WO2023121381A1 - Phase-controlled nanosheet laminated structure, hybrid composite, and method for manufacturing same - Google Patents

Phase-controlled nanosheet laminated structure, hybrid composite, and method for manufacturing same Download PDF

Info

Publication number
WO2023121381A1
WO2023121381A1 PCT/KR2022/021162 KR2022021162W WO2023121381A1 WO 2023121381 A1 WO2023121381 A1 WO 2023121381A1 KR 2022021162 W KR2022021162 W KR 2022021162W WO 2023121381 A1 WO2023121381 A1 WO 2023121381A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
metal dichalcogenide
phase
nanosheets
cation
Prior art date
Application number
PCT/KR2022/021162
Other languages
French (fr)
Korean (ko)
Inventor
윤하나
정규남
양정훈
유정준
류명현
송진주
임강훈
이고운
안병선
장규연
이영아
김하영
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2023121381A1 publication Critical patent/WO2023121381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer

Definitions

  • the present invention relates to a 1T/2H phase controlled nanosheet laminated structure and a hybrid composite including the same, a manufacturing method thereof, an electrode active material including the nanosheet laminated structure or a hybrid composite composited therewith, and an energy storage device including the same will be.
  • the two-dimensional structural materials above are thin and strong in nanometers, and have various properties such as metallic, semiconductor, and non-conductive properties, so they can be used in various fields such as electronic devices, sensors, and energy.
  • a two-dimensional heterogeneous multi-layer material it is possible to modulate physical properties according to the stacked combination of a single layer and to realize synergistic coupling between physical properties of a two-dimensional material.
  • TMD transition metal dichalcogenide
  • heterogeneous multilayer two-dimensional materials are expected to have high potential to be adopted in various high-value applications such as electronics, optoelectronics, energy, sensors, and biomedicine in the future.
  • the total global market size of 2D materials is expected to increase more than 23 times to about 130 million dollars by 2030.
  • the total domestic market size is expected to be $17.8 million in 2030, and the average annual growth rate (CAGR) between 2020 and 2030 is expected to be 36.72%.
  • CAGR average annual growth rate
  • two-dimensional chalcogenide materials and heterogeneous multi-layer two-dimensional materials have very limitless possibilities not only in the market for the material itself but also in their application fields.
  • high-efficiency low-power devices and The possibility of application to material development is very high.
  • lithium ion batteries as secondary batteries for electric vehicles
  • the development of new high-capacity materials capable of rapid charging is required in order to satisfy long-distance driving and consumer convenience.
  • lithium ions and electrons from the positive electrode go into the negative electrode when the battery is charged, and vice versa, lithium ions and electrons from the negative electrode move to the positive electrode when the battery is discharged.
  • how fast the negative electrode can accept lithium ions is a key factor that determines the charging speed of the lithium ion battery, which is greatly influenced by the composition of the negative electrode material and the characteristics of the electrode structure.
  • Graphite which is most commonly used as an existing anode material, is inexpensive and has excellent structural stability, but its low capacity (theoretical capacity: 372 mAh g -1 ) is sufficient to increase the driving range of electric vehicles or the usage time of mobile phones and electronic devices.
  • silicon oxide (SiOx) anode materials are aiming for the position with high specific capacity, but the volume expansion of the material is severe during the cycle process, which causes the electrode structure to be rapidly destroyed, resulting in a short lifespan.
  • transition metal dichalcogenide materials have attracted considerable attention in many research fields because they have unique electrical, mechanical, and optical properties, and show high capacity in terms of energy storage, so they are promising as LIB cathode materials. .
  • due to poor conductivity it is necessary to secure conductivity in order to secure electrode capacity, and it is also necessary to solve the problem of volume expansion due to intercalation/deintercalation of electrolyte ions.
  • two-dimensional heterogeneous multilayer materials can adjust the distance between layers, so if graphite and heterogeneous multilayer materials are properly mixed, it is possible to realize materials with excellent high-capacity characteristics and structural stability, as well as to receive lithium ions smoothly during rapid charging. hopefully it can be picked up.
  • transition metal dichalcogenides have a 1T phase and a 2H phase
  • the 1T phase is known to be hydrophilic and have conductivity several orders of magnitude higher than that of the semiconducting 2H phase. This could mean that it could be used as an attractive electrode material for energy storage devices.
  • most two-dimensional layered transition metal dichalcogenide materials can switch between 1T and 2H phases, it is important to have a high content of 1T phase as much as possible.
  • the 1T phase was not included from the beginning, or it was often present only in trace amounts, and even if the 1T phase was contained at a certain level or more, it was converted to the 2H phase over time. , the above-described electrochemical properties of the 1T phase could not be properly utilized.
  • the present inventors maintained the 1T phase content high, and thus, when used as a negative electrode material for a secondary battery, excellent electrochemical properties A manufacturing method that can represent and a technology for a material manufactured according to this manufacturing method were derived.
  • the present invention has been made to solve the above problems, and one embodiment of the present invention provides a laminated structure of transition metal dichalcogenide nanosheets.
  • Another embodiment of the present invention provides a hybrid composite.
  • another embodiment of the present invention provides a method for manufacturing a laminated structure of transition metal dichalcogenide nanosheets.
  • another embodiment of the present invention provides a method for preparing a hybrid composite.
  • the ratio of (2H phase):(1T phase) calculated through (XPS) analysis is 0.05: 1 to 4: 1, and provides a laminated structure of transition metal dichalcogenide nanosheets.
  • the transition metal dichalcogenide may be at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , and NbSe 2 .
  • XRD X-ray diffraction
  • XRD X-ray diffraction
  • At least one peak indicating a 1T phase may be detected.
  • Another aspect of the present invention is,
  • Graphene nanosheet laminated structure and the transition metal dichalcogenide nanosheet multilayer structure according to claim 1 formed on at least a portion of the surface of the graphene nanosheet multilayer structure.
  • Another aspect of the present invention is,
  • a method of manufacturing a laminated structure of at least one transition metal dichalcogenide nanosheet comprising: preparing at least one transition metal dichalcogenide bulk material; incorporating a solution containing a first cation into the transition metal dichalcogenide bulk material; intercalating the first cation into the transition metal dichalcogenide bulk material; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; Obtaining a laminated structure of transition metal dichalcogenide nanosheets by exfoliating and re-stacking the transition metal dichalcogenide bulk material; And adjusting the ratio of the 1T phase (phase) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheets; provides a method for manufacturing a layered structure of transition metal dichalcogenide nanosheets, including.
  • Adjusting the ratio of the 1T phase according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheet may be characterized by drying at a temperature of less than 100 °C.
  • Adjusting the ratio of the 1T phase (phase) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheet may be characterized by freeze drying (Freezing Drying, FD).
  • the first cation is an alkali metal cation
  • the second cation is 1 selected from the group consisting of ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn), and hydronium (H 3 O + ) It may be characterized as being a cation of the species.
  • ultrasonic treatment may be performed for 10 minutes to 240 minutes.
  • agitation is performed simultaneously with the ultrasonic treatment.
  • the transition metal dichalcogenide may be at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , and NbSe 2 .
  • Another aspect of the present invention is,
  • a method for preparing a hybrid composite comprising: preparing a mixture by mixing powder or dispersion of graphene nanosheets or graphene oxide nanosheets with at least one transition metal dichalcogenide bulk material; incorporating a solution containing the first cation into the mixture; intercalating the first cation into the graphene nanosheet or graphene oxide nanosheet and the transition metal dichalcogenide bulk material; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; Obtaining a hybrid composite by simultaneously exfoliating and re-stacking the graphene nanosheets or graphene oxide nanosheets and the transition metal dichalcogenide bulk material; and adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide according to the drying temperature of the hybrid composite.
  • Adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide may be characterized by drying at a temperature of less than 100 °C.
  • Adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide may be characterized by freeze drying (Freezing Drying, FD).
  • An electrode active material including a laminated structure or a hybrid composite of the transition metal dichalcogenide nanosheets is provided.
  • an anode containing the electrode active material cathode; and a separator interposed between the anode and the cathode; and an electrolyte.
  • the present invention when used as an electrode active material, by improving intercalation and deintercalation efficiency, conductivity and structural stability, energy of lithium secondary batteries, sodium secondary batteries, zinc secondary batteries, aluminum secondary batteries, etc. It is possible to provide a layered structure of transition metal dichalcogenide nanosheets or a hybrid composite including the same, which can further increase the charge/discharge capacity, coulombic efficiency, and cycle characteristics of the storage device.
  • anode material used in a multivalent ion battery such as lithium ion, sodium ion, zinc ion or aluminum ion having excellent electrochemical performance through an energy-efficient and simple process.
  • Figure 1a is a flow chart schematically illustrating a method for manufacturing a laminated structure of transition metal dichalcogenide nanosheets according to an embodiment of the present invention.
  • Figure 1b is a flow chart schematically illustrating a method for preparing a hybrid composite according to an embodiment of the present invention.
  • FIG. 2 schematically shows a method for preparing a hybrid composite according to an embodiment of the present invention.
  • Figure 3 shows (a) SEM , (b) cross-sectional TEM, (c) 1T/ TEM analysis results of 2H mixed phase MoS 2 nanosheets are shown.
  • FIG. 5 shows a HAADF-STEM image of a two-dimensional MoS 2 nanosheet exfoliated in a 1T/2H mixed phase according to an embodiment of the present invention.
  • FIG. 7 shows a HAADF-STEM image of a two-dimensional MoSe 2 nanosheet exfoliated in a 1T/2H mixed phase according to an embodiment of the present invention.
  • Figure 8 shows XRD data of (ac) MoS 2 exfoliated material and (ef) MoS 2 / graphene hybrid composite (co-exMG) XRD data according to drying temperature according to an embodiment of the present invention.
  • Figure 9 shows (a) Raman data of MoS 2 exfoliated material and (b, c) XPS data of MoS 2 exfoliated material and MoS 2 /graphene hybrid composite according to drying temperature according to an embodiment of the present invention. will be.
  • Figure 10 shows the XPS data of (a) MoSe 2 exfoliation material according to the drying temperature according to one embodiment of the present invention.
  • Figure 11 shows the lithium ion battery (lithium ion battery, LIB) cell performance evaluation results of the phase-controlled MoS 2 exfoliation material and the MoS 2 /graphene hybrid composite according to an embodiment of the present invention. .
  • SIB 12 is a sodium ion battery (SIB) cell performance evaluation of a phase-controlled MoS 2 exfoliation material according to an embodiment of the present invention. (a) charge/discharge curve, (b) evaluation of cycle characteristics (c) rate characteristics.
  • SIB sodium ion battery
  • Example 1 Preparation of a layered structure of phase-controlled two-dimensional transition metal dichalcogenide nanosheets
  • Transition metal dichalcogenide (MoS 2 , MoSe 2 and WS 2 , etc.) bulk powder 10g was put into an Erlenmeyer flask, sealed, and nitrogen substitution was performed for more than 10 minutes to create an inert nitrogen environment inside the flask. After that, add 80 mL of n-butyllithium solution (2.5 M solution in hexane, Acros Organics) through a syringe (inject 8 mL of n-butyllithium solution per 1 g of powder), and sonicate (sonicate) for 3 hours.
  • n-butyllithium solution 2.5 M solution in hexane, Acros Organics
  • the transition metal dichalcogenide bulk powder reacted with the n-butyllithium solution to allow Li + to be evenly inserted between the transition metal dichalcogenide layers.
  • 700 mL of supersaturated NH 4 Cl aqueous solution 70 mL of supersaturated NH 4 Cl aqueous solution per 1 g of powder
  • Li + intercalated between the layers of transition metal dichalcogenide powder was ion-exchanged with NH 4 + to obtain
  • the interlayer binding force of the transition metal dichalcogenide material was weakened.
  • the amount of sample required can be adjusted according to the amount of powder to be exfoliated.
  • the transition metal dichalcogenide having a weakened interlayer bonding force was exfoliated by sonication or stirring.
  • the sonic treatment (about 3 hours) had the effect of shortening the exfoliation time compared to the case of stirring (about 12 to 24 hours), and the exfoliation time could be shortened when ultrasonic treatment and agitation were performed together. It was possible to improve the exfoliation yield as well as possible.
  • the transition metal dichalcogenide powder is isolated or forms a layer-by-layer form (layered structure) having a stacked form of about 1 to 10 layers. After all of the exfoliation proceeded, an exfoliated transition metal dichalcogenide powder was obtained through filtration.
  • the nanosheet laminated structure powder was washed with distilled water and ethanol. After all washing was completed, the powder containing MoS 2 obtained in each preparation was divided into three cases of freeze drying, drying at 80 ° C. and 900 ° C. for 12 hours or more, respectively, and dried, and the powder containing MoSe 2 was divided into four cases of freeze drying, drying at 80 ° C, 200 ° C, and 500 ° C for more than 12 hours, respectively, and dried. At this time, a part of the TMD material in which the interlayer spacing is widened in the process of exfoliation has a 1T structure, and this can be well maintained by using the lyophilization method.
  • Example 2 Preparation of a Hybrid Composite Containing a Layered Structure of Phase-Controlled Two-Dimensional Transition Metal Dichalcogenide Nanosheets
  • FIG. 2 A method for preparing a hybrid composite according to an embodiment of the present application is shown in FIG. 2 .
  • Transition metal dichalcogenide MoS 2 , MoSe 2 and WS 2 , etc.
  • bulk powder and graphene powder in a 1:1 mass ratio, 5g each, put in a total of 10g Erlenmeyer flask, seal, nitrogen or argon replacement for more than 10 minutes, and inside the flask to an inert environment.
  • add 80 mL of n-butyllithium solution 2.5 M solution in hexane, Acros Organics
  • syringe inject 8 mL of n-butyllithium solution per 1 g of powder
  • sonicate sonicate
  • transition metal dichalcogenide bulk powder and graphene powder reacted with the n-butyllithium solution to allow Li + to be evenly inserted between the transition metal dichalcogenide and graphene layers.
  • 700 mL of supersaturated NH 4 Cl aqueous solution 70 mL of supersaturated NH 4 Cl aqueous solution per 1 g of powder was added through a syringe to dissolve Li + intercalated between the transition metal dichalcogenide and graphene powder layers with NH 4 + and ions.
  • the exchange weakened the bonding force between the layers of the transition metal dichalcogenide and the graphene material.
  • the amount of sample required can be adjusted according to the amount of powder to be exfoliated.
  • the transition metal dichalcogenide and graphene whose interlayer bonding force was weakened, were exfoliated by sonication or stirring.
  • the sonic treatment (about 3 hours) had the effect of shortening the exfoliation time compared to the case of stirring (about 12 to 24 hours), and the exfoliation time could be shortened when ultrasonic treatment and agitation were performed together. It was possible to improve the exfoliation yield as well as possible.
  • the transition metal dichalcogenide and graphene powder are re-laminated by the Van der Waals force to form layer by layer.
  • a composite of the exfoliated transition metal dichalcogenide powder and graphene was obtained through filtration.
  • the composite powder was washed with distilled water and ethanol.
  • the powder containing MoS 2 obtained in each preparation example was divided into three cases of freeze drying, drying at 80 ° C. and 900 ° C. for 12 hours or more, respectively, and dried.
  • Powder containing MoSe 2 was divided into four cases of freeze drying, drying at 80 ° C, 200 ° C, and 500 ° C for more than 12 hours, respectively, and dried.
  • a part of the TMD material in which the interlayer spacing is widened during the exfoliation process has a 1T structure, and this can be well maintained by using the lyophilization method.
  • Figure 3 is a MoS 2 / graphene hybrid composite according to an embodiment of the present invention SEM and TEM images are shown, and through the SEM BSE (backscattered electron) mode picture of FIG. there is.
  • 3b and c show TEM images of the MoS 2 /graphene hybrid composite according to an embodiment of the present invention
  • FIG. 3b is a cross section image.
  • Figure 3b-(i ⁇ ii) is a HR-TEM (high-resolution TEM) image that enlarges the MoS 2 and graphene regions of Figure 3b, respectively, and it can be observed that the crystal is well maintained without lattice defects or deformation.
  • interlayer spacing of 0.63 nm and 0.78 nm can be observed in the images of Fig.
  • FIG. 3-(c, iii ⁇ iv) is a top view image, and the composite phase of MoS 2 can be well observed. It can be confirmed that the black circled region has a 2H structure, the white circled region has a 1T structure, and the orange (gray in black and white) circled region has a complex existence of the two phases, including the boundary between the 1T and 2H regions.
  • 3-(iii ⁇ iv) is an enlarged image of FIG. 3-(c), and the 1T and 2H structures can be more clearly identified as an atomic unit image.
  • Figure 4 shows the results of TEM (left) and HR-TEM (right) analysis of exfoliated two-dimensional MoS 2 nanosheets of 1T / 2H mixed phase according to an embodiment of the present invention
  • Figure 5 shows 1T / 2H It shows a HAADF-STEM (High angle annular dark field-scanning TEM) image of the exfoliated two-dimensional MoS 2 nanosheet of the mixed phase.
  • Figure 6 shows the TEM (left) and HR-TEM (right) analysis results of the exfoliated two-dimensional MoSe 2 nanosheet of the 1T / 2H mixed phase according to an embodiment of the present invention
  • Figure 7 shows the 1T / 2H It shows HAADF-STEM (High angle annular dark field-scanning TEM) image of exfoliated two-dimensional MoSe 2 nanosheet in mixed phase. 6 and 7, it was confirmed at atomic unit resolution that the 1T and 2H phases were mixed and present on one sheet.
  • HAADF-STEM High angle annular dark field-scanning TEM
  • Figure 8 shows XRD according to the drying temperature after synthesizing the MoS 2 exfoliated material and the MoS 2 /graphene hybrid composite according to an embodiment of the present invention.
  • 8a-c show XRD data according to the drying temperature after preparation of the MoS 2 exfoliation material.
  • Figure 8b is an enlarged image of the indexed area to the (002) plane of MoS 2 , and it can be observed that the peak position moves to a higher theta value as the drying temperature increases. Through this, it was confirmed that the higher the drying temperature, the closer the interlayer spacing of the (002) plane approaches the d-spacing value of 2H structure, 0.62 nm.
  • Figure 9 shows Raman and XPS according to drying temperature after synthesis of MoS 2 exfoliated material and MoS 2 /graphene hybrid composite according to an embodiment of the present invention.
  • Figure 9a shows the Raman data of exfoliated MoS 2 , the 1T phase is shown in green, and the 2H phase is shown in orange (in black and white, 1T is J 1 , J 2 , J 3 region, 2H is E 1g , E 2g , A 1 g ). It was confirmed that the 1T and 2H phases of MoS 2 were mixed in ex-MoS 2 FD (freeze-drying).
  • Figure 10 shows the XPS according to the drying temperature after MoSe 2 exfoliation material synthesis according to an embodiment of the present invention.
  • 10 shows the XPS data of exfoliated MoSe 2 , and it was confirmed that the lower the drying temperature, the lower the binding energy of the graph as a whole compared to the bulk material. You can check.
  • the Mo 3d spectrum of MoSe 2 nanosheets was analyzed by deconvolution, and the 1T phase of MoSe 2 was shown in purple (dotted line) and the 2H phase was shown in orange (solid line without figures). In addition, information on each peak is shown in the table below.
  • the 80-degree sample could be calculated through deconvolution graph integration at 1:1. Compared to the freeze-dried sample, the 80 degree sample had a lower 1T ratio, and the 1T phase was not observed in the sample greater than 200 degrees, confirming that the conversion to the 2H phase occurred as the temperature moved to a higher temperature.
  • an electrode slurry is prepared using MoS 2 and MoS 2 /graphene hybrid composite as an anode active material.
  • the method of making the electrode slurry is as follows. First, Super P added to increase the conductivity of the slurry and binder PVDF (Polyvinylidene Fluoride, sigma aldrich) used to increase the cohesion are mixed for 3 minutes using a mixer. The binder is dissolved in NMP in advance.
  • PVDF Polyvinylidene Fluoride, sigma aldrich
  • the ratio is active material (exfoliated MoS 2 or ex-MoS 2 /graphene hybrid composite material):
  • Super P: PVDF 7: 2: 1:.
  • NMP N-Methyl-2-pyrrolidone, DEAJUNG Co.
  • Cu foil (20 um) is attached to the glass plate and foreign substances on the surface are removed.
  • the electrode slurry was applied to a thickness of 50 ⁇ m using a doctor blade. Vacuum dry at 120 °C for 12 hours for complete drying.
  • VSP potentiostat/galvanostat/EIS, BioLogic In order to evaluate the electrochemical characteristics of the manufactured coin cell type lithium ion battery cell, a multi-channel potentiostat (VSP potentiostat/galvanostat/EIS, BioLogic) equipment was used. The charge/discharge voltage range is 0.005 V to 2.5 V, and a two-cycle reaction was sent at 35 mA/g to stabilize the changes that occur during the first reaction (formation). Afterwards, analysis was performed at 180 mA/g ( ⁇ 0.5C). 11a-c show the LIB cell performance of a material in which the phases of the exfoliated MoS 2 material are a mixture of 1T and 2H.
  • the ex-MoS 2 (1T&2H)/graphene hybrid composite has a high current density of 1100 mA/g ( ⁇ 3C) compared to the measured capacity at a low current density of 180 mA/g ( ⁇ 0.5C). It was confirmed that the high rate characteristics of maintaining the capacity of 80% were exhibited. In addition, even after returning to the initial current density condition of 0.5C after the high-rate test, it was confirmed that the capacitance value at the initial 0.5C was well restored.
  • 11d-e show the LIB cell performance of a material in which only 2H is present in the phase of the exfoliated MoS 2 material.
  • 11d shows the formation cycle and the first cycle of the exMoS 2 (2H) material and the ex-MoS 2 (2H)/graphene hybrid composite material.
  • Figure 11e shows the cycle characteristics of the ex-MoS 2 (2H) / graphene hybrid composite, exMoS 2 (2H) and exMoS 2 (1T & 2H) materials, 100 cycles of the ex-MoS 2 (2H) / graphene hybrid composite It was confirmed that the capacity value of the baby face showed a higher capacity value than ex-MoS 2 (2H) or ex-MoS 2 (1T&2H) materials.
  • the ex-MoS 2 (2H)/graphene hybrid composite showed about 1.2 times higher capacity at the 50th cycle compared to the ex-MoS 2 (2H) material, and about 467 mAh/g (180 mA/g) at the 100th cycle. g (at current density of ⁇ 0.5C)) showed a specific capacity value.
  • the rate characteristics were confirmed as shown in FIG. 3C) showed specific capacity values of ⁇ 370 mAh/g, ⁇ 340 mAh/g, and ⁇ 320 mAh/g, respectively.
  • the specific capacity value of the ex-MoS 2 (1T&2H)/graphene hybrid composite at a current density of 1100 mA/g ( ⁇ 3C) is ⁇ 450 mAh/g
  • ex-MoS 2 (2H )/graphene hybrid composites are ⁇ 320 mAh/g
  • hybrid composite phase has better electrochemical properties than when MoS 2 exists alone, and the LIB cell characteristics of the material formed of a hybrid composite of MoS 2 nanosheets and graphene mixed with 1T and 2H phases are better. there was.
  • an electrode slurry is prepared by using MoS 2_900 , which contains only 1T and 2H phases mixed with MoS 2_ FD and 2H phases, as an anode active material.
  • Mix Super P which is added to increase the conductivity of the electrode slurry, and sodium carboxymethyl cellulose, which is a binder used to increase cohesion, using a mixer.
  • Cu foil (20 um) is attached to the glass plate and foreign substances on the surface are removed. Afterwards, the electrode slurry was applied to a thickness of 120 um using a doctor blade. Vacuum dry at 80 °C for 12 hours for complete drying.
  • the sodium ion battery cell is manufactured in the form of a coin cell and assembled to the size of CR2032.
  • the charging and discharging operating voltage range was performed from 0.01 V to 3.0 V. As shown in FIG.
  • the exMoS 2 _FD material in which 1T and 2H phases are mixed, shows an initial charge capacity of ⁇ 696 mAh/g and ⁇ 639 mAh/g, respectively, and has a higher capacity value than the ex-MoS 2 _900 material in which only 2H phase MoS 2 exists.
  • the exMoS 2 (1T&2H)_FD material in which 1T and 2H phases coexist had 0.5 A/g, 1 A/g, 2 A/g, 5 A/g, and 10 A/g of In the current density, the specific capacity values of ⁇ 492 mAh/g, ⁇ 478 mAh/g, ⁇ 465 mAh/g, ⁇ 429 mAh/g, and ⁇ 337 mAh/g were shown, respectively.
  • Ex-MoS 2 (2H)_900 material with only 2H phase is ⁇ 382 mAh/g at current densities of 0.5 A/g, 1 A/g, 2 A/g, 5 A/g, and 10 A/g, ⁇ Specific capacity values of 375 mAh/g, ⁇ 362 mAh/g, ⁇ 328 mAh/g, and ⁇ 245 mAh/g were shown.
  • the exMoS 2 (1T&2H)_FD material with both 1T and 2H phases exhibited higher capacity at all current densities.
  • the first aspect of the present application is,
  • a laminated structure of transition metal dichalcogenide nanosheets wherein a 1T phase and a 2H phase are mixed on each of the transition metal dichalcogenide nanosheets, and X-ray photoelectron spectroscopy (XPS) analysis
  • XPS X-ray photoelectron spectroscopy
  • the transition metal dichalcogenide material may be represented by MX 2 , wherein M is a transition metal, X is a chalcogen element, and M is Mo, W, Nb, and Ti It is one selected from the group consisting of such transition metals, and the X may be one selected from the group consisting of S, Se and Te, preferably MoSe 2 , MoS 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , may be at least one selected from NbSe 2 , more preferably MoS 2 , MoSe 2 , or WS 2 .
  • a heterogeneous stacked structure may be formed between different transition metal dichalcogenides by a mixed peeling and re-stacking process.
  • transition metal atoms and chalcogen atoms constituting the transition metal dichalcogenide exist in the form of a covalent bond and are connected by weak van der Waals (VdW) interaction between layers, so physical and chemical exfoliation is prevented. possible.
  • VdW van der Waals
  • exfoliation of the two-dimensional nanosheets has been performed by physically peeling them off using scotch tape, peeling them through a ball mill, or performing the peeling process in an appropriate solvent. Since the above-described methods have poor peeling efficiency or are uneconomical in terms of energy, the present invention has been reached because an improved peeling process and re-lamination process are needed.
  • X-ray photoelectron spectroscopy (XPS) analysis can be used to characterize the laminated structure of the prepared transition metal dichalcogenide nanosheets or the hybrid composite in which they are combined, for example, Thermo Fisher Scientific Co.
  • Theta probe base system manufactured by the company can be used.
  • the ratio of the 1T phase in the layered structure of the transition metal dichalcogenide nanosheets can be calculated by Equation 1 below.
  • the ratio of (2H phase):(1T phase) calculated through is 0.03:1 to 5:1, 0.05:1 to 4:1, 0.15:1 to 3:1, or 0.3: It may be 1 to 2:1.
  • the ratio of the 1T / 2H phase in addition to securing a high level of conductivity by satisfying the above range, can be adjusted by adjusting the drying temperature, and using this, semi-permanent or permanent It is characterized in that the 1T phase is maintained at a high content.
  • a laminated structure of the prepared transition metal dichalcogenide nanosheets or a hybrid composite in which they are combined it can also be characterized through X-ray diffraction (XRD) analysis.
  • XRD X-ray diffraction
  • at least one kind of peak converted to an interlayer spacing value closer to the interlayer spacing of the 1T phase than the d-spacing of the 2H phase can be detected.
  • a transition metal dichalcogenide nanosheet containing MoS 2 or a hybrid composite to be described later containing the same may have a peak in the 2 ⁇ range of 8 to 10°. This may mean a peak corresponding to the 1T phase.
  • the interlayer spacing of the layered structure of the transition metal dichalcogenide nanosheets calculated through X-ray diffraction analysis may be characterized in that 0.88 to 1.11 nm.
  • the d-spacing value of the 2H phase is about 0.62 nm, and about 0.95 nm in the case of the 1T phase, and the value calculated through XRD analysis shows a value closer to either side, so that the corresponding phase is present in a higher content. It can be inferred that
  • the Raman peak spectrum when observing the Raman peak spectrum, as a peak representing the 1T phase, in the range of 135 to 155 cm -1 First peak, in the range of 220 to 242 cm -1 second peak, and in the range of 325 to 346 cm -1 It may be characterized in that the third peak is detected.
  • the above-described range for example, MoS 2 It refers to the case of a transition metal dichalcogenide nanosheet containing the same, or a hybrid composite to be described later including the same, and when the transition metal dichalcogenide materials are different, different peak ranges may be exhibited. there is.
  • the second aspect of the present application is,
  • Graphene nanosheet laminated structure and the transition metal dichalcogenide nanosheet multilayer structure according to claim 1 formed on at least a portion of the surface of the graphene nanosheet multilayer structure.
  • the structure of the hybrid composite according to one embodiment of the present application is analyzed in detail in the following examples, and the transition metal dichalcogenide nanosheet laminate structure according to the first aspect of the present application is composited with the graphene nanosheet laminate structure.
  • the transition metal dichalcogenide nanosheet laminated structure according to the first aspect of the present application is composited with the graphene nanosheet laminate structure.
  • excellent conductivity can be secured and at the same time, the advantages of graphene as a negative electrode material can be secured together.
  • the same or similar characteristics exhibited by the transition metal dichalcogenide nanosheet laminated structure according to the first aspect described above can be observed in the hybrid composite.
  • a method of manufacturing a laminated structure of at least one transition metal dichalcogenide nanosheet comprising: preparing at least one transition metal dichalcogenide bulk material; incorporating a solution containing a first cation into the transition metal dichalcogenide bulk material; intercalating the first cation into the transition metal dichalcogenide bulk material; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; Obtaining a laminated structure of transition metal dichalcogenide nanosheets by exfoliating and re-stacking the transition metal dichalcogenide bulk material; And adjusting the ratio of the 1T phase (phase) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheets; provides a method for manufacturing a layered structure of transition metal dichalcogenide nanosheets, including.
  • Figure 1a is a flow chart schematically illustrating a method for manufacturing a laminated structure of transition metal dichalcogenide nanosheets according to an embodiment of the present invention.
  • preparing at least one transition metal dichalcogenide bulk material may be included.
  • a laminated structure in which at least a portion is exfoliated can be obtained by the manufacturing method of the present application, and according to another embodiment, a plurality of transition metal dichalcogenide materials When the material is used, it may be that the exfoliation proceeds by mixing, and the re-lamination proceeds as it continues.
  • a step (S120) of incorporating a solution containing a first cation into the transition metal dichalcogenide bulk material may be included.
  • forming a nitrogen atmosphere by injecting nitrogen prior to this step may be further included.
  • the first cation is not particularly limited as long as it is a cation that can be inserted into the layered structure of the transition metal dichalcogenide bulk material, but may preferably be an alkali metal cation, more preferably It may be a lithium cation (Li + ) that can be easily inserted due to its small ion size.
  • the solution containing the first cation may be a metal element or an organo-alkali compound, preferably butyllithium or sodium naphthalenide, more preferably n-butyllithium can be
  • the solution containing the first cation may be a metal element or an organo-alkali compound, preferably butyllithium or sodium naphthalenide, more preferably n-butyllithium can be
  • the solution containing the first cation is 1 to 30 mL, preferably 2 to 20 mL, more preferably 3 to 15 mL, and more based on 1 g of the weight of the transition metal dichalcogenide bulk material. It can preferably be incorporated in 3 to 10 mL. By satisfying the above range, lithium ions may be well intercalated between layers of the transition metal dichalcogenide bulk material.
  • intercalating the first cation into the transition metal dichalcogenide bulk material may be intercalated (S130).
  • the step S130 may include intercalating the first cations into the multi-layered transition metal dichalcogenide material by treating the mixture into which the solution containing the first cations is introduced with sound waves or ultrasonic waves. It may be to facilitate the intercalation of the first cations into the multi-layered layered structure through the sonic wave or ultrasonic treatment.
  • 10 minutes to 600 minutes, 10 minutes to 480 minutes, 10 minutes to 300 minutes, 10 minutes to It may be characterized by sonicating or ultrasonicating for 240 minutes, or 20 to 180 minutes.
  • the sonic or ultrasonic treatment is performed for less than 10 minutes, the first cation may not be sufficiently inserted into the multi-layered layered structure, and when it is performed for more than 600 minutes, it may be uneconomical or decomposition of the material may occur.
  • a step of ion-exchanging the intercalated first cation with a second cation by mixing a solution containing the second cation may be included.
  • the interlayer bonding force is weakened. It may mean a process of ion-exchanging intercalated first cations (eg, alkali metal cations) with second cations.
  • first cations eg, alkali metal cations
  • second cations e.g, NH 4 +
  • the second cation between the layers e.g, NH 4 +
  • H 3 O + easily forming a bulk three-dimensional
  • the layered material can be exfoliated into a single layer to a few multi-layered two-dimensional nanosheet materials.
  • the second cation may include a cation having a larger ionic size than the first cation, and as non-limiting examples, ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn ) and hydronium (H 3 O + ), and may be one type of cation selected from the group consisting of, preferably an ammonium ion.
  • the solution containing the second cation is 10 to 200mL, preferably 20 to 150mL, more preferably 25 to 120mL, based on 1g of the weight of the transition metal dichalcogenide bulk material. More preferably, it may be incorporated in 3 to 10 mL.
  • the ion-exchange between the second cation (eg, NH 4 + ) and the first cation (Li + ) formed by vigorous reaction between the aqueous solution in which the first cation and the second cation are dissolved occurs actively. It may be something that can be done.
  • a step of obtaining a laminated structure of transition metal dichalcogenide nanosheets by exfoliating and re-stacking the transition metal dichalcogenide bulk material (S150) may be included.
  • the above-described step may refer to a step in which the second cation is ion-exchanged with the first cation to be intercalated into the multi-layered layered structure, further widening the interlayer spacing, and eventually exfoliating.
  • step S150 applying an external force to the transition metal dichalcogenide stripping solution after ion-exchange with the second cation, preferably by applying sound waves or ultrasonic waves to separate each material, and dispersing. It may be to promote exfoliation through the sonic or ultrasonic treatment.
  • step S150 sound wave or ultrasonic treatment is performed for 10 minutes to 600 minutes, 10 minutes to 480 minutes, 10 minutes to 300 minutes, 10 minutes to 240 minutes, or 20 minutes to 180 minutes. it may be to When the sound wave or ultrasonic treatment is performed for less than 10 minutes, peeling, dispersion, and all processes of the bulk material may not be sufficiently performed, and when performed for more than 600 minutes, it may be uneconomical or decomposition of the material may occur.
  • the agitation proceeds simultaneously with the sonic or ultrasonic treatment in step S130 or step S150.
  • the stirring process By simultaneously carrying out the stirring process, intercalation of the first cation into the interlayer of the three-dimensional layered bulk material, or ion-exchange with the second cation and intercalation of the interlayer of the three-dimensional layered bulk material and subsequent exfoliation and dispersion (specifically As a result, the uniform dispersion of each of the different exfoliated nanosheets) can be further promoted, and the overall process time can be shortened by adding a simple process.
  • the stirring may be performed for 0.1 to 5 hours, preferably 0.2 to 4 hours, and more preferably 0.5 to 3 hours.
  • stirring may be performed simultaneously or continuously during the sonic wave or ultrasonic treatment step in step S130 or step S150, but may be performed multiple times, and the two-dimensional nanosheet material may be peeled off. In terms of preventing decomposition after heating, it may be performed for 0.1 to 2 hours per time, preferably 0.2 to 1 hour per time.
  • Equipment required for the stirring process is not limited as long as it is used in the art.
  • adjusting the ratio of the 1T phase (S160) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheets may be included.
  • the solution containing the layered structure of the transition metal dichalcogenide nanosheets obtained in step S150 is passed through a predetermined filter, and the transition metal dichalcogenide nanosheets are used as a solvent. washing the laminated structure powder; It may be characterized by further comprising the step of drying the obtained powder.
  • the second cation between the layers of the 3D layered bulk material is exchanged with H + , the exfoliation of the bulk 3D layered material into a single layer or a small number of multilayered 2D nanosheet materials can be more easily promoted.
  • the solid phase may be filtered through a filter and dried to obtain a powdered hybrid composite.
  • the type of washing liquid used in this step is not limited, but distilled water, ultrapure water, ethanol, and the like may be used. Also, in the drying step, the drying temperature and time may be appropriately adjusted.
  • the multilayer structure of the transition metal dichalcogenide nanosheet may maintain a state including a high content of the 1T phase by adjusting the drying conditions for recovering the material after washing.
  • adjusting the ratio of the 1T phase (phase) according to the drying temperature of the laminated structure of the transition metal dichalcogenide nanosheet is 100 °C, 95 °C, 90 °C, 85 °C, 80 °C It may be characterized by drying at a temperature below °C, 75 °C, 70 °C, 65 °C, 60 °C, 50 °C, or room temperature. Being able to adjust the 1T/2H phase ratio by adjusting the drying temperature can be said to be a technical feature of the present invention as described above.
  • the step of adjusting the ratio of the 1T phase (phase) according to the drying temperature of the laminated structure of the transition metal dichalcogenide nanosheets characterized in that freeze drying (FD) It may be preferable to As described above, by lowering the drying temperature to less than a predetermined temperature or freeze-drying at a sub-zero temperature, the laminated structure of the transition metal dichalcogenide nanosheet can maintain a state containing a high 1T phase, which is further semi-permanent. It may mean being able to maintain high conductivity characteristics.
  • a method for preparing a hybrid composite comprising: preparing a mixture by mixing powder or dispersion of graphene nanosheets or graphene oxide nanosheets with at least one transition metal dichalcogenide bulk material; incorporating a solution containing the first cation into the mixture; intercalating the first cation into the graphene nanosheet or graphene oxide nanosheet and the transition metal dichalcogenide bulk material; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; Obtaining a hybrid composite by simultaneously exfoliating and re-stacking the graphene nanosheets or graphene oxide nanosheets and the transition metal dichalcogenide bulk material; and adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide according to the drying temperature of the hybrid composite.
  • Figure 1b is a flow chart schematically illustrating a method for preparing a hybrid composite according to an embodiment of the present invention.
  • a step of preparing a mixture by mixing graphene nanosheet powder and at least one transition metal dichalcogenide bulk material (S210) may be included.
  • the content of the bulk material of the transition metal dichalcogenide is graphene nanosheet powder Based on 100 parts by weight, it may be characterized in that it is 10 to 400 parts by weight, preferably 20 parts by weight to 250 parts by weight. If graphene is outside the above-mentioned range, it may not be able to satisfy the desired level of electrochemical properties such as electrical conductivity and capacity and structural stability, so there may be no differentiation from conventional negative electrode materials as an electrode active material, or the content of graphene nanosheets is too small It may be uneconomical when the content of the expensive transition metal dichalcogenide material becomes large. In another embodiment, when two or more types of transition metal dichalcogenides are included, the above-described ratio range may be based on the sum of the weights of all transition metal dichalcogenides.
  • transition metal dichalcogenide material Since the transition metal dichalcogenide material has been described above, the description thereof will be omitted.
  • a step (S220) of incorporating a solution containing the first cation into the mixture may be included.
  • the solution containing the first cation is 1 to 30 mL, preferably 2 to 20 mL, more preferably based on 1 g of the weight of the graphene nanosheet powder and the transition metal dichalcogenide bulk material. may be incorporated at 3 to 15 mL, even more preferably at 3 to 10 mL.
  • lithium ions may be well intercalated between the layered structure of the surface of the graphene nanosheet or the layer of the transition metal dichalcogenide material.
  • intercalating the first cation into the graphene nanosheet or graphene oxide nanosheet and the transition metal dichalcogenide bulk material may be intercalated (S230).
  • the mixture into which the solution containing the first cation is introduced is sonicated or ultrasonically treated to intercalate the first cation into the multi-layered graphene or graphene oxide nanosheet powder and the transition metal dichalcogenide bulk material may include It may be to facilitate the intercalation of the first cations into the multi-layered layered structure through the sonic wave or ultrasonic treatment. Conditions, such as the time of the sound wave or ultrasonic treatment step, have been described above, so the description thereof will be omitted.
  • a step of ion-exchanging the intercalated first cation with a second cation by mixing a solution containing the second cation may be included. Except for the fact that the first cation is intercalated in both three-dimensional bulk materials such as graphene or graphene oxide nanosheets and laminated structures of transition metal dichalcogenide nanosheets and ion-exchange is performed, the above-mentioned Since the ion exchange step and its description are the same, the description will be omitted. Since the type of the second cation and the range of volume content added to the mixed powder have been described above, description thereof will be omitted.
  • the graphene nanosheets or graphene oxide nanosheets and the transition metal dichalcogenide bulk material may be simultaneously exfoliated and re-laminated to obtain a hybrid composite (S250).
  • the second cation is ion-exchanged with the first cation to be intercalated into the multi-layered layered structure, further widening the interlayer spacing, and restacking between the heterogeneous nanosheets in the subsequent separation and dispersion process. It may be to promote
  • step S500 applying an external force to the ion-exchanged graphene-transition metal dichalcogenide mixture with the second cation, preferably by applying sound waves or ultrasonic treatment to separate each material
  • This may include peeling, dispersing and re-laminating.
  • Conditions such as ultrasonic treatment time and matters such as stirring are also described above, so the description thereof will be omitted.
  • adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide according to the drying temperature of the hybrid composite (S260) may be included.
  • this step since the contents described in the above-described step S160 may be duplicated, a detailed description thereof will be omitted.
  • An electrode active material including a laminated structure or a hybrid composite of the transition metal dichalcogenide nanosheets is provided.
  • the electrode active material may be formed on an electrode current collector.
  • the type of the electrode current collector may not be significantly limited as long as it has conductivity without causing chemical change of the device.
  • the electrode current collector may include copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a material in which carbon, nickel, titanium, silver, or the like is surface-treated on the surface of aluminum or stainless steel.
  • the electrode current collector may have a thickness of about 3 ⁇ m to 500 ⁇ m, and fine irregularities may be formed on the surface of the current collector to increase adhesion of the electrode active material. That is, it may be usable in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the electrode active material may further include a conductive material and a binder in addition to the active material.
  • the conductive material is used to impart conductivity to the electrode, and the type may not be significantly limited as long as it does not cause chemical change of the device and has electrical conductivity.
  • the conductive material is graphite such as natural graphite or artificial graphite, carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, copper, nickel, aluminum , metal powder or metal fibers such as silver, conductive whiskey such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide or conductive polymers such as polyphenylene derivatives, and combinations thereof.
  • the conductive material may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
  • the binder may serve to improve adhesion between particles of the electrode active material and adhesion between the electrode active material and the current collector.
  • the binder may be, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), alcohol It may include a material selected from the group consisting of phonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof and combinations thereof. Meanwhile, the binder may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
  • the hybrid composite may improve energy density and output characteristics of energy storage devices because it has high porosity and electrical conductivity.
  • an anode containing the electrode active material cathode; and a separator interposed between the anode and the cathode; and an electrolyte.
  • the alkali metal-ion battery may be a lithium-ion battery or a sodium-ion battery.
  • a method for manufacturing an alkali metal-ion battery comprising: preparing a negative electrode part (anode) by coating a negative electrode active material on a negative electrode current collector; It is possible to provide a method for manufacturing an alkali metal-ion battery comprising the step of forming a positive electrode part by coating a positive electrode current collector with a positive electrode active material.
  • the electrolyte may be used by mixing a salt and an additive in an organic solvent.
  • the organic solvent is ACN (Acetonitrile), EC (Ethylene carbonate), PC (Propylene carbonate), DMC (Dimethyl carbonate), DEC (Diethyl carbonate), EMC (Ethylmethyl carbonate), DME (1,2-dimethoxyethane), It may include a material selected from the group consisting of ⁇ -butrolactone (GBL), methyl formate (MF), methyl propionate (MP), and combinations thereof.
  • GBL ⁇ -butrolactone
  • MF methyl formate
  • MP methyl propionate
  • the salt is used in an amount of 0.8 to 2 M, and may be a mixture of lithium (Li) salt or sodium (Na) salt and non-lithium salt.
  • the lithium (Li) salt accompanies an intercalation/desorption reaction into the structure of the anode active material, that is, the hybrid composite, and its types include LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN It may include a material selected from the group consisting of (SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , lithium bis(oxalato)borate (LiBOB), and combinations thereof.
  • the sodium salt (Na) is NaBF 4 , NaPF 6 , NaClO 4 , NaAsF 6 , NaAlCl 4 , NaCF 3 SO 3 , NaN(SO 2 CF 3 ) 2 , NaC(SO 2 CF 3 ) 3 , Sodium bis (oxalato ) It may include a material selected from the group consisting of borate and combinations thereof.
  • the non-lithium salt accompanies an adsorption/desorption reaction on the surface area of the carbon material additive, and may be used by mixing 0 to 0.5 M with the lithium salt.
  • the non-lithium salt includes a material selected from the group consisting of TEABF 4 (Tetraethylammonium tetrafluoroborate), TEMABF 4 (Triethylmethylammonium tetrafluoroborate), SBPBF 4 (spiro-(1,1′)-bipyrrolidium tetrafluoroborate), and combinations thereof it may be
  • TEABF 4 Tetraethylammonium tetrafluoroborate
  • TEMABF 4 Triethylmethylammonium tetrafluoroborate
  • SBPBF 4 spiro-(1,1′)-bipyrrolidium tetrafluoroborate
  • the electrolyte contains at least one additive selected from the group consisting of vinylene carbonate (VC), fluoroethylene carbonate (FEC), and 3-(trimethylsilyl)-2-oxazolidinone (TMS-ON).
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • TMS-ON 3-(trimethylsilyl)-2-oxazolidinone
  • the hybrid complex and the composition containing the same are a catalyst for water purification, an anticancer agent, a treatment for immunodeficiency virus, a treatment for fungal and bacterial infections, a treatment for malaria, and various drug delivery materials in addition to a supercapacitor or an electrode active material for a secondary battery.
  • photocatalysts, electrochemical catalysts for water splitting, sensors, and aerospace materials can be applied in various fields, and thus can be used as a commercially very useful material.
  • intercalation and deintercalation efficiency, conductivity and structural stability are improved to improve the charge and discharge capacity and coulomb of energy storage devices such as lithium secondary batteries and sodium secondary batteries. It is possible to provide a laminated structure of transition metal dichalcogenide nanosheets capable of further increasing efficiency and cycle characteristics or a hybrid composite including the same.
  • anode material used in a lithium ion, sodium ion, zinc ion, or aluminum ion battery having excellent electrochemical performance through an energy-efficient and simple process.
  • the laminated structure of transition metal dichalcogenide nanosheets according to an embodiment of the present invention, the hybrid composite including the same, and the manufacturing method thereof can be considered to be industrially applicable.

Abstract

One embodiment of the present invention provides a nanosheet laminated structure in which a 1T/2H phase is controlled and a hybrid composite comprising same, a method for manufacturing same, an electrode active material comprising the nanosheet laminated structure or a hybrid composite complexed therewith, and an energy storage device comprising the electrode active material. One embodiment of the present invention may provide an anode material used in a polyvalent ion battery, such as a lithium ion battery, a sodium ion battery, a zinc ion battery, or an aluminum ion battery, having excellent electrochemical performance, through an energy-efficient and simple process.

Description

상 조절된(PHASE-CONTROLLED) 나노시트 적층 구조체, 하이브리드 복합체 및 이들의 제조방법Phase-controlled (PHASE-CONTROLLED) nanosheet laminated structure, hybrid composite, and preparation method thereof
본 발명은 1T/2H 상이 조절된 나노시트 적층 구조체 및 이를 포함하는 하이브리드 복합체, 이들의 제조방법, 상기 나노시트 적층 구조체 또는 이와 복합화된 하이브리드 복합체를 포함하는 전극 활물질 및 이를 포함하는 에너지 저장 소자에 관한 것이다.The present invention relates to a 1T/2H phase controlled nanosheet laminated structure and a hybrid composite including the same, a manufacturing method thereof, an electrode active material including the nanosheet laminated structure or a hybrid composite composited therewith, and an energy storage device including the same will be.
최근, 미래 소재로 MoS2, MoSe2, WS2, WSe2 등 다양한 2차원 소재가 주목받고 있다. 위 2차원 구조 소재들을 나노미터의 얇은 두께로 잘 휘면서 튼튼하며, 금속성, 반도체, 부도체적 특성 등 다양한 성질을 지니고 있어 전자소자, 센서, 에너지 등 다양한 분야에 활용 가능하다. 특히, 2차원 이종 다층소재의 경우에, 단일 층의 적층 조합에 따른 물성의 변조가 가능하고, 2차원 소재 물성간 상승적 커플링 구현이 가능한 장점이 있다. 예를 들어, 그래핀/MoS2 이종 적층 소재의 경우, MoS2/MoS2 동종 적층 소재에 비하여 인터컬레이션 반응으로 전하 축적이 약 10배 이상 증가됨이 보고된 바 있다 (참고문헌, P. Kim et al., Nature 558, 425 (2018)). 또한, 1.3nm 두께의 초박막 그래핀/MoS2 이종 적층(그래핀/MoS2/그래핀) 소재가 MoS2 단일 적층 소재보다 7배 높은 광전류를 보이는 것이 관찰된 바 있다 (참고문헌, Nat. Commun. 7, 13278 (2016)). Recently, various two-dimensional materials such as MoS 2 , MoSe 2 , WS 2 , and WSe 2 are attracting attention as future materials. The two-dimensional structural materials above are thin and strong in nanometers, and have various properties such as metallic, semiconductor, and non-conductive properties, so they can be used in various fields such as electronic devices, sensors, and energy. In particular, in the case of a two-dimensional heterogeneous multi-layer material, it is possible to modulate physical properties according to the stacked combination of a single layer and to realize synergistic coupling between physical properties of a two-dimensional material. For example, in the case of graphene/MoS 2 heterogeneous laminated materials, it has been reported that charge accumulation is increased by about 10 times or more due to intercalation reaction compared to MoS 2 /MoS 2 homogeneous laminated materials (Reference, P. Kim et al., Nature 558, 425 (2018)). In addition, it has been observed that an ultra-thin graphene/MoS 2 hetero-laminated (graphene/MoS 2 /graphene) material with a thickness of 1.3 nm exhibits a photocurrent 7 times higher than that of a single-layered MoS 2 material (Reference, Nat. Commun 7, 13278 (2016)).
2차원 전이금속 디칼코게나이드 (Transition Metal Dichalcogenide, TMD) 물질과 이종 다층 2차원 물질은 향후 전자, 광전자, 에너지, 센서, 생체의학 등 다양한 고부가가치 응용 분야에 채택될 잠재력이 매우 높을 것으로 예상되며, 2020년 5.5백만 달러규모에서 2030년 2차원 물질의 세계 총 시장규모는 약 1억 3천만 달러로 23배 이상 급증할 것으로 전망된다. 또한, 2030년 국내 총 시장 규모는 1,780만 달러로 예상되며, 2020년부터 2030년 사이 연평균성장률 (CAGR)은 36.72% 전망된다.Two-dimensional transition metal dichalcogenide (TMD) materials and heterogeneous multilayer two-dimensional materials are expected to have high potential to be adopted in various high-value applications such as electronics, optoelectronics, energy, sensors, and biomedicine in the future. From the scale of 5.5 million dollars in 2020, the total global market size of 2D materials is expected to increase more than 23 times to about 130 million dollars by 2030. In addition, the total domestic market size is expected to be $17.8 million in 2030, and the average annual growth rate (CAGR) between 2020 and 2030 is expected to be 36.72%.
이에 더하여, 2차원 칼코게나이드 물질과 이종 다층 2차원 물질은 소재 자체만의 시장뿐만 아니라 그 응용 분야에 있어서 매우 무궁무진한 가능성이 있으며, 특히나 이차전지, 열전소자 등과 같은 에너지 분야의 고효율 저전력 소자 및 소재 개발로의 응용 가능성이 매우 높다. In addition to this, two-dimensional chalcogenide materials and heterogeneous multi-layer two-dimensional materials have very limitless possibilities not only in the market for the material itself but also in their application fields. In particular, high-efficiency low-power devices and The possibility of application to material development is very high.
다양한 응용 분야 중에서, 이차전지 그 중 리튬 이온 배터리 시장은 매년 그 규모가 커지고 있다. 일상 생활과 관련한 많은 것들이 전자기기를 통해 이루어지고 일상생활에 있어 전자기기는 반드시 필요한 존재로 자리 잡고 있다. 이와 더불어 전자기기를 구성하는 필수 요소인 배터리에 대한 수요는 높아지고 더 나은 배터리의 개발에 관한 중요성은 확대되고 있다. 앞으로 산업에서 배터리는 지금보다 더 많은 곳에서 사용될 것이며 지금보다 고용량, 고효율의 배터리를 요구하게 될 것이다. 모바일 전자기기뿐만 아니라 전기차 시장에서도 배터리는 가장 중추적인 역할을 하고 있으며, 친환경차에 대한 요구가 점차 커지면서 현재 전 세계의 자동차시장은 기존의 화석연료를 사용하는 자동차에서 전기차로의 바꿈을 시도하고 있으며 그 주행거리를 늘리는데 관심을 쏟고 있다.Among various application fields, among secondary batteries, the lithium ion battery market is growing every year. Many things related to daily life are done through electronic devices, and electronic devices have become essential in daily life. In addition, the demand for batteries, which are essential components of electronic devices, is increasing and the importance of developing better batteries is expanding. In the future, batteries will be used in more places than now in the industry, and higher-capacity and higher-efficiency batteries will be required than now. Batteries play the most pivotal role in the electric vehicle market as well as mobile electronic devices. As the demand for eco-friendly vehicles grows, the global automobile market is currently attempting to change from fossil fuel-powered vehicles to electric vehicles. We are focusing on increasing the mileage.
이와 더불어, 향후 리튬 이온 배터리의 전기자동차용 이차전지로의 활용이 기대되고 있는 가운데, 장거리 운행 및 소비자의 편의성을 만족시키기 위해서는 급속충전이 가능한 새로운 고용량 소재의 개발이 필수적으로 요구되고 있다. 리튬이온 배터리의 충전 및 방전은 전지가 충전이 될 때는 양극에 있던 리튬이온과 전자가 음극으로 들어가며, 반대로 방전이 될 때는 음극에 있던 리튬이온과 전자가 양극으로 이동한다. 이때, 음극이 리튬이온을 얼마나 빠른 속도로 받아들일 수 있는지가 리튬 이온 배터리의 충전 속도를 좌우하는 핵심요소로, 이는 음극 소재의 구성 및 전극 구조의 특성에 많은 영향을 받는다. In addition, while the use of lithium ion batteries as secondary batteries for electric vehicles is expected in the future, the development of new high-capacity materials capable of rapid charging is required in order to satisfy long-distance driving and consumer convenience. When a lithium ion battery is charged and discharged, lithium ions and electrons from the positive electrode go into the negative electrode when the battery is charged, and vice versa, lithium ions and electrons from the negative electrode move to the positive electrode when the battery is discharged. At this time, how fast the negative electrode can accept lithium ions is a key factor that determines the charging speed of the lithium ion battery, which is greatly influenced by the composition of the negative electrode material and the characteristics of the electrode structure.
기존 음극 재료로 가장 많이 사용되고 있는 흑연은 값이 싸고 구조적 안정성이 뛰어난 장점이 있지만 용량이 낮아(이론용량: 372 mAh g-1) 전기 차의 주행거리나 핸드폰, 전자 기기들의 사용시간을 늘리기에는 충분치 않다는 단점이 있다. 또한, 급속 충전 시 흑연 음극에서의 리튬 석출로 인한 열화 현상에 노출될 가능성이 매우 높다는 단점이 있다. 최근 실리콘 산화물계(SiOx) 음극재가 높은 비용량으로 그 자리를 노리고 있지만 사이클 과정에서 소재의 부피 팽창이 심하여, 이로 인해 전극 구조가 빠르게 파괴되어 수명이 오래가지 못하는 단점이 있다. 전이금속 디칼코게나이드 물질로 알려진 2차원 재료들은 독특한 전기적, 기계적, 광학적 물성을 가지고 있기 때문에 많은 연구 분야에서 상당한 관심을 끌고 있으며, 에너지 저장 측면에서도 높은 용량을 보이고 있어, LIB 음극 물질로도 유망하다. 하지만 전도성이 좋지 않아 전극 용량 확보를 위해서는 전도성 확보가 필요하며, 전해질 이온의 삽입/탈리로 인한 부피팽창 문제에 대한 해결 또한 필요하다. 2차원 이종 다층 소재는 흑연과 달리 층간 거리를 조절이 가능하기 때문에, 흑연과 이종 다층 소재를 적절하게 혼합한다면 고용량 특성 및 구조적 안정성이 뛰어난 소재 구현이 가능할 뿐만 아니라 급속충전 시 리튬이온을 원활하게 받아들일 수 있을 것으로 기대된다.Graphite, which is most commonly used as an existing anode material, is inexpensive and has excellent structural stability, but its low capacity (theoretical capacity: 372 mAh g -1 ) is sufficient to increase the driving range of electric vehicles or the usage time of mobile phones and electronic devices. There is a downside to not having it. In addition, there is a disadvantage in that it is very likely to be exposed to degradation due to lithium precipitation in the graphite negative electrode during rapid charging. Recently, silicon oxide (SiOx) anode materials are aiming for the position with high specific capacity, but the volume expansion of the material is severe during the cycle process, which causes the electrode structure to be rapidly destroyed, resulting in a short lifespan. Two-dimensional materials known as transition metal dichalcogenide materials have attracted considerable attention in many research fields because they have unique electrical, mechanical, and optical properties, and show high capacity in terms of energy storage, so they are promising as LIB cathode materials. . However, due to poor conductivity, it is necessary to secure conductivity in order to secure electrode capacity, and it is also necessary to solve the problem of volume expansion due to intercalation/deintercalation of electrolyte ions. Unlike graphite, two-dimensional heterogeneous multilayer materials can adjust the distance between layers, so if graphite and heterogeneous multilayer materials are properly mixed, it is possible to realize materials with excellent high-capacity characteristics and structural stability, as well as to receive lithium ions smoothly during rapid charging. hopefully it can be picked up.
종래에는, 2차원 소재의 이종 적층 복합체를 형성하는 방법들이 대부분 bottom-up 방식으로 대용량으로 scale-up 하는데 어려움이 있고, 합성 방법 또한 진공 반응기를 사용하거나, 고압처리를 해주거나, 반응시간이 길다는 단점이 있다. 이에 본 발명자들은 고압이나 고온의 처리가 필요 없을 뿐만 아니라 대용량 scale-up에도 용이하며, 반응시간 또한 짧아 생산성을 높일 수 있는 우수성을 가진 2차원 나노시트, 및 하이브리드 복합체의 제조방법 및 이러한 제조방법에 의해 제조된 특징이 있는 하이브리드 복합체를 지속적으로 연구하였다.Conventionally, most of the methods for forming heterogeneous laminated composites of two-dimensional materials are bottom-up, and it is difficult to scale-up to a large capacity, and the synthesis method also uses a vacuum reactor, high-pressure treatment, or has a long reaction time. has a downside. Therefore, the present inventors have developed a method for manufacturing a two-dimensional nanosheet and a hybrid composite, which do not require high-pressure or high-temperature processing, are easy to scale-up in large quantities, and have short reaction time to increase productivity, and a method for manufacturing such a hybrid composite. We have continuously studied hybrid composites with characteristics prepared by
또한, 전이금속 디칼코게나이드의 경우, 1T 상(phase)과 2H 상을 가지는데, 1T 상은 친수성이고 반도체성 2H 상보다 몇십배 이상 더 높은 전도성을 가지는 것으로 알려져 있다. 이것은 에너지 저장 장치의 매력적인 전극 재료로 사용될 수 있다는 것을 의미할 수 있다. 다만, 대부분의 2차원 적층형 전이금속 디칼코게나이드 물질은 1T와 2H 상 사이를 전환할 수 있기 때문에, 최대한 1T 상을 높은 함량으로 나타날 수 있게 하는 것이 중요한데, 대부분의 공지된 방법으로 제조된 전이금속 디칼코게나이드 나노시트의 적층 구조체의 경우, 처음부터 1T 상을 포함하지 않거나, 미량으로만 존재하는 경우가 많았으며, 또한 일정 수준 이상의 1T 상을 함유하더라도, 시간이 경과함에 따라 2H상으로 전환되므로, 상술한 1T 상의 전기화학적 특성을 적절하게 활용할 수 없었다.In addition, transition metal dichalcogenides have a 1T phase and a 2H phase, and the 1T phase is known to be hydrophilic and have conductivity several orders of magnitude higher than that of the semiconducting 2H phase. This could mean that it could be used as an attractive electrode material for energy storage devices. However, since most two-dimensional layered transition metal dichalcogenide materials can switch between 1T and 2H phases, it is important to have a high content of 1T phase as much as possible. In the case of the laminated structure of dichalcogenide nanosheets, the 1T phase was not included from the beginning, or it was often present only in trace amounts, and even if the 1T phase was contained at a certain level or more, it was converted to the 2H phase over time. , the above-described electrochemical properties of the 1T phase could not be properly utilized.
이에, 본 발명자들은 전이금속 디칼코게나이드 나노시트의 적층 구조체 및 이를 포함하는 하이브리드 복합체를 제조함에 있어, 1T 상의 함량을 높게 유지시키면서, 이에 따라, 이차전지의 음극소재로서 사용될 때, 우수한 전기 화학적 특성을 나타낼 수 있는 제조방법 및 이러한 제법에 따라 제조된 소재에 관한 기술을 도출하였다.Therefore, in preparing a laminated structure of transition metal dichalcogenide nanosheets and a hybrid composite including the same, the present inventors maintained the 1T phase content high, and thus, when used as a negative electrode material for a secondary battery, excellent electrochemical properties A manufacturing method that can represent and a technology for a material manufactured according to this manufacturing method were derived.
본 발명은 전술한 문제를 해결하고자 안출된 것으로서, 본 발명의 일 실시예는 전이금속 디칼코게나이드 나노시트의 적층 구조체를 제공한다.The present invention has been made to solve the above problems, and one embodiment of the present invention provides a laminated structure of transition metal dichalcogenide nanosheets.
또한, 본 발명의 다른 일 실시예는 하이브리드 복합체를 제공한다.In addition, another embodiment of the present invention provides a hybrid composite.
또한, 본 발명의 다른 일 실시예는 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법을 제공한다.In addition, another embodiment of the present invention provides a method for manufacturing a laminated structure of transition metal dichalcogenide nanosheets.
또한, 본 발명의 다른 일 실시예는 하이브리드 복합체의 제조방법을 제공한다.In addition, another embodiment of the present invention provides a method for preparing a hybrid composite.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the above-mentioned technical problem, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
전술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면은, As a technical means for achieving the above-described technical problem, one aspect of the present invention,
적어도 1종의 전이금속 디칼코게나이드 나노시트의 적층 구조체로서, 각각의 상기 전이금속 디칼코게나이드 나노시트 상에는 1T 상(1T phase), 및 2H 상(2H Phase)이 혼재하고 있고, X선 광전자 분광(XPS) 분석을 통해 계산된 (2H 상):(1T 상)의 비는 0.05:1 내지 4:1인 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체를 제공한다.A laminated structure of at least one transition metal dichalcogenide nanosheet, wherein a 1T phase and a 2H phase are mixed on each of the transition metal dichalcogenide nanosheets, and X-ray photoelectron spectroscopy The ratio of (2H phase):(1T phase) calculated through (XPS) analysis is 0.05: 1 to 4: 1, and provides a laminated structure of transition metal dichalcogenide nanosheets.
상기 전이금속 디칼코게나이드는 MoS2, MoSe2, WS2, WSe2, TiS2, TiSe2, ReS2, ZrTe2, NbSe2 중 선택되는 적어도 1종 이상인 것을 특징으로 하는 것일 수 있다.The transition metal dichalcogenide may be at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , and NbSe 2 .
X선 회절 분석(X-ray Diffraction, XRD)에서, 2H 상의 층간 간격(d-spacing) 보다 1T 상의 층간 간격에 가까운 층간 간격 값이 환산되는 적어도1종의 피크가 검출되는 것을 특징으로 하는 것일 수 있다.In X-ray diffraction (XRD) analysis, it may be characterized in that at least one peak is detected in terms of interlayer spacing values closer to the interlayer spacing of the 1T phase than the d-spacing of the 2H phase. there is.
X선 회절 분석(X-ray Diffraction, XRD)에서, 7 내지 10°의 2θ를 구간에서 피크를 가지고, X선 회절 분석을 통해 계산된 전이금속 디칼코게나이드 나노시트의 적층 구조체의 층간 간격은 0.82 내지 1.02 nm인 것을 특징으로 하는 것일 수 있다.In X-ray diffraction (XRD), it has a peak in the 2θ range of 7 to 10 °, and the interlayer spacing of the layered structure of the transition metal dichalcogenide nanosheet calculated through X-ray diffraction analysis is 0.82 to 1.02 nm.
라만 피크 스펙트럼을 관찰했을 때, 1T 상을 의미하는 적어도 1개의 피크가 검출되는 것을 특징으로 하는 것을 특징으로 하는 것일 수 있다.When the Raman peak spectrum is observed, at least one peak indicating a 1T phase may be detected.
라만 피크 스펙트럼을 관찰했을 때, 상기 1T 상을 나타내는 피크로서, 135 내지 155 cm-1의 범위에서 제1 피크, 220 내지 242 cm-1 범위에서 제2 피크, 및 325 내지 346 cm-1 범위에서 제3 피크가 검출되는 것을 특징으로 하는 것일 수 있다.When observing the Raman peak spectrum, as a peak representing the 1T phase, in the range of 135 to 155 cm -1 First peak, in the range of 220 to 242 cm -1 second peak, and in the range of 325 to 346 cm -1 It may be characterized in that the third peak is detected.
본 발명의 다른 일 측면은,Another aspect of the present invention is,
그래핀 나노시트 적층 구조체; 및 상기 그래핀 나노시트 적층 구조체 표면의 적어도 일부에 형성된, 제1항에 따른 전이금속 디칼코게나이드 나노시트 적층 구조체;를 포함하는, 하이브리드 복합체를 제공한다.Graphene nanosheet laminated structure; and the transition metal dichalcogenide nanosheet multilayer structure according to claim 1 formed on at least a portion of the surface of the graphene nanosheet multilayer structure.
본 발명의 다른 일 측면은,Another aspect of the present invention is,
적어도 1종의 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법으로서, 적어도 1종의 전이금속 디칼코게나이드 벌크 물질을 준비하는 단계; 상기 전이금속 디칼코게나이드 벌크 물질에 제1 양이온을 포함하는 용액을 혼입하는 단계; 상기 제1 양이온을 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계; 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계; 상기 전이금속 디칼코게나이드 벌크 물질을 박리 및 재적층하여 전이금속 디칼코게나이드 나노시트의 적층 구조체를 얻는 단계; 및 상기 전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;를 포함하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법을 제공한다.A method of manufacturing a laminated structure of at least one transition metal dichalcogenide nanosheet, comprising: preparing at least one transition metal dichalcogenide bulk material; incorporating a solution containing a first cation into the transition metal dichalcogenide bulk material; intercalating the first cation into the transition metal dichalcogenide bulk material; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; Obtaining a laminated structure of transition metal dichalcogenide nanosheets by exfoliating and re-stacking the transition metal dichalcogenide bulk material; And adjusting the ratio of the 1T phase (phase) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheets; provides a method for manufacturing a layered structure of transition metal dichalcogenide nanosheets, including.
상기 전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;는 100 ℃ 미만의 온도에서 건조하는 것을 특징으로 하는 것일 수 있다.Adjusting the ratio of the 1T phase according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheet; may be characterized by drying at a temperature of less than 100 ℃.
상기 전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;는 동결 건조(Freezing Drying, FD)하는 것을 특징으로 하는 것일 수 있다.Adjusting the ratio of the 1T phase (phase) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheet; may be characterized by freeze drying (Freezing Drying, FD).
상기 제1 양이온은 알칼리 금속 양이온이고, 상기 제2 양이온은 암모늄, 탄화수소로 치환된 1급 내지 3급 암모늄, 마그네슘, 아연(Zn) 및 히드로늄(H3O+)으로 이루어지는 군으로부터 선택되는 1종의 양이온인 것을 특징으로 하는 것일 수 있다.The first cation is an alkali metal cation, and the second cation is 1 selected from the group consisting of ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn), and hydronium (H 3 O + ) It may be characterized as being a cation of the species.
상기 제1 양이온을 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계; 또는 상기 전이금속 디칼코게나이드 벌크 물질을 박리 및 재적층하여 전이금속 디칼코게나이드 나노시트의 적층 구조체를 얻는 단계;에서, 10분 내지 240분동안 초음파 처리하는 것을 특징으로 하는 것일 수 있다.intercalating the first cation into the transition metal dichalcogenide bulk material; Alternatively, in the step of exfoliating and re-stacking the transition metal dichalcogenide bulk material to obtain a layered structure of transition metal dichalcogenide nanosheets, ultrasonic treatment may be performed for 10 minutes to 240 minutes.
상기 초음파 처리와 동시에 교반을 진행하는 것을 특징으로 하는 것일 수 있다.It may be characterized in that the agitation is performed simultaneously with the ultrasonic treatment.
상기 전이금속 디칼코게나이드는 MoS2, MoSe2, WS2, WSe2, TiS2, TiSe2, ReS2, ZrTe2, NbSe2 중 선택되는 적어도 1종 이상인 것을 특징으로 하는 것일 수 있다.The transition metal dichalcogenide may be at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , and NbSe 2 .
본 발명의 다른 일 측면은,Another aspect of the present invention is,
하이브리드 복합체의 제조방법으로서, 그래핀 나노시트 또는 그래핀 옥사이드 나노시트의 분말 또는 분산액과 적어도 1종의 전이금속 디칼코게나이드 벌크 물질을 혼합하여 혼합물을 제조하는 단계; 상기 혼합물에 제1 양이온을 포함하는 용액을 혼입하는 단계; 상기 제1 양이온을 상기 그래핀 나노시트 또는 그래핀 옥사이드 나노시트 및 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계; 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계; 상기 그래핀 나노시트 또는 그래핀 옥사이드 나노시트 및 전이금속 디칼코게나이드 벌크 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계; 및 상기 하이브리드 복합체의 건조 온도에 따라, 상기 적어도 1종의 전이금속 디칼코게나이드의 1T 상(phase)의 비율을 조절하는 단계;를 포함하는, 하이브리드 복합체의 제조방법을 제공한다.A method for preparing a hybrid composite, comprising: preparing a mixture by mixing powder or dispersion of graphene nanosheets or graphene oxide nanosheets with at least one transition metal dichalcogenide bulk material; incorporating a solution containing the first cation into the mixture; intercalating the first cation into the graphene nanosheet or graphene oxide nanosheet and the transition metal dichalcogenide bulk material; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; Obtaining a hybrid composite by simultaneously exfoliating and re-stacking the graphene nanosheets or graphene oxide nanosheets and the transition metal dichalcogenide bulk material; and adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide according to the drying temperature of the hybrid composite.
상기 적어도 1종의 전이금속 디칼코게나이드의 1T 상(phase)의 비율을 조절하는 단계;는 100 ℃ 미만의 온도에서 건조하는 것을 특징으로 하는 것일 수 있다.Adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide; may be characterized by drying at a temperature of less than 100 ℃.
상기 적어도 1종의 전이금속 디칼코게나이드의 1T 상(phase)의 비율을 조절하는 단계;는 동결 건조(Freezing Drying, FD)하는 것을 특징으로 하는 것일 수 있다.Adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide; may be characterized by freeze drying (Freezing Drying, FD).
또한, 본 발명의 다른 일 측면은,In addition, another aspect of the present invention,
상기 전이금속 디칼코게나이드 나노시트의 적층 구조체 또는 하이브리드 복합체를 포함하는 전극 활물질을 제공한다.An electrode active material including a laminated structure or a hybrid composite of the transition metal dichalcogenide nanosheets is provided.
또한, 본 발명의 다른 일 측면은,In addition, another aspect of the present invention,
상기 전극활물질을 포함하는 애노드; 캐소드; 및 상기 애노드 및 캐소드 사이에 개재되는 분리막; 및 전해질을 포함하는, 알칼리 금속-이온 배터리를 제공한다.an anode containing the electrode active material; cathode; and a separator interposed between the anode and the cathode; and an electrolyte.
본 발명의 실시예에 따르면, 전극 활물질로 활용되었을 때, 인터칼레이션 및 디인터칼레이션 효율과 전도도 및 구조적 안정성을 향상시킴으로써 리튬 이차전지, 나트륨 이차전지, 아연 이차전지, 알루미늄 이차전지 등의 에너지 저장 장치의 충방전 용량, 쿨롱 효율 및 사이클 특성을 더욱 높일 수 있는 전이금속 디칼코게나이드 나노시트의 적층 구조체 또는 이를 포함하는 하이브리드 복합체를 제공할 수 있다.According to an embodiment of the present invention, when used as an electrode active material, by improving intercalation and deintercalation efficiency, conductivity and structural stability, energy of lithium secondary batteries, sodium secondary batteries, zinc secondary batteries, aluminum secondary batteries, etc. It is possible to provide a layered structure of transition metal dichalcogenide nanosheets or a hybrid composite including the same, which can further increase the charge/discharge capacity, coulombic efficiency, and cycle characteristics of the storage device.
또한 이들을 이용하여, 전기화학적 성능이 우수한 리튬 이온, 나트륨 이온, 아연 이온이나 알루미늄 이온 등과 같은 다가이온(multivalent ion) 배터리에 활용되는 음극 소재를 에너지 효율적이면서 간단한 공정으로 제공할 수 있다.In addition, by using these materials, it is possible to provide an anode material used in a multivalent ion battery such as lithium ion, sodium ion, zinc ion or aluminum ion having excellent electrochemical performance through an energy-efficient and simple process.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the description of the present invention or the configuration of the invention described in the claims.
도 1a는 본 발명의 일 구현예에 따른, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법을 도식화한 순서도이다.Figure 1a is a flow chart schematically illustrating a method for manufacturing a laminated structure of transition metal dichalcogenide nanosheets according to an embodiment of the present invention.
도 1b는 본 발명의 일 구현예에 따른, 하이브리드 복합체의 제조방법을 도식화한 순서도이다.Figure 1b is a flow chart schematically illustrating a method for preparing a hybrid composite according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른, 하이브리드 복합체의 제조방법을 도식화하여 나타낸 것이다.2 schematically shows a method for preparing a hybrid composite according to an embodiment of the present invention.
도 3은 본 발명의 일 구현예에 따른, 1T/2H mixed phase의 박리화된 2차원 MoS2 나노시트와 graphene 이종다층 복합소재의 (a) SEM, (b) 단면 TEM, (c) 1T/2H mixed phase MoS2 나노시트의 TEM 분석 결과를 나타낸 것이다.Figure 3 shows (a) SEM , (b) cross-sectional TEM, (c) 1T/ TEM analysis results of 2H mixed phase MoS 2 nanosheets are shown.
도 4는 본 발명의 일 구현예에 따른 1T/2H mixed phase의 박리화된 2차원 MoS2 나노시트의 TEM (좌) 및 HR-TEM (우) 분석결과를 나타낸 것이다.4 shows the results of TEM (left) and HR-TEM (right) analysis of exfoliated two-dimensional MoS 2 nanosheets of 1T/2H mixed phase according to an embodiment of the present invention.
도 5는 본 발명의 일 구현예에 따른 1T/2H mixed phase의 박리화된 2차원 MoS2 나노시트의 HAADF-STEM 이미지를 나타낸 것이다.5 shows a HAADF-STEM image of a two-dimensional MoS 2 nanosheet exfoliated in a 1T/2H mixed phase according to an embodiment of the present invention.
도 6은 본 발명의 일 구현예에 따른, 1T/2H mixed phase의 박리화된 2차원 MoSe2 나노시트의 TEM (좌) 및 HR-TEM (우) 분석결과를 나타낸 것이다.6 shows the results of TEM (left) and HR-TEM (right) analysis of exfoliated two-dimensional MoSe 2 nanosheets of 1T/2H mixed phase according to an embodiment of the present invention.
도 7은 본 발명의 일 구현예에 따른, 1T/2H mixed phase의 박리화된 2차원 MoSe2 나노시트의 HAADF-STEM 이미지를 나타낸 것이다.7 shows a HAADF-STEM image of a two-dimensional MoSe 2 nanosheet exfoliated in a 1T/2H mixed phase according to an embodiment of the present invention.
도 8은 본 발명의 일 구현예에 따른, 건조 온도에 따른 (a-c) MoS2 박리화 소재의 XRD data 및 (e-f) MoS2/graphene 하이브리드 복합체 (co-exMG)의 XRD data를 나타낸 것이다.Figure 8 shows XRD data of (ac) MoS 2 exfoliated material and (ef) MoS 2 / graphene hybrid composite (co-exMG) XRD data according to drying temperature according to an embodiment of the present invention.
도 9는 본 발명의 일 구현예에 따라, 건조 온도에 따른 (a) MoS2 박리화 소재의 Raman data 및 (b,c) MoS2 박리화 소재와 MoS2/graphene 하이브리드 복합체의 XPS data를 나타낸 것이다.Figure 9 shows (a) Raman data of MoS 2 exfoliated material and (b, c) XPS data of MoS 2 exfoliated material and MoS 2 /graphene hybrid composite according to drying temperature according to an embodiment of the present invention. will be.
도 10은 본 발명의 일 구현예에 따른, 건조 온도에 따른 (a) MoSe2 박리화 소재의 XPS data를 나타낸 것이다.Figure 10 shows the XPS data of (a) MoSe 2 exfoliation material according to the drying temperature according to one embodiment of the present invention.
도 11은 본 발명의 일 구현예에 따른, 상 조절된(phase-controlled) MoS2 박리화 소재와 MoS2/graphene 하이브리드 복합체의 리튬이온배터리 (lithium ion battery, LIB) 셀 성능 평가 결과를 나타낸 것이다.Figure 11 shows the lithium ion battery (lithium ion battery, LIB) cell performance evaluation results of the phase-controlled MoS 2 exfoliation material and the MoS 2 /graphene hybrid composite according to an embodiment of the present invention. .
도 12는 본 발명의 일 구현예에 따른, 상 조절된(phase-controlled) MoS2 박리화 소재의 나트륨 이온 배터리 (sodium ion battery, SIB) 셀 성능 평가. (a) 충방전 곡선, (b) 사이클 특성 평가 (c) 율속 특성을 나타낸 것이다.12 is a sodium ion battery (SIB) cell performance evaluation of a phase-controlled MoS 2 exfoliation material according to an embodiment of the present invention. (a) charge/discharge curve, (b) evaluation of cycle characteristics (c) rate characteristics.
이하, 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 의해 본 발명이 한정되지 않으며 본 발명은 후술할 청구범위의 의해 정의될 뿐이다.Hereinafter, the present invention will be described in more detail. However, the present invention can be implemented in many different forms, and the present invention is not limited by the embodiments described herein, and the present invention is only defined by the claims to be described later.
덧붙여, 본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In the entire specification of the present invention, 'include' a certain element means that other elements may be further included without excluding other elements unless otherwise stated.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this is not only "directly connected", but also "indirectly connected" with another member in between. "Including cases where In addition, when a part "includes" a certain component, it means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.
실시예 1: 상 조절된 (phase-controlled) 2차원 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조Example 1: Preparation of a layered structure of phase-controlled two-dimensional transition metal dichalcogenide nanosheets
전이금속 디칼코게나이드 (MoS2, MoSe2 및 WS2 등) 벌크 분말 10g을 삼각 플라스크에 넣고 sealing 한 뒤 질소 치환을 10분 이상 진행하여 플라스크 내부를 inert한 질소 환경으로 만들어 주었다. 그 후 n-butyllithium 용액(2.5 M solution in hexane, Acros Organics 社)을 주사기를 통해 80 mL (분말 1g 당 8 mL의 n-butyllithium 용액 주입) 넣어준 후 3시간 동안 음파 처리(소니케이션) 해주며, 상기 전이금속 디칼코게나이드 벌크 분말이 n-butyllithium용액과 반응하여 전이금속 디칼코게나이드 층간에 Li+가 골고루 잘 삽입되도록 해주었다. 음파 처리가 끝난 뒤 주사기를 통해 과포화 NH4Cl 수용액 700 mL(분말 1g 당 과포화 NH4Cl 수용액 70 mL)를 넣어주어 전이금속 디칼코게나이드 분말 층간에 삽입된 Li+를 NH4 +와 이온교환하여 전이금속 디칼코게나이드 물질의 층간 결합력을 약화시켜주었다. 박리하고자 하는 분말의 양에 따라 필요한 시료의 양은 조절할 수 있다. 이후에 음파 처리 또는 교반을 해주어 층간 결합력이 약해진 전이금속 디칼코게나이드를 박리화 시켰다. 이때 음파 처리(약 3시간)를 해주는 경우, 교반(약 12~24시간)을 해주는 경우보다 박리화 시간을 단축시키는 효과가 있었으며, 초음파 처리와 교반을 함께 진행하는 경우에 박리화 시간을 단축할 수 있을 뿐만 아니라 박리화 수율 향상이 가능하였다. 박리화가 진행되는 동안 전이금속 디칼코게나이드 분말은 단리되거나, 약 1 내지 10층의 적층 형태를 가지는 layer by layer 형태(적층 구조체)를 이루게된다. 박리화가 모두 진행되고 난 후, filtration을 통하여 박리화된 전이금속 디칼코게나이드 분말을 수득하였다. 이 과정에서 증류수와 에탄올로 나노시트의 적층 구조체 분말을 세척해주었다. 세척이 모두 끝난 후, 각각의 제조예로 수득된, MoS2가 포함된 파우더는 각각 동결건조, 80 ℃, 900 ℃에서 12시간 이상 각각 건조한 3가지 케이스로 나누어 건조하였고, MoSe2가 포함된 파우더는 각각 동결건조, 80℃, 200℃, 500 ℃에서 12시간 이상 각각 건조한 4가지 케이스로 나누어 건조시켜 주었다. 이 때, 층간 간격이 박리화 과정에서 넓어진 TMD 물질의 일부는 1T 구조를 갖게 되고, 동결건조법을 이용하면 이를 잘 유지할 수 있다.Transition metal dichalcogenide (MoS 2 , MoSe 2 and WS 2 , etc.) bulk powder 10g was put into an Erlenmeyer flask, sealed, and nitrogen substitution was performed for more than 10 minutes to create an inert nitrogen environment inside the flask. After that, add 80 mL of n-butyllithium solution (2.5 M solution in hexane, Acros Organics) through a syringe (inject 8 mL of n-butyllithium solution per 1 g of powder), and sonicate (sonicate) for 3 hours. , The transition metal dichalcogenide bulk powder reacted with the n-butyllithium solution to allow Li + to be evenly inserted between the transition metal dichalcogenide layers. After the sonic treatment, 700 mL of supersaturated NH 4 Cl aqueous solution (70 mL of supersaturated NH 4 Cl aqueous solution per 1 g of powder) was added through a syringe, and Li + intercalated between the layers of transition metal dichalcogenide powder was ion-exchanged with NH 4 + to obtain The interlayer binding force of the transition metal dichalcogenide material was weakened. The amount of sample required can be adjusted according to the amount of powder to be exfoliated. Thereafter, the transition metal dichalcogenide having a weakened interlayer bonding force was exfoliated by sonication or stirring. At this time, the sonic treatment (about 3 hours) had the effect of shortening the exfoliation time compared to the case of stirring (about 12 to 24 hours), and the exfoliation time could be shortened when ultrasonic treatment and agitation were performed together. It was possible to improve the exfoliation yield as well as possible. During the exfoliation process, the transition metal dichalcogenide powder is isolated or forms a layer-by-layer form (layered structure) having a stacked form of about 1 to 10 layers. After all of the exfoliation proceeded, an exfoliated transition metal dichalcogenide powder was obtained through filtration. In this process, the nanosheet laminated structure powder was washed with distilled water and ethanol. After all washing was completed, the powder containing MoS 2 obtained in each preparation was divided into three cases of freeze drying, drying at 80 ° C. and 900 ° C. for 12 hours or more, respectively, and dried, and the powder containing MoSe 2 was divided into four cases of freeze drying, drying at 80 ° C, 200 ° C, and 500 ° C for more than 12 hours, respectively, and dried. At this time, a part of the TMD material in which the interlayer spacing is widened in the process of exfoliation has a 1T structure, and this can be well maintained by using the lyophilization method.
실시예 2: 상 조절된 (phase-controlled) 2차원 전이금속 디칼코게나이드 나노시트의 적층 구조체를 포함하는 하이브리드 복합체의 제조Example 2: Preparation of a Hybrid Composite Containing a Layered Structure of Phase-Controlled Two-Dimensional Transition Metal Dichalcogenide Nanosheets
본원의 일 실시예에 따른 하이브리드 복합체의 제조방법을 도 2와 같이 나타내었다.A method for preparing a hybrid composite according to an embodiment of the present application is shown in FIG. 2 .
전이금속 디칼코게나이드 (MoS2, MoSe2 및 WS2 등) 벌크 분말과 graphene 분말 1:1 질량비로 각각 5g씩 총 10g 삼각 플라스크에 넣고 sealing 한 뒤 질소 또는 아르곤 치환을 10분 이상 진행하여 플라스크 내부를 inert한 환경으로 만들어 주었다. 그 후 n-butyllithium 용액(2.5 M solution in hexane, Acros Organics 社)을 주사기를 통해 80 mL (분말 1g 당 8 mL의 n-butyllithium 용액 주입) 넣어준 후 3시간 동안 음파 처리(소니케이션) 해주며, 상기 전이금속 디칼코게나이드 벌크 분말과 graphene 분말이 n-butyllithium용액과 반응하여 전이금속 디칼코게나이드와 graphene 층간에 Li+가 골고루 잘 삽입되도록 해주었다. 음파 처리가 끝난 뒤 주사기를 통해 과포화 NH4Cl 수용액 700 mL(분말 1g 당 과포화 NH4Cl 수용액 70 mL)를 넣어주어 전이금속 디칼코게나이드와 graphene 분말 층간에 삽입된 Li+를 NH4 +와 이온교환하여 전이금속 디칼코게나이드와 graphene 물질의 층간 결합력을 약화시켜주었다. 박리하고자 하는 분말의 양에 따라 필요한 시료의 양은 조절할 수 있다. 이후에 음파 처리 또는 교반을 해주어 층간 결합력이 약해진 전이금속 디칼코게나이드와 graphene을 박리화 시켰다. 이때 음파 처리(약 3시간)를 해주는 경우, 교반(약 12~24시간)을 해주는 경우보다 박리화 시간을 단축시키는 효과가 있었으며, 초음파 처리와 교반을 함께 진행하는 경우에 박리화 시간을 단축할 수 있을 뿐만 아니라 박리화 수율 향상이 가능하였다. 박리화가 진행되는 동안 전이금속 디칼코게나이드와 graphene 분말은 반데르 발스 힘(Van der waals force)에 의해 재 적층이 일어나면서 layer by layer 형태를 이루게된다. 박리화가 모두 진행되고 난 후, filtration을 통하여 박리화된 전이금속 디칼코게나이드 분말과 graphene 복합체를 수득하였다. 이 과정에서 증류수와 에탄올로 복합체 분말을 세척해주었다. 세척이 모두 끝난 후, 각각의 제조예로 수득된, MoS2가 포함된 파우더는 각각 동결건조, 80 ℃, 900 ℃에서 12시간 이상 각각 건조한 3가지 케이스로 나누어 건조하였고, MoSe2가 포함된 파우더는 각각 동결건조, 80℃, 200℃, 500 ℃에서 12시간 이상 각각 건조한 4가지 케이스로 나누어 건조시켜 주었다. 이 때, 층간 간격이 박리화 과정에서 넓어진 TMD 물질의 일부는 1T 구조를 갖게 되고, 동결건조법을 이용하면 이를 잘 유지할 수 있다.Transition metal dichalcogenide (MoS 2 , MoSe 2 and WS 2 , etc.) bulk powder and graphene powder in a 1:1 mass ratio, 5g each, put in a total of 10g Erlenmeyer flask, seal, nitrogen or argon replacement for more than 10 minutes, and inside the flask to an inert environment. After that, add 80 mL of n-butyllithium solution (2.5 M solution in hexane, Acros Organics) through a syringe (inject 8 mL of n-butyllithium solution per 1 g of powder), and sonicate (sonicate) for 3 hours. , The transition metal dichalcogenide bulk powder and graphene powder reacted with the n-butyllithium solution to allow Li + to be evenly inserted between the transition metal dichalcogenide and graphene layers. After the sonic treatment, 700 mL of supersaturated NH 4 Cl aqueous solution (70 mL of supersaturated NH 4 Cl aqueous solution per 1 g of powder) was added through a syringe to dissolve Li + intercalated between the transition metal dichalcogenide and graphene powder layers with NH 4 + and ions. The exchange weakened the bonding force between the layers of the transition metal dichalcogenide and the graphene material. The amount of sample required can be adjusted according to the amount of powder to be exfoliated. After that, the transition metal dichalcogenide and graphene, whose interlayer bonding force was weakened, were exfoliated by sonication or stirring. At this time, the sonic treatment (about 3 hours) had the effect of shortening the exfoliation time compared to the case of stirring (about 12 to 24 hours), and the exfoliation time could be shortened when ultrasonic treatment and agitation were performed together. It was possible to improve the exfoliation yield as well as possible. During exfoliation, the transition metal dichalcogenide and graphene powder are re-laminated by the Van der Waals force to form layer by layer. After all of the exfoliation proceeded, a composite of the exfoliated transition metal dichalcogenide powder and graphene was obtained through filtration. In this process, the composite powder was washed with distilled water and ethanol. After all washing was completed, the powder containing MoS 2 obtained in each preparation example was divided into three cases of freeze drying, drying at 80 ° C. and 900 ° C. for 12 hours or more, respectively, and dried. Powder containing MoSe 2 was divided into four cases of freeze drying, drying at 80 ° C, 200 ° C, and 500 ° C for more than 12 hours, respectively, and dried. At this time, a part of the TMD material in which the interlayer spacing is widened during the exfoliation process has a 1T structure, and this can be well maintained by using the lyophilization method.
실험예 1: 전이금속 디칼코게나이드 나노시트의 적층 구조체 및 하이브리드 복합체의 TEM 분석Experimental Example 1: TEM analysis of layered structures and hybrid composites of transition metal dichalcogenide nanosheets
도 3은 본 발명의 일 실시예에 따른 MoS2/graphene 하이브리드 복합체의 SEM, TEM 이미지를 나타낸 것이고, 도 3a의 SEM BSE(backscattered electron, 후방산란전자) mode 사진을 통하여 graphene 시트 위에 상대적으로 크기가 작은 전이금속 디칼코게나이드 나노시트 입자들이 올라가 적층되어 있는 구조를 확인할 수 있다. 도 3b, c는 본 발명의 일 실시예에 따른 MoS2/graphene 하이브리드 복합 체의 TEM 이미지를 나타낸 것이고, 도 3b는 cross section 이미지이다. 도 3b-(i~ii)는 도 3b의 MoS2, graphene 영역을 각각 확대 한 HR-TEM(high-resolution TEM) 이미지로 격자 결함이나 변형 없이 결정이 잘 유지된 것을 관찰할 수 있다. 또한, 도3b-i의 이미지에서 0.63 nm, 0.78 nm의 층간 간격을 관찰할 수 있다. 이를 통해 박리화 과정을 통해 층간 간격이 넓혀진 것을 확인할 수 있었다. 도3-(c,iii~iv)는 top view 이미지로 MoS2의 복합상을 잘 관찰 할 수 있다. 검정색 원 영역은 2H구조를, 흰색 원 영역은 1T 구조를, 주황색(흑백상으로는 회색) 원 영역은 1T, 2H 영역의 경계를 포함해 두 상이 복합적으로 존재함을 확인할 수 있다. 도3-(iii~iv)는 도3-(c)를 확대한 이미지로 1T, 2H 구조를 원자단위의 이미지로 조금 더 명확하게 확인할 수 있다.Figure 3 is a MoS 2 / graphene hybrid composite according to an embodiment of the present invention SEM and TEM images are shown, and through the SEM BSE (backscattered electron) mode picture of FIG. there is. 3b and c show TEM images of the MoS 2 /graphene hybrid composite according to an embodiment of the present invention, and FIG. 3b is a cross section image. Figure 3b-(i~ii) is a HR-TEM (high-resolution TEM) image that enlarges the MoS 2 and graphene regions of Figure 3b, respectively, and it can be observed that the crystal is well maintained without lattice defects or deformation. In addition, interlayer spacing of 0.63 nm and 0.78 nm can be observed in the images of Fig. 3b-i. Through this, it was confirmed that the interlayer gap was widened through the exfoliation process. Figure 3-(c, iii ~ iv) is a top view image, and the composite phase of MoS 2 can be well observed. It can be confirmed that the black circled region has a 2H structure, the white circled region has a 1T structure, and the orange (gray in black and white) circled region has a complex existence of the two phases, including the boundary between the 1T and 2H regions. 3-(iii~iv) is an enlarged image of FIG. 3-(c), and the 1T and 2H structures can be more clearly identified as an atomic unit image.
도 4는 본 발명의 일 실시예에 따른 1T/2H mixed phase의 박리화된 2차원 MoS2 나노시트의 TEM (좌) 및 HR-TEM (우) 분석결과를 보여주며, 도 5는 1T/2H mixed phase의 박리화된 2차원 MoS2 나노시트의 HAADF-STEM (High angle annular dark field-scanning TEM)이미지를 보여준다. Figure 4 shows the results of TEM (left) and HR-TEM (right) analysis of exfoliated two-dimensional MoS 2 nanosheets of 1T / 2H mixed phase according to an embodiment of the present invention, and Figure 5 shows 1T / 2H It shows a HAADF-STEM (High angle annular dark field-scanning TEM) image of the exfoliated two-dimensional MoS 2 nanosheet of the mixed phase.
도 6은 본 발명의 일 실시예에 따른 1T/2H mixed phase의 박리화된 2차원 MoSe2 나노시트의 TEM (좌) 및 HR-TEM (우) 분석결과를 보여주며, 도 7은 1T/2H mixed phase의 박리화된 2차원 MoSe2 나노시트의 HAADF-STEM (High angle annular dark field-scanning TEM)이미지를 보여준다. 도 6 및 도 7을 통해 한 sheet 위에 1T와 2H 상이 mix되어 존재하는 것을 원자단위 resolution에서 확인할 수 있었다.Figure 6 shows the TEM (left) and HR-TEM (right) analysis results of the exfoliated two-dimensional MoSe 2 nanosheet of the 1T / 2H mixed phase according to an embodiment of the present invention, and Figure 7 shows the 1T / 2H It shows HAADF-STEM (High angle annular dark field-scanning TEM) image of exfoliated two-dimensional MoSe 2 nanosheet in mixed phase. 6 and 7, it was confirmed at atomic unit resolution that the 1T and 2H phases were mixed and present on one sheet.
실험예 2: 전이금속 디칼코게나이드 나노시트의 적층 구조체 및 하이브리드 복합체의 XRD 분석Experimental Example 2: XRD analysis of layered structures and hybrid composites of transition metal dichalcogenide nanosheets
도 8은 본 발명의 일 실시예에 따른 MoS2 박리화 소재와 MoS2/graphene 하이브리드 복합체 합성 후 건조 온도에 따른 XRD를 나타낸 것이다. 도 8a-c는 MoS2 박리화 소재의 제조 후 건조 온도에 따른 XRD data를 보여준다. 도 8b는 MoS2의 (002)면으로 indexing되는 곳을 확대한 이미지로 건조 온도가 높을수록 peak의 위치가 더 높은 theta 값으로 이동하는 것을 관찰할 수 있다. 이를 통해 건조 온도가 높을수록 (002)면의 층간 간격이 2H 구조의 d-spacing 값인 0.62 nm에 가까워 지는 것을 확인할 수 있었다. 도 8c를 통해 ex-MoS2 FD 분말의 XRD에서 9.65°부근의 peak이 관찰되고 층간 간격으로 환산하면 0.92 nm로 MoS2의 1T 상의 층간 간격에 가까운 값을 보이는 것을 확인할 수 있었다. 도 8e~f는 ex-MoS2/graphene 하이브리드 복합체의 건조온도에 따른 XRD data로, MoS2/graphene 하이브리드 복합체의 경우에도 마찬가지로 co-exMG FD 소재의 XRD data에서 9.69°부근의 peak이 관찰되고 층간 간격으로 환산하면 0.92 nm로 복합체의 MoS2가 1T 상의 층간 간격을 가짐을 확인할 수 있었다.Figure 8 shows XRD according to the drying temperature after synthesizing the MoS 2 exfoliated material and the MoS 2 /graphene hybrid composite according to an embodiment of the present invention. 8a-c show XRD data according to the drying temperature after preparation of the MoS 2 exfoliation material. Figure 8b is an enlarged image of the indexed area to the (002) plane of MoS 2 , and it can be observed that the peak position moves to a higher theta value as the drying temperature increases. Through this, it was confirmed that the higher the drying temperature, the closer the interlayer spacing of the (002) plane approaches the d-spacing value of 2H structure, 0.62 nm. 8c, a peak around 9.65° was observed in the XRD of the ex-MoS 2 FD powder, and when converted to the interlayer spacing, it was confirmed that the value was 0.92 nm, close to the interlayer spacing of the 1T phase of MoS 2 . 8e to f are XRD data according to the drying temperature of the ex-MoS 2 /graphene hybrid composite. Similarly, in the case of the MoS 2 /graphene hybrid composite, a peak around 9.69 ° was observed in the XRD data of the co-exMG FD material, and interlayer In terms of the spacing, it was confirmed that the MoS 2 of the composite had an interlayer spacing of 1T at 0.92 nm.
실험예 3: 전이금속 디칼코게나이드 나노시트의 적층 구조체 및 하이브리드 복합체의 라만 스펙트럼 및 XPS 분석Experimental Example 3: Raman spectrum and XPS analysis of the layered structure and hybrid composite of transition metal dichalcogenide nanosheets
도 9는 본 발명의 일 실시예에 따른 MoS2 박리화 소재 및 MoS2/graphene 하이브리드 복합체의 합성 후 건조 온도에 따른 Raman과 XPS를 나타낸 것이다. 도 9a는 박리화 된 MoS2의 Raman data를 나타낸 것으로, 1T상은 초록색으로, 2H상은 주황색 영역으로 나타내었다(흑백상으로는 1T는 J1, J2, J3 영역, 2H는 E1g, E2g, A1g로 표시됨). ex-MoS2 FD(freeze-drying)에서 MoS2의 1T와 2H phase가 혼합되어 나타나는 것을 확인할 수 있었다. ex-MoS2 80과 ex-MoS2 900 에서는 MoS2의 2H phase peak 만이 관찰되는 것으로 보아, 건조온도가 높아짐에 따라 1T phase peak가 사라지는 것을 확인할 수 있었다. 도 9b, c는 박리화된 MoS2와 하이브리드 복합체의 건조온도에 따른 XPS data를 보여준다. 두 소재 모두 건조 온도가 낮을수록 그래프가 전체적으로 낮은 결합 에너지쪽으로 이동함을 확인할 수 있었고, FD sample에서는 peak가 넓어지는(broad) 것을 확인할 수 있다. MoS2 나노시트의 Mo 3d 스펙트럼과 S 2p 스펙트럼을 deconvolution하여 분석하였으며, MoS2의 1T 상은 초록색으로, 2H상은 주황색 선으로 표시하였다(흑백상으로는 그래프 곡선 상의 도형으로 구분함). XPS 분석을 통해 동결건조 (FD, freeze-drying) 샘플에서는 1T phase와 2H phase가 혼합되어 있음을 확인할 수 있었고, 그 비율은 대략 1T : 2H = 2 : 3 으로 Mo 3d high-resolution XPS 스펙트럼의 deconvolution 그래프 적분을 통해 계산할 수 있었다. ex-MoS2/graphene 하이브리드 복합체를 동결건조(FD, freeze-drying)한 샘플의 Mo 3d high-resolution XPS 스펙트럼의 결과를 deconvolution 하였으며, 1T(초록색 선)와 2H(주황색 선) 영역을 적분 한 결과 그 비율은 대략 1T : 2H = 3 :2로 계산되었다. 흥미롭게도 ex-MoS2/graphene 하이브리드 복합체의 경우 ex-MoS2만 존재하는 경우에 비하여 1T상의 비율이 약 20% 증가한 것을 확인할 수 있었다. 이를 통해 graphene이 MoS2의 1T phase를 안정적으로 유지하는데 도움을 주는 것을 확인할 수 있었다. Figure 9 shows Raman and XPS according to drying temperature after synthesis of MoS 2 exfoliated material and MoS 2 /graphene hybrid composite according to an embodiment of the present invention. Figure 9a shows the Raman data of exfoliated MoS 2 , the 1T phase is shown in green, and the 2H phase is shown in orange (in black and white, 1T is J 1 , J 2 , J 3 region, 2H is E 1g , E 2g , A 1 g ). It was confirmed that the 1T and 2H phases of MoS 2 were mixed in ex-MoS 2 FD (freeze-drying). In ex-MoS 2 80 and ex-MoS 2 900, only the 2H phase peak of MoS 2 was observed, and it was confirmed that the 1T phase peak disappeared as the drying temperature increased. Figure 9b, c shows the XPS data according to the drying temperature of the exfoliated MoS 2 and the hybrid composite. For both materials, it was confirmed that the lower the drying temperature, the lower the binding energy of the graph as a whole, and the broader peaks in the FD sample. Mo 3d spectrum and S 2p spectrum of MoS 2 nanosheets were analyzed by deconvolution, and the 1T phase of MoS 2 was indicated in green and the 2H phase was indicated by orange lines (black and white phases were identified by figures on the graph curve). Through XPS analysis, it was confirmed that the 1T phase and the 2H phase were mixed in the freeze-drying (FD) sample, and the ratio was approximately 1T : 2H = 2 : 3, indicating deconvolution of the Mo 3d high-resolution XPS spectrum. could be calculated through graph integration. The result of the Mo 3d high-resolution XPS spectrum of the ex-MoS 2 /graphene hybrid composite lyophilized (FD, freeze-drying) was deconvolved, and the result of integrating the 1T (green line) and 2H (orange line) regions The ratio was calculated to be approximately 1T : 2H = 3 :2. Interestingly, in the case of the ex-MoS 2 /graphene hybrid composite, it was confirmed that the ratio of the 1T phase increased by about 20% compared to the case where only ex-MoS 2 was present. Through this, it was confirmed that graphene helps to stably maintain the 1T phase of MoS 2 .
도 10은 본 발명의 일 실시예에 따른 MoSe2 박리화 소재 합성 후 건조 온도에 따른 XPS를 나타낸 것이다. 도 10은 박리화 된 MoSe2의 XPS data를 나타낸 것으로, 건조 온도가 낮을수록 bulk 소재에 비해 그래프가 전체적으로 낮은 결합 에너지 쪽으로 이동함을 확인할 수 있었고, 동결건조와 80도 sample에서는 peak이 board해지는 것을 확인할 수 있다. MoSe2 나노 시트의 Mo 3d 스펙트럼을 deconvolution하여 분석하였으며, MoSe2의 1T 상은 보라색(점선)으로, 2H상은 주황색(도형 없는 실선) 선으로 표시하였다. 또한 각 피크에 대한 정보는 아래 표와 같다.Figure 10 shows the XPS according to the drying temperature after MoSe 2 exfoliation material synthesis according to an embodiment of the present invention. 10 shows the XPS data of exfoliated MoSe 2 , and it was confirmed that the lower the drying temperature, the lower the binding energy of the graph as a whole compared to the bulk material. You can check. The Mo 3d spectrum of MoSe 2 nanosheets was analyzed by deconvolution, and the 1T phase of MoSe 2 was shown in purple (dotted line) and the 2H phase was shown in orange (solid line without figures). In addition, information on each peak is shown in the table below.
구분 division 1T 상1T phase 2H 상2H phase Mo6+Mo6+ 1T:2H 비1T:2H ratio
벌크 MoSe2 Bulk MoSe 2 232 eV
228.9 eV
232eV
228.9eV
박리화된 MoSe2 동결건조(FD)Exfoliated MoSe 2 lyophilization (FD) 231.7 eV
228.5 eV
231.7eV
228.5eV
233.1 eV
229.5 eV
233.1eV
229.5eV
235.7 eV235.7eV 2:12:1
박리화된 MoSe2 80도 건조(80) Exfoliated MoSe 2 80 degrees dry (80) 231.7 eV
228.5 eV
231.7eV
228.5eV
232 eV
228.9 eV
232eV
228.9eV
235.7 eV235.7eV 1:11:1
박리화된 MoSe2 200도 건조(200) Exfoliated MoSe2 200 degree drying (200) 232 eV
228.9 eV
232eV
228.9eV
235.7 eV235.7eV
박리화된 MoSe2 500도 건조(500)Exfoliated MoSe2 500 degree drying (500) 232 eV
228.9 eV
232eV
228.9eV
XPS 분석을 통해 동결건조 (FD, freeze-drying) 샘플과 80도 샘플에서는 1T phase와 2H phase가 혼합되어 있음을 확인할 수 있었고, 그 비율은 대략 각각 동결건조 샘플은 1T : 2H = 2 : 1, 80도 샘플은 1:1로 deconvolution 그래프 적분을 통해 계산할 수 있었다. 동결건조 샘플에 비해 80도 샘플이 1T 비율이 낮고, 200도 초과의 샘플에서는 1T 상이 관찰되지 않은 것으로 보아 높은 온도로 이동할수록 2H 상으로 전환이 일어나는 것을 확인할 수 있었다.Through XPS analysis, it was confirmed that the 1T phase and the 2H phase were mixed in the FD (freeze-drying) sample and the 80-degree sample, and the ratio was approximately 1T: 2H = 2: 1 for each freeze-dried sample, The 80-degree sample could be calculated through deconvolution graph integration at 1:1. Compared to the freeze-dried sample, the 80 degree sample had a lower 1T ratio, and the 1T phase was not observed in the sample greater than 200 degrees, confirming that the conversion to the 2H phase occurred as the temperature moved to a higher temperature.
실험예 4: 전이금속 디칼코게나이드 나노시트의 적층 구조체 또는 하이브리드 복합체를 음극활물질로 포함하는 리튬-이온 배터리의 전기화학적 특성 평가Experimental Example 4: Evaluation of electrochemical characteristics of a lithium-ion battery including a layered structure or hybrid composite of transition metal dichalcogenide nanosheets as an anode active material
도 11은 본 발명의 일 실시예에 따른 상 조절된 MoS2 박리화 소재와 MoS2/graphene 하이브리드 복합체의 LIB 셀 전기화학 성능평가 결과를 보여준다. LIB 음극 전극 제작을 위하여, MoS2와 MoS2/graphene 하이브리드 복합소재를 음극 활물질로 사용하여 전극 슬러리(slurry)를 만든다. 전극 슬러리 만드는 방법은 다음과 같다. 우선 슬러리의 전도성을 높이기 위해 첨가하는 Super P와 응집력을 높이기 위해 사용하는 바인더 PVDF (Polyvinylidene Fluoride, sigma aldrich)를 mixer를 이용해 3분 동안 섞어준다. 바인더는 미리 NMP에 녹여둔다. 이때 비율은 활물질(박리화된 MoS2 또는 ex-MoS2/graphene 하이브리드 복합소재) : Super P : PVDF = 7: 2: 1: 이다. 섞여진 Super P 와 PVDF에 활물질을 넣고 점도 조절을 위해 NMP (N-Methyl-2-pyrrolidone, DEAJUNG 社)를 넣고 3분 동안 섞어준다. 완성된 슬러리를 도포하기 위해 Cu foil (20 um)을 유리판에 부착시킨 뒤 표면의 이물질들을 제거해 준다. 후에 전극 슬러리를 닥터 블레이드를 이용해 50 um 두께로 도포해준다. 완전한 건조를 위해 120 ℃에서 12시간 진공건조 해준다. 11 is a phase-controlled MoS 2 exfoliation material according to an embodiment of the present invention and The results of electrochemical performance evaluation of the LIB cell of the MoS 2 /graphene hybrid composite are shown. To fabricate the LIB cathode electrode, an electrode slurry is prepared using MoS 2 and MoS 2 /graphene hybrid composite as an anode active material. The method of making the electrode slurry is as follows. First, Super P added to increase the conductivity of the slurry and binder PVDF (Polyvinylidene Fluoride, sigma aldrich) used to increase the cohesion are mixed for 3 minutes using a mixer. The binder is dissolved in NMP in advance. At this time, the ratio is active material (exfoliated MoS 2 or ex-MoS 2 /graphene hybrid composite material): Super P: PVDF = 7: 2: 1:. Add the active material to the mixed Super P and PVDF, add NMP (N-Methyl-2-pyrrolidone, DEAJUNG Co.) to adjust the viscosity, and mix for 3 minutes. In order to apply the finished slurry, Cu foil (20 um) is attached to the glass plate and foreign substances on the surface are removed. Afterwards, the electrode slurry was applied to a thickness of 50 μm using a doctor blade. Vacuum dry at 120 ℃ for 12 hours for complete drying.
리튬 이온 배터리 셀은 코인 셀(coin cell) 형태로 제작되었으며 CR2032의 크기로 조립되었다. 2032 under case에 전해질 (1M LiPF6 in EC:DMC:DEC = 3:4:3 + VC 1%)을 조금 떨어뜨린 뒤 14 pi 크기로 잘라진 음극 기판을 물질이 활물질이 도포된 부분이 위를 향하도록 둔다. 다시 전해질을 조금 떨어뜨리고 위에 분리막 (cellgard3501, 25 um)을 덮어준 후 가스켓을 분리막 위로 끼워준다. 1mm의 SUS plate에 Li metal (200um)을 부착시킨 뒤 마찬가지로 분리막 위에 전해질을 조금 떨어뜨린 후 Li metal 부분이 아래쪽으로 오도록 넣어준다. SUS metal 위에 스프링을 얹어준 후 전해질을 넣어준 뒤 2032 upper case를 덮고 눌러서 단단하게 조립해준다. 이때 들어간 전해질의 총량은 150 μl이다.The lithium ion battery cell was manufactured in the form of a coin cell and assembled to the size of CR2032. After dropping a little electrolyte (1M LiPF 6 in EC:DMC:DEC = 3:4:3 + VC 1%) on the 2032 under case, place the anode substrate cut into 14 pi with the active material facing up. let it do Again, drop a little electrolyte, cover the separator (cellgard3501, 25 um) on top, and insert a gasket over the separator. After attaching Li metal (200um) to a 1mm SUS plate, drop a little electrolyte on the separator and insert it with the Li metal part facing down. After placing a spring on the SUS metal, insert the electrolyte, cover the 2032 upper case, and assemble it firmly by pressing. The total amount of electrolyte entered at this time is 150 μl.
제조한 코인셀 타입 리튬 이온 배터리 셀의 전기화학적 특성을 평가하기 위하여 다채널을 가지고 있는 일정전위기 (VSP potentiostat/galvanostat/EIS, BioLogic) 장비를 사용하였다. 충방전 전압 범위는 0.005 V에서 2.5 V 이며 처음 반응이 진행될 때 일어나는 변화들을 안정화 시켜주기 위해 35 mA/g으로 2 사이클 반응을 보내주었다 (formation). 후에 180 mA/g (~0.5C) 으로 분석을 진행하였다. 도 11a-c는 박리화된 MoS2 소재의 상(phase)이 1T와 2H가 혼합된 소재의 LIB 셀 성능을 보여준다. 도 11a에서 보는 바와 같이, exMoS2 (1T&2H) 소재의 경우 보다는 ex-MoS2(1T&2H)/graphene 하이브리드 복합소재의 경우에 formation cycle과 첫번째 cycle을 비교 했을 때 안정성이 더 우수한 것을 확인할 수 있었다. 도 11b는 exMoS2 (1T&2H) 소재와 ex-MoS2(1T&2H)/graphene 하이브리드 복합소재의 사이클 특성을 보여주며, ex-MoS2(1T&2H)/graphene 하이브리드 복합소재의 경우에, 50번째 사이클에서 2H phase만 존재하는 ex-MoS2 900(2H) 소재의 용량 값 대비 약 4.7배의 높은 용량을 나타내었으며, 100 사이클에서 약 573 mAh/g (180 mA/g (~0.5C)의 전류밀도 조건에서)의 specific capacity 값을 보이며 첫번째 cycle 대비 약 90%의 용량 유지율을 보이는 것을 확인할 수 있었다. ex-MoS2(1T&2H)/graphene 하이브리드 복합소재에 대하여, 도 11c에서 보는 바와 같이 율속 특성을 확인하였으며 370 mA/g(~1C), 750 mA/g (~2C), 1100 mA/g (~3C)의 전류 밀도에서 각각 ~ 550 mAh/g, ~515 mAh/g, ~450 mAh/g의 specific capacity 값을 보였다. 율속 특성 분석을 통하여 ex-MoS2(1T&2H)/graphene 하이브리드 복합소재가 1100 mA/g (~3C)의 높은 전류 밀도에서도 180 mA/g (~0.5C)의 낮은 전류밀도에서 측정한 용량 대비 약 80%의 용량을 유지하는 고율속 특성을 보이는 것을 확인할 수 있었다. 또한, 고율속 테스트 이후에 0.5C의 초기 전류밀도 조건으로 돌아간 이후에도 초기 0.5C에서의 용량 값으로 잘 복원되는 것을 확인할 수 있었다. In order to evaluate the electrochemical characteristics of the manufactured coin cell type lithium ion battery cell, a multi-channel potentiostat (VSP potentiostat/galvanostat/EIS, BioLogic) equipment was used. The charge/discharge voltage range is 0.005 V to 2.5 V, and a two-cycle reaction was sent at 35 mA/g to stabilize the changes that occur during the first reaction (formation). Afterwards, analysis was performed at 180 mA/g (~0.5C). 11a-c show the LIB cell performance of a material in which the phases of the exfoliated MoS 2 material are a mixture of 1T and 2H. As shown in Figure 11a, it was confirmed that the stability was better when comparing the formation cycle and the first cycle in the case of the ex-MoS 2 (1T & 2H) / graphene hybrid composite material than in the case of the exMoS 2 (1T & 2H) material. 11b shows the cycle characteristics of the exMoS 2 (1T&2H) material and the ex-MoS 2 (1T&2H)/graphene hybrid composite, and in the case of the ex-MoS 2 (1T&2H)/graphene hybrid composite, 2H at the 50th cycle. It showed about 4.7 times higher capacity than the capacity value of ex-MoS 2 900(2H) material with only phase, and about 573 mAh/g at 100 cycles (at a current density of 180 mA/g (~0.5C)) ) and showed a capacity retention rate of about 90% compared to the first cycle. For the ex-MoS 2 (1T&2H)/graphene hybrid composite, the rate characteristics were confirmed as shown in Figure 11c, and 370 mA/g (~1C), 750 mA/g (~2C), 1100 mA/g (~ 3C) showed specific capacity values of ~550 mAh/g, ~515 mAh/g, and ~450 mAh/g, respectively. Through rate-rate characteristic analysis, the ex-MoS 2 (1T&2H)/graphene hybrid composite has a high current density of 1100 mA/g (~3C) compared to the measured capacity at a low current density of 180 mA/g (~0.5C). It was confirmed that the high rate characteristics of maintaining the capacity of 80% were exhibited. In addition, even after returning to the initial current density condition of 0.5C after the high-rate test, it was confirmed that the capacitance value at the initial 0.5C was well restored.
도 11d-e는 박리화된 MoS2 소재의 상(phase)이 2H만 존재하는 소재의 LIB 셀 성능을 보여준다. 도 11d는 exMoS2 (2H) 소재와 ex-MoS2(2H)/graphene 하이브리드 복합소재의 formation cycle과 첫번째 cycle을 보여준다. 도 11e는 ex-MoS2(2H)/graphene 하이브리드 복합소재, exMoS2(2H) 및 exMoS2(1T&2H) 소재의 사이클 특성을 보여주며, ex-MoS2(2H)/graphene 하이브리드 복합소재의 100 사이클 동안의 용량 값이 ex-MoS2(2H) 나 ex-MoS2(1T&2H) 소재들 보다는 더 높은 용량 값을 보이는 것을 확인할 수 있었다. ex-MoS2(2H)/graphene 하이브리드 복합소재는 ex-MoS2(2H) 소재와 비교하면 50번째 사이클에서 약 1.2배 높은 용량을 보였으며, 100번째 사이클에서는 약 467 mAh/g (180 mA/g (~0.5C)의 전류밀도 조건에서)의 specific capacity 값을 보였다. ex-MoS2(2H)/graphene 하이브리드 복합소재에 대하여, 도 11f에서 보는 바와 같이 율속 특성을 확인하였으며 370 mA/g(~1C), 750 mA/g (~2C), 1100 mA/g (~3C)의 전류 밀도에서 각각 ~ 370 mAh/g, ~340 mAh/g, ~320 mAh/g의 specific capacity 값을 보였다. 도 11c와 도 11f의 비교를 통해 1100 mA/g (~3C)의 전류 밀도에서 ex-MoS2(1T&2H)/graphene 하이브리드 복합소재의 specific capacity 값은 ~450 mAh/g, ex-MoS2(2H)/graphene 하이브리드 복합소재는 ~320 mAh/g으로 1T와 2H phase가 mix된 MoS2 나노시트가 존재하는 하이브리드 복합소재의 경우에 2H phase만 존재하는 MoS2 나노시트가 있는 하이브리드 복합소재에 비하여 약 1.4배 높은 용량값을 나타내었다. 하이브리드 복합상은 MoS2가 단독으로 존재할 때 보다 전기화학적 특성이 우수하며, 1T와 2H phase가 mix된 MoS2 나노시트와 그래핀과의 하이브리드 복합체를 형성한 소재의 LIB 셀 특성이 더 우수함을 확인할 수 있었다. 11d-e show the LIB cell performance of a material in which only 2H is present in the phase of the exfoliated MoS 2 material. 11d shows the formation cycle and the first cycle of the exMoS 2 (2H) material and the ex-MoS 2 (2H)/graphene hybrid composite material. Figure 11e shows the cycle characteristics of the ex-MoS 2 (2H) / graphene hybrid composite, exMoS 2 (2H) and exMoS 2 (1T & 2H) materials, 100 cycles of the ex-MoS 2 (2H) / graphene hybrid composite It was confirmed that the capacity value of the baby face showed a higher capacity value than ex-MoS 2 (2H) or ex-MoS 2 (1T&2H) materials. The ex-MoS 2 (2H)/graphene hybrid composite showed about 1.2 times higher capacity at the 50th cycle compared to the ex-MoS 2 (2H) material, and about 467 mAh/g (180 mA/g) at the 100th cycle. g (at current density of ~0.5C)) showed a specific capacity value. For the ex-MoS 2 (2H)/graphene hybrid composite material, the rate characteristics were confirmed as shown in FIG. 3C) showed specific capacity values of ~370 mAh/g, ~340 mAh/g, and ~320 mAh/g, respectively. 11c and 11f, the specific capacity value of the ex-MoS 2 (1T&2H)/graphene hybrid composite at a current density of 1100 mA/g (~3C) is ~450 mAh/g, ex-MoS 2 (2H )/graphene hybrid composites are ~320 mAh/g, and in the case of hybrid composites with MoS 2 nanosheets in which 1T and 2H phases are mixed, compared to hybrid composites with MoS 2 nanosheets in which only 2H phases exist, It showed a 1.4-fold higher capacity value. It can be confirmed that the hybrid composite phase has better electrochemical properties than when MoS 2 exists alone, and the LIB cell characteristics of the material formed of a hybrid composite of MoS 2 nanosheets and graphene mixed with 1T and 2H phases are better. there was.
실험예 5: 전이금속 디칼코게나이드 나노시트의 적층 구조체 또는 하이브리드 복합체를 음극활물질로 포함하는 나트륨-이온 배터리의 전기화학적 특성 평가Experimental Example 5: Evaluation of Electrochemical Characteristics of Sodium-Ion Battery Containing Transition Metal Dichalcogenide Nanosheet Laminated Structure or Hybrid Composite as Anode Active Material
도 12는 본 발명의 일 실시예에 따른 상 조절된 MoS2 박리화 소재의 나트륨 이온 배터리 (sodium ion battery, SIB) 셀 전기화학 성능평가 결과를 보여준다. SIB 음극 전극 제작을 위하여, 1T와 2H phase가 mixed 된 MoS2_FD와 2H phase 만이 존재하는 MoS2_900 소재를 음극 활물질로 사용하여 전극 슬러리(slurry)를 만든다. 전극 슬러리의 전도성을 높이기 위해 첨가하는 Super P와 응집력을 높이기 위해 사용하는 바인더 sodium carboxymethyl cellulose를 mixer를 이용해 섞어준다. 이때 전극 슬러리의 비율은 활물질(1T&2H mixed ex-MoS2_FD 또는 2H ex-MoS2_900) : Super P :  sodium carboxymethyl cellulose = 8: 1: 1 이다. 완성된 슬러리를 도포하기 위해 Cu foil (20 um)을 유리판에 부착시킨 뒤 표면의 이물질들을 제거해 준다. 후에 전극 슬러리를 닥터 블레이드를 이용해 120 um 두께로 도포해준다. 완전한 건조를 위해 80 ℃에서 12시간 진공건조 해준다. 12 is sodium phase-controlled MoS 2 exfoliation material according to an embodiment of the present invention It shows the result of electrochemical performance evaluation of a sodium ion battery (SIB) cell. To fabricate the SIB cathode electrode, an electrode slurry is prepared by using MoS 2_900 , which contains only 1T and 2H phases mixed with MoS 2_ FD and 2H phases, as an anode active material. Mix Super P, which is added to increase the conductivity of the electrode slurry, and sodium carboxymethyl cellulose, which is a binder used to increase cohesion, using a mixer. At this time, the ratio of the electrode slurry is active material (1T&2H mixed ex-MoS 2 _FD or 2H ex-MoS 2 _900): Super P: sodium carboxymethyl cellulose = 8: 1: 1. In order to apply the finished slurry, Cu foil (20 um) is attached to the glass plate and foreign substances on the surface are removed. Afterwards, the electrode slurry was applied to a thickness of 120 um using a doctor blade. Vacuum dry at 80 ℃ for 12 hours for complete drying.
나트륨 이온 배터리 셀은 코인 셀(coin cell) 형태로 제작되었으며 CR2032의 크기로 조립되었다. 나트륨 이온 배터리의 전해질은 1M NaPF6 in EC:PC = 1:1 (첨가제: FEC 3%)을 사용하였고, 분리막은 glass fiber, 기준전극은 나트륨 메탈을 사용하였다. 충방전 작동 전압 범위는 0.01 V에서 3.0 V으로 수행하였다. 도 12에서 보는 바와 같이, 2H phase만 존재하는 ex-MoS2(2H)_900 소재에 비하여 1T와 2H phase가 함께 존재하는 exMoS2(1T&2H)_FD 소재의 경우에, 전류밀도 100 mA/g의 조건에서 각각 ~696 mAh/g와 ~ 639 mAh/g의 초기 충전 용량을 보이며 1T와 2H phase가 mixed 된 exMoS2_FD 소재가 2H phase MoS2 만이 존재하는 ex-MoS2_900 소재보다 더 높은 용량값을 보였다. 또한, 두 소재에 대하여 500 mA/g의 높은 전류밀도 조건에서 사이클 테스트를 진행한 결과, 70번째 사이클에서 2H phase만 존재하는 ex-MoS2(2H)_900 소재에 비하여 1T와 2H phase가 함께 존재하는 exMoS2 (1T&2H)_FD 소재의 경우에, 각각 ~544 mAh/g와 ~ 537 mAh/g의 용량 값을 보이며 1T와 2H phase가 mixed 된 exMoS2_FD 소재와 2H phase MoS2 만이 존재하는 ex-MoS2_900 소재가 유사한 용량 값을 보이는 것을 관찰할 수 있었다. 소재의 율속특성을 평가한 결과, 1T와 2H phase가 함께 존재하는 exMoS2(1T&2H)_FD 소재는 0.5 A/g, 1 A/g, 2 A/g, 5 A/g, 10 A/g 의 전류 밀도에서 각각 ~492 mAh/g, ~478 mAh/g, ~465 mAh/g, ~429 mAh/g, ~337 mAh/g 의 specific capacity 값을 보였다. 2H phase만 존재하는 ex-MoS2(2H)_900 소재는 0.5 A/g, 1 A/g, 2 A/g, 5 A/g, 10 A/g 의 전류 밀도에서 ~382 mAh/g, ~375 mAh/g, ~362 mAh/g, ~328 mAh/g, ~245 mAh/g 의 specific capacity 값을 보였다. 2H phase만 존재하는 ex-MoS2(2H)_900 소재에 비하여 1T와 2H phase가 함께 존재하는 exMoS2(1T&2H)_FD 소재의 경우 모든 전류 밀도에서 높은 용량 발현을 하였다.The sodium ion battery cell is manufactured in the form of a coin cell and assembled to the size of CR2032. 1M NaPF 6 in EC:PC = 1:1 (additive: FEC 3%) was used as the electrolyte of the sodium ion battery, glass fiber was used as the separator, and sodium metal was used as the reference electrode. The charging and discharging operating voltage range was performed from 0.01 V to 3.0 V. As shown in FIG. 12, in the case of the exMoS 2 (1T&2H)_FD material with both 1T and 2H phases, compared to the ex-MoS 2 (2H)_900 material with only the 2H phase, the current density of 100 mA/g The exMoS 2 _FD material, in which 1T and 2H phases are mixed, shows an initial charge capacity of ~696 mAh/g and ~ 639 mAh/g, respectively, and has a higher capacity value than the ex-MoS 2 _900 material in which only 2H phase MoS 2 exists. seemed In addition, as a result of a cycle test under a high current density condition of 500 mA/g for both materials, 1T and 2H phases exist together at the 70th cycle compared to the ex-MoS 2 (2H)_900 material, which only has a 2H phase. In the case of the exMoS 2 (1T&2H)_FD material, the exMoS 2 _FD material mixed with 1T and 2H phases and the ex- It was observed that the MoS 2 _900 material showed similar capacity values. As a result of evaluating the rate characteristics of the material, the exMoS 2 (1T&2H)_FD material in which 1T and 2H phases coexist had 0.5 A/g, 1 A/g, 2 A/g, 5 A/g, and 10 A/g of In the current density, the specific capacity values of ~492 mAh/g, ~478 mAh/g, ~465 mAh/g, ~429 mAh/g, and ~337 mAh/g were shown, respectively. Ex-MoS 2 (2H)_900 material with only 2H phase is ~382 mAh/g at current densities of 0.5 A/g, 1 A/g, 2 A/g, 5 A/g, and 10 A/g, ~ Specific capacity values of 375 mAh/g, ~362 mAh/g, ~328 mAh/g, and ~245 mAh/g were shown. Compared to the ex-MoS 2 (2H)_900 material with only the 2H phase, the exMoS 2 (1T&2H)_FD material with both 1T and 2H phases exhibited higher capacity at all current densities.
본원의 제1 측면은,The first aspect of the present application is,
전이금속 디칼코게나이드 나노시트의 적층 구조체로서, 각각의 상기 전이금속 디칼코게나이드 나노시트 상에는 1T 상(1T phase), 및 2H 상(2H Phase)이 혼재하고 있고, X선 광전자 분광(XPS) 분석을 통해 계산된 (2H 상):(1T 상)의 비는 0.05:1 내지 4:1인 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체를 제공한다.A laminated structure of transition metal dichalcogenide nanosheets, wherein a 1T phase and a 2H phase are mixed on each of the transition metal dichalcogenide nanosheets, and X-ray photoelectron spectroscopy (XPS) analysis The ratio of (2H phase):(1T phase) calculated through provides a laminated structure of transition metal dichalcogenide nanosheets, characterized in that 0.05: 1 to 4: 1.
이하, 본원의 제1 측면에 따른 전이금속 디칼코게나이드 나노시트의 적층 구조체에 대하여 상세히 설명한다.Hereinafter, the laminated structure of the transition metal dichalcogenide nanosheet according to the first aspect of the present disclosure will be described in detail.
본원의 일 구현예에 있어서, 상기 전이금속 디칼코게나이드 물질은 MX2로 표현될 수 있고, 여기서, M은 전이금속이고, X는 칼코겐 원소이며, 상기 M은 Mo, W, Nb, 및 Ti 등 전이금속으로 이루어진 군에서 선택되는 하나이고, 상기 X는 S, Se 및 Te으로 이루어진 군에서 선택되는 하나일 수 있으며, 바람직하게는 MoSe2, MoS2, WS2, WSe2, TiS2, TiSe2, ReS2, ZrTe2, NbSe2 중 선택되는 적어도 1종일 수 있고, 더 바람직하게는 MoS2, MoSe2, 또는 WS2일 수 있다. 예컨대, 복수의 전이금속 디칼코게나이드 물질에 의해 형성된 적층 구조체인 경우, 혼합 박리 및 재적층 과정에 의해, 상이한 전이금속 디칼코게나이드 간에 이종적층된 구조로 형성이 될 수도 있을 것이다.In one embodiment of the present application, the transition metal dichalcogenide material may be represented by MX 2 , wherein M is a transition metal, X is a chalcogen element, and M is Mo, W, Nb, and Ti It is one selected from the group consisting of such transition metals, and the X may be one selected from the group consisting of S, Se and Te, preferably MoSe 2 , MoS 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , may be at least one selected from NbSe 2 , more preferably MoS 2 , MoSe 2 , or WS 2 . For example, in the case of a laminated structure formed of a plurality of transition metal dichalcogenide materials, a heterogeneous stacked structure may be formed between different transition metal dichalcogenides by a mixed peeling and re-stacking process.
전이금속 디칼코게나이드를 이루는 전이금속 원자와 칼코겐 원자는 공유결합 형태로 존재하며 층과 층 사이에 약한 반데르발스 힘 (Van der Waals (VdW)interaction)으로 연결되어 있어 물리적 박리 및 화학적 박리가 가능하다. The transition metal atoms and chalcogen atoms constituting the transition metal dichalcogenide exist in the form of a covalent bond and are connected by weak van der Waals (VdW) interaction between layers, so physical and chemical exfoliation is prevented. possible.
종래에는 2차원 나노시트의 박리화는 스카치 테이프를 이용하여 물리적으로 떼어내거나 볼밀을 통한 박리, 또는 적절한 용매에서 박리과정을 진행시키는 방법 등이 있었다. 상술한 방법들은 박리 효율이 떨어지거나, 에너지 측면에서 비경제적이었기 때문에, 개선된 박리화 공정 및 재적층 공정이 필요하기 때문에 본 발명에 이르게 된 것이다.Conventionally, exfoliation of the two-dimensional nanosheets has been performed by physically peeling them off using scotch tape, peeling them through a ball mill, or performing the peeling process in an appropriate solvent. Since the above-described methods have poor peeling efficiency or are uneconomical in terms of energy, the present invention has been reached because an improved peeling process and re-lamination process are needed.
본원의 일 구현예에 있어서, 제조된 전이금속 디칼코게나이드 나노시트의 적층 구조체 또는 이것이 복합화된 하이브리드 복합체의 경우 X선 광전자 분광(XPS) 분석을 특성화할 수 있으며, 예를 들어, Thermo Fisher Scientific Co 사에서 제조한 theta probe base system을 사용할 수 있다. 상기 전이금속 디칼코게나이드 나노시트의 적층 구조체에서 1T상의 비율은 하기의 식 1에 의해 계산될 수 있다.In one embodiment of the present application, X-ray photoelectron spectroscopy (XPS) analysis can be used to characterize the laminated structure of the prepared transition metal dichalcogenide nanosheets or the hybrid composite in which they are combined, for example, Thermo Fisher Scientific Co. Theta probe base system manufactured by the company can be used. The ratio of the 1T phase in the layered structure of the transition metal dichalcogenide nanosheets can be calculated by Equation 1 below.
[식 1][Equation 1]
1T 상의 함량비율(%)= (1T 상의 총 피크 면적)/[(1T 상의 총 피크 면적)+ (2H 상의 총 피크 면적)]Content ratio (%) of the 1T phase = (total peak area of the 1T phase) / [(total peak area of the 1T phase) + (total peak area of the 2H phase)]
본원의 일 구현예에서, 통해 계산된 상기 (2H 상):(1T 상)의 비는 0.03:1 내지 5:1, 0.05:1 내지 4:1, 0.15:1 내지 3:1, 또는 0.3:1 내지 2:1일 수 있다. 본원발명의 일 구현예에 따르는 경우, 상기 범위를 만족하여 높은 수준의 전도성을 확보하는 것과 더불어, 건조 온도를 조절하여 1T/2H 상의 비율을 조절할 수 있고, 이를 이용하여 제조 직후부터 반영구 또는 영구적으로 1T 상이 높은 함량으로 유지되는 것을 특징으로 하는 것이다. In one embodiment of the present application, the ratio of (2H phase):(1T phase) calculated through is 0.03:1 to 5:1, 0.05:1 to 4:1, 0.15:1 to 3:1, or 0.3: It may be 1 to 2:1. According to one embodiment of the present invention, in addition to securing a high level of conductivity by satisfying the above range, the ratio of the 1T / 2H phase can be adjusted by adjusting the drying temperature, and using this, semi-permanent or permanent It is characterized in that the 1T phase is maintained at a high content.
본원의 일 구현예에 있어서, 제조된 전이금속 디칼코게나이드 나노시트의 적층 구조체 또는 이것이 복합화된 하이브리드 복합체의 경우 X선 회절 분석(X-ray Diffraction, XRD)을 통해서도 특성화할 수 있다. 구체적으로, 건조 후 1T 상을 많이 포함하게 되면, 1T 상을 의미하는 적어도 1종의 피크가 검출될 수 있다. X선 회절 분석(X-ray Diffraction, XRD)에서, 2H 상의 층간 간격(d-spacing) 보다 1T 상의 층간 간격에 가까운 층간 간격 값이 환산되는 적어도1종의 피크가 검출될 수 있다. 예컨대, MoS2를 포함하는 전이금속 디칼코게나이드 나노시트, 또는 이를 포함하는 후술하는 하이브리드 복합체의 경우, 8 내지 10°의 2θ를 구간에서 피크를 가질 수 있다. 이는 1T 상에 해당하는 피크를 의미하는 것일 수 있다. In one embodiment of the present application, in the case of a laminated structure of the prepared transition metal dichalcogenide nanosheets or a hybrid composite in which they are combined, it can also be characterized through X-ray diffraction (XRD) analysis. Specifically, when a large amount of the 1T phase is included after drying, at least one peak indicating the 1T phase may be detected. In X-ray diffraction (XRD), at least one kind of peak converted to an interlayer spacing value closer to the interlayer spacing of the 1T phase than the d-spacing of the 2H phase can be detected. For example, in the case of a transition metal dichalcogenide nanosheet containing MoS 2 or a hybrid composite to be described later containing the same, it may have a peak in the 2θ range of 8 to 10°. This may mean a peak corresponding to the 1T phase.
또한 본원의 일 구현예에 있어서, X선 회절 분석을 통해 계산된 전이금속 디칼코게나이드 나노시트의 적층 구조체의 층간 간격은 0.88 내지 1.11 nm인 것을 특징으로 하는 것일 수 있다. 이때, 2H 상의 d-spacing 값은 약 0.62nm이고, 1T 상의 경우 약 0.95 nm이며, XRD 분석을 통해 계산된 값이, 어느 한 쪽에 더 가까운 값을 나타내는 것에 따라 해당하는 상이 더 높은 함량으로 존재하는 것임을 추정할 수 있다.In addition, in one embodiment of the present application, the interlayer spacing of the layered structure of the transition metal dichalcogenide nanosheets calculated through X-ray diffraction analysis may be characterized in that 0.88 to 1.11 nm. At this time, the d-spacing value of the 2H phase is about 0.62 nm, and about 0.95 nm in the case of the 1T phase, and the value calculated through XRD analysis shows a value closer to either side, so that the corresponding phase is present in a higher content. It can be inferred that
본원의 일 구현예에 있어서, 라만 피크 스펙트럼을 관찰했을 때, 상기 1T 상을 나타내는 피크로서, 135 내지 155 cm-1의 범위에서 제1 피크, 220 내지 242 cm-1 범위에서 제2 피크, 및 325 내지 346 cm-1 범위에서 제3 피크가 검출되는 것을 특징으로 하는 것일 수 있다. 상술한 범위는 예컨대, MoS2를 포함하는 전이금속 디칼코게나이드 나노시트, 또는 이를 포함하는 후술하는 하이브리드 복합체의 경우를 의미하는 것으로, 전이금속 디칼코게나이드 물질이 상이할 경우 다른 피크 범위를 나타낼 수 있다.In one embodiment of the present application, when observing the Raman peak spectrum, as a peak representing the 1T phase, in the range of 135 to 155 cm -1 First peak, in the range of 220 to 242 cm -1 second peak, and in the range of 325 to 346 cm -1 It may be characterized in that the third peak is detected. The above-described range, for example, MoS 2 It refers to the case of a transition metal dichalcogenide nanosheet containing the same, or a hybrid composite to be described later including the same, and when the transition metal dichalcogenide materials are different, different peak ranges may be exhibited. there is.
본원의 제2 측면은,The second aspect of the present application is,
그래핀 나노시트 적층 구조체; 및 상기 그래핀 나노시트 적층 구조체 표면의 적어도 일부에 형성된, 제1항에 따른 전이금속 디칼코게나이드 나노시트 적층 구조체;를 포함하는, 하이브리드 복합체를 제공한다.Graphene nanosheet laminated structure; and the transition metal dichalcogenide nanosheet multilayer structure according to claim 1 formed on at least a portion of the surface of the graphene nanosheet multilayer structure.
본원의 제1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 측면에 대해 설명한 내용은 제2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed descriptions of portions overlapping with those of the first aspect of the present application have been omitted, but the contents described for the first aspect of the present application can be equally applied even if the description is omitted from the second aspect.
본원의 일 구현예에 따른 하이브리드 복합체는 후술하는 실시예에서 그 구조에 대해 자세히 분석하고 있으며, 본원의 제1 측면에 따른 전이금속 디칼코게나이드 나노시트 적층 구조체가 그래핀 나노시트 적층 구조체에 복합화된 형태로, 1T 상이 다량 함유된 전이금속 디칼코게나이드 나노시트 적층 구조체를 포함하는 것에 의해, 우수한 전도성을 확보할 수 있음과 동시에, 음극 소재로서의 그래핀의 장점을 함께 확보할 수 있다는 측면에서 종래와는 차별되는 기술적 특징이 있는 것이다. 또한, 상술한 제1 측면에 따른 전이금속 디칼코게나이드 나노시트 적층 구조체가 나타내는 특성들을 동일 또는 유사하게 하이브리드 복합체에서도 관찰할 수 있다.The structure of the hybrid composite according to one embodiment of the present application is analyzed in detail in the following examples, and the transition metal dichalcogenide nanosheet laminate structure according to the first aspect of the present application is composited with the graphene nanosheet laminate structure. In the form, by including a transition metal dichalcogenide nanosheet laminated structure containing a large amount of 1T phase, excellent conductivity can be secured and at the same time, the advantages of graphene as a negative electrode material can be secured together. has a distinctive technical feature. In addition, the same or similar characteristics exhibited by the transition metal dichalcogenide nanosheet laminated structure according to the first aspect described above can be observed in the hybrid composite.
본원의 제3 측면은,The third aspect of the present application,
적어도 1종의 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법으로서, 적어도 1종의 전이금속 디칼코게나이드 벌크 물질을 준비하는 단계; 상기 전이금속 디칼코게나이드 벌크 물질에 제1 양이온을 포함하는 용액을 혼입하는 단계; 상기 제1 양이온을 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계; 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계; 상기 전이금속 디칼코게나이드 벌크 물질을 박리 및 재적층하여 전이금속 디칼코게나이드 나노시트의 적층 구조체를 얻는 단계; 및 상기 전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;를 포함하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법을 제공한다.A method of manufacturing a laminated structure of at least one transition metal dichalcogenide nanosheet, comprising: preparing at least one transition metal dichalcogenide bulk material; incorporating a solution containing a first cation into the transition metal dichalcogenide bulk material; intercalating the first cation into the transition metal dichalcogenide bulk material; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; Obtaining a laminated structure of transition metal dichalcogenide nanosheets by exfoliating and re-stacking the transition metal dichalcogenide bulk material; And adjusting the ratio of the 1T phase (phase) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheets; provides a method for manufacturing a layered structure of transition metal dichalcogenide nanosheets, including.
본원의 제1 측면 및 제2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 및 제2 측면에 대해 설명한 내용은 제3 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed descriptions of portions overlapping with the first and second aspects of the present application have been omitted, but the contents described for the first and second aspects of the present application can be equally applied even if the description is omitted in the third aspect. .
이하, 본원의 제3 측면에 따른 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법에 대하여 도면을 참조하여 상세히 설명한다. 도 1a는 본 발명의 일 구현예에 따른, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법을 도식화한 순서도이다.Hereinafter, a method for manufacturing a laminated structure of transition metal dichalcogenide nanosheets according to the third aspect of the present application will be described in detail with reference to the drawings. Figure 1a is a flow chart schematically illustrating a method for manufacturing a laminated structure of transition metal dichalcogenide nanosheets according to an embodiment of the present invention.
우선 본원의 일 구현예에 있어서, 적어도 1종의 전이금속 디칼코게나이드 벌크 물질을 준비하는 단계(S110)를 포함할 수 있다. 상술한 바와 같이, 전이금속 디칼코게나이드 물질이 1종 사용될 경우, 본원의 제조방법에 의해 적어도 일부가 박리된 적층 구조체를 수득할 수 있고, 또 다른 구현예에 의하면, 복수의 전이금속 디칼코게나이드 물질이 사용될 경우, 혼합하여 박리가 진행되고, 계속 진행됨에 따라 재적층이 이루어지는 것일 수 있다.First, in one embodiment of the present application, preparing at least one transition metal dichalcogenide bulk material (S110) may be included. As described above, when one type of transition metal dichalcogenide material is used, a laminated structure in which at least a portion is exfoliated can be obtained by the manufacturing method of the present application, and according to another embodiment, a plurality of transition metal dichalcogenide materials When the material is used, it may be that the exfoliation proceeds by mixing, and the re-lamination proceeds as it continues.
다음으로, 본원의 일 구현예에 있어서, 상기 전이금속 디칼코게나이드 벌크 물질에 제1 양이온을 포함하는 용액을 혼입하는 단계(S120)를 포함할 수 있다.Next, in one embodiment of the present application, a step (S120) of incorporating a solution containing a first cation into the transition metal dichalcogenide bulk material may be included.
본원의 일 구현예에 있어서, 본 단계 이전에 질소를 주입하여 질소 분위기를 형성하는 단계;가 더 포함될 수도 있다.In one embodiment of the present application, forming a nitrogen atmosphere by injecting nitrogen prior to this step; may be further included.
본원의 일 구현예에 있어서, 상기 제1 양이온은 전이금속 디칼코게나이드 벌크 물질의 층상 구조 내에 삽입될 수 있는 양이온이라면 크게 제한되는 것은 아니지만, 바람직하게는 알칼리 금속 양이온일 수 있고, 더 바람직하게는 이온 크기가 작아 삽입하기가 용이할 수 있는 리튬 양이온(Li+)일 수 있다.In one embodiment of the present application, the first cation is not particularly limited as long as it is a cation that can be inserted into the layered structure of the transition metal dichalcogenide bulk material, but may preferably be an alkali metal cation, more preferably It may be a lithium cation (Li + ) that can be easily inserted due to its small ion size.
본원의 일 구현예에 있어서, 상기 제1 양이온을 포함하는 용액은 금속원소나 유기-알칼리 화합물일 수 있고, 바람직하게는 부틸리튬, 나트륨 나프탈레니드일 수 있고, 더 바람직하게는 n-부틸리튬일 수 있다.In one embodiment of the present application, the solution containing the first cation may be a metal element or an organo-alkali compound, preferably butyllithium or sodium naphthalenide, more preferably n-butyllithium can be
본원의 일 구현예에 있어서, 상기 제1 양이온을 포함하는 용액은 금속원소나 유기-알칼리 화합물일 수 있고, 바람직하게는 부틸리튬, 나트륨 나프탈레니드일 수 있고, 더 바람직하게는 n-부틸리튬일 수 있다.In one embodiment of the present application, the solution containing the first cation may be a metal element or an organo-alkali compound, preferably butyllithium or sodium naphthalenide, more preferably n-butyllithium can be
본원의 일 구현예에 있어서, 상기 제1 양이온을 포함하는 용액은 전이금속 디칼코게나이드 벌크 물질의 중량 1g에 대해 1 내지 30mL, 바람직하게는 2 내지 20mL, 더 바람직하게는 3 내지 15mL, 보다 더 바람직하게는 3 내지 10mL로 혼입될 수 있다. 상기 범위를 만족함으로써, 리튬 이온이 전이금속 디칼코게나이드 벌크 물질의 층간에 잘 삽입될 수 있는 것일 수 있다.In one embodiment of the present application, the solution containing the first cation is 1 to 30 mL, preferably 2 to 20 mL, more preferably 3 to 15 mL, and more based on 1 g of the weight of the transition metal dichalcogenide bulk material. It can preferably be incorporated in 3 to 10 mL. By satisfying the above range, lithium ions may be well intercalated between layers of the transition metal dichalcogenide bulk material.
다음으로, 본원의 일 구현예에 있어서, 상기 제1 양이온을 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계(S130)를 포함할 수 있다. 상기 단계 S130에서, 제1 양이온을 포함하는 용액이 투입된 혼합물을 음파 또는 초음파 처리하여 상기 제1 양이온을 다층 구조의 전이금속 디칼코게나이드 물질에 층간 삽입하는 것을 포함할 수 있다. 상기 음파 또는 초음파 처리를 통해 제1 양이온이 다층의 층상 구조내에 삽입(intercalation)되는 것을 촉진하기 위한 것일 수 있다.Next, in one embodiment of the present application, intercalating the first cation into the transition metal dichalcogenide bulk material may be intercalated (S130). The step S130 may include intercalating the first cations into the multi-layered transition metal dichalcogenide material by treating the mixture into which the solution containing the first cations is introduced with sound waves or ultrasonic waves. It may be to facilitate the intercalation of the first cations into the multi-layered layered structure through the sonic wave or ultrasonic treatment.
본원의 일 구현예에 있어서, 상기 제1 양이온을 상기 및 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계에서, 10분 내지 600분, 10분 내지 480분, 10분 내지 300분, 10분 내지 240분, 또는 20분 내지 180분 동안 음파 또는 초음파 처리하는 것을 특징으로 하는 것일 수 있다. 상기 음파 또는 초음파 처리가 10분 미만으로 이루어질 경우, 제1 양이온이 충분하게 다층의 층상구조 내에 삽입되지 않을 수 있고, 600분 초과로 이루어질 경우 비경제적이거나 소재의 decomposition이 일어날 수 있다.In one embodiment of the present application, in the step of intercalating the first cation into the transition metal dichalcogenide bulk material, 10 minutes to 600 minutes, 10 minutes to 480 minutes, 10 minutes to 300 minutes, 10 minutes to It may be characterized by sonicating or ultrasonicating for 240 minutes, or 20 to 180 minutes. When the sonic or ultrasonic treatment is performed for less than 10 minutes, the first cation may not be sufficiently inserted into the multi-layered layered structure, and when it is performed for more than 600 minutes, it may be uneconomical or decomposition of the material may occur.
다음으로, 본원의 일 구현예에 있어서, 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계(S140)를 포함할 수 있다.Next, in one embodiment of the present application, a step of ion-exchanging the intercalated first cation with a second cation by mixing a solution containing the second cation (S140) may be included.
상기 제1 양이온이 전이금속 디칼코게나이드 벌크 물질에 인터칼레이션되고, 층간 간격이 증가하게 되면 층간 결합력이 약화된다. 인터칼레이션된 제1 양이온(예컨대, 알칼리 금속 양이온)을 제2 양이온으로 이온-교환하는 과정을 의미할 수 있다. 예를 들면 리튬 이온을 암모늄 이온(NH4 +)와 이온-교환하고, 이후 단계에서 증류수로 세척하면 층간의 제2 양이온(예컨대, NH4 +)이 H3O+로 교환되면서 쉽게 벌크 3차원 층상 물질이 단일층 내지 소수의 다중층 2차원 나노시트 물질로 박리화할 수 있게 된다.When the first cation is intercalated in the transition metal dichalcogenide bulk material and the interlayer spacing increases, the interlayer bonding force is weakened. It may mean a process of ion-exchanging intercalated first cations (eg, alkali metal cations) with second cations. For example, when lithium ions are ion-exchanged with ammonium ions (NH 4 + ) and washed with distilled water in a later step, the second cation between the layers (eg, NH 4 + ) is exchanged for H 3 O + , easily forming a bulk three-dimensional The layered material can be exfoliated into a single layer to a few multi-layered two-dimensional nanosheet materials.
본원의 일 구현예에 있어서, 제2 양이온은 제1 양이온보다 이온 크기가 큰 양이온이 포함될 수 있으며, 비제한적인 예시로서, 암모늄, 탄화수소로 치환된 1급 내지 3급 암모늄, 마그네슘, 아연(Zn) 및 히드로늄(H3O+)으로 이루어지는 군으로부터 선택되는 1종의 양이온일 수 있고, 바람직하게는 암모늄 이온일 수 있다.In one embodiment of the present application, the second cation may include a cation having a larger ionic size than the first cation, and as non-limiting examples, ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn ) and hydronium (H 3 O + ), and may be one type of cation selected from the group consisting of, preferably an ammonium ion.
본원의 일 구현예에 있어서, 상기 제2 양이온을 포함하는 용액은 상기 전이금속 디칼코게나이드 벌크 물질의 중량 1g에 대해 10 내지 200mL, 바람직하게는 20 내지 150mL, 더 바람직하게는 25 내지 120mL, 보다 더 바람직하게는 3 내지 10mL로 혼입될 수 있다. 상기 범위를 만족함으로써, 제1 양이온과 제2 양이온이 녹여 있는 수용액간 반응이 격렬하게 일어남으로써 형성된 제2 양이온(예컨대, NH4 +)과 제1 양이온(Li+)간의 이온-교환이 활발하게 이루어질 수 있는 것일 수 있다.In one embodiment of the present application, the solution containing the second cation is 10 to 200mL, preferably 20 to 150mL, more preferably 25 to 120mL, based on 1g of the weight of the transition metal dichalcogenide bulk material. More preferably, it may be incorporated in 3 to 10 mL. By satisfying the above range, the ion-exchange between the second cation (eg, NH 4 + ) and the first cation (Li + ) formed by vigorous reaction between the aqueous solution in which the first cation and the second cation are dissolved occurs actively. It may be something that can be done.
다음으로, 본원의 일 구현예에 있어서, 상기 전이금속 디칼코게나이드 벌크 물질을 박리 및 재적층하여 전이금속 디칼코게나이드 나노시트의 적층 구조체를 얻는 단계(S150)를 포함할 수 있다. 상술한 단계는 제2 양이온이 제1 양이온과 이온-교환되어 다층의 층상 구조내에 삽입(intercalation)되어 층간 간격이 더 벌어지고 종국에는 박리되는 단계를 의미할 수 있다.Next, in one embodiment of the present application, a step of obtaining a laminated structure of transition metal dichalcogenide nanosheets by exfoliating and re-stacking the transition metal dichalcogenide bulk material (S150) may be included. The above-described step may refer to a step in which the second cation is ion-exchanged with the first cation to be intercalated into the multi-layered layered structure, further widening the interlayer spacing, and eventually exfoliating.
본원의 일 구현예에 있어서, 상기 단계 S150에서, 제2 양이온으로 이온-교환이 끝난 전이금속 디칼코게나이드 박리 용액에 외력을 가하는 것, 바람직하게는 음파 또는 초음파 처리를 가하여 각각의 물질을 박리, 및 분산하는 것을 포함할 수 있다. 상기 음파 또는 초음파 처리를 통해 박리를 촉진하기 위한 것일 수 있다. In one embodiment of the present application, in the step S150, applying an external force to the transition metal dichalcogenide stripping solution after ion-exchange with the second cation, preferably by applying sound waves or ultrasonic waves to separate each material, and dispersing. It may be to promote exfoliation through the sonic or ultrasonic treatment.
본원의 일 구현예에 있어서, 단계 S150에서는, 10분 내지 600분, 10분 내지 480분, 10분 내지 300분, 10분 내지 240분, 또는 20분 내지 180분 동안 음파 또는 초음파 처리하는 것을 특징으로 하는 것일 수 있다. 상기 음파 또는 초음파 처리가 10분 미만으로 이루어질 경우, 벌크 물질의 박리, 분산, 모든 진행과정이 충분히 이루어지지 않을 수 있고, 600분 초과로 이루어질 경우 비경제적이거나 소재의 decomposition이 일어날 수 있다.In one embodiment of the present application, in step S150, sound wave or ultrasonic treatment is performed for 10 minutes to 600 minutes, 10 minutes to 480 minutes, 10 minutes to 300 minutes, 10 minutes to 240 minutes, or 20 minutes to 180 minutes. it may be to When the sound wave or ultrasonic treatment is performed for less than 10 minutes, peeling, dispersion, and all processes of the bulk material may not be sufficiently performed, and when performed for more than 600 minutes, it may be uneconomical or decomposition of the material may occur.
본원의 일 구현예에 있어서, 상기 S130 단계 또는 S150단계에서의 음파 또는 초음파 처리와 동시에 교반을 진행하는 것을 특징으로 할 수 있다. 교반 과정을 동시에 진행함으로써, 제1 양이온의 3차원 층상 벌크 물질의 층간에의 삽입, 또는 제2 양이온으로의 이온-교환 및 3차원 층상 벌크 물질의 층간에의 삽입 및 이어지는 박리화 및 분산(구체적으로, 서로 다른 각각의 박리화된 나노시트들이 고르게 잘 분산)을 더욱 촉진할 수 있으며, 간단한 공정의 추가로 전체 공정 시간을 단축시킬 수 있다. 상기 교반은 0.1 내지 5 시간, 바람직하게는 0.2 내지 4 시간, 더 바람직하게는 0.5 내지 3 시간 동안 진행되는 것일 수 있다. 또한, 본 발명의 일 구현예에 있어서, 교반은 S130 단계 또는 S150단계에서의 음파 또는 초음파 처리 단계 중 지속적으로 동시 수행될 수도 있지만, 복수 회에 걸쳐 수행될 수 있으며, 2차원 나노시트 소재의 박리화 이후 decomposition을 방지하는 측면에서 1회 당 0.1 내지 2 시간, 바람직하게는 1회 당 0.2 내지 1 시간 동안 진행될 수 있다. 상기 교반 과정에 필요한 장비는 당 업계에서 사용되는 것이라면 제한되지 않는다.In one embodiment of the present application, it may be characterized in that the agitation proceeds simultaneously with the sonic or ultrasonic treatment in step S130 or step S150. By simultaneously carrying out the stirring process, intercalation of the first cation into the interlayer of the three-dimensional layered bulk material, or ion-exchange with the second cation and intercalation of the interlayer of the three-dimensional layered bulk material and subsequent exfoliation and dispersion (specifically As a result, the uniform dispersion of each of the different exfoliated nanosheets) can be further promoted, and the overall process time can be shortened by adding a simple process. The stirring may be performed for 0.1 to 5 hours, preferably 0.2 to 4 hours, and more preferably 0.5 to 3 hours. In addition, in one embodiment of the present invention, stirring may be performed simultaneously or continuously during the sonic wave or ultrasonic treatment step in step S130 or step S150, but may be performed multiple times, and the two-dimensional nanosheet material may be peeled off. In terms of preventing decomposition after heating, it may be performed for 0.1 to 2 hours per time, preferably 0.2 to 1 hour per time. Equipment required for the stirring process is not limited as long as it is used in the art.
다음으로, 본원의 일 구현예에 있어서, 상기 전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계 (S160)를 포함할 수 있다.Next, in one embodiment of the present application, adjusting the ratio of the 1T phase (S160) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheets may be included.
본원의 일 구현예에 있어서, 상기 단계 S160은, 단계 S150에서 수득한 전이금속 디칼코게나이드 나노시트의 적층 구조체를 포함하는 용액을 소정의 필터를 통과시키고, 용매로 전이금속 디칼코게나이드 나노시트의 적층 구조체 분말을 세척하는 단계; 수득된 분말을 건조하는 단계를 더 포함하는 것을 특징으로 할 수 있다. 상술한 단계에서 3차원 층상 벌크 물질의 층간의 제2 양이온이 H+로 교환되면서 더욱 용이하게 벌크 3차원 층상 물질이 단일층 내지 소수의 다중층 2차원 나노시트 물질로 박리화를 촉진할 수 있다. 이후 필터(filtration)을 통해 고체 상을 여과하고 건조하여 분말화된 하이브리드 복합체를 수득할 수 있다. 본 단계에서 사용되는 세척액의 종류는 비제한적이나, 증류수, 초순수, 에탄올 등이 사용될 수 있다. 또한 건조 단계에서는 건조 온도 및 시간은 적절하게 조절될 수 있을 것이다. In one embodiment of the present application, in the step S160, the solution containing the layered structure of the transition metal dichalcogenide nanosheets obtained in step S150 is passed through a predetermined filter, and the transition metal dichalcogenide nanosheets are used as a solvent. washing the laminated structure powder; It may be characterized by further comprising the step of drying the obtained powder. In the above step, as the second cation between the layers of the 3D layered bulk material is exchanged with H + , the exfoliation of the bulk 3D layered material into a single layer or a small number of multilayered 2D nanosheet materials can be more easily promoted. . Thereafter, the solid phase may be filtered through a filter and dried to obtain a powdered hybrid composite. The type of washing liquid used in this step is not limited, but distilled water, ultrapure water, ethanol, and the like may be used. Also, in the drying step, the drying temperature and time may be appropriately adjusted.
본원의 일 구현예에 있어서, 세척 후 소재의 회수를 위한 건조 조건을 조절하는 것에 의해 전이금속 디칼코게나이드 나노시트의 적층 구조체가 1T 상을 고함량으로 포함한 상태를 유지할 수 있다.In one embodiment of the present application, the multilayer structure of the transition metal dichalcogenide nanosheet may maintain a state including a high content of the 1T phase by adjusting the drying conditions for recovering the material after washing.
본원의 일 구현예에 있어서, 상기 전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;는 100 ℃, 95 ℃, 90 ℃, 85 ℃, 80 ℃, 75 ℃, 70 ℃, 65 ℃, 60 ℃, 50 ℃, 또는 상온 미만의 온도에서 건조하는 것을 특징으로 하는 것일 수 있다. 건조 온도를 조절하는 것에 의해 1T/2H 상의 비율을 조절할 수 있다는 것은 상술한 바와 같은 본원의 기술적 특징이라고 할 수 있다.In one embodiment of the present application, adjusting the ratio of the 1T phase (phase) according to the drying temperature of the laminated structure of the transition metal dichalcogenide nanosheet; is 100 ℃, 95 ℃, 90 ℃, 85 ℃, 80 ℃ It may be characterized by drying at a temperature below ℃, 75 ℃, 70 ℃, 65 ℃, 60 ℃, 50 ℃, or room temperature. Being able to adjust the 1T/2H phase ratio by adjusting the drying temperature can be said to be a technical feature of the present invention as described above.
본원의 다른 일 구현예에 있어서, 상기 상기 전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;는 동결 건조(Freezing Drying, FD)하는 것을 특징으로 하는 것이 바람직할 수 있다. 상술한 바와 같이 건조 온도를 소정의 온도 미만으로 낮추거나 영하의 온도에서 동결 건조함으로써, 전이금속 디칼코게나이드 나노시트의 적층 구조체가 1T 상을 높게 함유한 상태를 유지할 수 있게 되며, 이는 나아가 반영구적으로 높은 전도성 특징을 유지할 수 있게되는 것을 의미할 수 있다.In another embodiment of the present application, the step of adjusting the ratio of the 1T phase (phase) according to the drying temperature of the laminated structure of the transition metal dichalcogenide nanosheets; characterized in that freeze drying (FD) It may be preferable to As described above, by lowering the drying temperature to less than a predetermined temperature or freeze-drying at a sub-zero temperature, the laminated structure of the transition metal dichalcogenide nanosheet can maintain a state containing a high 1T phase, which is further semi-permanent. It may mean being able to maintain high conductivity characteristics.
본원의 제4 측면은,The fourth aspect of the present application,
하이브리드 복합체의 제조방법으로서, 그래핀 나노시트 또는 그래핀 옥사이드 나노시트의 분말 또는 분산액과 적어도 1종의 전이금속 디칼코게나이드 벌크 물질을 혼합하여 혼합물을 제조하는 단계; 상기 혼합물에 제1 양이온을 포함하는 용액을 혼입하는 단계; 상기 제1 양이온을 상기 그래핀 나노시트 또는 그래핀 옥사이드 나노시트 및 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계; 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계; 상기 그래핀 나노시트 또는 그래핀 옥사이드 나노시트 및 전이금속 디칼코게나이드 벌크 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계; 및 상기 하이브리드 복합체의 건조 온도에 따라, 상기 적어도 1종의 전이금속 디칼코게나이드의 1T 상(phase)의 비율을 조절하는 단계;를 포함하는, 하이브리드 복합체의 제조방법을 제공한다.A method for preparing a hybrid composite, comprising: preparing a mixture by mixing powder or dispersion of graphene nanosheets or graphene oxide nanosheets with at least one transition metal dichalcogenide bulk material; incorporating a solution containing the first cation into the mixture; intercalating the first cation into the graphene nanosheet or graphene oxide nanosheet and the transition metal dichalcogenide bulk material; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; Obtaining a hybrid composite by simultaneously exfoliating and re-stacking the graphene nanosheets or graphene oxide nanosheets and the transition metal dichalcogenide bulk material; and adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide according to the drying temperature of the hybrid composite.
본원의 제1 측면 내지 제3 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 내지 제3 측면에 대해 설명한 내용은 제4 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed descriptions of portions overlapping with the first to third aspects of the present application have been omitted, but the contents described for the first to third aspects of the present application can be equally applied even if the description is omitted in the fourth aspect. .
이하, 본원의 제4 측면에 따른 하이브리드 복합체의 제조방법에 대하여 도면을 참조하여 상세히 설명한다. 도 1b는 본 발명의 일 구현예에 따른, 하이브리드 복합체의 제조방법을 도식화한 순서도이다.Hereinafter, a method for preparing a hybrid composite according to the fourth aspect of the present application will be described in detail with reference to the drawings. Figure 1b is a flow chart schematically illustrating a method for preparing a hybrid composite according to an embodiment of the present invention.
우선, 본원의 일 구현예에 있어서, 그래핀 나노시트 분말 및 적어도 1종의 전이금속 디칼코게나이드 벌크 물질을 혼합하여 혼합물을 제조하는 단계(S210)를 포함할 수 있다.First, in one embodiment of the present application, a step of preparing a mixture by mixing graphene nanosheet powder and at least one transition metal dichalcogenide bulk material (S210) may be included.
본원의 일 구현예에 있어서, 상기 그래핀 나노시트 분말 및 전이금속 디칼코게나이드 벌크 물질을 혼합하여 혼합물을 제조하는 단계;에서, 상기 전이금속 디칼코게나이드의 벌크 물질의 함량은 그래핀 나노시트 분말 100 중량부에 대하여, 10 내지 400 중량부, 바람직하게는 20 중량부 내지 250 중량부인 것을 특징으로 하는 것일 수 있다. 그래핀이 상술한 범위 밖에 있는 경우, 원하는 수준의 전기전도도, 용량 등 전기화학적 특성 및 구조적 안정성을 만족할 수 없어 전극 활물질로서 종래 음극재와의 차별성이 없을 수 있거나, 그래핀 나노시트 함량이 너무 적고 고가의 전이금속 디칼코게나이드 물질 함량이 많아지게 되는 경우 비경제적일 수 있다. 다른 일 구현예에 있어서, 전이금속 디칼코게나이드가 2종 이상 포함되는 경우, 상술한 비율 범위는 총 전이금속 디칼코게나이드의 중량의 합을 기준으로 볼 수 있다.In one embodiment of the present application, in preparing a mixture by mixing the graphene nanosheet powder and the transition metal dichalcogenide bulk material, the content of the bulk material of the transition metal dichalcogenide is graphene nanosheet powder Based on 100 parts by weight, it may be characterized in that it is 10 to 400 parts by weight, preferably 20 parts by weight to 250 parts by weight. If graphene is outside the above-mentioned range, it may not be able to satisfy the desired level of electrochemical properties such as electrical conductivity and capacity and structural stability, so there may be no differentiation from conventional negative electrode materials as an electrode active material, or the content of graphene nanosheets is too small It may be uneconomical when the content of the expensive transition metal dichalcogenide material becomes large. In another embodiment, when two or more types of transition metal dichalcogenides are included, the above-described ratio range may be based on the sum of the weights of all transition metal dichalcogenides.
전이금속 디칼코게나이드 물질에 관한 사항은 상술하였으므로 그 설명을 생략한다.Since the transition metal dichalcogenide material has been described above, the description thereof will be omitted.
다음으로, 본원의 일 구현예에 있어서, 상기 혼합물에 제1 양이온을 포함하는 용액을 혼입하는 단계(S220)를 포함할 수 있다.Next, in one embodiment of the present application, a step (S220) of incorporating a solution containing the first cation into the mixture may be included.
제1 양이온의 종류에 대해서는 상술하였으므로 그 설명을 생략한다.Since the type of the first cation has been described above, the description thereof is omitted.
본원의 일 구현예에 있어서, 상기 제1 양이온을 포함하는 용액은 상기 그래핀 나노시트 분말 및 전이금속 디칼코게나이드 벌크 물질의 중량 1g에 대해 1 내지 30mL, 바람직하게는 2 내지 20mL, 더 바람직하게는 3 내지 15mL, 보다 더 바람직하게는 3 내지 10mL로 혼입될 수 있다. 상기 범위를 만족함으로써, 리튬 이온이 그래핀 나노시트의 표면의 적층 구조 또는 전이금속 디칼코게나이드 물질의 층간에 잘 삽입될 수 있는 것일 수 있다.In one embodiment of the present application, the solution containing the first cation is 1 to 30 mL, preferably 2 to 20 mL, more preferably based on 1 g of the weight of the graphene nanosheet powder and the transition metal dichalcogenide bulk material. may be incorporated at 3 to 15 mL, even more preferably at 3 to 10 mL. When the above range is satisfied, lithium ions may be well intercalated between the layered structure of the surface of the graphene nanosheet or the layer of the transition metal dichalcogenide material.
다음으로, 본원의 일 구현예에 있어서, 상기 제1 양이온을 상기 그래핀 나노시트 또는 그래핀 옥사이드 나노시트 및 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계(S230)를 포함할 수 있다. 상기 단계 S230에서, 제1 양이온을 포함하는 용액이 투입된 혼합물을 음파 또는 초음파 처리하여 상기 제1 양이온을 다층 구조의 그래핀 또는 그래핀 옥사이드 나노시트 분말 및 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 것을 포함할 수 있다. 상기 음파 또는 초음파 처리를 통해 제1 양이온이 다층의 층상 구조내에 삽입(intercalation)되는 것을 촉진하기 위한 것일 수 있다. 음파 또는 초음파 처리하는 단계의 시간 등 조건에 대해서는 상술하였으므로 그 설명을 생략한다.Next, in one embodiment of the present application, intercalating the first cation into the graphene nanosheet or graphene oxide nanosheet and the transition metal dichalcogenide bulk material may be intercalated (S230). In the step S230, the mixture into which the solution containing the first cation is introduced is sonicated or ultrasonically treated to intercalate the first cation into the multi-layered graphene or graphene oxide nanosheet powder and the transition metal dichalcogenide bulk material may include It may be to facilitate the intercalation of the first cations into the multi-layered layered structure through the sonic wave or ultrasonic treatment. Conditions, such as the time of the sound wave or ultrasonic treatment step, have been described above, so the description thereof will be omitted.
다음으로, 본원의 일 구현예에 있어서, 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계(S240)를 포함할 수 있다. 상기 제1 양이온이 그래핀 또는 그래핀 옥사이드 나노시트 및 전이금속 디칼코게나이드 나노시트의 적층 구조체와 같은 3차원 벌크 물질 모두에 인터칼레이션되고 이온-교환이 이루어진다는 점을 제외하고는, 상술한 이온 교환 단계와 그 설명이 동일하므로 설명은 생략하도록 한다. 제2 양이온의 종류 및 혼합 분말에 대하여 투입되는 부피 함량 범위에 대해서는 상술한 바 있으므로, 그 설명을 생략한다.Next, in one embodiment of the present application, a step of ion-exchanging the intercalated first cation with a second cation by mixing a solution containing the second cation (S240) may be included. Except for the fact that the first cation is intercalated in both three-dimensional bulk materials such as graphene or graphene oxide nanosheets and laminated structures of transition metal dichalcogenide nanosheets and ion-exchange is performed, the above-mentioned Since the ion exchange step and its description are the same, the description will be omitted. Since the type of the second cation and the range of volume content added to the mixed powder have been described above, description thereof will be omitted.
다음으로, 본원의 일 구현예에 있어서, 상기 그래핀 나노시트 또는 그래핀 옥사이드 나노시트 및 전이금속 디칼코게나이드 벌크 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계(S250)를 포함할 수 있다. 상술한 단계는 제2 양이온이 제1 양이온과 이온-교환되어 다층의 층상 구조내에 삽입(intercalation)되어 층간 간격이 더 벌어지고 이후 박리 및 분산과정에서 이종의 나노시트간의 재적층(restacking)되는 것을 촉진하기 위한 것일 수 있다.Next, in one embodiment of the present application, the graphene nanosheets or graphene oxide nanosheets and the transition metal dichalcogenide bulk material may be simultaneously exfoliated and re-laminated to obtain a hybrid composite (S250). . In the above-described step, the second cation is ion-exchanged with the first cation to be intercalated into the multi-layered layered structure, further widening the interlayer spacing, and restacking between the heterogeneous nanosheets in the subsequent separation and dispersion process. It may be to promote
본원의 일 구현예에 있어서, 상기 단계 S500에서, 제2 양이온으로 이온-교환이 끝난 그래핀-전이금속 디칼코게나이드 혼합물을 외력을 가하는 것, 바람직하게는 음파 또는 초음파 처리를 가하여 각각의 물질을 박리, 분산 및 재적층하는 것을 포함할 수 있다. 초음파 처리 시간 등의 조건 및 교반과 함께 이루어지는 등의 사항도 상술한 바 있으므로 그 설명을 생략하도록 한다.In one embodiment of the present application, in the step S500, applying an external force to the ion-exchanged graphene-transition metal dichalcogenide mixture with the second cation, preferably by applying sound waves or ultrasonic treatment to separate each material This may include peeling, dispersing and re-laminating. Conditions such as ultrasonic treatment time and matters such as stirring are also described above, so the description thereof will be omitted.
다음으로, 본원의 일 구현예에 있어서, 상기 하이브리드 복합체의 건조 온도에 따라, 상기 적어도 1종의 전이금속 디칼코게나이드의 1T 상(phase)의 비율을 조절하는 단계(S260)를 포함할 수 있다. 본 단계의 경우도 상술한 단계 S160에서 설명한 내용이 중복될 수 있으므로, 상세한 설명은 생략하도록 한다.Next, in one embodiment of the present application, adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide according to the drying temperature of the hybrid composite (S260) may be included. . In the case of this step, since the contents described in the above-described step S160 may be duplicated, a detailed description thereof will be omitted.
본원의 제5 측면은,The fifth aspect of the present application,
상기 전이금속 디칼코게나이드 나노시트의 적층 구조체 또는 하이브리드 복합체를 포함하는 전극 활물질을 제공한다.An electrode active material including a laminated structure or a hybrid composite of the transition metal dichalcogenide nanosheets is provided.
본원의 제1 측면 내지 제4 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 내지 제4 측면에 대해 설명한 내용은 제5 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed descriptions of portions overlapping with the first to fourth aspects of the present application have been omitted, but the contents described for the first to fourth aspects of the present application can be equally applied even if the description is omitted in the fifth aspect. .
이하, 본원의 제5 측면에 따른 전극 활물질에 대하여 상세히 설명한다.Hereinafter, the electrode active material according to the fifth aspect of the present application will be described in detail.
본원의 일 구현예에 있어서, 상기 전극 활물질은 전극 집전체 상에 형성되어 있는 것일 수 있다. 이때, 상기 전극 집전체는 소자의 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 종류에 크게 제한이 없는 것일 수 있다. 예를 들어, 상기 전극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인리스 스틸 표면에 탄소, 니켈, 티탄, 은 등이 표면 처리된 물질을 포함하는 것일 수 있다. 한편, 상기 전극 집전체는 약 3 μm 내지 500 μm의 두께를 가지는 것일 수 있으며, 상기 집전체의 표면에 미세한 요철을 형성하여 전극 활물질의 접착력을 높이는 것일 수 있다. 즉, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용 가능한 것일 수 있다.In one embodiment of the present application, the electrode active material may be formed on an electrode current collector. In this case, the type of the electrode current collector may not be significantly limited as long as it has conductivity without causing chemical change of the device. For example, the electrode current collector may include copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a material in which carbon, nickel, titanium, silver, or the like is surface-treated on the surface of aluminum or stainless steel. Meanwhile, the electrode current collector may have a thickness of about 3 μm to 500 μm, and fine irregularities may be formed on the surface of the current collector to increase adhesion of the electrode active material. That is, it may be usable in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
본원의 일 구현예에 있어서, 상기 전극 활물질은 활물질 이외에 도전재 및 바인더를 더 포함하는 것일 수 있다. 이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 소자의 화학적 변화를 유발하지 않고 전기 전도성을 갖는 것이라면 종류에 크게 제한이 없는 것일 수 있다. 예를 들어, 상기 도전재는 천연 흑연 또는 인조 흑연 등의 흑연, 카본블랙, 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프블랙, 서머블랙, 탄소섬유 등의 탄소계 물질, 구리, 니켈 알루미늄, 은 등의 금속 분말 또는 금속 섬유, 산화아연, 티탄산 칼륨 등의 도전성 위스키, 산화 티탄 등의 도전성 금속 산화물 또는 폴리페닐렌 유도체 등의 전도성 고분자 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 한편, 상기 도전재는 통상적으로 상기 전극 활물질 100 중량부 대비 1 중량부 내지 30 중량부의 함량으로 사용되는 것일 수 있다.In one embodiment of the present application, the electrode active material may further include a conductive material and a binder in addition to the active material. In this case, the conductive material is used to impart conductivity to the electrode, and the type may not be significantly limited as long as it does not cause chemical change of the device and has electrical conductivity. For example, the conductive material is graphite such as natural graphite or artificial graphite, carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, copper, nickel, aluminum , metal powder or metal fibers such as silver, conductive whiskey such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide or conductive polymers such as polyphenylene derivatives, and combinations thereof. it may be Meanwhile, the conductive material may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
또한, 상기 바인더는 전극 활물질 입자들 간의 부착 및 전극 활물질과 집전체와의 접착력을 향상시키는 역할을 하는 것일 수 있다. 구체적으로, 상기 바인더는 예를 들어, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 한편, 상기 바인더는 통상적으로 상기 전극 활물질 100 중량부 대비 1 중량부 내지 30 중량부의 함량으로 사용되는 것일 수 있다.In addition, the binder may serve to improve adhesion between particles of the electrode active material and adhesion between the electrode active material and the current collector. Specifically, the binder may be, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), alcohol It may include a material selected from the group consisting of phonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof and combinations thereof. Meanwhile, the binder may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
전극 활물질로서, 상기 하이브리드 복합체는 높은 다공도 및 전기전도도를 가지기 때문에 에너지 저장 장치들의 에너지밀도 및 출력특성 등을 향상시키는 것일 수 있다.As an electrode active material, the hybrid composite may improve energy density and output characteristics of energy storage devices because it has high porosity and electrical conductivity.
본원의 제 6 측면은,The sixth aspect of the present application,
상기 전극활물질을 포함하는 애노드; 캐소드; 및 상기 애노드 및 캐소드 사이에 개재되는 분리막; 및 전해질을 포함하는, 알칼리 금속-이온 배터리를 제공한다. an anode containing the electrode active material; cathode; and a separator interposed between the anode and the cathode; and an electrolyte.
본원의 제 1 측면 내지 제 5 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 내지 제 5 측면에 대해 설명한 내용은 제 6 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed descriptions of portions overlapping with the first to fifth aspects of the present application have been omitted, but the contents described for the first to fifth aspects of the present application can be equally applied even if the description is omitted in the sixth aspect. .
본원의 일 구현예에 있어서, 상기 알칼리 금속-이온 배터리는 리튬-이온 배터리 또는 나트륨-이온 배터리일 수 있다.In one embodiment of the present application, the alkali metal-ion battery may be a lithium-ion battery or a sodium-ion battery.
본원의 일 구현예에 있어서, 알칼리 금속-이온 배터리의 제조방법으로, 상기 방법은 음극 집전체에 음극활물질을 코팅하여 음극부(애노드)를 준비하는 단계; 양극 집전체에 양극 활물질을 코팅하여 양극부를 형성하는 단계를 포함하는 알칼리 금속-이온 배터리의 제조방법을 제공할 수 있다.In one embodiment of the present application, a method for manufacturing an alkali metal-ion battery, the method comprising: preparing a negative electrode part (anode) by coating a negative electrode active material on a negative electrode current collector; It is possible to provide a method for manufacturing an alkali metal-ion battery comprising the step of forming a positive electrode part by coating a positive electrode current collector with a positive electrode active material.
본원의 일 구현예에 있어서, 전해질은 유기용매에 염 및 첨가제를 혼합하여 사용하는 것일 수 있다. 이때, 상기 유기용매는 ACN(Acetonitrile), EC(Ethylene carbonate), PC(Propylene carbonate), DMC(Dimethyl carbonate), DEC(Diethyl carbonate), EMC(Ethylmethyl carbonate), DME(1,2-dimethoxyethane), GBL(γ-buthrolactone), MF(Methyl formate), MP(Methyl propionate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 또한, 상기 염은 0.8 내지 2 M가 사용되며, 리튬(Li)염 또는 나트륨(Na)염과 비리튬(non-lithium)염을 혼합하여 사용하는 것일 수 있다. 상기 리튬(Li)염은 상기 음극 활물질, 즉 하이브리드 복합체의 구조 내로 삽입/탈리 반응을 수반하며, 이의 종류로는 LiBF4, LiPF6, LiClO4, LiAsF6, LiAlCl4, LiCF3SO3, LiN(SO2CF3)2, LiC(SO2CF3)3, LiBOB(Lithium bis(oxalato)borate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 또한 상기 나트륨염(Na)은 NaBF4, NaPF6, NaClO4, NaAsF6, NaAlCl4, NaCF3SO3, NaN(SO2CF3)2, NaC(SO2CF3)3, Sodium bis(oxalato)borate 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 또한, 상기 비리튬염은 탄소재질 첨가제의 표면적에 흡/탈착 반응을 수반하며, 리튬염에 0 내지 0.5 M를 혼합하여 사용하는 것일 수 있다. 이때, 상기 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate), TEMABF4(Triethylmethylammonium tetrafluorborate), SBPBF4(spiro-(1,1′)-bipyrrolidium tetrafluoroborate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. In one embodiment of the present application, the electrolyte may be used by mixing a salt and an additive in an organic solvent. At this time, the organic solvent is ACN (Acetonitrile), EC (Ethylene carbonate), PC (Propylene carbonate), DMC (Dimethyl carbonate), DEC (Diethyl carbonate), EMC (Ethylmethyl carbonate), DME (1,2-dimethoxyethane), It may include a material selected from the group consisting of γ-butrolactone (GBL), methyl formate (MF), methyl propionate (MP), and combinations thereof. In addition, the salt is used in an amount of 0.8 to 2 M, and may be a mixture of lithium (Li) salt or sodium (Na) salt and non-lithium salt. The lithium (Li) salt accompanies an intercalation/desorption reaction into the structure of the anode active material, that is, the hybrid composite, and its types include LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN It may include a material selected from the group consisting of (SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , lithium bis(oxalato)borate (LiBOB), and combinations thereof. In addition, the sodium salt (Na) is NaBF 4 , NaPF 6 , NaClO 4 , NaAsF 6 , NaAlCl 4 , NaCF 3 SO 3 , NaN(SO 2 CF 3 ) 2 , NaC(SO 2 CF 3 ) 3 , Sodium bis (oxalato ) It may include a material selected from the group consisting of borate and combinations thereof. In addition, the non-lithium salt accompanies an adsorption/desorption reaction on the surface area of the carbon material additive, and may be used by mixing 0 to 0.5 M with the lithium salt. In this case, the non-lithium salt includes a material selected from the group consisting of TEABF 4 (Tetraethylammonium tetrafluoroborate), TEMABF 4 (Triethylmethylammonium tetrafluoroborate), SBPBF 4 (spiro-(1,1′)-bipyrrolidium tetrafluoroborate), and combinations thereof it may be
본원의 일 구현예에 있어서, 상기 전해질은 VC(vinylene carbonate), FEC(fluoroethylene carbonate), 및 TMS-ON(3-(trimethylsilyl)-2-oxazolidinone)으로 이루어지는 군으로부터 선택되는 적어도 1종의 첨가제를 포함할 수 있다. 배터리의 반복되는 충전과 방전으로 인해 전해액에서는 리튬염이나 잔존하고 있던 수분에 의해 다양한 부반응이 발생하고 이로 인해 발생하는 부산물들은 배터리의 성능을 저하시키는 요인으로 주목받고 있다. 예를 들어 LiPF6 리튬염 또는 NaPF6 나트륨염의 경우 전해액에서 자가 분해되어 PF5라는 부산물을 생성하게 되고 이는 다시 수분과 반응해서 HF를 생성하며 HF는 전극의 안정성을 돕는 SEI를 파괴함에 따라 전극의 cycle 특성이 나빠지게 만든다. 이를 해결하기 위해 리튬염 또는 나트륨염의 자가분해 산물을 안정하게 만들어 HF의 생성을 억제하고 생성된 HF를 제거하는 화학종을 첨가함으로써 배터리의 수명향상이 가능할 수 있다.In one embodiment of the present application, the electrolyte contains at least one additive selected from the group consisting of vinylene carbonate (VC), fluoroethylene carbonate (FEC), and 3-(trimethylsilyl)-2-oxazolidinone (TMS-ON). can include Due to the repeated charging and discharging of the battery, various side reactions occur due to lithium salt or remaining moisture in the electrolyte, and the by-products generated thereby are attracting attention as a factor that deteriorates the performance of the battery. For example, LiPF 6 lithium salt or NaPF 6 sodium salt self-decomposes in the electrolyte to produce a by-product called PF 5 , which reacts with moisture to generate HF, which destroys the SEI that helps the stability of the electrode. cycle characteristics deteriorate. In order to solve this problem, it is possible to improve the lifespan of the battery by adding a chemical species that stabilizes the self-decomposition product of the lithium salt or sodium salt to suppress the generation of HF and remove the generated HF.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체 및 이를 포함하는 조성물은 슈퍼커패시터 또는 이차전지의 전극 활물질 이외에도 물정화용 촉매, 항암제, 면역결핍 바이러스 치료제, 곰팡이 및 박테리아 감염 치료제, 말라리아 치료제, 각종 약물전달 물질, 광촉매, 물 분해용 전기화학촉매, 센서, 항공우주 물질 등 다양한 분야에 있어서 적용이 가능한 바, 상업적으로 매우 유용한 물질로서 사용될 수 있다.In one embodiment of the present application, the hybrid complex and the composition containing the same are a catalyst for water purification, an anticancer agent, a treatment for immunodeficiency virus, a treatment for fungal and bacterial infections, a treatment for malaria, and various drug delivery materials in addition to a supercapacitor or an electrode active material for a secondary battery. , photocatalysts, electrochemical catalysts for water splitting, sensors, and aerospace materials can be applied in various fields, and thus can be used as a commercially very useful material.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention.
본 발명의 실시예에 따르면, 전극 활물질로 활용되었을 때, 인터칼레이션 및 디인터칼레이션 효율과 전도도 및 구조적 안정성을 향상시킴으로써 리튬 이차전지, 나트륨 이차전지 등의 에너지 저장 장치의 충방전 용량, 쿨롱 효율 및 사이클 특성을 더욱 높일 수 있는 전이금속 디칼코게나이드 나노시트의 적층 구조체 또는 이를 포함하는 하이브리드 복합체를 제공할 수 있다.According to an embodiment of the present invention, when used as an electrode active material, intercalation and deintercalation efficiency, conductivity and structural stability are improved to improve the charge and discharge capacity and coulomb of energy storage devices such as lithium secondary batteries and sodium secondary batteries. It is possible to provide a laminated structure of transition metal dichalcogenide nanosheets capable of further increasing efficiency and cycle characteristics or a hybrid composite including the same.
또한 이들을 이용하여, 전기화학적 성능이 우수한 리튬 이온, 나트륨 이온, 아연 이온, 알루미늄 이온 배터리에 활용되는 음극 소재를 에너지 효율적이면서 간단한 공정으로 제공할 수 있다.In addition, by using these materials, it is possible to provide an anode material used in a lithium ion, sodium ion, zinc ion, or aluminum ion battery having excellent electrochemical performance through an energy-efficient and simple process.
상술한 이유로, 본 발명의 일 실시예에 따른 전이금속 디칼코게나이드 나노시트의 적층 구조체, 이를 포함하는 하이브리드 복합체, 및 이들의 제조방법은 산업상 이용이 가능한 것으로 볼 수 있다.For the above reasons, the laminated structure of transition metal dichalcogenide nanosheets according to an embodiment of the present invention, the hybrid composite including the same, and the manufacturing method thereof can be considered to be industrially applicable.

Claims (15)

  1. 적어도 1종의 전이금속 디칼코게나이드 나노시트의 적층 구조체로서,A laminated structure of at least one transition metal dichalcogenide nanosheet,
    각각의 상기 전이금속 디칼코게나이드 나노시트 상에는 1T 상(1T phase), 및 2H 상(2H Phase)이 혼재하고 있고,On each of the transition metal dichalcogenide nanosheets, a 1T phase and a 2H phase are mixed,
    X선 광전자 분광(XPS) 분석을 통해 계산된 (2H 상):(1T 상)의 비는 0.05:1 내지 4:1인 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체.A laminated structure of transition metal dichalcogenide nanosheets, characterized in that the ratio of (2H phase): (1T phase) calculated through X-ray photoelectron spectroscopy (XPS) analysis is 0.05: 1 to 4: 1.
  2. 제1항에 있어서,According to claim 1,
    상기 전이금속 디칼코게나이드는 MoS2, MoSe2, WS2, WSe2, TiS2, TiSe2, ReS2, ZrTe2, NbSe2 중 선택되는 적어도 1종 이상인 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체.The transition metal dichalcogenide is at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , NbSe 2 Transition metal dichalcogenide, characterized in that A layered structure of nanosheets.
  3. 제1항에 있어서, According to claim 1,
    X선 회절 분석(X-ray Diffraction, XRD)에서, 2H 상의 층간 간격(d-spacing) 보다 1T 상의 층간 간격에 가까운 층간 간격 값이 환산되는 적어도1종의 피크가 검출되는 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체.In X-ray diffraction (XRD) analysis, at least one peak is detected in which the interlayer spacing value closer to the interlayer spacing of the 1T phase than the d-spacing of the 2H phase is detected. Layered structure of metal dichalcogenide nanosheets.
  4. 제1항에 있어서, According to claim 1,
    라만 피크 스펙트럼을 관찰했을 때, When observing the Raman peak spectrum,
    1T 상을 의미하는 적어도 1개의 피크가 검출되는 것을 특징으로 하는 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체.A laminated structure of transition metal dichalcogenide nanosheets, characterized in that at least one peak indicating a 1T phase is detected.
  5. 그래핀 나노시트 적층 구조체; 및 Graphene nanosheet laminated structure; and
    상기 그래핀 나노시트 적층 구조체 표면의 적어도 일부에 형성된, 제1항에 따른 전이금속 디칼코게나이드 나노시트 적층 구조체;를 포함하는, 하이브리드 복합체.A hybrid composite comprising a transition metal dichalcogenide nanosheet laminated structure according to claim 1 formed on at least a portion of a surface of the graphene nanosheet laminated structure.
  6. 적어도 1종의 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법으로서,As a method for producing a laminated structure of at least one transition metal dichalcogenide nanosheet,
    적어도 1종의 전이금속 디칼코게나이드 벌크 물질을 준비하는 단계;Preparing at least one transition metal dichalcogenide bulk material;
    상기 전이금속 디칼코게나이드 벌크 물질에 제1 양이온을 포함하는 용액을 혼입하는 단계;incorporating a solution containing a first cation into the transition metal dichalcogenide bulk material;
    상기 제1 양이온을 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계;intercalating the first cation into the transition metal dichalcogenide bulk material;
    제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계;ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation;
    상기 전이금속 디칼코게나이드 벌크 물질을 박리 및 재적층하여 전이금속 디칼코게나이드 나노시트의 적층 구조체를 얻는 단계; 및Obtaining a laminated structure of transition metal dichalcogenide nanosheets by exfoliating and re-stacking the transition metal dichalcogenide bulk material; and
    상기 전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;를 포함하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법.Controlling the ratio of the 1T phase (phase) according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheets; manufacturing method of a layered structure of transition metal dichalcogenide nanosheets, including.
  7. 제6항에 있어서,According to claim 6,
    전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;는Adjusting the ratio of the 1T phase according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheet;
    100 ℃ 미만의 온도에서 건조하는 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법.A method for producing a laminated structure of transition metal dichalcogenide nanosheets, characterized in that drying at a temperature of less than 100 ° C.
  8. 제6항에 있어서,According to claim 6,
    전이금속 디칼코게나이드 나노시트의 적층 구조체의 건조 온도에 따라 1T 상(phase)의 비율을 조절하는 단계;는Adjusting the ratio of the 1T phase according to the drying temperature of the layered structure of the transition metal dichalcogenide nanosheet;
    동결 건조(Freezing Drying, FD)하는 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법.A method for producing a laminated structure of transition metal dichalcogenide nanosheets, characterized by freeze-drying (Freezing Drying, FD).
  9. 제6항에 있어서,According to claim 6,
    상기 제1 양이온은 알칼리 금속 양이온이고,The first cation is an alkali metal cation,
    상기 제2 양이온은 암모늄, 탄화수소로 치환된 1급 내지 3급 암모늄, 마그네슘, 아연(Zn) 및 히드로늄(H3O+)으로 이루어지는 군으로부터 선택되는 1종의 양이온인 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법.Characterized in that the second cation is one type of cation selected from the group consisting of ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn) and hydronium (H 3 O + ), transition Method for manufacturing a laminated structure of metal dichalcogenide nanosheets.
  10. 제6항에 있어서,According to claim 6,
    상기 제1 양이온을 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계; 또는intercalating the first cation into the transition metal dichalcogenide bulk material; or
    상기 전이금속 디칼코게나이드 벌크 물질을 박리 및 재적층하여 전이금속 디칼코게나이드 나노시트의 적층 구조체를 얻는 단계;에서, In the step of obtaining a laminated structure of transition metal dichalcogenide nanosheets by exfoliating and re-stacking the transition metal dichalcogenide bulk material,
    10분 내지 240분동안 초음파 처리하는 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법.A method for producing a laminated structure of transition metal dichalcogenide nanosheets, characterized in that ultrasonic treatment is performed for 10 to 240 minutes.
  11. 제10항에 있어서,According to claim 10,
    상기 초음파 처리와 동시에 교반을 진행하는 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법.A method for producing a laminated structure of transition metal dichalcogenide nanosheets, characterized in that stirring is performed simultaneously with the ultrasonic treatment.
  12. 제6항에 있어서,According to claim 6,
    상기 전이금속 디칼코게나이드는 MoS2, MoSe2, WS2, WSe2, TiS2, TiSe2, ReS2, ZrTe2, NbSe2 중 선택되는 적어도 1종 이상인 것을 특징으로 하는, 전이금속 디칼코게나이드 나노시트의 적층 구조체의 제조방법.The transition metal dichalcogenide is at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , NbSe 2 Transition metal dichalcogenide, characterized in that Method for manufacturing a laminated structure of nanosheets.
  13. 하이브리드 복합체의 제조방법으로서,As a method for producing a hybrid composite,
    그래핀 나노시트 또는 그래핀 옥사이드 나노시트의 분말 또는 분산액과 적어도 1종의 전이금속 디칼코게나이드 벌크 물질을 혼합하여 혼합물을 제조하는 단계;preparing a mixture by mixing powder or dispersion of graphene nanosheets or graphene oxide nanosheets with at least one transition metal dichalcogenide bulk material;
    상기 혼합물에 제1 양이온을 포함하는 용액을 혼입하는 단계;incorporating a solution containing the first cation into the mixture;
    상기 제1 양이온을 상기 그래핀 나노시트 또는 그래핀 옥사이드 나노시트 및 상기 전이금속 디칼코게나이드 벌크 물질에 층간 삽입하는 단계;intercalating the first cation into the graphene nanosheet or graphene oxide nanosheet and the transition metal dichalcogenide bulk material;
    제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계;ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation;
    상기 그래핀 나노시트 또는 그래핀 옥사이드 나노시트 및 전이금속 디칼코게나이드 벌크 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계; 및Obtaining a hybrid composite by simultaneously exfoliating and re-stacking the graphene nanosheets or graphene oxide nanosheets and the transition metal dichalcogenide bulk material; and
    상기 하이브리드 복합체의 건조 온도에 따라, 상기 적어도 1종의 전이금속 디칼코게나이드의 1T 상(phase)의 비율을 조절하는 단계;를 포함하는, 하이브리드 복합체의 제조방법.Controlling the ratio of the 1T phase of the at least one transition metal dichalcogenide according to the drying temperature of the hybrid composite;
  14. 제13항에 있어서,According to claim 13,
    상기 적어도 1종의 전이금속 디칼코게나이드의 1T 상(phase)의 비율을 조절하는 단계;는Adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide;
    100 ℃ 미만의 온도에서 건조하는 것을 특징으로 하는, 하이브리드 복합체의 제조방법.Characterized in that drying at a temperature of less than 100 ℃, a method for producing a hybrid composite.
  15. 제13항에 있어서,According to claim 13,
    상기 적어도 1종의 전이금속 디칼코게나이드의 1T 상(phase)의 비율을 조절하는 단계;는Adjusting the ratio of the 1T phase of the at least one transition metal dichalcogenide;
    동결 건조(Freezing Drying, FD)하는 것을 특징으로 하는, 하이브리드 복합체의 제조방법.A method for producing a hybrid composite, characterized by freeze-drying (Freezing Drying, FD).
PCT/KR2022/021162 2021-12-23 2022-12-23 Phase-controlled nanosheet laminated structure, hybrid composite, and method for manufacturing same WO2023121381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210186056A KR20230097255A (en) 2021-12-23 2021-12-23 Phase-controlled (phase-controlled) nanosheet laminated structure, hybrid composite and manufacturing method thereof
KR10-2021-0186056 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023121381A1 true WO2023121381A1 (en) 2023-06-29

Family

ID=86903108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021162 WO2023121381A1 (en) 2021-12-23 2022-12-23 Phase-controlled nanosheet laminated structure, hybrid composite, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20230097255A (en)
WO (1) WO2023121381A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145191A (en) * 2016-06-28 2016-11-23 东华大学 A kind of molybdenum sulfide multilevel-structure nano material and preparation method and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145191A (en) * 2016-06-28 2016-11-23 东华大学 A kind of molybdenum sulfide multilevel-structure nano material and preparation method and application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANTO JEFFERY A., NETHRAVATHI C., RAJAMATHI MICHAEL: "Two-Dimensional Nanosheets and Layered Hybrids of MoS 2 and WS 2 through Exfoliation of Ammoniated MS 2 (M = Mo,W)", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 118, no. 2, 16 January 2014 (2014-01-16), US , pages 1386 - 1396, XP093073577, ISSN: 1932-7447, DOI: 10.1021/jp410918c *
GUO CHENGUANG, PAN JIE, LI HUI, LIN TIANQUAN, LIU PAN, SONG CHANGSHENG, WANG DONG, MU GANG, LAI XIAOFANG, ZHANG HUI, ZHOU WEI, CHE: "Observation of superconductivity in 1T′-MoS 2 nanosheets", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 5, no. 41, 1 January 2017 (2017-01-01), GB , pages 10855 - 10860, XP093074378, ISSN: 2050-7526, DOI: 10.1039/C7TC03749J *
LI YIHUI, CHANG KUN, SUN ZHONGTI, SHANGGUAN ENBO, TANG HONGWEI, LI BAO, SUN JINGYU, CHANG ZHAORONG: "Selective Preparation of 1T- and 2H-Phase MoS 2 Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices", ACS APPLIED ENERGY MATERIALS, vol. 3, no. 1, 27 January 2020 (2020-01-27), pages 998 - 1009, XP093074376, ISSN: 2574-0962, DOI: 10.1021/acsaem.9b02043 *
SUN DAN, YE DELAI, LIU PING, TANG YOUGEN, GUO JUN, WANG LIANZHOU, WANG HAIYAN: "MoS 2 /Graphene Nanosheets from Commercial Bulky MoS 2 and Graphite as Anode Materials for High Rate Sodium‐Ion Batteries", ADVANCED ENERGY MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 8, no. 10, 1 April 2018 (2018-04-01), DE , pages 1702383, XP093074380, ISSN: 1614-6832, DOI: 10.1002/aenm.201702383 *
WANG DEZHI, XIAO YUANYUAN, LUO XIAONAN, WU ZHUANGZHI, WANG YAN-JIE, FANG BAIZENG: "Swollen Ammoniated MoS 2 with 1T/2H Hybrid Phases for High-Rate Electrochemical Energy Storage", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, AMERICAN CHEMICAL SOCIETY, US, vol. 5, no. 3, 6 March 2017 (2017-03-06), US , pages 2509 - 2515, XP093074383, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.6b02863 *

Also Published As

Publication number Publication date
KR20230097255A (en) 2023-07-03

Similar Documents

Publication Publication Date Title
WO2020045854A1 (en) Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising same
WO2016032240A1 (en) Negative electrode active material having double coating layers, method for preparing same, and lithium secondary battery comprising same
WO2014126413A1 (en) Anode active material for sodium secondary battery, method for manufacturing electrode using same, and sodium secondary battery comprising same
WO2020145639A1 (en) Positive electrode active material, method for manufacturing positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2010079963A2 (en) Positive electrode active material and lithium secondary battery comprising the same
WO2016018023A1 (en) Graphite secondary particle, and lithium secondary battery comprising same
WO2017095068A1 (en) Positive electrode active material for secondary battery, positive electrode, for secondary battery, comprising same, and secondary battery
WO2018117752A1 (en) Negative electrode active material and negative electrode comprising same for electrochemical device
WO2020036397A1 (en) Negative electrode active material, method for producing same, and lithium secondary battery having negative electrode including same
WO2019168352A1 (en) Anode active material, preparation method therefor, and anode and lithium secondary battery, which include anode active material
WO2020111545A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2021096204A1 (en) Irreversible additive, cathode material comprising irreversible additive, and lithium secondary battery comprising cathode material
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same
WO2018236060A1 (en) Method for preparing iron hydroxide (feooh), and lithium-sulfur battery cathode comprising iron hydroxide
WO2020141953A1 (en) Anode active material for secondary battery, electrode comprising same, and method for manufacturing same
WO2023121381A1 (en) Phase-controlled nanosheet laminated structure, hybrid composite, and method for manufacturing same
WO2022050664A1 (en) Positive electrode active material, positive electrode comprising positive electrode active material, and secondary battery comprising positive electrode
WO2022092906A1 (en) Cathode active material and preparation method therefor
WO2020256440A1 (en) Composite anode and lithium secondary battery comprising same
WO2022019605A1 (en) Porous composite, anode and lithium battery each including same, and method for preparing same
WO2021096265A1 (en) Cathode active material for lithium secondary battery, and method for preparing cathode active material
WO2020226321A1 (en) Separator for lithium secondary battery and lithium secondary battery comprising same
WO2021075830A1 (en) Method for producing positive electrode active material for lithium secondary battery, and positive electrode active material produced thereby for lithium secondary battery
WO2021020864A1 (en) Electrolyte additive for lithium secondary battery, and electrolyte for lithium secondary battery and lithium secondary battery, each comprising same
WO2020180125A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912014

Country of ref document: EP

Kind code of ref document: A1