent)型と、再生成(regenerative)型のいずれにも適用可能である。
 実施例2では、NTN装置10Nが地上サービスエリア60(ビーム照射禁止エリアと呼んでもよい)に対してビームを向けないようにするために、地上サービスエリア60のサイズ(例:半径)を調整する。図11の例では、地上サービスエリア60とNTNサービスエリア50との間に重複部分が生じないように、地上サービスエリア60のサイズが調整されている。これにより、例えば、地上サービスエリア60に存在する端末20Aと、NTNサービスエリア50に存在する端末20Bとの間の干渉を回避できる。
 地上サービスエリア60のサイズを調整するための具体的な制御方法として、例えば、下記の例1、例2がある。
 <例1>
 地上基地局10E側の通信品質により、地上基地局10Eがアクティブに(自律的に)エリアサイズの制御を実施する。例えば、地上基地局10Eは、地上サービスエリア60に存在する端末20Aから報告される通信品質情報により、NTNからの干渉(例:NT装置10NのDL信号による干渉、端末20BのUL信号による干渉)を検知した場合に、地上サービスエリア60のサイズを小さくする制御を行う。
 <例2>
 NTN装置10Nから地上基地局10Eに対して、地上サービスエリア60のサイズを調整するよう指示し、地上基地局10Eは、その指示に従って、地上サービスエリア60のサイズを調整する。NTN装置10Nから地上基地局10Eへの指示は、例えば、NTN地上局40とコアNW10Dを経由して行われる。また、NTN装置10Nが中継器であるケース(再送信型のケース)においては、地上にある基地局10CがコアNW10Dを経由して地上基地局10Eに対して、地上サービスエリア60のサイズを調整するよう指示してもよい。
 例えば、NTN装置10Nは、地上基地局10Eの位置を事前に把握しているとする。そして、例えば、NTN装置10Nが、自身の空中のルートに基づき、地上基地局10Eの近くにビームを向けることになると判断した際に、地上サービスエリア60のサイズを小さくするように地上基地局10Eへの指示を実行する。
 (情報共有方法)
 実施例1及び実施例2において、NTN側(例:NTN地上局40、NTN装置10N)と地上NW(例:地上基地局10E、コアNW10Dのノード装置)との間で、地上基地局の位置情報、又は、ビーム照射禁止エリアの情報、又は、これら両方の情報を共有してもよい。ここでは、「地上基地局の位置情報、又は、ビーム照射禁止エリアの情報、又は、これら両方の情報」を位置/エリア情報と呼ぶことにする。
 図11には、NTN地上局40と地上基地局10Eとの間で位置/エリア情報を共有するイメージを示している。
 具体的な共有方法として、例えば、コアNW10Dのノード装置が、複数の地上基地局についての位置/エリア情報をまとめて、NTN地上局40を経由してNTN装置10Nに送信することとしてもよい。
 以上説明した実施例2の方法によれば、NTN装置10Nでのビーム制御を行うことなく、干渉回避を実現できる。
 (動作シーケンス)
 次に、本実施の形態における動作シーケンスの例1、例2を図12、図13を参照して説明する。基本的には、図12のケースでは実施例1に相当する動作を説明し、図13のケースでは実施例2に相当する動作を説明する。ただし、後述するように、図12のケースにおいて実施例2の動作を行うことも可能であり、図13のケースにおいて実施例1の動作を行うことも可能である。
 <例1>
 図12を参照して動作シーケンスの例1を説明する。S101において、地上基地局10Eは、NTN装置10Nによる干渉回避動作が必要であると判断する。例えば、地上基地局10Eは、地上サービスエリア60の端末20から干渉の報告が届いたことに基づき、NTN装置10Nによる干渉回避動作が必要であると判断する。
 また、地上基地局10Eは、予め把握しているNTN装置10Nの飛行ルートに基づき、NTN装置10Nが地上基地局10Eに近づく時刻になったら、NTN装置10Nによる干渉回避動作が必要であると判断してもよい。
 S102において、地上基地局10Eは、地上基地局10Eの位置/エリア情報を送信する。地上基地局10Eの位置情報については、地上基地局10Eが備えるGNSS機能により取得した位置情報を送信することとしてもよい。
 地上基地局10Eの位置/エリア情報は、コアNW10Dを経由してNTN地上局40に送信され、NTN地上局40からNTN装置10Nへ送信され、NTN装置10Nは当該位置/エリア情報を受信する(S103、S104)。NTN地上局40からNTN装置10Nへの情報送信には例えば制御信号が使用される。
 S105において、NTN装置10Nは、受信した位置/エリア情報に基づき、干渉回避技術を適用して、実施例1で説明したようにビームの方向/サイズを調整する。NTN装置10Nは、干渉回避技術を適用したことを示す応答を地上基地局10Eに返す(S106、S107、S108)。
 図12の例において、NTN装置10Nによる干渉回避技術の適用に加えて、あるいは、NTN装置10Nによる干渉回避技術の適用に代えて、S101において、地上基地局10Eは、地上サービスエリア60のサイズの調整が必要であると判断し、実施例2で説明したように当該サイズの調整を行うこととしてもよい。
 また、NTN装置10Nによるビームの方向/サイズの制御と、地上基地局10Eによる地上サービスエリア60のサイズの制御の両方を実施する場合について、例えば、S106~S108においてNTN装置10Nから地上基地局10Eに送信される応答には、NTN装置10Nによるビームの方向/サイズの制御結果(例:制御後のNTNサービスエリアの位置及びサイズ)が含まれている。S108において当該制御結果を受信した地上基地局10Eは、例えば、NTN装置10Nによるビーム調整のみでは干渉回避に十分でないと判断した場合に、地上サービスエリア60のサイズの調整を実施する。
 <例2>
 図13を参照して動作シーケンスの例2を説明する。S201において、NTN装置10Nは、地上基地局10Eによる干渉回避動作が必要であると判断する。例えば、NTN装置10Nは、NTN装置10Nの空中(宇宙)のルートに基づいて、NTNサービスエリア50が、地上サービスエリア60に近くなることを検知した場合に、地上基地局10Eによる干渉回避動作が必要であると判断する。
 S202において、NTN装置10Nは、地上基地局10Eに対して干渉回避技術を適用することを指示する指示信号(制御信号と呼んでもよい)を送信する。指示信号は、NTN地上局40及びコアNW10Dを経由して地上基地局10Eに届く(S203、S204)。
 指示信号を受信した地上基地局10Eは、S205において、干渉回避技術を適用して、実施例2で説明したように地上サービスエリア60のサイズを調整する。地上基地局10Eは、干渉回避技術を適用したことを示す応答をNTN装置10Nに返す(S206、S207、S208)。
 なお、上記の例2の動作において、再送信型のケースの場合には、「NTN装置10N」を、地上にある「基地局10C」に置き換えてもよい。この場合、NTN地上局40を介さず、コアNW10Dを介して、基地局10Cと地上基地局10Eとの間の通信がなされる。
 図13の例において、地上基地局10Eによる干渉回避技術の適用に加えて、あるいは、地上基地局10Eによる干渉回避技術の適用に代えて、S201において、NTN装置10Nは、ビームの方向/サイズの調整が必要であると判断し、実施例1で説明したように当該方向/サイズの調整を行うこととしてもよい。
 また、NTN装置10Nによるビームの方向/サイズの制御と、地上基地局10Eによる地上サービスエリア60のサイズの制御の両方を実施する場合について、例えば、S206~S208において地上基地局10EからNTN装置10Nに送信される応答には、地上基地局10Eによる地上サービスエリア60の制御結果(例:制御後のエリアのサイズ)が含まれている。S208において当該制御結果を受信したNTN装置10Nは、例えば、地上基地局10Eによるサイズ調整のみでは干渉回避には十分でないと判断した場合に、ビームの方向/サイズの調整を実施する。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行するNTN装置10N、及び地上基地局10Eの機能構成例を説明する。NTN装置10N、及び地上基地局10Eは上述した実施例を実行する機能を含む。ただし、NTN装置10N、及び地上基地局10Eはそれぞれ、実施例のうちのいずれかの提案の機能のみを備えることとしてもよい。
 <NTN装置10N>
 図14は、NTN装置10Nの機能構成の一例を示す図である。なお、図14に示すNTN装置10Nは、非地上物体に搭載される中継器、又は、非地上物体に搭載される基地局、又は、非地上物体における通信に関わる機能部であることを想定している。図14に示されるように、NTN装置10Nは、送信部110と、受信部120と、設定部130と、制御部140とを有する。図14に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。「送信部110+受信部120」を通信部と呼んでもよい。
 送信部110は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部120は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部110と受信部120はいずれも、制御部140からの命令により、ビームの方向/サイズを制御することができる。
 設定部130は、受信部120により他の装置から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部130は、予め設定される設定情報も格納する。制御部140は、NTN装置10N全体の制御等を行う。また、制御部140は、ビームの制御を行う。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。制御部140をプロセッサあるいはコントローラと呼んでもよい。
 <地上基地局10E>
 図15は、地上基地局10Eの機能構成の一例を示す図である。また、地上にある基地局10Cの構成も図15に示す構成と同様である。図15に示されるように、地上基地局10Eは、送信部210と、受信部220と、設定部230と、制御部240とを有する。図15に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。「送信部210+受信部220」を通信部と呼んでもよい。
 送信部210は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、受信部220は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部210は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。
 送信部210と受信部220はいずれも、制御部240からの命令により、サービスエリアのサイズを調整(制御)することができる。また、送信部210と受信部220はいずれも、コアNWとの通信を行う機能を含む。
 設定部230は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部240は、地上基地局10E全体の制御等を行う。また、制御部240は、サービスエリアのサイズの調整を行う。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。制御部240をプロセッサあるいはコントローラと呼んでもよい。
 <付記>
 本願には少なくとも、下記の各項に示す通信装置、基地局、通信システム、及び通信方法が開示されている。
(第1項)
 非地上ネットワークのサービスリンクにおける通信を行う通信部と、
 前記サービスリンクにおける通信と地上ネットワークにおける通信との間の干渉を回避するために、前記通信部により形成されるビームの方向又はサイズを制御する制御部と
 を備える通信装置。
(第2項)
 前記制御部は、前記地上ネットワークにおける基地局の位置情報に基づいて、前記ビームの方向又はサイズを制御する
 第1項に記載の通信装置。
(第3項)
 地上ネットワークのサービスエリアにおける端末と通信を行う通信部と、
 非地上ネットワークのサービスリンクにおける通信と前記サービスエリアにおける通信との間の干渉を回避するために、前記通信部により形成される前記サービスエリアのサイズを制御する制御部と
 を備える基地局。
(第4項)
 前記制御部は、自律的に、又は、前記非地上ネットワークにおける通信装置から送信された指示に基づき、前記サービスエリアのサイズを調整する
 第3項に記載の基地局。
(第5項)
 地上ネットワークのサービスエリアにおける端末と通信を行う第1通信部と、
 非地上ネットワークのサービスリンクにおける通信と前記サービスエリアにおける通信との間の干渉を回避するために、前記第1通信部により形成される前記サービスエリアのサイズを制御する第1制御部と、を備える基地局と、
 前記サービスリンクにより通信を行う第2通信部と、
 前記サービスリンクにおける通信と前記サービスエリアにおける通信との間の干渉を回避するために、前記第2通信部により形成されるビームの方向又はサイズを制御する第2制御部と、を備える通信装置と、
 を備える通信システム。
(第6項)
 地上ネットワークにおける基地局の位置情報を取得するステップと、
 非地上ネットワークのサービスリンクにおける通信と前記基地局により形成されるサービスエリアにおける通信との間の干渉を回避するために、前記サービスリンクにおけるビームの方向又はサイズを制御するステップと
 を備える、通信装置が実行する通信方法。
 上記構成のいずれによっても、地上ネットワークにおける通信とNTNのサービスリンクにおける通信との間の干渉を回避するための技術が提供される。第2項によれば、地上ネットワークにおける基地局の位置情報を使用するので、制御目標が明確になる。第3項によれば、種々の方法で制御を実現できる。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図14及び図15)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態におけるNTN装置10N、地上基地局10E等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本開示の一実施の形態に係るNTN装置10N及び地上基地局10Eのハードウェア構成の一例を示す図である。上述のNTN装置10N及び地上基地局10Eは、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。NTN装置10N及び地上基地局10Eのハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 NTN装置10N及び地上基地局10Eにおける各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図14に示した制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図15に示した制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 図17に車両2001の構成例を示す。図17に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。例えば、地上基地局10Eの機能、あるいは、端末20の機能が通信モジュール2013に備えられてもよい。
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局、NTN装置10等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、NTN装置10N、地上基地局10Eは機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書においてNTN装置10Nあるいは地上基地局10Eによって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10Eを有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10E及び基地局10E以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10E以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 本特許出願は2021年12月28日に出願した日本国特許出願第2021-214897号に基づきその優先権を主張するものであり、日本国特許出願第2021-214897号の全内容を本願に援用する。
10A   非地上物体
10B   ゲートウェイ
10C   基地局
10D   CN
10E   地上基地局
10N   NTN装置
110   送信部
120   受信部
130   設定部
140   制御部
210   送信部
220   受信部
230   設定部
240   制御部
30    CPE局
40    NTN地上局
50    NTNサービスエリア
60    地上サービスエリア
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)

Claims (6)

  1.  非地上ネットワークのサービスリンクにおける通信を行う通信部と、
     前記サービスリンクにおける通信と地上ネットワークにおける通信との間の干渉を回避するために、前記通信部により形成されるビームの方向又はサイズを制御する制御部と
     を備える通信装置。
  2.  前記制御部は、前記地上ネットワークにおける基地局の位置情報に基づいて、前記ビームの方向又はサイズを制御する
     請求項1に記載の通信装置。
  3.  地上ネットワークのサービスエリアにおける端末と通信を行う通信部と、
     非地上ネットワークのサービスリンクにおける通信と前記サービスエリアにおける通信との間の干渉を回避するために、前記通信部により形成される前記サービスエリアのサイズを制御する制御部と
     を備える基地局。
  4.  前記制御部は、自律的に、又は、前記非地上ネットワークにおける通信装置から送信された指示に基づき、前記サービスエリアのサイズを制御する
     請求項3に記載の基地局。
  5.  地上ネットワークのサービスエリアにおける端末と通信を行う第1通信部と、
     非地上ネットワークのサービスリンクにおける通信と前記サービスエリアにおける通信との間の干渉を回避するために、前記第1通信部により形成される前記サービスエリアのサイズを制御する第1制御部と、を備える基地局と、
     前記サービスリンクにより通信を行う第2通信部と、
     前記サービスリンクにおける通信と前記サービスエリアにおける通信との間の干渉を回避するために、前記第2通信部により形成されるビームの方向又はサイズを制御する第2制御部と、を備える通信装置と、
     を備える通信システム。
  6.  地上ネットワークにおける基地局の位置情報を取得するステップと、
     非地上ネットワークのサービスリンクにおける通信と前記基地局により形成されるサービスエリアにおける通信との間の干渉を回避するために、前記サービスリンクにおけるビームの方向又はサイズを制御するステップと
     を備える、通信装置が実行する通信方法。
PCT/JP2022/044164 2021-12-28 2022-11-30 通信装置、基地局、通信システム、及び通信方法 WO2023127381A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214897 2021-12-28
JP2021214897A JP2023098251A (ja) 2021-12-28 2021-12-28 通信装置、基地局、通信システム、及び通信方法

Publications (1)

Publication Number Publication Date
WO2023127381A1 true WO2023127381A1 (ja) 2023-07-06

Family

ID=86998902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044164 WO2023127381A1 (ja) 2021-12-28 2022-11-30 通信装置、基地局、通信システム、及び通信方法

Country Status (2)

Country Link
JP (1) JP2023098251A (ja)
WO (1) WO2023127381A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050269A1 (ja) * 2008-10-30 2010-05-06 三菱電機株式会社 通信装置および通信システム
WO2015114729A1 (ja) * 2014-01-28 2015-08-06 ソフトバンクモバイル株式会社 移動通信システム及び基地局制御装置
JP2017152812A (ja) * 2016-02-23 2017-08-31 Kddi株式会社 基地局制御装置、基地局制御方法及び基地局制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050269A1 (ja) * 2008-10-30 2010-05-06 三菱電機株式会社 通信装置および通信システム
WO2015114729A1 (ja) * 2014-01-28 2015-08-06 ソフトバンクモバイル株式会社 移動通信システム及び基地局制御装置
JP2017152812A (ja) * 2016-02-23 2017-08-31 Kddi株式会社 基地局制御装置、基地局制御方法及び基地局制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (OPPO): "Final Summary of 8.4.4 Other Aspects of NR-NTN", 3GPP DRAFT; R1-2106336, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 28 May 2021 (2021-05-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052015846 *

Also Published As

Publication number Publication date
JP2023098251A (ja) 2023-07-10

Similar Documents

Publication Publication Date Title
WO2023127381A1 (ja) 通信装置、基地局、通信システム、及び通信方法
WO2023182302A1 (ja) 通信装置、基地局、端末、及び通信方法
WO2023162753A1 (ja) 端末、基地局及び通信方法
WO2023135825A1 (ja) 端末、基地局及び通信方法
WO2023079663A1 (ja) 端末及び通信方法
WO2023153111A1 (ja) 無線通信システム及び無線通信方法
WO2023157527A1 (ja) 端末、基地局及び通信方法
WO2023135824A1 (ja) 端末及び通信方法
WO2023047603A1 (ja) 端末、無線中継装置及び通信方法
WO2023042319A1 (ja) 端末及び通信方法
WO2023053430A1 (ja) 端末及び通信方法
WO2023053298A1 (ja) 端末及び通信方法
WO2024034075A1 (ja) 基地局、端末、ネットワークノード及び通信方法
WO2023073964A1 (ja) 端末及び通信方法
WO2023013007A1 (ja) 端末及び通信方法
WO2024034022A1 (ja) 端末、ネットワークノード及び通信方法
WO2023037480A1 (ja) 端末、基地局及び通信方法
WO2023105807A1 (ja) 端末、及び報告方法
WO2023073968A1 (ja) 端末及び通信方法
WO2023058229A1 (ja) 通信装置及び通信方法
WO2024018574A1 (ja) 基地局及び端末
WO2023228294A1 (ja) 無線通信ノード、端末、及び無線通信方法
WO2023022137A1 (ja) 端末及び通信方法
WO2023037481A1 (ja) 端末、及び基地局
WO2023037482A1 (ja) 端末、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915612

Country of ref document: EP

Kind code of ref document: A1