WO2023124696A1 - 一种基于摩擦纳米发电的压力传感器 - Google Patents

一种基于摩擦纳米发电的压力传感器 Download PDF

Info

Publication number
WO2023124696A1
WO2023124696A1 PCT/CN2022/134838 CN2022134838W WO2023124696A1 WO 2023124696 A1 WO2023124696 A1 WO 2023124696A1 CN 2022134838 W CN2022134838 W CN 2022134838W WO 2023124696 A1 WO2023124696 A1 WO 2023124696A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
nano
layer
friction
friction layer
Prior art date
Application number
PCT/CN2022/134838
Other languages
English (en)
French (fr)
Inventor
刘闯闯
闫文浩
陈褒扬
杨进
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124696A1 publication Critical patent/WO2023124696A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Definitions

  • the present application relates to the field of sensors, in particular to a pressure sensor based on triboelectric nanopower generation.
  • TENG-based pressure sensors based on resistive, capacitive, piezoelectric and triboelectric nanogenerator (TENG) principles.
  • TENG-based pressure sensors compared with several other types of pressure sensors, TENG-based pressure sensors have attracted extensive attention because of their advantages such as a wide range of optional materials, good dynamic response, fast response time, and rich details of the measured physiological signals.
  • the TENG-based pressure sensor uses the principle of triboelectricity and electrostatic induction. The principle of triboelectricity is that when materials with different electronic capabilities come into contact with each other, electrons will transfer due to the different binding capabilities of the materials to electrons. The two materials carry equal and opposite net charges.
  • the principle of electrostatic induction is that when a charged object (that is, a charged object) approaches a conductive object, the side of the conductive object close to the charged object induces a charge opposite to that of the charged object.
  • the TENG-based pressure sensor is a combination of these two principles. As shown in Figure 1, the TENG-based pressure sensor generally includes two components: two electrode layers and two friction layers, two friction layers are placed in the middle, and two Electrode layers are placed on both sides. When the friction layers of two different materials come into close contact with each other under the action of external force, equal and opposite net charges will be induced in the two friction layers due to the principle of triboelectrification.
  • Figure 2 is a test result figure obtained by scanning electron microscope (scanning electron microscope, SEM) test on the surface of a friction layer. polygonal structure), and the whole is not high, that is, the whole is relatively flat, so there are two problems: 1.
  • the sensitivity to large static forces is not enough, because the friction layers on both sides are completely in contact with each other when the external pressure is large; 2.
  • the pressure range that can be measured is small, that is, if the sensitivity is high under a large static force, the sensitivity is low under a small static force; The lower sensitivity is lower.
  • An embodiment of the present application provides a pressure sensor based on triboelectric nanopower generation.
  • the surface of at least one friction layer of the TENG-based pressure sensor includes a multi-level micro-nano structure (that is, includes at least two types of micro-nano columnar structures with different heights) , through the design of multi-level structures with different heights, the pressure sensor can maintain high sensitivity to large static forces, and the measurement range of the pressure sensor can be expanded, so that the sensor maintains the same or similar sensitivity under various static forces.
  • the embodiment of the present application firstly provides a TENG-based pressure sensor, which can be used in the field of sensors.
  • the TENG-based sensor includes: two friction layers (respectively the first friction layer and the second friction layer) and an electrode layer (It may be referred to as the first electrode layer).
  • the electrode wires having a conductive function are also considered as the electrode layer, which will not be explained below.
  • the first friction layer and the second friction layer are made of materials with different electron gain and loss capabilities.
  • the material of the friction layer can be selected from polytetrafluoroethylene (polytetrafluoroethylene, PTFE), polyethylene terephthalate (polyethylene terephthalate, PET), polyethylene (polyethylene, PE), polydimethylsiloxane (polydimethylsiloxane, PDMS), fluorinated ethylene propylene copolymer (fluorinated ethylene propylene, FEP) and other materials, it should be noted that the first friction layer The material selected for the second friction layer needs to be different.
  • the first electrode layer is made of conductive materials, for example, metal materials (gold, silver, copper, etc.), conductive materials (graphene, indium tin oxides (ITO), silver nanowires, etc.) and other conductive materials.
  • the first friction layer is connected to the first electrode layer.
  • On the surface of at least one friction layer in the first friction layer and the second friction layer there are at least two kinds of micro-nano columnar structures (also called multi-level micro-nano structures) with different heights, which are used in the case of pressure.
  • micro-nano columnar structures also called multi-level micro-nano structures
  • the friction layer can also be used as an electrode layer for conducting electricity, which is not limited in the present application.
  • the surface of at least one friction layer of the TENG-based pressure sensor includes a multi-level micro-nano structure (that is, includes at least two types of micro-nano columnar structures with different heights).
  • the structure enables the pressure sensor to maintain high sensitivity to large static forces, and the measurement range of the pressure sensor can be expanded, so that the sensor maintains the same or similar sensitivity under various static forces.
  • the pressure sensor may further include an electrode layer, which may be referred to as a second electrode layer, and the second electrode layer is also made of a conductive material, and the second friction layer is connected to the second electrode layer.
  • the first electrode layer and the second electrode layer are used to generate current based on the induction of equal and opposite net charges corresponding to the pressure on the first friction layer and the second friction layer.
  • the pressure sensor needs to additionally include a second electrode layer for generating current, which is feasible.
  • a micro-nano columnar structure can be made of only one material, or can be made of at least two materials with different values of Young's modulus. There is no limit to this.
  • the material constituting a micro-nano columnar structure can be one material or multiple materials (with different Young's modulus), which is optional.
  • the micro-nano columnar structure is made of at least two materials with different Young's moduli
  • the micro-nano columnar structure is made of at least Two micro-nano sub-columnar structures are stacked, and one sub-columnar structure corresponds to a material with a Young's modulus.
  • a micro-nano columnar structure is made of 4 materials with different Young's modulus
  • each material corresponds to a sub-columnar structure
  • there are 4 sub-columnar structures in total where the height of each sub-columnar structure can be the same , can also be different, and there is no limitation here.
  • the four sub-columnar structures are stacked to form the micro-nano columnar structure.
  • the micro-nano columnar structure is formed when the micro-nano columnar structure is made of at least two materials with different Young's modulus, which is achievable.
  • the at least two micro-nano sub-columnar structures include but are not limited to: 1) at least two micro-nano sub-columnar structures have the same cross-sectional area.
  • the cross-sectional areas of these 4 sub-columnar structures are the same; 2) The values of the cross-sectional areas of at least two micro-nanometer sub-columnar structures are different. In this case Next, they are stacked in descending order according to the value of the cross-sectional area.
  • the stacking method on the at least one friction layer is: D is located on the surface of the at least one friction layer, C is stacked on D, B is stacked on C, and A is stacked on B.
  • At least one of the first friction layer and the second friction layer can also grow some target micro-nanostructures with a preset height, and the preset height can be called the second friction layer.
  • a preset height h1 which is used to provide support under the pressure applied by the outside world, so as to avoid the direct contact between the first friction layer and the second friction layer under the pressure. It should be noted that in the embodiment of the present application , the first preset height h1 is greater than the height of any one of the micro-nano columnar structures of at least two different heights.
  • the first friction layer and the second friction layer may be completely attached together, which will cause pressure
  • the failure of the sensor reduces the sensitivity of the pressure sensor and reduces the range of its pressure measurement.
  • some target micro-nanostructures with a preset height can be grown on at least one of the first friction layer and the second friction layer, so as to achieve the effect of increasing the pressure measurement range.
  • the TENG-based pressure sensor in addition to the first friction layer, the second friction layer, the first electrode layer, and the second electrode layer, the TENG-based pressure sensor includes the first An additional isolation layer with a preset height is included between the friction layer and the second friction layer, and the preset height can be referred to as a second preset height h2, and the second preset height h2 is greater than the at least two microscopic heights of different heights.
  • the isolation layer has at least one hole with a predetermined diameter, and the isolation layer is used to provide support under external pressure, so as to prevent the first friction layer and the second friction layer from being directly bonded under the pressure. In this case, the multi-level micro-nano structure is grown in the holes of the isolation layer.
  • the way to provide support is to add an additional isolation layer between the two friction layers, and the multi-level micro-nano structure grows in the holes of the isolation layer.
  • the way of structural design reduces the problem of inconsistency in sensor measurement caused by the sag problem of the pressure sensor, and the sensor's online linearity can be made by designing the height and area of the multi-level structure, the height of the isolation layer, and the size and shape of the aperture Interval expression, and the sensitivity remains the same or close to each static force condition.
  • the shape of at least one hole on the isolation layer can be any machinable shape, for example, it can be a circle, it can also be an ellipse, it can also be a polygon, and further , can be regular polygons, such as equilateral triangles, squares, hexagons, etc., and can also be irregular polygons, such as trapezoids, scalene triangles, etc.
  • the specific application does not limit the shape of the holes in the isolation layer.
  • the shape of the hole can be set based on requirements, but also the opening area of the hole can be set by yourself, which is not limited in this application.
  • the shape of the hole in the isolation layer can be set according to the requirement, and has flexibility.
  • the shape of the micro-nano columnar structure can be any machinable shape with a certain height, for example, it can be a cylinder, a polygonal column, a cone, a polygonal pyramid Any one or more of shape, hemispherical shape, inverted pyramid shape, and pyramid shape.
  • the shape of the micro-nano columnar structure can also be processed according to requirements, which is optional.
  • the micro-nano columnar structures of different heights may be arranged periodically, or may be arranged in an irregular random order, which is not specifically limited in this application.
  • the multi-level micro-nanostructure can be regarded as a first-level micro-nanostructure.
  • Micro-nano processing is performed on the multi-level micro-nano structure (that is, on each micro-nano columnar structure).
  • the multi-level micro-nano structure can be etched with a micro-nano-scale burr structure by an etching process, which can also be called The secondary micro-nano structure, the burr structure can be used to increase the amount of net charges induced on the first friction layer and the second friction layer under the action of applied pressure.
  • the friction area between the first friction layer and the second friction layer is increased by etching the burr structure on each micronano columnar structure, so that the net charge induced on the two friction layers.
  • the increase in the amount of charge improves the detection sensitivity of the pressure sensor.
  • the TENG-based pressure sensor can be deployed in a wearable device to monitor pulse fluctuations, which can effectively improve detection sensitivity.
  • the TENG-based pressure sensor can be deployed in an electronic device with a touch screen for detecting touch actions, which can effectively improve detection sensitivity.
  • the second aspect of the embodiment of the present application provides a TENG-based pressure sensor, which can be used in the field of sensors.
  • the TENG-based sensor includes: two friction layers (respectively the first friction layer and the second friction layer) and an electrode layer (which can be referred to as the first electrode layer), in the embodiment of the present application, the electrode lines having a conductive function are also considered as the electrode layer, which will not be explained below.
  • the first friction layer and the second friction layer are made of materials with different electron gain and loss capabilities.
  • the material of the friction layer can be selected from PTFE, PET, PE, PDMS, FEP and other materials. It should be noted that the first friction layer The material selected for the second friction layer needs to be different.
  • the first electrode layer is made of conductive materials, for example, metal materials (gold, silver, copper, etc.), conductive materials (graphene, indium tin oxides (ITO), silver nanowires, etc.) and other conductive materials.
  • the first friction layer is connected to the first electrode layer.
  • At least one micronano columnar structure is grown on the surface of at least one friction layer in the first friction layer and the second friction layer, which is used to induce pressure on the first friction layer and the second friction layer under pressure. Equivalent and opposite net charges corresponding to the pressure, the micro-nano columnar structure is made of at least two materials with different Young's moduli; the first electrode layer is used to A net charge of opposite magnitude produces an electric current.
  • the applied pressure value can be inversely deduced through the conversion of the current and the applied pressure.
  • the friction layer can also be used as an electrode layer for conducting electricity, which is not limited in the present application.
  • the pressure sensor may further include an electrode layer, which may be referred to as a second electrode layer, and the second electrode layer is also made of a conductive material, and the second friction layer is connected to the second electrode layer.
  • the first electrode layer and the second electrode layer are used to generate current based on the induction of equal and opposite net charges corresponding to the pressure on the first friction layer and the second friction layer.
  • the pressure sensor needs to additionally include a second electrode layer for generating current, which is feasible.
  • the micro-nano columnar structure is obtained by stacking at least two micro-nano columnar structures, and one sub-columnar structure corresponds to a material with a Young's modulus.
  • a micro-nano columnar structure is made of 4 materials with different Young's modulus
  • each material corresponds to a sub-columnar structure
  • there are 4 sub-columnar structures in total where the height of each sub-columnar structure can be the same , can also be different, and there is no limitation here.
  • the four sub-columnar structures are stacked to form the micro-nano columnar structure.
  • the micro-nano columnar structure is formed when the micro-nano columnar structure is made of at least two materials with different Young's modulus, which is achievable.
  • the at least two micro-nano sub-columnar structures include but are not limited to: 1) at least two micro-nano sub-columnar structures have the same cross-sectional area.
  • the cross-sectional areas of these 4 sub-columnar structures are the same; 2) The values of the cross-sectional areas of at least two micro-nanometer sub-columnar structures are different. In this case Next, they are stacked in descending order according to the value of the cross-sectional area.
  • the stacking method on the at least one friction layer is: D is located on the surface of the at least one friction layer, C is stacked on D, B is stacked on C, and A is stacked on B.
  • the height is not limited in this application. For example, if there are 100 micronano columnar structures, the heights of these 100 micronano columnar structures can all be the same, both being h0; these 100 micronano columnar structures can also have n different heights, n ⁇ 2, For example, the height of the 50 micronano columnar structures is H1, and the height of the remaining 50 micronano columnar structures is H2.
  • the heights of the micro-nano columnar structures generated on at least one friction layer can be the same or different, and the micro-nano columnar structures can be designed based on the pressure range and sensitivity requirements to be measured.
  • the height of the structure is flexible.
  • the micro-nano columnar structures of different heights may be arranged periodically, or may be arranged in an irregular random order, which is not specifically limited in this application.
  • At least one of the first friction layer and the second friction layer can also grow some target micro-nanostructures with a preset height, and the preset height can be called the second friction layer.
  • a preset height h1 which is used to provide support under the pressure applied by the outside world, so as to avoid the direct contact between the first friction layer and the second friction layer under the pressure. It should be noted that in the embodiment of the present application , the first preset height h1 is greater than the height of any one of the micro-nano columnar structures of at least two different heights.
  • the first friction layer and the second friction layer may be completely attached together, which will cause pressure
  • the failure of the sensor reduces the sensitivity of the pressure sensor and reduces the range of its pressure measurement.
  • some target micro-nanostructures with a preset height can be grown on at least one of the first friction layer and the second friction layer, so as to achieve the effect of increasing the pressure measurement range.
  • the TENG-based pressure sensor includes the above-mentioned first friction layer, second friction layer, first electrode layer, and second electrode layer, in the first
  • An additional isolation layer with a preset height is included between the friction layer and the second friction layer, and the preset height can be referred to as a second preset height h2, and the second preset height h2 is greater than the at least two microscopic heights of different heights.
  • the isolation layer has at least one hole with a predetermined diameter, and the isolation layer is used to provide support under external pressure, so as to prevent the first friction layer and the second friction layer from being directly bonded under the pressure.
  • the multi-level micro-nano structure is grown in the holes of the isolation layer.
  • the way to provide support is to add an additional isolation layer between the two friction layers, and the multi-level micro-nano structure grows in the holes of the isolation layer.
  • the way of structural design reduces the problem of inconsistency in sensor measurement caused by the sag problem of the pressure sensor, and the sensor's online linearity can be made by designing the height and area of the multi-level structure, the height of the isolation layer, and the size and shape of the aperture Interval expression, and the sensitivity remains the same or close to each static force condition.
  • the shape of at least one hole on the isolation layer can be any machinable shape, for example, it can be a circle, it can also be an ellipse, it can also be a polygon, and further , can be regular polygons, such as equilateral triangles, squares, hexagons, etc., and can also be irregular polygons, such as trapezoids, scalene triangles, etc.
  • the specific application does not limit the shape of the holes in the isolation layer.
  • the shape of the hole can be set based on requirements, but also the opening area of the hole can be set by yourself, which is not limited in this application.
  • the shape of the hole in the isolation layer can be set according to the requirement, and has flexibility.
  • the shape of the micro-nano columnar structure can be any machinable shape with a certain height, for example, it can be a cylinder, a polygonal column, a cone, a polygonal pyramid Any one or more of shape, hemispherical shape, inverted pyramid shape, and pyramid shape.
  • the shape of the micro-nano columnar structure can also be processed according to requirements, which is optional.
  • micro-nano processing can also be performed on each micro-nano columnar structure, specifically,
  • the micro-nano columnar structure can be etched with a micro-nano-scale burr structure by an etching process, which can also be called a secondary micro-nano structure.
  • the burr structure can be used to increase the friction between the first friction layer and the The charge amount of the net charge induced on the second tribological layer.
  • the friction area between the first friction layer and the second friction layer is increased by etching the burr structure on each micronano columnar structure, so that the net charge induced on the two friction layers.
  • the increase in the amount of charge improves the detection sensitivity of the pressure sensor.
  • the TENG-based pressure sensor can be deployed in a wearable device to monitor pulse fluctuations, which can effectively improve detection sensitivity.
  • the TENG-based pressure sensor can be deployed in an electronic device with a touch screen for detecting touch actions, which can effectively improve detection sensitivity.
  • the third aspect of the embodiment of the present application also provides a pressure sensor.
  • the pressure sensor can be a piezoresistive pressure sensor, a pressure capacitive pressure sensor, or a piezoelectric pressure sensor. This is not limited.
  • the pressure sensor includes: a functional layer, a first electrode layer, and a second electrode layer, wherein the first electrode layer and the second electrode layer are made of conductive materials, and in the embodiment of the present application, have The conductive electrode lines are also considered as electrode layers, which will not be explained below.
  • the functional layer is connected to one of the first electrode layer or the second electrode layer; the surface of the functional layer includes at least two micro-nano columnar structures with different heights, which are used for In some cases, a first signal corresponding to the pressure is induced on the functional layer; the first electrode layer and the second electrode layer are used to generate a second signal based on the first signal.
  • the multi-level micro-nano structure (that is, at least two types of micro-nano columnar structures with different heights) can be applied not only to pressure sensors based on triboelectric nanopower generation, but also to piezoresistive, pressure-capacitive, and pressure sensors. Electrical and other types of pressure sensors, with a wide range of applicability.
  • the second signal when the first signal is a first resistor (that is, the pressure sensor is a piezoresistive type), the second signal is a second resistor; or, when the When the first signal is a first capacitance (that is, the pressure sensor is a pressure-capacitance type), the second signal is a second capacitance; or, when the first signal is a first voltage (that is, the pressure sensor is a piezoelectric type), and the second signal is a second voltage.
  • the types of the first signals are different, and the second signals to be output are also different, and that various types of pressure sensors can be applied and have flexibility.
  • the functional layer when the first signal is the first resistance (that is, the pressure sensor is a piezoresistive type), the functional layer changes its resistance under different pressures (that is, it has or, in the case where the first signal is a first capacitance (that is, the pressure sensor is a pressure-capacitive type), the functional layer is made of a material that has capacitance performance changes under different pressures (that is, has a capacitance characteristic) or, in the case where the first signal is the first voltage (that is, the pressure sensor is a piezoelectric type), the functional layer is made of material.
  • a micro-nano columnar structure can be made of only one material, or it can be made of at least two materials with different values of Young's modulus. There is no limit to this.
  • the material constituting a micro-nano columnar structure can be one material or multiple materials (with different Young's modulus), which is optional.
  • the micro-nano columnar structure is obtained by stacking at least two micro-nano columnar structures, each of the sub-columnar structures is made of a material with a Young's modulus become. That is to say, when the micro-nano columnar structure is made of at least two materials with different Young's moduli, in this case, the micro-nano columnar structure is stacked by at least two micro-nano columnar structures Obtained, a sub-columnar structure corresponds to a Young's modulus material.
  • each material corresponds to a sub-columnar structure, and there are 4 sub-columnar structures in total, where the height of each sub-columnar structure can be the same , can also be different, and there is no limitation here.
  • the four sub-columnar structures are stacked to form the micro-nano columnar structure.
  • the micro-nano columnar structure is formed when the micro-nano columnar structure is made of at least two materials with different Young's modulus, which is achievable.
  • the cross-sectional areas of the at least two micro-nano sub-columnar structures are the same; or, the at least two micro-nano sub-columnar structures range from large to Smaller ones are stacked sequentially. That is to say, the at least two micro-nano sub-columnar structures include but are not limited to: 1) the cross-sectional area of at least two micro-nano sub-columnar structures is the same. As an example, assume that there are four sub-columnar structures in total.
  • the cross-sectional areas of the four sub-columnar structures are the same; 2) The values of the cross-sectional areas of at least two micronano sub-columnar structures are different. Values are stacked in descending order.
  • the functional layer further includes: target micro-nanostructures of a first preset height, where the first preset height is greater than the micro-nanostructures of the at least two different heights.
  • the two electrode layers are directly bonded under the pressure.
  • the first preset height h1 is greater than the height of any one of at least two micro-nano columnar structures with different heights.
  • the two electrode layers (assuming that the electrode layers are not electrode wires) may be completely bonded together, This will lead to the failure of the pressure sensor, reduce the sensitivity of the pressure sensor and reduce the range of its pressure measurement.
  • some target micro-nano structures with preset heights can also be grown on the functional layer, so as to achieve the effect of increasing the pressure measurement range.
  • the senor further includes: an isolation layer with a second preset height, the isolation layer has at least one hole with a preset aperture, and the isolation layer is located on the functional layer Above, the micro-nano columnar structures are deployed in the holes of the isolation layer, and the second preset height is greater than the height of any one of the at least two micro-nano columnar structures with different heights.
  • the pressure sensor additionally includes an isolation layer with a preset height on the functional layer, and the preset height can be referred to as The second preset height h2, the second preset height h2 is greater than the height of any one of the micro-nano columnar structures of at least two different heights.
  • the isolation layer has at least one hole with a preset aperture, and the isolation layer is used to provide support under external pressure, so as to avoid the two electrode layers (assuming that the electrode layer is not an electrode wire) under the pressure. Direct fit. In this case, the multi-level micro-nano structure is grown in the holes of the isolation layer.
  • the way to provide support is to add an isolation layer on the functional layer, and the multi-level micro-nano structure grows in the holes of the isolation layer.
  • the shape of the at least one hole includes any one or more of the following: circle, ellipse, and polygon. That is to say, the shape of at least one hole on the isolation layer can be any machinable shape, for example, it can be a circle, it can also be an ellipse, it can also be a polygon, and further, it can be a regular polygon, such as, etc. Side triangles, squares, hexagons, etc., can also be irregular polygons, such as trapezoids, scalene triangles, etc.
  • the specific application does not limit the shape of the holes in the isolation layer.
  • the shape of the hole can be set based on requirements, but also the opening area of the hole can be set by yourself, which is not limited in this application.
  • the shape of the hole in the isolation layer can be set according to the requirement, and has flexibility.
  • the shape of the micro-nano columnar structure may be any machinable shape with a certain height, for example, the shape of the micro-nano columnar structure includes any of the following Or multiple: cylindrical, polygonal prism, conical, polygonal pyramid, hemispherical, inverted pyramid, pyramid.
  • the shape of the micro-nano columnar structure can also be processed according to requirements, which is optional.
  • the micro-nano columnar structures of different heights may be arranged periodically, or may be arranged in an irregular random order, which is not specifically limited in this application.
  • the multi-level micro-nano structure can be regarded as a first-level micro-nano structure, and in order to increase the contact area of the functional layer, it is also possible to add Micro-nano processing is performed on each micro-nano columnar structure.
  • the multi-level micro-nano structure can be etched with a micro-nano-scale burr structure by an etching process, which can also be called a secondary micro-nano structure.
  • the burr structure It can be used to increase the intensity of the first signal induced on the functional layer under the action of the applied pressure.
  • the contact area between the functional layer and the outside world is increased by etching the burr structure on each micro-nano columnar structure, thereby increasing the intensity of the first signal induced on the functional layer and improving the The detection sensitivity of the pressure sensor.
  • the pressure sensor can be deployed in a wearable device to monitor pulse fluctuations, which can effectively improve detection sensitivity.
  • the pressure sensor may be deployed on an electronic device with a touch screen to detect a touch action, which can effectively improve detection sensitivity.
  • the fourth aspect of the embodiment of the present application also provides a pressure sensor.
  • the pressure sensor can be a piezoresistive pressure sensor, a pressure capacitive pressure sensor, or a piezoelectric pressure sensor. This is not limited.
  • the pressure sensor includes: a functional layer, a first electrode layer, and a second electrode layer, wherein the first electrode layer and the second electrode layer are made of conductive materials, and in the embodiment of the present application, have The electrode lines that conduct electricity are also considered as electrode layers, which will not be explained below.
  • the functional layer is connected to one of the first electrode layer or the second electrode layer; the surface of the functional layer includes a micro-nano columnar structure for A first signal corresponding to the pressure is induced on the functional layer, and the micro-nano columnar structure is made of at least two materials with different Young's moduli; the first electrode layer and the second electrode layer, for generating a second signal based on the first signal.
  • the multi-level micro-nano structure (that is, at least two types of micro-nano columnar structures with different heights) can be applied not only to pressure sensors based on triboelectric nanopower generation, but also to piezoresistive, pressure-capacitive, and pressure sensors. Electrical and other types of pressure sensors, with a wide range of applicability.
  • the second signal when the first signal is a first resistor (that is, the pressure sensor is a piezoresistive type), the second signal is a second resistor; or, when the When the first signal is a first capacitance (that is, the pressure sensor is a pressure-capacitance type), the second signal is a second capacitance; or, when the first signal is a first voltage (that is, the pressure sensor is a piezoelectric type), and the second signal is a second voltage.
  • the types of the first signals are different, and the second signals to be output are also different, and that various types of pressure sensors can be applied and have flexibility.
  • the functional layer when the first signal is the first resistance (that is, the pressure sensor is a piezoresistive type), the functional layer changes its resistance under different pressures (that is, it has or, in the case where the first signal is a first capacitance (that is, the pressure sensor is a pressure-capacitive type), the functional layer is made of a material that has capacitance performance changes under different pressures (that is, has a capacitance characteristic) or, in the case where the first signal is the first voltage (that is, the pressure sensor is a piezoelectric type), the functional layer is made of material.
  • the micro-nano columnar structure is obtained by stacking at least two micro-nano columnar structures, and one sub-columnar structure corresponds to a material with a Young's modulus.
  • a micro-nano columnar structure is made of 4 materials with different Young's modulus
  • each material corresponds to a sub-columnar structure
  • there are 4 sub-columnar structures in total where the height of each sub-columnar structure can be the same , can also be different, and there is no limitation here.
  • the four sub-columnar structures are stacked to form the micro-nano columnar structure.
  • the micro-nano columnar structure is formed when the micro-nano columnar structure is made of at least two materials with different Young's modulus, which is achievable.
  • the cross-sectional areas of the at least two micro-nano sub-columnar structures are the same; or, the at least two micro-nano sub-columnar structures range from large to Smaller ones are stacked sequentially. That is to say, the at least two micro-nano sub-columnar structures include but are not limited to: 1) the cross-sectional area of at least two micro-nano sub-columnar structures is the same. As an example, assume that there are four sub-columnar structures in total.
  • the cross-sectional areas of the four sub-columnar structures are the same; 2) The values of the cross-sectional areas of at least two micronano sub-columnar structures are different. Values are stacked in descending order.
  • the plurality of micro-nano columnar structures have at least two different heights. That is to say, there may be multiple micro-nano columnar structures formed on the functional layer, and the heights of the multiple micro-nano columnar structures may be the same, or at least two different heights, which are not limited in this application. For example, if there are 100 micronano columnar structures, the heights of these 100 micronano columnar structures can all be the same, both being h0; these 100 micronano columnar structures can also have n different heights, n ⁇ 2, For example, the height of the 50 micronano columnar structures is H1, and the height of the remaining 50 micronano columnar structures is H2.
  • the heights of the micro-nano columnar structures generated on the functional layer can be the same or different, and the micro-nano columnar structures can be designed by themselves based on the pressure range and sensitivity requirements to be measured. High and flexible.
  • the micro-nano columnar structures of different heights may be arranged periodically, or may be arranged in an irregular random order, which is not specifically limited in this application.
  • the functional layer further includes: target micro-nanostructures of a first preset height, and the first preset height is greater than the micro-nanostructures of the at least two different heights.
  • the two electrode layers are directly bonded under the pressure.
  • the first preset height h1 is greater than the height of any one of at least two micro-nano columnar structures with different heights.
  • the two electrode layers (assuming that the electrode layers are not electrode wires) may be completely bonded together, This will lead to the failure of the pressure sensor, reduce the sensitivity of the pressure sensor and reduce the range of its pressure measurement.
  • some target micro-nano structures with preset heights can also be grown on the functional layer, so as to achieve the effect of increasing the pressure measurement range.
  • the senor further includes: an isolation layer with a second preset height, the isolation layer has at least one hole with a preset aperture, and the isolation layer is located on the functional layer Above, the micro/nano columnar structures are deployed in the holes of the isolation layer, and the second preset height is greater than the height of any one of the at least two micro/nano columnar structures with different heights.
  • the pressure sensor additionally includes an isolation layer with a preset height on the functional layer, and the preset height can be referred to as The second preset height h2, the second preset height h2 is greater than the height of any one of the micro-nano columnar structures of at least two different heights.
  • the isolation layer has at least one hole with a preset aperture, and the isolation layer is used to provide support under external pressure, so as to avoid the two electrode layers (assuming that the electrode layer is not an electrode wire) under the pressure. Direct fit. In this case, the multi-level micro-nano structure is grown in the holes of the isolation layer.
  • the way to provide support is to add an isolation layer on the functional layer, and the multi-level micro-nano structure grows in the holes of the isolation layer.
  • the shape of the at least one hole includes any one or more of the following: circle, ellipse, and polygon. That is to say, the shape of at least one hole on the isolation layer can be any machinable shape, for example, it can be a circle, it can also be an ellipse, it can also be a polygon, and further, it can be a regular polygon, such as, etc. Side triangles, squares, hexagons, etc., can also be irregular polygons, such as trapezoids, scalene triangles, etc.
  • the specific application does not limit the shape of the holes in the isolation layer.
  • the shape of the hole can be set based on requirements, but also the opening area of the hole can be set by yourself, which is not limited in this application.
  • the shape of the hole in the isolation layer can be set according to the requirement, and has flexibility.
  • the shape of the micro-nano columnar structure may be any machinable shape with a certain height, for example, the shape of the micro-nano columnar structure includes any of the following Or multiple: cylindrical, polygonal prism, conical, polygonal pyramid, hemispherical, inverted pyramid, pyramid.
  • the shape of the micro-nano columnar structure can also be processed according to requirements, which is optional.
  • the multi-level micro-nano structure can be regarded as a first-level micro-nano structure, and in order to increase the contact area of the functional layer, the multi-level micro-nano structure (i.e. Micro-nano processing is performed on each micro-nano columnar structure.
  • the multi-level micro-nano structure can be etched with a micro-nano-scale burr structure by an etching process, which can also be called a secondary micro-nano structure.
  • the burr structure It can be used to increase the intensity of the first signal induced on the functional layer under the action of the applied pressure.
  • the contact area between the functional layer and the outside world is increased by etching the burr structure on each micro-nano columnar structure, thereby increasing the intensity of the first signal induced on the functional layer and improving the The detection sensitivity of the pressure sensor.
  • the pressure sensor can be deployed in a wearable device to monitor pulse fluctuations, which can effectively improve detection sensitivity.
  • the pressure sensor may be deployed on an electronic device with a touch screen to detect a touch action, which can effectively improve detection sensitivity.
  • the fifth aspect of the embodiment of the present application also provides an electronic device.
  • the electronic device may include the pressure sensor of the above-mentioned first aspect or any possible implementation manner of the first aspect, or, the electronic device may include the above-mentioned second aspect or the pressure sensor of the first aspect.
  • the pressure sensor in any two possible implementation manners, or, the electronic device may include the pressure sensor in the third aspect or any one of the possible implementation manners in the third aspect, or, the electronic device may include the fourth aspect or the first aspect A pressure sensor of any two possible implementations of the four aspects.
  • Figure 1 is a schematic diagram of the principle of a TENG-based pressure sensor
  • Fig. 2 is the test result figure that SEM test is carried out to the surface of a friction layer
  • FIG. 3 is a schematic structural diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 4 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 5 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 6 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 7 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 8 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 9 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 10 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 11 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 12 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a TENG-based pressure sensor with a target micro-nano structure of a first preset height provided in an embodiment of the present application;
  • Fig. 14 is a schematic diagram of the processing process of the friction layer provided by the embodiment of the present application.
  • FIG. 15 is another structural schematic diagram of a TENG-based pressure sensor provided in an embodiment of the present application.
  • Figure 16 is a schematic diagram of the multi-level micro-nano structure grown in the hole in the isolation layer provided by the embodiment of the present application;
  • Fig. 17 is a schematic diagram of the hole shape provided by the embodiment of the present application.
  • Fig. 18 is a schematic diagram of the processing process of the friction layer and the isolation layer provided by the embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of the pressure sensor provided by the embodiment of the present application.
  • Fig. 20 is another structural schematic diagram of the pressure sensor provided by the embodiment of the present application.
  • Fig. 21 is another structural schematic diagram of the pressure sensor provided by the embodiment of the present application.
  • Fig. 22 is another structural schematic diagram of the pressure sensor provided by the embodiment of the present application.
  • Fig. 23 is a schematic structural diagram of the functional layer provided by the embodiment of the present application.
  • FIG. 24 is another schematic structural diagram of the functional layer provided by the embodiment of the present application.
  • the embodiment of the present application provides a pressure sensor based on triboelectric nanopower generation.
  • the surface of at least one friction layer of the pressure sensor includes a multi-level micro-nano structure (that is, includes at least two types of micro-nano columnar structures with different heights).
  • the multi-level structure of different heights enables the pressure sensor to maintain high sensitivity to large static forces, and the measurement range of the pressure sensor can be expanded, so that the sensor maintains the same or similar sensitivity under various static forces.
  • the embodiment of the present application involves a lot of related knowledge about sensors.
  • the following first introduces related terms and concepts that may be involved in the embodiment of the present application. It should be understood that the interpretation of related concepts may be limited due to the specific conditions of the embodiment of the application, but it does not mean that the application is limited to the specific conditions, and there may be differences in the specific conditions of different embodiments. Specifically, there is no limitation here.
  • a pressure sensor is a device or device that can sense pressure signals and convert the pressure signals into usable output electrical signals according to certain rules.
  • Pressure sensor is the most commonly used sensor in industrial practice. It is widely used in various industrial automatic control environments, involving water conservancy and hydropower, railway transportation, intelligent buildings, production automatic control, aerospace, military industry, petrochemical, oil wells, electric power, ships, machine tools , pipeline and many other industries.
  • Typical pressure sensors include resistive pressure sensors, capacitive pressure sensors, piezoelectric pressure sensors, and TENG-based pressure sensors.
  • the resistive pressure sensor when the resistive pressure sensor applies external pressure, the change of the contact area between the two plates under the pressure will cause the resistance to change.
  • the resistance value of the external circuit can be Reverse the pressure value; similarly, when the capacitive pressure sensor applies external pressure, the change of the plate spacing between the two plates under the pressure will cause the capacitance to change.
  • calibrating the capacitance value and the pressure value it can be The pressure value is reversed; when the piezoelectric pressure sensor applies external pressure, the deformation of the bipolar plates under the external force will cause the charge to change.
  • the voltage feedback of the external circuit can Introduce the pressure value;
  • the TENG-based pressure sensor is under the action of external pressure, the pressure causes the change of the distance of the friction layer, and the change of the external voltage due to the change of the charge generated by the friction, the material of the friction layer is generally selected with a large difference in the ability to gain and lose electrons material, so the external force will cause a great change in the voltage across the electrodes.
  • TENG-based pressure sensors have a wide range of optional materials, good dynamic response, and fast response time. It has attracted extensive attention due to its advantages such as rich details of physiological signals.
  • FIG. 3 is a schematic structural diagram of the TENG-based pressure sensor provided by the embodiment of the present application.
  • the TENG-based pressure sensor includes two Friction layers (respectively the first friction layer 301 and the second friction layer 302) and an electrode layer (may be referred to as the first electrode layer 303), wherein the first friction layer 301 and the second friction layer 302 have different electron gain and loss capabilities
  • the material of the friction layer can be selected from PTFE, PET, PE, PDMS, FEP and other materials. It should be noted that the materials selected for the first friction layer 301 and the second friction layer 302 need to be different.
  • the first electrode layer 301 is made of conductive materials, for example, metal materials (gold, silver, copper, etc.), conductive materials (graphene, silver nanowires, ITO, etc.) and other conductive materials can be used.
  • the first friction layer 301 is connected to the first electrode layer 303 . Specifically, the surface of at least one friction layer in the first friction layer 301 and the second friction layer 302 grows a multi-level micro-nanostructure (Fig.
  • the second friction layer 302 actually on the surface of the second friction layer 302 can also generate a multi-level micro-nano structure, which will not be described here), for inducing the pressure on the first friction layer 301 and the second friction layer 302
  • the equal and opposite net charges corresponding to the applied pressure can also provide support; and the first electrode layer 303 is used to generate current based on the equal and opposite net charges induced on the two friction layers.
  • the applied pressure value is deduced inversely.
  • the first electrode layer 303 may also be an electrode wire having a conductive function, which is not limited in the present application. It should also be noted that, in the embodiment of the present application, when there is only the first electrode layer 303, the first electrode layer 303 is grounded. It should also be noted that in some application scenarios of the present application, the friction layer can also be used as an electrode layer for conducting electricity, which is not limited in the present application.
  • the TENG-based pressure sensor may also include a second electrode layer.
  • the TENG-based pressure sensor includes two friction layers (respectively the first friction layer 301 and the second friction layer 302) and two electrode layers (respectively the first electrode layer 303 and the second electrode layer 304 ), wherein the first friction layer 301 and the second friction layer 302 are made of materials with different electron gain and loss capabilities.
  • the material of the friction layer can be selected from PTFE, PET, PE, PDMS, FEP and other materials. It should be noted that, The materials selected for the first friction layer 301 and the second friction layer 302 need to be different.
  • the first electrode layer 301 and the second electrode layer 302 are made of conductive materials, for example, metal materials (gold, silver, copper, etc.), conductive materials (graphene, silver nanowires, ITO, etc.) and the like can be used. Conductive materials.
  • the first friction layer 301 is connected to the first electrode layer 303
  • the second friction layer 302 is connected to the second electrode layer 304 .
  • the surface of at least one friction layer in the first friction layer 301 and the second friction layer 302 grows a multi-level micro-nanostructure (Fig. , actually on the surface of the second friction layer 302 can also generate a multi-level micro-nano structure, which will not be described here), for inducing the pressure on the first friction layer 301 and the second friction layer 302
  • the equal and opposite net charges corresponding to the applied pressure can also provide support; while the first electrode layer 303 and the second electrode layer 304 are used to induce equal and opposite net charges based on the two friction layers. Electric charge produces electric current.
  • the applied pressure value is deduced inversely.
  • the TENG-based pressure sensor is illustrated by taking two electrode layers as an example.
  • the multi-level micro-nano structure includes at least two types of micro-nano columnar structures with different heights.
  • Figure 4 shows that two types of micro-nano columnar structures with different heights are arranged periodically.
  • the multi-level micro-nano structure may be n kinds of micro-nano columnar structures with different heights, n ⁇ 2.
  • n the larger the value of n, the more stages of the multi-level micro-nano structure, and the more various heights are formed between the first friction layer 301 and the second friction layer 302. Under the circumstances, due to the different heights, the net charges generated in different places are also different, which indirectly improves the sensitivity of the pressure sensor.
  • micro-nano columnar structures of different heights are arranged periodically. Irregular out-of-order arrangement, which is not limited in this application.
  • the applied pressure can be applied on the first electrode layer 303, or on the second electrode layer 304, or can be applied on the first electrode layer 303 and the second electrode layer at the same time.
  • the second electrode layer 304 (applied on the two electrode layers shown in FIG. 4 ), it is determined by the actual application scenario of the TENG-based pressure sensor, which is not limited in this application.
  • the micro-nano columnar structure can be regarded as a primary micro-nano structure, in order to increase the friction area between the first friction layer 301 and the second friction layer 302 , can also perform micro-nano processing on the micro-nano columnar structure, specifically, the micro-nano-scale burr structure can be etched out on the micro-nano columnar structure (as shown in FIG. 4 or FIG.
  • the burr structure can be used to increase the friction area between the first friction layer 301 and the second friction layer 302 under the action of the applied pressure, so that the net friction induced on the two friction layers The charge amount of the charge increases, improving the detection sensitivity of the pressure sensor.
  • the application is no longer illustrated by examples.
  • a micro-nano columnar structure can be made of one material, specifically, micro-nano columnar structures belonging to the same height can be made of one material , the micro-nano columnar structure belonging to another height is made of another material, and different materials have different Young's modulus.
  • the (a) sub-schematic diagram in Fig. 8 shows that each micro-nano columnar structure is made of the same material A; and the (b) sub-schematic diagram in Fig.
  • each A single micro-nano columnar structure is made of one material.
  • a micro-nano columnar structure may also be made of at least two materials with different Young's moduli.
  • the micro-nano columnar structure can be obtained by stacking at least two micro-nano columnar structures, and one sub-columnar structure corresponds to a material with a Young's modulus.
  • the at least two micro-nano sub-columnar structures include but are not limited to:
  • the cross-sectional area of at least two micro-nano sub-columnar structures is the same.
  • 4 sub-columnar structures namely A, B, C, and D.
  • the cross-sectional area of the structure is the same, both are S0; as an example, please refer to FIG. 9 for details, which will not be repeated here.
  • the heights of the four sub-columnar structures may be the same or different, and FIG. 9 shows a different situation, and details will not be repeated here.
  • the values of the cross-sectional areas of at least two micro-nano sub-columnar structures are different. In this case, they are stacked in descending order according to the values of the cross-sectional areas.
  • the values of the cross-sectional lengths are S1, S2, S3, S4 respectively, and S1 ⁇ S2 ⁇ S3 ⁇ S4, then the stacking on the at least one friction layer
  • D is located on the surface of the at least one friction layer
  • C is stacked on D
  • B is stacked on C
  • A is stacked on B.
  • the stacking method can be stacked in such a way that one side of the sub-columnar structure is aligned as shown in Figure 10 (that is, it forms a step shape), or it can be stacked in a way that both sides of the sub-columnar structure are not aligned as shown in Figure 11.
  • This is not limited.
  • the heights of the four sub-columnar structures may be the same or different.
  • FIG. 10 and FIG. 11 illustrate the same situation, and details are not repeated here.
  • the heights of the micro-nano columnar structures shown in Figure 10 and Figure 11 are the same.
  • the heights of the micro/nano columnar structures can also be different, that is, there are at least two different heights of the multiple micro/nano columnar structures.
  • the stepped micro/nano columnar structures include two types of heights. Actually, there may be more heights, which will not be repeated here.
  • the first friction layer 301 and the second friction layer 302 may be completely attached together, which will lead to failure of the pressure sensor. Reduce the sensitivity of the pressure sensor and reduce the range of its pressure measurement.
  • at least one friction layer of the first friction layer 301 and the second friction layer 302 can also grow some targets with preset heights.
  • the micro-nano structure, the preset height can be referred to as the first preset height h1, which is used to provide support under the pressure applied by the outside, so as to prevent the first friction layer 301 and the second friction layer 302 from directly contacting each other under the pressure.
  • the first predetermined height h1 is greater than the height of any one of the micro-nano columnar structures of at least two different heights.
  • FIG. 13 is a schematic structural diagram of a TENG-based pressure sensor with a target micro-nano structure of a first preset height provided in an embodiment of the present application. It can be seen from FIG. 13 It can be seen that under the support of the target micro-nano structure, the external pressure is not easy to make the two friction layers fit together completely, thus expanding the pressure measurement range of the TENG-based pressure sensor and improving the sensitivity.
  • Figure 14 is provided by the embodiment of the present application A schematic diagram of the processing process of the friction layer, wherein the first friction layer 301 is the friction layer 1, and the second friction layer 302 is the friction layer 2.
  • the processing process includes the following steps:
  • a single friction layer or multiple friction layers can be pre-treated and photolithographically processed to obtain multiple micro-nano columnar structures with different heights, that is, the multi-level micro-nano structure, also It can be called a primary micro-nano structure, which can be circular or polygonal, which is not limited in this application.
  • an etching process is used to etch out the secondary micro-nano structure, that is, to form a burr structure, which is used to improve the sensitivity of the TENG-based pressure sensor.
  • the multi-level micro-nano structure can be formed by means of nano-imprinting, mold release, etc., to form a plurality of one-level micro-nano columnar structures with different heights.
  • the processing method can be to stack multiple materials with different Young's modulus, and use masks of different sizes and shapes for photolithography to form a multi-step first-level micro-nano structure, and then perform two-level micro-nano processing to obtain Burr structure.
  • the electrodes can be processed on the outer surface of the friction layer by means of coating, lamination, spin coating, etc., and the wires can be drawn out.
  • Stack the processed film materials that is, attach the electrode layer on the friction layer, and use glue coating, pressing and other methods for packaging.
  • the isolation layer 305 has at least one hole (not shown in FIG. 15 ) with a preset pore size, which is used to provide support under external pressure, so as to avoid the first friction layer 301 and the second friction layer 302 under the pressure. Next fit directly. In this case, the multi-level micro-nanostructure grows in the holes of the isolation layer 305, as shown in FIG. A schematic diagram of .
  • the isolation layer 305 can also be designed as a splicing of sub-isolation layers of different heights.
  • the isolation layer 305 can be composed of m sub-isolation layers, and the height of each sub-isolation layer can be set differently, that is, the second The preset height h2 may be one type of height value or multiple height values, which is not limited in this application.
  • the shape of at least one hole on the isolation layer 305 can be any machinable shape, for example, it can be a circle (as shown in subsection (a) of Figure 17 shown in the schematic diagram), it can also be an ellipse, it can also be a polygon, and further, it can be a regular polygon, such as an equilateral triangle, a square (as shown in (b) sub-schematic diagram in Figure 17), a hexagon, etc. , can also be an irregular polygon, such as a trapezoid, a scalene triangle, etc.
  • the application does not limit the shape of the hole in the isolation layer 305 .
  • the shape of the hole can be set based on requirements, but also the opening area of the hole can be set by yourself, which is not limited in this application.
  • Fig. 18 is A schematic diagram of the processing process of the friction layer and the isolation layer provided in the embodiment of the present application, wherein the first friction layer 301 is the friction layer 1, and the second friction layer 302 is the friction layer 2.
  • the processing process includes the following steps:
  • a single friction layer or multiple friction layers can be pre-treated and photolithographically processed to obtain multiple micro-nano columnar structures with different heights, that is, the multi-level micro-nano structure, also It can be called a primary micro-nano structure, which can be circular or polygonal, which is not limited in this application.
  • an etching process is used to etch out the secondary micro-nano structure, that is, to form a burr structure, which is used to improve the sensitivity of the TENG-based pressure sensor.
  • the multi-level micro-nano structure can be formed by means of nano-imprinting, mold release, etc., to form a plurality of one-level micro-nano columnar structures with different heights.
  • the processing method can be to stack multiple materials with different Young's modulus, and use masks of different sizes and shapes for photolithography to form a multi-step first-level micro-nano structure, and then perform two-level micro-nano processing to obtain burrs structure.
  • the electrodes can be processed on the outer surface of the friction layer by means of coating, lamination, spin coating, etc., and the wires can be drawn out.
  • the surface of the isolation layer is pretreated, and then the isolation layer can be perforated by methods such as mold pressing, embossing, mechanical drilling, and laser drilling.
  • Stack the processed film materials that is, attach the electrode layer on the friction layer, place the isolation layer between the two friction layers, and use glue coating, pressing and other methods for packaging.
  • the measurement range of the TENG-based pressure sensor can be expanded and the sensitivity can be improved through the design of the multi-level micro-nano structure or the combination of the isolation layer and the multi-level micro-nano structure. Moreover, through the coordination of the area and height of the multi-level micro-nano structure, the TENG-based pressure sensor maintains the same or similar sensitivity under various static forces; The (height, area, shape, distribution) and other designs make the sensitivity of TENG-based pressure sensors approach the same under different static forces.
  • the human pulse wave is an important information for detecting human physiology.
  • the measurement of the pulse wave through pressure requires the sensor to have extremely high sensitivity. force to maintain high sensitivity. Therefore, the TENG-based pressure sensor provided by the above embodiments of the present application can be deployed in wearable devices for monitoring pulse fluctuations, which can effectively improve detection sensitivity.
  • Electronic equipment with a touch screen belongs to a new type of computer equipment. For convenience in operation, people use a touch screen instead of a mouse, a keyboard, and the like.
  • the user When in use, the user first touches the touch screen at the front of the screen of the electronic device with a finger or other objects, and then the device locates and selects information input according to the icon or menu position touched by the finger.
  • the TENG-based pressure sensor provided by the above embodiments of the present application can be deployed in an electronic device with a touch screen for detecting touch actions, which can effectively improve detection sensitivity.
  • the pressure sensor provided by the embodiment of the present application can also be used on wheeled mobile devices (such as indoor robots, vehicles (such as self-driving vehicles, ordinary vehicles, etc.)), For example, it can be used to detect the pressure of vehicle tires, etc., which will not be illustrated in this application.
  • wheeled mobile devices such as indoor robots, vehicles (such as self-driving vehicles, ordinary vehicles, etc.)
  • it can be used to detect the pressure of vehicle tires, etc., which will not be illustrated in this application.
  • the multi-level micro-nano structure proposed in the embodiment of this application can be applied to other types of pressure sensors besides TENG-based pressure sensors.
  • the pressure sensor can be a piezoresistive pressure sensor or a piezo
  • the capacitive pressure sensor may also be a piezoelectric pressure sensor, which is not limited in this application. Please refer to FIG. 19 for details.
  • FIG. 19 is a schematic structural diagram of a pressure sensor provided by an embodiment of the present application.
  • first electrode layer 402 and second electrode layer 403 wherein the first electrode layer 402 and the second electrode layer 403 are made of conductive materials, for example, metal materials (gold, silver, copper, etc.), conductive materials can be used (graphene, indium tin oxides (ITO), silver nanowires, etc.) and other conductive materials.
  • the first functional layer 401 is connected to one of the first electrode layer 402 or the second electrode layer 403 .
  • the surface of the first functional layer 401 includes at least two micro-nano columnar structures of different heights, which are used to induce a first signal corresponding to the pressure on the first functional layer 401 under pressure; the The first electrode layer 402 and the second electrode layer 403 are used to generate a second signal based on the first signal.
  • the micro-nano columnar structures of different heights grown on the surface of the first functional layer 401 are similar to the pressure sensor based on TENG in the above-mentioned method 1. For details, please refer to the above-mentioned method 1. expression, which will not be repeated here.
  • the first electrode layer 402 and/or the second electrode layer 403 may also be conductive wires, and the electrode layers may also be a combination of hierarchical materials, interpolation electrodes, and wires.
  • FIG. 20 it illustrates the case where the first electrode layer 402 is a conductive wire (the case where the second electrode layer 403 is a wire is similar, and details will not be described here).
  • the pressure sensor may also include a functional layer.
  • FIG. 21 is another structural schematic diagram of the pressure sensor provided by the embodiment of the present application.
  • the additional functional layer may be called the second functional layer 404 .
  • the first functional layer 401 may additionally include an isolation layer with a preset height, please refer to FIG. 22 for details.
  • FIG. 22 is a pressure sensor provided in the embodiment of the present application
  • the preset height of the isolation layer 405 may be referred to as a second preset height, and the second preset height is greater than the height of any one of the micro-nano columnar structures of at least two different heights.
  • the isolation layer 405 has at least one hole with a preset aperture, and the isolation layer 405 is used to provide support under external pressure, so as to avoid the two electrode layers (assuming that the electrode layer is not an electrode wire) under the pressure Direct fit under action.
  • the multi-level micro-nano structure is grown in the holes of the isolation layer.
  • the arrangement of the isolation layer 405 is similar to that of the TENG-based pressure sensor in the above-mentioned method 1.
  • the first signal when the first signal is the first resistor (that is, the pressure sensor is a piezoresistive type), the second signal is the second resistor, and the functional layer consists of different It is made of a material that has a resistance property change under pressure (that is, has a resistance characteristic); or, in the case where the first signal is a first capacitance (that is, the pressure sensor is a pressure-capacitance type), the second signal is a second capacitance, and the function
  • the layer is made of a material that has a capacitive property change at different pressures (i.e. has capacitive properties); or, in case the first signal is a first voltage (i.e. the pressure sensor is of the piezoelectric type), the second signal is a second voltage, and the functional layer is made of a material that has piezoelectric properties that change under different pressures (that is, has piezoelectric properties).
  • the structure can be the structure shown in Figure 19- Figure 22, but because the material and properties of the functional layer will be slightly different, the following is based on the principles of each type of pressure sensor Explain separately:
  • the functional layer can be composed of conductive materials, such as graphene, carbon nanotubes, graphene oxide, graphite, copper, silver nanowires, ITO, etc.
  • the structure of the functional layer may be composed of a conductive material and a base material, as shown in FIG. 23 , which is a schematic structural diagram of a functional layer provided in an embodiment of the present application.
  • the base material can be selected from PTFE, PET, PE, PDMS, FEP and other materials.
  • the base material can be composed of different sizes of salt grains, sand grains, micro-nano balls and other structures.
  • the conductive material can be made on the surface of the base material by evaporation, sputtering, spin coating and other processing methods.
  • the ciliated structure on the surface can be etched to generate the ciliated structure.
  • the base material may not be used, but the conductive material is directly disposed on the electrode layer, as shown in FIG. 24 .
  • the working principle of piezoresistive sensors When external pressure is applied, the resistance changes.
  • the resistance change is mainly caused by the change of the contact area and the change of the internal structure.
  • the isolation structure can expand the measurement range of the sensor.
  • the structure with different heights can make the upper and lower polar surfaces contact. If the height of the isolation layer is h, the traditional structure requires the polar surface deformation to exceed h. Larger response. If the height of the protrusion of the functional layer is s, the deformation of the upper and lower polar surfaces (h-s) can produce a large change in the contact area and a large change in the output resistance. Thus the bump height can lower the detection limit of the sensor.
  • Different height designs allow the sensor to have higher detection sensitivity under different static forces. As shown in Figure 22, under the condition of external pressure, the electrode plate is in high contact with the protrusion therein, and has a low detection limit and high sensitivity under small pressure.
  • the functional layer can be realized with non-conductive materials.
  • the working principle of the capacitive sensor When there is external pressure, the distance between the upper and lower polar surfaces of the capacitive sensor will change, and the dielectric constant of the functional layer will change, resulting in a change in capacitance.
  • the change in the dielectric constant of the functional layer is mainly due to the deformation of the functional layer caused by the pressure, thereby causing the change in the dielectric constant.
  • the isolation layer can expand the measurement range of the sensor.
  • the structure with different heights can make the upper and lower polar surfaces contact. If the height of the isolation layer is h, the traditional structure requires the polar surface deformation to exceed h to produce a large response.
  • the height of the protrusion of the functional layer is s, and the deformation of the upper and lower polar surfaces (h-s) can produce a large change in the contact area, thereby causing deformation of the functional layer, causing a change in the dielectric constant, and thus a large change in the output capacitance.
  • the bump height can lower the detection limit of the sensor.
  • Different height designs allow the sensor to have higher detection sensitivity under different static forces. As shown in Figure 22, under the condition of external pressure, the electrode plate is in high contact with the protrusion therein, and has a low detection limit and high sensitivity under small pressure.
  • piezoelectric materials and piezoelectric electrets can be used for the functional layer.
  • the working principle of the piezoelectric sensor when there is external pressure, the distance between the upper and lower pole surfaces of the piezoelectric sensor will change or the piezoelectric voltage of the functional layer will change, resulting in a capacitance change.
  • the change in the dielectric constant of the functional layer is mainly due to the deformation of the functional layer caused by the pressure, which causes the change of the piezoelectric voltage.
  • the isolation layer can expand the measurement range of the sensor.
  • the structure with different heights can make the upper and lower polar surfaces contact. If the height of the isolation layer is h, the traditional structure requires the polar surface deformation to exceed h to produce a large response.
  • the height of the protrusion of the functional layer is s, and the deformation of the upper and lower polar surfaces (h-s) can produce a large change in the contact area, thereby causing deformation of the functional layer, causing a change in the piezoelectric voltage, and resulting in a large change in the output capacitance.
  • the bump height can lower the detection limit of the sensor.
  • Different height designs allow the sensor to have higher detection sensitivity under different static forces. As shown in Figure 22, under the condition of external pressure, the electrode plate is in high contact with the protrusion therein, and has a low detection limit and high sensitivity under small pressure.
  • the multi-level micro-nano structure (that is, at least two types of micro-nano columnar structures with different heights) can be applied not only to pressure sensors based on triboelectric nanopower generation, but also to piezoresistive, pressure-capacitive, and pressure sensors. Electrical and other types of pressure sensors, with a wide range of applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种基于摩擦纳米发电的压力传感器,可部署于可穿戴设备中用于监测脉搏波动,或部署于具有触摸屏的电子设备用于检测触摸动作,传感器包括:两个摩擦层(301,302)及至少一个电极层(303,304),两个摩擦层(301,302)分别由得失电子能力不同的材料制成,其中至少一个摩擦层(301,302)的表面包括多级微纳米结构,用于在有压力的情况下在两个摩擦层(301,302)上感应出与所施加压力对应的等量相反的净电荷,多级微纳米结构包括至少两种不同高度的微纳米的柱状结构;电极层(303,304)用于基于净电荷产生电流。通过设计的不同高度的多级结构,使得压力传感器对大静态力也保持高灵敏度,并且可扩招压力传感器的测量区间,使得传感器在各个静态力下保持相同或类似的灵敏度。

Description

一种基于摩擦纳米发电的压力传感器
本申请要求于2021年12月31日提交中国专利局、申请号为202111679373.2、申请名称为“一种基于摩擦纳米发电的压力传感器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及传感器领域,尤其涉及一种基于摩擦纳米发电的压力传感器。
背景技术
近年来,人们对健康监测的需求促进了可穿戴设备的快速发展。对于可穿戴设备,实现准确监测的核心在于传感器的设计,利用传感器准确获取个体的生理信号是能否实现疾病准确预测以给个人健康管理提供有价值的参考信息的基础。目前,国内外在不同机制柔性传感器上的研究上取得了显著进展,主要包括压电式传感器、压容式传感器、压阻式传感器,以及基于静电感应和电荷转移原理的摩擦起电式传感器。上述几种柔性压力传感器,其工作原理均是将施加在传感器上的外部压力信号转化为电信号输出,以此来反馈外部压力的大小和分布情况。
现在的有采用基于电阻式、电容式、压电式和摩擦纳米发电(triboelectric nanogenerator,TENG)原理的压力传感器。其中,基于TENG的压力传感器与其他几种类型的压力传感器相比,具备可选材料广泛、动态响应好、响应时间快、所测生理信号细节丰富等优点而受到广泛关注。基于TENG的压力传感器利用的是摩擦起电原理以及静电感应原理,其中,摩擦起电原理是不同得失电子能力的材料相互接触时,由于材料对电子的束缚能力不同,会发生电子的转移,在两种材料上带上等量相反的净电荷。静电感应原理是带电荷的物体(即带电物体)靠近导电物体时,导电物体靠近带电物体侧感应出与带电物体相反的电荷。基于TENG的压力传感器是这两种原理的结合,如图1所示,基于TENG的压力传感器一般包括两种组成:两个电极层和两个摩擦层,两个摩擦层放在中间,两个电极层放在两侧。当两种不同材料的摩擦层在外力作用下互相靠近接触时,会因为摩擦起电原理,在两个摩擦层感应出等量相反的净电荷。在外力作用下两个摩擦层的接触表面发生分离时,两种净电荷的分离而产生的电势差会驱动电子在分别附着与两种摩擦层材料的上下表面的电极之间流动,从而产生电流输出。最后再通过对外部的电流和电压测量进行所施加压力的换算。
在上述所述的基于TENG的压力传感器中,为了增加摩擦时的表面积,提高电荷转移的电荷量,以最终达到提高电压或电流的输出的目的,一般会在其中一个摩擦层的表面进行修饰,如图2所示,图2为对一个摩擦层的表面进行扫描电子显微镜(scanning electron microscope,SEM)测试得到的测试结果图,这些修饰的微纳米结构高度一致(即图2中凸起的六边形结构),且整体都不高,即整体比较平坦,因此会存在两个问题:1、对大静态力灵敏度不够,因为外界施加的压力大了两侧的摩擦层就完全接触到一起;2、在保证灵敏度的前提下,能测量的压力范围小,即在大静态力下灵敏度高的话,在小静态力下灵敏度就低,反之,在小静态力下灵敏度高的话,在大静态力下灵敏度就低。
发明内容
本申请实施例提供了一种基于摩擦纳米发电的压力传感器,该基于TENG的压力传感器的至少一个摩擦层的表面包括多级微纳米结构(即包括至少两种不同高度的微纳米的柱状结构),通过设计的不同高度的多级结构,使得压力传感器对大静态力也能保持高灵敏度,并且可扩展压力传感器的测量区间,使得传感器在各个静态力下保持相同或类似的灵敏度。
基于此,本申请实施例提供以下技术方案:
第一方面,本申请实施例首先提供一种基于TENG的压力传感器,可用于传感器领域,该基于TENG传感器包括:两个摩擦层(分别为第一摩擦层以及第二摩擦层)和一个电极层(可称为第一电极层),在本申请实施例中,具有导电作用的电极线也认为是电极层,以下不再解释说明。其中,第一摩擦层与第二摩擦层由得失电子能力不同的材料制成,例如,摩擦层的材料可以选择聚四氟乙烯(polytetrafluoroethylene,PTFE)、聚对苯二甲酸类塑料(polyethylene terephthalate,PET)、聚乙烯(polyethylene,PE)、聚二甲基硅氧烷(polydimethylsiloxane,PDMS)、氟化乙烯丙烯共聚物材料(fluorinated ethylene propylene,FEP)等材料,需注意的是,第一摩擦层与第二摩擦层选择的材料需不同。第一电极层由具有导电能力的材料制成,例如,可以采用金属材料(金、银、铜等)、导电材料(石墨烯、氧化铟锡(indium tin oxides,ITO)、银纳米线等)等具有导电能力的材料。第一摩擦层与第一电极层相连。在第一摩擦层以及第二摩擦层中的至少一个摩擦层的表面生长有至少两种不同高度的微纳米的柱状结构(也可称为多级微纳米结构),用于在有压力的情况下,在第一摩擦层及第二摩擦层上感应出与所施加压力对应的等量相反的净电荷,同时也可以提供支撑作用;而第一电极层则用于基于两个摩擦层上感应出的等量相反的净电荷产生电流。最后,可以经过电流与所施加压力的换算,反推出所施加的压力值。需要注意的是,在本申请的一些应用场景中,摩擦层也可以作为导电作用的电极层使用,本申请对此不做限定。
在本申请上述实施方式中,该基于TENG压力传感器的至少一个摩擦层的表面包括多级微纳米结构(即包括至少两种不同高度的微纳米的柱状结构),通过设计的不同高度的多级结构,使得压力传感器对大静态力也能保持高灵敏度,并且可扩展压力传感器的测量区间,使得传感器在各个静态力下保持相同或类似的灵敏度。
在第一方面的一种可能的实现方式中,该压力传感器还可以包括一个电极层,可称为第二电极层,该第二电极层同样由具有导电能力的材料制成,并且第二摩擦层与该第二电极层相连。在这种情况下,第一电极层以及第二电极层,就用于基于第一摩擦层及第二摩擦层上感应出与压力对应的等量相反的净电荷产生电流。
在本申请上述实施方式中,阐述了第一电极层不接地的情况下,则该压力传感器还需额外再包括一个第二电极层,用于产生电流,具备可实现性。
在第一方面的一种可能的实现方式中,一个微纳米的柱状结构可以是仅有一种材料制成,也可以是由至少两种不同取值的杨氏模量的材料制成,具备申请对此不做限定。
在本申请上述实施方式中,具体阐述了构成一个微纳米的柱状结构的材料,可以是一种材料,也可以是多种材料(杨氏模量不同),具备可选择性。
在第一方面的一种可能的实现方式中,当微纳米的柱状结构是由至少两种不同的杨氏 模量的材料制成,在这种情况下,该微纳米的柱状结构则由至少两个微纳米的子柱状结构堆叠得到,一个子柱状结构对应一种杨氏模量的材料。例如,假设一个微纳米的柱状结构由4个不同的杨氏模量的材料制成,则每种材料都对应一个子柱状结构,共有4个子柱状结构,其中,每个子柱状结构的高度可以相同,也可以不相同,此处不做限定。然后,这4个子柱状结构堆叠后形成所述的微纳米的柱状结构。
在本申请上述实施方式中,具体阐述了当微纳米的柱状结构是由至少两种不同的杨氏模量的材料制成时,微纳米的柱状结构是如何形成的,具备可实现性。
在第一方面的一种可能的实现方式中,该至少两个微纳米的子柱状结构包括但不限于:1)至少两个微纳米的子柱状结构的横截面面积相同,作为一个示例,假设共有4个子柱状结构,从压力传感器俯视图来看,这4个子柱状结构的横截面面积是一样的;2)至少两个微纳米的子柱状结构的横截面面积的取值不同,在这种情况下,则按照横截面面积的取值从大到小的顺序依次堆叠,作为一种示例,假设共有4个子柱状结构,分别为S1、S2、S3、S4,且S1<S2<S3<S4,那么在该至少一个摩擦层上的堆叠方式为:D位于该至少一个摩擦层表面,C堆叠在D上,B堆叠在C上,A堆叠在B上。
在本申请上述实施方式中,具体阐述了至少两个微纳米的子柱状结构进行堆叠的几种实现方式,具备灵活性。
在第一方面的一种可能的实现方式中,第一摩擦层与第二摩擦层中的至少一个摩擦层上还可以生长一些预设高度的目标微纳米结构,该预设高度可称为第一预设高度h1,用于在外界施加的压力下提供支撑作用,以避免第一摩擦层与第二摩擦层在所述压力作用下直接贴合,需要注意的是,在本申请实施例中,第一预设高度h1大于至少两种不同高度的微纳米的柱状结构中任意一个的高度。
在本申请上述实施方式中,由于在实际应用中,在外界施加的压力比较大的时候,第一摩擦层与的第二摩擦层可能会存在完全贴合在一起的情形,这样的话会导致压力传感器的失效,降低压力传感器的灵敏度以及缩小其压力测量的范围。为降低这种情况发生的概率,在第一摩擦层与第二摩擦层中的至少一个摩擦层上还可以生长一些预设高度的目标微纳米结构,从而达到提高压力测量范围的作用。
在第一方面的一种可能的实现方式中,该基于TENG的压力传感器除了包括以上所述的第一摩擦层、第二摩擦层、第一电极层以及第二电极层之外,在第一摩擦层与第二摩擦层之间还额外包括一个预设高度的隔离层,该预设高度可称为第二预设高度h2,第二预设高度h2大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。该隔离层具有预设孔径的至少一个孔洞,且该隔离层用于在外界施加压力下提供支撑作用,以避免第一摩擦层与第二摩擦层在所述压力作用下直接贴合。在这种情况下,多级微纳米结构就生长于隔离层的孔洞内。
在本申请上述实施方式中,用于提供支撑作用的方式是额外在两个摩擦层之间增加一个隔离层,多级微纳米结构则生长于隔离层的孔洞内,通过采用隔离层与多级结构设计的方式,降低该压力传感器因为弧垂的问题带来传感器测量时不一致的问题,并且可以通过设计多级结构的高度、面积以及隔离层的高度以及孔径大小、形状等使得传感器在线性度 区间表达,且在各个静态力条件下灵敏度保持相同或接近。
在第一方面的一种可能的实现方式中,隔离层上的至少一个孔洞的形状可以是任意可加工的形状,例如,可以是圆形,也可以是椭圆形,还可以是多边形,进一步地,可以是规则多边形,如,等边三角形、正方形、六边形等,也可以是非规则多边形,如,梯形、不等边三角形等,具体本申请对隔离层的孔洞形状不做限定。此外,不仅孔洞的形状可基于需求自行设定,孔洞的开孔面积也可以自行设定,本申请对此不做限定。
在本申请上述实施方式中,具体阐述了隔离层的孔洞的形状可以根据需求自行设定,具备灵活性。
在第一方面的一种可能的实现方式中,该微纳米的柱状结构的形状可以是任意可加工的具有一定高度的任意形状,例如,可以是圆柱形、多棱柱形、圆锥形、多棱锥形、半球形、倒金字塔形、金字塔形中的任意一种或多种。
在本申请上述实施方式中,具体阐述了微纳米的柱状结构的形状也可以根据需求自行加工,具备可选择性。
在第一方面的一种可能的实现方式中,不同高度的微纳米的柱状结构可以是周期性排列的,也可以是不规则的乱序排列,具体本申请对此不做限定。
在本申请上述实施方式中,具体阐述了不同高度的微纳米的柱状结构几种排列方式,具备灵活性。
在第一方面的一种可能的实现方式中,该多级微纳米结构可以看作是一级微纳米结构,为了增大第一摩擦层与第二摩擦层之间的摩擦面积,还可以在该多级微纳米结构上(即每个微纳米的柱状结构上)进行微纳米加工,具体地,该多级微纳米结构上可以利用蚀刻工艺蚀刻出微纳米级的毛刺结构,也可以称为二级微纳米结构,该毛刺结构可用于在所施加压力的作用下,增大第一摩擦层与第二摩擦层上感应出的净电荷的电荷量。
在本申请上述实施方式中,通过在每个微纳米的柱状结构上蚀刻出毛刺结构来增大第一摩擦层与第二摩擦层的摩擦面积,进而使得两个摩擦层上感应出的净电荷的电荷量增加,提高了该压力传感器的检测灵敏度。
在第一方面的一种可能的实现方式中,基于TENG的压力传感器可部署于可穿戴设备中,用于监测脉搏波动,可有效提高检测灵敏度。
在本申请上述实施方式中,阐述了本申请实施例提供的基于TENG的压力传感器的一种应用场景,具备可实现性。
在第一方面的一种可能的实现方式中,基于TENG的压力传感器可部署于具有触摸屏的电子设备,用于检测触摸动作,可有效提高检测灵敏度。
在本申请上述实施方式中,阐述了本申请实施例提供的基于TENG的压力传感器的另一种应用场景,具备可实现性。
本申请实施例第二方面提供一种基于TENG的压力传感器,可用于传感器领域,该基于TENG传感器包括:两个摩擦层(分别为第一摩擦层以及第二摩擦层)和一个电极层(可称为第一电极层),在本申请实施例中,具有导电作用的电极线也认为是电极层,以下不再解释说明。其中,第一摩擦层与第二摩擦层由得失电子能力不同的材料制成,例如,摩擦 层的材料可以选择PTFE、PET、PE、PDMS、FEP等材料,需注意的是,第一摩擦层与第二摩擦层选择的材料需不同。第一电极层由具有导电能力的材料制成,例如,可以采用金属材料(金、银、铜等)、导电材料(石墨烯、氧化铟锡(indium tin oxides,ITO)、银纳米线等)等具有导电能力的材料。第一摩擦层与第一电极层相连。在第一摩擦层以及第二摩擦层中的至少一个摩擦层的表面生长有至少一个微纳米的柱状结构,用于在有压力的情况下,在第一摩擦层及第二摩擦层上感应出与所述压力对应的等量相反的净电荷,该微纳米的柱状结构由至少两种不同杨氏模量的材料制成;第一电极层则用于基于两个摩擦层上感应出的等量相反的净电荷产生电流。最后,可以经过电流与所施加压力的换算,反推出所施加的压力值。需要注意的是,在本申请的一些应用场景中,摩擦层也可以作为导电作用的电极层使用,本申请对此不做限定。
在第二方面的一种可能的实现方式中,该压力传感器还可以包括一个电极层,可称为第二电极层,该第二电极层同样由具有导电能力的材料制成,并且第二摩擦层与该第二电极层相连。在这种情况下,第一电极层以及第二电极层,就用于基于第一摩擦层及第二摩擦层上感应出与压力对应的等量相反的净电荷产生电流。
在本申请上述实施方式中,阐述了第一电极层不接地的情况下,则该压力传感器还需额外再包括一个第二电极层,用于产生电流,具备可实现性。
在第二方面的一种可能的实现方式中,该微纳米的柱状结构则由至少两个微纳米的子柱状结构堆叠得到,一个子柱状结构对应一种杨氏模量的材料。例如,假设一个微纳米的柱状结构由4个不同的杨氏模量的材料制成,则每种材料都对应一个子柱状结构,共有4个子柱状结构,其中,每个子柱状结构的高度可以相同,也可以不相同,此处不做限定。然后,这4个子柱状结构堆叠后形成所述的微纳米的柱状结构。
在本申请上述实施方式中,具体阐述了当微纳米的柱状结构是由至少两种不同的杨氏模量的材料制成时,微纳米的柱状结构是如何形成的,具备可实现性。
在第二方面的一种可能的实现方式中,该至少两个微纳米的子柱状结构包括但不限于:1)至少两个微纳米的子柱状结构的横截面面积相同,作为一个示例,假设共有4个子柱状结构,从压力传感器俯视图来看,这4个子柱状结构的横截面面积是一样的;2)至少两个微纳米的子柱状结构的横截面面积的取值不同,在这种情况下,则按照横截面面积的取值从大到小的顺序依次堆叠,作为一种示例,假设共有4个子柱状结构,分别为S1、S2、S3、S4,且S1<S2<S3<S4,那么在该至少一个摩擦层上的堆叠方式为:D位于该至少一个摩擦层表面,C堆叠在D上,B堆叠在C上,A堆叠在B上。
在本申请上述实施方式中,具体阐述了至少两个微纳米的子柱状结构进行堆叠的几种实现方式,具备灵活性。
在第二方面的一种可能的实现方式中,在至少一个摩擦层上生成的微纳米柱状结构可以是多个,这多个微纳米的柱状结构的高度可以相同,也可以至少存在两种不同高度,具体本申请对此不做限定。例如,有100个微纳米的柱状结构,这100个微纳米的柱状结构的高度可以都相同,均为h0;这100个微纳米的柱状结构也可以有n种不同的高度,n≥2,如,其中50个微纳米的柱状结构的高度为H1,剩余的另50个微纳米的柱状结构的高度为 H2。
在本申请上述实施方式中,具体阐述了至少一个摩擦层上生成的微纳米的柱状结构的高度可以相同,也可以不相同,可基于所需测量的压力区间以及灵敏度要求自行设计微纳米的柱状结构的高度,具备灵活性。
在第二方面的一种可能的实现方式中,不同高度的微纳米的柱状结构可以是周期性排列的,也可以是不规则的乱序排列,具体本申请对此不做限定。
在本申请上述实施方式中,具体阐述了不同高度的微纳米的柱状结构几种排列方式,具备灵活性。
在第二方面的一种可能的实现方式中,第一摩擦层与第二摩擦层中的至少一个摩擦层上还可以生长一些预设高度的目标微纳米结构,该预设高度可称为第一预设高度h1,用于在外界施加的压力下提供支撑作用,以避免第一摩擦层与第二摩擦层在所述压力作用下直接贴合,需要注意的是,在本申请实施例中,第一预设高度h1大于至少两种不同高度的微纳米的柱状结构中任意一个的高度。
在本申请上述实施方式中,由于在实际应用中,在外界施加的压力比较大的时候,第一摩擦层与的第二摩擦层可能会存在完全贴合在一起的情形,这样的话会导致压力传感器的失效,降低压力传感器的灵敏度以及缩小其压力测量的范围。为降低这种情况发生的概率,在第一摩擦层与第二摩擦层中的至少一个摩擦层上还可以生长一些预设高度的目标微纳米结构,从而达到提高压力测量范围的作用。
在第二方面的一种可能的实现方式中,该基于TENG的压力传感器除了包括以上所述的第一摩擦层、第二摩擦层、第一电极层以及第二电极层之外,在第一摩擦层与第二摩擦层之间还额外包括一个预设高度的隔离层,该预设高度可称为第二预设高度h2,第二预设高度h2大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。该隔离层具有预设孔径的至少一个孔洞,且该隔离层用于在外界施加压力下提供支撑作用,以避免第一摩擦层与第二摩擦层在所述压力作用下直接贴合。在这种情况下,多级微纳米结构就生长于隔离层的孔洞内。
在本申请上述实施方式中,用于提供支撑作用的方式是额外再两个摩擦层之间增加一个隔离层,多级微纳米结构则生长于隔离层的孔洞内,通过采用隔离层与多级结构设计的方式,降低该压力传感器因为弧垂的问题带来传感器测量时不一致的问题,并且可以通过设计多级结构的高度、面积以及隔离层的高度以及孔径大小、形状等使得传感器在线性度区间表达,且在各个静态力条件下灵敏度保持相同或接近。
在第二方面的一种可能的实现方式中,隔离层上的至少一个孔洞的形状可以是任意可加工的形状,例如,可以是圆形,也可以是椭圆形,还可以是多边形,进一步地,可以是规则多边形,如,等边三角形、正方形、六边形等,也可以是非规则多边形,如,梯形、不等边三角形等,具体本申请对隔离层的孔洞形状不做限定。此外,不仅孔洞的形状可基于需求自行设定,孔洞的开孔面积也可以自行设定,本申请对此不做限定。
在本申请上述实施方式中,具体阐述了隔离层的孔洞的形状可以根据需求自行设定,具备灵活性。
在第二方面的一种可能的实现方式中,该微纳米的柱状结构的形状可以是任意可加工的具有一定高度的任意形状,例如,可以是圆柱形、多棱柱形、圆锥形、多棱锥形、半球形、倒金字塔形、金字塔形中的任意一种或多种。
在本申请上述实施方式中,具体阐述了微纳米的柱状结构的形状也可以根据需求自行加工,具备可选择性。
在第二方面的一种可能的实现方式中,为了增大第一摩擦层与第二摩擦层之间的摩擦面积,还可以在每个微纳米的柱状结构上进行微纳米加工,具体地,该微纳米的柱状结构上可以利用蚀刻工艺蚀刻出微纳米级的毛刺结构,也可以称为二级微纳米结构,该毛刺结构可用于在所施加压力的作用下,增大第一摩擦层与第二摩擦层上感应出的净电荷的电荷量。
在本申请上述实施方式中,通过在每个微纳米的柱状结构上蚀刻出毛刺结构来增大第一摩擦层与第二摩擦层的摩擦面积,进而使得两个摩擦层上感应出的净电荷的电荷量增加,提高了该压力传感器的检测灵敏度。
在第二方面的一种可能的实现方式中,基于TENG的压力传感器可部署于可穿戴设备中,用于监测脉搏波动,可有效提高检测灵敏度。
在本申请上述实施方式中,阐述了本申请实施例提供的基于TENG的压力传感器的一种应用场景,具备可实现性。
在第二方面的一种可能的实现方式中,基于TENG的压力传感器可部署于具有触摸屏的电子设备,用于检测触摸动作,可有效提高检测灵敏度。
在本申请上述实施方式中,阐述了本申请实施例提供的基于TENG的压力传感器的另一种应用场景,具备可实现性。
本申请实施例第三方面还提供一种压力传感器,该压力传感器可以是压阻类型的压力传感器,也可以是压容类型的压力传感器,还可以是压电类型的压力传感器,具体本申请对此不做限定。该压力传感器包括:功能层、第一电极层、第二电极层,其中,所述第一电极层与所述第二电极层由具有导电能力的材料制成,在本申请实施例中,具有导电作用的电极线也认为是电极层,以下不再解释说明。所述功能层与所述第一电极层或所述第二电极层中的一个电极层相连;所述功能层的表面包括至少两种不同高度的微纳米的柱状结构,用于在有压力的情况下,在所述功能层上感应出与所述压力对应的第一信号;所述第一电极层以及所述第二电极层,用于基于所述第一信号产生第二信号。
在本申请上述实施方式中,多级微纳米结构(即至少两种不同高度的微纳米的柱状结构)不仅可以应用于基于摩擦纳米发电的压力传感器,也可以应用于压阻、压容、压电等类型的压力传感器,具备广泛适用性。
在第三方面的一种可能的实现方式中,在所述第一信号为第一电阻的情况下(即压力传感器为压阻类型),所述第二信号为第二电阻;或,在所述第一信号为第一电容的情况下(即压力传感器为压容类型),所述第二信号为第二电容;或,在所述第一信号为第一电压的情况下(即压力传感器为压电类型),所述第二信号为第二电压。
在本申请上述实施方式中,具体阐述了第一信号的类型不同,待输出的第二信号也不 同,可适用各种类型的压力传感器,具备灵活性。
在第三方面的一种可能的实现方式中,在所述第一信号为第一电阻的情况下(即压力传感器为压阻类型),功能层由在不同压力下具有电阻性能变化(即具有电阻特性)的材料制成;或,在所述第一信号为第一电容的情况下(即压力传感器为压容类型),功能层由在不同压力下具有电容性能变化(即具有电容特性)的材料制成;或,在所述第一信号为第一电压的情况下(即压力传感器为压电类型),功能层由在不同压力下具有压电性能变化(即具有压电特性)的材料制成。
在本申请上述实施方式中,具体阐述了不同类型的压力传感器中,功能层所具备的材料特性是不同的,具备灵活性。
在第三方面的一种可能的实现方式中,所述功能层可以是一个,也可以是两个,本申请对此不做限定。
在本申请上述实施方式中,不限定功能层的数量是一个还是两个,可基于实际应用选择,具备广泛适用性。
在第三方面的一种可能的实现方式中,一个微纳米的柱状结构可以是仅有一种材料制成,也可以是由至少两种不同取值的杨氏模量的材料制成,具备申请对此不做限定。
在本申请上述实施方式中,具体阐述了构成一个微纳米的柱状结构的材料,可以是一种材料,也可以是多种材料(杨氏模量不同),具备可选择性。
在第三方面的一种可能的实现方式中,所述微纳米的柱状结构由至少两个微纳米的子柱状结构堆叠得到,每个所述子柱状结构由一种杨氏模量的材料制成。也就是说,当微纳米的柱状结构是由至少两种不同的杨氏模量的材料制成,在这种情况下,该微纳米的柱状结构则由至少两个微纳米的子柱状结构堆叠得到,一个子柱状结构对应一种杨氏模量的材料。例如,假设一个微纳米的柱状结构由4个不同的杨氏模量的材料制成,则每种材料都对应一个子柱状结构,共有4个子柱状结构,其中,每个子柱状结构的高度可以相同,也可以不相同,此处不做限定。然后,这4个子柱状结构堆叠后形成所述的微纳米的柱状结构。
在本申请上述实施方式中,具体阐述了当微纳米的柱状结构是由至少两种不同的杨氏模量的材料制成时,微纳米的柱状结构是如何形成的,具备可实现性。
在第三方面的一种可能的实现方式中,所述至少两个微纳米的子柱状结构的横截面面积相同;或,所述至少两个微纳米的子柱状结构按照横截面面积从大到小的顺序依次堆叠。也就是说,该至少两个微纳米的子柱状结构包括但不限于:1)至少两个微纳米的子柱状结构的横截面面积相同,作为一个示例,假设共有4个子柱状结构,从压力传感器俯视图来看,这4个子柱状结构的横截面面积是一样的;2)至少两个微纳米的子柱状结构的横截面面积的取值不同,在这种情况下,则按照横截面面积的取值从大到小的顺序依次堆叠。
在本申请上述实施方式中,具体阐述了至少两个微纳米的子柱状结构进行堆叠的几种实现方式,具备灵活性。
在第三方面的一种可能的实现方式中,所述功能层还包括:第一预设高度的目标微纳米结构,所述第一预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的 高度。也就是说,在功能层上还可以生长一些预设高度的目标微纳米结构,该预设高度可称为第一预设高度h1,用于在外界施加的压力下提供支撑作用,以避免两个电极层在所述压力作用下直接贴合,需要注意的是,在本申请实施例中,第一预设高度h1大于至少两种不同高度的微纳米的柱状结构中任意一个的高度。
在本申请上述实施方式中,由于在实际应用中,在外界施加的压力比较大的时候,两个电极层(假设电极层不为电极线的情况)可能会存在完全贴合在一起的情形,这样的话会导致压力传感器的失效,降低压力传感器的灵敏度以及缩小其压力测量的范围。为降低这种情况发生的概率,在功能层上还可以生长一些预设高度的目标微纳米结构,从而达到提高压力测量范围的作用。
在第三方面的一种可能的实现方式中,所述传感器还包括:第二预设高度的隔离层,所述隔离层具有预设孔径的至少一个孔洞,所述隔离层位于所述功能层上,所述微纳米的柱状结构部署于所述隔离层的孔洞内,所述第二预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。也就是说,该压力传感器除了包括以上所述的功能层、第一电极层以及第二电极层之外,在功能层上还额外包括一个预设高度的隔离层,该预设高度可称为第二预设高度h2,第二预设高度h2大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。该隔离层具有预设孔径的至少一个孔洞,且该隔离层用于在外界施加压力下提供支撑作用,以避免两个电极层(假设电极层不为电极线的情况)在所述压力作用下直接贴合。在这种情况下,多级微纳米结构就生长于隔离层的孔洞内。
在本申请上述实施方式中,用于提供支撑作用的方式是额外在功能层上增加一个隔离层,多级微纳米结构则生长于隔离层的孔洞内,通过采用隔离层与多级结构设计的方式,降低该压力传感器因为弧垂的问题带来传感器测量时不一致的问题,并且可以通过设计多级结构的高度、面积以及隔离层的高度以及孔径大小、形状等使得传感器在线性度区间表达,且在各个静态力条件下灵敏度保持相同或接近。
在第三方面的一种可能的实现方式中,所述至少一个孔洞的形状包括如下任意一种或多种:圆形、椭圆形、多边形。也就是说,隔离层上的至少一个孔洞的形状可以是任意可加工的形状,例如,可以是圆形,也可以是椭圆形,还可以是多边形,进一步地,可以是规则多边形,如,等边三角形、正方形、六边形等,也可以是非规则多边形,如,梯形、不等边三角形等,具体本申请对隔离层的孔洞形状不做限定。此外,不仅孔洞的形状可基于需求自行设定,孔洞的开孔面积也可以自行设定,本申请对此不做限定。
在本申请上述实施方式中,具体阐述了隔离层的孔洞的形状可以根据需求自行设定,具备灵活性。
在第三方面的一种可能的实现方式中,该微纳米的柱状结构的形状可以是任意可加工的具有一定高度的任意形状,例如,所述微纳米的柱状结构的形状包括如下任意一种或多种:圆柱形、多棱柱形、圆锥形、多棱锥形、半球形、倒金字塔形、金字塔形。
在本申请上述实施方式中,具体阐述了微纳米的柱状结构的形状也可以根据需求自行加工,具备可选择性。
在第三方面的一种可能的实现方式中,不同高度的微纳米的柱状结构可以是周期性排 列的,也可以是不规则的乱序排列,具体本申请对此不做限定。
在本申请上述实施方式中,具体阐述了不同高度的微纳米的柱状结构几种排列方式,具备灵活性。
在第三方面的一种可能的实现方式中,该多级微纳米结构可以看作是一级微纳米结构,为了增大功能层的接触面积,还可以在该多级微纳米结构上(即每个微纳米的柱状结构上)进行微纳米加工,具体地,该多级微纳米结构上可以利用蚀刻工艺蚀刻出微纳米级的毛刺结构,也可以称为二级微纳米结构,该毛刺结构可用于在所施加压力的作用下,增大功能层上感应出的第一信号的强度。
在本申请上述实施方式中,通过在每个微纳米的柱状结构上蚀刻出毛刺结构来增大功能层与外界的接触面积,进而使得功能层上感应出的第一信号的强度增加,提高了该压力传感器的检测灵敏度。
在第三方面的一种可能的实现方式中,压力传感器可部署于可穿戴设备中,用于监测脉搏波动,可有效提高检测灵敏度。
在本申请上述实施方式中,阐述了本申请实施例提供的压力传感器的一种应用场景,具备可实现性。
在第三方面的一种可能的实现方式中,压力传感器可部署于具有触摸屏的电子设备,用于检测触摸动作,可有效提高检测灵敏度。
在本申请上述实施方式中,阐述了本申请实施例提供的压力传感器的另一种应用场景,具备可实现性。
本申请实施例第四方面还提供一种压力传感器,该压力传感器可以是压阻类型的压力传感器,也可以是压容类型的压力传感器,还可以是压电类型的压力传感器,具体本申请对此不做限定。该压力传感器包括:功能层、第一电极层、第二电极层,其中,所述第一电极层与所述第二电极层由具有导电能力的材料制成,在本申请实施例中,具有导电作用的电极线也认为是电极层,以下不再解释说明。所述功能层与所述第一电极层或所述第二电极层中的一个电极层相连;所述功能层的表面包括微纳米的柱状结构,用于在有压力的情况下,在所述功能层上感应出与所述压力对应的第一信号,所述微纳米的柱状结构由至少两种不同杨氏模量的材料制成;所述第一电极层以及所述第二电极层,用于基于所述第一信号产生第二信号。
在本申请上述实施方式中,多级微纳米结构(即至少两种不同高度的微纳米的柱状结构)不仅可以应用于基于摩擦纳米发电的压力传感器,也可以应用于压阻、压容、压电等类型的压力传感器,具备广泛适用性。
在第四方面的一种可能的实现方式中,在所述第一信号为第一电阻的情况下(即压力传感器为压阻类型),所述第二信号为第二电阻;或,在所述第一信号为第一电容的情况下(即压力传感器为压容类型),所述第二信号为第二电容;或,在所述第一信号为第一电压的情况下(即压力传感器为压电类型),所述第二信号为第二电压。
在本申请上述实施方式中,具体阐述了第一信号的类型不同,待输出的第二信号也不同,可适用各种类型的压力传感器,具备灵活性。
在第四方面的一种可能的实现方式中,在所述第一信号为第一电阻的情况下(即压力传感器为压阻类型),功能层由在不同压力下具有电阻性能变化(即具有电阻特性)的材料制成;或,在所述第一信号为第一电容的情况下(即压力传感器为压容类型),功能层由在不同压力下具有电容性能变化(即具有电容特性)的材料制成;或,在所述第一信号为第一电压的情况下(即压力传感器为压电类型),功能层由在不同压力下具有压电性能变化(即具有压电特性)的材料制成。
在本申请上述实施方式中,具体阐述了不同类型的压力传感器中,功能层所具备的材料特性是不同的,具备灵活性。
在第四方面的一种可能的实现方式中,所述功能层可以是一个,也可以是两个,本申请对此不做限定。
在本申请上述实施方式中,不限定功能层的数量是一个还是两个,可基于实际应用选择,具备广泛适用性。
在第四方面的一种可能的实现方式中,该微纳米的柱状结构则由至少两个微纳米的子柱状结构堆叠得到,一个子柱状结构对应一种杨氏模量的材料。例如,假设一个微纳米的柱状结构由4个不同的杨氏模量的材料制成,则每种材料都对应一个子柱状结构,共有4个子柱状结构,其中,每个子柱状结构的高度可以相同,也可以不相同,此处不做限定。然后,这4个子柱状结构堆叠后形成所述的微纳米的柱状结构。
在本申请上述实施方式中,具体阐述了当微纳米的柱状结构是由至少两种不同的杨氏模量的材料制成时,微纳米的柱状结构是如何形成的,具备可实现性。
在第四方面的一种可能的实现方式中,所述至少两个微纳米的子柱状结构的横截面面积相同;或,所述至少两个微纳米的子柱状结构按照横截面面积从大到小的顺序依次堆叠。也就是说,该至少两个微纳米的子柱状结构包括但不限于:1)至少两个微纳米的子柱状结构的横截面面积相同,作为一个示例,假设共有4个子柱状结构,从压力传感器俯视图来看,这4个子柱状结构的横截面面积是一样的;2)至少两个微纳米的子柱状结构的横截面面积的取值不同,在这种情况下,则按照横截面面积的取值从大到小的顺序依次堆叠。
在本申请上述实施方式中,具体阐述了至少两个微纳米的子柱状结构进行堆叠的几种实现方式,具备灵活性。
在第四方面的一种可能的实现方式中,多个所述微纳米的柱状结构至少存在两种不同高度。也就是说,在功能层上生成的微纳米柱状结构可以是多个,这多个微纳米的柱状结构的高度可以相同,也可以至少存在两种不同高度,具体本申请对此不做限定。例如,有100个微纳米的柱状结构,这100个微纳米的柱状结构的高度可以都相同,均为h0;这100个微纳米的柱状结构也可以有n种不同的高度,n≥2,如,其中50个微纳米的柱状结构的高度为H1,剩余的另50个微纳米的柱状结构的高度为H2。
在本申请上述实施方式中,具体阐述了功能层上生成的微纳米的柱状结构的高度可以相同,也可以不相同,可基于所需测量的压力区间以及灵敏度要求自行设计微纳米的柱状结构的高度,具备灵活性。
在第四方面的一种可能的实现方式中,不同高度的微纳米的柱状结构可以是周期性排 列的,也可以是不规则的乱序排列,具体本申请对此不做限定。
在本申请上述实施方式中,具体阐述了不同高度的微纳米的柱状结构几种排列方式,具备灵活性。
在第四方面的一种可能的实现方式中,所述功能层还包括:第一预设高度的目标微纳米结构,所述第一预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。也就是说,在功能层上还可以生长一些预设高度的目标微纳米结构,该预设高度可称为第一预设高度h1,用于在外界施加的压力下提供支撑作用,以避免两个电极层在所述压力作用下直接贴合,需要注意的是,在本申请实施例中,第一预设高度h1大于至少两种不同高度的微纳米的柱状结构中任意一个的高度。
在本申请上述实施方式中,由于在实际应用中,在外界施加的压力比较大的时候,两个电极层(假设电极层不为电极线的情况)可能会存在完全贴合在一起的情形,这样的话会导致压力传感器的失效,降低压力传感器的灵敏度以及缩小其压力测量的范围。为降低这种情况发生的概率,在功能层上还可以生长一些预设高度的目标微纳米结构,从而达到提高压力测量范围的作用。
在第四方面的一种可能的实现方式中,所述传感器还包括:第二预设高度的隔离层,所述隔离层具有预设孔径的至少一个孔洞,所述隔离层位于所述功能层上,所述微纳米的柱状结构部署于所述隔离层的孔洞内,所述第二预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。也就是说,该压力传感器除了包括以上所述的功能层、第一电极层以及第二电极层之外,在功能层上还额外包括一个预设高度的隔离层,该预设高度可称为第二预设高度h2,第二预设高度h2大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。该隔离层具有预设孔径的至少一个孔洞,且该隔离层用于在外界施加压力下提供支撑作用,以避免两个电极层(假设电极层不为电极线的情况)在所述压力作用下直接贴合。在这种情况下,多级微纳米结构就生长于隔离层的孔洞内。
在本申请上述实施方式中,用于提供支撑作用的方式是额外在功能层上增加一个隔离层,多级微纳米结构则生长于隔离层的孔洞内,通过采用隔离层与多级结构设计的方式,降低该压力传感器因为弧垂的问题带来传感器测量时不一致的问题,并且可以通过设计多级结构的高度、面积以及隔离层的高度以及孔径大小、形状等使得传感器在线性度区间表达,且在各个静态力条件下灵敏度保持相同或接近。
在第四方面的一种可能的实现方式中,所述至少一个孔洞的形状包括如下任意一种或多种:圆形、椭圆形、多边形。也就是说,隔离层上的至少一个孔洞的形状可以是任意可加工的形状,例如,可以是圆形,也可以是椭圆形,还可以是多边形,进一步地,可以是规则多边形,如,等边三角形、正方形、六边形等,也可以是非规则多边形,如,梯形、不等边三角形等,具体本申请对隔离层的孔洞形状不做限定。此外,不仅孔洞的形状可基于需求自行设定,孔洞的开孔面积也可以自行设定,本申请对此不做限定。
在本申请上述实施方式中,具体阐述了隔离层的孔洞的形状可以根据需求自行设定,具备灵活性。
在第四方面的一种可能的实现方式中,该微纳米的柱状结构的形状可以是任意可加工 的具有一定高度的任意形状,例如,所述微纳米的柱状结构的形状包括如下任意一种或多种:圆柱形、多棱柱形、圆锥形、多棱锥形、半球形、倒金字塔形、金字塔形。
在本申请上述实施方式中,具体阐述了微纳米的柱状结构的形状也可以根据需求自行加工,具备可选择性。
在第四方面的一种可能的实现方式中,该多级微纳米结构可以看作是一级微纳米结构,为了增大功能层的接触面积,还可以在该多级微纳米结构上(即每个微纳米的柱状结构上)进行微纳米加工,具体地,该多级微纳米结构上可以利用蚀刻工艺蚀刻出微纳米级的毛刺结构,也可以称为二级微纳米结构,该毛刺结构可用于在所施加压力的作用下,增大功能层上感应出的第一信号的强度。
在本申请上述实施方式中,通过在每个微纳米的柱状结构上蚀刻出毛刺结构来增大功能层与外界的接触面积,进而使得功能层上感应出的第一信号的强度增加,提高了该压力传感器的检测灵敏度。
在第四方面的一种可能的实现方式中,压力传感器可部署于可穿戴设备中,用于监测脉搏波动,可有效提高检测灵敏度。
在本申请上述实施方式中,阐述了本申请实施例提供的压力传感器的一种应用场景,具备可实现性。
在第四方面的一种可能的实现方式中,压力传感器可部署于具有触摸屏的电子设备,用于检测触摸动作,可有效提高检测灵敏度。
在本申请上述实施方式中,阐述了本申请实施例提供的压力传感器的另一种应用场景,具备可实现性。
本申请实施例第五方面还提供一种电子设备,该电子设备可以包括上述第一方面或第一方面任意一种可能实现方式的压力传感器,或,该电子设备可以包括上述第二方面或第一方面任意二种可能实现方式的压力传感器,或,该电子设备可以包括上述第三方面或第三方面任意一种可能实现方式的压力传感器,或,该电子设备可以包括上述第四方面或第四方面任意二种可能实现方式的压力传感器。
附图说明
图1为基于TENG的压力传感器的一个原理示意图;
图2为对一个摩擦层的表面进行SEM测试得到的测试结果图;
图3为本申请实施例提供的基于TENG的压力传感器的一个结构示意图;
图4为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图5为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图6为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图7为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图8为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图9为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图10为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图11为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图12为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图13为本申请实施例提供的具有第一预设高度的目标微纳米结构的基于TENG的压力传感器的一个结构示意图;
图14为本申请实施例提供的摩擦层的加工过程的一个示意图;
图15为本申请实施例提供的基于TENG的压力传感器的另一结构示意图;
图16为本申请实施例提供的多级微纳米结构生长于隔离层中的孔洞中的一个示意图;
图17为本申请实施例提供的孔洞形状的一个示意图;
图18为本申请实施例提供的摩擦层以及隔离层的加工过程的一个示意图;
图19为本申请实施例提供的压力传感器的一个结构示意图;
图20为本申请实施例提供的压力传感器的另一结构示意图;
图21为本申请实施例提供的压力传感器的另一结构示意图;
图22为本申请实施例提供的压力传感器的另一结构示意图;
图23为本申请实施例提供的功能层的一个结构示意图;
图24为本申请实施例提供的功能层的另一结构示意图。
具体实施方式
本申请实施例提供了一种基于摩擦纳米发电的压力传感器,该压力传感器的至少一个摩擦层的表面包括多级微纳米结构(即包括至少两种不同高度的微纳米的柱状结构),通过设计的不同高度的多级结构,使得压力传感器对大静态力也能保持高灵敏度,并且可扩展压力传感器的测量区间,使得传感器在各个静态力下保持相同或类似的灵敏度。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、***、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请实施例涉及了许多关于传感器的相关知识,为了更好地理解本申请实施例的方案,下面先对本申请实施例可能涉及的相关术语和概念进行介绍。应理解的是,相关的概念解释可能会因为本申请实施例的具体情况有所限制,但并不代表本申请仅能局限于该具体情况,在不同实施例的具体情况可能也会存在差异,具体此处不做限定。
(1)压力传感器
压力传感器是能感受压力信号,并能按照一定的规律将压力信号转换成可用的输出的电信号的器件或装置。压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。
在实际应用中,比较典型的几种压力传感器包括电阻式压力传感器、电容式压力传感 器、压电式压力传感器、基于TENG的压力传感器。
其中,电阻式压力传感器在外部施加压力时,两极板间的接触面积在压力作用下发生的变化会导致电阻发生变化,通过对电阻值与压力值之间的标定,可以通过外部电路的阻值反推出压力值;类似地,电容式压力传感器在外部施加压力时,两极板间的板间距在压力作用下发生的变化会导致电容发生变化,通过对电容值与压力值之间的标定,可以反推出压力值;压电式压力传感器在外部施加压力时,两极板在外力作用下产生的形变会导致电荷发生变化,通过对电压值与压力值之间的标定,可以通过外部电路的电压反推出压力值;基于TENG的压力传感器在外部压力的作用下,压力导致摩擦层距离变化,以及因为摩擦产生的电荷变化导致外部的电压的变化,摩擦层的材料一般选择得失电子能力差异较大的材料,所以外力会导致电极两侧的电压的极大变化。
上述四种典型的压力传感器的特点可总结如表1所示,其中,基于TENG的压力传感器与其他几种类型的压力传感器相比,具备可选材料广泛、动态响应好、响应时间快、所测生理信号细节丰富等优点而受到广泛关注。
表1、四种原理的压力传感器特点归纳
类型 特点
压阻式压力传感器 可测量动态、静态压力信号,但滞后现象较为严重
电容式压力传感器 测量精度高,动态响应特性好,但易受外界环境干扰(寄生电容)
压电式压力传感器 结构简单,灵敏度高,但材料需定制
基于TENG的压力传感器 可选材料广泛,动态响应好,响应时间快,所测生理信号细节丰富
下面结合附图,对本申请的实施例进行描述。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面从不同类型的压力传感器的角度分别对本申请实施例的技术方案进行介绍:
一、基于TENG的压力传感器
首先,对本申请实施例提供的基于TENG的压力传感器进行介绍,具体请参阅图3,图3为本申请实施例提供的基于TENG的压力传感器的一个结构示意图,该基于TENG的压力传感器包括两个摩擦层(分别为第一摩擦层301以及第二摩擦层302)和一个电极层(可称为第一电极层303),其中,第一摩擦层301与第二摩擦层302由得失电子能力不同的材料制成,例如,摩擦层的材料可以选择PTFE、PET、PE、PDMS、FEP等材料,需注意的是,第一摩擦层301与第二摩擦层302选择的材料需不同。第一电极层301由具有导电能力的材料制成,例如,可以采用金属材料(金、银、铜等)、导电材料(石墨烯、银纳米线、ITO等)等具有导电能力的材料。第一摩擦层301与第一电极层303相连。具体地,在第一摩擦层301以及第二摩擦层302中的至少一个摩擦层的表面生长有多级微纳米结构(图3示意的是在第一摩擦层301的表面包括多级微纳米结构,实际在第二摩擦层302的表面也可以生成多级微纳米结构,此处不予赘述),用于在有压力的情况下,在第一摩擦层301及第二摩擦层302上感应出与所施加压力对应的等量相反的净电荷,同时也可以提供支撑作用;而第一电极层303则用于基于两个摩擦层上感应出的等量相反的净电荷产生电流。最后,经过电流与所施加压力的换算(在一些实施方式中,也可以是计算电压的变化), 反推出所施加的压力值。
这里需要注意的是,在本申请实施例中,第一电极层303也可以是具有导电作用的电极线,本申请对此不做限定。还需要注意的是,在本申请实施例中,当只有第一电极层303时,该第一电极层303是接地的。还需要注意的是,在本申请的一些应用场景中,摩擦层也可以作为导电作用的电极层使用,本申请对此不做限定。
需要说明的是,在本申请的另一些实施方式中,该基于TENG的压力传感器还可以包括第二电极层,具体请参阅图4,图4为本申请实施例提供的基于TENG的压力传感器的另一个结构示意图,该基于TENG的压力传感器包括两个摩擦层(分别为第一摩擦层301以及第二摩擦层302)和两个电极层(分别为第一电极层303以及第二电极层304),其中,第一摩擦层301与第二摩擦层302由得失电子能力不同的材料制成,例如,摩擦层的材料可以选择PTFE、PET、PE、PDMS、FEP等材料,需注意的是,第一摩擦层301与第二摩擦层302选择的材料需不同。第一电极层301与第二电极层302由具有导电能力的材料制成,例如,可以采用金属材料(金、银、铜等)、导电材料(石墨烯、银纳米线、ITO等)等具有导电能力的材料。第一摩擦层301与第一电极层303相连,第二摩擦层302与第二电极层304相连。
具体地,在第一摩擦层301以及第二摩擦层302中的至少一个摩擦层的表面生长有多级微纳米结构(图3示意的是在第一摩擦层301的表面包括多级微纳米结构,实际在第二摩擦层302的表面也可以生成多级微纳米结构,此处不予赘述),用于在有压力的情况下,在第一摩擦层301及第二摩擦层302上感应出与所施加压力对应的等量相反的净电荷,同时也可以提供支撑作用;而第一电极层303以及第二电极层304,则用于基于两个摩擦层上感应出的等量相反的净电荷产生电流。最后,经过电流与所施加压力的换算,反推出所施加的压力值。为便于阐述,在以下实施例中,基于TENG的压力传感器均以包括两个电极层为例进行示意。
需要注意的是,在本申请实施例中,多级微纳米结构包括至少两种不同高度的微纳米的柱状结构,图4示意的是两种不同高度的微纳米的柱状结构周期性排列,在实际应用中,多级微纳米结构可以是n种不同高度的微纳米的柱状结构,n≥2。
作为一种示例,图4示意的是n=2时,不同高度的微纳米的柱状结构周期性排列;作为另一示例,图5示意的是n=4时,不同高度的微纳米的柱状结构周期性排列。一般来说,n的取值越大,意味着多级微纳米结构的级数越多,在第一摩擦层301与第二摩擦层302之间形成的不同高度就越多样,那么在外力作用下,由于高度各不相同,导致不同地方产生的净电荷也不同,间接提高了压力传感器的灵敏度。
需要说明的是,在图4以及图5对应的实施例中,不同高度的微纳米的柱状结构都是周期性排列的,在本申请的另一些实施方式中,除了周期性排列,也可以是不规则的乱序排列,具体本申请对此不做限定。
还需要说明的是,在本申请实施例中,所施加的压力可以施加在第一电极层303上,也可以施加在第二电极层304上,也可以同时施加在第一电极层303以及第二电极层304上(图4示意的是施加在两个电极层上),具体由该基于TENG的压力传感器的实际应用场 景决定,本申请对此不做限定。
还需要说明的是,在本申请的一些实施方式中,该微纳米的柱状结构可以看作是一级微纳米结构,为了增大第一摩擦层301与第二摩擦层302之间的摩擦面积,还可以在该微纳米的柱状结构上进行微纳米加工,具体地,该微纳米的柱状结构上可以利用蚀刻工艺蚀刻出微纳米级的毛刺结构(如图4或图5所示),也可以称为二级微纳米结构,该毛刺结构可用于在所施加压力的作用下,增大第一摩擦层301与第二摩擦层302的摩擦面积,进而使得两个摩擦层上感应出的净电荷的电荷量增加,提高了该压力传感器的检测灵敏度。
还需要说明的是,在本申请的一些实施方式中,该微纳米的柱状结构的形状可以是任意可加工的具有一定高度的形状,例如,可以是圆柱形、多棱柱形、圆锥形、多棱锥形、半球形、倒金字塔形、金字塔形中的任意一种或多种,在图4和图5所示的实施例中,示意的微纳米的柱状结构的形状为立方体形(属于多棱柱形的一种),在图6中,示意的微纳米的柱状结构的形状则为半圆形(假设n=2,即包括两种不同高度的微纳米的柱状结构周期性排列);而在图7中,示意的微纳米的柱状结构的形状则包括半圆形和立方体形两种的混合(假设n=2,即包括两种不同高度的微纳米的柱状结构周期性排列),具体本申请不再举例进行示意。
还需要说明的是,在本申请的另一些实施方式中,一个微纳米的柱状结构可以由一种材料制成,具体地,属于同一种高度的微纳米的柱状结构可以由一种材料制成,属于另一种高度的微纳米的柱状结构则由另一种材料制成,不同的材料杨氏模量不同。作为一种示例,可参阅图8,图8中的(a)子示意图示意的是每个微纳米的柱状结构均是由同一种材料A制成;而图8中的(b)子示意图示意的是属于同一高度的微纳米的柱状结构是一种材料(即材料A)制成,属于另一个高度的微纳米的柱状结构则由另一种材料(即材料B)制成,总之,每个单独的一个微纳米的柱状结构是由一种材料制成。
还需要说明的是,在本申请的另一些实施方式中,一个微纳米的柱状结构也可以由至少两种不同杨氏模量的材料制成。具体地,在本申请的一种具体实现方式中,微纳米的柱状结构可以由至少两个微纳米的子柱状结构堆叠得到,一个子柱状结构对应一种杨氏模量的材料。
需要说明的是,在本申请的一些实施方式中,该至少两个微纳米的子柱状结构包括但不限于:
1)至少两个微纳米的子柱状结构的横截面面积相同,作为一个示例,假设共有4个子柱状结构,分别为A、B、C、D,从压力传感器的俯视图来看,这4个子柱状结构的横截面面积是一样的,均为S0;作为一种示例,具体可参阅图9,此处不予赘述。这里需要注意的是,这4个子柱状结构的高度可以相同,也可以不相同,图9示意的是不相同的情况,具体此处不予赘述。
2)至少两个微纳米的子柱状结构的横截面面积的取值不同,在这种情况下,则按照横截面面积的取值从大到小的顺序依次堆叠,作为一种示例,假设共有4个子柱状结构,分别为A、B、C、D,横截面长度的取值分别为S1、S2、S3、S4,且S1<S2<S3<S4,那么在该至少一个摩擦层上的堆叠方式为:D位于该至少一个摩擦层表面,C堆叠在D上, B堆叠在C上,A堆叠在B上。具体地,堆叠的方式可以如图10中子柱状结构的一边对齐的方式进行堆叠(即形成台阶状),也可以如图11中子柱状结构两边都不对齐的方式进行堆叠,具体本申请对此不做限定。同样需要注意的是,在本申请实施例中,这4个子柱状结构的高度可以相同,也可以不相同,图10以及图11示意的是相同的情况,具体此处不予赘述。还需要注意的是,图10以及图11示意的微纳米的柱状结构的高度是相同的,在本申请的一些实施方式中,由多种不同杨氏模量的材料的子柱状结构堆叠成的微纳米的柱状结构的高度也可以不同,即多个微纳米的柱状结构至少存在两种不同高度,如图12所示,台阶状的微纳米的微纳米柱状结构包括2种高度。实际可以有更多种高度,此处不予赘述。
此外,由于在实际应用中,在外界施加的压力比较大的时候,第一摩擦层301与的第二摩擦层302可能会存在完全贴合在一起的情形,这样的话会导致压力传感器的失效,降低压力传感器的灵敏度以及缩小其压力测量的范围。为降低这种情况发生的概率,在本申请的另一些实施例中,所述第一摩擦层301与所述第二摩擦层302中的至少一个摩擦层上还可以生长一些预设高度的目标微纳米结构,该预设高度可称为第一预设高度h1,用于在外界施加的压力下提供支撑作用,以避免第一摩擦层301与第二摩擦层302在所述压力作用下直接贴合,需要注意的是,在本申请实施例中,第一预设高度h1大于至少两种不同高度的微纳米的柱状结构中任意一个的高度。
为便于理解,下面举例进行示意,具体请参阅图13,图13为本申请实施例提供的具有第一预设高度的目标微纳米结构的基于TENG的压力传感器的一个结构示意图,由图13可以看出,在目标微纳米结构的支撑作用下,外界所施加的压力不容易使得两个摩擦层完全贴合在一起,从而扩展了该基于TENG的压力传感器的压力测量区间,提高了灵敏度。
在上述图3至图13对应的实施例的基础上,下面对上述基于TENG的压力传感器的两个摩擦层的加工过程进行说明,具体请参阅图14,图14为本申请实施例提供的摩擦层的加工过程的一个示意图,其中,第一摩擦层301为摩擦层1,第二摩擦层302为摩擦层2,该加工过程包括如下几个步骤:
1、摩擦层处理
对于多级结构设计的加工过程,可以对单个摩擦层或多个摩擦层进行预处理以及光刻处理,得到多个高度不同的微纳米的柱状结构,即所述的多级微纳米结构,也可称为一级微纳米结构,可以是圆形,也可以是多边形,具体本申请对此不做限定。之后,再利用蚀刻工艺蚀刻出二级微纳米结构,即形成毛刺结构,用于提高该基于TENG的压力传感器的提高灵敏度。
需要说明的是,在本申请实施例中,所述的多级微纳米结构可采用纳米压印、模具脱模等方式形成多个高度不同的一级微纳米的柱状结构。
还需要说明的是,在本申请的一些实施方式中,若所述的多级微纳米结构是采用堆叠的方式形成不同高度或相同高度的微纳米结构(如图9-图12所示),那么加工方式则可以是将多个杨氏模量不同的材料堆叠,并用不同大小、形状的掩模板进行光刻,从而形成多台阶的一级微纳米结构,然后进行二级微纳米加工,得到毛刺结构。
2、电极处理及引线
在本申请实施例中,可以采用镀膜、贴合、旋涂等方式将电极处理在摩擦层的外侧表面,并将导线引出。
3、封装处理
将加工完成的膜材进行堆叠,即在摩擦层上附上电极层,采用涂胶、压合等方式进行封装处理。
此外,需要注意的是,在本申请上述实施方式中,在第一摩擦层301与第二摩擦层302中的至少一个摩擦层上生长一些第一预设高度h1的目标微纳米结构用于在外界施加的压力下提供支撑作用的方式加工方式比较复杂,因此,为减少工艺复杂度,在本申请的另一些实施方式中,也可以采用添加隔离层的方案,具体请参阅图15,图15为本申请实施例提供的基于TENG的压力传感器的另一结构示意图,在图15中,该基于TENG的压力传感器除了包括以上所述的第一摩擦层301、第二摩擦层302、第一电极层303以及第二电极层304之外,在第一摩擦层301与第二摩擦层302之间还额外包括一个预设高度的隔离层305,该预设高度可称为第二预设高度h2,第二预设高度h2大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。该隔离层305具有预设孔径的至少一个孔洞(图15中未示出),用于在外界施加压力下提供支撑作用,以避免第一摩擦层301与第二摩擦层302在所述压力作用下直接贴合。在这种情况下,多级微纳米结构就生长于隔离层305的孔洞内,如图16所示,图16为本申请实施例提供的多级微纳米结构生长于隔离层305中的孔洞中的一个示意图。
这里需要注意的是,隔离层305也可设计为不同高度的子隔离层的拼接,例如,隔离层305可以由m个子隔离层构成,每个子隔离层的高度可以设置的不一样,即第二预设高度h2可以是一种高度值,也可以是多种高度值,具体本申请对此不做限定。
需要说明的是,在本申请的一些实施方式中,所述隔离层305上的至少一个孔洞的形状可以是任意可加工的形状,例如,可以是圆形(如图17中的(a)子示意图所示),也可以是椭圆形,还可以是多边形,进一步地,可以是规则多边形,如,等边三角形、正方形(如图17中的(b)子示意图所示)、六边形等,也可以是非规则多边形,如,梯形、不等边三角形等,具体本申请对隔离层305的孔洞形状不做限定。此外,不仅孔洞的形状可基于需求自行设定,孔洞的开孔面积也可以自行设定,本申请对此不做限定。
类似地,在上述图15至图17对应的实施例的基础上,下面对上述基于TENG的压力传感器的两个摩擦层以及隔离层的加工过程进行说明,具体请参阅图18,图18为本申请实施例提供的摩擦层以及隔离层的加工过程的一个示意图,其中,第一摩擦层301为摩擦层1,第二摩擦层302为摩擦层2,该加工过程包括如下几个步骤:
1、摩擦层处理
对于多级结构设计的加工过程,可以对单个摩擦层或多个摩擦层进行预处理以及光刻处理,得到多个高度不同的微纳米的柱状结构,即所述的多级微纳米结构,也可称为一级微纳米结构,可以是圆形,也可以是多边形,具体本申请对此不做限定。之后,再利用蚀刻工艺蚀刻出二级微纳米结构,即形成毛刺结构,用于提高该基于TENG的压力传感器的 提高灵敏度。
需要说明的是,在本申请实施例中,所述的多级微纳米结构可采用纳米压印、模具脱模等方式形成多个高度不同的一级微纳米的柱状结构。
还需要说明的是,在本申请的一些实施方式中,若所述的多级微纳米结构是采用堆叠的方式形成不同高度或相同高度的微纳米结构(如8-图12所示),那么加工方式则可以是将多个杨氏模量不同的材料堆叠,并用不同大小、形状的掩模板进行光刻,从而形成多台阶的一级微纳米结构,然后进行二级微纳米加工,得到毛刺结构。
2、电极处理及引线
在本申请实施例中,可以采用镀膜、贴合、旋涂等方式将电极处理在摩擦层的外侧表面,并将导线引出。
3、隔离层处理
首先对隔离层的表面进行预处理,之后可以采用模具模压、压印、机械打孔、激光打孔等方法在隔离层上进行打孔处理。
4、封装处理
将加工完成的膜材进行堆叠,即在摩擦层上附上电极层,并将隔离层放置在两个摩擦层之间,采用涂胶、压合等方式进行封装处理。
在本申请上述实施方式中,可以通过多级微纳米结构设计或隔离层与多级微纳米结构结合的方式,扩展基于TENG的压力传感器的测量区间,提高灵敏度。并且,通过多级微纳米结构的面积与高度的协同,使得基于TENG的压力传感器在各个静态力下保持相同或类似的灵敏度;也可以通过隔离层(高度、孔径、形状等)与多级结构的(高度、面积、形状、分布)等设计,使得基于TENG的压力传感器在在不同静态力下的灵敏度趋近相同。
下面对本申请实施例提供的基于TENG的压力传感器的应用场景进行介绍,包括但不限于应用在如下设备中:
1、部署于可穿戴设备
人体脉搏波是检测人体生理的重要信息,通过压力的方式对脉搏波进行测量需要传感器具有极高的灵敏度,且为了适应在不同静态力可以测量到精度的脉搏波信息,需要压力传感器在不同静态力保持高灵敏度。因此,本申请上述实施例所提供的基于TENG的压力传感器可部署于可穿戴设备中,用于监测脉搏波动,可有效提高检测灵敏度。
2、部署于具有触摸屏的电子设备
具有触摸屏的电子设备属于一种新型的计算机设备,为了操作上的方便,人们用触摸屏来代替鼠标、键盘等。在使用时,用户首先用手指或其他物体触摸电子设备屏幕前端的触摸屏,然后设备根据手指触摸的图标或菜单位置来定位选择信息输入。
目前随着多媒体技术和图形用户界面的发展,对触摸屏的灵敏度的要求也越来越高。因此,本申请上述实施例所提供的基于TENG的压力传感器可部署于具有触摸屏的电子设备中,用于检测触摸动作,可有效提高检测灵敏度。
除了上述所述的两种典型的应用场景,本申请实施例提供的压力传感器还可以用于轮式移动设备上(如,室内机器人、车辆(如,自动驾驶车辆、普通车辆等))上,例如,可 用于检测车辆轮胎的压力等,具体本申请对此不再举例示意。
二、压阻、压容、压电类型的压力传感器
本申请实施例提出的多级微纳米结构除了可以应用在基于TENG的压力传感器上之外,也可以应用于其他类型的压力传感器,该压力传感器可以是压阻类型的压力传感器,也可以是压容类型的压力传感器,还可以是压电类型的压力传感器,具体本申请对此不做限定。具体请参阅图19,图19为本申请实施例提供的压力传感器的一个结构示意图,该压力传感包括一个功能层(可称为第一功能层401)以及两个电极层(分别为第一电极层402和第二电极层403),其中,第一电极层402与第二电极层403由具有导电能力的材料制成,例如,可以采用金属材料(金、银、铜等)、导电材料(石墨烯、氧化铟锡(indium tin oxides,ITO)、银纳米线等)等具有导电能力的材料。第一功能层401与所述第一电极层402或第二电极层403中的一个电极层相连。
第一功能层401的表面包括至少两种不同高度的微纳米的柱状结构,用于在有压力的情况下,在第一功能层401上感应出与所述压力对应的第一信号;所述第一电极层402以及第二电极层403,用于基于第一信号产生第二信号。需要说明的是,在本申请实施例中,在第一功能层401的表面生长的不同高度的微纳米的柱状结构与上述方式一中基于TENG的压力传感器类似,具体可参阅上述方式一中的表述,此处不予赘述。
需要说明的是,在本申请实施例中,第一电极层402和/或第二电极层403也可以是具有导电能力的导线,电极层也可以是层级材料、插值电极、导线的组合等。如图20的示例,示意的是第一电极层402为导电线的情形(第二电极层403为导线的情形是类似的,此处不予赘述)。
还需要说明的是,在本申请的一些实施方式中,所述功能层可以是一个,也可以是两个,本申请对此不做限定。具体地,该压力传感器还可以包括一个功能层,具体可参阅图21,图21为本申请实施例提供的压力传感器的另一结构示意图,该额外增加的功能层可称为第二功能层404。
还需要说明的是,在本申请的一些实施方式中,第一功能层401上还可以额外包括一个预设高度的隔离层,具体请参阅图22,图22为本申请实施例提供的压力传感器的另一结构示意图,该隔离层405的预设高度可称为第二预设高度,第二预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。该隔离层405具有预设孔径的至少一个孔洞,且该隔离层405用于在外界施加压力下提供支撑作用,以避免两个电极层(假设电极层不为电极线的情况)在所述压力作用下直接贴合。在这种情况下,多级微纳米结构就生长于隔离层的孔洞内。具体地,该隔离层405的设置于上述方式一中基于TENG的压力传感器类似,具体可参阅上述方式一中的表述,此处不予赘述。
还需要说明的是,在本申请的一些实施方式中,在第一信号为第一电阻的情况下(即压力传感器为压阻类型),第二信号为第二电阻,且功能层由在不同压力下具有电阻性能变化(即具有电阻特性)的材料制成;或,在第一信号为第一电容的情况下(即压力传感器为压容类型),第二信号为第二电容,且功能层由在不同压力下具有电容性能变化(即具有电容特性)的材料制成;或,在第一信号为第一电压的情况下(即压力传感器为压电类型), 第二信号为第二电压,且功能层由在不同压力下具有压电性能变化(即具有压电特性)的材料制成。
由于不同的类型的压力传感器,在结构上都可以是图19-图22所示意的结构,但由于功能层的所选用的材料和性质会略有不同,下面分别基于各个类型的压力传感器的原理分别进行阐述:
(1)压阻类型的压力传感器
以压阻性传感器为例,功能层可以为具有导电材料的物质组成,例如:石墨烯、碳纳米管、氧化石墨烯、石墨、铜、银纳米线、ITO等组成。
功能层的结构可以由导电材料及基底材料组成,如图23所示,图23为本申请实施例提供的功能层的一个结构示意图。基底材料可以选择PTFE、PET、PE、PDMS、FEP等材料,可选地,基底材料可以由不同大小的盐粒、沙粒、微纳小球等结构组成。导电材料则可以通过蒸镀、溅射、旋涂等加工方法制作在基底材料表面。表面的纤毛结构可以采用蚀刻产生纤毛结构。
需要注意的是,在本申请的一些实施方式中,也可以不要基底材料,而是让导电材料直接部署于电极层上,如图24所示。
压阻式传感器的工作原理:当时外部施加压力时,电阻产生变化。电阻变化主要由接触面积变化及内部结构变化引起。采用多级微纳支撑结构,隔离结构可以扩展传感器的测量范围,同时,高度不同的结构可以让上下极面进行接触,若隔离层的高度为h,则传统结构需要极面形变超过h会产生较大响应。功能层凸起的高度为s,则上下极面形变在(h-s)则可产生较大接触面积变化,输出电阻产生较大变化。因此凸起高度可以降低传感器检测极限。高度不同的设计,可以让传感器在不同静态力下有较高的检测灵敏度。如图22所示,在外部压力条件下,极板与其中凸起高度接触,在小压力下在具有低检测极限和高灵敏度。
(2)电容类型的压力传感器
以电容式传感器为例,功能层可采用非导电材料实现。
电容式传感器的工作原理:当有外部压力时,会引起电容式传感器上下极面的距离变化、功能层的介电常数发生变化从而产生电容变化。功能层的介电常数发生变化主要由压力导致的功能层产生的形变,从而引起介电常数的变化。隔离层可以扩展传感器的测量范围,同时,高度不同的结构可以让上下极面进行接触,若隔离层的高度为h,则传统结构需要极面形变超过h会产生较大响应。功能层凸起的高度为s,则上下极面形变在(h-s)则可产生较大接触面积变化,从而引起功能层的形变,引起介电常数的变化,从而输出电容产生较大变化。因此凸起高度可以降低传感器检测极限。高度不同的设计,可以让传感器在不同静态力下有较高的检测灵敏度。如图22所示,在外部压力条件下,极板与其中凸起高度接触,在小压力下在具有低检测极限和高灵敏度。
(3)压电类型的压力传感器
以压电式传感器为例,功能层可选采用压电材料及压电驻极体。
压电式传感器的工作原理:当有外部压力时,会引起压电式传感器上下极面的距离变化或功能层的压电电压发生变化从而产生电容变化。功能层的介电常数发生变化主要由压 力导致的功能层产生的形变,从而引起压电电压的变化。隔离层可以扩展传感器的测量范围,同时,高度不同的结构可以让上下极面进行接触,若隔离层的高度为h,则传统结构需要极面形变超过h会产生较大响应。功能层凸起的高度为s,则上下极面形变在(h-s)则可产生较大接触面积变化,从而引起功能层的形变,引起压电电压的变化,从而输出电容产生较大变化。因此凸起高度可以降低传感器检测极限。高度不同的设计,可以让传感器在不同静态力下有较高的检测灵敏度。如图22所示,在外部压力条件下,极板与其中凸起高度接触,在小压力下在具有低检测极限和高灵敏度。
在本申请上述实施方式中,多级微纳米结构(即至少两种不同高度的微纳米的柱状结构)不仅可以应用于基于摩擦纳米发电的压力传感器,也可以应用于压阻、压容、压电等类型的压力传感器,具备广泛适用性。

Claims (22)

  1. 一种基于摩擦纳米发电的压力传感器,其特征在于,包括:
    第一摩擦层、第二摩擦层、第一电极层,其中,所述第一摩擦层与所述第二摩擦层由得失电子能力不同的材料制成,所述第一电极层由具有导电能力的材料制成,所述第一摩擦层与所述第一电极层相连;
    所述第一摩擦层以及所述第二摩擦层中的至少一个摩擦层的表面包括至少两种不同高度的微纳米的柱状结构,用于在有压力的情况下,在所述第一摩擦层及所述第二摩擦层上感应出与所述压力对应的等量相反的净电荷;
    所述第一电极层,用于基于所述净电荷产生电流。
  2. 根据权利要求1所述的传感器,其特征在于,所述传感器还包括:
    第二电极层,所述第二电极层由具有导电能力的材料制成,所述第二摩擦层与所述第二电极层相连;
    所述第一电极层,用于基于所述净电荷产生电流包括:
    所述第一电极层以及所述第二电极层,用于基于所述净电荷产生电流。
  3. 根据权利要求1-2中任一项所述的传感器,其特征在于,所述微纳米的柱状结构由至少两种不同杨氏模量的材料制成。
  4. 根据权利要求3所述的传感器,其特征在于,所述微纳米的柱状结构由至少两个微纳米的子柱状结构堆叠得到,每个所述子柱状结构由一种杨氏模量的材料制成。
  5. 根据权利要求4所述的传感器,其特征在于,
    所述至少两个微纳米的子柱状结构的横截面面积相同;
    或,
    所述至少两个微纳米的子柱状结构按照横截面面积从大到小的顺序依次堆叠。
  6. 根据权利要求1-5中任一项所述的传感器,其特征在于,所述至少一个摩擦层,还包括:
    第一预设高度的目标微纳米结构,所述第一预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。
  7. 根据权利要求1-5中任一项所述的传感器,其特征在于,所述传感器,还包括:
    第二预设高度的隔离层,所述隔离层具有预设孔径的至少一个孔洞,所述隔离层位于所述第一摩擦层与所述第二摩擦层之间,所述微纳米的柱状结构部署于所述隔离层的孔洞内,所述第二预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。
  8. 根据权利要求7所述的传感器,其特征在于,所述至少一个孔洞的形状包括如下任意一种或多种:
    圆形、椭圆形、多边形。
  9. 根据权利要求1-8中任一项所述的传感器,其特征在于,所述微纳米的柱状结构的形状包括如下任意一种或多种:
    圆柱形、多棱柱形、圆锥形、多棱锥形、半球形、倒金字塔形、金字塔形。
  10. 根据权利要求1-9中任一项所述的传感器,其特征在于,所述至少两种不同高度 的微纳米的柱状结构在所述至少一个摩擦层上周期性排列。
  11. 根据权利要求1-10中任一项所述的传感器,其特征在于,所述微纳米的柱状结构上蚀刻有毛刺结构。
  12. 根据权利要求1-11中任一项所述的传感器,其特征在于,所述传感器部署于可穿戴设备,用于监测脉搏波动。
  13. 根据权利要求1-11中任一项所述的传感器,其特征在于,所述传感器部署于具有触摸屏的电子设备,用于检测触摸动作。
  14. 一种基于摩擦纳米发电的压力传感器,其特征在于,包括:
    第一摩擦层、第二摩擦层、第一电极层,其中,所述第一摩擦层与所述第二摩擦层由得失电子能力不同的材料制成,所述第一电极层由具有导电能力的材料制成,所述第一摩擦层与所述第一电极层相连;
    所述第一摩擦层以及所述第二摩擦层中的至少一个摩擦层的表面包括微纳米的柱状结构,用于在有压力的情况下,在所述第一摩擦层及所述第二摩擦层上感应出与所述压力对应的等量相反的净电荷,所述微纳米的柱状结构由至少两种不同杨氏模量的材料制成;
    所述第一电极层,用于基于所述净电荷产生电流。
  15. 根据权利要求14所述的传感器,其特征在于,所述传感器还包括:
    第二电极层,所述第二电极层由具有导电能力的材料制成,所述第二摩擦层与所述第二电极层相连;
    所述第一电极层,用于基于所述净电荷产生电流包括:
    所述第一电极层以及所述第二电极层,用于基于所述净电荷产生电流。
  16. 根据权利要求14-15中任一项所述的传感器,其特征在于,所述微纳米的柱状结构由至少两种不同杨氏模量的材料制成包括:
    所述微纳米的柱状结构由至少两个微纳米的子柱状结构堆叠得到,每个所述子柱状结构由一种杨氏模量的材料制成。
  17. 根据权利要求16所述的传感器,其特征在于,
    所述至少两个微纳米的子柱状结构的横截面面积相同;
    或,
    所述至少两个微纳米的子柱状结构按照横截面面积的取值从大到小的顺序依次堆叠。
  18. 根据权利要求14-17中任一项所述的传感器,其特征在于,多个所述微纳米的柱状结构至少存在两种不同高度。
  19. 根据权利要求18所述的传感器,其特征在于,高度不同的微纳米的柱状结构在所述至少一个摩擦层上周期性排列。
  20. 根据权利要求14-19中任一项所述的传感器,其特征在于,所述至少一个摩擦层,还包括:
    第一预设高度的目标微纳米结构,所述第一预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。
  21. 根据权利要求14-19中任一项所述的传感器,其特征在于,所述传感器,还包括:
    第二预设高度的隔离层,所述隔离层具有预设孔径的至少一个孔洞,所述隔离层位于所述第一摩擦层与所述第二摩擦层之间,所述微纳米的柱状结构部署于所述隔离层的孔洞内,所述第二预设高度大于所述至少两种不同高度的微纳米的柱状结构中任意一个的高度。
  22. 一种电子设备,其特征在于,所述设备包括如权利要求1-21中任一项所述的压力传感器。
PCT/CN2022/134838 2021-12-31 2022-11-29 一种基于摩擦纳米发电的压力传感器 WO2023124696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111679373.2A CN116412940A (zh) 2021-12-31 2021-12-31 一种基于摩擦纳米发电的压力传感器
CN202111679373.2 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124696A1 true WO2023124696A1 (zh) 2023-07-06

Family

ID=86997542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134838 WO2023124696A1 (zh) 2021-12-31 2022-11-29 一种基于摩擦纳米发电的压力传感器

Country Status (2)

Country Link
CN (1) CN116412940A (zh)
WO (1) WO2023124696A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411710A (zh) * 2013-08-12 2013-11-27 国家纳米科学中心 一种压力传感器、电子皮肤和触屏设备
KR20160139661A (ko) * 2015-05-28 2016-12-07 고려대학교 산학협력단 고감도 압력 센서
CN106813811A (zh) * 2017-01-20 2017-06-09 南京大学 一种高灵敏度电容型柔性压力传感器
KR20190110795A (ko) * 2018-03-21 2019-10-01 중앙대학교 산학협력단 압력 센서 및 이의 제조방법
CN112097962A (zh) * 2020-09-11 2020-12-18 苏州大学 一种摩擦电式压力传感器及其制备方法
CN112747841A (zh) * 2020-12-29 2021-05-04 苏州大学 一种自驱动压力传感器及其制备方法
CN113138042A (zh) * 2021-04-30 2021-07-20 温州大学 一种pdms—ps聚合物电介质的电容式柔性压力传感器及其制作工艺
CN214621543U (zh) * 2021-04-30 2021-11-05 温州大学 一种带多级金字塔微结构的电容式柔性压力传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411710A (zh) * 2013-08-12 2013-11-27 国家纳米科学中心 一种压力传感器、电子皮肤和触屏设备
KR20160139661A (ko) * 2015-05-28 2016-12-07 고려대학교 산학협력단 고감도 압력 센서
CN106813811A (zh) * 2017-01-20 2017-06-09 南京大学 一种高灵敏度电容型柔性压力传感器
KR20190110795A (ko) * 2018-03-21 2019-10-01 중앙대학교 산학협력단 압력 센서 및 이의 제조방법
CN112097962A (zh) * 2020-09-11 2020-12-18 苏州大学 一种摩擦电式压力传感器及其制备方法
CN112747841A (zh) * 2020-12-29 2021-05-04 苏州大学 一种自驱动压力传感器及其制备方法
CN113138042A (zh) * 2021-04-30 2021-07-20 温州大学 一种pdms—ps聚合物电介质的电容式柔性压力传感器及其制作工艺
CN214621543U (zh) * 2021-04-30 2021-11-05 温州大学 一种带多级金字塔微结构的电容式柔性压力传感器

Also Published As

Publication number Publication date
CN116412940A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
Liu et al. Triboelectric nanogenerators enabled sensing and actuation for robotics
Chen et al. Touchpoint-tailored ultrasensitive piezoresistive pressure sensors with a broad dynamic response range and low detection limit
Pyo et al. Multi‐layered, hierarchical fabric‐based tactile sensors with high sensitivity and linearity in ultrawide pressure range
Das et al. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring
Wei et al. Multiscale wrinkled microstructures for piezoresistive fibers
CN103777803B (zh) 一种单电极触摸传感器及其制备方法
Chen et al. Flexible piezoresistive three-dimensional force sensor based on interlocked structures
Chun et al. A highly sensitive force sensor with fast response based on interlocked arrays of indium tin oxide nanosprings toward human tactile perception
CN108387249B (zh) 超高灵敏仿生柔性纳米传感器
Wang et al. Ultrasensitive flexible proximity sensor based on organic crystal for location detection
KR20180069990A (ko) 고민감도 유연 압력 센서 및 이의 제조방법
CN106655874B (zh) 一种可变形柔性纳米发电机、制备方法及制成的传感器
CN112649128B (zh) 一种测量三维接触应力的传感装置及方法
CN110174196B (zh) 多应力传感的自驱动复合传感器
CN107850941A (zh) 用于电子设备中的触觉反馈的机电致动器
Zhang et al. Highly sensitive capacitive pressure sensor with elastic metallized sponge
Luo et al. Gecko-inspired slant hierarchical microstructure-based ultrasensitive iontronic pressure sensor for intelligent interaction
CN108351196A (zh) 形变传感器
Li et al. A multiscale flexible pressure sensor based on nanovesicle-like hollow microspheres for micro-vibration detection in non-contact mode
Tang et al. Flexible pressure sensors with microstructures
Lee et al. Bending sensor based on controlled microcracking regions for application toward wearable electronics and robotics
WO2023124696A1 (zh) 一种基于摩擦纳米发电的压力传感器
KR101850484B1 (ko) 고감도 압력센서 및 이를 이용한 입력장치
CN113340507B (zh) 一种基于“沙漏状”结构的全柔性三维力柔性触觉传感器
Gong et al. Capacitive flexible haptic sensor based on micro-cylindrical structure dielectric layer and its decoupling study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022913954

Country of ref document: EP

Effective date: 20240625