WO2023123118A1 - 一种测量间隙Gap的配置方法和装置 - Google Patents

一种测量间隙Gap的配置方法和装置 Download PDF

Info

Publication number
WO2023123118A1
WO2023123118A1 PCT/CN2021/142679 CN2021142679W WO2023123118A1 WO 2023123118 A1 WO2023123118 A1 WO 2023123118A1 CN 2021142679 W CN2021142679 W CN 2021142679W WO 2023123118 A1 WO2023123118 A1 WO 2023123118A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
frequency
gap
measurement gap
configuration
Prior art date
Application number
PCT/CN2021/142679
Other languages
English (en)
French (fr)
Inventor
熊艺
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/142679 priority Critical patent/WO2023123118A1/zh
Priority to CN202180004617.9A priority patent/CN116746167A/zh
Publication of WO2023123118A1 publication Critical patent/WO2023123118A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present disclosure relates to the technical field of communications, and in particular to a method and device for configuring a measurement gap Gap.
  • the measurement gap sharing configuration (measGapSharingConfig) is configured based on the terminal device, and the terminal device receives the measurement configuration (measConfig), wherein the measConfig includes the measGapSharingConfig message, since each terminal device can only be configured with one terminal device-level measurement gap ( per UE Gap), or frequency range-level measurement gap (per FR gap, including FR1Gap and FR2Gap), the corresponding measurement gap sharing scheme will be included in measGapSharingConfig, and both per UE Gap and per FR gap can adapt to the appropriate measurement gap sharing configuration .
  • Embodiments of the present disclosure provide a method and device for configuring a measurement gap Gap.
  • a terminal device can determine a usage mode of a measurement Gap shared configuration according to a measurement Gap configuration parameter and/or a measurement Gap shared configuration, so as to enhance the measurement Gap.
  • an embodiment of the present disclosure provides a method for configuring a measurement gap Gap, the method is executed by a terminal device, and the method includes: receiving measurement configuration information of a network device, wherein the measurement configuration information includes a plurality of measurement Gap Configure parameters and measure Gap sharing configuration; determine the use mode of the measuring Gap sharing configuration.
  • the terminal device receives the measurement configuration information of the network device, wherein the measurement configuration information includes multiple measurement Gap configuration parameters and measurement Gap sharing configuration, and determines the usage mode of the measurement Gap sharing configuration.
  • the terminal device can determine a usage manner of the measurement Gap sharing configuration according to the configuration parameters of the measurement Gap and/or the measurement Gap sharing configuration, so as to enhance the measurement Gap.
  • an embodiment of the present disclosure provides another method for configuring a measurement gap Gap, the method is executed by a network device, and the method includes: sending to the terminal device measurement configuration information used to determine the usage mode of the measurement Gap shared configuration;
  • the measurement configuration information includes configuration parameters of multiple measurement gaps and a shared configuration of the measurement gaps.
  • the embodiment of the present disclosure provides a communication device, which has some or all functions of the terminal device in the method described in the first aspect above, for example, the functions of the communication device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes: a transceiver module, configured to receive measurement configuration information of a network device, wherein the measurement configuration information includes a plurality of measurement Gap configuration parameters and a measurement Gap sharing configuration; a processing module, It is used to determine the usage mode of the measurement gap sharing configuration.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the network device in the method example described in the second aspect above, for example, the function of the communication device may have some of the functions in the present disclosure Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present disclosure alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device may include a transceiver module in its structure, and the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the communication device includes: a transceiver module, configured to send measurement configuration information used to determine a usage mode of a measurement Gap shared configuration to a terminal device; the measurement configuration information includes configuration parameters of multiple measurement Gaps Shared configuration with measuring Gap.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal, and when the instructions are executed, the terminal device executes the method described in the above-mentioned first aspect .
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal to implement the functions involved in the first aspect, for example, determine or process the data and at least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data of the terminal.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a flow chart of a method for configuring a measurement gap Gap provided by an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another method for configuring a measurement gap Gap provided by an embodiment of the present disclosure
  • FIG. 4 is a flowchart of another method for configuring a measurement gap Gap provided by an embodiment of the present disclosure
  • FIG. 5 is a flowchart of another method for configuring a measurement gap Gap provided by an embodiment of the present disclosure
  • FIG. 6 is a flowchart of another method for configuring a measurement gap Gap provided by an embodiment of the present disclosure
  • FIG. 7 is a structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of another communication device provided by an embodiment of the present disclosure.
  • Fig. 11 is a structural diagram of a chip provided by an embodiment of the present disclosure.
  • the network device sends the information required for the measurement to the terminal device UE through signaling.
  • the network device may be RRC (Radio Resource Control, radio resource control) reconfiguration (RRCReconfiguration) signaling for sending the information required for measurement, wherein the measurement configuration (measConfig) of the RRC reconfiguration signaling Cells contain measurement configuration information.
  • RRC Radio Resource Control, radio resource control
  • RRCReconfiguration Radio Resource Control reconfiguration
  • the corresponding measurement object will be configured for each frequency to be measured and the corresponding reference signal; only when the corresponding measurement object, reporting configuration and measurement configuration have been configured for the UE, the network device performs Only then will a measurement ID be configured to associate with the corresponding measurement object and report configuration.
  • the UE After receiving the signaling sent by the network device, the UE modifies the measurement configuration and the measurement report list stored in itself accordingly, and notifies the network device of a successful modification. After receiving the RRC reconfiguration signaling, the UE sends an RRC reconfiguration complete (RRCReconfigurationComplete) signaling to the network device, where the RRC reconfiguration complete signaling is used to indicate that the modification of the measurement configuration is successful.
  • RRC reconfiguration complete RRCReconfigurationComplete
  • the measurement configuration information may include the configuration information shown in 1) to 5) below.
  • Measurement object Measurement object, MO
  • the measurement object defines the measurement target, including the measurement object identifier (ID) and the specific configuration of the corresponding measurement target.
  • ID the measurement object identifier
  • LTE long term evolution
  • one measurement object corresponds to one frequency point.
  • the network device In the measurement object configuration of a frequency point, the network device notifies the UE of the information that needs to be known for measurement of the frequency point, for example, the configuration of measurement resources on the frequency point and the list of cells on the frequency point.
  • E-UTRA represents the access network part in the LTE system.
  • the full name of E-UTRA is the evolved UMTS terrestrial radio access network (evolved UMTS terrestrial radio access network), and the full name of UMTS is universal mobile telecommunications system.
  • the reporting configuration includes the specific configuration of the measurement reporting ID and the corresponding measurement reporting criteria.
  • the network device informs the UE of the specific details of the measurement to be performed, including the type of measurement, the method of triggering the report, and the format of the report.
  • a measurement ID is an independent ID
  • a measurement ID is a combination of a measurement object and a reporting configuration.
  • the combination of measurement object and reporting configuration determines various details of the measurement for a measurement object.
  • Any measurement object/report configuration can be associated with any one/multiple/zero report configuration/measurement objects having the same radio access technology (radio access type, RAT) type.
  • radio access type radio access type, RAT
  • the measurement quantity configuration refers to the configuration of layer 3 filter coefficients. Before the trigger measurement is used to verify whether the reporting trigger condition is met, and before the measurement is finally reported, layer 3 filtering needs to be performed first. The layer 3 filtering coefficient is notified to the UE through the configuration of the measurement quantity.
  • the network needs to configure a measurement gap for the UE.
  • a measurement task is identified by a measurement ID (measID), and measIID is associated with a measurement object (measObject, MO) and a report configuration (reportConfig).
  • measID measurement ID
  • measIID is associated with a measurement object (measObject, MO) and a report configuration (reportConfig).
  • the measurement gap is a period configured by the network device for the UE that does not require the terminal device to receive the physical downlink control channel (physical downlink control channel, PDCCH) / physical downlink shared channel (physical downlink shared channel, PDSCH) reception, and the physical uplink control channel (physical Uplink control channel (PUCCH)/physical uplink shared channel (physical uplink shared channel, PUSCH) transmission time.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PUCCH physical Uplink control channel
  • PUSCH physical uplink shared channel
  • a network device configures a measurement gap for the UE in the measurement configuration. During the measurement gap, data transmission and reception between the UE and the serving cell are not required, so that the UE can perform measurement.
  • the measurement gap configuration (measGapConfig) is carried in the measurement configuration (measConfig).
  • the measurement gap configuration (measGapConfig) may include the following information:
  • GapUE means UE-level measurement gap (perUE gap)).
  • gapFR1 indicates the frequency range FR1 class measurement gap.
  • gapFR2 indicates the frequency range FR2 class measurement gap.
  • FR1 and FR2 are two spectrum ranges (frequency range, FR).
  • the overall spectrum resources of 5G can be divided into two frequency bands FR1 and FR2.
  • FR1 indicates the frequency band with a frequency below 6GHz.
  • the frequency band below 6GHz can be called sub 6G.
  • FR1 can be called a low-frequency band, which is the main frequency band for 5G.
  • the frequency band below 3GHz can be called sub3G, and the rest of the frequency band can be called C-band.
  • FR2 indicates the frequency band with a frequency higher than 6GHz. Frequency bands with frequencies higher than 6GHz can also be called millimeter waves above 6GHz. FR2 can be called a high-frequency band, which is an extended frequency band for 5G.
  • the UE-level measurement gap refers to the measurement gap applicable to both FR1 and FR2.
  • the UE In perUE gap, the UE is not required to transmit, the UE is not required to receive data from any serving cell except for the reference signal used for measurement, and the UE is not required to switch the frequency point to the frequency point of any serving cell.
  • the perUE gap can be regarded as interrupting the data transmission of all serving cells of the UE.
  • the frequency range-level measurement gap defines a set of measurement gap patterns for the FR1 and FR2 frequency bands, and each set of measurement gap patterns will only apply to the corresponding frequency band.
  • GapFR1 indicates that the measurement gap applies to FR1
  • gapFR2 indicates that the measurement gap applies to FR2.
  • the UE In perFR gap, the UE is not required to transmit to the cell in the corresponding frequency band, the UE is not required to receive data from any serving cell in the corresponding frequency band except for the reference signal used for measurement, and the UE is not required to switch the frequency point to the corresponding on the frequency point of any serving cell on the frequency band.
  • the PerFR gap can be regarded as only interrupting the data transmission between the UE and the serving cell on the corresponding FR. For example, during perFR1gap, the UE does not perform data transmission with the serving cell on FR1, but can perform data transmission with the serving cell on FR2. For another example, during the period of perFR2gap, the UE does not perform data transmission with the serving cell on FR2, but can perform data transmission with the serving cell on FR1.
  • reporting of the gap capability of the UE is not supported. Except for special scenarios such as “the SSB to be tested is in the activeBWP" or “active BWP is the same-frequency measurement of the initial BWP" or "the UE supports perFR gap and the frequency point to be tested and the service frequency point are not in the same FR" as specified in the protocol, there is no need to configure the measurement gap.
  • network devices always configure measurement gaps for UEs.
  • measurement gaps are configured based on UEs, and the network device configures a measurement gap for each UE with only one set of measurement gap configurations for each measurement gap type. For example, a network device can configure a per FR1 gap for each UE, and then configure a per FR2 gap.
  • FIG. 1 is a schematic structural diagram of a communication system 1 provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and shape of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system 1 shown in FIG. 1 includes one network device 11 and one terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • multiple parallel measurement gaps are introduced. Different measurement gaps may correspond to one or more different frequency points. There may be some measurement gaps that do not correlate with same-frequency measurement and different-frequency measurement at the same time, or do not The same-frequency measurement and different-standard RAT measurement will be associated at the same time. In related technologies, the measurement Gap sharing configuration determines the same-frequency measurement and different-frequency measurement, or the proportion of measurement opportunities between same-frequency measurement and different-standard RAT measurement.
  • the unassociated same-frequency measurement and different-frequency measurement, or the unassociated same-frequency measurement and different-standard RAT (Radio Access Technology, radio access technology) measurement will be in the corresponding Relevant measurements may not be performed on the measuring machine, resulting in wasted measuring opportunities.
  • the intra-frequency measurement may be: the frequency point of the target cell to be measured is the same as the frequency point of the current serving cell.
  • Inter-frequency measurement may be: the frequency point of the target cell to be measured is different from the frequency point of the current serving cell.
  • Inter-RAT measurement also known as inter-RAT measurement, may be: the network standard of the target cell to be measured is different from the network standard of the current serving cell.
  • an embodiment of the present disclosure provides a configuration method for measuring Gap to at least solve unassociated same-frequency measurement and inter-frequency measurement, or unassociated same-frequency measurement and inter-standard RAT measurement may not be correlated on corresponding measurement opportunities measurement, the problem of waste of resources.
  • FIG. 2 is a flowchart of a method for configuring a measurement gap Gap provided by an embodiment of the present disclosure.
  • the method is performed by a terminal device, and the method may include but not limited to the following steps:
  • S21 Receive measurement configuration information of the network device, where the measurement configuration information includes configuration parameters of multiple measurement Gaps and a shared configuration of measurement Gaps.
  • the measurement configuration information received by the terminal device from the network device may be measConfig, and the terminal device receives the measConfig sent by the network device through an RRC (Radio Resource Control, radio resource control) reconfiguration message.
  • RRC Radio Resource Control, radio resource control
  • the measurement configuration information measConfig includes the measurement Gap sharing configuration, and the measurement Gap sharing configuration may be measGapSharingConfig.
  • the measurement configuration information measConfig also includes a plurality of configuration parameters of the measurement Gap.
  • the measurement configuration information includes a measurement gap sharing configuration applicable to all measurement gaps.
  • each measurement gap or group of measurement gaps has an independent measurement gap sharing configuration.
  • each measurement gap corresponds to an independent measurement gap sharing configuration, or multiple measurement gaps form a measurement gap group, and the measurement gap group corresponds to an independent measurement gap sharing configuration.
  • the measurement gap sharing configuration corresponding to the measurement gap is indicated in the relevant IE corresponding to the measurement gap.
  • the measurement gap shared configuration corresponding to the measurement gap may be included in IEs such as MeasGapConfig, MeasGapConfigList, and GapConfig corresponding to the measurement gap.
  • the identifier of the shared configuration of the measurement gap corresponding to the measurement gap may be included in IEs such as MeasGapConfig, MeasGapConfigList, and GapConfig corresponding to the measurement gap.
  • measGapSharingConfig SetupRelease ⁇ MeasGapSharingConfig ⁇ represents another modification method.
  • the identifiers of different measurement gap sharing configurations are used to indicate different measurement gap sharing configurations.
  • the measurement gap associated with the measurement gap sharing configuration is indicated in the measurement gap sharing configuration.
  • the measurement gap sharing configuration includes the identifier of the associated measurement gap.
  • the measurement gap sharing configuration includes an associated measurement gap identification list, and the measurement gap identification list includes a group of measurement gaps associated with the measurement gap sharing configuration.
  • MeasGapSharingConfigList:: SEQUENCE(SIZE(1..maxNrofGapSharingConfig))OF MeasGapSharingConfig
  • different measurement Gap identities are used to indicate different measurement Gap configurations.
  • the corresponding relationship between the measurement gap and the measurement gap sharing configuration may be represented by a list.
  • each element of the list may associate a measurement gap configuration with its corresponding measurement gap sharing configuration.
  • each element of the list can associate the measurement gap shared configuration with its corresponding measurement gap, as shown in the following example:
  • the list MeasGapSharingConfigList represents the corresponding relationship between the measurement gap and the measurement gap sharing configuration.
  • the parameter MeasGapSharingConfig-v17 indicates the elements included in the list MeasGapSharingConfigList, indicating a Gap sharing configuration and its associated measurement Gap list.
  • measGapSharingConfig indicates the measurement Gap sharing configuration.
  • associatedMeasGapList represents a list of measurement gap identifiers associated with the measurement gap sharing configuration.
  • maxNrofGapId is the maximum number of correlative measurement gaps.
  • MeasGapId is the identifier of the measurement Gap.
  • the corresponding relationship between the measurement Gap and the measurement Gap sharing configuration is obtained by receiving a configuration message of the network device.
  • the configuration message IE may be included in the measurement configuration information measConfig.
  • the configuration message may be an RRC message, and the corresponding relationship between the measurement Gap and the measurement Gap sharing configuration is acquired by receiving the RRC message of the network device.
  • the measurement configuration information includes a measurement gap sharing configuration list
  • the measurement gap sharing configuration list includes a group of measurement gap sharing configurations
  • a group of measurement gap sharing configurations includes multiple measurement gap sharing configurations, so as to configure multiple measurement gaps Share configuration.
  • the measurement gap includes multiple frequency layers or multiple frequency points, and the measurement gap sharing configuration indicates the measurement opportunity ratio of each frequency layer or each frequency point of each measurement gap.
  • the frequency layer frequency layer is limited as follows:
  • PRS Positioning Reference Signal
  • Each measured SSB or LTE frequency is considered as a frequency layer.
  • one MO may be one frequency layer.
  • the measurement gap sharing configuration directly indicates the measurement opportunity ratio of each frequency layer of each measurement gap, or indicates the measurement opportunity ratio of each frequency point of each measurement gap.
  • the list MeasGapSharingSchemeList represents a measurement gap sharing configuration list, indicating all or part of the frequency layers in its associated measurement gap and the proportion of measurement opportunities of this frequency layer.
  • the parameter MeasGapSharingScheme-v17 indicates the elements contained in the list MeasGapSharingSchemeList, indicating a frequency layer associated with the measurement gap and the proportion of measurement opportunities of this frequency layer.
  • associatedFrequencyLayer represents a frequency layer associated with measuring Gap.
  • measGapSharingScheme-v17 indicates the proportion of measurement opportunities in the frequency layer, in %.
  • maxNrofffrequencylayer is the number of maximum associable frequency layers.
  • FrequencyLayerId is the identifier of the frequency layer.
  • the measurement gap sharing configuration that directly indicates the measurement opportunity ratio of each frequency layer of each measurement gap is configured for each measurement gap, or directly indicates the measurement opportunity of each frequency layer of each measurement gap
  • the percentage measurement gap sharing configuration is configured for each measurement gap group.
  • the measurement gap sharing configuration that directly indicates the measurement opportunity ratio of each frequency point of each measurement gap is configured for each measurement gap, or directly indicates the measurement opportunity of each frequency point of each measurement gap
  • the percentage measurement gap sharing configuration is configured for each measurement gap group.
  • the measurement gap sharing configuration indicates the measurement opportunity ratio of each frequency layer in the frequency layer list; or, for the frequency layer corresponding to the multiple frequency points associated with the measurement gap Point list, measure the proportion of measurement opportunities for each frequency point in the Gap sharing configuration indication or frequency point list.
  • the measurement gap sharing configuration indicates the measurement opportunity ratio of each frequency layer in the frequency layer list, as shown in the following example:
  • MeasGapSharingSchemeList:: SEQUENCE(SIZE(1..maxNrofffrequencylayer))OF INTEGER(0..100).
  • the list MeasGapSharingSchemeList represents a measurement gap sharing configuration list, indicating the proportion of measurement opportunities of all frequency layers in the associated measurement gap, and the unit is %.
  • the size of the list in the network configuration is the total number of frequency layers associated with the measurement gap, and each element in the list corresponds to the measurement opportunity ratio of each frequency layer in the frequency layer list associated with the measurement gap in sequence.
  • maxNrofffrequencylayer is the number of maximum associable frequency layers.
  • the terminal device receives the measurement configuration information of the network device, including a plurality of measurement Gap configuration parameters, wherein the measurement Gap configuration parameters include a measurement Gap configuration list, or include a measurement Gap configuration.
  • the measurement Gap configuration includes a perUE measurement Gap configuration list or a measurement Gap configuration list applicable to FR1 or a measurement Gap configuration list applicable to FR2.
  • the measurement gap configuration list includes a measurement gap configuration addition or modification list and/or a measurement gap configuration release or removal list.
  • the configuration parameters of the measurement Gap further include a measurement Gap configuration list; wherein the measurement Gap configuration list is stored in a terminal device variable.
  • a new parameter measurement Gap configuration list is introduced, which is a measurement Gap addition or modification list, which can be included in the measurement-related UE variable VarMeasConfig stored in the terminal device.
  • the measurement gap addition or modification list includes the identification of the measurement gap and the corresponding configuration of the measurement gap.
  • the measurement Gap is configured through the measurement Gap configuration in the R16 (Release 16) version.
  • the terminal device receives the measurement configuration information of the network device, wherein the measurement configuration information includes multiple measurement Gap configuration parameters and the measurement Gap sharing configuration, and the terminal device determines the available measurement Gap according to the measurement configuration information, and then according to the measurement
  • the configuration parameters of the Gap and/or the shared configuration of the measured Gap determine how to use the shared configuration of the measured Gap, so as to enhance the measured Gap.
  • FIG. 3 is a flowchart of another method for configuring a measurement gap Gap provided by an embodiment of the present disclosure.
  • the method is performed by the terminal device, and the method may include but not limited to the following steps:
  • S31 Receive measurement configuration information of the network device, where the measurement configuration information includes configuration parameters of multiple measurement Gaps and a shared configuration of measurement Gaps.
  • S32 Determine the association relationship corresponding to the measurement gap; determine the usability of the measurement gap sharing configuration according to the association relationship corresponding to the measurement gap.
  • whether the terminal device applies the measurement Gap sharing configuration is related to the association relationship corresponding to the measurement Gap.
  • the measurement configuration information includes a measurement gap sharing configuration applicable to all measurement gaps.
  • the association relationship corresponding to the measurement gap is determined; and the usability of the shared configuration of the measurement gap is determined according to the association relationship corresponding to the measurement gap.
  • the measurement Gap is not associated with the intra-frequency measurement and the inter-frequency measurement, or is not associated with the intra-frequency measurement and the inter-RAT measurement at the same time, it is determined that the measurement Gap sharing configuration is unavailable.
  • the measurement Gap is simultaneously associated with intra-frequency measurement and inter-frequency measurement, or is simultaneously associated with intra-frequency measurement and inter-RAT measurement, it is determined that the measurement Gap sharing configuration is available.
  • the terminal The device ignores the corresponding measurement gap sharing configuration, or does not apply the measurement gap sharing configuration corresponding to the measurement gap.
  • the terminal device does not apply the measurement Gap sharing configuration corresponding to the measurement Gap, and the terminal device may determine a corresponding measurement Gap sharing scheme according to the implementation of the terminal device UE.
  • the terminal device when measuring Gap and simultaneously associating same-frequency measurement and inter-frequency measurement, or simultaneously associating same-frequency measurement and inter-RAT measurement, it is determined that the shared information of measurement Gap is available, and the terminal device determines that when performing the corresponding measurement, the application The measurement gap sharing configuration corresponding to the measurement gap.
  • the measurement of Gap-associated same-frequency measurement can be to measure the frequency point corresponding to the frequency layer frequency layer associated with Gap, including the frequency of the same frequency;
  • the frequency point includes inter-frequency measurement;
  • the measurement of Gap-associated inter-RAT measurement may be to measure the frequency point corresponding to the frequency layer frequency layer associated with Gap, including inter-RAT frequency.
  • the measurement of Gap-associated same-frequency measurement can be to measure the frequency point of the measurement object MO corresponding to the frequency layer frequency layer associated with Gap, including the frequency of the same frequency;
  • the frequency point of the object MO includes inter-frequency measurement;
  • the measurement of Gap-associated inter-RAT measurement may be to measure the frequency point of the measurement object MO corresponding to the frequency layer frequency layer associated with the Gap, including inter-RAT frequency.
  • the same-frequency measurement associated with the Gap can be measured by measuring the frequency point corresponding to the measurement object MO associated with the Gap, including the same-frequency frequency; the inter-frequency measurement associated with the Gap can be measured by measuring the The frequency point includes inter-frequency measurement; the inter-RAT measurement associated with Gap measurement may be that the frequency point corresponding to the measurement object MO associated with the measurement Gap includes inter-RAT frequency.
  • the association relationship is to measure the frequency layer associated with the Gap, wherein, if the frequency layer associated with the measurement Gap includes a frequency layer of the same frequency and a frequency layer of a different frequency, or a frequency layer of the same frequency and a frequency layer of a different RAT , the association relationship is: the measurement gap is associated with the same frequency measurement and the different frequency measurement, or the same frequency measurement and the different RAT measurement; if the frequency layer associated with the measurement gap only includes the frequency layer of the same frequency, or only includes the different frequency or For the frequency layer of a different RAT, the correlation relationship is: the measurement Gap is not simultaneously associated with the same-frequency measurement and the different-frequency measurement, or is not simultaneously associated with the same-frequency measurement and the different-RAT measurement.
  • the frequency layer of the same frequency is a frequency layer associated with the same frequency; the frequency layer of a different frequency is a frequency layer associated with a different frequency; the frequency layer of a different RAT is a frequency layer associated with a different RAT.
  • one frequency layer may be associated with two or three of the same frequency, different frequency and different RAT at the same time. That is, a frequency layer can be both a frequency layer of the same frequency and a frequency layer of a different frequency, or a frequency layer of the same frequency and a frequency layer of a different RAT, or a frequency layer of a different frequency and a frequency layer of a different RAT, or It is not only the frequency layer of the same frequency, but also the frequency layer of different frequency and the frequency layer of different RAT.
  • the measurement Gap may be associated with one frequency layer or associated with multiple frequency layers.
  • the association relationship is :
  • the measurement Gap is associated with the same frequency measurement and different frequency measurement, or the same frequency measurement and different RAT measurement at the same time; if the frequency layer is only the frequency layer of the same frequency, or only the frequency layer of different frequency or different RAT, then associate The relationship is: the measurement Gap is not simultaneously associated with the same-frequency measurement and different-frequency measurement, or is not simultaneously associated with the same-frequency measurement and different RAT measurement.
  • the association relationship is: the measurement Gap is simultaneously associated with the same-frequency measurement and different-frequency measurement, or is simultaneously associated with the same-frequency measurement and different-RAT measurement.
  • the corresponding first measurement Gap can be used for measurement; for the unassociated frequency layer or frequency point, the second unassociated frequency layer and/or frequency point can be used Measure Gap to measure.
  • determining the related process of measuring the usability of the Gap shared configuration may be included in the process related to the measurement of the Gap shared configuration, or included in the process related to the measurement of the Gap configuration, or independently for a separate process.
  • FIG. 4 is a flowchart of another method for configuring a measurement gap Gap provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device, and the method may include but not limited to the following steps:
  • S41 Receive measurement configuration information of the network device, where the measurement configuration information includes configuration parameters of multiple measurement Gaps and a shared configuration of measurement Gaps.
  • S42 Determine a specific measurement frequency layer among the multiple frequency layers corresponding to the measurement gap, or a specific measurement frequency point among multiple frequency points; determine the specific measurement frequency layer relative to other measurement frequencies of the multiple frequency layers according to the measurement Gap sharing configuration The proportion of measurement opportunities occupied by a layer, or the proportion of measurement opportunities occupied by a specific measurement frequency point relative to other measurement frequency points of multiple frequency points.
  • the measurement opportunity ratios of different frequency layers are configured in the measurement gap sharing configuration. After determining a specific measurement frequency layer among the multiple frequency layers corresponding to the measurement gap, the terminal device can determine the specific measurement frequency layer according to the measurement gap sharing configuration. The proportion of measurement opportunities that a measurement frequency layer has relative to other measurement frequency layers for multiple frequency layers.
  • the terminal device can determine the relative The proportion of measurement opportunities occupied by other measurement frequency points at multiple frequency points.
  • the frequency layer with the same frequency point among the multiple frequency layers is used as the specific measurement frequency layer, or the same frequency point among the multiple frequency points is used as the specific measurement frequency point.
  • the frequency point corresponding to the frequency layer frequency layer associated with the measurement Gap includes the same frequency frequency point, and the measurement Gap is the measurement Gap associated with the same frequency measurement, then the same frequency frequency point is determined as a specific measurement frequency point, or the measurement Gap is associated
  • the frequency layer frequency layer of the same frequency measurement is a specific measurement frequency layer.
  • a specific measurement frequency layer among multiple frequency layers, or a specific measurement frequency point among multiple frequency points is determined according to the implementation of the terminal device UE.
  • determining a specific measurement frequency layer among the multiple frequency layers corresponding to the measurement Gap, or a specific measurement frequency point among the multiple frequency points includes: receiving configuration information of the network device; wherein the configuration information indicates multiple A specific measurement frequency layer in the frequency layer, or a specific measurement frequency point among multiple frequency points; or the configuration information indicates the priority of multiple frequency layers, or the priority of multiple frequency points.
  • the specific measurement frequency layer in the multiple frequency layers corresponding to the measurement gap, or the specific measurement frequency point in the multiple frequency points may be indicated by an RRC message.
  • the specific measurement frequency layer in the multiple frequency layers corresponding to the measurement gap, or the specific measurement frequency point in the multiple frequency points is included in MeasGapConfig, MeasGapConfigList, or GapConfig related to the measurement gap configuration.
  • the specific measurement frequency layer in the multiple frequency layers corresponding to the measurement gap, or the specific measurement frequency point in the multiple frequency points, is included in the IE indicating the association relationship between the measurement gap and the frequency layer.
  • the specific measurement frequency layer in the multiple frequency layers corresponding to the measurement gap, or the information of the specific measurement frequency point in the multiple frequency points, is separately configured or indicated by the network device for different measurement gaps.
  • determining a specific measurement frequency layer among multiple frequency layers corresponding to the measurement gap, or a specific measurement frequency point among multiple frequency points includes: determining the priority of multiple frequency layers, or multiple frequency points priority; determine a specific measurement frequency layer according to the priority of multiple frequency layers, or determine a specific measurement frequency point according to the priority of multiple frequency points.
  • the corresponding priority is included in the MO configuration of the measurement object, and the priority of multiple frequency layers corresponding to the measurement gap or the priority of multiple frequency points is determined by the priority of the measurement object MO, and further Yes, after determining the priorities of the multiple frequency layers corresponding to the measurement gap, or the priorities of the multiple frequency points, according to the priority information, determine a specific measurement frequency layer or a specific measurement frequency point.
  • FIG. 5 is a flowchart of another method for configuring a measurement gap Gap provided by an embodiment of the present disclosure.
  • the method is performed by a network device, and the method may include but not limited to the following steps:
  • S51 Send to the terminal device measurement configuration information for determining a usage manner of the measurement Gap shared configuration; wherein the measurement configuration information includes multiple measurement Gap configuration parameters and a measurement Gap shared configuration.
  • the measurement configuration information received by the terminal device from the network device may be measConfig, and the terminal device receives the measConfig sent by the network device through an RRC (Radio Resource Control, radio resource control) reconfiguration message.
  • RRC Radio Resource Control, radio resource control
  • the measurement configuration information measConfig includes the measurement Gap sharing configuration, and the measurement Gap sharing configuration may be measGapSharingConfig.
  • the measurement configuration information measConfig also includes a plurality of configuration parameters of the measurement Gap.
  • the measurement configuration information includes a measurement gap sharing configuration applicable to all measurement gaps.
  • each measurement gap or group of measurement gaps has an independent measurement gap sharing configuration.
  • each measurement gap corresponds to an independent measurement gap sharing configuration, or multiple measurement gaps form a measurement gap group, and the measurement gap group corresponds to an independent measurement gap sharing configuration.
  • the measurement gap sharing configuration corresponding to the measurement gap is indicated in the related IE corresponding to the measurement gap.
  • the measurement gap shared configuration corresponding to the measurement gap may be included in IEs such as MeasGapConfig, MeasGapConfigList, and GapConfig corresponding to the measurement gap.
  • the identifier of the shared configuration of the measurement gap corresponding to the measurement gap may be included in IEs such as MeasGapConfig, MeasGapConfigList, and GapConfig corresponding to the measurement gap.
  • measGapSharingConfig SetupRelease ⁇ MeasGapSharingConfig ⁇ represents another modification method.
  • the identifiers of different measurement gap sharing configurations are used to indicate different measurement gap sharing configurations.
  • the measurement gap associated with the measurement gap sharing configuration is indicated in the measurement gap sharing configuration.
  • the measurement gap sharing configuration includes the identifier of the associated measurement gap.
  • the measurement gap sharing configuration includes an associated measurement gap identification list, and the measurement gap identification list includes a group of measurement gaps associated with the measurement gap sharing configuration.
  • MeasGapSharingConfigList:: SEQUENCE(SIZE(1..maxNrofGapSharingConfig))OF MeasGapSharingConfig
  • different measurement Gap identities are used to indicate different measurement Gap configurations.
  • the corresponding relationship between the measurement gap and the measurement gap sharing configuration may be represented by a list.
  • each element of the list may associate a measurement gap configuration with its corresponding measurement gap sharing configuration.
  • each element of the list can associate the measurement gap shared configuration with its corresponding measurement gap, as shown in the following example:
  • the list MeasGapSharingConfigList represents the corresponding relationship between the measurement gap and the measurement gap sharing configuration.
  • the parameter MeasGapSharingConfig-v17 indicates the elements included in the list MeasGapSharingConfigList, indicating a Gap sharing configuration and its associated measurement Gap list.
  • measGapSharingConfig indicates the measurement Gap sharing configuration.
  • associatedMeasGapList represents a list of measurement gap identifiers associated with the measurement gap sharing configuration.
  • maxNrofGapId is the maximum number of correlative measurement gaps.
  • MeasGapId is the identifier of the measurement Gap.
  • the corresponding relationship between the measurement Gap and the measurement Gap sharing configuration is obtained by receiving a configuration message of the network device.
  • the configuration message IE may be included in the measurement configuration information measConfig.
  • the configuration message may be an RRC message, and the corresponding relationship between the measurement Gap and the measurement Gap sharing configuration is acquired by receiving the RRC message of the network device.
  • the measurement configuration information includes a measurement gap sharing configuration list
  • the measurement gap sharing configuration list includes a group of measurement gap sharing configurations
  • a group of measurement gap sharing configurations includes multiple measurement gap sharing configurations, so as to configure multiple measurement gaps Share configuration.
  • the measurement gap includes multiple frequency layers or multiple frequency points, and the measurement gap sharing configuration indicates the measurement opportunity ratio of each frequency layer or each frequency point of each measurement gap.
  • the frequency layer frequency layer is limited as follows:
  • PRS Positioning Reference Signal
  • Each measured SSB or LTE frequency is considered as a frequency layer.
  • one MO may be one frequency layer.
  • the measurement gap sharing configuration directly indicates the measurement opportunity ratio of each frequency layer of each measurement gap, or indicates the measurement opportunity ratio of each frequency point of each measurement gap.
  • the list MeasGapSharingSchemeList represents the measurement gap sharing configuration list, indicating all or part of the frequency layers in the associated measurement gap and the proportion of measurement opportunities of this frequency layer.
  • the parameter MeasGapSharingScheme-v17 indicates the elements contained in the list MeasGapSharingSchemeList, indicating a frequency layer associated with the measurement Gap and the proportion of measurement opportunities of this frequency layer.
  • associatedFrequencyLayer represents a frequency layer associated with measuring Gap.
  • measGapSharingScheme-v17 indicates the proportion of measurement opportunities in the frequency layer, in %.
  • maxNrofffrequencylayer is the number of maximum associable frequency layers.
  • FrequencyLayerId is the identifier of the frequency layer.
  • the measurement gap sharing configuration that directly indicates the measurement opportunity ratio of each frequency layer of each measurement gap is configured for each measurement gap, or directly indicates the measurement opportunity of each frequency layer of each measurement gap
  • the percentage measurement gap sharing configuration is configured for each measurement gap group.
  • the measurement gap sharing configuration that directly indicates the measurement opportunity ratio of each frequency point of each measurement gap is configured for each measurement gap, or directly indicates the measurement opportunity of each frequency point of each measurement gap
  • the percentage measurement gap sharing configuration is configured for each measurement gap group.
  • the measurement gap sharing configuration indicates the measurement opportunity ratio of each frequency layer in the frequency layer list; or, for the frequency layer corresponding to the multiple frequency points associated with the measurement gap Point list, measure the proportion of measurement opportunities for each frequency point in the Gap sharing configuration indication or frequency point list.
  • the measurement gap sharing configuration indicates the measurement opportunity ratio of each frequency layer in the frequency layer list, as shown in the following example:
  • MeasGapSharingSchemeList:: SEQUENCE(SIZE(1..maxNrofffrequencylayer))OF INTEGER(0..100).
  • the list MeasGapSharingSchemeList represents a measurement gap sharing configuration list, indicating the proportion of measurement opportunities of all frequency layers in the associated measurement gap, and the unit is %.
  • the size of the list in the network configuration is the total number of frequency layers associated with the measurement gap, and each element in the list corresponds to the measurement opportunity ratio of each frequency layer in the frequency layer list associated with the measurement gap in sequence.
  • maxNrofffrequencylayer is the number of maximum associable frequency layers.
  • the terminal device receives the measurement configuration information of the network device, including a plurality of measurement Gap configuration parameters, wherein the measurement Gap configuration parameters include a measurement Gap configuration list, or include a measurement Gap configuration.
  • the measurement Gap configuration includes a perUE measurement Gap configuration list or a measurement Gap configuration list applicable to FR1 or a measurement Gap configuration list applicable to FR2.
  • the measurement gap configuration list includes a measurement gap configuration addition or modification list and/or a measurement gap configuration release or removal list.
  • the configuration parameters of the measurement Gap further include a measurement Gap configuration list; wherein the measurement Gap configuration list is stored in a terminal device variable.
  • the measurement Gap is configured through the measurement Gap configuration in the R16 (Release 16) version.
  • the terminal device receives the measurement configuration information of the network device, wherein the measurement configuration information includes multiple measurement Gap configuration parameters and the measurement Gap sharing configuration, and the terminal device determines the available measurement Gap according to the measurement configuration information, and then according to the measurement
  • the configuration parameters of the Gap and/or the shared configuration of the measured Gap determine how to use the shared configuration of the measured Gap, so as to enhance the measured Gap.
  • FIG. 6 is a flowchart of another method for configuring a measurement gap Gap provided by an embodiment of the present disclosure.
  • the method is performed by a network device, and the method may include but not limited to the following steps:
  • S61 Send the measurement configuration information used to determine the use mode of the measurement Gap sharing configuration to the terminal device; wherein, the measurement configuration information includes a plurality of measurement Gap configuration parameters and measurement Gap sharing configuration; send the configuration information to the terminal device; wherein, the configuration The information indicates a specific measurement frequency layer among multiple frequency layers, or a specific measurement frequency point among multiple frequency points; or the configuration information indicates priorities of multiple frequency layers, or priorities of multiple frequency points.
  • each measurement gap or group of measurement gaps has an independent measurement gap sharing configuration.
  • each measurement Gap includes multiple frequency layers or multiple frequency points
  • the measurement Gap sharing configuration indicates the measurement opportunity ratio of each frequency layer of each measurement Gap, or indicates each measurement opportunity of each measurement Gap. The proportion of measurement opportunities for frequency points.
  • measuring the configuration parameters of the Gap further includes measuring a Gap configuration list.
  • the measurement Gap configuration list is stored in end device variables.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of network devices and terminal devices respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 7 is a schematic structural diagram of a communication device 10 provided by an embodiment of the present disclosure.
  • the communication device 10 shown in FIG. 7 may include a transceiver module 101 .
  • the transceiver module 101 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 101 can realize the sending function and/or the receiving function.
  • the communication device 10 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched with the terminal device.
  • the communication device 10 is a terminal device:
  • the apparatus includes: a transceiver module 102, configured to receive measurement configuration information of a network device, wherein the measurement configuration information includes configuration parameters of multiple measurement Gaps and a shared configuration of measurement Gaps.
  • the processing module 101 is configured to determine the usage mode of the measurement Gap sharing configuration.
  • the processing module 101 includes:
  • the first determining unit 1011 is configured to determine an association relationship corresponding to the measurement Gap.
  • the second determining unit 1012 is configured to determine availability of the shared configuration of the measurement Gap according to the association relationship corresponding to the measurement Gap.
  • the second determining unit 1012 is specifically configured to determine that the measurement Gap is shared if the measurement Gap is not associated with the same-frequency measurement and the different-frequency measurement, or is not simultaneously associated with the same-frequency measurement and the different RAT measurement. It is configured as unavailable; if the measurement Gap is simultaneously associated with intra-frequency measurement and inter-frequency measurement, or is simultaneously associated with intra-frequency measurement and inter-RAT measurement, it is determined that the measurement Gap shared information is available.
  • the association relationship is to measure the frequency layer associated with Gap, wherein,
  • the correlation relationship is: the measurement gap is simultaneously associated with the same frequency measurement and the different frequency measurement , or correlate same-frequency measurement and different-RAT measurement at the same time; if the frequency layer associated with the measurement gap only includes the frequency layer of the same frequency, or only includes the frequency layer of different frequency or different RAT, the correlation relationship is: the measurement gap is not simultaneously associated with the same frequency layer Frequency measurement and inter-frequency measurement, or the same-frequency measurement and inter-RAT measurement are not associated at the same time.
  • the processing module 101 includes:
  • the third determining unit 1013 is configured to determine a specific measurement frequency layer among multiple frequency layers corresponding to the measurement Gap, or a specific measurement frequency point among multiple frequency points;
  • the fourth determination unit 1014 is configured to determine the measurement opportunity ratio of a specific measurement frequency layer relative to other measurement frequency layers of multiple frequency layers according to the measurement Gap sharing configuration, or a specific measurement frequency point relative to other measurement opportunities of multiple frequency points The proportion of measurement opportunities occupied by the measurement frequency points.
  • the third determining unit 1013 is specifically configured to use a frequency layer with the same frequency point among multiple frequency layers as a specific measurement frequency layer, or use a frequency point with the same frequency among multiple frequency points as a specific measurement frequency point .
  • the third determination unit 1013 is specifically configured to receive configuration information of the network device; wherein the configuration information indicates a specific measurement frequency layer among multiple frequency layers, or a specific measurement frequency point among multiple frequency points ; or the configuration information indicates the priority of multiple frequency layers, or the priority of multiple frequency points.
  • the third determination unit 1013 is specifically configured to determine the priorities of multiple frequency layers, or the priorities of multiple frequency points; determine a specific measurement frequency layer according to the priorities of multiple frequency layers, or determine The priority of each frequency point determines the specific measurement frequency point.
  • each measurement gap or group of measurement gaps has an independent measurement gap sharing configuration.
  • each measurement Gap includes multiple frequency layers or multiple frequency points
  • the measurement Gap sharing configuration indicates the measurement opportunity ratio of each frequency layer of each measurement Gap, or indicates each measurement opportunity of each measurement Gap. The proportion of measurement opportunities for frequency points.
  • measuring the configuration parameters of the Gap further includes measuring a Gap configuration list.
  • the measurement Gap configuration list is stored in end device variables.
  • FIG. 7 is a schematic structural diagram of another communication device 10 provided by an embodiment of the present disclosure.
  • the communication device 10 shown in FIG. 7 may include a transceiver module 101 .
  • the transceiver module 101 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 101 can realize the sending function and/or the receiving function.
  • the communication device 10 may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device 10 is a network device:
  • the apparatus includes: a transceiver module 102, configured to send measurement configuration information for determining a usage mode of a measurement Gap shared configuration to a terminal device; wherein the measurement configuration information includes multiple measurement Gap configuration parameters and a measurement Gap shared configuration.
  • the transceiver module 102 is further configured to send configuration information to the terminal device; wherein the configuration information indicates a specific measurement frequency layer among multiple frequency layers, or a specific measurement frequency point among multiple frequency points; or The configuration information indicates priorities of multiple frequency layers, or priorities of multiple frequency points.
  • each measurement gap or group of measurement gaps has an independent measurement gap sharing configuration.
  • each measurement Gap includes multiple frequency layers or multiple frequency points
  • the measurement Gap sharing configuration indicates the measurement opportunity ratio of each frequency layer of each measurement Gap, or indicates each measurement opportunity of each measurement Gap. The proportion of measurement opportunities for frequency points.
  • measuring the configuration parameters of the Gap further includes measuring a Gap configuration list.
  • the measurement Gap configuration list is stored in end device variables.
  • the communication device 10 provided in the above embodiments of the present disclosure achieves the same or similar beneficial effects as the Gap configuration methods provided in some of the above embodiments, which will not be repeated here.
  • FIG. 10 is a schematic structural diagram of another communication device 1000 provided by an embodiment of the present disclosure.
  • the communication device 1000 may be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the communication device 1000 may be used to implement the methods described in the foregoing method embodiments, and for details, refer to the descriptions in the foregoing method embodiments.
  • the communication device 1000 may include one or more processors 1001 .
  • the processor 1001 may be a general purpose processor or a special purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 1000 may further include one or more memories 1002, on which a computer program 1004 may be stored, and the memory 1002 executes the computer program 1004, so that the communication device 1000 executes the methods described in the foregoing method embodiments .
  • data may also be stored in the memory 1002 .
  • the communication device 1000 and the memory 1002 can be set separately or integrated together.
  • the communication device 1000 may further include a transceiver 1005 and an antenna 1006 .
  • the transceiver 1005 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1005 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1000 may further include one or more interface circuits 1007 .
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001 .
  • the processor 1001 runs the code instructions to enable the communication device 1000 to execute the methods described in the foregoing method embodiments.
  • the communication device 1000 is a terminal device: the transceiver 1005 is used to execute S21 in FIG. 2; S31 in FIG. 3; S41 in FIG. 4; the execution processor 1001 is used to execute S22 in FIG. 2; S32 in FIG. 3; S42 in Figure 4.
  • the communication device 1000 is a network device: the transceiver 1005 is used to execute S51 in FIG. 5 and S61 in FIG. 6 .
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1001 may store a computer program 1003, and the computer program 1003 runs on the processor 1001 to enable the communication device 1000 to execute the methods described in the foregoing method embodiments.
  • the computer program 1003 may be solidified in the processor 1001, and in this case, the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 10 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • FIG. 11 is a structural diagram of a chip provided in an embodiment of the present disclosure.
  • the chip 1100 includes a processor 1101 and an interface 1103 .
  • the number of processors 1101 may be one or more, and the number of interfaces 1103 may be more than one.
  • Interface 1103 configured to receive code instructions and transmit them to the processor.
  • the processor 1101 is configured to run code instructions to execute the Gap configuration method as described in some of the above embodiments.
  • Interface 1103 configured to receive code instructions and transmit them to the processor.
  • the processor 1101 is configured to run code instructions to execute the Gap configuration method as described in some of the above embodiments.
  • the chip 1100 also includes a memory 1102 for storing necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for updating location information.
  • the system includes the communication device as the terminal device and the communication device as the network device in the aforementioned embodiment in FIG. 9 , or the system includes the communication device in the aforementioned embodiment in FIG.
  • the communication device and the communication device as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种测量间隙Gap的配置方法和装置,应用于通信技术领域,其中,由终端设备执行的方法包括:接收网络设备的测量配置信息,其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置,确定测量Gap共享配置的使用方式。由此,终端设备能够根据测量Gap的配置参数和/或测量Gap共享配置,确定测量Gap共享配置的使用方式,以实现对测量Gap进行增强。

Description

一种测量间隙Gap的配置方法和装置 技术领域
本公开涉及通信技术领域,尤其涉及一种测量间隙Gap的配置方法和装置。
背景技术
相关技术中,测量间隙共享配置(measGapSharingConfig)是基于终端设备进行配置的,终端设备接收测量配置(measConfig),其中,measConfig包括measGapSharingConfig消息,由于每个终端设备只会配置一个终端设备级测量间隙(per UE Gap),或频率范围级测量间隙(per FR gap,包括FR1Gap和FR2Gap),measGapSharingConfig中会包含相应的测量间隙共享方案,per UE Gap和per FR gap均能适配合适的测量间隙共享配置。
发明内容
本公开实施例提供一种测量间隙Gap的配置方法和装置,终端设备能够根据测量Gap的配置参数和/或测量Gap共享配置,确定测量Gap共享配置的使用方式,以实现对测量Gap进行增强。
第一方面,本公开实施例提供一种测量间隙Gap的配置方法,该方法由终端设备执行,该方法包括:接收网络设备的测量配置信息,其中,所述测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置;确定所述测量Gap共享配置的使用方式。
通过实施本公开实施例,终端设备接收网络设备的测量配置信息,其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置,确定测量Gap共享配置的使用方式。由此,终端设备能够根据测量Gap的配置参数和/或测量Gap共享配置,确定测量Gap共享配置的使用方式,以实现对测量Gap进行增强。
第二方面,本公开实施例提供另一种测量间隙Gap的配置方法,该方法由网络设备执行,该方法包括:向终端设备发送用于确定测量Gap共享配置的使用方式的测量配置信息;所述测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:收发模块,用于接收网络设备的测量配置信息,其中,所述测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置;处理模块,用于确定所述测量Gap共享配置的使用方式。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也 可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块,收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,所述通信装置包括:收发模块,用于向终端设备发送用于确定测量Gap共享配置的使用方式的测量配置信息;所述测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信***,该***包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可 能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信***的架构图;
图2是本公开实施例提供的一种测量间隙Gap的配置方法的流程图;
图3是本公开实施例提供的另一种测量间隙Gap的配置方法的流程图;
图4是本公开实施例提供的又一种测量间隙Gap的配置方法的流程图;
图5是本公开实施例提供的又一种测量间隙Gap的配置方法的流程图;
图6是本公开实施例提供的又一种测量间隙Gap的配置方法的流程图;
图7是本公开实施例提供的一种通信装置的结构图;
图8是本公开实施例提供的另一种通信装置的结构图;
图9是本公开实施例提供的又一种通信装置的结构图;
图10是本公开实施例提供的又一种通信装置的结构图;
图11是本公开实施例提供的一种芯片的结构图。
具体实施方式
下面将结合附图,对本公开中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本公开。
为了更好地理解本公开实施例,下文先介绍一些相关的概念。
1、测量配置
在测量配置阶段,网络设备将测量所需的信息通过信令发送给终端设备UE。例如,在连接态下,用于发送测量所需的信息的可以是RRC(Radio Resource Control,无线资源控制)重配置(RRCReconfiguration)信令,其中,在RRC重配置信令的测量配置(measConfig)信元中包含测量配置信息。
可以理解的是,测量配置中会为每一个待测频率以及相应的参考信号配置对应的测量对象;仅当相应的测量对象、上报配置和测量量配置已经配置给UE的情况下,网络设备执行才会配置一个测量标识关联相应的测量对象和上报配置。
在接收到网络设备发送的信令后,UE对自己存储的测量配置和测量报告列表相应地进行修改,并将修改成功的消息告知网络设备。UE在接收到RRC重配置信令之后,向网络设备发送RRC重配置完成(RRCReconfigurationComplete)信令,RRC重配置完成信令用于指示测量配置修改成功。
作为示例,测量配置信息中可以包括如下1)至5)所示的配置信息。
1)测量对象(measurement object,MO)
测量对象定义了测量的目标,其中包括测量对象标识(ID)以及对应测量目标的具体配置。在长期演进(long term evolution,LTE)***中,一个测量对象对应一个频点。在一个频点的测量对象配置中,网络设备告知UE对于该频点进行测量需要知道的信息,例如,该频点上测量资源的配置情况以及该频点上的小区列表等。
在NR***中,对于同频测量和异频测量,在测量对象配置中,指示要测的参考信号的频域/时域位置和子载波间隔等信息,对于异***的E-UTRA测量,测量对象对应一个E-UTRA频点。E-UTRA表示LTE***中的接入网部分。E-UTRA的全称为演进的UMTS陆地无线接入网(evolved UMTS terrestrial radio access network),UMTS的全称为通用移动通讯***(universal mobile telecommunication system)。
2)上报配置(reporting configuration)
上报配置包括测量上报标识ID以及对应的测量上报准则的具体配置。在上报配置中,网络设备告知UE具体要执行的测量的细节,包括测量的类型,上报触发的方式,以及上报的格式等。
3)测量标识(measurement identity)
测量标识是单独的ID,一个测量标识是一个测量对象和一个上报配置的结合。测量对象与上报配置结合在一起就确定了对于一个测量对象的测量的各种细节。任一个测量对象/上报配置可以关联到任何一个/多个/零个与之拥有相同无线接入技术(radio access type,RAT)类型的上报配置/测量对象上。
4)测量量配置(quantity configuration)
测量量配置指的是对于层3滤波系数的配置。在触发测量量用于验证上报触发条件是否满足之前,以及测量量最终上报之前,需要首先进行层3滤波。而层3滤波的系数就是通过测量量配置告知UE的。
5)测量间隙(measurement gap)配置
如果同频/异频/异***的测量涉及切换中心频率,则测量与数据传输不能同时进行,这种情形下,需要网络为UE配置测量间隙。
测量任务是由测量标识(measID)来标识的,measIID关联到一个测量对象(measObject,MO)和一个报告配置(reportConfig)。
2、测量间隙(measurement gap)
测量间隙是网络设备为UE配置的一段不要求终端设备进行物理下行控制信道(physical downlink control channel,PDCCH)/物理下行共享信道(physical downlink shared channel,PDSCH)的接收,以及物理上行控制信道(physical uplink control channel,PUCCH)/物理上行共享信道(physical uplinkshared channel,PUSCH)的发送的时间。
对于连接态的UE,在进行测量时可能因为需要进行射频(radio frequency,RF)切换,而使得测 量和与服务小区的数据收发无法同时进行。目前,网络设备在测量配置中会给UE配置测量间隙,在测量间隙的期间不要求UE和服务小区之间进行数据收发,从而UE可以进行测量。
相关技术中,测量间隙配置(measGapConfig)在测量配置(measConfig)中携带。
作为示例,在NR***中,测量间隙配置(measGapConfig)可以包括如下信息:
(1)测量间隙类型(gap类型)
gap类型包括gapUE、gapFR1、gapFR2。GapUE表示UE级测量间隙(perUE gap))。gapFR1表示频率范围FR1级测量间隙。gapFR2表示频率范围FR2级测量间隙。
FR1与FR2为两个频谱范围(frequency range,FR)。在3GPP协议中,5G的总体频谱资源可以分为两个频段FR1与FR2。
FR1表示频率低于6GHz的频段。低于6GHz的频段可以称之为sub 6G。FR1可以称为低频频段,是5G的主用频段。
3GHz以下的频段可以称之为sub3G,其余频段可以称为C-band。
FR2表示频率高于6GHz的频段。频率高于6GHz的频段也可以称为6GHz以上的毫米波。FR2可以称为高频频段,为5G的扩展频段。
其中,UE级测量间隙(perUE gap),指的是同时适用于FR1和FR2的测量间隙。
在perUE gap中,不要求UE进行传输,不要求UE接收除了用于测量的参考信号之外的来自于任何服务小区的数据,不要求UE将频点切换至任何服务小区的频点上。
perUE gap可以视为中断UE的所有服务小区的数据传输。
而频率范围级测量间隙(perFR gap)对FR1和FR2频段分别定义了一组测量间隙样式,每一组测量间隙样式将只适用于对应的频段。GapFR1表示测量间隙适用于FR1,gapFR2表示测量间隙适用于FR2。
在perFR gap中,不要求UE向相应频段的小区进行传输,不要求UE接收相应频段上除了用于测量的参考信号之外的来自于任何服务小区的数据,不要求UE将频点切换至相应频段上任何服务小区的频点上。
PerFR gap可以视为只中断UE在相应FR上与服务小区的数据传输。例如,在perFR1gap期间,UE只是不与FR1上的服务小区进行数据传输,可以与FR2上的服务小区进行数据传输。再例如,在perFR2gap期间,UE只是不与FR2上的服务小区进行数据传输,可以与FR1上的服务小区进行数据传输。
在相关技术中,不支持UE的gap能力上报。除了协议规定的“待测SSB在activeBWP”或者“active BWP即为initial BWP的同频测量”或者“UE支持perFR gap并且待测频点和服务频点不在同一FR”这些特殊场景不用配置测量间隙之外,网络设备总是给UE配测量间隙。
相关技术中,测量间隙是基于UE进行配置,网络设备为每个UE配置的测量间隙对于每个测量间隙类型只会有一套测量间隙配置。例如,网络设备可以为每个UE配置一个perFR1 gap,可以再配置一个per FR2 gap。
为了更好的理解本公开实施例公开的一种测量间隙Gap的配置方法和装置,下面首先对本公开实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***1的架构示意图。该通信***可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限 定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***1以包括一个网络设备11和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的一种测量间隙Gap的配置方法和装置进行详细地介绍。
相关技术中,引入了多个并行的测量Gap,不同的测量Gap可能会对应一个或多个不同的频点,可能会存在某一部分测量Gap不会同时关联同频测量和异频测量,或者不会同时关联同频测量和异制式RAT测量,而相关技术中测量Gap共享配置确定的是同频测量和异频测量,或者同频测量和异制式RAT测量的测量机会占比,如果在多个并行的测量Gap中还使用该测量Gap共享配置,则会使未关联同频测量和异频测量,或者未关联同频测量和异制式RAT(Radio Access Technology,无线接入技术)测量在相应的测量机会上可能不进行相关的测量,会导致浪费测量机会。
其中,同频测量(intra-frequency measurement)可以为:需要测量的目标小区的频点与当前服务小区的频点相同。异频测量(inter-frequency measurement)可以为:需要测量的目标小区的频点与当前服务小区的频点不同。异制式测量(inter-RAT measurement),又称为异RAT测量,可以为:需要测量的目标小区的网络制式与当前服务小区的网络制式不同。
基于此,本公开实施例提供一种测量Gap的配置方法,以至少解决未关联同频测量和异频测量,或者未关联同频测量和异制式RAT测量在相应的测量机会上可能不进行相关的测量,资源浪费的问题。
请参见图2,图2是本公开实施例提供的一种测量间隙Gap的配置方法的流程图。
如图2所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S21:接收网络设备的测量配置信息,其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
本公开实施例中,终端设备接收网络设备的测量配置信息可以为measConfig,终端设备接收网络设备通过RRC(Radio Resource Control,无线资源控制)重配置消息发送的measConfig。
其中,测量配置信息measConfig中包括测量Gap共享配置,测量Gap共享配置可以为measGapSharingConfig。测量配置信息measConfig中还包括多个测量Gap的配置参数。
在一些实施例中,测量配置信息包括适用于全部测量Gap的测量Gap共享配置。
在一些实施例中,每个测量Gap或测量Gap组具有独立的测量Gap共享配置。
本公开实施例中,测量Gap和测量Gap共享配置可以存在对应关系。其中,每个测量Gap对应独立的测量Gap共享配置,或者多个测量Gap构成一个测量Gap组,测量Gap组对应独立的测量Gap共享配置。
在一些实施例中,在测量Gap对应的相关IE中指示测量Gap对应的测量Gap共享配置。
在一种示例中,测量Gap对应的测量Gap共享配置可以包含在测量Gap对应的MeasGapConfig、MeasGapConfigList、GapConfig等IE中。
在一种示例中,测量Gap对应的测量Gap共享配置的标识可以包含在测量Gap对应的MeasGapConfig、MeasGapConfigList、GapConfig等IE中。
如下举例:
Figure PCTCN2021142679-appb-000001
Figure PCTCN2021142679-appb-000002
其中,gapSharing SetupRelease{MeasGapSharingScheme}OPTIONAL,--Need M
MeasGapSharingScheme::=ENUMERATED{scheme00,scheme01,scheme10,scheme11}表示一种修改方式。
measGapSharingConfig SetupRelease{MeasGapSharingConfig}表示另一种修改方式。
在一些实施例中,不同测量Gap共享配置的标识用于指示不同的测量Gap共享配置。
在一些实施例中,在测量Gap共享配置中指示测量Gap共享配置关联的测量Gap。
示例性的,测量Gap共享配置中包括关联的测量Gap的标识。
示例性的,测量Gap共享配置中包括关联的测量Gap的标识列表,测量Gap的标识列表包含一组与此测量Gap共享配置相关联的测量Gap。
如下举例:
MeasGapSharingConfigList::=SEQUENCE(SIZE(1..maxNrofGapSharingConfig))OF MeasGapSharingConfig
其中,MeasGapSharingConfig information element
Figure PCTCN2021142679-appb-000003
Figure PCTCN2021142679-appb-000004
在一些实施例中,不同测量Gap的标识用于指示不同的测量Gap配置。
在一些实施例中,测量Gap和测量Gap共享配置的对应关系可以通过一个列表来表示。
示例性的,列表的每个元素可以将测量Gap配置和其对应的测量Gap共享配置关联起来。
示例性的,列表的每个元素可以将测量Gap共享配置和其对应的测量Gap关联起来,如下举例:
Figure PCTCN2021142679-appb-000005
其中,列表MeasGapSharingConfigList表示测量Gap和测量Gap共享配置的对应关系。
其中,参数MeasGapSharingConfig-v17表示列表MeasGapSharingConfigList包含的元素,表示一个Gap共享配置及其关联的测量Gap列表。
其中,measGapSharingConfig表示测量Gap共享配置。
其中,associatedMeasGapList表示测量Gap共享配置关联的测量Gap标识的列表。
其中,maxNrofGapId是最大可关联的测量Gap的数目。
其中,MeasGapId是测量Gap的标识。在一些实施例中,通过接收网络设备的配置消息获取测量Gap和测量Gap共享配置的对应关系。
示例性的,配置消息IE可以包含于测量配置信息measConfig中。
示例性的,配置消息可以为RRC消息,通过接收网络设备的RRC消息获取测量Gap和测量Gap共享配置的对应关系。
在一些实施例中,测量配置信息包括测量Gap共享配置列表,测量Gap共享配置列表包含一组测量Gap共享配置,一组测量Gap共享配置包括多个测量Gap共享配置,以实现配置多个测量Gap共享配置。
在一些实施例中,测量Gap包括多个频率层frequency layer或多个频点,测量Gap共享配置指示每个测量Gap的每个频率层或每个频点的测量机会占比。
本公开实施例中,频率层frequency layer限制如下:
1、PRS(Positioning Reference Signal,定位参考信号)测量可以与一种间隙Gap模式pattern相关联,无论为PRS测量了多少频率。
2、每个测量的SSB或LTE频率被视为一个频率层。
3、测量具有相同中心频率的CSI-RS资源被视为一个频率层。可能有多个MO,包括具有相同中心频率的CSI-RS资源。
4、一个MO中的SSB和CSI-RS测量被视为不同的频率层。
示例性的,一个MO可以为一个频率层。
示例性的,测量Gap共享配置直接指示每个测量Gap的每个频率层的测量机会占比,或指示每个 测量Gap的每个频点的测量机会占比。
其中,对于测量Gap共享配置直接指示每个测量Gap的每个频率层的测量机会占比,如下举例:
Figure PCTCN2021142679-appb-000006
其中,列表MeasGapSharingSchemeList表示测量Gap共享配置列表,指示其关联的测量Gap中的全部或部分频率层以及此频率层的测量机会占比。
其中,参数MeasGapSharingScheme-v17表示列表MeasGapSharingSchemeList包含的元素,表示测量Gap关联的一个频率层以及此频率层的测量机会占比。
其中,associatedFrequencyLayer表示测量Gap关联的一个频率层。
其中,measGapSharingScheme-v17表示频率层的测量机会占比,单位为%。
其中,maxNroffrequencylayer是最大可关联的频率层的数目。
其中,FrequencyLayerId是频率层的标识。
示例性的,直接指示每个测量Gap的每个频率层的测量机会占比的测量Gap共享配置是针对每个测量Gap配置的,或者,直接指示每个测量Gap的每个频率层的测量机会占比的测量Gap共享配置是针对每个测量Gap组配置的。
示例性的,直接指示每个测量Gap的每个频点的测量机会占比的测量Gap共享配置是针对每个测量Gap配置的,或者,直接指示每个测量Gap的每个频点的测量机会占比的测量Gap共享配置是针对每个测量Gap组配置的。
示例性的,对于测量Gap关联的多个频率层对应频率层列表,测量Gap共享配置指示频率层列表中每个频率层的测量机会占比;或者,对于测量Gap关联的多个频点对应频点列表,测量Gap共享配置指示或频点列表中每个频点的测量机会占比。
其中,对于测量Gap关联的多个频率层对应频率层列表,测量Gap共享配置指示频率层列表中每个频率层的测量机会占比,如下举例:
MeasGapSharingSchemeList::=SEQUENCE(SIZE(1..maxNroffrequencylayer))OF INTEGER(0..100)。
其中,列表MeasGapSharingSchemeList表示测量Gap共享配置列表,指示其关联的测量Gap中的全部频率层的测量机会占比,单位为%。
其中,网络配置的此列表的大小为测量Gap关联的频率层的总数,此列表中的每个元素按序对应测量Gap关联的频率层列表中的每个频率层的测量机会占比。
其中,maxNroffrequencylayer是最大可关联的频率层的数目。
在一些实施例中,终端设备接收网络设备的测量配置信息,包括多个测量Gap的配置参数,其中,测量Gap的配置参数包括测量Gap配置列表,或者包括测量Gap配置。
本公开实施例中,测量Gap配置中包括perUE的测量Gap配置列表或适用于FR1的测量Gap配置列表或适用于FR2的测量Gap配置列表。
本公开实施例中,测量Gap配置列表包含测量Gap配置的增加或修改列表和/或测量Gap配置释放或移除的列表。
在一些实施例中,测量Gap的配置参数还包括测量Gap配置列表;其中,测量Gap配置列表存储于终端设备变量之中。
本公开实施例中,引入新的参数测量Gap配置列表,其类型为测量Gap增加或修改列表,其可以包含于终端设备存储的测量相关的UE变量VarMeasConfig中。测量Gap增加或修改列表中包括测量Gap的标识以及对应的测量Gap的配置。
如下举例:
Figure PCTCN2021142679-appb-000007
在一些实施例中,测量Gap通过R16(Release 16)版本中测量Gap配置来配置。
S22:确定测量Gap共享配置的使用方式。
本公开实施例中,终端设备接收网络设备的测量配置信息,其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置,终端设备根据测量配置信息确定可用的测量Gap,进而根据测量Gap的配置参数和/或测量Gap共享配置,确定测量Gap共享配置的使用方式,以实现对测量Gap进行增强。
请参见图3,图3是本公开实施例提供的另一种测量间隙Gap的配置方法的流程图。
如图3所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S31:接收网络设备的测量配置信息,其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
本公开实施例中S31的详细描述可参见上述示例中S21的相关描述,此处不再赘述。
S32:确定测量Gap对应的关联关系;根据测量Gap对应的关联关系,确定测量Gap共享配置的可用性。
本公开实施例中,终端设备是否应用测量Gap共享配置,与该测量Gap对应的关联关系有关。
在一些实施例中,测量配置信息包括适用于全部测量Gap的测量Gap共享配置。
本公开实施例中,上述确定测量Gap对应的关联关系;根据测量Gap对应的关联关系,确定测量Gap共享配置的可用性。
在一些实施例中,如果测量Gap未同时关联同频测量和异频测量,或未同时关联同频测量和异无线接入技术RAT测量,则确定测量Gap共享配置为不可用。
在一些实施例中,如果测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量,则确定测量Gap共享配置为可用。
本公开实施例中,在测量Gap未同时关联同频测量和异频测量,或未同时关联同频测量和异无线接入技术RAT测量,则确定测量Gap共享配置为不可用,此时,终端设备忽略相应的测量Gap共享配置,或不应用测量Gap对应的测量Gap共享配置。
在一些实施例中,终端设备不应用测量Gap对应的测量Gap共享配置,终端设备可以根据终端设备UE实现确定相应的测量Gap共享的方案。
本公开实施例中,在测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量,则确定测量Gap共享信息为可用,终端设备确定在进行相应的测量时,应用测量Gap对应的测量Gap共享配置。
一种可能的实现方式中,测量Gap关联同频测量可以为测量Gap关联的频率层frequency layer对应的频点包括同频频率;测量Gap关联异频测量可以为测量Gap关联的频率层frequency layer对应的频点包括异频测量;测量Gap关联异RAT测量可以为测量Gap关联的频率层frequency layer对应的频点包括异RAT频率。
其中,测量Gap关联同频测量可以为测量Gap关联的频率层frequency layer对应的测量对象MO的频点包括同频频率;测量Gap关联异频测量可以为测量Gap关联的频率层frequency layer对应的测量对象MO的频点包括异频测量;测量Gap关联异RAT测量可以为测量Gap关联的频率层frequency layer对应的测量对象MO的频点包括异RAT频率。
另一种可能的实现方式中,测量Gap关联同频测量可以为测量Gap关联的测量对象MO对应的频点包括同频频率;测量Gap关联异频测量可以为测量Gap关联的测量对象MO对应的频点包括异频测量;测量Gap关联异RAT测量可以为测量Gap关联的测量对象MO对应的频点包括异RAT频率。
在一些实施例中,关联关系为测量Gap关联的频率层,其中,如果测量Gap关联的频率层包括同频的频率层和异频的频率层,或同频的频率层和异RAT的频率层,则关联关系为:测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量;如果测量Gap关联的频率层只包括同频的频率层,或只包括异频或异RAT的频率层,则关联关系为:测量Gap未同时关联同频测量和异频测量, 或未同时关联同频测量和异RAT测量。
其中,同频的频率层为关联了同频的频率层;异频的频率层为关联了异频的频率层;异RAT的频率层为关联了异RAT的频率层。
在一种可能的实现方式中,一个频率层可以同时关联同频和异频和异RAT中的两种或三种。即一个频率层可以既是同频的频率层又是异频的频率层,或既是同频的频率层又是异RAT的频率层,或既是异频的频率层又是异RAT的频率层,或既是同频的频率层又是异频的频率层又是异RAT的频率层。
本公开实施例中,测量Gap可以关联一个频率层或关联多个频率层。
其中,在测量Gap关联一个频率层的情况下,如果该频率层既是同频的频率层又是异频的频率层,或既是同频的频率层又是异RAT的频率层,则关联关系为:测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量;如果该频率层只为同频的频率层,或只为异频或异RAT的频率层,则关联关系为:测量Gap未同时关联同频测量和异频测量,或未同时关联同频测量和异RAT测量。
在测量Gap关联多个频率层的情况下,如果多个频率层的中至少一个频率层是同频的频率层,至少一个频率层是异频的频率层或者至少一个频率层是异RAT的频率层,则关联关系为:测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量。
在一些实施例中,如果同时存在关联频率层和/或频点的第一测量Gap,以及未关联频率层和/或频点的第二测量Gap,使用第一测量Gap对关联的频率层和/或频点进行测量,使用第二测量Gap对未关联的频率层和/或频点进行测量。
本公开实施例中,如果同时存在关联了频率层和/或频点的第一测量Gap和未关联频率层和/或频点的第二测量Gap(通过R16(Release 16)版本测量Gap配置进行配置的测量Gap),对于被关联的频率层或频点可以采用相应的第一测量Gap进行测量;对于未被关联的频率层或频点可以采用未关联频率层和/或频点的第二测量Gap进行测量。
在一些实施例中,根据测量Gap对应的关联关系,确定测量Gap共享配置的可用性的相关流程,可以包含在测量Gap共享配置相关的流程中,或者包含在测量Gap配置相关的流程中,或者独立为一个单独的流程。
请参见图4,图4是本公开实施例提供的又一种测量间隙Gap的配置方法的流程图。
如图4所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S41:接收网络设备的测量配置信息,其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
本公开实施例中S41的详细描述可参见上述示例中S21的相关描述,此处不再赘述。
S42:确定测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点;根据测量Gap共享配置确定特定测量频率层相对于多个频率层的其他测量频率层所占的测量机会占比,或特定测量频点相对于多个频点的其他测量频点所占的测量机会占比。
在一些实施例中,测量Gap共享配置中配置有不同频率层的测量机会占比,终端设备在确定测量Gap对应的多个频率层中的特定测量频率层之后,能够根据测量Gap共享配置确定特定测量频率层相对于多个频率层的其他测量频率层所占的测量机会占比,。
或者,测量Gap共享配置中配置有不同频点的测量机会占比,终端设备在确定测量Gap对应的多 个频点中的特定测量频点之后,能够根据测量Gap共享配置确定特定测量频点相对于多个频点的其他测量频点所占的测量机会占比。
在一些实施例中,将多个频率层中具有同频频点的频率层作为特定测量频率层,或者将多个频点中的同频频点作为特定测量频点。
本公开实施例中,在测量Gap关联的频率层frequency layer对应的频点包括同频频点,测量Gap为关联同频测量的测量Gap,则确定同频频点为特定测量频点,或测量Gap关联同频测量的频率层frequency layer为特定测量频率层。
在一些实施例中,根据终端设备UE实现确定多个频率层中的特定测量频率层,或多个频点之中的特定测量频点。
在一些实施例中,确定测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点,包括:接收网络设备的配置信息;其中,配置信息指示多个频率层中的特定测量频率层,或多个频点之中的特定测量频点;或者配置信息指示多个频率层的优先级,或多个频点的优先级。
在一些实施例中,测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点,可以通过RRC消息指示。
示例性的,测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点,包含于测量Gap配置相关的MeasGapConfig、MeasGapConfigList、或GapConfig中。
示例性的,测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点,包含于指示测量Gap与频率层frequency layer关联关系的IE中。
在一些实施例中,测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点的信息,由网络设备针对不同的测量Gap单独配置或指示。
在一些实施例中,确定测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点,包括:确定多个频率层的优先级,或多个频点的优先级;根据多个频率层的优先级确定特定测量频率层,或根据多个频点的优先级确定特定测量频点。
在一些可能的实现方式中,在测量对象MO配置中包含相应的优先级,通过测量对象MO的优先级确定测量Gap对应的多个频率层的优先级,或多个频点的优先级,进一步的,在确定测量Gap对应的多个频率层的优先级,或多个频点的优先级之后,根据优先级信息,确定特定测量频率层或特定测量频点。
请参见图5,图5是本公开实施例提供的又一种测量间隙Gap的配置方法的流程图。
如图5所示,该方法由网络设备执行,该方法可以包括但不限于如下步骤:
S51:向终端设备发送用于确定测量Gap共享配置的使用方式的测量配置信息;其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
本公开实施例中,终端设备接收网络设备的测量配置信息可以为measConfig,终端设备接收网络设备通过RRC(Radio Resource Control,无线资源控制)重配置消息发送的measConfig。
其中,测量配置信息measConfig中包括测量Gap共享配置,测量Gap共享配置可以为measGapSharingConfig。测量配置信息measConfig中还包括多个测量Gap的配置参数。
在一些实施例中,测量配置信息包括适用于全部测量Gap的测量Gap共享配置。
在一些实施例中,每个测量Gap或测量Gap组具有独立的测量Gap共享配置。
本公开实施例中,测量Gap和测量Gap共享配置可以存在对应关系。其中,每个测量Gap对应独立的测量Gap共享配置,或者多个测量Gap构成一个测量Gap组,测量Gap组对应独立的测量Gap共享配置。
在一些实施例中,在测量Gap对应的相关IE中指示测量Gap对应的测量Gap共享配置。
在一种示例中,测量Gap对应的测量Gap共享配置可以包含在测量Gap对应的MeasGapConfig、MeasGapConfigList、GapConfig等IE中。
在一种示例中,测量Gap对应的测量Gap共享配置的标识可以包含在测量Gap对应的MeasGapConfig、MeasGapConfigList、GapConfig等IE中。
如下举例:
Figure PCTCN2021142679-appb-000008
Figure PCTCN2021142679-appb-000009
其中,gapSharing SetupRelease{MeasGapSharingScheme}OPTIONAL,--Need M
MeasGapSharingScheme::=ENUMERATED{scheme00,scheme01,scheme10,scheme11}表示一种修改方式。
measGapSharingConfig SetupRelease{MeasGapSharingConfig}表示另一种修改方式。
在一些实施例中,不同测量Gap共享配置的标识用于指示不同的测量Gap共享配置。
在一些实施例中,在测量Gap共享配置中指示测量Gap共享配置关联的测量Gap。
示例性的,测量Gap共享配置中包括关联的测量Gap的标识。
示例性的,测量Gap共享配置中包括关联的测量Gap的标识列表,测量Gap的标识列表包含一组与此测量Gap共享配置相关联的测量Gap。
如下举例:
MeasGapSharingConfigList::=SEQUENCE(SIZE(1..maxNrofGapSharingConfig))OF MeasGapSharingConfig
其中,MeasGapSharingConfig information element
Figure PCTCN2021142679-appb-000010
在一些实施例中,不同测量Gap的标识用于指示不同的测量Gap配置。
在一些实施例中,测量Gap和测量Gap共享配置的对应关系可以通过一个列表来表示。
示例性的,列表的每个元素可以将测量Gap配置和其对应的测量Gap共享配置关联起来。
示例性的,列表的每个元素可以将测量Gap共享配置和其对应的测量Gap关联起来,如下举例:
Figure PCTCN2021142679-appb-000011
其中,列表MeasGapSharingConfigList表示测量Gap和测量Gap共享配置的对应关系。
其中,参数MeasGapSharingConfig-v17表示列表MeasGapSharingConfigList包含的元素,表示一个Gap共享配置及其关联的测量Gap列表。
其中,measGapSharingConfig表示测量Gap共享配置。
其中,associatedMeasGapList表示测量Gap共享配置关联的测量Gap标识的列表。
其中,maxNrofGapId是最大可关联的测量Gap的数目。
其中,MeasGapId是测量Gap的标识。
在一些实施例中,通过接收网络设备的配置消息获取测量Gap和测量Gap共享配置的对应关系。
示例性的,配置消息IE可以包含于测量配置信息measConfig中。
示例性的,配置消息可以为RRC消息,通过接收网络设备的RRC消息获取测量Gap和测量Gap共享配置的对应关系。
在一些实施例中,测量配置信息包括测量Gap共享配置列表,测量Gap共享配置列表包含一组测量Gap共享配置,一组测量Gap共享配置包括多个测量Gap共享配置,以实现配置多个测量Gap共享配置。
在一些实施例中,测量Gap包括多个频率层frequency layer或多个频点,测量Gap共享配置指示每个测量Gap的每个频率层或每个频点的测量机会占比。
本公开实施例中,频率层frequency layer限制如下:
1、PRS(Positioning Reference Signal,定位参考信号)测量可以与一种间隙Gap模式pattern相关联,无论为PRS测量了多少频率。
2、每个测量的SSB或LTE频率被视为一个频率层。
3、测量具有相同中心频率的CSI-RS资源被视为一个频率层。可能有多个MO,包括具有相同中心频率的CSI-RS资源。
4、一个MO中的SSB和CSI-RS测量被视为不同的频率层。
示例性的,一个MO可以为一个频率层。
示例性的,测量Gap共享配置直接指示每个测量Gap的每个频率层的测量机会占比,或指示每个测量Gap的每个频点的测量机会占比。
其中,对于测量Gap共享配置直接指示每个测量Gap的每个频率层的测量机会占比,如下举例:
Figure PCTCN2021142679-appb-000012
其中,列表MeasGapSharingSchemeList表示测量Gap共享配置列表,指示其关联的测量Gap中的全部或部分频率层以及此频率层的测量机会占比。
其中,参数MeasGapSharingScheme-v17表示列表MeasGapSharingSchemeList包含的元素,表示测量Gap关联的一个频率层以及此频率层的测量机会占比。
其中,associatedFrequencyLayer表示测量Gap关联的一个频率层。
其中,measGapSharingScheme-v17表示频率层的测量机会占比,单位为%。
其中,maxNroffrequencylayer是最大可关联的频率层的数目。
其中,FrequencyLayerId是频率层的标识。
示例性的,直接指示每个测量Gap的每个频率层的测量机会占比的测量Gap共享配置是针对每个测量Gap配置的,或者,直接指示每个测量Gap的每个频率层的测量机会占比的测量Gap共享配置是针对每个测量Gap组配置的。
示例性的,直接指示每个测量Gap的每个频点的测量机会占比的测量Gap共享配置是针对每个测量Gap配置的,或者,直接指示每个测量Gap的每个频点的测量机会占比的测量Gap共享配置是针对每个测量Gap组配置的。
示例性的,对于测量Gap关联的多个频率层对应频率层列表,测量Gap共享配置指示频率层列表中每个频率层的测量机会占比;或者,对于测量Gap关联的多个频点对应频点列表,测量Gap共享配置指示或频点列表中每个频点的测量机会占比。
其中,对于测量Gap关联的多个频率层对应频率层列表,测量Gap共享配置指示频率层列表中每个频率层的测量机会占比,如下举例:
MeasGapSharingSchemeList::=SEQUENCE(SIZE(1..maxNroffrequencylayer))OF INTEGER(0..100)。
其中,列表MeasGapSharingSchemeList表示测量Gap共享配置列表,指示其关联的测量Gap中的全部频率层的测量机会占比,单位为%。
其中,网络配置的此列表的大小为测量Gap关联的频率层的总数,此列表中的每个元素按序对应测量Gap关联的频率层列表中的每个频率层的测量机会占比。
其中,maxNroffrequencylayer是最大可关联的频率层的数目。
在一些实施例中,终端设备接收网络设备的测量配置信息,包括多个测量Gap的配置参数,其中,测量Gap的配置参数包括测量Gap配置列表,或者包括测量Gap配置。
本公开实施例中,测量Gap配置中包括perUE的测量Gap配置列表或适用于FR1的测量Gap配置列表或适用于FR2的测量Gap配置列表。
本公开实施例中,测量Gap配置列表包含测量Gap配置的增加或修改列表和/或测量Gap配置释放或移除的列表。
在一些实施例中,测量Gap的配置参数还包括测量Gap配置列表;其中,测量Gap配置列表存储于终端设备变量之中。
在一些实施例中,测量Gap通过R16(Release 16)版本中测量Gap配置来配置。
本公开实施例中,终端设备接收网络设备的测量配置信息,其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置,终端设备根据测量配置信息确定可用的测量Gap,进而根据测量Gap的配置参数和/或测量Gap共享配置,确定测量Gap共享配置的使用方式,以实现对测量Gap进行增强。
请参见图6,图6是本公开实施例提供的又一种测量间隙Gap的配置方法的流程图。
如图6所示,该方法由网络设备执行,该方法可以包括但不限于如下步骤:
S61:向终端设备发送用于确定测量Gap共享配置的使用方式的测量配置信息;其中,测量配置信 息包括多个测量Gap的配置参数和测量Gap共享配置;向终端设备发送配置信息;其中,配置信息指示多个频率层中的特定测量频率层,或多个频点之中的特定测量频点;或者配置信息指示多个频率层的优先级,或多个频点的优先级。
在一些实施例中,每个测量Gap或测量Gap组具有独立的测量Gap共享配置。
在一些实施例中,每个测量Gap包括多个频率层或多个频点,测量Gap共享配置指示每个测量Gap的每个频率层的测量机会占比,或指示每个测量Gap的每个频点的测量机会占比。
在一些实施例中,测量Gap的配置参数还包括测量Gap配置列表。
在一些实施例中,测量Gap配置列表存储于终端设备变量之中。
本公开实施例中,S61的相关描述可以参见本公开实施例上述示例中的相关描述,此处不再赘述。
上述本公开提供的实施例中,分别从网络设备、终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图7,为本公开实施例提供的一种通信装置10的结构示意图。图7所示的通信装置10可包括收发模块101。收发模块101可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块101可以实现发送功能和/或接收功能。
通信装置10可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置10为终端设备:
该装置,包括:收发模块102,用于接收网络设备的测量配置信息,其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
处理模块101,用于确定测量Gap共享配置的使用方式。
如图8所示,在一些实施例中,处理模块101,包括:
第一确定单元1011,用于确定测量Gap对应的关联关系。
第二确定单元1012,用于根据测量Gap对应的关联关系,确定测量Gap共享配置的可用性。
在一些实施例中,第二确定单元1012,具体用于如果测量Gap未同时关联同频测量和异频测量,或未同时关联同频测量和异无线接入技术RAT测量,则确定测量Gap共享配置为不可用;如果测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量,则确定测量Gap共享信息为可用。
在一些实施例中,关联关系为测量Gap关联的频率层,其中,
如果测量Gap关联的频率层包括同频的频率层和异频的频率层,或包括同频的频率层和异RAT的频率层,则关联关系为:测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量;如果测量Gap关联的频率层只包括同频的频率层,或只包括异频或异RAT的频率层,则关联关系为:测量Gap未同时关联同频测量和异频测量,或未同时关联同频测量和异RAT测量。
如图9所示,在一些实施例中,处理模块101,包括:
第三确定单元1013,用于确定测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点;
第四确定单元1014,用于根据测量Gap共享配置确定特定测量频率层相对于多个频率层的其他测量频率层所占的测量机会占比,或特定测量频点相对于多个频点的其他测量频点所占的测量机会占比。
在一些实施例中,第三确定单元1013,具体用于将多个频率层中具有同频频点的频率层作为特定测量频率层,或者将多个频点中的同频频点作为特定测量频点。
在一些实施例中,第三确定单元1013,具体用于接收网络设备的配置信息;其中,配置信息指示多个频率层中的特定测量频率层,或多个频点之中的特定测量频点;或者配置信息指示多个频率层的优先级,或多个频点的优先级。
在一些实施例中,第三确定单元1013,具体用于确定多个频率层的优先级,或多个频点的优先级;根据多个频率层的优先级确定特定测量频率层,或根据多个频点的优先级确定特定测量频点。
在一些实施例中,每个测量Gap或测量Gap组具有独立的测量Gap共享配置。
在一些实施例中,每个测量Gap包括多个频率层或多个频点,测量Gap共享配置指示每个测量Gap的每个频率层的测量机会占比,或指示每个测量Gap的每个频点的测量机会占比。
在一些实施例中,测量Gap的配置参数还包括测量Gap配置列表。
在一些实施例中,测量Gap配置列表存储于终端设备变量之中。
请继续参见图7,为本公开实施例提供的另一种通信装置10的结构示意图。图7所示的通信装置10可包括收发模块101。收发模块101可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块101可以实现发送功能和/或接收功能。
通信装置10可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置10为网络设备:
该装置,包括:收发模块102,用于向终端设备发送用于确定测量Gap共享配置的使用方式的测量配置信息;其中,测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
在一些实施例中,收发模块102,还用于向终端设备发送配置信息;其中,配置信息指示多个频率层中的特定测量频率层,或多个频点之中的特定测量频点;或者配置信息指示多个频率层的优先级,或多个频点的优先级。
在一些实施例中,每个测量Gap或测量Gap组具有独立的测量Gap共享配置。
在一些实施例中,每个测量Gap包括多个频率层或多个频点,测量Gap共享配置指示每个测量Gap的每个频率层的测量机会占比,或指示每个测量Gap的每个频点的测量机会占比。
在一些实施例中,测量Gap的配置参数还包括测量Gap配置列表。
在一些实施例中,测量Gap配置列表存储于终端设备变量之中。
关于上述实施例中的通信装置10,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开上述实施例中提供的通信装置10,与上面一些实施例中提供的Gap的配置方法取得相同或相似的有益效果,此处不再赘述。
请参见图10,图10是本公开实施例提供的另一种通信装置1000的结构示意图。通信装置1000可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器 等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该通信装置1000可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1004,存储器1002执行所述计算机程序1004,以使得通信装置1000执行上述方法实施例中描述的方法。可选的,所述存储器1002中还可以存储有数据。通信装置1000和存储器1002可以单独设置,也可以集成在一起。
可选的,通信装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行所述代码指令以使通信装置1000执行上述方法实施例中描述的方法。
通信装置1000为终端设备:收发器1005用于执行图2中的S21;图3中的S31;图4中的S41;执处理器1001用于行图2中的S22;图3中的S32;图4中的S42。
通信装置1000为网络设备:收发器1005用于执行图5中的S51;图6中的S61。
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1001可以存有计算机程序1003,计算机程序1003在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。 例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,请参见图11,为本公开实施例中提供的一种芯片的结构图。
芯片1100包括处理器1101和接口1103。其中,处理器1101的数量可以是一个或多个,接口1103的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的Gap的配置方法。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的Gap的配置方法。
可选的,芯片1100还包括存储器1102,存储器1102用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种位置信息更新***,该***包括前述图9实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该***包括前述图10实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例 如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种测量间隙Gap的配置方法,其特征在于,应用于终端设备,所述方法,包括:
    接收网络设备的测量配置信息,其中,所述测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置;
    确定所述测量Gap共享配置的使用方式。
  2. 如权利要求1所述的方法,其特征在于,所述确定所述测量Gap共享配置的使用方式,包括:
    确定所述测量Gap对应的关联关系;
    根据所述测量Gap对应的关联关系,确定所述测量Gap共享配置的可用性。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述测量Gap对应的关联关系,确定所述测量Gap共享配置的可用性,包括:
    如果所述测量Gap未同时关联同频测量和异频测量,或未同时关联同频测量和异无线接入技术RAT测量,则确定所述测量Gap共享配置为不可用;
    如果所述测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量,则确定所述测量Gap共享信息为可用。
  4. 如权利要求2或3所述的方法,其特征在于,所述关联关系为所述测量Gap关联的频率层,其中,
    如果所述测量Gap关联的频率层包括同频的频率层和异频的频率层,或包括同频的频率层和异RAT的频率层,则所述关联关系为:所述测量Gap同时关联同频测量和异频测量,或同时关联同频测量和异RAT测量;
    如果所述测量Gap关联的频率层只包括同频的频率层,或只包括异频或异RAT的频率层,则所述关联关系为:所述测量Gap未同时关联同频测量和异频测量,或未同时关联同频测量和异RAT测量。
  5. 如权利要求1所述的方法,其特征在于,所述确定所述测量Gap共享配置的使用方式,包括:
    确定所述测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点;
    根据所述测量Gap共享配置确定所述特定测量频率层相对于多个频率层的其他测量频率层所占的测量机会占比,或所述特定测量频点相对于多个频点的其他测量频点所占的测量机会占比。
  6. 如权利要求5述的方法,其特征在于,所述确定所述测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点,包括:
    将多个频率层中具有同频频点的频率层作为所述特定测量频率层,或者将多个频点中的同频频点作为所述特定测量频点。
  7. 如权利要求5所述的方法,其特征在于,所述确定所述测量Gap对应的多个频率层中的特定测 量频率层,或多个频点中的特定测量频点,包括:
    接收网络设备的配置信息;其中,所述配置信息指示多个频率层中的所述特定测量频率层,或多个频点之中的所述特定测量频点;或者所述配置信息指示多个频率层的优先级,或多个频点的优先级。
  8. 如权利要求5所述的方法,其特征在于,所述确定所述测量Gap对应的多个频率层中的特定测量频率层,或多个频点中的特定测量频点,包括:
    确定多个频率层的优先级,或多个频点的优先级;
    根据多个频率层的优先级确定所述特定测量频率层,或根据多个频点的优先级确定所述特定测量频点。
  9. 如权利要求1述的方法,其特征在于,每个所述测量Gap或测量Gap组具有独立的测量Gap共享配置。
  10. 如权利要求1所述的方法,其特征在于,每个所述测量Gap包括多个频率层或多个频点,所述测量Gap共享配置指示每个所述测量Gap的每个频率层的测量机会占比,或指示每个所述测量Gap的每个频点的测量机会占比。
  11. 如权利要求1述的方法,其特征在于,所述测量Gap的配置参数还包括测量Gap配置列表。
  12. 如权利要求11述的方法,其特征在于,所述测量Gap配置列表存储于终端设备变量之中。
  13. 一种测量间隙Gap的配置方法,其特征在于,应用于网络设备,所述方法,包括:
    向终端设备发送用于确定测量Gap共享配置的使用方式的测量配置信息;其中,所述测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
  14. 根据权利要求13所述的方法,其特征在于,所述方法,还包括:
    向终端设备发送配置信息;其中,所述配置信息指示多个频率层中的所述特定测量频率层,或多个频点之中的所述特定测量频点;或者所述配置信息指示多个频率层的优先级,或多个频点的优先级。
  15. 如权利要求13述的方法,其特征在于,每个所述测量Gap或测量Gap组具有独立的测量Gap共享配置。
  16. 如权利要求13所述的方法,其特征在于,每个所述测量Gap包括多个频率层或多个频点,所述测量Gap共享配置指示每个所述测量Gap的每个频率层的测量机会占比,或指示每个所述测量Gap的每个频点的测量机会占比。
  17. 如权利要求13所述的方法,其特征在于,所述测量Gap的配置参数还包括测量Gap配置列表。
  18. 如权利要求17所述的方法,其特征在于,所述测量Gap配置列表存储于终端设备变量之中。
  19. 一种通信装置,其特征在于,包括:
    收发模块,用于接收网络设备的测量配置信息,其中,所述测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置;
    处理模块,用于确定所述测量Gap共享配置的使用方式。
  20. 一种通信装置,其特征在于,包括:
    收发模块,用于向终端设备发送用于确定测量Gap共享配置的使用方式的测量配置信息;其中,所述测量配置信息包括多个测量Gap的配置参数和测量Gap共享配置。
  21. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法;或者所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至18中任一项所述的方法。
  22. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法;或者运行所述代码指令以执行如权利要求13至18中任一项所述的方法。
  23. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现;或者当所述指令被执行时,使如权利要求13至18中任一项所述的方法被实现。
PCT/CN2021/142679 2021-12-29 2021-12-29 一种测量间隙Gap的配置方法和装置 WO2023123118A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/142679 WO2023123118A1 (zh) 2021-12-29 2021-12-29 一种测量间隙Gap的配置方法和装置
CN202180004617.9A CN116746167A (zh) 2021-12-29 2021-12-29 一种测量间隙Gap的配置方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142679 WO2023123118A1 (zh) 2021-12-29 2021-12-29 一种测量间隙Gap的配置方法和装置

Publications (1)

Publication Number Publication Date
WO2023123118A1 true WO2023123118A1 (zh) 2023-07-06

Family

ID=86996937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142679 WO2023123118A1 (zh) 2021-12-29 2021-12-29 一种测量间隙Gap的配置方法和装置

Country Status (2)

Country Link
CN (1) CN116746167A (zh)
WO (1) WO2023123118A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049080A1 (en) * 2016-08-11 2018-02-15 Nokia Solutions And Networks Oy Network controlled sharing of measurement gaps for intra and inter frequency measurements for wireless networks
WO2020216088A1 (zh) * 2019-04-25 2020-10-29 华为技术有限公司 频点测量方法、装置以及存储介质
WO2021208111A1 (zh) * 2020-04-18 2021-10-21 Oppo广东移动通信有限公司 通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049080A1 (en) * 2016-08-11 2018-02-15 Nokia Solutions And Networks Oy Network controlled sharing of measurement gaps for intra and inter frequency measurements for wireless networks
WO2020216088A1 (zh) * 2019-04-25 2020-10-29 华为技术有限公司 频点测量方法、装置以及存储介质
WO2021208111A1 (zh) * 2020-04-18 2021-10-21 Oppo广东移动通信有限公司 通信方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Scaling for measurements of multiple frequency layers with gaps", 3GPP DRAFT; R4-1712486, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 4, XP051374111 *
HUAWEI, HISILICON: "Contents of messages for Xn and X2 interface to support LTE-NR coexistence", 3GPP DRAFT; R1-1713737, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051316536 *

Also Published As

Publication number Publication date
CN116746167A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2023000149A1 (zh) 一种中继终端设备测量上报的方法及其装置
WO2023159449A1 (zh) 数据传输方法和装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2024044991A1 (zh) 测量上报方法和装置
WO2023123118A1 (zh) 一种测量间隙Gap的配置方法和装置
WO2023283964A1 (zh) 多载波小区的移动性测量的配置方法及装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2024065228A1 (zh) 干扰频率信息上报方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2023044628A1 (zh) 一种测量gap的调度方法及其装置
WO2023082287A1 (zh) 一种信息的传输方法及其装置
WO2024119520A1 (zh) 波束管理方法和装置
WO2024092558A1 (zh) 一种测量方法、装置、设备及存储介质
WO2023279306A1 (zh) 频带分组方法及装置
WO2023155206A1 (zh) 联合信道估计的最大持续时间的上报方法及其装置
WO2023184458A1 (zh) 多载频载波相位Carrierphase定位能力的确定方法和装置
WO2024145927A1 (zh) 能力上报方法和装置
WO2023102945A1 (zh) 测量间隔配置方法及装置
WO2023206571A1 (zh) 小区管理方法和装置
WO2024016245A1 (zh) 一种信息指示方法、装置、设备及存储介质
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2023115405A1 (zh) 测量能力信息生成方法及装置
WO2023201752A1 (zh) 一种信息处理方法及其装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004617.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969486

Country of ref document: EP

Kind code of ref document: A1