WO2023123360A1 - Methods and systems for determining reserved tones for transmission - Google Patents

Methods and systems for determining reserved tones for transmission Download PDF

Info

Publication number
WO2023123360A1
WO2023123360A1 PCT/CN2021/143690 CN2021143690W WO2023123360A1 WO 2023123360 A1 WO2023123360 A1 WO 2023123360A1 CN 2021143690 W CN2021143690 W CN 2021143690W WO 2023123360 A1 WO2023123360 A1 WO 2023123360A1
Authority
WO
WIPO (PCT)
Prior art keywords
reserved tones
uplink channel
pusch
physical resource
resource blocks
Prior art date
Application number
PCT/CN2021/143690
Other languages
French (fr)
Inventor
Jing Shi
Xianghui HAN
Peng Hao
Chunli Liang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2021/143690 priority Critical patent/WO2023123360A1/en
Publication of WO2023123360A1 publication Critical patent/WO2023123360A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • This patent document is directed generally to wireless communications.
  • This patent document describes, among other things, techniques for determining reserved tones for a transmission are disclosed.
  • a method of data communication includes performing, by a wireless device, a determination of reserved tones for a transmission based on one of a predetermined rule, a semi-static configuration, and a dynamic indication; and performing the transmission based on the determination.
  • a method of data communication includes transmitting, by a network device, at least one of a predetermined rule, a semi-static configuration, or a dynamic indication for performing a determination of reserved tones for a transmission; and receiving the transmission performed based on the determination.
  • a wireless communication apparatus comprising a processor configured to implement an above-described method is disclosed.
  • a computer storage medium having code for implementing an above-described method stored thereon is disclosed.
  • FIG. 1 shows an example of a wireless communication system based on some example embodiments of the disclosed technology.
  • FIG. 2 is a block diagram representation of a portion of an apparatus based on some embodiments of the disclosed technology.
  • FIG. 3 shows an example of reserved tones.
  • FIG. 4 shows an example of reserved tones based on some example embodiments of the disclosed technology.
  • FIG. 5 shows another example of reserved tones based on some example embodiments of the disclosed technology.
  • FIG. 6 shows an example of a process for wireless communication based on some example embodiments of the disclosed technology.
  • FIG. 7 shows another example of a process for wireless communication based on some example embodiments of the disclosed technology.
  • FIG. 1 shows an example of a wireless communication system (e.g., a long term evolution (LTE) , 5G or NR cellular network) that includes a BS 120 and one or more user equipment (UE) 111, 112 and 113.
  • the uplink transmissions (131, 132, 133) can include uplink control information (UCI) , higher layer signaling (e.g., UE assistance information or UE capability) , or uplink information.
  • the downlink transmissions (141, 142, 143) can include DCI or high layer signaling or downlink information.
  • the UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, a terminal, a mobile device, an Internet of Things (IoT) device, and so on.
  • M2M machine to machine
  • IoT Internet of Things
  • FIG. 2 is a block diagram representation of a portion of an apparatus based on some embodiments of the disclosed technology.
  • An apparatus 205 such as a network device or a base station or a wireless device (or UE) , can include processor electronics 210 such as a microprocessor that implements one or more of the techniques presented in this document.
  • the apparatus 205 can include transceiver electronics 215 to send and/or receive wireless signals over one or more communication interfaces such as antenna (s) 220.
  • the apparatus 205 can include other communication interfaces for transmitting and receiving data.
  • Apparatus 205 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions.
  • the processor electronics 210 can include at least a portion of the transceiver electronics 215. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the apparatus 205.
  • 4G and 5G systems are developing supports on features of enhanced mobile broadband (eMBB) , ultra-reliable low-latency communication (URLLC) , and massive machine-type communication (mMTC) .
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • mMTC massive machine-type communication
  • coverage enhancement is a requirement for both 4G and 5G and further communication systems.
  • FIG. 3 shows an example of reserved tones.
  • MPR maximum power reduction
  • MPR reduction techniques can be enabled when the UE is in coverage limited scenario.
  • One of the MPR reduction techniques is tone reservation for uplink transmission.
  • the reserved tones are immediately adjacent to the resource blocks (RBs) allocated to a UE for PUSCH transmission, and thus, for a UE, the reserved tone is on either side of the PUSCH.
  • the disclosed technology can be implemented in some embodiments to determine reserved tones when the tone reservation for uplink transmission is used.
  • the number of physical resource blocks (PRBs) used for tone reservation is determined by a predefined rule.
  • the predefined rule can include at least one of the following options.
  • the number of PRBs used for tone reservation is X%of allocated PRBs for physical uplink shared channel (PUSCH) , and equally split edges inside of the allocated PRBs are used for tone reservation.
  • X is one of ⁇ 1, 2, 5, 10, 20... ⁇ .
  • 2 PRBs are used for tone reservation
  • 1 PRB is located in each edge inside of the allocated PRBs
  • 8PRBs are used for uplink shared channel (UL-SCH) .
  • TBS transport block size
  • Similar techniques can be applied to a demodulation reference signal (DMRS) generation/mapping, uplink control information (UCI) on PUSCH, and UCI multiplexing on PUSCH.
  • DMRS demodulation reference signal
  • UCI uplink control information
  • the number of PRBs used for tone reservation is X%of allocation PRBs for PUSCH only in one side, and the same number of PRBs are in the other side.
  • the number of PRBs used for tone reservation is X%of allocation PRBs for PUSCH only in one side, and the same number of PRBs are in the other side.
  • the number of PRBs used for tone reservation is Y PRB (s) for the PUSCH, and equally split edges inside of the allocated PRBs are used for tone reservation.
  • Y is one of ⁇ 1, 2, 3, 4, 5... ⁇ .
  • the number of PRBs used for tone reservation is Y PRBs for PUSCH only in one side, and the same number of PRBs are in the other side.
  • Option 2-2 The number of PRBs used for tone reservation is Y PRB (s) for the PUSCH, and equally split edges outside of the allocated PRBs are used for tone reservation.
  • Y is one of ⁇ 1, 2, 3, 4, 5... ⁇ .
  • the number of PRBs used for tone reservation is Y PRBs for PUSCH only in one side, and the same number of PRBs are in the other side.
  • Option 3-1 The number of PRBs used for tone reservation is Y PRB (s) or X%for the PUSCH, and equally split edges inside of the allocated PRBs are used for tone reservation.
  • Y or X is a value that varies depending on a range of the allocated PRBs for PUSCH, for example, as shown in Table1 or Table2 below.
  • PRBs of PUSCH Y (PRBs) 1 -20 1 21-40 2 41-100 3
  • the number of PRBs used for tone reservation is Y PRB (s) or X%for PUSCH only in one side, and the same number of PRBs are in the other side.
  • Option 3-2 The number of PRBs used for tone reservation is Y PRB (s) or X%for the PUSCH, and equally split edges outside of the allocated PRBs are used for tone reservation.
  • the number of PRBs used for tone reservation is Y PRB (s) or X%for PUSCH only in one side, and the same number of PRBs are in the other side.
  • the reserved tones can be determined by a predefined rule discussed in this embodiment, and the predefined rule used to determine the reserved tones can reduce the complexity of the UE implementation and the specification.
  • the number of PRBs used for tone reservation is determined by a semi-static configuration.
  • the number of reserved tones can be configured by a higher layer parameter.
  • the higher layer parameter can include one of the following options.
  • the higher layer parameter can include the proportion of allocated PRBs for PUSCH.
  • the higher layer parameter can include the number of PRBs for reserved for the PUSCH.
  • the higher layer parameter can include the proportion or the number of PRBs configured for each range of allocated PRBs for PUSCH. This option is similar to Table 1 or Table 2 above.
  • the configured number of PRBs used for tone reservation is located inside or outside of each edge of the allocated PRBs for the PUSCH.
  • the number of PRBs used for tone reservation is Y PRB (s) or X%for PUSCH and can be the total reserved tones in two edges, or only in one side and the same number of PRBs are in the other side.
  • the reserved tones can be determined by a semi-static configuration discussed in this embodiment, and the semi-static configuration used to determine the reserved tones can reduce the complexity of the UE implementation and the specification.
  • using a semi-static configuration is more flexible than using the predefined rule.
  • the number of PRBs used for tone reservation is determined by a dynamic indication.
  • one field in a DCI format is used for tone reservation indication.
  • Option 1 1 bit is used to indicate whether to apply tone reservation or not. It is assumed that the values of reserved tones have been predefined/configured.
  • N bits are used to indicate the number of reserved tones for the PUSCH.
  • the candidate values can be predefined or configured.
  • one state is used to indicate that the tone reservation is not applied.
  • Option 3 joint coding is used with other fields or existing field is used to indicate whether to apply tone reservation and/or the number of reserved tones for the PUSCH.
  • Option 3-1 1-2 MSB bits of Frequency Domain Resource Allocation (FDRA) , optionally combined with non-PUSCH hopping with resource allocation type 1, are used.
  • FDRA Frequency Domain Resource Allocation
  • the 1-2 bits can be used in a similar way as Option 1 or 2.
  • Option 3-2 Time Domain Resource Allocation (TDRA) table with one column is used to indicate the values of reserved tones. In one example, value 0 indicates that the tone reservation is not applied.
  • TDRA Time Domain Resource Allocation
  • Option 3-3 1-2 MSB bits of Modulation Coding Scheme (MCS) are used.
  • MCS Modulation Coding Scheme
  • the 1-2 bits can be used in a similar way as Option 1 or 2.
  • the reserved tones can be determined by a dynamic indication discussed in this embodiment, and the dynamic indication used to determine the reserved tones can provide some flexibilities for tone reservation, compared to the semi-static configuration.
  • a UE capability for Uplink transmission with tone reservation can be reported by UE.
  • the number of PRBs used for tone reservation is determined by the methods in Embodiments 1-3, combined with UE capability report.
  • UE first reports whether to support tone reservation or not, and/or the corresponding capability for the maximum or minimum number of reserved tones or a range of reserved tones or a proportion based on allocated PRBs or BWP or bandwidth or different PRBs range (e.g., proportion range in Table 4 or number of PRBs range in Table 5) .
  • the number of reserved tones can be overlapped, as shown in Table 6 or Table 7.
  • PRBs Range of reserved tones (proportion) 1 -20 10%-20% 21-40 5%-10% 41-100 1%-5%
  • PRBs Range of reserved tones (proportion) 1 -20 5%-20% 21-40 2%-10% 41-100 1%-5%
  • the reserved tones can be determined by the UE capability report first based on this embodiment, and with the restriction of UE capability of tone reservation, gNB can further determine the reserved tones using the dynamic indication or the semi-static configuration or the predefined rule to determine the reserved tone within the UE capability.
  • the number of PRBs used for tone reservation is determined by the methods discussed in Embodiments 1-3, combined with UE capability report in Embodiment 4.
  • Case1 Only UL-SCH (data/traffic are actually transmitted) can be used along with reserved tones, and can also include UCI multiplexing on PUSCH. For example, if there is only UCI on PUSCH, the tone reservation is not applied. For example, if there is only aperiodic channel state information (A-CSI) carried on PUSCH, the tone reservation is not performed even if the tone reservation is enabled or configured.
  • A-CSI aperiodic channel state information
  • the tone reservation is not applied to a PUSCH allocated with 2PRBs by gNB.
  • the tone reservation is enabled or configured for PUSCH transmission. For a single PUSCH in one slot, the tone reservation is applied. When a PUSCH is scheduled with TBoMS, the tone reservation is not performed even if the tone reservation is enabled or configured.
  • tone reservation is beneficial for MPR reduction, which is useful for coverage enhancement, some PUSCH transmissions cannot apply the tone reservation because PAPR of the PUSCH is already low enough.
  • the disclosed technology can be implemented in some embodiments to provide some flexibilities in the application of tone reservation, thereby improving the system efficiency.
  • FIG. 4 shows an example of reserved tones based on some example embodiments of the disclosed technology.
  • FIG. 5 shows another example of reserved tones based on some example embodiments of the disclosed technology.
  • the disclosed technology can be implemented in some embodiments to provide other restrictions on the tone reservation.
  • the reserved tone can be shared by the adjacent PUSCHs.
  • the tone reservation can be performed without any additional problems, as shown in FIG. 3.
  • the reserved tone is 1 PRB in each side of the PUSCH, then the adjacent PUSCH1 and PUSCH 2 can share the 1 PRB for tone reservation.
  • the reserved tone number for the two adjacent PUSCHs is different, then the maximum of the reserved tone is used for the shared reserved tones, as shown in FIG. 4.
  • the reserved tone is 1 PRB in each side of the PUSCH1
  • the reserved tone is 2 PRBs in each side of the PUSCH2
  • the above methods in other embodiments are about PRB level tone reservation, and the PRB level can be used instead of RE level.
  • the PRB level can be used instead of RE level.
  • one or more PRB ranges for PUSCH may be RE level tone reservation, and the rest of PRB ranges for PUSCH may be PRB level tone reservation, referring to Table 8 below as an example.
  • PRBs of PUSCH Y (PRBs or REs) 1 -2 1 RE 3-40 1 PRB 41-100 2 PRBs
  • the above methods in other embodiments are based on the PUSCH to determine the tone reservation, and the PRB used for tone reservation can be determined based on BWP or carrier. For example, if there are 50 PRBs in a BWP (e.g., indices PRB #0 to #49) , then if the tone reservation is used, assuming 2 PRBs are used as reserved tones, then PRB #0 and PRB #49 are used as the reserved tones, regardless of whether they are the allocated PRBs for the PUSCH.
  • BWP e.g., indices PRB #0 to #49
  • tone reservation can be determined based on some restrictions (also based on the predefined rule) in this embodiment.
  • the predefined rule used to determine the reserved tones can reduce the complexity of the UE implementation and the specification.
  • the disclosed technology can be implemented in some embodiments to determine the tone reservation.
  • the number of PRBs used for tone reservation is determined by a predefined rule.
  • the Predefined rule includes at least one of the following.
  • the number of PRBs used for tone reservation is X%of allocation PRBs for PUSCH, and equal split at two edges inside or outside of the allocation PRBs.
  • the number of PRBs used for tone reservation is Y PRB (s) for the PUSCH, and equal split at two edges inside or outside of the allocation PRBs.
  • the number of PRBs used for tone reservation is Y PRB (s) or X%for the PUSCH, and equal split at two edges inside or outside of the allocation PRBs, where Y or X is one value that varies depending on a range of the allocated PRBs for PUSCHs or X%for PUSCH only in one side, and the same number as the other side.
  • the number of reserved tones can be configured by a higher layer parameter by one of the following.
  • the number of reserved tones can be configured based on the proportion of allocation PRBs for PUSCH.
  • the number of reserved tones can be configured based on the number of PRBs for reserved for the PUSCH.
  • the number of reserved tones can be configured based on the proportion or the number of PRBs configured for each range of allocated PRBs for PUSCH.
  • the number of PRBs used for tone reservation is determined by a dynamic indication.
  • one field is used for tone reservation indication.
  • 1 bit is used to indicate whether to apply the tone reservation or not.
  • N bits are used to indicate the number of reserved tones for the PUSCH.
  • one state is used to indicate the tone reservation is not applied.
  • joint coding with other fields is used or an existing field is reused.
  • UE first reports whether to support the tone reservation or not, and/or the corresponding capability for the maximum or minimum or a range of reserved tones or the proportion based on allocated PRBs or BWP or bandwidth or different PRBs ranges.
  • the number of reserved tones can be overlapped.
  • the tone reservation is not applied for the following cases.
  • Case1 when there is only UCI on PUSCH, the tone reservation is not applied.
  • Case2 if the number of allocated PRBs is less than a threshold, the tone reservation is not applied.
  • Case3 if the PUSCH is one of TBoMS transmission type or PUSCH repetition type B, the tone reservation is not applied.
  • the reserved tone can be shared by the two adjacent PUSCHs. If the two adjacent PUSCHs have different number of reserved tones, then the maximum number of the reserved tones is used for the shared reserved tones.
  • the above methods in other embodiments are all about PRB level tone reservation, and the PRB level can be used instead of RE level.
  • the above methods in other embodiments are all based on the PUSCH to determine the tone reservation, and the PRB used for tone reservation can be determined based on BWP or carrier.
  • FIG. 6 shows an example of a process for wireless communication based on some example embodiments of the disclosed technology.
  • the process 600 for wireless communication may include, at 610, performing, by a wireless device, a determination of reserved tones for a transmission based on one of a predetermined rule, a semi-static configuration, and a dynamic indication; and, at 620, performing the transmission based on the determination.
  • the predetermined rule determines a number of reserved tones and/or locations of the reserved tones. For example, X percent of allocated physical resource blocks for an uplink channel can be selected, or Y number of physical resource blocks for the uplink channel can be selected.
  • the reserved tones are located at two equally split edges inside of an uplink channel.
  • the uplink channel includes a physical uplink shared channel (PUSCH) .
  • the semi-static configuration includes configuring the reserved tones by a higher layer parameter.
  • the dynamic indication includes one bit to indicate whether to apply the tone reservation and/or N bits to indicate a number of reserved tones for an uplink channel.
  • FIG. 7 shows another example of a process for wireless communication based on some example embodiments of the disclosed technology.
  • the process 700 for wireless communication may include, at 710, transmitting, by a network device, at least one of a predetermined rule, a semi-static configuration, or a dynamic indication for performing a determination of reserved tones for a transmission; and, at 720, receiving the transmission performed based on the determination.
  • the predetermined rule determines a number of reserved tones and/or locations of the reserved tones. For example, X percent of allocated physical resource blocks for an uplink channel can be selected, or Y number of physical resource blocks for the uplink channel can be selected.
  • the reserved tones are located at two equally split edges inside of an uplink channel.
  • the uplink channel includes a physical uplink shared channel (PUSCH) .
  • the semi-static configuration includes configuring the reserved tones by a higher layer parameter.
  • the dynamic indication includes one bit to indicate whether to apply the tone reservation and/or N bits to indicate a number of reserved tones for an uplink channel.
  • the present document discloses techniques that can be embodied in various embodiments to determine downlink control information in wireless networks.
  • the disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them.
  • the disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them.
  • data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) .
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random-access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks.
  • semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices
  • magnetic disks e.g., internal hard disks or removable disks
  • magneto optical disks e.g., CD ROM and DVD-ROM disks.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
  • a wireless device may be user equipment, mobile station, or any other wireless terminal including fixed nodes such as base stations.
  • a network device includes a base station including a next generation Node B (gNB) , enhanced Node B (eNB) , or any other device that performs as a base station.
  • gNB next generation Node B
  • eNB enhanced Node B
  • a method of wireless communication comprising: performing, by a wireless device, a determination of reserved tones for a transmission based on one of a predetermined rule, a semi-static configuration, and a dynamic indication; and performing the transmission based on the determination.
  • Clause 3 The method of any of clauses 1-2, wherein the determination includes determining at least one of a number of reserved tones and locations of reserved tones.
  • Clause 4 The method of any of clauses 1-3, wherein the predetermined rule determines a number of reserved tones, and wherein the predetermined rule comprises one of: selecting X percent of allocated physical resource blocks for an uplink channel, where X is a positive number or is determined based on a range of the allocated physical resource blocks for an uplink channel; and selecting Y number of physical resource blocks for the uplink channel, where Y is a positive integer or is determined based on a range of the allocated physical resource blocks for an uplink channel.
  • Clause 5 The method of any of clauses 1-3, wherein the predetermined rule determines locations of the reserved tones, and wherein the predetermined rule comprises one of: two equally split edges inside of an uplink channel; and two equally split edges outside of an uplink channel.
  • Clause 6 The method of any of clauses 4-5, wherein the X or Y is a total value for both sides of the reserved tones or is a value for a single side of the reserved tones.
  • Clause 7 The method of any of clauses 1-3, wherein the semi-static configuration includes configuring the reserved tones by a higher layer parameter, wherein the higher layer parameter includes at least one of: a proportion of allocated physical resource blocks for an uplink channel; a number of physical resource blocks reserved for an uplink channel; a proportion or a number of physical resource blocks configured for each range of allocated physical resource blocks for an uplink channel; and two equally split edges inside or outside of an uplink channel.
  • Clause 8 The method of any of clause 1-3, wherein the dynamic indication includes one of: one bit to indicate whether to apply the tone reservation; and N bits to indicate a number of reserved tones for an uplink channel, where N is a positive integer or N is configured by a higher layer parameter.
  • Clause 10 The method of clause 8, wherein the one or N bits reuse a field including one of: one or two most significant bits of frequency domain resource allocation (FDRA) ; a time domain resource allocation (TDRA) table; and one or two most significant bits of modulation coding scheme (MCS) .
  • FDRA frequency domain resource allocation
  • TDRA time domain resource allocation
  • MCS modulation coding scheme
  • Clause 11 The method of any of clauses 1-10, further comprising: reporting a capability by the wireless device, wherein the capability includes at least one of: whether the tone reservation is supported; and a capability for a maximum or minimum or a range of a number or proportion for the reserved tones.
  • Clause 12 The method of clauses 11, wherein the number or proportion for the reserved tones is determined based on an uplink channel, a bandwidth part (BWP) , a carrier bandwidth, or a range of physical resource blocks.
  • BWP bandwidth part
  • Clause 13 The method of any of clauses 1-12, wherein the reserved tones of the wireless device include a first reserved tone for a first PUSCH from the wireless device and a second reserved tone that is for both the first PUSCH and a second PUSCH adjacent to the first PUSCH and is shared by the wireless device and another wireless device.
  • Clause 14 The method of clause 13, wherein, in a case that a first number of reserved tones for the first PUSCH is different from a second number of reserved tones for the second PUSCH, a number of the reserved tones shared by the wireless device and the other wireless device is a maximum number between the first number and the second number.
  • Clause 15 The method of any of clauses 1-14, wherein a granularity of the reserved tones comprises at least one of physical resource block (PRB) and resource element (RE) .
  • PRB physical resource block
  • RE resource element
  • a method of wireless communication comprising: transmitting, by a network device, at least one of a predetermined rule, a semi-static configuration, or a dynamic indication for performing a determination of reserved tones for a transmission; and receiving the transmission performed based on the determination.
  • Clause 18 The method of clause 17, wherein the transmission is performed with the reserved tones.
  • Clause 19 The method of any of clauses 17-18, wherein the determination includes determining at least one of a number of reserved tones and locations of reserved tones.
  • Clause 20 The method of any of clauses 17-19, wherein the predetermined rule determines a number of reserved tones, and wherein the predetermined rule comprises one of: selecting X percent of allocated physical resource blocks for an uplink channel, where X is a positive number or is determined based on a range of the allocated physical resource blocks for an uplink channel; and selecting Y number of physical resource blocks for the uplink channel, where Y is a positive integer or is determined based on a range of the allocated physical resource blocks for a uplink channel.
  • Clause 21 The method of any of clauses 17-19, wherein the predetermined rule determines locations of the reserved tones, and wherein the predetermined rule comprises one of: two equally split edges inside of an uplink channel; and two equally split edges outside of an uplink channel.
  • Clause 22 The method of any of clauses 20-21, wherein the X or Y is a total value for both sides of the reserved tones or is a value for a single side of the reserved tones.
  • Clause 23 The method of any of clauses 17-19, wherein the semi-static configuration includes configuring the reserved tones by a higher layer parameter, wherein the higher layer parameter includes at least one of: a proportion of allocated physical resource blocks for an uplink channel; a number of physical resource blocks reserved for an uplink channel; a proportion or a number of physical resource blocks configured for each range of allocated physical resource blocks for an uplink channel; and two equally split edges inside or outside of an uplink channel.
  • Clause 24 The method of any of clauses 17-19, wherein the dynamic indication includes one of: one bit to indicate whether to apply the tone reservation; and N bits to indicate a number of reserved tones for an uplink channel, where N is a positive integer or N is configured by a higher layer parameter.
  • Clause 26 The method of any of clauses 1-25, wherein the uplink channel includes a physical uplink shared channel (PUSCH) .
  • PUSCH physical uplink shared channel
  • Clause 27 An apparatus for wireless communication comprising a processor that is configured to carry out the method of any of clauses 1 to 26.
  • Clause 28 A non-transitory computer readable medium having code stored thereon, the code when executed by a processor, causing the processor to implement a method recited in any of clauses 1 to 26.
  • a computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media.
  • program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
  • a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board.
  • the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • DSP digital signal processor
  • the various components or sub-components within each module may be implemented in software, hardware or firmware.
  • the connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and systems for techniques for uplink transmission are disclosed. In an implementation, a method of wireless communication includes performing, by a wireless device, a determination of reserved tones for a transmission based on one of a predetermined rule, a semi-static configuration, and a dynamic indication; and performing the transmission based on the determination.

Description

METHODS AND SYSTEMS FOR DETERMINING RESERVED TONES FOR TRANSMISSION TECHNICAL FIELD
This patent document is directed generally to wireless communications.
BACKGROUND
Mobile communication technologies are moving the world toward an increasingly connected and networked society. The rapid growth of mobile communications and advances in technology have led to greater demand for capacity and connectivity. Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios. Various techniques, including new ways to provide higher quality of service, longer battery life, and improved performance are being discussed.
SUMMARY
This patent document describes, among other things, techniques for determining reserved tones for a transmission are disclosed.
In one aspect, a method of data communication is disclosed. The method includes performing, by a wireless device, a determination of reserved tones for a transmission based on one of a predetermined rule, a semi-static configuration, and a dynamic indication; and performing the transmission based on the determination.
In another aspect, a method of data communication is disclosed. The method includes transmitting, by a network device, at least one of a predetermined rule, a semi-static configuration, or a dynamic indication for performing a determination of reserved tones for a transmission; and receiving the transmission performed based on the determination.
In another example aspect, a wireless communication apparatus comprising a processor configured to implement an above-described method is disclosed.
In another example aspect, a computer storage medium having code for implementing an above-described method stored thereon is disclosed.
These, and other, aspects are described in the present document.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 shows an example of a wireless communication system based on some example embodiments of the disclosed technology.
FIG. 2 is a block diagram representation of a portion of an apparatus based on some embodiments of the disclosed technology.
FIG. 3 shows an example of reserved tones.
FIG. 4 shows an example of reserved tones based on some example embodiments of the disclosed technology.
FIG. 5 shows another example of reserved tones based on some example embodiments of the disclosed technology.
FIG. 6 shows an example of a process for wireless communication based on some example embodiments of the disclosed technology.
FIG. 7 shows another example of a process for wireless communication based on some example embodiments of the disclosed technology.
DETAILED DESCRIPTION
Section headings are used in the present document only for ease of understanding and do not limit scope of the embodiments to the section in which they are described. Furthermore, while embodiments are described with reference to 5G examples, the disclosed techniques may be applied to wireless systems that use protocols other than 5G or 3GPP protocols.
FIG. 1 shows an example of a wireless communication system (e.g., a long term evolution (LTE) , 5G or NR cellular network) that includes a BS 120 and one or more user equipment (UE) 111, 112 and 113. In some embodiments, the uplink transmissions (131, 132, 133) can include uplink control information (UCI) , higher layer signaling (e.g., UE assistance information or UE capability) , or uplink information. In some embodiments, the downlink transmissions (141, 142, 143) can include DCI or high layer signaling or downlink information. The UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, a terminal, a mobile device, an Internet of Things (IoT) device, and so on.
FIG. 2 is a block diagram representation of a portion of an apparatus based on some embodiments of the disclosed technology. An apparatus 205 such as a network device or a base station or a wireless device (or UE) , can include processor electronics 210 such as a  microprocessor that implements one or more of the techniques presented in this document. The apparatus 205 can include transceiver electronics 215 to send and/or receive wireless signals over one or more communication interfaces such as antenna (s) 220. The apparatus 205 can include other communication interfaces for transmitting and receiving data. Apparatus 205 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions. In some implementations, the processor electronics 210 can include at least a portion of the transceiver electronics 215. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the apparatus 205.
The 4th Generation mobile communication technology (4G) Long-Term Evolution (LTE) or LTE-Advance (LTE-A) and the 5th Generation mobile communication technology (5G) face more and more demands. Based on the current development trend, 4G and 5G systems are developing supports on features of enhanced mobile broadband (eMBB) , ultra-reliable low-latency communication (URLLC) , and massive machine-type communication (mMTC) . In addition, coverage enhancement is a requirement for both 4G and 5G and further communication systems.
FIG. 3 shows an example of reserved tones.
In wireless communication systems, maximum power reduction (MPR) techniques are used to reduce the leakage caused by the uplink transmission on the adjacent channels. It consists of reducing the UE’s maximum transmission power so that the power level of the leakage can be reduced. The interference on adjacent channels is due to the imperfections of the waveform such as adjacent channel leakage, in-band emission and out-of-band emission. In order to allow the UE to transmit with higher power, techniques to reduce the leakage/imperfections of the waveform may be considered. The adjacent channel leakage is mainly caused by the non-linearity of the power amplifier. Techniques for reducing the peak-to-average-power ratio (PAPR) can help increasing the transmission power while keeping the power amplifier of the UE operating in the linear region, and consequently, UE’s transmission can have less leakage on the adjacent channels. MPR reduction techniques can be enabled when the UE is in coverage limited scenario. One of the MPR reduction techniques is tone reservation for uplink transmission. In one example, as shown in FIG. 3, the reserved tones are immediately adjacent to the resource blocks (RBs) allocated to a UE for PUSCH transmission, and thus, for a UE, the reserved tone is on either side of the PUSCH.
The disclosed technology can be implemented in some embodiments to determine reserved tones when the tone reservation for uplink transmission is used.
Embodiment 1
The number of physical resource blocks (PRBs) used for tone reservation is determined by a predefined rule.
In some implementations, the predefined rule can include at least one of the following options.
Option 1-1: The number of PRBs used for tone reservation is X%of allocated PRBs for physical uplink shared channel (PUSCH) , and equally split edges inside of the allocated PRBs are used for tone reservation. In some implementations, X is one of {1, 2, 5, 10, 20... } . For example, in an example scenario where gNB allocates 10 PRBs for a UE to transmit PUSCH and X=20, then 2 PRBs are used for tone reservation, and 1 PRB is located in each edge inside of the allocated PRBs, and 8PRBs are used for uplink shared channel (UL-SCH) . Further, a transport block size (TBS) is determined by 8PRBs although 10 PRBs are allocated for the PUSCH. Similar techniques can be applied to a demodulation reference signal (DMRS) generation/mapping, uplink control information (UCI) on PUSCH, and UCI multiplexing on PUSCH. For example, in an example scenario where gNB allocates 10 PRBs for the PUSCH to a UE, and tone reservation is used for the PUSCH with 1PRB in each inside of the PUSCH, and X=20, then the TBS is determined by 8 PRBs, the DMRS is also generated and mapped on the 8 PRBs. If UCI multiplexing on PUSCH is also performed, then the frequency domain range for the UCI multiplexing on the PUSCH is also 8 PRBs.
In other implementations, the number of PRBs used for tone reservation is X%of allocation PRBs for PUSCH only in one side, and the same number of PRBs are in the other side.
Option 1-2: The number of PRBs used for tone reservation is X%of allocation PRBs for PUSCH, and equally split edges outside of the allocation PRBs are used for tone reservation. For example, in an example scenario where gNB allocates 10 PRBs for a UE to transmit PUSCH, and X=20, then 2 PRBs are used for tone reservation and 1 PRB is located in each edge outside of the allocated PRBs, and 10PRBs are used for UL-SCH. For example, in an example scenario where there are 50 PRBs in a bandwidth part (BWP) , gNB allocates 10 PRBs (e.g., PRB #10-#19) for a PUSCH to a UE and tone reservation is also used, and X=20, then 2PRBs are used for the  reserved tones, and 1PRB in each side of the PUSCH, that is, PRB #9 and PRB #20 are used for the reserved tones.
In other implementations, the number of PRBs used for tone reservation is X%of allocation PRBs for PUSCH only in one side, and the same number of PRBs are in the other side.
Option 2-1: The number of PRBs used for tone reservation is Y PRB (s) for the PUSCH, and equally split edges inside of the allocated PRBs are used for tone reservation. In some implementations, Y is one of {1, 2, 3, 4, 5... } .
In other implementations, the number of PRBs used for tone reservation is Y PRBs for PUSCH only in one side, and the same number of PRBs are in the other side.
Option 2-2: The number of PRBs used for tone reservation is Y PRB (s) for the PUSCH, and equally split edges outside of the allocated PRBs are used for tone reservation. In some implementations, Y is one of {1, 2, 3, 4, 5... } .
In other implementations, the number of PRBs used for tone reservation is Y PRBs for PUSCH only in one side, and the same number of PRBs are in the other side.
Option 3-1: The number of PRBs used for tone reservation is Y PRB (s) or X%for the PUSCH, and equally split edges inside of the allocated PRBs are used for tone reservation. Here, Y or X is a value that varies depending on a range of the allocated PRBs for PUSCH, for example, as shown in Table1 or Table2 below.
Table 1
PRBs of PUSCH X
1 -20 10
21-40 5
41-100 2
Table 2
PRBs of PUSCH Y (PRBs)
1 -20 1
21-40 2
41-100 3
In other implementations, the number of PRBs used for tone reservation is Y PRB (s) or X%for PUSCH only in one side, and the same number of PRBs are in the other side. 
Option 3-2: The number of PRBs used for tone reservation is Y PRB (s) or X%for the PUSCH, and equally split edges outside of the allocated PRBs are used for tone reservation.
In other implementations, the number of PRBs used for tone reservation is Y PRB (s) or X%for PUSCH only in one side, and the same number of PRBs are in the other side.
In this way, the reserved tones can be determined by a predefined rule discussed in this embodiment, and the predefined rule used to determine the reserved tones can reduce the complexity of the UE implementation and the specification.
Embodiment 2
The number of PRBs used for tone reservation is determined by a semi-static configuration.
In some implementations, the number of reserved tones can be configured by a higher layer parameter. The higher layer parameter can include one of the following options.
Option 1: The higher layer parameter can include the proportion of allocated PRBs for PUSCH.
Option 2: The higher layer parameter can include the number of PRBs for reserved for the PUSCH.
Option 3: The higher layer parameter can include the proportion or the number of PRBs configured for each range of allocated PRBs for PUSCH. This option is similar to Table 1 or Table 2 above.
Alternatively, similar to Embodiment 1, the configured number of PRBs used for tone reservation is located inside or outside of each edge of the allocated PRBs for the PUSCH.
Alternatively, similar to Embodiment 1, the number of PRBs used for tone reservation is Y PRB (s) or X%for PUSCH and can be the total reserved tones in two edges, or only in one side and the same number of PRBs are in the other side.
In this way, the reserved tones can be determined by a semi-static configuration discussed in this embodiment, and the semi-static configuration used to determine the reserved tones can reduce the complexity of the UE implementation and the specification. In addition, using a semi-static configuration is more flexible than using the predefined rule.
Embodiment 3
The number of PRBs used for tone reservation is determined by a dynamic indication.
In some implementations, one field in a DCI format is used for tone reservation indication.
Option 1: 1 bit is used to indicate whether to apply tone reservation or not. It is assumed that the values of reserved tones have been predefined/configured.
Option 2: N bits are used to indicate the number of reserved tones for the PUSCH. Optionally, the candidate values can be predefined or configured. Optionally, one state is used to indicate that the tone reservation is not applied. For example, N=2 in Table 3 below is used to indicate tone reservation. Similar to Method 1, the indicated number of PRBs used for tone reservation is located inside or outside of each edge of the allocated PRBs for the PUSCH.
Table 3
Figure PCTCN2021143690-appb-000001
Option 3: joint coding is used with other fields or existing field is used to indicate whether to apply tone reservation and/or the number of reserved tones for the PUSCH.
Option 3-1: 1-2 MSB bits of Frequency Domain Resource Allocation (FDRA) , optionally combined with non-PUSCH hopping with resource allocation type 1, are used. The 1-2 bits can be used in a similar way as Option 1 or 2.
Option 3-2: Time Domain Resource Allocation (TDRA) table with one column is used to indicate the values of reserved tones. In one example, value 0 indicates that the tone reservation is not applied.
Option 3-3: 1-2 MSB bits of Modulation Coding Scheme (MCS) are used. The 1-2 bits can be used in a similar way as Option 1 or 2.
In this way, the reserved tones can be determined by a dynamic indication discussed in this embodiment, and the dynamic indication used to determine the reserved tones can provide some flexibilities for tone reservation, compared to the semi-static configuration.
Embodiment 4
A UE capability for Uplink transmission with tone reservation can be reported by UE. Optionally, the number of PRBs used for tone reservation is determined by the methods in Embodiments 1-3, combined with UE capability report.
In addition to the methods based on Embodiments 1-3, UE first reports whether to support tone reservation or not, and/or the corresponding capability for the maximum or minimum number of reserved tones or a range of reserved tones or a proportion based on allocated PRBs or BWP or bandwidth or different PRBs range (e.g., proportion range in Table 4 or number of PRBs range in Table 5) . Optionally, for each PRB range, the number of reserved tones (no matter numbers of PRBs or proportion) can be overlapped, as shown in Table 6 or Table 7.
Table 4
PRBs Range of reserved tones (proportion)
1 -20 10%-20%
21-40 5%-10%
41-100 1%-5%
Table 5
PRBs Range of reserved tones (PRBs)
1 -20 1-2
21-40 2-4
41-100 4-10
Table 6
PRBs Range of reserved tones (proportion)
1 -20 5%-20%
21-40 2%-10%
41-100 1%-5%
Table 7
PRBs Range of reserved tones (PRBs)
1 -20 1-4
21-40 1-8
41-100 1-20
In this way, the reserved tones can be determined by the UE capability report first based on this embodiment, and with the restriction of UE capability of tone reservation, gNB can further determine the reserved tones using the dynamic indication or the semi-static configuration or the predefined rule to determine the reserved tone within the UE capability. 
Embodiment 5
The number of PRBs used for tone reservation is determined by the methods discussed in Embodiments 1-3, combined with UE capability report in Embodiment 4.
There may be one or more cases of invalid of tone reservation, although the tone reservation is determined by the methods in other embodiments.
Case1: Only UL-SCH (data/traffic are actually transmitted) can be used along with reserved tones, and can also include UCI multiplexing on PUSCH. For example, if there is only UCI on PUSCH, the tone reservation is not applied. For example, if there is only aperiodic channel state information (A-CSI) carried on PUSCH, the tone reservation is not performed even if the tone reservation is enabled or configured.
Case2: If the number of allocated PRBs is less than a threshold, the tone reservation is not performed.
For example, if the threshold is 4 PRBs, the tone reservation is not applied to a PUSCH allocated with 2PRBs by gNB.
Case3: If the PUSCH is one of the following transmission types, the tone reservation is not performed: TBoMS (TB on Multiple Slots) ; and PUSCH repetition type B.
For example, the tone reservation is enabled or configured for PUSCH transmission. For a single PUSCH in one slot, the tone reservation is applied. When a PUSCH is scheduled with TBoMS, the tone reservation is not performed even if the tone reservation is enabled or configured.
In this way, transmission is performed without the tone reservation in some cases as discussed in this embodiment. Although using tone reservation is beneficial for MPR reduction, which is useful for coverage enhancement, some PUSCH transmissions cannot apply the tone reservation because PAPR of the PUSCH is already low enough. The disclosed technology can be implemented in some embodiments to provide some flexibilities in the application of tone reservation, thereby improving the system efficiency.
Embodiment 6
FIG. 4 shows an example of reserved tones based on some example embodiments of the disclosed technology. FIG. 5 shows another example of reserved tones based on some example embodiments of the disclosed technology.
The disclosed technology can be implemented in some embodiments to provide other restrictions on the tone reservation.
In some implementations, when two PUSCHs are from two UEs, the reserved tone can be shared by the adjacent PUSCHs.
If the reserved tone number is the same for the two adjacent PUSCHs, then the tone reservation can be performed without any additional problems, as shown in FIG. 3. For example, the reserved tone is 1 PRB in each side of the PUSCH, then the adjacent PUSCH1 and PUSCH 2 can share the 1 PRB for tone reservation.
If the reserved tone number for the two adjacent PUSCHs is different, then the maximum of the reserved tone is used for the shared reserved tones, as shown in FIG. 4. For example, the reserved tone is 1 PRB in each side of the PUSCH1, the reserved tone is 2 PRBs in each side of the PUSCH2, then the adjacent PUSCH1 and PUSCH 2 can share the max {1, 2} =2 PRBs for tone reservation.
Alternatively, the above methods in other embodiments are about PRB level tone reservation, and the PRB level can be used instead of RE level. In the example discussed in Option 1-1, if RE level is used, the allocated PRBs for the PUSCH is 10, and assuming X=20, then 2 RE are used as reserved tones. Furthermore, combined with Option 3-1 or 3-2, one or more PRB ranges for PUSCH may be RE level tone reservation, and the rest of PRB ranges for PUSCH may be PRB level tone reservation, referring to Table 8 below as an example.
Table 8
PRBs of PUSCH Y (PRBs or REs)
1 -2 1 RE
3-40 1 PRB
41-100 2 PRBs
Alternatively, the above methods in other embodiments are based on the PUSCH to determine the tone reservation, and the PRB used for tone reservation can be determined based on BWP or carrier. For example, if there are 50 PRBs in a BWP (e.g., indices PRB #0 to #49) , then if the tone reservation is used, assuming 2 PRBs are used as reserved tones, then PRB #0 and PRB #49 are used as the reserved tones, regardless of whether they are the allocated PRBs for the PUSCH.
In this way, tone reservation can be determined based on some restrictions (also based on the predefined rule) in this embodiment. The predefined rule used to determine the reserved tones can reduce the complexity of the UE implementation and the specification.
As discussed above, the disclosed technology can be implemented in some embodiments to determine the tone reservation.
In some implementations, the number of PRBs used for tone reservation is determined by a predefined rule. The Predefined rule includes at least one of the following. In Option 1, the number of PRBs used for tone reservation is X%of allocation PRBs for PUSCH, and equal split at two edges inside or outside of the allocation PRBs. In Option 2, the number of PRBs used for tone reservation is Y PRB (s) for the PUSCH, and equal split at two edges inside or outside of the allocation PRBs. In Option 3, the number of PRBs used for tone reservation is Y PRB (s) or X%for the PUSCH, and equal split at two edges inside or outside of the allocation PRBs, where Y or X is one value that varies depending on a range of the allocated PRBs for PUSCHs or X%for PUSCH only in one side, and the same number as the other side.
In some implementations, the number of reserved tones can be configured by a higher layer parameter by one of the following. In Option 1, the number of reserved tones can be configured based on the proportion of allocation PRBs for PUSCH. In Option 2, the number of reserved tones can be configured based on the number of PRBs for reserved for the PUSCH. In Option 3, the number of reserved tones can be configured based on the proportion or the number of PRBs configured for each range of allocated PRBs for PUSCH.
In some implementations, the number of PRBs used for tone reservation is determined by a dynamic indication. In a DCI format, one field is used for tone reservation indication. In Option 1, 1 bit is used to indicate whether to apply the tone reservation or not. In Option 2, N bits are used to indicate the number of reserved tones for the PUSCH. Optionally, one state is used to indicate the tone reservation is not applied. In Option 3, joint coding with other fields is used or an existing field is reused.
In some implementations, UE first reports whether to support the tone reservation or not, and/or the corresponding capability for the maximum or minimum or a range of reserved tones or the proportion based on allocated PRBs or BWP or bandwidth or different PRBs ranges. Optionally, for each PRB range, the number of reserved tones can be overlapped.
In some implementations, even when the tone reservation is enabled or configured, the tone reservation is not applied for the following cases. In Case1, when there is only UCI on PUSCH, the tone reservation is not applied. In Case2, if the number of allocated PRBs is less than a threshold, the tone reservation is not applied. In Case3, if the PUSCH is one of TBoMS transmission type or PUSCH repetition type B, the tone reservation is not applied.
In some implementations, when two adjacent PUSCHs are from two UEs, the reserved tone can be shared by the two adjacent PUSCHs. If the two adjacent PUSCHs have different number of reserved tones, then the maximum number of the reserved tones is used for the shared reserved tones.
In some implementations, alternatively, the above methods in other embodiments are all about PRB level tone reservation, and the PRB level can be used instead of RE level.
In some implementations, alternatively, the above methods in other embodiments are all based on the PUSCH to determine the tone reservation, and the PRB used for tone reservation can be determined based on BWP or carrier.
FIG. 6 shows an example of a process for wireless communication based on some example embodiments of the disclosed technology.
In some implementations, the process 600 for wireless communication may include, at 610, performing, by a wireless device, a determination of reserved tones for a transmission based on one of a predetermined rule, a semi-static configuration, and a dynamic indication; and, at 620, performing the transmission based on the determination.
In one example, the predetermined rule determines a number of reserved tones and/or locations of the reserved tones. For example, X percent of allocated physical resource blocks for an uplink channel can be selected, or Y number of physical resource blocks for the uplink channel can be selected. The reserved tones are located at two equally split edges inside of an uplink channel. Here, the uplink channel includes a physical uplink shared channel (PUSCH) . In another example, the semi-static configuration includes configuring the reserved tones by a higher layer parameter. The dynamic indication includes one bit to indicate whether to apply the tone reservation and/or N bits to indicate a number of reserved tones for an uplink channel.
FIG. 7 shows another example of a process for wireless communication based on some example embodiments of the disclosed technology.
In some implementations, the process 700 for wireless communication may include, at 710, transmitting, by a network device, at least one of a predetermined rule, a semi-static configuration, or a dynamic indication for performing a determination of reserved tones for a transmission; and, at 720, receiving the transmission performed based on the determination.
In one example, the predetermined rule determines a number of reserved tones and/or locations of the reserved tones. For example, X percent of allocated physical resource blocks for  an uplink channel can be selected, or Y number of physical resource blocks for the uplink channel can be selected. The reserved tones are located at two equally split edges inside of an uplink channel. Here, the uplink channel includes a physical uplink shared channel (PUSCH) . In another example, the semi-static configuration includes configuring the reserved tones by a higher layer parameter. The dynamic indication includes one bit to indicate whether to apply the tone reservation and/or N bits to indicate a number of reserved tones for an uplink channel.
It will be appreciated that the present document discloses techniques that can be embodied in various embodiments to determine downlink control information in wireless networks. The disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be  stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) . A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random-access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
Some embodiments may preferably implement one or more of the following solutions, listed in clause-format. The following clauses are supported and further described in the embodiments above and throughout this document. As used in the clauses below and in the claims, a wireless device may be user equipment, mobile station, or any other wireless terminal including fixed nodes such as base stations. A network device includes a base station including a next generation Node B (gNB) , enhanced Node B (eNB) , or any other device that performs as a  base station.
Clause 1. A method of wireless communication, comprising: performing, by a wireless device, a determination of reserved tones for a transmission based on one of a predetermined rule, a semi-static configuration, and a dynamic indication; and performing the transmission based on the determination.
Clause 2. The method of clause 1, wherein the transmission is performed with the reserved tones.
Clause 3. The method of any of clauses 1-2, wherein the determination includes determining at least one of a number of reserved tones and locations of reserved tones.
Clause 4. The method of any of clauses 1-3, wherein the predetermined rule determines a number of reserved tones, and wherein the predetermined rule comprises one of: selecting X percent of allocated physical resource blocks for an uplink channel, where X is a positive number or is determined based on a range of the allocated physical resource blocks for an uplink channel; and selecting Y number of physical resource blocks for the uplink channel, where Y is a positive integer or is determined based on a range of the allocated physical resource blocks for an uplink channel.
Clause 5. The method of any of clauses 1-3, wherein the predetermined rule determines locations of the reserved tones, and wherein the predetermined rule comprises one of: two equally split edges inside of an uplink channel; and two equally split edges outside of an uplink channel.
Clause 6. The method of any of clauses 4-5, wherein the X or Y is a total value for both sides of the reserved tones or is a value for a single side of the reserved tones.
Clause 7. The method of any of clauses 1-3, wherein the semi-static configuration includes configuring the reserved tones by a higher layer parameter, wherein the higher layer parameter includes at least one of: a proportion of allocated physical resource blocks for an uplink channel; a number of physical resource blocks reserved for an uplink channel; a proportion or a number of physical resource blocks configured for each range of allocated physical resource blocks for an uplink channel; and two equally split edges inside or outside of an uplink channel.
Clause 8. The method of any of clause 1-3, wherein the dynamic indication includes one of: one bit to indicate whether to apply the tone reservation; and N bits to indicate a number  of reserved tones for an uplink channel, where N is a positive integer or N is configured by a higher layer parameter.
Clause 9. The method of clause 8, wherein an indication of the N bits includes one state for indicating the tone reservation is not applied.
Clause 10. The method of clause 8, wherein the one or N bits reuse a field including one of: one or two most significant bits of frequency domain resource allocation (FDRA) ; a time domain resource allocation (TDRA) table; and one or two most significant bits of modulation coding scheme (MCS) .
Clause 11. The method of any of clauses 1-10, further comprising: reporting a capability by the wireless device, wherein the capability includes at least one of: whether the tone reservation is supported; and a capability for a maximum or minimum or a range of a number or proportion for the reserved tones.
Clause 12. The method of clauses 11, wherein the number or proportion for the reserved tones is determined based on an uplink channel, a bandwidth part (BWP) , a carrier bandwidth, or a range of physical resource blocks.
Clause 13. The method of any of clauses 1-12, wherein the reserved tones of the wireless device include a first reserved tone for a first PUSCH from the wireless device and a second reserved tone that is for both the first PUSCH and a second PUSCH adjacent to the first PUSCH and is shared by the wireless device and another wireless device.
Clause 14. The method of clause 13, wherein, in a case that a first number of reserved tones for the first PUSCH is different from a second number of reserved tones for the second PUSCH, a number of the reserved tones shared by the wireless device and the other wireless device is a maximum number between the first number and the second number.
Clause 15. The method of any of clauses 1-14, wherein a granularity of the reserved tones comprises at least one of physical resource block (PRB) and resource element (RE) .
Clause 16. The method of clause 1, wherein the transmission is performed without the reserved tones in a case that: only uplink control information (UCI) is on a physical uplink shared channel (PUSCH) ; a number of allocated physical resource blocks for an uplink channel is less than a threshold value; or the uplink channel is a transport block on multiple slots (TBoMS) transmission or PUSCH repetition type B.
Clause 17. A method of wireless communication, comprising: transmitting, by a  network device, at least one of a predetermined rule, a semi-static configuration, or a dynamic indication for performing a determination of reserved tones for a transmission; and receiving the transmission performed based on the determination.
Clause 18. The method of clause 17, wherein the transmission is performed with the reserved tones.
Clause 19. The method of any of clauses 17-18, wherein the determination includes determining at least one of a number of reserved tones and locations of reserved tones.
Clause 20. The method of any of clauses 17-19, wherein the predetermined rule determines a number of reserved tones, and wherein the predetermined rule comprises one of: selecting X percent of allocated physical resource blocks for an uplink channel, where X is a positive number or is determined based on a range of the allocated physical resource blocks for an uplink channel; and selecting Y number of physical resource blocks for the uplink channel, where Y is a positive integer or is determined based on a range of the allocated physical resource blocks for a uplink channel.
Clause 21. The method of any of clauses 17-19, wherein the predetermined rule determines locations of the reserved tones, and wherein the predetermined rule comprises one of: two equally split edges inside of an uplink channel; and two equally split edges outside of an uplink channel.
Clause 22. The method of any of clauses 20-21, wherein the X or Y is a total value for both sides of the reserved tones or is a value for a single side of the reserved tones.
Clause 23. The method of any of clauses 17-19, wherein the semi-static configuration includes configuring the reserved tones by a higher layer parameter, wherein the higher layer parameter includes at least one of: a proportion of allocated physical resource blocks for an uplink channel; a number of physical resource blocks reserved for an uplink channel; a proportion or a number of physical resource blocks configured for each range of allocated physical resource blocks for an uplink channel; and two equally split edges inside or outside of an uplink channel.
Clause 24. The method of any of clauses 17-19, wherein the dynamic indication includes one of: one bit to indicate whether to apply the tone reservation; and N bits to indicate a number of reserved tones for an uplink channel, where N is a positive integer or N is configured by a higher layer parameter.
Clause 25. The method of clause 17, wherein the transmission is performed without the reserved tones in a case that: only uplink control information (UCI) is on a physical uplink shared channel (PUSCH) ; a number of allocated physical resource blocks for an uplink channel is less than a threshold value; or the uplink channel is a transport block on multiple slots (TBoMS) transmission or PUSCH repetition type B.
Clause 26. The method of any of clauses 1-25, wherein the uplink channel includes a physical uplink shared channel (PUSCH) .
Clause 27. An apparatus for wireless communication comprising a processor that is configured to carry out the method of any of clauses 1 to 26.
Clause 28. A non-transitory computer readable medium having code stored thereon, the code when executed by a processor, causing the processor to implement a method recited in any of clauses 1 to 26.
Some of the embodiments described herein are described in the general context of methods or processes, which may be implemented in one embodiment by a computer program product, embodied in a computer-readable medium, including computer-executable instructions, such as program code, executed by computers in networked environments. A computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media. Generally, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
Some of the disclosed embodiments can be implemented as devices or modules using hardware circuits, software, or combinations thereof. For example, a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board. Alternatively, or additionally, the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC)  and/or as a Field Programmable Gate Array (FPGA) device. Some implementations may additionally or alternatively include a digital signal processor (DSP) that is a specialized microprocessor with an architecture optimized for the operational needs of digital signal processing associated with the disclosed functionalities of this application. Similarly, the various components or sub-components within each module may be implemented in software, hardware or firmware. The connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.
While this document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this disclosure.

Claims (28)

  1. A method of wireless communication, comprising:
    performing, by a wireless device, a determination of reserved tones for a transmission based on one of a predetermined rule, a semi-static configuration, and a dynamic indication; and
    performing the transmission based on the determination.
  2. The method of claim 1, wherein the transmission is performed with the reserved tones.
  3. The method of any of claims 1-2, wherein the determination includes determining at least one of a number of reserved tones and locations of reserved tones.
  4. The method of any of claims 1-3, wherein the predetermined rule determines a number of reserved tones, and wherein the predetermined rule comprises one of:
    selecting X percent of allocated physical resource blocks for an uplink channel, where X is a positive number or is determined based on a range of the allocated physical resource blocks for an uplink channel; and
    selecting Y number of physical resource blocks for the uplink channel, where Y is a positive integer or is determined based on a range of the allocated physical resource blocks for an uplink channel.
  5. The method of any of claims 1-3, wherein the predetermined rule determines locations of the reserved tones, and wherein the predetermined rule comprises one of:
    two equally split edges inside of an uplink channel; and
    two equally split edges outside of an uplink channel.
  6. The method of any of claims 4-5, wherein the X or Y is a total value for both sides of the reserved tones or is a value for a single side of the reserved tones.
  7. The method of any of claims 1-3, wherein the semi-static configuration includes configuring the reserved tones by a higher layer parameter, wherein the higher layer parameter  includes at least one of:
    a proportion of allocated physical resource blocks for an uplink channel;
    a number of physical resource blocks reserved for an uplink channel;
    a proportion or a number of physical resource blocks configured for each range of allocated physical resource blocks for an uplink channel; and
    two equally split edges inside or outside of an uplink channel.
  8. The method of any of claim 1-3, wherein the dynamic indication includes one of:
    one bit to indicate whether to apply the tone reservation; and
    N bits to indicate a number of reserved tones for an uplink channel, where N is a positive integer or N is configured by a higher layer parameter.
  9. The method of claim 8, wherein an indication of the N bits includes one state for indicating the tone reservation is not applied.
  10. The method of claim 8, wherein the one or N bits reuse a field including one of:
    one or two most significant bits of frequency domain resource allocation (FDRA) ;
    a time domain resource allocation (TDRA) table; and
    one or two most significant bits of modulation coding scheme (MCS) .
  11. The method of any of claims 1-10, further comprising:
    reporting a capability by the wireless device, wherein the capability includes at least one of:
    whether the tone reservation is supported; and
    a capability for a maximum or minimum or a range of a number or proportion for the reserved tones.
  12. The method of claims 11, wherein the number or proportion for the reserved tones is determined based on an uplink channel, a bandwidth part (BWP) , a carrier bandwidth, or a range of physical resource blocks.
  13. The method of any of claims 1-12, wherein the reserved tones of the wireless device include a first reserved tone for a first PUSCH from the wireless device and a second reserved tone that is for both the first PUSCH and a second PUSCH adjacent to the first PUSCH and is shared by the wireless device and another wireless device.
  14. The method of claim 13, wherein, in a case that a first number of reserved tones for the first PUSCH is different from a second number of reserved tones for the second PUSCH, a number of the reserved tones shared by the wireless device and the other wireless device is a maximum number between the first number and the second number.
  15. The method of any of claims 1-14, wherein a granularity of the reserved tones comprises at least one of physical resource block (PRB) and resource element (RE) .
  16. The method of claim 1, wherein the transmission is performed without the reserved tones in a case that:
    only uplink control information (UCI) is on a physical uplink shared channel (PUSCH) ;
    a number of allocated physical resource blocks for an uplink channel is less than a threshold value; or
    the uplink channel is a transport block on multiple slots (TBoMS) transmission or PUSCH repetition type B.
  17. A method of wireless communication, comprising:
    transmitting, by a network device, at least one of a predetermined rule, a semi-static configuration, or a dynamic indication for performing a determination of reserved tones for a transmission; and
    receiving the transmission performed based on the determination.
  18. The method of claim 17, wherein the transmission is performed with the reserved tones.
  19. The method of any of claims 17-18, wherein the determination includes determining at least one of a number of reserved tones and locations of reserved tones.
  20. The method of any of claims 17-19, wherein the predetermined rule determines a number of reserved tones, and wherein the predetermined rule comprises one of:
    selecting X percent of allocated physical resource blocks for an uplink channel, where X is a positive number or is determined based on a range of the allocated physical resource blocks for an uplink channel; and
    selecting Y number of physical resource blocks for the uplink channel, where Y is a positive integer or is determined based on a range of the allocated physical resource blocks for a uplink channel.
  21. The method of any of claims 17-19, wherein the predetermined rule determines locations of the reserved tones, and wherein the predetermined rule comprises one of:
    two equally split edges inside of an uplink channel; and
    two equally split edges outside of an uplink channel.
  22. The method of any of claims 20-21, wherein the X or Y is a total value for both sides of the reserved tones or is a value for a single side of the reserved tones.
  23. The method of any of claims 17-19, wherein the semi-static configuration includes configuring the reserved tones by a higher layer parameter, wherein the higher layer parameter includes at least one of:
    a proportion of allocated physical resource blocks for an uplink channel;
    a number of physical resource blocks reserved for an uplink channel;
    a proportion or a number of physical resource blocks configured for each range of allocated physical resource blocks for an uplink channel; and
    two equally split edges inside or outside of an uplink channel.
  24. The method of any of claims 17-19, wherein the dynamic indication includes one of:
    one bit to indicate whether to apply the tone reservation; and
    N bits to indicate a number of reserved tones for an uplink channel, where N is a positive integer or N is configured by a higher layer parameter.
  25. The method of claim 17, wherein the transmission is performed without the reserved tones in a case that:
    only uplink control information (UCI) is on a physical uplink shared channel (PUSCH) ;
    a number of allocated physical resource blocks for an uplink channel is less than a threshold value; or
    the uplink channel is a transport block on multiple slots (TBoMS) transmission or PUSCH repetition type B.
  26. The method of any of claims 1-25, wherein the uplink channel includes a physical uplink shared channel (PUSCH) .
  27. An apparatus for wireless communication comprising a processor that is configured to carry out the method of any of claims 1 to 26.
  28. A non-transitory computer readable medium having code stored thereon, the code when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 26.
PCT/CN2021/143690 2021-12-31 2021-12-31 Methods and systems for determining reserved tones for transmission WO2023123360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143690 WO2023123360A1 (en) 2021-12-31 2021-12-31 Methods and systems for determining reserved tones for transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143690 WO2023123360A1 (en) 2021-12-31 2021-12-31 Methods and systems for determining reserved tones for transmission

Publications (1)

Publication Number Publication Date
WO2023123360A1 true WO2023123360A1 (en) 2023-07-06

Family

ID=86997192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143690 WO2023123360A1 (en) 2021-12-31 2021-12-31 Methods and systems for determining reserved tones for transmission

Country Status (1)

Country Link
WO (1) WO2023123360A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170201989A1 (en) * 2016-01-11 2017-07-13 Qualcomm Incorporated Uplink data channel design for narrowband devices
CN107735992A (en) * 2015-06-09 2018-02-23 三星电子株式会社 Determine the method for reserved tones and the transmitter of PAPR reductions is performed using tone reservation
CN107800527A (en) * 2015-09-07 2018-03-13 联发科技股份有限公司 Resource allocation method, website and storage device
CN111095848A (en) * 2017-09-11 2020-05-01 苹果公司 Channel state information reporting on physical uplink shared channel in new radio
CN111201740A (en) * 2017-10-09 2020-05-26 高通股份有限公司 Different methods for PRACH and PUSCH separation in NR
CN111602364A (en) * 2018-01-17 2020-08-28 高通股份有限公司 Demodulation reference signal and phase rotation for sub-physical resource block allocation with dual tone modulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735992A (en) * 2015-06-09 2018-02-23 三星电子株式会社 Determine the method for reserved tones and the transmitter of PAPR reductions is performed using tone reservation
CN107800527A (en) * 2015-09-07 2018-03-13 联发科技股份有限公司 Resource allocation method, website and storage device
US20170201989A1 (en) * 2016-01-11 2017-07-13 Qualcomm Incorporated Uplink data channel design for narrowband devices
CN111095848A (en) * 2017-09-11 2020-05-01 苹果公司 Channel state information reporting on physical uplink shared channel in new radio
CN111201740A (en) * 2017-10-09 2020-05-26 高通股份有限公司 Different methods for PRACH and PUSCH separation in NR
CN111602364A (en) * 2018-01-17 2020-08-28 高通股份有限公司 Demodulation reference signal and phase rotation for sub-physical resource block allocation with dual tone modulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, CATT: "PAPR reduction for OFDMA using improved tone reservation with low complexity", 3GPP DRAFT; R1-050836 PAPR REDUCTION FOR OFDMA USING IMPROVED TONE RESERVATION WITH LOW COMPLEXITY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. London, UK; 20050825, 25 August 2005 (2005-08-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050100466 *

Similar Documents

Publication Publication Date Title
US9942891B2 (en) Method and device for signaling control information in carrier aggregation system
WO2017193890A1 (en) Method for transmitting harq feedback information, ue unit, base station, and system
US11219008B2 (en) Methods and apparatus for guardband configuration
RU2744209C1 (en) Method and terminal device for data transfer
CN109151979B (en) Power headroom determination method and network equipment
EP3756278A1 (en) Device system and method for new radio (nr) communication
US11540254B2 (en) Apparatus and method for allocating resources in wireless communication system
US11026184B2 (en) Terminal apparatus, base station apparatus, and communication method for transmitting resource information and transmission power control information to the terminal device with a grant-free access resource allocation or a scheduled access resource allocation
US11973588B2 (en) Rate matching resource mapping in wireless communications
JP2019535189A (en) Information transmission method, terminal device, and network device
US20220408433A1 (en) Uplink control channel resource allocation methods and devices
US20240031054A1 (en) Communication method, communication device, electronic device, and computer readable storage medium
CN116057882A (en) Peak-to-average power ratio reduction for supplemental uplink
US20240098756A1 (en) Methods and systems for multi-channel scheduling on one or more cells
US11716233B2 (en) Peak reduction tone (PRT) selection
US20240187184A1 (en) Sounding reference signal transmission techniques
WO2023123360A1 (en) Methods and systems for determining reserved tones for transmission
CN106559841A (en) A kind of distribution method and device of LTE ascending physical signals control channel PUCCH resource
WO2023010426A1 (en) Methods and systems for coverage enhancement in wireless networks
US20240147428A1 (en) Methods and systems for determining uplink common frequency resource
US20240155644A1 (en) Methods and systems for multi-cell transmission
US12022401B2 (en) Method and apparatus for controlling PUSCH transmission of a UE in a wireless communication system
WO2024113605A1 (en) Dci format determination for multi-cell scheduling for wireless communications
US20240098755A1 (en) Methods and systems for determining control message format in wireless networks
US20220104138A1 (en) Method and apparatus for controlling transmission power of ue in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969711

Country of ref document: EP

Kind code of ref document: A1