WO2023122840A1 - Ni-based catalyst with nanometric structure for the catalytic hydrogenation of olephinic hydrocarbons and oxygenated aromatic substrates - Google Patents

Ni-based catalyst with nanometric structure for the catalytic hydrogenation of olephinic hydrocarbons and oxygenated aromatic substrates Download PDF

Info

Publication number
WO2023122840A1
WO2023122840A1 PCT/CL2021/050134 CL2021050134W WO2023122840A1 WO 2023122840 A1 WO2023122840 A1 WO 2023122840A1 CL 2021050134 W CL2021050134 W CL 2021050134W WO 2023122840 A1 WO2023122840 A1 WO 2023122840A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
based catalyst
material according
preparing
manufacturing
Prior art date
Application number
PCT/CL2021/050134
Other languages
Spanish (es)
French (fr)
Inventor
Néstor Guillermo ESCALONA BURGOS
Diego Alejandro AGUIRRE ABARCA
Dorothée Emilie LAURENTI
Original Assignee
Pontificia Universidad Católica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile filed Critical Pontificia Universidad Católica De Chile
Priority to PCT/CL2021/050134 priority Critical patent/WO2023122840A1/en
Publication of WO2023122840A1 publication Critical patent/WO2023122840A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention falls within the technical field of catalysts for the hydrogenation of organic molecules, such as olefinic hydrocarbons and oxygenated aromatic substrates.
  • organic molecules such as olefinic hydrocarbons and oxygenated aromatic substrates.
  • molecules containing an aromatic ring or a double bond are capable of being hydrogenated in the presence of the invention.
  • This document deals with a catalyst that transforms guaiacol into cyclohexanol.
  • the catalyst is nickel based, however it does not mention the use of salicylic acid.
  • the catalyst preparation method described is absolutely different from the one evaluated in this report.
  • the catalyst is specific for the conversion of guaiacol to cyclohexanol, and its base is nickel.
  • the preparation process is completely different and salicylic acid is not specifically mentioned.
  • the catalyst is specific for the conversion of guaiacol to cyclohexanol, and its base is nickel.
  • the preparation process is completely different and salicylic acid is not specifically mentioned.
  • Figure 4 shows the results of the catalytic activity test of the material presented. High activity is observed, with 100% guaiacol conversion after 30 minutes of operation; the major component at high conversion is cyclohexane, followed by cyclohexanol, methoxycyclohexanol and benzene. The relative proportion of these components can be varied by modifying the reaction time and with the system under recirculation conditions.
  • the invention protects a nickel-based catalyst material useful in catalytic hydrogenation reactions, in addition to the method of making the catalyst.
  • the invention corresponds to a nickel-based catalyst material, supported on a silica and phyllosilicate matrix, wherein the material presents a nanometric distribution of nickel particles on the surface of the support of the silica and phyllosilicate matrix.
  • the silica and/or phyllosilicate particles are between 20 and 80 nm in length, in a large silica matrix.
  • the nickel nanoparticles supported on silica and/or phyllosilicate, with a high degree of dispersion have a size between 1 and 9 nm, with an average of 5 nm.
  • the mass composition of the catalyst corresponds to a percentage between 60% and 80% of the support material, and between 20% and 40% of nickel.
  • the invention further considers the method of manufacturing or preparing the catalyst material. Said method comprises the following steps: a. Dissolve a source of nickel* 2 in a solution of poloxamer in deionized water; b. Heat the solution from the previous step to a temperature between 30°C and 50°C; c. Add a solution of ammonia to the solution heated in the previous step, obtaining a precipitate of nickel hydroxide; d. Add salicylic acid dissolved in ethanol, keeping under agitation for a period of between 10 and 48 hours; and.
  • the nickel source is selected from nickel nitrate, chloride, sulfate or acetate salts, more preferably Ni(NOs)2*6H2O.
  • the poloxamer is selected from Pluronic P123, F127. Particularly Pluronic P123, in a concentration of between 1% to 6% by mass. Once the poloxamer has been added, the aim is to reach a concentration of N ⁇ +2 between 0.05 and 0.20 mol/L.
  • step c ammonia is added as a 25 to 35% mass solution in water.
  • step d salicylic acid is added at a concentration of between 1 to 25% molar basis. with respect to Ni dissolved in ethanol.
  • salicylic acid is added in a concentration of between 3 to 15% molar base with respect to Ni dissolved in ethanol.
  • step j regarding calcination, the temperature rises with a heating ramp of 10 °C/min.
  • the material is reduced under a flow of hydrogen at 550 °C for 90 minutes with a heating ramp of 10 °C/min.
  • the material is a guaiacol hydrogenation catalyst to obtain cyclohexanol, benzene, methoxycyclohexanol and benzene as products of commercial interest.
  • This material presents a structure at the nanometric level, where the Ni particles that are obtained are dispersed over an extended surface of silica and nickel phyllosilicates.
  • This material was obtained from a Ni(OH)2 precipitate treated with salicylic acid and tetraethyl orthosilicate (TEOS) under sol-gel conditions, obtaining a precursor.
  • TEOS tetraethyl orthosilicate
  • This material was calcined at 250 °C in air and reduced under H2 at 550 °C to obtain the reduced nickel particles on the support.
  • the structure of the material leads to obtaining a high surface area and a high catalytic activity in the conversion of guaiacol as a biomass model molecule as novel aspects, together with a high stability of the material under
  • N ⁇ (NOS)2*6H2O was dissolved in a 2% mass solution of Pluronic P123 in deionized water to obtain a N ⁇ +2 concentration of 0.05. This solution was heated to 40 °C, and a solution of NH3 in water (between 25 to 35% by mass) was added, obtaining a Ni(OH)2 precipitate.
  • Salicylic acid 2% molar base with respect to Ni dissolved in 20 mL of ethanol was added to the precipitate obtained, maintaining stirring at 30 °C for 12 hours.
  • the material was suspended with the help of ultrasound for 30 minutes, to proceed to heat the suspension to 60 °C, and tetraethyl orthosilicate (TEOS) was added as a precursor for the silica shell, keeping it at 60 °C for 4 hours with stirring. .
  • TEOS tetraethyl orthosilicate
  • the solid was recovered by filtration, washed three times with deionized water, twice with ethanol, and dried in air for 12 hours at 80°C.
  • the material obtained was calcined at 250 °C in air for 2 hours per gram of material, with a heating ramp of 10 °C/min. After calcination was complete, the material was allowed to cool to room temperature.
  • the material was reduced under a flow of hydrogen at 550 °C for 90 minutes with a heating ramp of 10 °C/min.
  • the material is passivated with a mixture of 5% O2 in N2 at bath temperature of liquid nitrogen and isopropanol for 90 minutes to preserve it.
  • the present invention is applicable in the catalyst industry, more specifically catalysts that allow the high hydrogenation of organic molecules, for example, secondary product molecules, such as olefinic hydrocarbons and oxygenated aromatic substrates, coming from various industries that can be transformed into cyclohexane, followed by cyclohexanol, methoxycyclohexanol, and benzene.
  • organic molecules for example, secondary product molecules, such as olefinic hydrocarbons and oxygenated aromatic substrates

Abstract

The present invention relates to a nickel-based catalyst material useful in catalytic hydrogenation reactions, in addition to the method for manufacturing the catalyst. The present invention relates to a nickel-based catalyst material, supported on a silica-phyllosilicate matrix, wherein the material has a nanometric distribution of nickel particles on the surface of the silica-phyllosilicate matrix support.

Description

CATALIZADOR BASADO EN Ni CON ESTRUCTURA NANOMÉTRICA PARA LA HIDROGENACIÓN CATALÍTICA DE HIDROCARBUROS OLEFÍNICOS Y SUSTRATOS AROMÁTICOS OXIGENADOS Ni-BASED CATALYST WITH NANOMETRIC STRUCTURE FOR THE CATALYTIC HYDROGENATION OF OLEFINIC HYDROCARBONS AND OXYGENATED AROMATIC SUBSTRATES
CAMPO TÉCNICO TECHNICAL FIELD
La presente invención se enmarca en el campo técnico de catalizadores para la hidrogenación de moléculas orgánicas, como hidrocarburos olefínicos y sustratos aromáticos oxigenados. En general, moléculas que contengan un anillo aromático o un doble enlace son susceptibles de ser hidrogenadas en presencia de la invención. The present invention falls within the technical field of catalysts for the hydrogenation of organic molecules, such as olefinic hydrocarbons and oxygenated aromatic substrates. In general, molecules containing an aromatic ring or a double bond are capable of being hydrogenated in the presence of the invention.
ANTECEDENTES Y ARTE PREVIO BACKGROUND AND PRIOR ART
Entre los antecedentes más cercanos al campo de aplicación de la presente invención se encuentran los siguientes: Among the antecedents closest to the field of application of the present invention are the following:
CN112371129A CN112371129A
Este documento trata de un catalizador que transforma guaiacol en ciclohexanol. El catalizador está basado en níquel, sin embargo, no menciona el uso de ácido salicílico. El método de preparación del catalizador descrito es absolutamente diferente al evaluado en este reporte. This document deals with a catalyst that transforms guaiacol into cyclohexanol. The catalyst is nickel based, however it does not mention the use of salicylic acid. The catalyst preparation method described is absolutely different from the one evaluated in this report.
CN110152672A CN110152672A
Este documento describe un catalizador y su método de preparación. El catalizador es específico para conversión de guaiacol a ciclohexanol, y su base es níquel. El proceso de preparación es absolutamente distinto y específicamente no se menciona ácido salicílico. This document describes a catalyst and its preparation method. The catalyst is specific for the conversion of guaiacol to cyclohexanol, and its base is nickel. The preparation process is completely different and salicylic acid is not specifically mentioned.
CN104923233A CN104923233A
Este documento describe un catalizador y su método de preparación. El catalizador es específico para conversión de guaiacol a ciclohexanol, y su base es níquel. El proceso de preparación es absolutamente distinto y específicamente no se menciona ácido salicílico. This document describes a catalyst and its preparation method. The catalyst is specific for the conversion of guaiacol to cyclohexanol, and its base is nickel. The preparation process is completely different and salicylic acid is not specifically mentioned.
Esta investigación estudia catalizadores basados en níquel, cobalto o níquel/cobalto y no se menciona ácido salicílico como material de sacrificio. BREVE DESCRIPCIÓN DE FIGURAS This research studies catalysts based on nickel, cobalt or nickel/cobalt and salicylic acid is not mentioned as a sacrificial material. BRIEF DESCRIPTION OF FIGURES
Figura 1. Imagen de Microscopía Electrónica de Transmisión del Catalizador descrito en el presente documento. Figure 1. Transmission Electron Microscopy image of the catalyst described in this document.
Figura 2. Isoterma de Adsorción-Desorción de Nitrógeno para el catalizador descrito en el presente documento. Figure 2. Nitrogen Adsorption-Desorption isotherm for the catalyst described herein.
Figura 3. Perfil TPR del catalizador de Ni descrito en este documento. Figure 3. TPR profile of the Ni catalyst described in this paper.
Figura 4. Actividad Catalítica del Material reportado en la conversión de guaiacol a 300 °C y 50 bar H2. Figure 4. Catalytic Activity of the Material reported in the conversion of guaiacol at 300 °C and 50 bar H 2 .
La Figura 4 muestra los resultados de la prueba de actividad catalítica del material presentado. Se observa una elevada actividad, con un 100% de conversión de guaiacol al cabo de 30 minutos de operación; el componente mayoritario a alta conversión es ciclohexano, seguido de ciclohexanol, metoxiciclohexanol y benceno. La proporción relativa de estos componentes puede vanarse al modificar el tiempo de reacción y con el sistema bajo condiciones de recirculación. Figure 4 shows the results of the catalytic activity test of the material presented. High activity is observed, with 100% guaiacol conversion after 30 minutes of operation; the major component at high conversion is cyclohexane, followed by cyclohexanol, methoxycyclohexanol and benzene. The relative proportion of these components can be varied by modifying the reaction time and with the system under recirculation conditions.
Figura 5. Actividad Catalítica del Material reportado en la hidrogenación de Ciclohexeno a 250 °C y 50 bar H2. Figure 5. Catalytic Activity of the Material reported in the hydrogenation of Cyclohexene at 250 °C and 50 bar H 2 .
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
La invención protege un material catalizador basado en níquel, útil en reacciones de hidrogenación catalítica, además del método de fabricación del catalizador. The invention protects a nickel-based catalyst material useful in catalytic hydrogenation reactions, in addition to the method of making the catalyst.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
En un primer aspecto, la invención corresponde a un material catalizador basado en níquel, soportado en una matriz de sílice y filosilicato, en donde el material presenta una distribución nanométrica de partículas de níquel sobre la superficie del soporte de la matriz de sílice y filosilicato. Específicamente, las partículas de sílice y/o filosilicato tienen una longitud entre 20 y 80 nm, en una matriz extensa de sílice. Por otra parte, las nanopartículas de níquel soportadas sobre la sílice y/o filosilicato, con un alto grado de dispersión, presentan un tamaño de entre 1 y 9 nm, con una media de 5 nm. In a first aspect, the invention corresponds to a nickel-based catalyst material, supported on a silica and phyllosilicate matrix, wherein the material presents a nanometric distribution of nickel particles on the surface of the support of the silica and phyllosilicate matrix. Specifically, the silica and/or phyllosilicate particles are between 20 and 80 nm in length, in a large silica matrix. On the other hand, the nickel nanoparticles supported on silica and/or phyllosilicate, with a high degree of dispersion, have a size between 1 and 9 nm, with an average of 5 nm.
En una realización específica, la composición en masa del catalizador corresponde a un porcentaje entre 60 % y 80% del material soportante, y entre 20 % y 40 % de níquel. En otro aspecto, la invención considera además el método de fabricación o preparación del material catalizador. Dicho método comprende los siguientes pasos: a. Disolver una fuente de níquel*2 en una disolución de poloxámero en agua desionizada; b. Calentar la disolución del paso anterior a una temperatura de entre 30°C y 50°C; c. Agregar una disolución de amoníaco a la disolución calentada en el paso anterior, obteniéndose un precipitado de hidróxido de níquel; d. Adicionar ácido salicílico disuelto en etanol, conservando bajo agitación por un período de entre 10 a 48 horas; e. Suspender el material con ayuda de ultrasonido por un período de entre 20 y 60 minutos; f. Calentar la suspensión del paso anterior a una temperatura de entre 50°C y 70°C; g. Mantener la temperatura de la suspensión en el paso anterior y bajo agitación añadir ortosilicato de tetraetilo (TEOS) como precursor de la cáscara de sílice por un periodo de entre 2 y 8 horas; h. Filtrar recuperando el sólido lavándolo con agua desionizada entre 2 y 5 veces, y entre 2 y 5 veces con etanol; i. Secar al aire durante 10 a 24 horas a una temperatura de entre 80°C y 100°C; j. Calcinar el material obtenido a una temperatura de entre 150°C y 300°C; k. Enfriar el material a temperatura ambiente; l. Reducir el material bajo un flujo de hidrógeno a una temperatura de entre 500°C y 600°C, por un período de entre 60 y 120 minutos; m. Pasivar el material con una mezcla de oxígeno en nitrógeno a una concentración de entre 2% y 10%, por un período entre 60 y 120 minutos obteniéndose el material de la invención. In a specific embodiment, the mass composition of the catalyst corresponds to a percentage between 60% and 80% of the support material, and between 20% and 40% of nickel. In another aspect, the invention further considers the method of manufacturing or preparing the catalyst material. Said method comprises the following steps: a. Dissolve a source of nickel* 2 in a solution of poloxamer in deionized water; b. Heat the solution from the previous step to a temperature between 30°C and 50°C; c. Add a solution of ammonia to the solution heated in the previous step, obtaining a precipitate of nickel hydroxide; d. Add salicylic acid dissolved in ethanol, keeping under agitation for a period of between 10 and 48 hours; and. Suspend the material with the help of ultrasound for a period of between 20 and 60 minutes; F. Heat the suspension from the previous step to a temperature between 50°C and 70°C; g. Maintain the temperature of the suspension in the previous step and under stirring add tetraethyl orthosilicate (TEOS) as a precursor to the silica shell for a period of between 2 and 8 hours; h. Filter, recovering the solid, washing it with deionized water between 2 and 5 times, and between 2 and 5 times with ethanol; Yo. Air dry for 10 to 24 hours at 80°C to 100°C; j. Calcinate the material obtained at a temperature between 150°C and 300°C; k. Cool material to room temperature; he. Reduce the material under a flow of hydrogen at a temperature between 500°C and 600°C, for a period of between 60 and 120 minutes; m. Passivate the material with a mixture of oxygen in nitrogen at a concentration between 2% and 10%, for a period between 60 and 120 minutes, obtaining the material of the invention.
Más específicamente, la fuente de níquel se selecciona entre sales de nitrato, cloruro, sulfato o acetato de níquel, más preferentemente Ni(NOs)2*6H2O. More specifically, the nickel source is selected from nickel nitrate, chloride, sulfate or acetate salts, more preferably Ni(NOs)2*6H2O.
En otra especificación, el poloxámero se selecciona entre Pluronic P123, F127. Particularmente Pluronic P123, en una concentración de entre 1% a 6% en masa. Una vez añadido el poloxámero se busca alcanzar una concentración de N¡+2 de entre 0,05 a 0,20 mol/L. In another specification, the poloxamer is selected from Pluronic P123, F127. Particularly Pluronic P123, in a concentration of between 1% to 6% by mass. Once the poloxamer has been added, the aim is to reach a concentration of N¡ +2 between 0.05 and 0.20 mol/L.
Posteriormente, en el paso c, el amoníaco se agrega como una solución en agua de entre 25 a 35% en masa. Subsequently, in step c, ammonia is added as a 25 to 35% mass solution in water.
En el paso d, el ácido salicílico se agrega en una concentración de entre 1 a 25% base molar respecto al Ni disuelto en etanol. En realizaciones preferidas de la invención, el ácido salicílico se agrega en una concentración de entre 3 a 15% base molar respecto al Ni disuelto en etanol. In step d, salicylic acid is added at a concentration of between 1 to 25% molar basis. with respect to Ni dissolved in ethanol. In preferred embodiments of the invention, salicylic acid is added in a concentration of between 3 to 15% molar base with respect to Ni dissolved in ethanol.
En el paso j, respecto de la calcinación, la temperatura se eleva con una rampa de calentamiento de 10 °C/min. In step j, regarding calcination, the temperature rises with a heating ramp of 10 °C/min.
El material se reduce bajo flujo de hidrógeno a 550 °C durante 90 minutos con una rampa de calentamiento de 10°C/min. The material is reduced under a flow of hydrogen at 550 °C for 90 minutes with a heating ramp of 10 °C/min.
EJEMPLOS EXAMPLES
Catalizador basado en Ni con estructura nanométrica para la Hidrogenación Catalítica de Guaiacol Ni-based catalyst with nanometric structure for the Catalytic Hydrogenation of Guaiacol
El material es un catalizador de hidrogenación de guaiacol para obtener ciclohexanol, benceno, metoxiciclohexanol y benceno como productos de interés comercial. El presente material presenta una estructura a nivel nanométrico, donde las partículas de Ni que se obtienen se encuentran dispersas sobre una superficie extendida de sílice y filosilicatos de níquel. Este material se obtuvo a partir de un precipitado de Ni(OH)2 tratado con ácido salicílico y ortosilicato de tetraetilo (TEOS) en condiciones sol-gel obteniendo un precursor. Este material se calcinó a 250 °C en aire y se redujo bajo H2 a 550 °C para obtener las partículas de níquel reducidas sobre el soporte. La estructura del material conlleva a la obtención de una elevada área superficial y una alta actividad catalítica en la conversión de guaiacol como molécula modelo de la biomasa como aspectos novedosos, unido a una alta estabilidad del material bajo las condiciones de reacción. The material is a guaiacol hydrogenation catalyst to obtain cyclohexanol, benzene, methoxycyclohexanol and benzene as products of commercial interest. This material presents a structure at the nanometric level, where the Ni particles that are obtained are dispersed over an extended surface of silica and nickel phyllosilicates. This material was obtained from a Ni(OH)2 precipitate treated with salicylic acid and tetraethyl orthosilicate (TEOS) under sol-gel conditions, obtaining a precursor. This material was calcined at 250 °C in air and reduced under H2 at 550 °C to obtain the reduced nickel particles on the support. The structure of the material leads to obtaining a high surface area and a high catalytic activity in the conversion of guaiacol as a biomass model molecule as novel aspects, together with a high stability of the material under reaction conditions.
Método de preparación: Preparation method:
N¡(NOS)2*6H2O se disolvió en una disolución de Pluronic P123 2% en masa en agua desionizada para obtener una concentración de N¡+2 de 0,05. Esta disolución se calentó a 40 °C, y se añadió una disolución de NH3 en agua (entre 25 a 35% en masa) obteniendo un precipitado de Ni(OH)2. N¡(NOS)2*6H2O was dissolved in a 2% mass solution of Pluronic P123 in deionized water to obtain a N¡ +2 concentration of 0.05. This solution was heated to 40 °C, and a solution of NH3 in water (between 25 to 35% by mass) was added, obtaining a Ni(OH)2 precipitate.
Al precipitado obtenido se le adicionó ácido salicílico 2% base molar respecto al Ni disuelto en 20 mL de etanol manteniendo con agitación a 30 °C durante 12 horas. Salicylic acid 2% molar base with respect to Ni dissolved in 20 mL of ethanol was added to the precipitate obtained, maintaining stirring at 30 °C for 12 hours.
El material se suspendió con ayuda de ultrasonido durante 30 minutos, para proceder a calentar la suspensión a 60 °C, y se añadió ortosilicato de tetraetilo (TEOS) como precursor de la cáscara de sílice, manteniéndolo a 60 °C durante 4 horas con agitación. El sólido se recuperó por filtración, se lavó tres veces con agua desionizada, dos veces con etanol y se secó en aire durante 12 horas a 80 °C. The material was suspended with the help of ultrasound for 30 minutes, to proceed to heat the suspension to 60 °C, and tetraethyl orthosilicate (TEOS) was added as a precursor for the silica shell, keeping it at 60 °C for 4 hours with stirring. . The solid was recovered by filtration, washed three times with deionized water, twice with ethanol, and dried in air for 12 hours at 80°C.
El material obtenido se calcinó a 250 °C en aire durante 2 horas por gramo de material, con una rampa de calentamiento de 10 °C/min. Una vez terminada la calcinación, el material se dejó enfriar a temperatura ambiente. The material obtained was calcined at 250 °C in air for 2 hours per gram of material, with a heating ramp of 10 °C/min. After calcination was complete, the material was allowed to cool to room temperature.
El material se redujo bajo flujo de hidrógeno a 550 °C durante 90 minutos con una rampa de calentamiento de 10°C/min. The material was reduced under a flow of hydrogen at 550 °C for 90 minutes with a heating ramp of 10 °C/min.
EL material se pasivo con una mezcla de 5% O2 en N2 a temperatura de baño de nitrógeno líquido e isopropanol durante 90 minutos para su conservación. The material is passivated with a mixture of 5% O2 in N2 at bath temperature of liquid nitrogen and isopropanol for 90 minutes to preserve it.
Caracterizaciones realizadas: Characterizations made:
En la tabla siguiente se listan las técnicas empleadas para la caracterización de este material, así como la información suministrada por ellas. Se incluyen resultados de las técnicas de Microscopía, Reducción a Temperatura Programada e Isoterma de Fisisorción de Nitrógeno.
Figure imgf000007_0001
Figure imgf000008_0001
The following table lists the techniques used for the characterization of this material, as well as the information provided by them. Results of the techniques of Microscopy, Programmed Temperature Reduction and Nitrogen Physisorption Isotherm are included.
Figure imgf000007_0001
Figure imgf000008_0001
Actividad Catalítica en condiciones de lote: Catalytic activity under batch conditions:
El material fue probado en la hidrogenación de guaiacol en un sistema en lote a alta presión con dodecano como disolvente y los parámetros de operación siguiente:
Figure imgf000008_0002
The material was tested in the hydrogenation of guaiacol in a high pressure batch system with dodecane as solvent and the following operating parameters:
Figure imgf000008_0002
El material fue probado en la hidrogenación de ciclohexeno en un sistema en lote a alta presión con dodecano como disolvente y los parámetros de operación siguiente:
Figure imgf000008_0003
APLICACIÓN INDUSTRIAL
The material was tested in the hydrogenation of cyclohexene in a high pressure batch system with dodecane as solvent and the following operating parameters:
Figure imgf000008_0003
INDUSTRIAL APPLICATION
La presente invención es aplicable en la industria de catalizadores, más específicamente catalizadores que permiten la alta hidrogenación de moléculas orgánicas, por ejemplo, moléculas productos secundarios, tales como hidrocarburos olefínicos y sustratos aromáticos oxigenados, provenientes desde diversas industrias que pueden ser transformados en ciclohexano, seguido de ciclohexanol, metoxiciclohexanol y benceno. The present invention is applicable in the catalyst industry, more specifically catalysts that allow the high hydrogenation of organic molecules, for example, secondary product molecules, such as olefinic hydrocarbons and oxygenated aromatic substrates, coming from various industries that can be transformed into cyclohexane, followed by cyclohexanol, methoxycyclohexanol, and benzene.

Claims

REIVINDICACIONES
1. Material catalizador basado en níquel CARACTERIZADO porque está soportado en una matriz de sílice y filosilicato, en donde el material presenta una distribución nanométrica de partículas de níquel sobre la superficie del soporte de la matriz de sílice y filosilicato. 1. Nickel-based catalyst material CHARACTERIZED in that it is supported on a silica and phyllosilicate matrix, where the material presents a nanometric distribution of nickel particles on the surface of the support of the silica and phyllosilicate matrix.
2. Material catalizador de acuerdo con la reivindicación 1 , CARACTERIZADO porque las partículas de sílice y/o filosilicato tienen una longitud entre 20 y 80 nm, en una matriz extensa de sílice. 2. Catalytic material according to claim 1, CHARACTERIZED in that the silica and/or phyllosilicate particles have a length between 20 and 80 nm, in an extensive silica matrix.
3. Material catalizador de acuerdo con la reivindicación 1 , CARACTERIZADO porque las nanopartículas de níquel soportadas sobre la sílice y/o filosilicato, con un alto grado de dispersión, presentan un tamaño de entre 1 y 9 nm. 3. Catalytic material according to claim 1, CHARACTERIZED in that the nickel nanoparticles supported on silica and/or phyllosilicate, with a high degree of dispersion, have a size between 1 and 9 nm.
4. Material catalizador de acuerdo con la reivindicación 1 , CARACTERIZADO porque la composición en masa del catalizador corresponde a un porcentaje entre 60 % y 80% del material soportante, y entre 20 % y 40 % de níquel. 4. Catalyst material according to claim 1, CHARACTERIZED in that the mass composition of the catalyst corresponds to a percentage between 60% and 80% of the support material, and between 20% and 40% of nickel.
5. Método de fabricación o preparación de un material catalizador basado en níquel, CARACTERIZADO porque comprende los siguientes pasos: a. Disolver una fuente de níquel*2 en una disolución de poloxámero en agua desionizada; b. Calentar la disolución del paso anterior a una temperatura de entre 30°C y 50°C; c. Agregar una disolución de amoníaco a la disolución calentada en el paso anterior, obteniéndose un precipitado de níquel; d. Adicionar ácido salicílico disuelto en etanol, conservando bajo agitación por un período de entre 10 a 48 horas; e. Suspender el material con ayuda de ultrasonido por un período de entre 20 y 60 minutos; f. Calentar la suspensión del paso anterior a una temperatura de entre 50°C y 70°C; g. Mantener la temperatura de la suspensión en el paso anterior y bajo agitación añadir ortosilicato de tetraetilo (TEOS) como precursor de la cáscara de sílice por un periodo de entre 2 y 8 horas; h. Filtrar recuperando el sólido lavándolo con agua desionizada entre 2 y 5 veces, y entre 2 y 5 veces con etanol; i. Secar al aire durante 10 a 24 horas a una temperatura de entre 80°C y 100°C; j. Calcinar el material obtenido a una temperatura de entre 150°C y 300°C; 5. Method of manufacturing or preparing a nickel-based catalyst material, CHARACTERIZED in that it comprises the following steps: a. Dissolve a source of nickel* 2 in a solution of poloxamer in deionized water; b. Heat the solution from the previous step to a temperature between 30°C and 50°C; c. Add a solution of ammonia to the solution heated in the previous step, obtaining a nickel precipitate; d. Add salicylic acid dissolved in ethanol, keeping under agitation for a period of between 10 and 48 hours; and. Suspend the material with the help of ultrasound for a period of between 20 and 60 minutes; F. Heat the suspension from the previous step to a temperature between 50°C and 70°C; g. Maintain the temperature of the suspension in the previous step and under stirring add tetraethyl orthosilicate (TEOS) as a precursor to the silica shell for a period of between 2 and 8 hours; h. Filter, recovering the solid, washing it with deionized water between 2 and 5 times, and between 2 and 5 times with ethanol; Yo. Air dry for 10 to 24 hours at 80°C to 100°C; j. Calcinate the material obtained at a temperature between 150°C and 300°C;
8 k. Enfriar el material a temperatura ambiente; l. Reducir el material bajo un flujo de hidrógeno a una temperatura de entre 500°C y 600°C, por un período de entre 60 y 120 minutos; m. Pasivar el material con una mezcla de oxígeno en nitrógeno a una concentración de entre 2% y 10%, por un período entre 60 y 120 minutos obteniéndose el material de la invención. Método de fabricación o preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 5, CARACTERIZADO porque la fuente de níquel se selecciona entre sales de nitrato, cloruro, sulfato o acetato de níquel. Método de fabricación o preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 6, CARACTERIZADO porque la fuente de níquel es Ni(NO3)2*6H2O. Método de fabricación o preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 5, CARACTERIZADO porque el poloxámero se selecciona entre Pluronic P123, F127. Método de fabricación o preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 8, CARACTERIZADO porque el poloxámero es Pluronic P123, en una concentración de entre 1% a 6% en masa, donde una vez añadido el poloxámero se alcanza una concentración de N¡+2 de entre 0,05 a 0,20 mol/L. Método de fabricación o preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 5, CARACTERIZADO porque en el paso c), el amoníaco se agrega como una solución en agua de entre 25 a 35% en masa. Método de fabricación o preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 5, CARACTERIZADO porque en el paso d), el ácido salicílico se agrega en una concentración de entre 1 a 25% base molar respecto al Ni disuelto en etanol. Método de preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 11 , CARACTERIZADO porque en el paso d) el ácido salicílico se agrega en una concentración de entre 3 a 15% base molar respecto al Ni disuelto en etanol. Método de fabricación o preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 5, CARACTERIZADO porque el paso j), respecto de la calcinación, la temperatura se eleva con una rampa de calentamiento de 10 °C/min. Método de fabricación o preparación de un material catalizador basado en níquel de acuerdo con la reivindicación 5, CARACTERIZADO el material se reduce bajo flujo de hidrógeno a 550 °C durante 90 minutos con una rampa de calentamiento de 10°C/min. 8 k. Cool material to room temperature; he. Reduce the material under a flow of hydrogen at a temperature between 500°C and 600°C, for a period of between 60 and 120 minutes; m. Passivate the material with a mixture of oxygen in nitrogen at a concentration between 2% and 10%, for a period between 60 and 120 minutes, obtaining the material of the invention. Method of manufacturing or preparing a nickel-based catalyst material according to claim 5, CHARACTERIZED in that the nickel source is selected from nickel nitrate, chloride, sulfate or acetate salts. Method of manufacturing or preparing a nickel-based catalyst material according to claim 6, CHARACTERIZED in that the source of nickel is Ni(NO 3 )2*6H2O. Method of manufacturing or preparing a nickel-based catalyst material according to claim 5, CHARACTERIZED in that the poloxamer is selected from Pluronic P123, F127. Method of manufacturing or preparing a nickel-based catalyst material according to claim 8, CHARACTERIZED in that the poloxamer is Pluronic P123, in a concentration of between 1% to 6% by mass, where once the poloxamer is added a concentration is reached of N¡ +2 between 0.05 and 0.20 mol/L. Method of manufacturing or preparing a nickel-based catalyst material according to claim 5, CHARACTERIZED in that in step c), ammonia is added as a solution in water of between 25 to 35% by mass. Method of manufacturing or preparing a nickel-based catalyst material according to claim 5, CHARACTERIZED in that in step d), salicylic acid is added in a concentration of between 1 to 25% molar basis with respect to Ni dissolved in ethanol. Method of preparing a nickel-based catalyst material according to claim 11, CHARACTERIZED in that in step d) salicylic acid is added in a concentration of between 3 to 15% molar basis with respect to Ni dissolved in ethanol. Method of manufacturing or preparing a nickel-based catalyst material according to claim 5, CHARACTERIZED in that step j), with respect to calcination, the temperature is raised with a heating ramp of 10 °C/min. Method of manufacturing or preparing a nickel-based catalyst material according to claim 5, CHARACTERIZED: the material is reduced under a flow of hydrogen at 550 °C for 90 minutes with a heating ramp of 10 °C/min.
9 9
PCT/CL2021/050134 2021-12-31 2021-12-31 Ni-based catalyst with nanometric structure for the catalytic hydrogenation of olephinic hydrocarbons and oxygenated aromatic substrates WO2023122840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2021/050134 WO2023122840A1 (en) 2021-12-31 2021-12-31 Ni-based catalyst with nanometric structure for the catalytic hydrogenation of olephinic hydrocarbons and oxygenated aromatic substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2021/050134 WO2023122840A1 (en) 2021-12-31 2021-12-31 Ni-based catalyst with nanometric structure for the catalytic hydrogenation of olephinic hydrocarbons and oxygenated aromatic substrates

Publications (1)

Publication Number Publication Date
WO2023122840A1 true WO2023122840A1 (en) 2023-07-06

Family

ID=86996782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050134 WO2023122840A1 (en) 2021-12-31 2021-12-31 Ni-based catalyst with nanometric structure for the catalytic hydrogenation of olephinic hydrocarbons and oxygenated aromatic substrates

Country Status (1)

Country Link
WO (1) WO2023122840A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110105310A1 (en) * 2009-10-30 2011-05-05 Samsung Electronics Co., Ltd. Mesoporous oxide-catalyst complex and method of preparing the mesoporous oxide-catalyst complex
US20140155670A1 (en) * 2012-11-30 2014-06-05 Iowa State University Research Foundation, Inc. Catalysts and methods of using the same
US20140296062A1 (en) * 2012-09-25 2014-10-02 University Of Connecticut Mesoporous metal oxides and processes for preparation thereof
CN104841434A (en) * 2015-04-09 2015-08-19 中国科学院山西煤炭化学研究所 Modified silica and cobalt loading catalyst, preparation method and application thereof
WO2018203836A1 (en) * 2017-05-05 2018-11-08 National University Of Singapore Method of preparing a metal-silicon oxide catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110105310A1 (en) * 2009-10-30 2011-05-05 Samsung Electronics Co., Ltd. Mesoporous oxide-catalyst complex and method of preparing the mesoporous oxide-catalyst complex
US20140296062A1 (en) * 2012-09-25 2014-10-02 University Of Connecticut Mesoporous metal oxides and processes for preparation thereof
US20140155670A1 (en) * 2012-11-30 2014-06-05 Iowa State University Research Foundation, Inc. Catalysts and methods of using the same
CN104841434A (en) * 2015-04-09 2015-08-19 中国科学院山西煤炭化学研究所 Modified silica and cobalt loading catalyst, preparation method and application thereof
WO2018203836A1 (en) * 2017-05-05 2018-11-08 National University Of Singapore Method of preparing a metal-silicon oxide catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAN LIU; SHI ZHANG QIAO; SANDY BUDI HARTONO; GAO QING (MAX) LU: "Monodisperse Yolk–Shell Nanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors", ANGEWANDTE CHEMIE, vol. 122, no. 29, 28 May 2010 (2010-05-28), DE , pages 5101 - 5105, XP071346766, ISSN: 0044-8249, DOI: 10.1002/ange.201001252 *
RAHUL PURBIA, PARIA SANTANU: "Yolk/shell nanoparticles: classifications, synthesis, properties, and applications", NANOSCALE, vol. 7, no. 47, 27 October 2015 (2015-10-27), United Kingdom , pages 19789 - 19873, XP055418216, ISSN: 2040-3364, DOI: 10.1039/C5NR04729C *

Similar Documents

Publication Publication Date Title
US9266097B2 (en) Cobalt-based nano catalyst and preparation method thereof
Fulvio et al. Synthesis of mesoporous alumina from boehmite in the presence of triblock copolymer
CN111229215B (en) Metal high-dispersion supported catalyst based on carbon quantum dot induction and preparation method and application thereof
CN107638880B (en) Synthesis method of transition metal oxide modified noble metal nano catalyst
US6103209A (en) Process for preparing porous spherical silica xerogels
WO2021115244A1 (en) Zirconium- or aluminum-modified amorphous mesoporous sio2-supported cobalt-based fischer-tropsch catalyst and preparation method therefor
WO2008043060A2 (en) Highly dispersed nickel hydrogenation catalysts and methods for making the same
CN108855197B (en) The method of propane dehydrogenation catalyst and preparation method thereof and preparing propylene by dehydrogenating propane
CN108671917A (en) A kind of catalyst and preparation method thereof of efficient cryogenic catalysis VOCs exhaust gas decompositions
CN111085241B (en) Method for preparing aniline by nitrobenzene hydrogenation and preparation method of catalyst thereof
WO2017128946A1 (en) Highly-dispersed particulate catalyst for use in hydrogen peroxide synthesis, preparation method therefor and application thereof
KR20110123051A (en) Structured mesoporous silica supported fischer-tropsch catalyst
CN101733106A (en) Preparation method of supported nickel catalyst
CN106540698A (en) A kind of preparation method of the loading type nickel-based catalyst of chloronitrobenzene selective hydrogenation synthesis chloro aminobenzen
CN106000443A (en) Method for preparing efficient and stable methane dry-reforming catalyst by means of one-step synthesis
Liu et al. Architecture controlled PtNi@ mSiO 2 and Pt–NiO@ mSiO 2 mesoporous core–shell nanocatalysts for enhanced p-chloronitrobenzene hydrogenation selectivity
Yang et al. Preparation of Ni/mSiO2 with the existence of hydrogelator: Insight into hydrogelator self-assembly on metal dispersion and catalytic performance in quinoline hydrogenation
Mazinani et al. Synthesis and photocatalytic performance of hollow sphere particles of SiO2-TiO2 composite of mesocellular foam walls
JP4338400B2 (en) Ni / TiO2-hydrogenation catalyst
WO2023122840A1 (en) Ni-based catalyst with nanometric structure for the catalytic hydrogenation of olephinic hydrocarbons and oxygenated aromatic substrates
CN109289847B (en) Catalyst for catalyzing propane dehydrogenation reaction, preparation method thereof and method for preparing propylene by propane dehydrogenation
RU2710375C2 (en) Method of catalyst preparation
KR20220075530A (en) A Catalyst for dehydrogenation of liquid organic hydrogen carriers and method for producing the same
Trunschke 11 Synthesis of Solid Catalysts
JP7203755B2 (en) Porous monolith containing TiO2 and method of making same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969234

Country of ref document: EP

Kind code of ref document: A1