WO2023125146A1 - 一种通信装置及通信方法 - Google Patents

一种通信装置及通信方法 Download PDF

Info

Publication number
WO2023125146A1
WO2023125146A1 PCT/CN2022/140364 CN2022140364W WO2023125146A1 WO 2023125146 A1 WO2023125146 A1 WO 2023125146A1 CN 2022140364 W CN2022140364 W CN 2022140364W WO 2023125146 A1 WO2023125146 A1 WO 2023125146A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
module
connection mode
port
receiving module
Prior art date
Application number
PCT/CN2022/140364
Other languages
English (en)
French (fr)
Inventor
黄菲
张关喜
王传榜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125146A1 publication Critical patent/WO2023125146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a communication device and a communication method.
  • Frequency division duplexing (frequency division duplexing, FDD) is a commonly used wireless communication technology, its principle is: uplink (example, terminal equipment to base station) and downlink (example, base station to terminal equipment ) work on two separate frequency channels (with a certain frequency interval requirement), and work on a symmetrical frequency band; that is to say, in the FDD mode, the communication device receives on two separate, symmetrical frequency channels and send.
  • This communication feature of FDD makes FDD have natural advantages in power control, link adaptation, channel and interference feedback, etc.
  • the uplink frequency band can only be used for a single transmission, and the downlink frequency band can only be used for a single reception.
  • the requirements for spectrum resources are relatively high.
  • those skilled in the art have proposed the concept of FDD full duplex, which can be understood as: communication signals can be simultaneously received and transmitted in the FDD uplink frequency band, and communication signals can also be simultaneously received and transmitted in the FDD downlink frequency band.
  • FDD full-duplex communication mode will introduce interference between uplink signals and downlink signals.
  • the self-interference cancellation of uplink and downlink signals can be realized by improving its own hardware architecture and antenna array, but for the terminal equipment, due to the limitation of the hardware size and the number of antennas, it is difficult to communicate with the base station In a similar manner, interference between uplink signals and downlink signals is eliminated. How to make the terminal device match the FDD full-duplex communication requirements of the base station is an urgent problem to be solved by those skilled in the art.
  • the embodiment of the present application provides a communication device and a communication method, which can enable the communication device to support different communication modes on FDD frequency resources, and can realize receiving communication signals on FDD uplink frequency resources and FDD downlink frequency resources. Send communication signals to match the FDD full-duplex communication requirements of access network equipment (such as base stations).
  • access network equipment such as base stations.
  • the present application provides a communication device, which includes a transmitting module, a receiving module, a first duplexer, and a switch module, wherein: the transmitting module is connected to the switching module, and the receiving module is connected to the switching module connection, the first duplexer is connected to the switch module; the first duplexer is used to separate the signal of the first frequency band and the signal of the second frequency band; the switch module is used to control the switching of the connection mode, the connection The modes include a first connection mode and a second connection mode; when in the first connection mode, the transmitting module is used to send the transmission signal of the first frequency band to the first duplexer, and the receiving module is used to receive signals from the The receiving signal of the second frequency band of the first duplexer; when in the second connection mode, the transmitting module is used to send the transmitting signal of the second frequency band to the first duplexer, and the receiving module is used to receive The received signal of the first frequency band from the first duplexer.
  • the communication device can match the FDD full-duplex communication requirements of the access network equipment (such as a base station).
  • the communication device further includes a first filter connected to the switch module; the connection mode further includes a third connection mode; the first filter , for passing the signal of the first frequency band and the signal of the second frequency band; when in the third connection mode, the transmission module is used for sending the transmission signal of the first frequency band and the second frequency band to the first filter device.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is the second frequency band.
  • the switch module when in the first connection mode, controls the transmitting module to be connected to the first port, and controls the receiving module to be connected to the second port; in the In the second connection mode, the switch module controls the transmitting module to be connected to the second port, and controls the receiving module to be connected to the first port.
  • the receiving module when in the third connection mode, is configured to receive received signals from the first frequency band and the second frequency band from the first filter.
  • the communication device further includes a feedback path; the feedback path is configured to couple the transmit signal to an intermediate frequency or baseband for power control or nonlinear compensation processing.
  • the communication device further includes an antenna and a first filter
  • the switch module includes a first switch module and a second switch module
  • the transmitting module is connected to the first switch module
  • the receiving module is connected to the first switch module
  • the first duplexer is connected to the first switch module
  • the first filter is connected to the first switch module
  • the first duplexer is connected to the second switch
  • the modules are connected, the first filter is connected to the second switch module, the antenna is connected to the second switch module; the second switch module is connected to the feedback path, and the antenna is connected to the feedback path.
  • the center frequency of the working frequency band of the feedback path is the center frequency of the frequency band of the transmitting signal.
  • the working frequency band of the feedback path includes the frequency band of the transmitting signal.
  • the receiving module includes a first receiving module and a second receiving module, the first receiving module is used to receive a receiving signal of the first frequency band, and the second receiving module uses for receiving the received signal of the second frequency band.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is The second frequency band; when in the first connection mode, the switch module controls the transmitting module to connect to the first port, and controls the second receiving module to connect to the second port; in the second connection mode, the The switch module controls the transmitting module to be connected to the second port, and controls the first receiving module to be connected to the first port.
  • the receiving module includes a first receiving module and a second receiving module, the first receiving module is used to receive a receiving signal of the first frequency band, and the second receiving module uses When receiving the receiving signal of the second frequency band; in the third connection mode, the first receiving module is used to receive the receiving signal of the first frequency band from the first duplexer, and the second receiving module is used to receive The received signal of the second frequency band from the first duplexer.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is The second frequency band; when in the third connection mode, the switch module controls the transmitting module to connect to the first filter, or the switch module controls the first receiving module to connect to the first port, and controls the second The second receiving module is connected to the second port.
  • the communication device further includes a second duplexer, and the second duplexer is used to separate signals of the third frequency band and the fourth frequency band;
  • the connection mode further includes The fourth connection mode and the fifth connection mode; in the fourth connection mode, the transmitting module is used to send the transmission signal of the third frequency band to the second duplexer, and the receiving module is used to receive signals from the second duplexer.
  • the receiving signal of the fourth frequency band of the duplexer when in the fifth connection mode, the transmitting module is used to send the transmitting signal of the fourth frequency band to the second duplexer, and the receiving module is used to receive signals from the The received signal of the third frequency band of the second duplexer.
  • the communication device further includes a second filter, and the connection mode also includes a sixth connection mode; the second filter is used to pass the signal in the third frequency band and The signal of the fourth frequency band; when in the sixth connection mode, the transmitting module is configured to send the transmitting signals of the third frequency band and the fourth frequency band to the second filter.
  • the receiving module when in the sixth connection mode, is configured to receive received signals from the third frequency band and the fourth frequency band from the second filter.
  • the receiving module includes a third receiving module and a fourth receiving module, the third receiving module is configured to receive a receiving signal of the third frequency band, and the fourth receiving module uses for receiving the received signal of the fourth frequency band.
  • the third receiving module is configured to receive the receiving signal of the third frequency band from the second duplexer
  • the fourth receiving module The module is used for receiving the received signal of the fourth frequency band from the second duplexer.
  • the present application provides a communication method, the method is applied to a communication device, the communication device includes a transmitting module, a receiving module, a first duplexer, and a switch module, and the method includes: controlling the connection mode through the switch module switching, the connection mode includes the first connection mode and the second connection mode; in the first connection mode, the transmission signal of the first frequency band is sent to the first duplexer through the transmission module, and received through the reception module The receiving signal of the second frequency band from the first duplexer; when in the second connection mode, the transmitting module transmits the transmitting signal of the second frequency band to the first duplexer, and receives the signal from the receiving module through the receiving module The received signal of the first frequency band of the first duplexer.
  • the communication device can be made to match the FDD full-duplex communication requirements of the access network equipment (such as a base station).
  • the first frequency band and the second frequency band do not overlap, and the signals of the first frequency band and the second frequency band can be the uplink frequency band (or called the uplink working frequency band) and the downlink frequency band (or called the downlink working frequency band) in the FDD mode respectively. frequency band).
  • the first frequency band and the second frequency band may be respectively the uplink frequency band and the downlink frequency band allocated for the FDD mode in the 3rd Generation Partnership Project (The 3rd Generation Partnership Project, 3GPP) Release 16 (R16) protocol.
  • 3rd Generation Partnership Project The 3rd Generation Partnership Project, 3GPP) Release 16 (R16) protocol.
  • R16 Release 16
  • the communication device further includes a first filter
  • the connection mode further includes a third connection mode
  • the method further includes: when in the third connection mode, transmitting The module sends the transmit signals of the first frequency band and the second frequency band to the first filter.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is the second frequency band.
  • the method further includes: when in the first connection mode, controlling the transmitting module to connect to the first port through the switch module, and controlling the receiving module to connect to the second port.
  • Two-port connection when in the second connection mode, the switch module is used to control the transmission module to be connected to the second port, and to control the reception module to be connected to the first port.
  • the method further includes: when in the third connection mode, using the receiving module to receive the reception of the first frequency band and the second frequency band from the first filter Signal.
  • the communication device further includes a feedback path; the method further includes: coupling the transmit signal to an intermediate frequency or baseband through the feedback path to perform power control or nonlinear compensation processing.
  • the receiving module includes a first receiving module and a second receiving module, the first receiving module is used to receive a receiving signal of the first frequency band, and the second receiving module uses for receiving the received signal of the second frequency band.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is The second frequency band; the method also includes: when in the first connection mode, controlling the transmitting module to be connected to the first port through the switch module, and controlling the second receiving module to be connected to the second port; in the first connection mode In the two-connection mode, the switch module is used to control the transmitting module to be connected to the second port, and to control the first receiving module to be connected to the first port.
  • the receiving module includes a first receiving module and a second receiving module, the first receiving module is used to receive a receiving signal of the first frequency band, and the second receiving module uses receiving the receiving signal of the second frequency band; the method further includes: when in the third connection mode, receiving the receiving signal of the first frequency band from the first duplexer through the first receiving module, and receiving the receiving signal of the first frequency band from the first duplexer through the second The receiving module receives the received signal of the second frequency band from the first duplexer.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is The second frequency band; the method further includes: when in the third connection mode, controlling the transmitting module to connect to the first filter through the switch module, or, the switch module controlling the first receiving module to connect to the first port connected, and control the connection between the second receiving module and the second port.
  • the communication device further includes a second duplexer, and the connection mode also includes a fourth connection mode and a fifth connection mode; the method further includes: in the fourth connection mode mode, send the transmission signal of the third frequency band to the second duplexer through the transmitting module, and receive the reception signal of the fourth frequency band from the second duplexer through the receiving module; when in the fifth connection mode , sending the transmitting signal of the fourth frequency band to the second duplexer through the transmitting module, and receiving the receiving signal of the third frequency band from the second duplexer through the receiving module.
  • the communication device further includes a second filter
  • the connection mode further includes a sixth connection mode
  • the method further includes: when in the sixth connection mode, transmitting The module sends the transmit signals of the third frequency band and the fourth frequency band to the second filter.
  • the method further includes: when in the sixth connection mode, using the receiving module to receive the reception of the third frequency band and the fourth frequency band from the second filter. Signal.
  • the receiving module includes a third receiving module and a fourth receiving module, the third receiving module is configured to receive a receiving signal of the third frequency band, and the fourth receiving module uses for receiving the received signal of the fourth frequency band.
  • the method further includes: when in the sixth connection mode, using the third receiving module to receive the receiving signal of the third frequency band from the second duplexer, The received signal of the fourth frequency band from the second duplexer is received by the fourth receiving module.
  • the present application provides a computer-readable storage medium, which is used to store instructions, and when the instructions are executed, the above-mentioned second aspect or any possible implementation of the second aspect The method described by the method is implemented.
  • the present application provides a computer program product, the computer program product includes a computer program or an instruction, and when the computer program or instruction is run on a computer, any one of the above-mentioned second aspect or the second aspect may be The method described by the implementation is implemented.
  • the switching of the connection mode can be controlled by the switch module in the communication device.
  • the transmission module is used to send the transmission signal of the first frequency band to the first duplexer
  • the receiving module is used to receive the receiving signal of the second frequency band from the first duplexer; when in the second connection mode, the transmitting module is used to send the transmitting signal of the second frequency band to the first duplexer
  • the receiving module is used for receiving the receiving signal of the first frequency band from the first duplexer.
  • the communication device of the present application can also realize receiving communication signals on FDD uplink frequency resources and receiving communication signals on FDD downlink frequency resources. Send communication signals on the network; it can match the full-duplex communication requirements of network equipment.
  • FIG. 1 is a schematic diagram of a network architecture of a wireless communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 3 is a schematic connection diagram of a communication device provided in an embodiment of the present application when it is in a first connection mode;
  • FIG. 4 is a schematic connection diagram of a communication device provided in an embodiment of the present application when it is in a second connection mode;
  • FIG. 5 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic connection diagram of a communication device provided in an embodiment of the present application when it is in a third connection mode
  • FIG. 8 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a working frequency band of a feedback path provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • Fig. 15 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • Fig. 16 is a flowchart of a communication method provided by an embodiment of the present application.
  • the embodiment of the present application can be applied to the network architecture shown in FIG. 1.
  • the network architecture shown in FIG. 1 is a network architecture of a wireless communication system, and the network architecture usually includes terminal equipment and network equipment (or called access network equipment), The quantity and form of each device do not constitute a limitation to the embodiment of the present application.
  • terminal equipment and network equipment or called access network equipment
  • the quantity and form of each device do not constitute a limitation to the embodiment of the present application.
  • there may be multiple terminal devices in FIG. 1 and the network device provides a network for the multiple terminal devices.
  • wireless communication systems mentioned in the embodiments of the present application include but are not limited to: Internet of Things (Internet of Things, IoT), Long Term Evolution (LTE), Fifth Generation Mobile Communication (5th- generation, 5G) system, sixth-generation mobile communication (6th-generation, 6G) system and future mobile communication system.
  • IoT Internet of Things
  • LTE Long Term Evolution
  • 5G Fifth Generation Mobile Communication
  • 6G sixth-generation mobile communication
  • future mobile communication system future mobile communication system.
  • the technical solutions of the embodiments of the present application can also be applied to wireless local area network (Wireless Local Area Network, WLAN) network, can also be applied to vehicle networking (Vehicle-to-X, V2X) network, can also be applied to Non-terrestrial networks (NTN), satellites and high-altitude platforms (satellites and High-Altitude Platforms, HAP), enhanced Internet of Things (LTE enhanced MTO, eMTC), can also be applied to other networks, etc.
  • the technical solutions of the embodiments of the present application can also be applied to communication radar integration, terahertz, and higher frequency communication systems, etc., which are not specifically limited in this application.
  • the network device involved in the embodiment of the present application may be a base station (Base Station, BS).
  • the base station may provide communication services to multiple terminal devices, and multiple base stations may also provide communication services to the same terminal device.
  • a base station is a device deployed in a radio access network to provide a wireless communication function for a terminal device.
  • a base station device may be a base station, a relay station or an access point.
  • the base station may be an eNB or eNodeB (Evolutional NodeB) in Long Term Evolution (Long Term Evolution, LTE).
  • the base station device may also be a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario.
  • CRAN Cloud Radio Access Network
  • the base station device may also be a base station device in a future 6G network or a network device in a future evolved PLMN network.
  • the base station device may also be a wearable device or a vehicle-mounted device.
  • the device for realizing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • a network device may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3GPP third generation partnership project
  • the terminal device involved in this embodiment of the present application may also be referred to as a terminal, and may be a device with a wireless transceiver function.
  • the terminal equipment involved in the embodiment of the present application may include various user equipment (user equipment, UE), access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal with wireless communication function , a mobile device, a UE terminal, a terminal, a wireless communication device, a UE proxy or a UE device, and the like.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, unmanned aerial vehicles (or simply referred to as drones) (unmanned aerial vehicles/drones, UVA), vehicle-mounted devices, wearable devices, in the future 6G network terminal equipment or terminal equipment in the future evolved PLMN network.
  • the device for realizing the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the embodiments of the present application can be applied to a device to device (device to device, D2D) system, a machine to machine (machine to machine, M2M) system, a vehicle to everything (V2X) system in which a vehicle communicates with anything, etc.
  • D2D device to device
  • M2M machine to machine
  • V2X vehicle to everything
  • the embodiments of the present application may be applied to next-generation microwave scenarios, NR-based microwave scenarios, or integrated access backhaul (IAB) scenarios, and the like.
  • next-generation microwave scenarios NR-based microwave scenarios
  • IAB integrated access backhaul
  • the network device and the terminal device may be fixed or mobile.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • the communication device in the embodiment of the present application may be the terminal device shown in Figure 1.
  • the communication device may also be a transceiver device, which may be configured on the terminal device in Figure 1 It is used to send communication signals to network equipment or receive communication signals from the network equipment.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • Frequency division duplexing frequency division duplexing, FDD
  • FDD is a commonly used wireless communication technology, and its principle is: the uplink (example, terminal equipment to base station) and downlink (example, base station to terminal equipment) use two separate frequency channels (with Certain frequency interval requirements) work, and work in a symmetrical frequency band; that is to say, in FDD mode, the communication device receives and transmits (or transmits) on two separate, symmetrical frequency channels.
  • This communication feature of FDD makes FDD have natural advantages in power control, link adaptation, channel and interference feedback, etc.
  • the uplink frequency band can only be used for a single transmission
  • the downlink frequency band can only be used for a single reception.
  • Time division duplexing time division duplexing, TDD
  • TDD is a duplex mode of a communication system, which is used to separate receiving and transmitting channels (or called uplink and downlink) in a mobile communication system.
  • receiving and transmitting or called sending
  • the mobile communication system of the TDD mode receiving and transmitting (or called sending) are in the same frequency channel, that is, different time slots of the carrier, and the receiving and transmitting channels are separated by a guaranteed time.
  • the transmission of information in the uplink and downlink can be performed on the same carrier frequency, that is, the transmission of information in the uplink and the transmission of information in the downlink are on the same carrier , realized by time division. Due to this communication characteristic of TDD, all available bandwidth can be efficiently and flexibly utilized in the case of asymmetric spectrum allocation.
  • the TDD mode can dynamically allocate the uplink and downlink capacity to realize the flexibility of resource allocation. Moreover, since the uplink and downlink use the same frequency, the consistency of the uplink and downlink is better.
  • the more complex closed-loop power control can be replaced by open-loop power control.
  • a duplexer generally a three-port device, can be understood as a special bidirectional three-terminal filter.
  • the weak receiving signal can be coupled in, and the high-power transmitting signal can be fed to the antenna; and the duplexer can isolate the transmitting signal and the receiving signal to ensure that the communication device can be normal at the same time Receive and transmit communication signals.
  • the duplexer can be equivalently understood as two band-pass filters of different frequencies, which can prevent the transmission signal of the machine from being transmitted to the receiver.
  • the duplexer can be used to separate two communication signals in different frequency bands, so as to isolate the two communication signals from each other and avoid mutual interference.
  • a filter is primarily a frequency-selective device that allows specific frequency components in a signal to pass while greatly attenuating other frequency components in the signal.
  • the filter can effectively filter out communication signals in a specific frequency band or outside the specific frequency band in the communication signal, and can obtain a communication signal in a specific frequency band, or a communication signal after filtering out a specific frequency band.
  • the filter may be used to pass communication signals in two different frequency bands, and attenuate other frequency components in the communication signals except for the two frequency bands.
  • the FDD communication mode restricts the use of frequency bands, the uplink frequency band can only be used for a single transmission, and the downlink frequency band can only be used for a single reception.
  • the requirements for spectrum resources are relatively high.
  • those skilled in the art have proposed the concept of FDD full duplex, which can be understood as: communication signals can be simultaneously received and transmitted in the FDD uplink frequency band, and communication signals can also be simultaneously received and transmitted in the FDD downlink frequency band.
  • FDD full-duplex communication mode will introduce interference between uplink signals and downlink signals.
  • the self-interference cancellation of uplink and downlink signals can be realized by improving its own hardware architecture and antenna array, but for the terminal equipment, due to the limitation of the hardware size and the number of antennas, it is difficult to communicate with the base station In a similar manner, interference between uplink signals and downlink signals is eliminated.
  • the solution of the embodiment of the present application is proposed.
  • FIG. 2 it is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device shown in FIG. 2 can be applied to the communication system shown in FIG. 1.
  • the communication device can be the terminal device shown in FIG. 1.
  • the communication device can also be a transceiver device, the transceiver device can be configured on the terminal device in FIG. 1, and is used to send a communication signal to the network device or receive a communication signal from the network device.
  • the communication device includes a transmitting module, a receiving module, a first duplexer and a switch module. Specifically, the transmitting module is connected to the switch module, the receiving module is connected to the switch module, and the first duplexer is connected to the switch module.
  • the transmitting module is used for transmitting communication signals.
  • the transmitting module may be a power amplifier (power amplifier, PA), which can increase the power of the transmitting signal.
  • PA power amplifier
  • the transmitting module has the broadband transmitting capability of the first frequency band and the second frequency band.
  • PA is only an example as a transmitting module, and the transmitting module may also be other devices capable of transmitting signals, and the devices may also have other functions.
  • the receiving module is used to receive communication signals.
  • the receiving module may be a low noise amplifier (LNA), which can amplify weak received signals without introducing large noise.
  • LNA low noise amplifier
  • the receiving module has the broadband amplification capability of the first frequency band and the second frequency band.
  • the receiving module of the LNA is only an example, and the receiving module may also be other devices capable of transmitting signals, and the devices may also have other functions.
  • the transmitting module and the receiving module can be integrated into the same module, and this module has the function of transmitting and receiving signals.
  • the transmitting module and the receiving module may share some components, and these components have functions of transmitting and receiving signals.
  • the first duplexer is used to separate the signal of the first frequency band and the signal of the second frequency band.
  • the signals of the first frequency band and the second frequency band may be an uplink frequency band (or called an uplink working frequency band) and a downlink frequency band (or called a downlink working frequency band) in the FDD mode.
  • Table 1 schematically illustrates how to divide communication frequency bands in the FDD mode (only the schematic part).
  • the first frequency band and the second frequency band do not overlap.
  • the first frequency band may be the uplink working frequency band in n1, ie, 1920MHz-1980MHz; the second frequency band may be the downlink working frequency band in n1, ie, 2110MHz-2170MHz.
  • the first frequency band may be a downlink working frequency band in n1, and the second frequency band may be an uplink working frequency band in n1.
  • the first frequency band may be the uplink working frequency band in n3, and the second frequency band may be the downlink working frequency band in n3.
  • the above content is based on the frequency bands allocated in the 3rd Generation Partnership Project (The 3rd Generation Partnership Project, 3GPP) Release 16 (R16) agreement, and introduces a possibility of the first frequency band and the second frequency band. value method.
  • frequency bands may be divided in different ways.
  • new frequency band division methods may be adopted; based on different frequency band division methods, the first frequency band and the second frequency band Values of the two frequency bands may be different, which is not limited in this embodiment of the present application.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is the second frequency band.
  • the first duplexer may further include a third port (also called a common port), and the working frequency bands of the third port are the first frequency band and the second frequency band.
  • the first duplexer can be a bidirectional three-port filter, in the first duplexer, a common port (ie, the third port) separates two ports of different frequency bands (ie, the first port and the second port) , can isolate the signal between the ports of two different frequency bands, and both forward and reverse isolation can be realized.
  • the function of the first duplexer can also be implemented using a multiplexer. Exemplarily, duplexers supporting multiple operating frequency bands (exemplarily, operating frequency bands n1 and n3) can be combined into a multiplexer .
  • the first duplexer can be equivalently understood as two band-pass filters of different frequencies, wherein the first port and the third port are the ports of the band-pass filter of the first frequency band, and the second port and the third port are the ports of the band-pass filter of the first frequency band. Port of the two-band bandpass filter.
  • the meaning that the working frequency band of the first port is the first frequency band can be understood as: the original communication signal is input into the first duplexer through the first port, and after being processed by the first duplexer, the first duplexer is output from the third port.
  • a communication signal of a frequency band, in the original communication signal, communication signals other than the first frequency band are filtered out.
  • the original communication signal is input into the first duplexer through the third port, after being processed by the first duplexer, the communication signal of the first frequency band is output from the first port, and the original communication signal except the first duplexer Communication signals outside a frequency band are filtered out.
  • the meaning that the working frequency band of the second port is the second frequency band can be understood in a similar manner, and will not be repeated here.
  • the switch module is used to control the switching of the connection mode, and the connection mode includes a first connection mode and a second connection mode.
  • This connection mode can be called the connection mode of the switch module, can be called the connection mode of the communication device, and can also be called the connection mode of the transmitting module and the receiving module.
  • the connection mode can be understood as a connection mode between the transmitting module and/or receiving module and other modules (or ports of other modules) in the communication device controlled by the switch module.
  • the communication device may have different signal flow directions and/or frequency bands of transmitting signals and/or receiving signals. That is to say, by switching between different connection modes, the signal flow direction and/or frequency band of the transmitting signal and/or receiving signal of the communication device can be changed.
  • the signal flow direction of the transmission signal can be understood as the sequence of the modules (or ports of the modules) through which the transmission signal flows during the process of the transmission signal being generated from the communication device and sent to the external device.
  • the signal flow direction of the received signal can be understood as the sequence of modules (or ports of each module) through which the received signal flows during the process of receiving the received signal from an external device and inputting it into the communication device.
  • connection mode may also be called connection relationship, connection mode, connection topology, connection status, working mode, working status, etc., which are not limited in this application.
  • the transmitting module when in the first connection mode, is used to send the transmission signal of the first frequency band to the first duplexer, and the receiving module is used to receive the second signal from the first duplexer. received signal in the frequency band.
  • the switch module controls the transmitting module to be connected to the first port, and controls the receiving module to be connected to the second port.
  • FIG. 3 is a schematic connection diagram of a communication device provided in an embodiment of the present application when it is in a first connection mode.
  • the switch module example is a Double Pole Double Throw switch.
  • the transmitting module is connected to the first port of the first duplexer through the switch module, and the receiving module is connected to the second port of the first duplexer through the switch module.
  • the signal flow direction of the transmitting signal (first frequency band) and the receiving signal (second frequency band) can refer to the direction indicated by the arrow in FIG. 3 .
  • the weak receiving signal of the second frequency band can be coupled in, and the higher power transmitting signal of the first frequency band can be fed to other devices (for example, antenna) Up; the first duplexer can isolate the transmitting signal from the receiving signal, ensuring that the communication device can normally receive and transmit communication signals at the same time.
  • the first connection mode can also be named the FDD mode, or the forward FDD mode, or the first FDD mode, This application does not limit the naming of the first connection mode.
  • the transmitting module When in the second connection mode, the transmitting module is used to send the transmission signal of the second frequency band to the first duplexer, and the receiving module is used to receive the reception signal of the first frequency band from the first duplexer Signal.
  • the switch module controls the transmitting module to be connected to the second port, and controls the receiving module to be connected to the first port.
  • FIG. 4 which is a schematic connection diagram of a communication device provided in an embodiment of the present application when it is in a second connection mode.
  • the switch module example is a Double Pole Double Throw switch.
  • the transmitting module is connected to the second port of the first duplexer through the switch module, and the receiving module is connected to the first port of the first duplexer through the switch module.
  • the signal flow direction of the transmitting signal (second frequency band) and the receiving signal (first frequency band) can refer to the direction indicated by the arrow in FIG. 4 .
  • the weak received signal of the first frequency band can be coupled in, and the higher power transmitted signal of the second frequency band can be fed to other devices (for example, antenna) Up; the first duplexer can isolate the transmitting signal from the receiving signal, ensuring that the communication device can normally receive and transmit communication signals at the same time.
  • the first connection mode can also be named the reverse FDD mode, or the second FDD mode. The naming of the two connection modes is not limited.
  • the switch module can be integrated with other modules, so that other modules have the function of controlling their own connection mode.
  • the switch module can be integrated with the transmitting module, and the transmitting module can control whether it is connected to the first port or the second port of the first duplexer.
  • the switch module can also be integrated with the receiving module, and the receiving module can control whether it is connected to the first port or the second port of the first duplexer.
  • the switch module, the transmitting module, and the receiving module are all integrated together, and the module can control whether the transmitting port of itself is connected to the first port or the second port of the first duplexer, and controls the receiving port of itself to be connected to the first duplexer. Whether the first port or the second port of the device is connected.
  • the communication device may also include other modules.
  • the communication device may further include a baseband processing module, a radio frequency processing module, an antenna, and the like.
  • FIG. 5 it is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the baseband processing module is connected to the radio frequency processing module, the radio frequency processing module is connected to the transmitting module and the receiving module, and the antenna is connected to the first duplexer; specifically, it can be connected to the third port of the first duplexer .
  • the baseband processing module is used to convert digital signals into analog signals, that is, to generate baseband signals transmitted to external equipment (for example, network equipment); or to convert analog signals into digital signals, that is, to generate to process.
  • the radio frequency processing module is used to receive the signal from the baseband processing module, continue to modulate the signal, modulate the low frequency signal to the specified high frequency frequency band, and then send the modulated signal to the transmitting module for further processing;
  • the signal of the receiving module is sent to the intermediate frequency to demodulate the signal, and the received baseband signal is obtained, and then the baseband signal is sent to the baseband processing module for further processing.
  • the antenna is used to convert the AC current signal from the first duplexer into an electromagnetic wave signal, transmit the communication signal to the external device in the form of electromagnetic wave, or convert the electromagnetic wave signal sent by the network device (for example, a base station) into weak AC current signal, and send the AC current signal to the first duplexer for further processing.
  • the network device for example, a base station
  • the communication device described in the embodiment of the present application may include more or fewer modules to realize sending and receiving communication signals. It should be noted that some of the modules described in the embodiments of this application can be integrated together to form a module with multiple functions, and this application does not limit the division of modules.
  • the communication device shown in FIG. 2 introduced in the above content when in the first connection mode, can send a transmission signal of the first frequency band to an external device (for example, a base station), and receive a reception signal of the second frequency band; In the connection mode, the transmission signal of the second frequency band can be sent to the external device, and the reception signal of the first frequency band can be received. In this manner, the utilization rate of frequency resources can be increased.
  • the communication device shown in Figure 2 in addition to sending communication signals on the uplink frequency resources of FDD and receiving communication signals on the downlink frequency resources of FDD, can also realize receiving communication signals on the uplink frequency resources of FDD. The communication signal is sent on the downlink frequency resource.
  • the terminal device is the communication device in this embodiment, or the communication device in this embodiment is used as a transceiver device Configured on the terminal device.
  • the network device can simultaneously receive and send communication signals in a working frequency band (for example, the first frequency band and the second frequency band).
  • the network device may schedule the connection modes of multiple terminal devices. For example, at the same time, it may indicate that terminal device 1 is in the first connection mode, and that terminal device 2 is in the second connection mode. Then, for the network device, the uplink signal of the first frequency band from the terminal device 1 and the uplink signal of the second frequency band from the terminal device 2 can be received at the same time; and the downlink signal of the second frequency band can be sent to the terminal device 1 at the same time, Send the uplink signal of the first frequency band to the terminal device 2 .
  • the multiple terminal devices can match the full-duplex communication requirements of the network device.
  • the above content introduces the communication device proposed by the embodiment of the present application.
  • the following content further introduces some other possible structures and application modes of the communication device.
  • FIG. 6 it is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device shown in FIG. 6 can be applied to the communication system shown in FIG. 1.
  • the communication device can be the terminal device shown in FIG. 1.
  • the communication device can also be a transceiver device, the transceiver device can be configured on the terminal device in FIG. 1, and is used to send a communication signal to the network device or receive a communication signal from the network device.
  • the communication device includes a transmitting module, a receiving module, a first duplexer, a first filter and a switch module.
  • the transmitting module is connected to the switch module
  • the receiving module is connected to the switch module
  • the first duplexer is connected to the switch module
  • the first filter is connected to the switch module. That is to say, compared with the communication device shown in FIG. 2 , the communication device shown in FIG. 6 further includes a first filter.
  • the first filter which may be a multi-frequency filter, is used to pass the signal of the first frequency band and the signal of the second frequency band.
  • the first filter includes two ports, namely a fourth port and a fifth port.
  • the fourth port of the first filter is connected with the switch module.
  • the first filter can pass the signals of the first frequency band and the second frequency band, which can be understood as: the original communication signal is input into the first filter through the fourth port, and after being processed by the first filter, it is transmitted from the fifth port The communication signals of the first frequency band and the second frequency band are output, and the communication signals other than the first frequency band and the second frequency band in the original communication signal are filtered out. It can also be understood as: the original communication signal is input to the first filter through the fifth port, and after being processed by the first filter, the communication signal of the first frequency band and the second frequency band is output from the fourth port, except for the original communication signal Communication signals outside the first frequency band and the second frequency band are filtered out.
  • the communication device shown in FIG. 6 also includes a third connection mode.
  • first connection mode and the second connection mode reference may be made to the introduction in the foregoing content, and details will not be repeated here.
  • the transmitting module when in the third connection mode, is configured to send the transmitting signals of the first frequency band and the second frequency band to the first filter.
  • the receiving module is used for receiving the received signals of the first frequency band and the second frequency band from the first filter.
  • the switch module when the communication device needs to send an uplink signal, controls the transmission module to be connected to the fourth port of the first filter; when the communication device needs to receive a downlink signal, the switch module The receiving module is controlled to be connected to the fourth port of the first filter.
  • FIG. 7 is a schematic connection diagram of a communication device provided in an embodiment of the present application when it is in a third connection mode.
  • the switch module example is a double pole three throw (DP3T) switch.
  • the transmitting module is connected to the fourth port of the first filter through the switch module, and the receiving module is connected to the fourth port of the first filter through the switch module.
  • the signal flow direction of the transmitting signal (the first frequency band and the second frequency band) and the receiving signal (the first frequency band and the second frequency band) can refer to the directions indicated by the arrows in FIG. 7 .
  • the principle of the communication device receiving and sending signals is similar to the TDD mode.
  • the third connection mode can be named TDD mode, and this application does not limit the name of the third connection mode.
  • the terminal device is the communication device in this embodiment, or the communication device in this embodiment is used as a transceiver device Configured on the terminal device.
  • the network device can simultaneously receive and send communication signals in a working frequency band (for example, the first frequency band and the second frequency band).
  • the network device can schedule the connection modes of multiple terminal devices. For example, at the same time, it can indicate the signal sending process of terminal device 1 in the third connection mode, and the signal receiving process of terminal device 2 in the third connection mode. . Then, for the network device, it can receive the uplink signal of the first frequency band and the second frequency band from the terminal device 1, and can send the downlink signal of the first frequency band and the second frequency band to the terminal device 2 at the same time.
  • the multiple terminal devices can match the full-duplex communication requirements of the network device. It should also be noted that the communication device shown in FIG. 6 may not use all three connection modes, and the communication device may support at least two connection modes among the three connection modes.
  • the communication device further includes an antenna
  • the switch module includes a first switch module and a second switch module, and the first switch module and the second switch module jointly realize the function of controlling switching of connection modes.
  • FIG. 8 it is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the same module structure and connection mode in FIG. 8 as in FIG. 6 reference may be made to the introduction in the content of the embodiment in FIG. 6 above, and details will not be repeated here.
  • the first switch module may be a double-pole three-throw switch
  • the second switch module may be a single-pole double-throw switch.
  • the transmitting module is connected to the first switch module
  • the receiving module is connected to the first switch module
  • the first duplexer (specifically, the first port and the second port) is connected to the first switch module
  • the first The filter (specifically the fourth port) is connected to the first switch module
  • the first duplexer specifically the third port
  • the first filter specifically the fifth port
  • the antenna is connected to the second switch module, and the antenna is connected to the second switch module.
  • connection conditions of each connection mode The following describes the connection conditions of each connection mode:
  • the first switch module controls the transmitting module to be connected to the first port of the first duplexer, and controls the receiving module to be connected to the second port of the first duplexer; the second The second switch module controls the connection between the third port of the first duplexer and the antenna.
  • the transmission signal can be sent from the third port of the first duplexer to the antenna, and then transmitted to the external device through the antenna.
  • the received signal can be received through the antenna, and then input to the third port of the first duplexer.
  • the first switch module controls the transmitting module to be connected to the second port of the first duplexer, and controls the receiving module to be connected to the first port of the first duplexer;
  • the second switch module controls the connection between the third port of the first duplexer and the antenna.
  • the transmission signal can be sent from the third port of the first duplexer to the antenna, and then transmitted to the external device through the antenna.
  • the received signal can be received through the antenna, and then input to the third port of the first duplexer.
  • the first switch module controls the transmission module to be connected to the fourth port of the first filter; when the communication device needs to receive a downlink signal, the first switch module The module controls the receiving module to be connected to the fourth port of the first filter; the second switch module controls the fifth port of the first filter to be connected to the antenna.
  • the transmission signal can be sent from the fifth port of the first filter to the antenna, and then transmitted to the external device through the antenna.
  • the received signal can be received through the antenna, and then input to the fifth port of the first filter.
  • the terminal device In a communication system composed of multiple terminal devices and network devices, if the terminal device is in the receiving state at a distance around the terminal device in the transmitting state, it will not be interfered by the transmitter of the terminal device, thereby avoiding interference. The problem of deterioration of the sensitivity of the receiver caused. Based on this, the network device may consider pairing based on the location information, so as to realize the full-duplex mode of the network device itself. If the transmitting module in the embodiment of the present application can be a highly linear transmitter, the performance of the spectrum template of the transmitting module can be improved, so that the base station does not need to pair the terminal device based on the location information. In order to achieve the purpose of a highly linear transmitter, digital predistortion (digital predistortion, DPD), LINC-out-of-phase constant envelope PA, digital transmitter and other solutions may be used in the communication device.
  • DPD digital predistortion
  • LINC-out-of-phase constant envelope PA digital transmitter and other solutions
  • the communication device further includes a feedback path; the feedback path is configured to couple the transmit signal to an intermediate frequency or a baseband for power control or nonlinear compensation processing. Through the feedback path, the performance of the communication device can be improved.
  • the communication devices in the embodiments of the present application may all include the feedback path. Based on FIG. 8 , an exemplary description is made.
  • FIG. 9 it is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device also includes a feedback path (the feedback path includes a coupler and a feedback receiver) and an antenna.
  • the second switch module is connected to the feedback path, and the antenna is connected to the feedback path.
  • the center frequency of the working frequency band of the feedback path is the center frequency of the frequency band of the transmitting signal.
  • the transmission signal is the first frequency band
  • the center frequency of the working frequency band of the feedback path is the center frequency of the first frequency band
  • the transmission signal is the second frequency band
  • the center frequency of the working frequency band of the feedback path is the first frequency band.
  • the center frequency of the two frequency bands; the transmitted signal is the first frequency band and the second frequency band, then the center frequency of the working frequency band of the feedback path is the center frequency of the first frequency band and the center frequency of the second frequency band.
  • the working frequency band of the feedback path includes the frequency band of the transmitting signal.
  • the bandwidth of the working frequency band of the feedback path may be three times or other multiples of the bandwidth of the frequency band of the transmitting signal.
  • FIG. 10 it is a schematic diagram of a working frequency band of a feedback path provided by an embodiment of the present application.
  • the first frequency band is the frequency band of the receiving signal
  • the second frequency band is the frequency band of the transmitting signal
  • the center frequency of the working frequency band of the feedback path is the center frequency of the second frequency band
  • the bandwidth of the working frequency band of the feedback path is three times the bandwidth of the frequency band in which the transmitted signal is transmitted.
  • the receiving module may suffer performance degradation when receiving signals of two frequency bands at the same time
  • the receiving module can be divided into two receiving sub-modules, the two receiving sub-modules The sub-modules jointly realize the reception of the received signal.
  • the signal receiving capability of the communication device can be improved.
  • the receiving module includes a first receiving module and a second receiving module, the first receiving module is used for receiving the received signal of the first frequency band, and the second receiving module is used for receiving the received signal of the second frequency band.
  • FIG. 8 it is a schematic diagram of another communication device provided by an embodiment of the present application.
  • Both the first receiving module and the second receiving module are connected to the first switch module.
  • first switch module For the same module structure and connection mode in FIG. 11 as in FIG. 8 , reference can be made to the introduction in the content of the embodiment in FIG. 8 above, and details will not be repeated here.
  • connection conditions of each connection mode The following describes the connection conditions of each connection mode:
  • the first switch module controls the transmitting module to connect to the first port of the first duplexer, and controls the second receiving module to connect to the second port of the first duplexer;
  • the second switch module controls the connection between the third port of the first duplexer and the antenna.
  • the first switch module controls the transmitting module to be connected to the second port of the first duplexer, and controls the first receiving module to be connected to the first port of the first duplexer;
  • the second switch module controls the connection between the third port of the first duplexer and the antenna.
  • the first switch module controls the transmission module to be connected to the fourth port of the first filter, and the second switch module controls the fourth port of the first filter. Five ports are connected to the antenna.
  • the first switch module controls the first receiving module to be connected to the first port, and controls the second receiving module to be connected to the second port.
  • the first receiving module is used to receive the received signal of the first frequency band from the first duplexer
  • the second receiving module is used to receive the received signal of the second frequency band from the first duplexer.
  • the second switch module controls the connection between the third port of the first duplexer and the antenna.
  • the communication device in order to enable the communication device to support multi-frequency communication, the communication device may further include more duplexers/filters.
  • the communication device shown in FIG. 12 further includes a second duplexer for separating signals of the third frequency band and the fourth frequency band. Similar to the first duplexer, the second duplexer includes a sixth port and a seventh port, the working frequency band of the sixth port is the third frequency band, and the working frequency band of the seventh port is the fourth frequency band.
  • the second duplexer may further include an eighth port (also called a common port), and the working frequency bands of the eighth port are the third frequency band and the fourth frequency band.
  • the first frequency band, the second frequency band, the third frequency band, and the fourth frequency band are four different communication frequency bands.
  • the first frequency band can be the uplink working frequency band in n1, that is, 1920MHz-1980MHz; the second The frequency band may be the downlink working frequency band in n1, that is, 2110MHz-2170MHz.
  • the third frequency band may be the uplink working frequency band in n2, that is, 1850MHz-1910MHz; the fourth frequency band may be the downlink working frequency band in n2, that is, 1930MHz-1990MHz.
  • the communication device can support dual-frequency communication of working frequency bands n1 and n2. It should be noted that in different systems and different scenarios, frequency bands may be divided in different ways.
  • new frequency band division methods may be adopted; based on different frequency band division methods, Values of the first frequency band, the second frequency band, the third frequency band, and the fourth frequency band may be selected in different ways, which is not limited in this embodiment of the present application.
  • the switch module is used to control the switching of the connection mode, and the connection mode includes a first connection mode and a second connection mode.
  • the connection mode further includes a fourth connection mode and a fifth connection mode.
  • the transmitting module when in the fourth connection mode, is used to send the transmission signal of the third frequency band to the second duplexer, and the receiving module is used to receive the fourth duplexer from the second duplexer. received signal in the frequency band.
  • the transmitting module when in the fifth connection mode, is used to send the transmission signal of the fourth frequency band to the second duplexer, and the receiving module is used to receive the reception signal of the third frequency band from the second duplexer Signal.
  • the port connection mode, signal flow direction and function of the second duplexer in the fourth connection mode can refer to the introduction of the content of the first duplexer in the first connection mode in the embodiment of FIG. 2 above.
  • the port connection mode, signal flow direction and function of the second duplexer in the fifth connection mode can refer to the introduction of the content of the first duplexer in the second connection mode in the embodiment of FIG. Let me repeat.
  • FIG. 13 it is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device shown in FIG. 13 further includes a first filter and a second filter.
  • the first filter is used to pass the signal of the first frequency band and the signal of the second frequency band.
  • the second filter is used to pass the signal of the third frequency band and the signal of the fourth frequency band.
  • connection mode may also include a third connection mode.
  • the connection mode Similar to the content of the embodiment corresponding to FIG. 6 , due to the addition of the second filter, the connection mode also includes a sixth connection mode.
  • the transmitting module When in the sixth connection mode, the transmitting module is configured to send the transmitting signals of the third frequency band and the fourth frequency band to the second filter.
  • the receiving module is used for receiving the received signals of the third frequency band and the fourth frequency band from the second filter.
  • signal flow direction and function of the second filter in the sixth connection mode refer to the introduction of the content of the first filter in the third connection mode in the embodiment of FIG. 6 above, and details will not be repeated here.
  • the receiving module for example, LNA
  • the receiving module can be divided into four receiving sub-modules, the four receiving sub-modules The sub-modules jointly realize the reception of the received signal. In this way, the signal receiving capability of the communication device can be improved.
  • the receiving module includes a first receiving module and a second receiving module, the first receiving module is used for receiving the received signal of the first frequency band, and the second receiving module is used for receiving the received signal of the second frequency band.
  • the receiving module further includes a third receiving module and a fourth receiving module, the third receiving module is used for receiving the received signal of the third frequency band, and the fourth receiving module is used for receiving the received signal of the fourth frequency band.
  • FIG. 14 it is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the first receiving module, the second receiving module, the third receiving module and the fourth receiving module are all connected to the first switch module.
  • FIG. 14 For the same module structure and connection mode in FIG. 14 as in FIG. 11 , reference can be made to the introduction in the content of the embodiment in FIG. 11 above, and details will not be repeated here.
  • connection conditions of each connection mode The following describes the connection conditions of each connection mode:
  • the first switch module controls the transmitting module to connect to the first port of the first duplexer, and controls the second receiving module to connect to the second port of the first duplexer;
  • the second switch module controls the connection between the third port of the first duplexer and the antenna.
  • the first switch module controls the transmitting module to be connected to the second port of the first duplexer, and controls the first receiving module to be connected to the first port of the first duplexer;
  • the second switch module controls the connection between the third port of the first duplexer and the antenna.
  • the first switch module controls the transmission module to be connected to the fourth port of the first filter, and the second switch module controls the fourth port of the first filter. Five ports are connected to the antenna.
  • the first switch module controls the first receiving module to be connected to the first port, and controls the second receiving module to be connected to the second port.
  • the first receiving module is used to receive the received signal of the first frequency band from the first duplexer
  • the second receiving module is used to receive the received signal of the second frequency band from the first duplexer.
  • the second switch module controls the connection between the third port of the first duplexer and the antenna.
  • the first switch module controls the transmitting module to be connected to the sixth port of the second duplexer, and controls the second receiving module to be connected to the seventh port of the first duplexer;
  • the second switch module controls the eighth port of the second duplexer to be connected to the antenna.
  • the first switch module controls the transmitting module to be connected to the seventh port of the second duplexer, and controls the third receiving module to be connected to the sixth port of the second duplexer;
  • the second switch module controls the eighth port of the second duplexer to be connected to the antenna.
  • the first switch module controls the transmission module to be connected to the ninth port of the second filter, and the second switch module controls the second port of the second filter. Ten ports are connected to the antenna.
  • the first switch module controls the third receiving module to be connected to the sixth port, and controls the fourth receiving module to be connected to the seventh port.
  • the third receiving module is used for receiving the receiving signal of the third frequency band from the first duplexer
  • the fourth receiving module is used for receiving the receiving signal of the fourth frequency band of the second duplexer.
  • the second switch module controls the eighth port of the second duplexer to be connected to the antenna.
  • the switch modules (including the first switch module and the second switch module) in the above content.
  • it can be composed of multiple switches to realize the function of the switch module.
  • the switch module can be integrated with the transmitting module, or the switch module can also be integrated with the receiving module, or the switch module, the transmitting module, and the receiving module are all integrated together. The design is not limited.
  • the content of the above-mentioned embodiments in Figure 12- Figure 14 is introduced by taking the communication device supporting dual-frequency communication as an example.
  • the communication device can support communication in more working frequency bands.
  • the communication device can More duplexers/filters are included, and as more duplexers/filters are added, the connection modes of the communication device increase accordingly.
  • the manner of adding a duplexer/filter to the communication device reference may be made to the introduction of the content of the embodiments in FIG. 12-FIG. 14 , which will not be repeated here.
  • multiple duplexers supporting different frequency bands can be combined into one multiplexer to support the multi-frequency operation of the communication device; multiple filters supporting different frequency bands can be combined into one multi-frequency filter to support the multi-frequency operation of the communication device.
  • FIG. 15 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device shown in Figure 15 includes a transmitting module, a receiving module, a multiplexer, a multi-frequency filter and a switch module, wherein:
  • the transmitting module is connected to the switch module, the receiving module is connected to the switch module, the multiplexer is connected to the switch module, and the multi-frequency filter is connected to the switch module.
  • the transmitting module and the receiving module reference may be made to the introduction of the content of the above-mentioned embodiments, and details will not be repeated here.
  • the multiplexer is used to separate the signal of the first frequency band, the signal of the second frequency band, the signal of the third frequency band and the signal of the fourth frequency band.
  • the multiplexer includes an eleventh port, a twelfth port, a thirteenth port, a fourteenth port and a fifteenth port, the operating frequency band of the eleventh port is the first frequency band, and the operating frequency band of the twelfth port is The working frequency band is the second frequency band, the working frequency band of the thirteenth port is the third frequency band, the working frequency band of the fourteenth port is the fourth frequency band, the fifteenth port is a common port, and the working frequency band of the fifteenth port is The frequency bands are the first frequency band, the second frequency band, the third frequency band and the fourth frequency band. It can be understood that, compared with the communication device shown in FIG. 13 , the multiplexer implements the functions of the first duplexer and the second duplexer.
  • the multi-frequency filter is used to pass signals of the first frequency band, signals of the second frequency band, signals of the third frequency band and signals of the fourth frequency band.
  • the multi-frequency filter includes a sixteenth port and a seventeenth port. It can be understood that, compared with the communication device shown in FIG. 13 , the multi-frequency filter realizes the functions of the first filter and the second filter.
  • the switch module is used to control switching of connection modes, and the connection modes include a first connection mode, a second connection mode, a third connection mode, a fourth connection mode, a fifth connection mode and a sixth connection mode.
  • the transmitting module When in the first connection mode, the transmitting module is configured to send the transmitting signal of the first frequency band to the multiplexer, and the receiving module is configured to receive the second signal from the multiplexer received signal in the frequency band.
  • the switch module controls the transmitting module to be connected to the eleventh port, and controls the receiving module to be connected to the twelfth port.
  • the transmitting module When in the second connection mode, the transmitting module is configured to send the transmitting signal of the second frequency band to the multiplexer, and the receiving module is configured to receive the first signal from the multiplexer received signal in the frequency band.
  • the switch module controls the transmitting module to be connected to the twelfth port, and controls the receiving module to be connected to the eleventh port.
  • the transmitting module is configured to send the transmitting signals of the first frequency band and the second frequency band to the multi-frequency filter
  • the receiving module is configured to receive signals from the multi-band The received signals of the first frequency band and the second frequency band of the frequency filter.
  • the switch module controls the transmission module to be connected to the sixteenth port of the multi-frequency filter; when the communication device needs to receive a downlink signal, the switch module controls the receiver module to connect with the multi-frequency filter connected to the sixteenth port of the device.
  • the transmitting module When in the fourth connection mode, the transmitting module is used to send the transmission signal of the third frequency band to the multiplexer, and the receiving module is used to receive the fourth signal from the multiplexer. received signal in the frequency band.
  • the switch module controls the transmitting module to be connected to the thirteenth port, and controls the receiving module to be connected to the fourteenth port.
  • the transmitting module is configured to send the transmitting signal of the fourth frequency band to the multiplexer
  • the receiving module is configured to receive the third signal from the multiplexer received signal in the frequency band.
  • the switch module controls the transmitting module to be connected to the fourteenth port, and controls the receiving module to be connected to the thirteenth port.
  • the transmitting module is configured to send the transmitting signals of the third frequency band and the fourth frequency band to the multi-frequency filter
  • the receiving module is configured to receive signals from the multi-frequency band The received signals of the third frequency band and the fourth frequency band of the frequency filter.
  • the switch module controls the transmission module to be connected to the sixteenth port of the multi-frequency filter; when the communication device needs to receive a downlink signal, the switch module controls the receiver module to connect with the multi-frequency filter connected to the sixteenth port of the device.
  • FIG. 16 it is a flowchart of a communication method provided by an embodiment of the present application.
  • the method is applied to a communication device, and the communication device includes a transmitting module, a receiving module, a first duplexer, and a switch module.
  • the methods include:
  • connection modes include a first connection mode and a second connection mode.
  • the communication device further includes a first filter
  • the connection mode further includes a third connection mode
  • the method further includes: when in the third connection mode, transmitting The module sends the transmit signals of the first frequency band and the second frequency band to the first filter.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is the the second frequency band.
  • the method further includes: when in the first connection mode, controlling the transmitting module to connect to the first port through the switch module, and controlling the receiving module to connect to the first port. connected to the second port; in the second connection mode, the switch module is used to control the transmission module to be connected to the second port, and to control the reception module to be connected to the first port.
  • the method further includes: when in the third connection mode, using the receiving module to receive signals from the first frequency band and the second frequency band from the first filter receive signal.
  • the communication device further includes a feedback path; the method further includes: coupling the transmit signal to an intermediate frequency or a baseband through the feedback path to perform power control or nonlinear compensation processing.
  • the receiving module includes a first receiving module and a second receiving module, the first receiving module is configured to receive a received signal in the first frequency band, and the second receiving module is configured to Receive a received signal of the second frequency band.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is the The second frequency band; the method further includes: when in the first connection mode, controlling the transmitting module to connect to the first port through the switch module, and controlling the second receiving module to connect to the first port Two-port connection; when in the second connection mode, the switch module controls the transmission module to be connected to the second port, and controls the first reception module to be connected to the first port.
  • the receiving module includes a first receiving module and a second receiving module, the first receiving module is configured to receive a received signal in the first frequency band, and the second receiving module is configured to Receiving a received signal of the second frequency band; the method further includes: when in the third connection mode, receiving the received signal of the first frequency band from the first duplexer through the first receiving module , using the second receiving module to receive the received signal of the second frequency band from the first duplexer.
  • the first duplexer includes a first port and a second port, the working frequency band of the first port is the first frequency band, and the working frequency band of the second port is the the second frequency band; the method further includes: when in the third connection mode, controlling the transmission module to connect to the first filter through the switch module, or the switch module controlling the first filter The receiving module is connected to the first port, and controls the connection of the second receiving module to the second port.
  • the communication device further includes a second duplexer
  • the connection mode further includes a fourth connection mode and a fifth connection mode
  • the method further includes: being in the fourth connection mode , sending the transmission signal of the third frequency band to the second duplexer through the transmitting module, and receiving the reception signal of the fourth frequency band from the second duplexer through the receiving module;
  • the transmit signal of the fourth frequency band is sent to the second duplexer through the transmitting module, and the signal of the third frequency band from the second duplexer is received through the receiving module receive signal.
  • the communication device further includes a second filter
  • the connection mode further includes a sixth connection mode
  • the method further includes: when in the sixth connection mode, transmitting The module sends the transmit signals of the third frequency band and the fourth frequency band to the second filter.
  • the method further includes: when in the sixth connection mode, using the receiving module to receive signals from the third frequency band and the fourth frequency band from the second filter receive signal.
  • the receiving module includes a third receiving module and a fourth receiving module, the third receiving module is configured to receive a received signal in the third frequency band, and the fourth receiving module is configured to Receive a received signal of the fourth frequency band.
  • the method further includes: when in the sixth connection mode, using the third receiving module to receive a received signal of the third frequency band from the second duplexer, The received signal of the fourth frequency band from the second duplexer is received by the fourth receiving module.
  • the communication device may be any communication device introduced in the above embodiments corresponding to FIGS. 2-9 , and 11-15 .
  • the communication device may be any communication device introduced in the above embodiments corresponding to FIGS. 2-9 , and 11-15 .
  • the communication device may be any communication device introduced in the above embodiments corresponding to FIGS. 2-9 , and 11-15 .
  • the present application also provides a communication system, which includes network equipment (or called access network equipment) and any of the communication devices described in the above embodiments corresponding to Figures 2-9 and Figures 11-15 .
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state drive (SSD) ))wait.
  • modules of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may implement the described functionality using different methods for each particular application, but such implementation should not be considered as exceeding the scope of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信装置及通信方法,该通信装置包括发射模块、接收模块、第一双工器、开关模块,其中:发射模块与开关模块连接,接收模块与开关模块连接,第一双工器与开关模块连接;开关模块,用于控制连接模式的切换,连接模式包括第一连接模式和第二连接模式;处于第一连接模式时,发射模块用于将第一频段的发射信号发送到第一双工器,接收模块用于接收来自第一双工器的第二频段的接收信号;处于第二连接模式时,发射模块用于将第二频段的发射信号发送到第一双工器,接收模块用于接收来自第一双工器的第一频段的接收信号。通过本申请的通信装置,可以匹配接入网设备(例如基站)全双工的通信需求。

Description

一种通信装置及通信方法
本申请要求于2021年12月30日提交中国国家知识产权局、申请号为202111656952.5、申请名称为“一种通信装置及通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及一种通信装置及通信方法。
背景技术
频分双工(frequency division duplexing,FDD)是一种常用的无线通信技术,其原理是:上行链路(示例性的,终端设备到基站)和下行链路(示例性的,基站到终端设备)采用两个分开的频率信道(有一定频率间隔要求)工作,且工作在对称频带上;也即是说,在FDD模式中,通信设备在两个分离的、对称的频率信道上分别进行接收和发送。FDD的这种通信特性,使得FDD在功率控制、链路自适应、信道和干扰反馈等方面具有天然的优势。
但也由于FDD的通信特性,使得上行频段只能用于单一的发送,下行频段只能用于单一的接收。在终端设备和基站构成的FDD通信***中,对频谱资源的要求较高。鉴于此,本领域技术人员提出了FDD全双工的概念,可以理解为:在FDD的上行频段能够同时接收和发射通信信号,在FDD的下行频段也能够同时接收和发射通信信号。FDD全双工的通信模式将引入上行信号和下行信号之间的干扰。对于基站而言,可以通过改进自身的硬件架构和天线阵列的方式来实现上行信号和下行信号的自干扰消除,而对于终端设备而言,由于硬件体积和天线数量的限制,很难通过与基站类似的方式消除上行信号和下行信号之间的干扰。如何使得终端设备匹配基站FDD全双工的通信需求,是本领域技术人员亟待解决的问题。
发明内容
本申请实施例提供了一种通信装置及通信方法,可以使得通信装置在FDD的频率资源上支持不同的通信模式,可以实现在FDD的上行频率资源上接收通信信号,在FDD的下行频率资源上发送通信信号,匹配接入网设备(例如基站)FDD全双工的通信需求。
第一方面,本申请提供了一种通信装置,该通信装置包括发射模块、接收模块、第一双工器、开关模块,其中:该发射模块与该开关模块连接,该接收模块与该开关模块连接,该第一双工器与该开关模块连接;该第一双工器,用于分离第一频段的信号和第二频段的信号;该开关模块,用于控制连接模式的切换,该连接模式包括第一连接模式和第二连接模式;处于该第一连接模式时,该发射模块用于将该第一频段的发射信号发送到该第一双工器,该接收模块用于接收来自该第一双工器的该第二频段的接收信号;处于该第二连接 模式时,该发射模块用于将该第二频段的发射信号发送到该第一双工器,该接收模块用于接收来自该第一双工器的该第一频段的接收信号。通过该通信装置,可以匹配接入网设备(例如基站)FDD全双工的通信需求。结合第一方面,在一种可能的实现方式中,该通信装置还包括第一滤波器,该第一滤波器与该开关模块连接;该连接模式还包括第三连接模式;该第一滤波器,用于通过该第一频段的信号和该第二频段的信号;处于该第三连接模式时,该发射模块用于将该第一频段和该第二频段的发射信号发送到该第一滤波器。
结合第一方面,在一种可能的实现方式中,该第一双工器包括第一端口和第二端口,该第一端口的工作频段为该第一频段,该第二端口的工作频段为该第二频段。
结合第一方面,在一种可能的实现方式中,处于该第一连接模式时,该开关模块控制该发射模块与该第一端口连接,且控制该接收模块与该第二端口连接;处于该第二连接模式时,该开关模块控制该发射模块与该第二端口连接,且控制该接收模块与该第一端口连接。
结合第一方面,在一种可能的实现方式中,处于该第三连接模式时,该接收模块用于接收来自该第一滤波器的该第一频段和该第二频段的接收信号。
结合第一方面,在一种可能的实现方式中,该通信装置还包括反馈通路;该反馈通路,用于耦合该发射信号到中频或者基带进行功率控制或者非线性补偿处理。
结合第一方面,在一种可能的实现方式中,该通信装置还包括天线、第一滤波器,该开关模块包括第一开关模块和第二开关模块,该发射模块与该第一开关模块连接,该接收模块与该第一开关模块连接,该第一双工器与该第一开关模块连接,该第一滤波器与该第一开关模块连接;该第一双工器与该第二开关模块连接,该第一滤波器与该第二开关模块连接,该天线与该第二开关模块连接;该第二开关模块与该反馈通路连接,该天线与该反馈通路连接。
结合第一方面,在一种可能的实现方式中,该反馈通路的工作频段的中心频率为该发射信号的频段的中心频率。
结合第一方面,在一种可能的实现方式中,该反馈通路的工作频段包含该发射信号的频段。
结合第一方面,在一种可能的实现方式中,该接收模块包括第一接收模块和第二接收模块,该第一接收模块用于接收该第一频段的接收信号,该第二接收模块用于接收该第二频段的接收信号。
结合第一方面,在一种可能的实现方式中,该第一双工器包括第一端口和第二端口,该第一端口的工作频段为该第一频段,该第二端口的工作频段为该第二频段;处于该第一连接模式时,该开关模块控制该发射模块与该第一端口连接,且控制该第二接收模块与该第二端口连接;处于该第二连接模式时,该开关模块控制该发射模块与该第二端口连接,且控制该第一接收模块与该第一端口连接。
结合第一方面,在一种可能的实现方式中,该接收模块包括第一接收模块和第二接收模块,该第一接收模块用于接收该第一频段的接收信号,该第二接收模块用于接收该第二频段的接收信号;处于该第三连接模式时,该第一接收模块用于接收来自该第一双工器的该第一频段的接收信号,该第二接收模块用于接收来自该第一双工器的该第二频段的接收信号。
结合第一方面,在一种可能的实现方式中,该第一双工器包括第一端口和第二端口,该第一端口的工作频段为该第一频段,该第二端口的工作频段为该第二频段;处于该第三连接模式时,该开关模块控制该发射模块与该第一滤波器连接,或者,该开关模块控制该第一接收模块与该第一端口连接,且控制该第二接收模块与该第二端口连接。
结合第一方面,在一种可能的实现方式中,该通信装置还包括第二双工器,该第二双工器,用于分离第三频段和第四频段的信号;该连接模式还包括第四连接模式和第五连接模式;处于该第四连接模式时,该发射模块用于将该第三频段的发射信号发送到该第二双工器,该接收模块用于接收来自该第二双工器的该第四频段的接收信号;处于该第五连接模式时,该发射模块用于将该第四频段的发射信号发送到该第二双工器,该接收模块用于接收来自该第二双工器的该第三频段的接收信号。
结合第一方面,在一种可能的实现方式中,该通信装置还包括第二滤波器,该连接模式还包括第六连接模式;该第二滤波器,用于通过该第三频段的信号和该第四频段的信号;处于该第六连接模式时,该发射模块用于将该第三频段和该第四频段的发射信号发送到该第二滤波器。
结合第一方面,在一种可能的实现方式中,处于该第六连接模式时,该接收模块用于接收来自该第二滤波器的该第三频段和该第四频段的接收信号。
结合第一方面,在一种可能的实现方式中,该接收模块包括第三接收模块和第四接收模块,该第三接收模块用于接收该第三频段的接收信号,该第四接收模块用于接收该第四频段的接收信号。
结合第一方面,在一种可能的实现方式中,处于该第六连接模式时,该第三接收模块用于接收来自该第二双工器的该第三频段的接收信号,该第四接收模块用于接收来自该第二双工器的该第四频段的接收信号。
第二方面,本申请提供了一种通信方法,该方法应用于通信装置,该通信装置包括发射模块、接收模块、第一双工器、开关模块,该方法包括:通过该开关模块控制连接模式的切换,该连接模式包括第一连接模式和第二连接模式;处于该第一连接模式时,通过该发射模块将第一频段的发射信号发送到该第一双工器,通过该接收模块接收来自该第一双工器的第二频段的接收信号;处于该第二连接模式时,通过该发射模块将该第二频段的发射信号发送到该第一双工器,通过该接收模块接收来自该第一双工器的该第一频段的接收信号。通过该方法,可以使得该通信装置匹配接入网设备(例如基站)FDD全双工的通信需求。
可选的,第一频段和第二频段不重叠,该第一频段和第二频段的信号可以分别是FDD模式中的上行频段(或称为上行工作频段)和下行频段(或称为下行工作频段)。示例性的,第一频段和第二频段可以分别为第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)Release 16(R16)协议中针对FDD模式划分出的上行频段和下行频段。需要说明的是,在不同的***和不同的场景中,频段的划分可能会采取不同的方式,另外,随着无线通信的演进,可能会采用新的频段划分方式;基于不同的频段划分方式,第一频段和第二频段的取值方式可以不同。
结合第二方面,在一种可能的实现方式中,该通信装置还包括第一滤波器,该连接模式还包括第三连接模式;该方法还包括:处于该第三连接模式时,通过该发射模块将该第 一频段和该第二频段的发射信号发送到该第一滤波器。
结合第二方面,在一种可能的实现方式中,该第一双工器包括第一端口和第二端口,该第一端口的工作频段为该第一频段,该第二端口的工作频段为该第二频段。
结合第二方面,在一种可能的实现方式中,该方法还包括:处于该第一连接模式时,通过该开关模块控制该发射模块与该第一端口连接,且控制该接收模块与该第二端口连接;处于该第二连接模式时,通过该开关模块控制该发射模块与该第二端口连接,且控制该接收模块与该第一端口连接。
结合第二方面,在一种可能的实现方式中,该方法还包括:处于该第三连接模式时,通过该接收模块接收来自该第一滤波器的该第一频段和该第二频段的接收信号。
结合第二方面,在一种可能的实现方式中,该通信装置还包括反馈通路;该方法还包括:通过该反馈通路耦合该发射信号到中频或者基带进行功率控制或者非线性补偿处理。
结合第二方面,在一种可能的实现方式中,该接收模块包括第一接收模块和第二接收模块,该第一接收模块用于接收该第一频段的接收信号,该第二接收模块用于接收该第二频段的接收信号。
结合第二方面,在一种可能的实现方式中,该第一双工器包括第一端口和第二端口,该第一端口的工作频段为该第一频段,该第二端口的工作频段为该第二频段;该方法还包括:处于该第一连接模式时,通过该开关模块控制该发射模块与该第一端口连接,且控制该第二接收模块与该第二端口连接;处于该第二连接模式时,通过该开关模块控制该发射模块与该第二端口连接,且控制该第一接收模块与该第一端口连接。
结合第二方面,在一种可能的实现方式中,该接收模块包括第一接收模块和第二接收模块,该第一接收模块用于接收该第一频段的接收信号,该第二接收模块用于接收该第二频段的接收信号;该方法还包括:处于该第三连接模式时,通过该第一接收模块接收来自该第一双工器的该第一频段的接收信号,通过该第二接收模块接收来自该第一双工器的该第二频段的接收信号。
结合第二方面,在一种可能的实现方式中,该第一双工器包括第一端口和第二端口,该第一端口的工作频段为该第一频段,该第二端口的工作频段为该第二频段;该方法还包括:处于该第三连接模式时,通过该开关模块控制该发射模块与该第一滤波器连接,或者,该开关模块控制该第一接收模块与该第一端口连接,且控制该第二接收模块与该第二端口连接。
结合第二方面,在一种可能的实现方式中,该通信装置还包括第二双工器,该连接模式还包括第四连接模式和第五连接模式;该方法还包括:处于该第四连接模式时,通过该发射模块将第三频段的发射信号发送到该第二双工器,通过该接收模块接收来自该第二双工器的第四频段的接收信号;处于该第五连接模式时,通过该发射模块将该第四频段的发射信号发送到该第二双工器,通过该接收模块接收来自该第二双工器的该第三频段的接收信号。
结合第二方面,在一种可能的实现方式中,该通信装置还包括第二滤波器,该连接模式还包括第六连接模式;该方法还包括:处于该第六连接模式时,通过该发射模块将该第三频段和该第四频段的发射信号发送到该第二滤波器。
结合第二方面,在一种可能的实现方式中,该方法还包括:处于该第六连接模式时, 通过该接收模块接收来自该第二滤波器的该第三频段和该第四频段的接收信号。
结合第二方面,在一种可能的实现方式中,该接收模块包括第三接收模块和第四接收模块,该第三接收模块用于接收该第三频段的接收信号,该第四接收模块用于接收该第四频段的接收信号。
结合第二方面,在一种可能的实现方式中,该方法还包括:处于该第六连接模式时,通过该第三接收模块接收来自该第二双工器的该第三频段的接收信号,通过该第四接收模块接收来自该第二双工器的该第四频段的接收信号。
第三方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质用于存储指令,当该指令被执行时,使得如上述第二方面或者第二方面的任一可能的实现方式所描述的方法被实现。
第四方面,本申请提供了一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得如上述第二方面或者第二方面的任一可能的实现方式所描述的方法被实现。
通过本申请的方案,可以通过通信装置中的开关模块控制连接模式的切换,处于该第一连接模式时,该发射模块用于将该第一频段的发射信号发送到该第一双工器,该接收模块用于接收来自该第一双工器的该第二频段的接收信号;处于该第二连接模式时,该发射模块用于将该第二频段的发射信号发送到该第一双工器,该接收模块用于接收来自该第一双工器的该第一频段的接收信号。本申请的通信装置除了在FDD的上行频率资源上可以发送通信信号,在FDD的下行频率资源上可以接收通信信号,还可以实现在FDD的上行频率资源上接收通信信号,在FDD的下行频率资源上发送通信信号;可以匹配网络设备全双工的通信需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的一种无线通信***的网络架构的示意图;
图2是本申请实施例提供的一种通信装置的结构示意图;
图3是本申请实施例提供的一种通信装置处于第一连接模式时的连接示意图;
图4是本申请实施例提供的一种通信装置处于第二连接模式时的连接示意图;
图5是本申请实施例提供的又一种通信装置的示意图;
图6是本申请实施例提供的又一种通信装置的示意图;
图7是本申请实施例提供的一种通信装置处于第三连接模式时的连接示意图;
图8是本申请实施例提供的又一种通信装置的示意图;
图9是本申请实施例提供的又一种通信装置的示意图;
图10是本申请实施例提供的一种反馈通路的工作频段的示意图;
图11是本申请实施例提供的又一种通信装置的示意图;
图12是本申请实施例提供的又一种通信装置的示意图;
图13是本申请实施例提供的又一种通信装置的示意图;
图14是本申请实施例提供的又一种通信装置的示意图;
图15是本申请实施例提供的又一种通信装置的示意图;
图16是本申请实施例提供的一种通信方法的流程图。
具体实施方式
下面对本申请实施例中的技术方案进行更详细地描述。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”“一种”“所述”“上述”“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。本申请中使用的术语“多个”是指两个或者两个以上。
需要说明的是,本申请的说明书和权利要求书中及上述附图中的属于“第一”“第二”“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解,这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述以外的顺序实施。此外,术语“包括”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例可以应用于图1所示的网络架构,图1所示的网络架构为无线通信***的网络架构,该网络架构通常包括终端设备和网络设备(或称为接入网设备),各个设备数量以及形态并不构成对本申请实施例的限定。示例性的,图1中的终端设备可以为多个,该网络设备为该多个终端设备提供网络。
需要说明的是,本申请实施例提及的无线通信***包括但不限于:物联网***(internet of things,IoT)、长期演进***(long term evolution,LTE)、第五代移动通信(5th-generation,5G)***、第六代移动通信(6th-generation,6G)***以及未来移动通信***。在一些实施例中,本申请实施例的技术方案还可以应用于无线局域网(Wireless Local Area Network,WLAN)网络,还可以应用于车联网(Vehicle-to-X,V2X)网络,还可以应用于非陆域(non-terrestrial networks,NTN)、卫星和高空平台(satellites and High-Altitude Platforms,HAP)、增强物联网(LTE enhanced MTO,eMTC),还可以应用于其他网络等。在另一些实施例中,本申请实施例的技术方案还可以应用于通信雷达一体化,太赫兹,以及更高频率的通信***,等等,本申请并不具体限定。
本申请实施例涉及到的网络设备可以是基站(Base Station,BS),基站可以向多个终端设备提供通信服务,多个基站也可以向同一个终端设备提供通信服务。在本申请实施例中,基站是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。基站设备可以是基站、中继站或接入点。基站可以是长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(Evolutional NodeB)。基站设备还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。基站设备还可以是未来6G网络中的基站设备或者未来演进的PLMN网络中的网络设备。基站设备还可以是可穿戴设备或车载设备等。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支 持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中。例如,网络设备可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备。本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、无人驾驶飞机(或简称为无人机)(unmanned aerial vehicle/drones,UVA)、车载设备、可穿戴设备,未来6G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片***,该装置可以被安装在终端中。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例可以应用于设备到设备(device to device,D2D)***,机器到机器(machine to machine,M2M)***、车与任何事物通信的车联网(vehicle to everything,V2X)***等。
本申请实施例可以应用于下一代微波场景、基于NR的微波场景或回传(integrated access backhaul,IAB)场景等。
本申请实施例中,网络设备和终端设备可以是固定位置的,也可以是可移动的。网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
示例性的,本申请实施例中的通信装置可以为图1中所示的终端设备,在另一示例中,该通信装置还可以为收发装置,该收发装置可以配置在图1中的终端设备上,用于向网络设备发送通信信号,或者接收来自该网络设备的通信信号。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
接下来,对本申请实施例涉及到的一些概念进行介绍。
1.频分双工(frequency division duplexing,FDD)
FDD是一种常用的无线通信技术,其原理是:上行链路(示例性的,终端设备到基站)和下行链路(示例性的,基站到终端设备)采用两个分开的频率信道(有一定频率间隔要求)工作,且工作在对称频带上;也即是说,在FDD模式中,通信设备在两个分离的、对称的频率信道上分别进行接收和发送(或者称为发射)。FDD的这种通信特性,使得FDD在功率控制、链路自适应、信道和干扰反馈等方面具有天然的优势。但也由于FDD的通信特性,使得上行频段只能用于单一的发送,下行频段只能用于单一的接收。
2.时分双工(time division duplexing,TDD)
TDD是一种通信***的双工方式,在移动通信***中用于分离接收与发射信道(或称为上下行链路)。TDD模式的移动通信***中接收和发射(或称为发送)是在同一频率信道,即载波的不同时隙,用保证时间来分离接收与发射信道。换而言之,在TDD模式中,上行链路和下行链路中信息的传输可以在同一载波频率上进行,即上行链路中信息的传输和下行链路中信息的传输是在同一载波上,通过时分的方式来实现的。由于TDD的这种通信特性,可以在频谱分配不对称的情况下,高效灵活地利用所有可用带宽。另外,针对多媒体应用时上下行链路传输容量的要求不同,采用TDD模式可动态分配上下行链路的容量,实现资源分配的灵活性。并且,由于上下行链路使用相同的频率,上下行链路的一致性较好。在对移动台的发射功率进行控制时,可以用开环功率控制来取代较为复杂的闭环功率控制。
3.双工器(duplexer)
双工器,一般是一个三端口器件,可以理解为一个比较特殊的双向三端滤波器。对于双工器而言,可以将微弱的接收信号耦合进来,又可以将较大功率的发射信号馈送到天线上去;并且双工器可以将发射信号和接收信号相隔离,保证通信装置能同时正常接收和发射通信信号。双工器可以等效理解为两个不同频率的带通滤波器,它可以避免本机的发射信号传输到接收机。在本申请实施例中,双工器可以用于分离不同频段的两个通信信号,让该两个通信信号彼此隔离,避免相互的干扰。
4.滤波器(filter)
滤波器主要是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减信号中的其他频率成分。换而言之,滤波器可以对通信信号中特定频段或该特定频段以外的通信信号进行有效滤除,可以得到特定频段的通信信号,或滤除特定频段后的通信信号。在本申请实施例中,滤波器可以用于通过两个不同频段的通信信号,衰减通信信号中除该两个频段的其他频率成分。
在一种可能的方式中,FDD的通信模式对频段的使用进行了限制,上行频段只能用于单一的发送,下行频段只能用于单一的接收。在终端设备和基站构成的FDD通信***中,对频谱资源的要求较高。鉴于此,本领域技术人员提出了FDD全双工的概念,可以理解为:在FDD的上行频段能够同时接收和发射通信信号,在FDD的下行频段也能够同时接收和发射通信信号。FDD全双工的通信模式将引入上行信号和下行信号之间的干扰。对于基站而言,可以通过改进自身的硬件架构和天线阵列的方式来实现上行信号和下行信号的自干扰消除,而对于终端设备而言,由于硬件体积和天线数量的限制,很难通过与基站类似的方式消除上行信号和下行信号之间的干扰。鉴于此,提出了本申请实施例的方案。
参见图2,是本申请实施例提供的一种通信装置的结构示意图。图2所示的通信装置可以应用于图1所示的通信***中,示例性的,该通信装置可以为图1中所示的终端设备,在另一示例中,该通信装置还可以为收发装置,该收发装置可以配置在图1中的终端设备上,用于向网络设备发送通信信号,或者接收来自该网络设备的通信信号。该通信装置包括发射模块、接收模块、第一双工器、开关模块。具体的,该发射模块与该开关模块连接,该接收模块与该开关模块连接,该第一双工器与该开关模块连接。
其中,发射模块用于发射通信信号,示例性的,该发射模块可以为功率放大器(power amplifier,PA),它可以增加发射信号的功率。该发射模块具备第一频段和第二频段的宽带发射能力。需要说明的是,该PA作为发射模块仅为示例,该发射模块还可以为具有信号发射能力的其他装置,该装置还可以具备其他功能。
接收模块用于接收通信信号,示例性的,该接收模块可以为低噪声放大器(low noise amplifier,LNA),它可以放大微弱的接收信号,而且不会引入较大的噪声。该接收模块具备第一频段和第二频段的宽带放大能力。需要说明的是,该LNA作为接收模块仅为示例,该接收模块还可以为具有信号发射能力的其他装置,该装置还可以具备其他功能。可选的,该发射模块和接收模块可以集成在同一个模块中,该模块具备信号的发射和接收的功能。可选的,该发射模块和该接收模块可以共用部分器件,这部分器件具备信号的发射和接收的功能。
第一双工器,用于分离第一频段的信号和第二频段的信号。示例性的,该第一频段和第二频段的信号可以是FDD模式中的上行频段(或称为上行工作频段)和下行频段(或称为下行工作频段)。参见表1,表1中示意说明了FDD模式中对通信频段的划分方式(仅示意部分)。
表1
Figure PCTCN2022140364-appb-000001
其中,第一频段和第二频段不重叠。举例而言,该第一频段可以为n1中的上行工作频段,即1920MHz-1980MHz;第二频段可以为n1中的下行工作频段,即2110MHz-2170MHz。或者,第一频段可以为n1中的下行工作频段,第二频段可以为n1中的上行工作频段。或者,第一频段可以为n3中的上行工作频段,第二频段可以为n3中的下行工作频段。需要说明的是,上述内容中以第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)Release 16(R16)协议中划分的频段为依据,介绍了第一频段和第二频段的一种可能的取值方式。在不同的***和不同的场景中,频段的划分可能会采取不同的方式,另外,随着 无线通信的演进,可能会采用新的频段划分方式;基于不同的频段划分方式,第一频段和第二频段的取值方式可以不同,本申请实施例对此不做限定。
具体的,该第一双工器包括第一端口和第二端口,该第一端口的工作频段为该第一频段,该第二端口的工作频段为该第二频段。可选的,该第一双工器还可以包括第三端口(也可以称为公共端),该第三端口的工作频段为第一频段和第二频段。
第一双工器可以是一种双向三端口滤波器,在第一双工器中,一个公共端口(即第三端口)分离出两个不同频段的端口(即第一端口和第二端口),可以隔离两个不同频段的端口之间的信号,正向和反向的隔离均可以实现。该第一双工器的功能也可以使用多工器来实现,示例性的,支持多个工作频段(示例性的,可以为工作频段n1和n3)的双工器可以组合成一个多工器。第一双工器可以等效理解为两个不同频率的带通滤波器,其中,第一端口和第三端口为第一频段的带通滤波器的端口,第二端口和第三端口为第二频段的带通滤波器的端口。该第一端口的工作频段为该第一频段的含义可以理解为:原始通信信号通过该第一端口输入第一双工器,经过该第一双工器的处理之后,从第三端口输出第一频段的通信信号,该原始通信信号中除该第一频段外的通信信号被滤除。还可以理解为:原始通信信号通过第三端口输入第一双工器,经过该第一双工器的处理之后,从第一端口输出第一频段的通信信号,该原始通信信号中除该第一频段外的通信信号被滤除。另外,该第二端口的工作频段为该第二频段的含义可以按照相似方式理解,此处不再赘述。
该开关模块,用于控制连接模式的切换,该连接模式包括第一连接模式和第二连接模式。该连接模式,可以称之为开关模块的连接模式,可以称之为通信装置的连接模式,也可以称之为发射模块和接收模块的连接模式。可选的,该连接模式可以理解为开关模块所控制的通信装置中的发射模块和/或接收模块与其他模块(或者其他模块的端口)的连接模式。处在不同的连接模式下,该通信装置的发射信号和/或接收信号的信号流向和/或频段可以不同。也即是说,通过切换不同的连接模式,可以改变该通信装置的发射信号和/或接收信号的信号流向和/或频段。其中,该发射信号的信号流向可以理解为该发射信号从该通信装置生成并向外部装置发送的这个过程中,发射信号所流经的各个模块(或者各个模块的端口)的顺序。该接收信号的信号流向可以理解为该接收信号从外部装置接收并输入该通信装置的这个过程中,接收信号所流经的各个模块(或者各个模块的端口)的顺序。
可选的,该连接模式还可以称为连接关系、连接方式、连接拓扑、连接状态、工作模式、工作状态,等等名称,本申请对该名称不作限定。
具体的,处于该第一连接模式时,该发射模块用于将该第一频段的发射信号发送到该第一双工器,该接收模块用于接收来自该第一双工器的该第二频段的接收信号。进一步说明,处于该第一连接模式时,该开关模块控制该发射模块与该第一端口连接,且控制该接收模块与该第二端口连接。示例性的,可以参见图3,图3是本申请实施例提供的一种通信装置处于第一连接模式时的连接示意图。该开关模块示例为一个双刀双掷开关。发射模块通过该开关模块与第一双工器的第一端口连接,接收模块通过该开关模块与第一双工器的第二端口连接。发射信号(第一频段)和接收信号(第二频段)的信号流向可以参见图3中的箭头所示方向。
第一连接模式中,对于第一双工器而言,可以将微弱的第二频段的接收信号耦合进来,又可以将较大功率的第一频段的发射信号馈送到其他装置(例如,天线)上去;第一双工 器可以将发射信号和接收信号相隔离,保证通信装置可以同时正常接收和发射通信信号。示例的,若第一频段为FDD模式中的上行频段,第二频段为FDD模式中的下行频段,该第一连接模式还可以命名为FDD模式,或者正向FDD模式,或者第一FDD模式,本申请对第一连接模式的命名不作限制。
处于该第二连接模式时,该发射模块用于将该第二频段的发射信号发送到该第一双工器,该接收模块用于接收来自该第一双工器的该第一频段的接收信号。进一步说明,处于该第二连接模式时,该开关模块控制该发射模块与该第二端口连接,且控制该接收模块与该第一端口连接。示例性的,可以参见图4,图4是本申请实施例提供的一种通信装置处于第二连接模式时的连接示意图。该开关模块示例为一个双刀双掷开关。发射模块通过该开关模块与第一双工器的第二端口连接,接收模块通过该开关模块与第一双工器的第一端口连接。发射信号(第二频段)和接收信号(第一频段)的信号流向可以参见图4中的箭头所示方向。
第二连接模式中,对于第一双工器而言,可以将微弱的第一频段的接收信号耦合进来,又可以将较大功率的第二频段的发射信号馈送到其他装置(例如,天线)上去;第一双工器可以将发射信号和接收信号相隔离,保证通信装置可以同时正常接收和发射通信信号。示例的,若第一频段为FDD模式中的上行频段,第二频段为FDD模式中的下行频段,该第一连接模式还可以命名为反向FDD模式,或者第二FDD模式,本申请对第二连接模式的命名不作限制。
还需要说明的是,该开关模块可以和其他模块集成在一起,使得其他模块具备可以控制自身连接方式的功能。示例性的,该开关模块可以和发射模块集成在一起,该发射模块可以控制自身与第一双工器的第一端口还是第二端口连接。该开关模块还可以和接收模块集成在一起,该接收模块可以控制自身与第一双工器的第一端口还是第二端口连接。或者,该开关模块、发射模块、接收模块均集成在一起,该模块可以控制自身的发射端口与第一双工器的第一端口还是第二端口连接,控制自身的接收端口与第一双工器的第一端口还是第二端口连接。
进一步需要说明的是,该通信装置还可以包括其他模块。示例性的,该通信装置还可以包括基带处理模块、射频处理模块、天线,等等。参见图5,是本申请实施例提供的又一种通信装置的示意图。该基带处理模块与射频处理模块连接,该射频处理模块与发射模块和接收模块相连接,该天线与该第一双工器连接;具体的,可以和该第一双工器的第三端口连接。
其中,该基带处理模块用于将数字信号转换为模拟信号,即生成向外部设备(例如,网络设备)发射的基带信号;或者用于将模拟信号转换为数字信号,即对接收到的基带信号进行处理。
射频处理模块,用于接收来自基带处理模块的信号,继续对信号进行调制,将低频信号调制到指定的高频频段,再将调制后的信号发送至发射模块进行进一步处理;或者用于接收来自接收模块的信号,送入中频内对信号进行解调,得到接收的基带信号,再将基带信号发送至基带处理模块进行进一步处理。
天线,用于把来自第一双工器的交流电流信号转化为电磁波信号,将通信信号以电磁波的形式向外部设备发射,或者用于把网络设备(例如,基站)发送来的电磁波信号转为 微弱的交流电流信号,并将该交流电流信号发送至第一双工器进行进一步处理。
在实际的应用过程中,本申请实施例介绍的该通信装置可以包括更多或者更少的模块,来实现对通信信号的发送和接收。需要说明的是,本申请实施例介绍的各个模块中的部分模块可以集成在一起形成具备多项功能的一个模块,本申请对模块的划分方式不作限制。
上述内容中介绍的图2所示的通信装置,在处于第一连接模式时,可以向外部设备(例如,基站)发送第一频段的发送信号,接收第二频段的接收信号;在处于第二连接模式时,可以向外部设备发送第二频段的发送信号,接收第一频段的接收信号。通过这种方式,可以增大频率资源的利用率。图2所示的通信装置,除了在FDD的上行频率资源上可以发送通信信号,在FDD的下行频率资源上可以接收通信信号,还可以实现在FDD的上行频率资源上接收通信信号,在FDD的下行频率资源上发送通信信号。
若通信***中包括一个网络设备和多个终端设备(示例性的,终端设备1和终端设备2),该终端设备为本实施例中的通信装置,或者本实施例中的通信装置作为收发装置配置在终端设备上。
在一些应用场景中,若网络设备支持全双工的通信模式,可以理解为,网络设备在工作频段(示例性的,为第一频段和第二频段)内可以同时接收和发送通信信号。网络设备可以调度多个终端设备的连接模式,示例性的,在同一时刻,可以指示终端设备1处于第一连接模式,指示终端设备2处于第二连接模式。则对于网络设备而言,可以同时接收到来自终端设备1的第一频段的上行信号,来自终端设备2的第二频段的上行信号;并可以同时向终端设备1发送第二频段的下行信号,向终端设备2发送第一频段的上行信号。通过本申请实施例中的通信装置,该多个终端设备可以匹配网络设备全双工的通信需求。
以上内容中介绍了本申请实施例提出的通信装置,在上述内容的基础上,以下内容对该通信装置的另一些可能的结构和应用方式作进一步的介绍。
参见图6,是本申请实施例提供的又一种通信装置的示意图。图6所示的通信装置可以应用于图1所示的通信***中,示例性的,该通信装置可以为图1中所示的终端设备,在另一示例中,该通信装置还可以为收发装置,该收发装置可以配置在图1中的终端设备上,用于向网络设备发送通信信号,或者接收来自该网络设备的通信信号。该通信装置包括发射模块、接收模块、第一双工器、第一滤波器、开关模块。具体的,该发射模块与该开关模块连接,该接收模块与该开关模块连接,该第一双工器与该开关模块连接,该第一滤波器与该开关模块连接。也即是说,相对于图2所示的通信装置,图6所示的通信装置还包括第一滤波器。
该第一滤波器,可以为一个多频滤波器,用于通过该第一频段的信号和该第二频段的信号。该第一频段和第二频段可以参照上述图2对应的实施例的介绍,此处不再赘述。图6所示,该第一滤波器包括两个端口,即第四端口和第五端口。该第一滤波器的第四端口与该开关模块连接。该第一滤波器可以通过该第一频段和第二频段的信号,可以理解为:原始通信信号通过该第四端口输入第一滤波器,经过该第一滤波器的处理之后,从第五端口输出第一频段和第二频段的通信信号,该原始通信信号中除该第一频段和第二频段外的通信信号被滤除。还可以理解为:原始通信信号通过第五端口输入第一滤波器,经过该第一滤波器的处理之后,从第四端口输出第一频段和第二频段的通信信号,该原始通信信号 中除该第一频段和第二频段外的通信信号被滤除。
相对于图2所示的通信装置而言,图6所示的通信装置除了第一连接模式和第二连接模式外,该连接模式还包括第三连接模式。该第一连接模式和第二连接模式的情况可以参照上述内容中的介绍,此处不再赘述。
具体的,处于该第三连接模式时,该发射模块用于将该第一频段和该第二频段的发射信号发送到该第一滤波器。该接收模块用于接收来自该第一滤波器的该第一频段和该第二频段的接收信号。进一步说明,处于第三连接模式时,当通信装置需要发送上行信号时,该开关模块控制该发射模块与该第一滤波器的第四端口连接,当通信装置需要接收下行信号时,该开关模块控制该接收模块与该第一滤波器的第四端口连接。示例性的,可以参见图7,图7是本申请实施例提供的一种通信装置处于第三连接模式时的连接示意图。该开关模块示例为一个双刀三掷(DP3T)开关。发射模块通过该开关模块与第一滤波器的第四端口连接,接收模块通过该开关模块与第一滤波器的第四端口连接。发射信号(第一频段和第二频段)和接收信号(第一频段和第二频段)的信号流向可以参见图7中的箭头所示方向。示例的,处于第三连接模式时,通信装置接收和发送信号的原理和TDD模式相似,该第三连接模式可以命名为TDD模式,本申请对第三连接模式的命名不作限制。
若通信***中包括一个网络设备和多个终端设备(示例性的,终端设备1和终端设备2),该终端设备为本实施例中的通信装置,或者本实施例中的通信装置作为收发装置配置在终端设备上。
在一些应用场景中,若网络设备支持全双工的通信模式,可以理解为,网络设备在工作频段(示例性的,为第一频段和第二频段)内可以同时接收和发送通信信号。网络设备可以调度多个终端设备的连接模式,示例性的,在同一时刻,可以指示终端设备1处于第三连接模式中的信号发送过程,指示终端设备2处于第三连接模式中的信号接收过程。则对于网络设备而言,可以接收到来自终端设备1的第一频段和第二频段的上行信号,并可以同时向终端设备2发送第一频段和第二频段的下行信号。通过本申请实施例中的通信装置,该多个终端设备可以匹配网络设备全双工的通信需求。还需要说明的是,图6所示的通信装置也可以不采用三种连接模式均使用的方式,该通信装置可以采用支持该三种连接模式中的至少两种连接模式。
在一些实施例中,该通信装置中还包括天线,该开关模块包括第一开关模块和第二开关模块,该第一开关模块和第二开关模块共同实现控制连接模式的切换的功能。以图6所示的通信装置为基础,进行示例性说明。参见图8,是本申请实施例提供的又一种通信装置的示意图。图8中与图6中相同的模块结构、连接模式可以参照上述图6的实施例内容中的介绍,此处不再赘述。
其中,该第一开关模块可以为双刀三掷的开关,第二开关模块可以为单刀双掷的开关。该发射模块与该第一开关模块连接,该接收模块与该第一开关模块连接,该第一双工器(具体为第一端口和第二端口)与该第一开关模块连接,该第一滤波器(具体为第四端口)与该第一开关模块连接;该第一双工器(具体为第三端口)与该第二开关模块连接,该第一滤波器(具体为第五端口)与该第二开关模块连接,该天线与该第二开关模块连接。
以下对各个连接模式的连接情况进行说明:
处于该第一连接模式时,该第一开关模块控制该发射模块与该第一双工器的第一端口连接,且控制该接收模块与该第一双工器的第二端口连接;该第二开关模块控制该第一双工器的第三端口与天线连接。通过这种连接模式,发射信号可以从第一双工器的第三端口发送至天线,再通过天线向外部设备发射出去。接收信号可以通过天线进行接收,再输入到第一双工器的第三端口。
处于该第二连接模式时,该第一开关模块控制该发射模块与该第一双工器的第二端口连接,且控制该接收模块与该第一双工器的第一端口连接;该第二开关模块控制该第一双工器的第三端口与天线连接。通过这种连接模式,发射信号可以从第一双工器的第三端口发送至天线,再通过天线向外部设备发射出去。接收信号可以通过天线进行接收,再输入到第一双工器的第三端口。
处于第三连接模式时,当通信装置需要发送上行信号时,该第一开关模块控制该发射模块与该第一滤波器的第四端口连接,当通信装置需要接收下行信号时,该第一开关模块控制该接收模块与该第一滤波器的第四端口连接;该第二开关模块控制该第一滤波器的第五端口与天线连接。通过这种连接模式,发射信号可以从第一滤波器的第五端口发送至天线,再通过天线向外部设备发射出去。接收信号可以通过天线进行接收,再输入到第一滤波器的第五端口。
在多个终端设备和网络设备构成的通信***中,处于发射状态的终端设备周围的一段距离外的终端设备如果处于接收状态,则不会受到终端设备的发射机的干扰,进而避免了干扰会引起的接收机的灵敏度恶化的问题。基于此,网络设备可以考虑基于位置信息来对进行配对,以实现网络设备自身的全双工模式。如果本申请实施例中的发射模块可以为高线性发射机,这样可以提升发射模块的频谱模板的性能,使得基站可以不需要基于位置信息对终端设备进行配对。为了实现高线性发射机的目的,该通信装置中可以采用数字预失真(digital predistortion,DPD),LINC-异相恒包络PA,数字发射机等方案。
在一些可能的实现方式中,该通信装置还包括反馈通路;该反馈通路,用于耦合该发射信号到中频或者基带进行功率控制或者非线性补偿处理。通过该反馈通路,可以提升通信装置的性能。示例性的,本申请实施例中的通信装置均可以包括该反馈通路。以图8为基础,进行示例性说明。参见图9,是本申请实施例提供的又一种通信装置的示意图。该通信装置还包括反馈通路(该反馈通路包括耦合器和反馈接收机)和天线。该第二开关模块与该反馈通路连接,该天线与该反馈通路连接。
可选的,该反馈通路的工作频段的中心频率为该发射信号的频段的中心频率。例如,该发射信号为第一频段,则该反馈通路的工作频段的中心频率为该第一频段的中心频率;该发射信号为第二频段,则该反馈通路的工作频段的中心频率为该第二频段的中心频率;该发射信号为第一频段和第二频段,则该反馈通路的工作频段的中心频率为该第一频段的中心频率和第二频段的中心频率。
可选的,该反馈通路的工作频段包含该发射信号的频段。示例性的,该反馈通路的工作频段的带宽可以为该发射信号的频段的带宽的三倍,或者其他倍数值。参见图10,是本申请实施例提供的一种反馈通路的工作频段的示意图。在图10中,第一频段为接收信号的频段,第二频段为发射信号的频段,该反馈通路的工作频段的中心频率为该第二频段的 中心频率,该反馈通路的工作频段的带宽为该发射信号的频段的带宽的三倍。
考虑到接收模块(示例性的,为LNA)同时接收两个频段的接收信号可能会出现性能恶化的问题,在一些实施例中,可以将接收模块分为两个接收子模块,这两个接收子模块共同实现对接收信号的接收。通过这种方式,可以提升通信装置的信号接收能力。示例性的,该接收模块包括第一接收模块和第二接收模块,该第一接收模块用于接收该第一频段的接收信号,该第二接收模块用于接收该第二频段的接收信号。以图8所示的通信装置为基础,进行示例性说明。参见图11,是本申请实施例提供的又一种通信装置的示意图。该第一接收模块和第二接收模块均与第一开关模块进行连接。图11中与图8中相同的模块结构、连接模式可以参照上述图8的实施例内容中的介绍,此处不再赘述。
以下对各个连接模式的连接情况进行说明:
处于该第一连接模式时,该第一开关模块控制该发射模块与该第一双工器的第一端口连接,且控制该第二接收模块与该第一双工器的第二端口连接;该第二开关模块控制该第一双工器的第三端口与天线连接。
处于该第二连接模式时,该第一开关模块控制该发射模块与该第一双工器的第二端口连接,且控制该第一接收模块与该第一双工器的第一端口连接;该第二开关模块控制该第一双工器的第三端口与天线连接。
处于第三连接模式时,当通信装置需要发送上行信号时,该第一开关模块控制该发射模块与该第一滤波器的第四端口连接,该第二开关模块控制该第一滤波器的第五端口与天线连接。当通信装置需要接收下行信号时,该第一开关模块控制该第一接收模块与该第一端口连接,且控制该第二接收模块与该第二端口连接。该第一接收模块用于接收来自该第一双工器的该第一频段的接收信号,该第二接收模块用于接收来自该第一双工器的该第二频段的接收信号。该第二开关模块控制该第一双工器的第三端口与天线连接。
在一些实施例中,为了使得通信装置可以支持多频的通信,该通信装置还可以包括更多的双工器/滤波器。
参见图12,是本申请实施例提供的又一种通信装置的示意图。相比于图2所示的通信装置,图12所示的通信装置还包括第二双工器,该第二双工器,用于分离第三频段和第四频段的信号。与第一双工器相似的是,第二双工器包括第六端口和第七端口,该第六端口的工作频段为该第三频段,该第七端口的工作频段为该第四频段。可选的,该第二双工器还可以包括第八端口(也可以称为公共端),该第八端口的工作频段为第三频段和第四频段。各个端口的工作频段的含义可以参照上述图2的实施例内容中的介绍,此处不再赘述。另外,图12中与图2中相同的模块结构可以参照上述图2的实施例内容中的介绍,此处不再赘述。
该第一频段、第二频段、第三频段、第四频段为互不相同的四个通信频段,举例而言,该第一频段可以为n1中的上行工作频段,即1920MHz-1980MHz;第二频段可以为n1中的下行工作频段,即2110MHz-2170MHz。该第三频段可以为n2中的上行工作频段,即1850MHz-1910MHz;第四频段可以为n2中的下行工作频段,即1930MHz-1990MHz。在该示例中,该通信装置可以支持工作频段n1和n2的双频通信。需要说明的是,在不同的 ***和不同的场景中,频段的划分可能会采取不同的方式,另外,随着无线通信的演进,可能会采用新的频段划分方式;基于不同的频段划分方式,第一频段、第二频段、第三频段、第四频段的取值方式可以不同,本申请实施例对此不做限定。
该开关模块,用于控制连接模式的切换,该连接模式包括第一连接模式和第二连接模式。该第一连接模式和第二连接模式可以参照上述图2的实施例内容中的介绍,此处不再赘述。在图12所示的通信装置中,该连接模式还包括第四连接模式和第五连接模式。
具体的,处于该第四连接模式时,该发射模块用于将该第三频段的发射信号发送到该第二双工器,该接收模块用于接收来自该第二双工器的该第四频段的接收信号。处于该第五连接模式时,该发射模块用于将该第四频段的发射信号发送到该第二双工器,该接收模块用于接收来自该第二双工器的该第三频段的接收信号。需要说明的是,处于第四连接模式的第二双工器的端口连接方式、信号流向以及作用可以参照上述图2的实施例中有关处于第一连接模式的第一双工器的内容的介绍,处于第五连接模式的第二双工器的端口连接方式、信号流向以及作用可以参照上述图2的实施例中有关处于第二连接模式的第一双工器的内容的介绍,此处不再赘述。
参见图13,是本申请实施例提供的又一种通信装置的示意图。相对于图12所示的通信装置,图13所示的通信装置中还包括第一滤波器和第二滤波器。该第一滤波器,用于通过该第一频段的信号和该第二频段的信号。该第二滤波器,用于通过该第三频段的信号和该第四频段的信号。图13中与图12中相同的模块结构、连接模式可以参照上述图12的实施例内容中的介绍,此处不再赘述。
由于第一滤波器的加入,该连接模式还可以包括第三连接模式,这部分内容可以参见图6对应实施例的介绍,此处不再赘述。与图6对应的实施例内容相似的,由于第二滤波器的加入,该连接模式还包括第六连接模式。
处于该第六连接模式时,该发射模块用于将该第三频段和该第四频段的发射信号发送到该第二滤波器。该接收模块用于接收来自该第二滤波器的该第三频段和该第四频段的接收信号。处于第六连接模式的第二滤波器的端口连接方式、信号流向以及作用可以参照上述图6的实施例中有关处于第三连接模式的第一滤波器的内容的介绍,此处不再赘述。
考虑到接收模块(示例性的,为LNA)同时接收四个频段的接收信号可能会出现性能恶化的问题,在一些实施例中,可以将接收模块分为四个接收子模块,这四个接收子模块共同实现对接收信号的接收。通过这种方式,可以提升通信装置的信号接收能力。该接收模块包括第一接收模块和第二接收模块,该第一接收模块用于接收该第一频段的接收信号,该第二接收模块用于接收该第二频段的接收信号。该接收模块还包括第三接收模块和第四接收模块,该第三接收模块用于接收该第三频段的接收信号,该第四接收模块用于接收该第四频段的接收信号。参见图14,是本申请实施例提供的又一种通信装置的示意图。该第一接收模块、第二接收模块、第三接收模块和第四接收模块均与第一开关模块进行连接。图14中与图11中相同的模块结构、连接模式可以参照上述图11的实施例内容中的介绍,此处不再赘述。
以下对各个连接模式的连接情况进行说明:
处于该第一连接模式时,该第一开关模块控制该发射模块与该第一双工器的第一端口连接,且控制该第二接收模块与该第一双工器的第二端口连接;该第二开关模块控制该第一双工器的第三端口与天线连接。
处于该第二连接模式时,该第一开关模块控制该发射模块与该第一双工器的第二端口连接,且控制该第一接收模块与该第一双工器的第一端口连接;该第二开关模块控制该第一双工器的第三端口与天线连接。
处于第三连接模式时,当通信装置需要发送上行信号时,该第一开关模块控制该发射模块与该第一滤波器的第四端口连接,该第二开关模块控制该第一滤波器的第五端口与天线连接。当通信装置需要接收下行信号时,该第一开关模块控制该第一接收模块与该第一端口连接,且控制该第二接收模块与该第二端口连接。该第一接收模块用于接收来自该第一双工器的该第一频段的接收信号,该第二接收模块用于接收来自该第一双工器的该第二频段的接收信号。该第二开关模块控制该第一双工器的第三端口与天线连接。
处于该第四连接模式时,该第一开关模块控制该发射模块与该第二双工器的第六端口连接,且控制该第二接收模块与该第一双工器的第七端口连接;该第二开关模块控制该第二双工器的第八端口与天线连接。
处于该第五连接模式时,该第一开关模块控制该发射模块与该第二双工器的第七端口连接,且控制该第三接收模块与该第二双工器的第六端口连接;该第二开关模块控制该第二双工器的第八端口与天线连接。
处于第六连接模式时,当通信装置需要发送上行信号时,该第一开关模块控制该发射模块与该第二滤波器的第九端口连接,该第二开关模块控制该第二滤波器的第十端口与天线连接。当通信装置需要接收下行信号时,该第一开关模块控制该第三接收模块与该第六端口连接,且控制该第四接收模块与该第七端口连接。该第三接收模块用于接收来自该第一双工器的该第三频段的接收信号,该第四接收模块用于接收来自该第二双工器的该第四频段的接收信号。该第二开关模块控制该第二双工器的第八端口与天线连接。
需要说明的是,上述内容中的开关模块(包括第一开关模块和第二开关模块)还可以存在其他可能的设计。示例性的,可以由多个开关共同组成,实现开关模块的功能。可选的,该开关模块可以和发射模块集成在一起,或者该开关模块还可以和接收模块集成在一起,或者该开关模块、发射模块、接收模块均集成在一起,本申请实施例对开关模块的设计不作限制。
另外,上述图12-图14的实施例内容以通信装置支持双频的通信为例进行了介绍,在实际应用中,该通信装置可以支持更多工作频段的通信,相应的,该通信装置可以包括更多的双工器/滤波器,随着更多的双工器/滤波器的加入,通信装置的连接模式也随之增加。该通信装置增加双工器/滤波器的方式,可以参照图12-图14的实施例内容的介绍,此处不再赘述。
在另一种可能的实现方式中,支持不同频段的多个双工器可以组合成一个多工器,以支持通信装置多频的工作;支持不同频段的多个滤波器可以组合成一个多频滤波器,以支持通信装置多频的工作。示例性的,参见图15,是本申请实施例提供的又一种通信装置的示意图。图15所示的通信装置包括发射模块、接收模块、多工器、多频滤波器和开关模块,其中:
所述发射模块与所述开关模块连接,所述接收模块与所述开关模块连接,所述多工器与所述开关模块连接,该多频滤波器和该开关模块连接。该发射模块和该接收模块的功能可以参照上述实施例内容的介绍,此处不再赘述。
其中,该多工器,用于分离第一频段的信号、第二频段的信号、第三频段的信号和第四频段的信号。该多工器包括第十一端口、第十二端口、第十三端口、第十四端口和第十五端口,该第十一端口的工作频段为该第一频段,该第十二端口的工作频段为该第二频段,该第十三端口的工作频段为该第三频段,该第十四端口的工作频段为该第四频段,该十五端口为公共端口,该十五端口的工作频段为第一频段、第二频段、第三频段和第四频段。可以理解的是,相比于图13所示的通信装置,该多工器实现了该第一双工器和该第二双工器的功能。
该多频滤波器,用于通过第一频段的信号、第二频段的信号、第三频段的信号和第四频段的信号。该多频滤波器包括第十六端口和第十七端口。可以理解的是,相比于图13所示的通信装置,该多频滤波器实现了该第一滤波器和该第二滤波器的功能。
所述开关模块,用于控制连接模式的切换,所述连接模式包括第一连接模式、第二连接模式、第三连接模式、第四连接模式、第五连接模式和第六连接模式。
处于所述第一连接模式时,所述发射模块用于将所述第一频段的发射信号发送到所述多工器,所述接收模块用于接收来自所述多工器的所述第二频段的接收信号。所述开关模块控制所述发射模块与所述第十一端口连接,且控制所述接收模块与所述第十二端口连接。
处于所述第二连接模式时,所述发射模块用于将所述第二频段的发射信号发送到所述多工器,所述接收模块用于接收来自所述多工器的所述第一频段的接收信号。所述开关模块控制所述发射模块与所述第十二端口连接,且控制所述接收模块与所述第十一端口连接。
处于所述第三连接模式时,所述发射模块用于将所述第一频段和所述第二频段的发射信号发送到所述多频滤波器,所述接收模块用于接收来自所述多频滤波器的所述第一频段和所述第二频段的接收信号。当通信装置需要发送上行信号时,该开关模块控制该发射模块与该多频滤波器的第十六端口连接,当通信装置需要接收下行信号时,该开关模块控制该接收模块与该多频滤波器的第十六端口连接。
处于所述第四连接模式时,所述发射模块用于将所述第三频段的发射信号发送到所述多工器,所述接收模块用于接收来自所述多工器的所述第四频段的接收信号。所述开关模块控制所述发射模块与所述第十三端口连接,且控制所述接收模块与所述第十四端口连接。
处于所述第五连接模式时,所述发射模块用于将所述第四频段的发射信号发送到所述多工器,所述接收模块用于接收来自所述多工器的所述第三频段的接收信号。所述开关模块控制所述发射模块与所述第十四端口连接,且控制所述接收模块与所述第十三端口连接。
处于所述第六连接模式时,所述发射模块用于将所述第三频段和所述第四频段的发射信号发送到所述多频滤波器,所述接收模块用于接收来自所述多频滤波器的所述第三频段和所述第四频段的接收信号。当通信装置需要发送上行信号时,该开关模块控制该发射模块与该多频滤波器的第十六端口连接,当通信装置需要接收下行信号时,该开关模块控制该接收模块与该多频滤波器的第十六端口连接。
参见图16,是本申请实施例提供的一种通信方法的流程图。所述方法应用于通信装置, 所述通信装置包括发射模块、接收模块、第一双工器、开关模块。所述方法包括:
S101、通过所述开关模块控制连接模式的切换,所述连接模式包括第一连接模式和第二连接模式。
S102、处于所述第一连接模式时,通过所述发射模块将第一频段的发射信号发送到所述第一双工器,通过所述接收模块接收来自所述第一双工器的第二频段的接收信号。
S103、处于所述第二连接模式时,通过所述发射模块将所述第二频段的发射信号发送到所述第一双工器,通过所述接收模块接收来自所述第一双工器的所述第一频段的接收信号。
在一种可能的实现方式中,所述通信装置还包括第一滤波器,所述连接模式还包括第三连接模式;所述方法还包括:处于所述第三连接模式时,通过所述发射模块将所述第一频段和所述第二频段的发射信号发送到所述第一滤波器。
在一种可能的实现方式中,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段。
在一种可能的实现方式中,所述方法还包括:处于所述第一连接模式时,通过所述开关模块控制所述发射模块与所述第一端口连接,且控制所述接收模块与所述第二端口连接;处于所述第二连接模式时,通过所述开关模块控制所述发射模块与所述第二端口连接,且控制所述接收模块与所述第一端口连接。
在一种可能的实现方式中,所述方法还包括:处于所述第三连接模式时,通过所述接收模块接收来自所述第一滤波器的所述第一频段和所述第二频段的接收信号。
在一种可能的实现方式中,所述通信装置还包括反馈通路;所述方法还包括:通过所述反馈通路耦合所述发射信号到中频或者基带进行功率控制或者非线性补偿处理。
在一种可能的实现方式中,所述接收模块包括第一接收模块和第二接收模块,所述第一接收模块用于接收所述第一频段的接收信号,所述第二接收模块用于接收所述第二频段的接收信号。
在一种可能的实现方式中,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段;所述方法还包括:处于所述第一连接模式时,通过所述开关模块控制所述发射模块与所述第一端口连接,且控制所述第二接收模块与所述第二端口连接;处于所述第二连接模式时,通过所述开关模块控制所述发射模块与所述第二端口连接,且控制所述第一接收模块与所述第一端口连接。
在一种可能的实现方式中,所述接收模块包括第一接收模块和第二接收模块,所述第一接收模块用于接收所述第一频段的接收信号,所述第二接收模块用于接收所述第二频段的接收信号;所述方法还包括:处于所述第三连接模式时,通过所述第一接收模块接收来自所述第一双工器的所述第一频段的接收信号,通过所述第二接收模块接收来自所述第一双工器的所述第二频段的接收信号。
在一种可能的实现方式中,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段;所述方法还包括:处于所述第三连接模式时,通过所述开关模块控制所述发射模块与所述第一滤波器连接,或者,所述开关模块控制所述第一接收模块与所述第一端口连接,且控制所述第二接收模块与所述第二端口连接。
在一种可能的实现方式中,所述通信装置还包括第二双工器,所述连接模式还包括第四连接模式和第五连接模式;所述方法还包括:处于所述第四连接模式时,通过所述发射模块将第三频段的发射信号发送到所述第二双工器,通过所述接收模块接收来自所述第二双工器的第四频段的接收信号;处于所述第五连接模式时,通过所述发射模块将所述第四频段的发射信号发送到所述第二双工器,通过所述接收模块接收来自所述第二双工器的所述第三频段的接收信号。
在一种可能的实现方式中,所述通信装置还包括第二滤波器,所述连接模式还包括第六连接模式;所述方法还包括:处于所述第六连接模式时,通过所述发射模块将所述第三频段和所述第四频段的发射信号发送到所述第二滤波器。
在一种可能的实现方式中,所述方法还包括:处于所述第六连接模式时,通过所述接收模块接收来自所述第二滤波器的所述第三频段和所述第四频段的接收信号。
在一种可能的实现方式中,所述接收模块包括第三接收模块和第四接收模块,所述第三接收模块用于接收所述第三频段的接收信号,所述第四接收模块用于接收所述第四频段的接收信号。
在一种可能的实现方式中,所述方法还包括:处于所述第六连接模式时,通过所述第三接收模块接收来自所述第二双工器的所述第三频段的接收信号,通过所述第四接收模块接收来自所述第二双工器的所述第四频段的接收信号。
示例性的,该通信装置可以为上述图2-图9、图11-图15对应的实施例中介绍的任一通信装置。各个步骤具体的实施方式可以参考上述内容中的相关描述,此处不再赘述。
本申请还提供了一种通信***,该通信***包括网络设备(或称为接入网设备)和如上述图2-图9、图11-图15对应的实施例中介绍的任一通信装置。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drive,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述 方便进行的区分,并不用来限制本申请实施例的范围,先后顺序,各过程的执行顺序应以其功能和内在逻辑确定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。

Claims (33)

  1. 一种通信装置,其特征在于,所述通信装置包括发射模块、接收模块、第一双工器、开关模块,其中:
    所述发射模块与所述开关模块连接,所述接收模块与所述开关模块连接,所述第一双工器与所述开关模块连接;
    所述第一双工器,用于分离第一频段的信号和第二频段的信号;
    所述开关模块,用于控制连接模式的切换,所述连接模式包括第一连接模式和第二连接模式;
    处于所述第一连接模式时,所述发射模块用于将所述第一频段的发射信号发送到所述第一双工器,所述接收模块用于接收来自所述第一双工器的所述第二频段的接收信号;
    处于所述第二连接模式时,所述发射模块用于将所述第二频段的发射信号发送到所述第一双工器,所述接收模块用于接收来自所述第一双工器的所述第一频段的接收信号。
  2. 根据权利要求1所述的通信装置,其特征在于,所述通信装置还包括第一滤波器,所述第一滤波器与所述开关模块连接;所述连接模式还包括第三连接模式;
    所述第一滤波器,用于通过所述第一频段的信号和所述第二频段的信号;
    处于所述第三连接模式时,所述发射模块用于将所述第一频段和所述第二频段的发射信号发送到所述第一滤波器。
  3. 根据权利要求1所述的通信装置,其特征在于,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段。
  4. 根据权利要求3所述的通信装置,其特征在于,处于所述第一连接模式时,所述开关模块控制所述发射模块与所述第一端口连接,且控制所述接收模块与所述第二端口连接;
    处于所述第二连接模式时,所述开关模块控制所述发射模块与所述第二端口连接,且控制所述接收模块与所述第一端口连接。
  5. 根据权利要求2所述的通信装置,其特征在于,处于所述第三连接模式时,所述接收模块用于接收来自所述第一滤波器的所述第一频段和所述第二频段的接收信号。
  6. 根据权利要求1-5中任一项所述的通信装置,其特征在于,所述通信装置还包括反馈通路;所述反馈通路,用于耦合所述发射信号到中频或者基带进行功率控制或者非线性补偿处理。
  7. 根据权利要求1-4任一项所述的通信装置,其特征在于,所述接收模块包括第一接收模块和第二接收模块,所述第一接收模块用于接收所述第一频段的接收信号,所述第二接收模块用于接收所述第二频段的接收信号。
  8. 根据权利要求7所述的通信装置,其特征在于,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段;
    处于所述第一连接模式时,所述开关模块控制所述发射模块与所述第一端口连接,且控制所述第二接收模块与所述第二端口连接;
    处于所述第二连接模式时,所述开关模块控制所述发射模块与所述第二端口连接,且 控制所述第一接收模块与所述第一端口连接。
  9. 根据权利要求2所述的通信装置,其特征在于,所述接收模块包括第一接收模块和第二接收模块,所述第一接收模块用于接收所述第一频段的接收信号,所述第二接收模块用于接收所述第二频段的接收信号;
    处于所述第三连接模式时,所述第一接收模块用于接收来自所述第一双工器的所述第一频段的接收信号,所述第二接收模块用于接收来自所述第一双工器的所述第二频段的接收信号。
  10. 根据权利要求9所述的通信装置,其特征在于,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段;
    处于所述第三连接模式时,所述开关模块控制所述发射模块与所述第一滤波器连接,
    或者,所述开关模块控制所述第一接收模块与所述第一端口连接,且控制所述第二接收模块与所述第二端口连接。
  11. 根据权利要求1-10任一项所述的通信装置,其特征在于,所述通信装置还包括第二双工器,所述第二双工器,用于分离第三频段和第四频段的信号;所述连接模式还包括第四连接模式和第五连接模式;
    处于所述第四连接模式时,所述发射模块用于将所述第三频段的发射信号发送到所述第二双工器,所述接收模块用于接收来自所述第二双工器的所述第四频段的接收信号;
    处于所述第五连接模式时,所述发射模块用于将所述第四频段的发射信号发送到所述第二双工器,所述接收模块用于接收来自所述第二双工器的所述第三频段的接收信号。
  12. 根据权利要求11所述的通信装置,其特征在于,所述通信装置还包括第二滤波器,所述连接模式还包括第六连接模式;
    所述第二滤波器,用于通过所述第三频段的信号和所述第四频段的信号;
    处于所述第六连接模式时,所述发射模块用于将所述第三频段和所述第四频段的发射信号发送到所述第二滤波器。
  13. 根据权利要求12所述的通信装置,其特征在于,处于所述第六连接模式时,所述接收模块用于接收来自所述第二滤波器的所述第三频段和所述第四频段的接收信号。
  14. 根据权利要求12所述的通信装置,其特征在于,所述接收模块包括第三接收模块和第四接收模块,所述第三接收模块用于接收所述第三频段的接收信号,所述第四接收模块用于接收所述第四频段的接收信号。
  15. 根据权利要求14所述通信装置,其特征在于,处于所述第六连接模式时,所述第三接收模块用于接收来自所述第二双工器的所述第三频段的接收信号,所述第四接收模块用于接收来自所述第二双工器的所述第四频段的接收信号。
  16. 一种通信方法,其特征在于,所述方法应用于通信装置,所述通信装置包括发射模块、接收模块、第一双工器、开关模块,所述方法包括:
    通过所述开关模块控制连接模式的切换,所述连接模式包括第一连接模式和第二连接模式;
    处于所述第一连接模式时,通过所述发射模块将第一频段的发射信号发送到所述第一双工器,通过所述接收模块接收来自所述第一双工器的第二频段的接收信号;
    处于所述第二连接模式时,通过所述发射模块将所述第二频段的发射信号发送到所述第一双工器,通过所述接收模块接收来自所述第一双工器的所述第一频段的接收信号。
  17. 根据权利要求16所述的方法,其特征在于,所述通信装置还包括第一滤波器,所述连接模式还包括第三连接模式;
    所述方法还包括:
    处于所述第三连接模式时,通过所述发射模块将所述第一频段和所述第二频段的发射信号发送到所述第一滤波器。
  18. 根据权利要求16所述的方法,其特征在于,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    处于所述第一连接模式时,通过所述开关模块控制所述发射模块与所述第一端口连接,且控制所述接收模块与所述第二端口连接;
    处于所述第二连接模式时,通过所述开关模块控制所述发射模块与所述第二端口连接,且控制所述接收模块与所述第一端口连接。
  20. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    处于所述第三连接模式时,通过所述接收模块接收来自所述第一滤波器的所述第一频段和所述第二频段的接收信号。
  21. 根据权利要求16-20中任一项所述的方法,其特征在于,所述通信装置还包括反馈通路;所述方法还包括:
    通过所述反馈通路耦合所述发射信号到中频或者基带进行功率控制或者非线性补偿处理。
  22. 根据权利要求16-19任一项所述的方法,其特征在于,所述接收模块包括第一接收模块和第二接收模块,所述第一接收模块用于接收所述第一频段的接收信号,所述第二接收模块用于接收所述第二频段的接收信号。
  23. 根据权利要求22所述的方法,其特征在于,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段;
    所述方法还包括:
    处于所述第一连接模式时,通过所述开关模块控制所述发射模块与所述第一端口连接,且控制所述第二接收模块与所述第二端口连接;
    处于所述第二连接模式时,通过所述开关模块控制所述发射模块与所述第二端口连接,且控制所述第一接收模块与所述第一端口连接。
  24. 根据权利要求17所述的方法,其特征在于,所述接收模块包括第一接收模块和第二接收模块,所述第一接收模块用于接收所述第一频段的接收信号,所述第二接收模块用于接收所述第二频段的接收信号;
    所述方法还包括:
    处于所述第三连接模式时,通过所述第一接收模块接收来自所述第一双工器的所述第一频段的接收信号,通过所述第二接收模块接收来自所述第一双工器的所述第二频段的接 收信号。
  25. 根据权利要求24所述的方法,其特征在于,所述第一双工器包括第一端口和第二端口,所述第一端口的工作频段为所述第一频段,所述第二端口的工作频段为所述第二频段;
    所述方法还包括:
    处于所述第三连接模式时,通过所述开关模块控制所述发射模块与所述第一滤波器连接,
    或者,所述开关模块控制所述第一接收模块与所述第一端口连接,且控制所述第二接收模块与所述第二端口连接。
  26. 根据权利要求16-25任一项所述的方法,其特征在于,所述通信装置还包括第二双工器,所述连接模式还包括第四连接模式和第五连接模式;
    所述方法还包括:
    处于所述第四连接模式时,通过所述发射模块将第三频段的发射信号发送到所述第二双工器,通过所述接收模块接收来自所述第二双工器的第四频段的接收信号;
    处于所述第五连接模式时,通过所述发射模块将所述第四频段的发射信号发送到所述第二双工器,通过所述接收模块接收来自所述第二双工器的所述第三频段的接收信号。
  27. 根据权利要求26所述的方法,其特征在于,所述通信装置还包括第二滤波器,所述连接模式还包括第六连接模式;
    所述方法还包括:
    处于所述第六连接模式时,通过所述发射模块将所述第三频段和所述第四频段的发射信号发送到所述第二滤波器。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    处于所述第六连接模式时,通过所述接收模块接收来自所述第二滤波器的所述第三频段和所述第四频段的接收信号。
  29. 根据权利要求27所述的方法,其特征在于,所述接收模块包括第三接收模块和第四接收模块,所述第三接收模块用于接收所述第三频段的接收信号,所述第四接收模块用于接收所述第四频段的接收信号。
  30. 根据权利要求29所述方法,其特征在于,所述方法还包括:
    处于所述第六连接模式时,通过所述第三接收模块接收来自所述第二双工器的所述第三频段的接收信号,通过所述第四接收模块接收来自所述第二双工器的所述第四频段的接收信号。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如权利要求16-30中任一项所述的方法被实现。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求16-30中任一项所述的方法。
  33. 一种通信***,其特征在于,所述通信***包括网络设备和如权利要求1-15中任一项所述的通信装置。
PCT/CN2022/140364 2021-12-30 2022-12-20 一种通信装置及通信方法 WO2023125146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111656952.5A CN116436488A (zh) 2021-12-30 2021-12-30 一种通信装置及通信方法
CN202111656952.5 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125146A1 true WO2023125146A1 (zh) 2023-07-06

Family

ID=86997774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140364 WO2023125146A1 (zh) 2021-12-30 2022-12-20 一种通信装置及通信方法

Country Status (2)

Country Link
CN (1) CN116436488A (zh)
WO (1) WO2023125146A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109949A1 (zh) * 2015-01-07 2016-07-14 华为技术有限公司 射频前端***、终端设备和基站
CN108495289A (zh) * 2018-03-30 2018-09-04 维沃移动通信有限公司 一种d2d通信方法、移动终端及射频模块
US20200274688A1 (en) * 2019-02-26 2020-08-27 Fci Inc. Method and apparatus for converting transmitting/receiving frequency signal in fdd communication
CN212935883U (zh) * 2019-06-21 2021-04-09 株式会社村田制作所 高频电路以及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109949A1 (zh) * 2015-01-07 2016-07-14 华为技术有限公司 射频前端***、终端设备和基站
CN108495289A (zh) * 2018-03-30 2018-09-04 维沃移动通信有限公司 一种d2d通信方法、移动终端及射频模块
US20200274688A1 (en) * 2019-02-26 2020-08-27 Fci Inc. Method and apparatus for converting transmitting/receiving frequency signal in fdd communication
CN212935883U (zh) * 2019-06-21 2021-04-09 株式会社村田制作所 高频电路以及通信装置

Also Published As

Publication number Publication date
CN116436488A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US11438130B2 (en) Full-duplex mesh networks
TWI822771B (zh) 用於增強之交互調變失真性能之切換的終端的前端系統
US11601144B2 (en) Broadband architectures for radio frequency front-ends
CN105376872A (zh) 一种支持载波聚合的方法及终端
US11671122B2 (en) Filter reuse in radio frequency front-ends
US9807775B2 (en) Terminal for D2D communication and rejecting interference method thereof
US11949389B2 (en) Dual connectivity power amplifier system
EP2717482B1 (en) Radio transceiver
US20240063831A1 (en) Configurable filter bands for radio frequency communication
WO2023125146A1 (zh) 一种通信装置及通信方法
CN110224704B (zh) 射频***和基站设备
CN105933014A (zh) 一种用于终端设备的信号发射***、方法和终端设备
CN110289879B (zh) 射频单元和终端设备
US11677535B2 (en) Concurrent communication in multiple TDD bands
US9755867B2 (en) Method and a system for controlling a plurality of electronic components arbitrarily assignable to a plurality of integrated circuits of a mobile communications device
US20240106475A1 (en) Front-end systems with adjustable filter architecture
US20230105730A1 (en) Beamforming in radio frequency communication systems using frequency division duplexing
WO2024032744A1 (zh) 通信方法与通信装置
US20240097756A1 (en) Front-end systems bypassing transmit band filter for antenna switching
WO2024140673A1 (zh) 一种通信方法及通信装置
US20240106476A1 (en) Radio frequency signal splitting with differential filter and low noise amplifiers
CN115733534A (zh) 通信方法、信号处理的方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914400

Country of ref document: EP

Kind code of ref document: A1