WO2023121182A1 - 내구성이 우수한 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품 - Google Patents

내구성이 우수한 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품 Download PDF

Info

Publication number
WO2023121182A1
WO2023121182A1 PCT/KR2022/020723 KR2022020723W WO2023121182A1 WO 2023121182 A1 WO2023121182 A1 WO 2023121182A1 KR 2022020723 W KR2022020723 W KR 2022020723W WO 2023121182 A1 WO2023121182 A1 WO 2023121182A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
carbon steel
martensite
high carbon
Prior art date
Application number
PCT/KR2022/020723
Other languages
English (en)
French (fr)
Inventor
박경수
손창영
권영국
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2023121182A1 publication Critical patent/WO2023121182A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a high-carbon steel sheet, a method for manufacturing the same, and industrial or automobile parts, and more particularly, a high-carbon steel sheet having excellent durability and particularly suitable for various industrial parts, a method for manufacturing the same, and using the high-carbon steel sheet It relates to industrial or automotive parts manufactured by
  • High carbon steel sheet is widely used throughout the industry, and is mainly used as a material for automobile or industrial parts that are subjected to repeated stress or deformation.
  • Examples of automobile parts using high carbon steel sheets include clutch parts or seat belt spring parts, and examples of industrial parts using high carbon steel sheets include industrial spring parts or tool parts.
  • the reason why high carbon steel sheets are widely used in various parts is that high carbon steel sheets can maintain strength and ensure durability at the same time.
  • Patent Documents 1 to 3 are patent documents related to high carbon steel sheet with excellent durability
  • Patent Document 1 is a method for producing spring steel through a nitriding process and heat treatment process
  • Patent Document 2 is a martensite structure through high temperature heat treatment after cold rolling.
  • Patent Document 3 discloses a method of increasing the strength of spring steel through an induction heat treatment process.
  • Patent Document 1 International Publication No. WO 2011-115255 A1 (2011.09.22. Publication)
  • Patent Document 2 European Patent No. EP 3814536 A1 (published on May 5, 2021)
  • Patent Document 3 European Patent No. EP 2192201 A1 (published on Jun. 2, 2010)
  • One aspect of the present invention is to provide a high carbon steel sheet with excellent durability and industrial or automotive parts manufactured using the same.
  • Another aspect of the present invention is to provide a method for manufacturing a high carbon steel sheet capable of reducing manufacturing costs and carbon emissions by shortening or omitting a heat treatment process by appropriately utilizing hot rolling and cold rolling processes.
  • C 0.11 to 0.30%, Mn: 0.1 to 3.0%, Si: 0.5% or less (excluding 0%), Al: 0.1% or less (excluding 0%) ), P: 0.05% or less (including 0%), S: 0.03% or less (including 0%), N: 0.03% or less (including 0%), remaining Fe and unavoidable impurities, including 90% by volume or more martensite It includes a microstructure, and the residual stress of the martensite in the rolling direction may be 70 MPa or more.
  • the high carbon steel sheet may further include Ti: 0.005 to 0.1% by weight.
  • the high carbon steel sheet may further include, in weight percent, at least one of Nb: 0.05% or less, V: 0.05% or less, Cr: 1.0% or less, Mo: 1.0% or less, and B: 0.005% or less.
  • Residual stress in a direction of 45 ° with respect to the rolling direction of the martensite may be 30 MPa or more.
  • a ratio of martensite elongated along the rolling direction may be 50% or more.
  • a ratio of packets having a long-short axis ratio of 2:1 or more among all the martensite packets may be 50% or more.
  • the high carbon steel sheet includes at least one selected from ferrite and retained austenite at a total fraction of 10 vol% or less (including 0%), and at least one selected from pearlite and bainite at 5 vol% or less (0% included) can be included in the total fraction of
  • the steel sheet may have a yield strength of 1300 MPa or more and a tensile strength of 1500 MPa or more.
  • the carbon (C) content of the steel sheet is greater than 0.20% by weight, and the residual stress of the martensite in the rolling direction may be 190 MPa or more.
  • the yield strength of the steel sheet may be 1590 MPa or more, and the tensile strength may be 1640 MPa or more.
  • Industrial or automobile parts manufactured using the high carbon steel sheet may have a durability test result of 100,000 times or more.
  • Method for manufacturing a high carbon steel sheet according to one aspect of the present invention in weight%, C: 0.11 ⁇ 0.30%, Mn: 0.1 ⁇ 3.0%, Si: 0.5% or less (excluding 0%), Al: 0.1% or less ( excluding 0%), P: 0.05% or less (including 0%), S: 0.03% or less (including 0%), N: 0.03% or less (including 0%), the slab containing the remaining Fe and unavoidable impurities at 1100 ° C heating in the above temperature range; Hot-rolling the heated slab at a rolling end temperature of 800 to 950° C. to provide a hot-rolled steel sheet; Rapidly cooling and winding the hot-rolled steel sheet to a cooling end temperature of 350° C. or less at a cooling rate of 50 to 1000° C./sec within 5 seconds after completion of the hot rolling; and omitting heat treatment after the winding and cold rolling the hot-rolled steel sheet at a reduction ratio of 20 to 50%.
  • the slab may further include Ti: 0.005 to 0.1% by weight.
  • the slab may further include, in weight percent, at least one of Nb: 0.05% or less, V: 0.05% or less, Cr: 1.0% or less, Mo: 1.0% or less, and B: 0.005% or less.
  • the carbon (C) content included in the slab may be greater than 0.20% by weight.
  • the quenched hot-rolled steel sheet may include 90% by volume or more of martensite.
  • quenching may not be performed after the cold rolling.
  • a high carbon steel sheet having excellent durability can be manufactured while shortening or omitting a heat treatment process, energy and manufacturing cost required for manufacturing a high carbon steel sheet can be effectively reduced, and high-temperature Eco-friendliness can be secured by reducing the amount of carbon emitted from the heat treatment process.
  • the present invention relates to a high carbon steel sheet having excellent durability, a method for manufacturing the same, and a spring member.
  • a high carbon steel sheet having excellent durability a method for manufacturing the same, and a spring member.
  • preferred embodiments of the present invention will be described. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. These embodiments are provided to those skilled in the art to further elaborate the present invention.
  • C 0.11 to 0.30%, Mn: 0.1 to 3.0%, Si: 0.5% or less (excluding 0%), Al: 0.1% or less (excluding 0%) ), P: 0.05% or less (including 0%), S: 0.03% or less (including 0%), N: 0.03% or less (including 0%), remaining Fe and unavoidable impurities, including 90% by volume or more martensite It includes a microstructure, and the residual stress in the rolling direction of the martensite may be 70 MPa or more.
  • the present invention may include carbon (C) at a certain level or more to secure the strength of the steel sheet.
  • carbon content (C) does not reach a certain level, a large amount of low-temperature structures such as pearlite and bainite are formed during cooling after hot rolling, so that the desired microstructure of the present invention may not be secured.
  • the lower limit of the content can be limited to 0.11%.
  • the carbon (C) content may be 0.15% or more, and may be 0.20% or more.
  • a preferred carbon (C) content may be greater than 0.20%.
  • the present invention may limit the carbon (C) content to 0.3% or less.
  • the upper limit of the preferred carbon content may be 0.295%.
  • Manganese (Mn) is an element that effectively contributes to improving strength and hardenability of steel.
  • manganese (Mn) combines with sulfur (S) introduced inevitably during the steel manufacturing process to form MnS, it is also an element capable of effectively preventing cracks caused by sulfur (S).
  • the present invention may include 0.1% or more of manganese (Mn) to achieve this effect.
  • a preferable manganese (Mn) content may be 0.3% or more, and a more preferable manganese (Mn) content may be 0.5% or more.
  • manganese (Mn) is excessively added, not only is there concern about a decrease in tensile strength due to retained austenite, but it is also undesirable in terms of durability and economy.
  • the present invention can limit the manganese (Mn) content to 3.0% or less.
  • the upper limit of the preferable manganese (Mn) content may be 2.9%, and the upper limit of the more preferable manganese (Mn) content may be 2.8%.
  • the present invention may limit the silicon (Si) content to 0.5%.
  • the upper limit of the desirable silicon (Si) content may be 0.45%.
  • silicon (Si) is an element that not only acts as a deoxidizer but also contributes to improving the strength of steel, the present invention does not completely exclude the addition of silicon (Si), and 0% can be excluded from the lower limit of its content. .
  • Aluminum (Al) is an element that acts as a deoxidizer by combining with oxygen in steel.
  • aluminum (Al) may be added for this effect, and 0% may be excluded from the lower limit of the content.
  • the aluminum (Al) content may be limited to 0.1% or less.
  • the upper limit of the preferred aluminum (Al) content may be 0.08%.
  • phosphorus (P) is a major element that is segregated at grain boundaries and causes a decrease in toughness of steel, it is preferable to control the phosphorus (P) content as low as possible. Therefore, it is theoretically most advantageous to suppress the phosphorus (P) content to 0%.
  • phosphorus (P) is an impurity that is inevitably introduced during the steelmaking process, and excessive process load may be induced to control the content to 0%.
  • the present invention may limit the upper limit of the phosphorus (P) content to 0.05%.
  • the upper limit of the preferable phosphorus (P) content may be 0.03%.
  • sulfur (S) is an element that forms MnS to increase the amount of precipitates and embrittles steel, it is preferable to control the sulfur (S) content as low as possible. Therefore, it is theoretically most advantageous to limit the content of sulfur (S) to 0%.
  • sulfur (S) is also an impurity introduced inevitably during the steelmaking process, and excessive process load may be induced to control the content to 0%.
  • the present invention may limit the upper limit of the sulfur (S) content to 0.03%.
  • the upper limit of the preferable sulfur (S) content may be 0.01%.
  • Nitrogen (N) is an element that causes cracking of slabs by forming nitrides during continuous casting, so it is desirable to control its content as low as possible. Therefore, it is theoretically most advantageous to limit the nitrogen (N) content to 0%. However, nitrogen (N) is also an impurity introduced inevitably during the steelmaking process, and excessive process load may be induced to control the content to 0%. In consideration of this point, the present invention may limit the upper limit of the nitrogen (N) content to 0.03% or less. The upper limit of the preferred nitrogen (N) content may be 0.01%.
  • the high carbon steel sheet according to one aspect of the present invention may further include titanium (Ti): 0.005 to 0.1%, niobium (Nb): 0.05% or less, vanadium (V): 0.05% in addition to the above-mentioned alloy components.
  • Ti titanium
  • Nb niobium
  • V vanadium
  • Mo molybdenum
  • B boron
  • titanium (Ti) is an element known to form carbides and nitrides by combining with carbon (C) and nitrogen (N).
  • boron (B) is added to the steel to secure hardenability, but when nitrogen (N) and boron (B) contained in the steel are combined, the effect of adding boron (B) desired by the present invention can be achieved.
  • nitrogen (N) before combining with boron (B) combines with titanium (Ti) to form nitride, the effect of adding boron (B) can be more effectively improved.
  • the present invention may add 0.005% or more of titanium (Ti) to achieve this effect.
  • a preferable lower limit of the titanium (T) content may be 0.010%, and a more preferable lower limit of the titanium (Ti) content may be 0.015%.
  • the upper limit of the titanium (Ti) content may be limited to 0.1%.
  • a preferable upper limit of the titanium (Ti) content may be 0.09%, and a more preferable upper limit of the titanium (Ti) content may be 0.08%.
  • niobium (Nb), vanadium (V) and molybdenum (Mo) are elements known to form carbides and nitrides in combination with carbon (C) and nitrogen (N). Therefore, when niobium (Nb), vanadium (V), and molybdenum (Mo) are added, strength is increased by carbides and nitrides.
  • one or more of niobium (Nb), vanadium (V), and molybdenum (Mo) may be added to achieve these effects.
  • the rolling load may be excessively increased and the manufacturing cost may be excessively increased.
  • the upper limits of Nb), vanadium (V) and molybdenum (Mo) contents may be limited to 0.05%, 0.05%, and 1.0%, respectively.
  • chromium (Cr) is an element that contributes to improving hardenability of steel
  • the present invention may include chromium (Cr) to achieve this effect.
  • a preferable lower limit of the chromium (Cr) content may be 0.005%.
  • excessive addition of chromium (Cr), an expensive element is undesirable from an economic point of view, and when excessive chromium (Cr) is added, weldability may be deteriorated. % can be limited.
  • the upper limit of the preferable chromium (Cr) content may be 0.5%.
  • boron (B) is an element that effectively contributes to improving the hardenability of steel, even with a small amount added, it is an element that can effectively suppress transformation into low-temperature structures such as ferrite and pearlite during cooling after hot rolling.
  • 0.0005% or more of boron (B) may be added to achieve this effect.
  • a preferable lower limit of the boron (B) content may be 0.001%.
  • the present invention may limit the upper limit of the boron (B) content to 0.005%.
  • the upper limit of the preferable boron (B) content may be 0.0045%.
  • the high carbon steel sheet according to one aspect of the present invention may include remaining Fe and other unavoidable impurities in addition to the above components.
  • unintended impurities from raw materials or the surrounding environment may inevitably be mixed in the normal manufacturing process, it cannot be entirely excluded. Since these impurities can be known to anyone skilled in the art, all of them are not specifically mentioned in the present specification.
  • additional addition of effective ingredients other than the above-mentioned ingredients is not entirely excluded.
  • a high carbon steel sheet according to an aspect of the present invention includes martensite as a base structure.
  • the fraction of martensite may be 90 vol% or more based on the total volume of the steel sheet, and a preferable fraction of martensite may be 95 vol% or more. Since the high carbon steel sheet according to one aspect of the present invention includes martensite, which is a hard structure, as a matrix structure, high strength and yield ratio can be secured at the same time.
  • martensite included in the high carbon steel sheet according to one aspect of the present invention is formed by rapid cooling after hot rolling and then elongated by cold rolling, the ratio of elongated martensite out of total martensite included in the steel sheet is 50%.
  • Elongated martensite may refer to martensite in which the long axis direction of the packet is arranged in a direction within 45° from the rolling direction.
  • the ratio of packets having a long-short axis ratio of 2:1 or more among all martensite packets may be 50% or more.
  • martensite included in the high carbon steel sheet according to one aspect of the present invention is formed by cooling after hot rolling and then elongated by cold rolling, unlike martensite normally produced, the residual stress in the rolling direction is 70 MPa or more. level and the residual stress in the direction of 45° to the rolling direction can satisfy the level of 30 MPa or more.
  • Preferred martensite may have a residual stress in the rolling direction of 190 MPa or more.
  • the residual stress of martensite can be measured by X-ray analysis, and a person skilled in the art to which the present invention belongs can measure the residual stress of martensite without any special technical difficulties.
  • the high-carbon steel sheet according to one aspect of the present invention not only includes martensite, which is a hard structure, as a base structure, but also has a residual stress of a certain level or higher or has an elongated shape as martensite included in the steel sheet is elongated by cold rolling. Therefore, the durability of the steel sheet and parts manufactured using the same can be improved more effectively.
  • the high carbon steel sheet according to one aspect of the present invention does not entirely exclude the inclusion of structures other than martensite.
  • ferrite, pearlite, bainite, retained austenite, etc. are not desirable for securing strength and durability, it is necessary to control their fraction within a certain range.
  • the total fraction of ferrite and/or retained austenite is preferably 10% by volume or less, and the total fraction of pearlite and/or bainite is preferably 5% by volume or less.
  • the present invention may include a case where the total fraction of ferrite, retained austenite, pearlite, and bainite is 0%.
  • the high carbon steel sheet according to one aspect of the present invention may further include cementite and precipitates as a residual structure in addition to the above-described microstructure.
  • the yield strength (YS) of the high carbon steel sheet according to one aspect of the present invention may be 1300 MPa or more, and the tensile strength (TS) may be 1500 MPa or more.
  • a preferable yield strength (YS) may be 1590 MPa or more, and a preferable tensile strength (TS) may be 1640 MPa or more.
  • the durability test result is It turns out that it has excellent durability over 100,000 cycles.
  • Method for manufacturing a high carbon steel sheet according to one aspect of the present invention in weight%, C: 0.11 ⁇ 0.30%, Mn: 0.1 ⁇ 3.0%, Si: 0.5% or less (excluding 0%), Al: 0.1% or less ( excluding 0%), P: 0.05% or less (including 0%), S: 0.03% or less (including 0%), N: 0.03% or less (including 0%), the slab containing the remaining Fe and unavoidable impurities at 1100 ° C heating in the above temperature range; Hot-rolling the heated slab at a rolling end temperature of 800 to 950° C. to provide a hot-rolled steel sheet; rapidly cooling the hot-rolled steel sheet to a cooling end temperature of 350° C.
  • composition of the slab steel of the present invention corresponds to the steel composition of the steel sheet described above
  • description of the composition of the slab steel of the present invention is replaced with the description of the steel composition of the steel sheet described above.
  • the slab manufacturing conditions are not particularly limited, and slab manufacturing conditions used in the manufacture of conventional high carbon steel sheets may be applied.
  • the prepared slab is heated to a certain temperature range.
  • the slab can be heated in a temperature range of 1100 ° C. or more for sufficient homogenization treatment.
  • the slab heating temperature is excessively high, it is not desirable in terms of economy and may adversely affect the surface quality of the final product, so the upper limit of the slab heating temperature may be limited to 1350 ° C.
  • the heated slab may be hot-rolled under normal hot-rolling conditions, but the finish-rolling temperature may be limited to a range of 800 to 950° C. for controlling the rolling load and reducing surface scale.
  • Cooling under rapid cooling conditions may be performed on the hot-rolled steel sheet immediately after hot rolling.
  • the cooling of the present invention is preferably started within 5 seconds immediately after the completion of hot rolling. This is because if the time from hot rolling to the start of cooling exceeds 5 seconds, ferrite, pearlite, and bainite, which are not intended by the present invention, may be formed by air cooling in the air. A preferable time from immediately after the end of hot rolling to the start of cooling may be within 3 seconds.
  • the hot-rolled steel sheet immediately after hot rolling may be cooled to a cooling end temperature of 350° C. or less at a cooling rate of 50 to 1000° C./s. Since transformation into ferrite, pearlite, and bainite is unavoidable when the cooling end temperature exceeds a certain range, the upper limit of the cooling end temperature may be limited to 350° C. in order to secure the microstructure desired by the present invention. On the other hand, the lower limit of the cooling end temperature is not particularly defined, but a preferable lower limit of the cooling end temperature may be 150°C.
  • the lower limit of the cooling rate may be limited to 50° C./s in order to secure the desired microstructure of the present invention.
  • the upper limit of the cooling rate is not particularly limited, but the upper limit of the cooling rate may be limited to 1000° C./s in consideration of equipment limitations and economic feasibility.
  • the present invention performs cooling under quenching conditions on the hot-rolled steel sheet immediately after hot rolling, it is possible to secure martensite of 90% by volume or more in the hot-rolled steel sheet state before application of cold rolling.
  • Conventional methods for manufacturing high-carbon steel sheets perform heat treatment immediately after hot rolling, cold-roll the heat-treated hot-rolled steel sheet, and then perform quenching heat treatment to form a martensitic structure. Not only can the heat treatment immediately after it be omitted, but also the quenching after cold rolling can be omitted, so carbon emissions can be effectively lowered.
  • the cold-rolled steel sheet after cooling may be wound into a hot-rolled coil.
  • cold rolling After uncoiling the hot-rolled coil, cold rolling may be performed with a rolling reduction of 20 to 50%.
  • the rolling reduction is small, sufficient elongation of martensite is not achieved, and accordingly, it is impossible to secure the desired high-strength characteristics and durability. Therefore, the present invention can limit the rolling reduction of cold rolling to a level of 20% or more.
  • the lower limit of the preferable cold rolling reduction may be 25%.
  • the reduction amount of cold rolling is excessive, not only is there a concern about equipment damage due to the rolling load, but there may also be a problem of durability deterioration while strength is excessively increased. can be limited
  • the high carbon steel sheet manufactured through the above-described manufacturing method contains 90% by volume or more of martensite as a microstructure, the residual stress of martensite in the rolling direction is 70MPa or more, the yield strength (YS) is 1300MPa or more, and the tensile strength (TS) may be 1500 MPa or more.
  • the durability test result of the corresponding spring member may satisfy 100,000 cycles or more.
  • a steel sheet specimen was prepared by applying the process conditions of Table 2 below.
  • Each slab was prepared by a conventional manufacturing method, and was homogenized by heating in a temperature range of 1050 to 1350 ° C.
  • the ratio of elongated martensite was measured from the area of martensite in which the long axis of the packet was arranged within 45° from the rolling direction relative to the total martensite area in a scanning electron microscope (SEM) image.
  • the ratio of the long axis to the short axis of the martensite packet was also measured from the area of the martensite packet in which the ratio of the long axis and the short axis to the area of the entire martensite packet was 2:1 or more in the scanning electron microscope (SEM) image.
  • M means martensite
  • F means ferrite
  • R- ⁇ means retained austenite
  • P means pearlite
  • B means bainite
  • specimens 1 to 12 satisfying both the alloy composition and manufacturing conditions of the present invention have a martensite fraction of 90% by volume or more, and a martensite ratio elongated in the rolling direction of 50%. This is the above, and it can be confirmed that the ratio of martensite packets having a long and short axis ratio of 2:1 or more is 50% or more.
  • specimens 1 to 12 have a residual stress of 70 MPa or more in the rolling direction, a residual stress of 30 MPa or more in a direction of 45 ° to the rolling direction, a tensile strength of 1500 MPa or more, a yield strength of 1300 MPa or more, and durability test results of 100,000 or more cycles. It can be seen that everyone is satisfied.
  • specimens 13 to 20 that do not satisfy any one or more of the alloy composition and manufacturing conditions of the present invention have a martensite fraction, a martensite ratio elongated in the rolling direction, and a long to short axis ratio of 2:1 or more, which are limited by the present invention. It can be seen that at least one of the ratios of martensite packets is not satisfied.
  • Specimen 13 is a specimen in which cooling was initiated 5 seconds after the end of rolling, and it can be seen that the desired strength and durability were not secured due to a high ferrite fraction.
  • Specimen 14 is a case where the rolling end temperature is low, and specimen 16 is a case where the cooling rate is slow. These specimens have high percentages of pearlite and bainite, so the martensite fraction targeted by the present invention cannot be secured, and the desired strength and durability are obtained. It can be confirmed that the .
  • Specimen 15 is a case where the cooling end temperature and coiling temperature are high, and it can be seen that the desired durability is not secured because the fraction of bainite is high.
  • Specimen 17 has a low cold reduction ratio, and it can be seen that the target durability is not secured because the ratio of martensite packets having a long to short axis ratio of 2:1 or more is low and the residual stress of martensite is low.
  • Specimen 18 is a case with a low content of carbon (C)
  • specimen 19 is a case with a low content of titanium (Ti) and boron (B), and the fraction of martensite is significantly low, so that the desired level of strength and durability cannot be secured. You can check what you can't do.
  • Specimen 20 is a case in which the content of manganese (Mn) is high, and transformation to martensite has not sufficiently occurred, so that a large amount of retained austenite is formed, and it can be seen that the tensile strength and yield strength are excellent, but the durability is poor.
  • Mn manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명의 일 측면에 따르면, 내구성이 우수한 고탄소 강판 및 이를 이용하여 제조된 산업용 또는 자동차용 부품을 제공할 수 있다.

Description

내구성이 우수한 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품
본 발명은 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품에 관한 것으로, 보다 상세하게는 내구성이 우수하여 각종 산업의 부품용으로 특히 적합한 고탄소 강판 및 그 제조방법, 해당 고탄소 강판을 이용하여 제조된 산업용 또는 자동차용 부품에 관한 것이다.
고탄소 강판은 산업 전반적인 분야에 걸쳐 널리 이용되며, 특히 반복적인 응력 혹은 변형을 받는 자동차 혹은 산업용 부품의 소재로 주요하게 사용된다. 고탄소 강판이 사용되는 자동차 부품의 예로는 클러치 부품 또는 안전벨트 스프링 부품 등이 있으며, 고탄소 강판이 사용되는 산업용 부품의 예로는 산업용 스프링 부품 또는 공구용 부품 등이 있다. 고탄소 강판이 각종 부품에 널리 이용되는 것은, 고탄소 강판은 강도를 지탱하면서도 내구성을 동시에 확보할 수 있기 때문이다.
고탄소강의 제조 시 목적하는 물성을 확보하기 위해 열간압연 또는 냉간압연 이후에 열처리를 실시하는 것이 일반적이다. 특허문헌 1 내지 3은 내구성이 우수한 고탄소 강판과 관련된 특허문헌으로, 특허문헌 1은 침질 공정 및 열처리 공정을 통해 스프링 강을 제조하는 방법, 특허문헌 2는 냉간압연 이후 고온 열처리를 통해 마르텐사이트 조직을 확보하는 방법, 특허문헌 3은 인덕션 열처리 공정을 통해 스프링강을 고강도화하는 방법을 개시한다.
다만, 최근 급변하는 기후변화와 관련하여 탄소중립이 전 산업군에 걸쳐 중요한 이슈로 부각되었으며, 철강 산업에 있어서도 탄소 배출량의 감소가 예외 없이 요구되고 있으므로, 고탄소 강판의 제조 시 열처리 공정을 생략하면서도 목적하는 물성의 확보가 가능한 방안에 대한 연구가 시급한 실정이다.
[선행기술문헌]
(특허문헌 1) 국제공개번호 WO 2011-115255 A1 (2011.09.22. 공개)
(특허문헌 2) 유럽특허번호 EP 3814536 A1 (2021.05.05. 공개)
(특허문헌 3) 유럽특허번호 EP 2192201 A1 (2010.06.02. 공개)
본 발명의 일 측면은 내구성이 우수한 고탄소 강판 및 이를 이용하여 제조된 산업용 또는 자동차용 부품을 제공하는 것이다.
본 발명의 다른 일 측면은 열간압연 및 냉간압연 공정을 적절히 활용하여 열처리 공정을 단축하거나 생략하여 제조비용 및 탄소 배출량을 감소시킬 수 있는 고탄소 강판의 제조방법을 제공하는 것이다.
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면에 따른 고탄소 강판은, 중량%로, C: 0.11~0.30%, Mn: 0.1~3.0%, Si: 0.5% 이하(0% 제외), Al: 0.1% 이하(0% 제외), P: 0.05% 이하(0% 포함), S: 0.03% 이하(0% 포함), N: 0.03% 이하(0% 포함), 나머지 Fe 및 불가피한 불순물을 포함하고, 90부피% 이상의 마르텐사이트를 미세조직으로 포함하며, 상기 마르텐사이트의 압연방향 잔류응력은 70MPa 이상일 수 있다.
상기 고탄소 강판은, Ti: 0.005~0.1중량%를 더 포함할 수 있다.
상기 고탄소 강판은, 중량%로, Nb: 0.05% 이하, V: 0.05% 이하, Cr: 1.0% 이하, Mo: 1.0% 이하 및 B: 0.005% 이하 중의 1종 이상을 더 포함할 수 있다.
상기 마르텐사이트의 압연방향에 대한 45° 방향의 잔류응력은 30MPa 이상일 수 있다.
상기 마르텐사이트 중 압연방향을 따라 연신된 마르텐사이트의 비율이 50% 이상일 수 있다.
상기 마르텐사이트의 전체 패킷 중 장단축 비가 2:1 이상인 패킷의 비율이 50% 이상일 수 있다.
상기 고탄소 강판은, 페라이트 및 잔류오스테나이트 중에서 선택된 1종 이상을 10부피% 이하(0% 포함)의 합계 분율로 포함하고, 펄라이트 및 베이나이트 중에서 선택된 1종 이상을 5부피% 이하(0% 포함)의 합계 분율로 포함할 수 있다.
상기 강판의 항복강도는 1300MPa 이상이고, 인장강도는 1500MPa 이상일 수 있다.
상기 강판의 탄소(C) 함량은 0.20중량% 초과이며, 상기 마르텐사이트의 압연방향 잔류응력은 190MPa 이상일 수 있다.
상기 강판의 항복강도는 1590MPa 이상이고, 인장강도는 1640MPa 이상일 수 있다.
상기 고탄소 강판을 이용하여 제조된 산업용 또는 자동차용 부품은, 내구성 테스트 결과가 10만회 이상일 수 있다.
본 발명의 일 측면에 따른 고탄소 강판의 제조방법은, 중량%로, C: 0.11~0.30%, Mn: 0.1~3.0%, Si: 0.5% 이하(0% 제외), Al: 0.1% 이하(0% 제외), P: 0.05% 이하(0% 포함), S: 0.03% 이하(0% 포함), N: 0.03% 이하(0% 포함), 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 1100℃ 이상의 온도범위에서 가열하는 단계; 상기 가열된 슬라브를 800~950℃의 압연 종료 온도에서 열간압연하여 열연강판을 제공하는 단계; 상기 열간압연 완료 후 5초 이내에 50~1000℃/sec의 냉각속도로 350℃ 이하의 냉각종료온도까지 상기 열연강판을 급냉하고 권취하는 단계; 및 상기 권취 후 열처리를 생략하고, 20~50%의 압하율로 상기 열연강판을 냉간압연하는 단계;를 포함할 수 있다.
상기 슬라브는, Ti: 0.005~0.1중량%를 더 포함할 수 있다.
상기 슬라브는, 중량%로, Nb: 0.05% 이하, V: 0.05% 이하, Cr: 1.0% 이하, Mo: 1.0% 이하 및 B: 0.005% 이하 중의 1종 이상을 더 포함할 수 있다.
상기 슬라브에 포함되는 탄소(C) 함량은 0.20중량% 초과일 수 있다.
상기 급냉된 열연강판은 90부피% 이상의 마르텐사이트를 포함할 수 있다.
상기 고탄소 강판의 제조방법은, 상기 냉간압연 후 담금질을 실시하지 않을 수 있다.
상기 과제의 해결 수단은 본 발명의 특징을 모두 열거한 것은 아니며, 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 구현예 및 실시예를 참조하여 보다 상세하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면, 열처리 공정을 단축하거나 생략하면서도 내구성이 우수한 고탄소 강판을 제조할 수 있으므로, 고탄소 강판의 제조에 소요되는 에너지 및 제조비용을 효과적으로 절감할 수 있을 뿐만 아니라, 고온의 열처리 공정에서 배출되는 탄소량을 저감하여 친환경성을 확보할 수 있다.
본 발명의 일 측면에 따르면, 우수한 내구성을 가지는 고탄소 강판을 제공하므로, 이를 이용하여 제조된 스프링 부재의 수명을 효과적으로 향상시킬 수 있다.
본 발명의 효과는 상술한 사항에 국한되는 것은 아니며, 통상의 기술자가 본 명세서에 기재된 사항으로부터 합리적으로 유추 가능한 사항을 포함하는 것으로 해석될 수 있다.
도 1은 주사전자현미경(SEM)을 이용하여 시편 1의 미세조직을 관찰한 사진이다.
본 발명은 내구성이 우수한 고탄소 강판 및 그 제조방법, 스프링 부재에 관한 것으로, 이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 구현예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 본 발명을 더욱 상세하기 위하여 제공되는 것이다.
이하, 본 발명의 일 측면에 따른 고탄소 강판에 대해 보다 상세히 설명한다.
본 발명의 일 측면에 따른 고탄소 강판은, 중량%로, C: 0.11~0.30%, Mn: 0.1~3.0%, Si: 0.5% 이하(0% 제외), Al: 0.1% 이하(0% 제외), P: 0.05% 이하(0% 포함), S: 0.03% 이하(0% 포함), N: 0.03% 이하(0% 포함), 나머지 Fe 및 불가피한 불순물을 포함하고, 90부피% 이상의 마르텐사이트를 미세조직으로 포함하며, 상기 마르텐사이트의 압연방향 잔류응력이 70MPa 이상일 수 있다.
이하, 본 발명의 고탄소 강판에 포함되는 강 조성에 대해 보다 상세히 설명한다. 이하, 특별히 달리 표시하지 않는 한 각 원소의 함량을 나타내는 %는 중량을 기준으로 한다.
탄소(C): 0.11~0.30%
탄소(C)는 강의 강도 향상에 효과적으로 기여하는 원소이므로, 본 발명은 강판의 강도 확보를 위해 일정 수준 이상의 탄소(C)를 포함할 수 있다. 또한, 탄소 함량(C)이 일정 수준에 미치지 못하는 경우 열간압연 후 냉각 시 펄라이트 및 베이나이트 등의 저온조직이 다량 형성되어 본 발명이 목적하는 미세조직을 확보하지 못할 수 있으므로, 본 발명은 탄소(C) 함량의 하한을 0.11%로 제한할 수 있다. 탄소(C) 함량은 0.15% 이상일 수 있으며, 0.20% 이상일 수 있다. 바람직한 탄소(C) 함량은 0.20% 초과일 수 있다. 반면, 탄소(C)가 과다하게 첨가되는 경우 강의 강도는 향상되는 반면, 내구성이 저하될 수 있으므로, 본 발명은 탄소(C) 함량을 0.3% 이하로 제한할 수 있다. 바람직한 탄소 함량의 상한은 0.295%일 수 있다.
망간(Mn): 0.1~3.0%
망간(Mn)은 강의 강도 및 경화능 향상에 효과적으로 기여하는 원소이다. 또한, 망간(Mn)은 강의 제조공정 중 불가피하게 유입되는 황(S)과 결합하여 MnS를 형성하므로, 황(S)에 의한 크랙 발생을 효과적으로 방지 가능한 원소이기도 하다. 본 발명은 이와 같은 효과 달성을 위해 0.1% 이상의 망간(Mn)을 포함할 수 있다. 바람직한 망간(Mn) 함량은 0.3% 이상일 수 있으며, 보다 바람직한 망간(Mn) 함량은 0.5% 이상일 수 있다. 반면, 망간(Mn)이 과다하게 첨가되는 경우 잔류 오스테나이트에 의한 인장강도 저하가 우려될 뿐만 아니라, 내구성 및 경제성 측면에서 바람직하지 않다. 따라서, 본 발명은 망간(Mn) 함량을 3.0% 이하로 제한할 수 있다. 바람직한 망간(Mn) 함량의 상한은 2.9%일 수 있으며, 보다 바람직한 망간(Mn) 함량의 상한은 2.8%일 수 있다.
실리콘(Si): 0.5% 이하(0% 제외)
실리콘(Si)은 산소와의 친화력이 강한 원소이므로, 다량 첨가되는 경우 표면 스케일에 의한 표면품질의 저하를 유발할 수 있으며, 용접성 측면에서도 바람직하지 않다. 따라서, 본 발명은 실리콘(Si) 함량을 0.5%로 제한할 수 있다. 바람직한 실리콘(Si) 함량의 상한은 0.45%일 수 있다. 한편, 실리콘(Si)은 탈산제로 작용할 뿐만 아니라 강의 강도 향상에 기여하는 원소이기도 하므로, 본 발명은 실리콘(Si)의 첨가를 전면적으로 배제하지는 않으며, 그 함량의 하한에서 0%를 제외할 수 있다.
알루미늄(Al): 0.1% 이하(0% 제외)
알루미늄(Al)은 강 중의 산소와 결합하여 탈산 작용을 하는 원소이다. 본 발명은 이와 같은 효과를 위해 알루미늄(Al)을 첨가할 수 있으며, 그 함량의 하한에서 0%를 제외할 수 있다. 반면, 알루미늄(Al)이 과다하게 첨가되는 경우 개재물이 증가될 뿐만 아니라, 강판의 가공성을 저하시킬 수 있는바, 본 발명은 알루미늄(Al) 함량을 0.1% 이하로 제한할 수 있다. 바람직한 알루미늄(Al) 함량의 상한은 0.08%일 수 있다.
인(P): 0.05% 이하(0% 포함)
인(P)은 결정립계에 편석되어 강의 인성 저하를 유발하는 주요 원소이므로, 가능한 한 인(P) 함량을 낮게 제어하는 것이 바람직하다. 따라서, 인(P)의 함량을 0%로 억제하는 것이 이론상 가장 유리하다. 다만, 인(P)은 제강공정 중 불가피하게 유입되는 불순물로, 그 함량을 0%로 제어하는 데에는 과도한 공정 부하가 유발될 수 있다. 본 발명은 이와 같은 점을 고려하여 인(P) 함량의 상한을 0.05%로 제한할 수 있다. 바람직한 인(P) 함량의 상한은 0.03%일 수 있다.
황(S): 0.03% 이하(0% 포함)
황(S)은 MnS를 형성하여 석출물 양을 증가시키고, 강을 취화시키는 원소이므로, 가능한 한 황(S) 함량을 낮게 제어하는 것이 바람직하다. 따라서, 황(S)의 함량을 0%로 제한하는 것이 이론상 가장 유리하다. 다만, 황(S) 역시 제강공정 중 불가피하게 유입되는 불순물로, 그 함량을 0%로 제어하는 데에는 과도한 공정 부하가 유발될 수 있다. 본 발명은 이와 같은 점을 고려하여, 황(S) 함량의 상한을 0.03%로 제한할 수 있다. 바람직한 황(S) 함량의 상한은 0.01%일 수 있다.
질소(N): 0.03% 이하(0% 포함),
질소(N)는 연속주조 중에 질화물을 만들어 슬라브의 균열을 일으키는 원소이므로, 가급적 그 함량을 낮게 제어하는 것이 바람직하다. 따라서, 질소(N)의 함량을 0%로 제한하는 것이 이론상 가장 유리하다. 다만, 질소(N) 역시 제강공정 중 불가피하게 유입되는 불순물로, 그 함량을 0%로 제어하는 데에는 과도한 공정 부하가 유발될 수 있다. 본 발명은 이와 같은 점을 고려하여, 질소(N) 함량의 상한을 0.03% 이하로 제한할 수 있다. 바람직한 질소(N) 함량의 상한은 0.01%일 수 있다.
본 발명의 일 측면에 따른 고탄소 강판은 전술한 합금 성분 외에 티타늄(Ti): 0.005~0.1% 를 더 포함할 수 있으며, 나이오비윰(Nb): 0.05% 이하, 바나듐(V): 0.05% 이하, 크롬(Cr): 1.0% 이하, 몰리브덴(Mo): 1.0% 이하 및 보론(B): 0.005% 이하 중의 1종 이상을 더 포함할 수 있다.
티타늄(Ti): 0.005~0.1%
일반적으로 티타늄(Ti)은 탄소(C) 및 질소(N)와 결합하여 탄화물 및 질화물을 형성하는 것으로 알려진 원소이다. 본 발명은 경화능 확보를 위해 강 중에 보론(B)을 첨가하지만, 강 중 포함된 질소(N)와 보론(B)이 결합하는 경우 본 발명이 목적하는 보론(B) 첨가 효과를 달성할 수 없게 된다. 강 중에 티타늄(Ti)이 첨가되는 경우 보론(B)과 결합하기 전의 질소(N)가 티타늄(Ti)과 결합하여 질화물을 형성하므로, 보론(B) 첨가 효과를 보다 효과적으로 향상시킬 수 있다. 따라서, 본 발명은 이러한 효과를 달성하기 위하여 0.005% 이상의 티타늄(Ti)을 첨가할 수 있다. 바람직한 티타늄(T) 함량의 하한은 0.010%일 수 있으며, 보다 바람직한 티타늄(Ti) 함량의 하한은 0.015%일 수 있다. 반면, 티타늄(Ti)이 과도하게 첨가되는 경우 슬라브 제조 단계에서 연주성이 저하될 수 있으므로, 본 발명은 티타늄(Ti) 함량의 상한을 0.1%로 제한할 수 있다. 바람직한 티타늄(Ti) 함량의 상한은 0.09%일 수 있으며, 보다 바람직한 티타늄(Ti) 함량의 상한은 0.08%일 수 있다.
나이오비윰(Nb): 0.05% 이하, 바나듐(V): 0.05% 이하, 몰리브덴(Mo): 1.0% 이하
일반적으로, 나이오비윰(Nb), 바나듐(V) 및 몰리브덴(Mo)은 탄소(C) 및 질소(N)와 결합하여 탄화물 및 질화물을 형성하는 것으로 알려진 원소이다. 따라서 나이오비윰(Nb) 및 바나듐(V) 및 몰리브덴(Mo)이 첨가되는 경우, 탄화물 및 질화물에 의해 강도가 상승하는 효과가 있다. 본 발명은 이러한 효과를 달성하기 위하여 나이오비윰(Nb), 바나듐(V) 및 몰리브덴(Mo) 중의 1종 이상을 첨가할 수 있다. 다만, 나이오비윰(Nb), 바나듐(V) 및 몰리브덴(Mo)이 과도하게 첨가되는 경우, 압연 부하가 과도하게 커질 수 있고, 제조원가가 과도하게 상승할 수 있으므로, 본 발명은 나이오비윰(Nb), 바나듐(V) 및 몰리브덴(Mo) 함량의 상한을 각각 0.05%, 0.05% 및 1.0%로 제한할 수 있다.
크롬(Cr): 1.0% 이하
크롬(Cr)은 강의 경화능 향상에 기여하는 원소이므로, 본 발명은 이러한 효과를 달성하기 위하여 크롬(Cr)을 포함할 수 있다. 바람직한 크롬(Cr) 함량의 하한은 0.005%일 수 있다. 반면, 고가의 원소인 크롬(Cr)의 과다 첨가는 경제적 측면에서 바람직하지 않으며, 크롬(Cr)이 과다하게 첨가되는 경우 용접성을 저하시킬 수 있으므로, 본 발명은 크롬(Cr) 함량의 상한을 1.0%로 제한할 수 있다. 바람직한 크롬(Cr) 함량의 상한은 0.5%일 수 있다.
보론(B): 0.005% 이하
보론(B)은 강의 경화능 향상에 효과적으로 기여하는 원소이므로, 소량의 첨가에 의하더라도 열간압연 후 냉각 시 페라이트 및 펄라이트 등 저온조직으로의 변태를 효과적으로 억제 가능한 원소이다. 본 발명은 이와 같은 효과 달성을 위해 0.0005% 이상의 보론(B)을 첨가할 수 있다. 바람직한 보론(B) 함량의 하한은 0.001%일 수 있다. 반면, 보론(B)이 과다하게 첨가되는 경우 보론(B)이 철(Fe)과 반응하여 입계취성을 유발할 수 있으므로, 본 발명은 보론(B) 함량의 상한을 0.005%로 제한할 수 있다. 바람직한 보론(B) 함량의 상한은 0.0045%일 수 있다.
본 발명의 일 측면에 따른 고탄소 강판은 전술한 성분 이외에 나머지 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물이 불가피하게 혼입될 수 있으므로, 이를 전면적으로 배제할 수는 없다. 이들 불순물은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 전술한 성분 이외에 유효한 성분의 추가적인 첨가가 전면적으로 배제되는 것은 아니다.
이하, 본 발명의 일 측면에 따른 고탄소 강판에 포함되는 미세조직에 대해 보다 상세히 설명한다.
본 발명의 일 측면에 따른 고탄소 강판은 기지조직으로 마르텐사이트를 포함한다. 마르텐사이트의 분율은 강판 전체의 부피 대비 90부피% 이상일 수 있으며, 바람직한 마르텐사이트의 분율은 95부피% 이상일 수 있다. 본 발명의 일 측면에 따른 고탄소 강판은 경질조직인 마르텐사이트를 기지조직으로 포함하므로, 높은 강도 및 항복비를 동시에 확보할 수 있다.
본 발명의 일 측면에 따른 고탄소 강판에 포함되는 마르텐사이트는 열간압연 후 급냉에 의해 형성되고 이후의 냉간압연에 의해 연신되므로, 강판에 포함되는 전체 마르텐사이트 중 연신된 마르텐사이트의 비율이 50% 이상일 수 있다. 연신된 마르텐사이트는 패킷의 장축 방향이 압연 방향으로부터 45° 이내의 방향으로 배열된 마르텐사이트를 의미할 수 있다. 또한, 본 발명의 일 측면에 따른 고탄소 강판은 전체 마르텐사이트 패킷 중 장단축 비가 2:1 이상인 패킷의 비율이 50% 이상일 수 있다.
본 발명의 일 측면에 따른 고탄소 강판에 포함되는 마르텐사이트는 열간압연 후의 냉각에 의해 형성되고 이후의 냉간압연에 의해 연신되므로, 통상적으로 생성되는 마르텐사이트와 달리, 압연방향의 잔류응력이 70MPa 이상의 수준을 만족하고 압연방향에 대한 45° 방향의 잔류응력이 30MPa 이상의 수준을 만족할 수 있다. 바람직한 마르텐사이트의 압연방향 잔류응력은 190MPa 이상일 수 있다. 마르텐사이트의 잔류응력은 X선 분석 의해 측정될 수 있으며, 본 발명이 속하는 기술분야의 통상의 기술자는 특별한 기술적 어려움 없이 마르텐사이트의 잔류응력을 측정할 수 있다.
본 발명의 일 측면에 따른 고탄소 강판은 경질조직인 마르텐사이트를 기지조직으로 포함할 뿐만 아니라, 강판에 포함되는 마르텐사이트가 냉간압연에 의해 연신되어 일정 수준 이상의 잔류응력을 가지거나 연신된 형태를 가지도록 제어하므로, 강판 및 이를 이용하여 제조된 부품의 내구성을 보다 효과적으로 향상시킬 수 있다.
본 발명의 일 측면에 따른 고탄소 강판은 마르텐사이트 이외의 조직이 포함되는 것을 전면적으로 배제하는 것은 아니다. 다만, 페라이트, 펄라이트, 베이나이트 및 잔류 오스테나이트 등은 강도 및 내구성 확보에 바람직하지 않으므로 이들의 분율을 일정 범위 내로 제어할 필요가 있다. 페라이트 및/또는 잔류 오스테나이트의 합계 분율은 10부피% 이하인 것이 바람직하며, 펄라이트 및/또는 베이나이트의 합계 분율은 5부피% 이하인 것이 바람직하다. 본 발명은 페라이트, 잔류 오스테나이트, 펄라이트 및 베이나이트의 합계 분율이 0%인 경우를 포함할 수 있다.
한편, 본 발명의 일 측면에 따른 고탄소 강판은 전술한 미세조직 외에 시멘타이트 및 석출물 등을 잔부 조직으로 더 포함할 수 있다.
본 발명의 일 측면에 따른 고탄소 강판의 항복강도(YS)는 1300MPa 이상이고, 인장강도(TS)는 1500MPa 이상일 수 있다. 바람직한 항복강도(YS)는 1590MPa 이상일 수 있으며, 바람직한 인장강도(TS)는 1640MPa 이상일 수 있다.
본 발명의 일 측면에 따른 고탄소 강판을 이용하여 코일 형태의 스프링 부재를 제작한 후 감겨 있는 상태의 스프링을 일정한 길이로 당긴 후 다시 원상태로 감는 방식의 내구성 테스트를 실시하는 경우, 내구성 테스트 결과가 10만회 이상으로 우수한 내구성을 가지는 것을 알 수 있다.
이하, 본 발명의 일 측면에 따른 고탄소 강판의 제조방법에 대해 보다 상세히 설명한다.
본 발명의 일 측면에 따른 고탄소 강판의 제조방법은, 중량%로, C: 0.11~0.30%, Mn: 0.1~3.0%, Si: 0.5% 이하(0% 제외), Al: 0.1% 이하(0% 제외), P: 0.05% 이하(0% 포함), S: 0.03% 이하(0% 포함), N: 0.03% 이하(0% 포함), 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 1100℃ 이상의 온도범위에서 가열하는 단계; 상기 가열된 슬라브를 800~950℃의 압연 종료 온도에서 열간압연하여 열연강판을 제공하는 단계; 상기 열간압연 완료 후 5초 이내에 50~1000℃/sec의 냉각속도로 350℃ 이하의 냉각종료온도까지 상기 열연강판을 급냉하는 단계; 350℃ 이하의 온도범위에서 상기 급냉된 열연강판을 권취하는 단계; 및 상기 권취 후 열처리를 생략하고, 20~50%의 압하율로 상기 열연강판을 냉간압연하는 단계;를 포함할 수 있다.
슬라브 가열 및 열간압연
본 발명의 슬라브 강 조성은 전술한 강판의 강 조성과 대응하므로, 본 발명의 슬라브 강 조성에 대한 설명은 전술한 강판의 강 조성에 대한 설명으로 대신한다. 슬라브 제조 조건은 특별히 제한되는 것은 아니며, 통상의 고탄소 강판의 제조에 이용되는 슬라브 제조 조건이 적용될 수 있다.
준비된 슬라브를 일정 온도범위로 가열한다. 충분한 균질화 처리를 위해 1100℃ 이상의 온도범위에서 슬라브를 가열할 수 있다. 다만, 슬라브 가열 온도가 과도하게 높은 경우, 경제성 측면에서 바람직하지 않을 뿐만 아니라 최종 제품의 표면 품질에 악영향을 미칠 수 있으므로, 슬라브 가열 온도의 상한은 1350℃ 로 제한할 수 있다.
가열된 슬라브는 통상의 열간압연 조건에 의해 열간압연 될 수 있으나, 압연하중 제어 및 표면 스케일 저감을 위해 마무리 압연 온도를 800~950℃의 범위로 제한할 수 있다.
냉각 및 권취
열간압연 직후의 열연강판에 대해 급랭 조건의 냉각이 실시될 수 있다.
본 발명은 강판의 미세조직을 엄격히 제어하고자 하므로, 본 발명의 냉각은 열간압연 종료 직후 5초 이내에 개시되는 것이 바람직하다. 열간압연 후 냉각 개시 시점까지의 시간이 5초를 초과하는 경우, 대기 중에서의 공랭에 의해 본 발명이 의도하지 않는 페라이트, 펄라이트 및 베이나이트가 형성될 수 있기 때문이다. 열간압연 종료 직후로부터 냉각 개시 시점까지의 바람직한 시간은 3초 이내일 수 있다.
열간압연 직후의 열연강판은 50~1000℃/s의 냉각속도로 350℃ 이하의 냉각 종료 온도까지 냉각될 수 있다. 냉각 종료 온도가 일정 범위를 초과하는 경우 페라이트, 펄라이트 및 베이나이트로의 변태가 불가피하므로, 본 발명이 목적하는 미세조직을 확보하기 위해 냉각 종료온도의 상한을 350℃로 제한할 수 있다. 한편, 냉각 종료 온도의 하한은 특별이 규정하지는 않으나, 바람직한 냉각 종료 온도의 하한은 150℃일 수 있다. 냉각속도가 일정 수준 미만인 경우, 냉각 중 페라이트, 펄라이트 및 베이나이트로의 변태가 일어나게 되므로, 본 발명이 목적하는 미세조직을 확보하기 위해 냉각속도의 하한을 50℃/s로 제한할 수 있다. 한편, 냉각속도의 상한은 특별히 한정하지는 않으나, 설비 한계 및 경제성을 고려하여 냉각속도의 상한을 1000℃/s로 제한할 수 있다.
본 발명은 열간압연 직후의 열연강판에 대해 급냉 조건의 냉각을 실시하므로 냉간압연 적용 전의 열연강판 상태에서 90부피% 이상의 마르텐사이트를 확보할 수 있다. 통상적인 고탄소 강판의 제조 방법은 열간압연 직후 열처리를 실시하고, 열처리된 열연강판을 냉간압연한 후 담금질 열처리를 실시하여 마르텐사이트 조직을 형성하는 반면, 본 발명은 강 성분계를 엄격히 제어하여 열간압연 직후의 열처리를 생략할 수 있을 뿐만 아니라 냉간압연 후의 담금질을 생략할 수 있으므로, 탄소 배출량을 효과적으로 낮출 수 있다.
냉각 종료 후의 냉연강판은 열연코일로 권취될 수 있다.
냉간압연
열연코일을 언코일링한 후 20~50%의 압하량으로 냉간압연을 실시할 수 있다. 압하량이 적은 경우 마르텐사이트의 충분한 연신이 이루어지지 않으며, 그에 따라 목적하는 고강도 특성 및 내구성을 확보할 수 없게 된다. 따라서, 본 발명은 냉간압연의 압하량을 20% 이상의 수준으로 제한할 수 있다. 바람직한 냉간압연 압하량의 하한은 25%일 수 있다. 반면, 냉간압연의 압하량이 과도한 경우, 압연 하중에 의한 설비 파손이 우려될 뿐만 아니라, 강도가 지나치게 상승하면서 내구성이 저하되는 문제가 있을 수 있으므로, 본 발명은 냉간압연 압하량의 상한을 50%로 제한할 수 있다.
전술한 제조방법을 통해 제조된 고탄소 강판은, 90부피% 이상의 마르텐사이트를 미세조직으로 포함하고, 마르텐사이트의 압연방향 잔류응력은 70MPa 이상이며, 항복강도(YS)는 1300MPa 이상이고, 인장강도(TS)는 1500MPa 이상일 수 있다.
또한, 전술한 제조방법을 통해 제조된 고탄소 강판을 이용하여 스프링 부재를 제작하는 경우, 해당 스프링 부재의 내구성 테스트 결과는 10만회 이상을 충족할 수 있다.
이하, 구체적인 실시예를 통하여 본 발명의 고탄소 강판 및 그 제조방법, 부품에 대해 보다 상세히 설명한다. 아래의 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명의 권리범위를 특정하기 위한 것이 아님을 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정된다.
하기 표 1의 조성을 가지는 슬라브를 제조한 후 하기 표 2의 공정조건을 적용하여 강판 시편을 제조하였다. 각각의 슬라브는 통상의 제조방법에 의해 제조되었으며, 1050~1350℃의 온도범위에서 가열되어 균질화 처리되었다.
강종 합금 성분(wt%)
C Mn Si Al P S N Nb V Cr Ti B
A 0.223 0.979 0.08 0.03 0.005 0.002 0.004 0.001 0.002 0.02 0.018 0.0013
B 0.126 1.09 0.05 0.04 0.009 0.003 0.003 - - 0.01 0.023 0.0021
C 0.171 1.21 0.06 0.02 0.012 0.005 0.005 0.001 0.002 0.03 0.021 0.0018
D 0.292 0.88 0.08 0.03 0.014 0.004 0.004 0.001 0.001 0.03 0.019 0.0016
E 0.219 2.8 0.07 0.02 0.011 0.003 0.005 0.001 0.002 0.41 0.022 0.0015
F 0.227 1.06 0.41 0.03 0.009 0.004 0.003 0.002 0.002 0.03 0.075 0.0041
G 0.226 1.13 0.03 0.07 0.019 0.006 0.005 0.026 0.031 0.03 0.016 0.0022
H 0.102 0.99 0.07 0.02 0.012 0.006 0.004 0.002 0.002 0.03 0.021 0.0018
I 0.218 1.03 0.06 0.03 0.015 0.004 0.007 0.003 0.002 0.02 0.001 0.0002
J 0.231 3.21 0.08 0.02 0.016 0.006 0.003 0.001 0.001 0.03 0.019 0.0018
구분 강종 압연 종료 온도
(℃)
냉각 개시 시간
(sec)
냉각속도
(℃/sec)
냉각 종료 온도
(℃)
권취 온도
(℃)
냉간 압하율
(%)
1 A 910 2.4 100 294 250 30
2 A 892 2.2 200 157 117 30
3 A 886 1.6 300 241 216 30
4 A 930 1.7 100 250 235 30
5 A 912 2.9 100 236 222 30
6 A 921 2.2 100 223 194 45
7 B 929 1.8 100 259 231 30
8 C 911 1.7 100 225 210 30
9 D 895 2.2 100 256 217 30
10 E 882 1.7 100 218 200 30
11 F 894 1.1 100 179 148 30
12 G 856 2.2 100 263 238 30
13 A 889 6.4 100 199 181 30
14 A 773 2.2 100 151 135 30
15 A 905 2.4 100 391 359 30
16 A 916 2.0 35 201 172 30
17 A 912 2.0 100 151 132 15
18 H 921 1.2 100 220 204 30
19 I 916 2.4 100 188 168 30
20 J 926 1.0 100 278 228 30
이후 각 시편의 미세조직을 측정하여 그 결과를 표 3에 기재하였다. 각 시편을 압연방향과 평행한 방향으로 절단한 후 판 두께 1/4 지점의 절단면에서 미세조직 관찰용 시편을 채취하였다. 이렇게 채취된 샘플을 연마하고 나이탈 용액으로 부식한 후, 광학현미경 및 주사전자현미경(SEM)을 이용하여 각 시편의 미세조직을 관찰하였다. 미세조직 분율은 이미지 분석을 통해 측정하였다.
연신된 마르텐사이트의 비율은 주사전자현미경(SEM) 이미지 내에서 전체 마르텐사이트 면적 대비 패킷의 장축이 압연 방향으로부터 45° 이내로 배열되는 마르텐사이트의 면적으로부터 측정하였다. 마르텐사이트 패킷의 장단축비 역시 주사전자현미경(SEM) 이미지 내에서 전체 마르텐사이트 패킷의 면적 대비 장축과 단축의 패킷 비율이 2:1 이상인 것의 면적으로부터 측정하였다.
표 3에서 M은 마르텐사이트, F는 페라이트, R-γ는 잔류 오스테나이트, P는 펄라이트, B는 베이나이트를 의미한다.
구분 미세조직 분율 (vol%) 압연 방향으로
연신된 마르텐사이트
비율
(%)
장단축비 2:1 이상인
마르텐사이트
패킷 비율
(%)
M F R-γ P B
1 98 0 1 0 1 74 87
2 100 0 0 0 0 73 84
3 100 0 0 0 0 78 73
4 98 0 1 0 1 85 72
5 97 0 1 1 1 76 65
6 99 0 1 0 0 83 75
7 95 0 0 2 3 75 71
8 95 1 0 2 2 80 76
9 100 0 0 0 0 86 66
10 95 0 5 0 0 71 84
11 100 0 0 0 0 73 72
12 100 0 0 0 0 77 79
13 88 11 0 0 1 68 70
14 88 6 0 4 2 71 68
15 85 0 3 0 12 65 57
16 85 1 1 4 9 76 69
17 100 0 0 0 0 42 43
18 68 24 0 4 4 53 54
19 69 22 0 5 4 75 76
20 85 0 15 0 0 74 73
각 시편에 대한 기계적 물성을 측정하여 그 결과를 표 4에 기재하였다. 인장강도 및 항복강도는 JIS 규격에 따른 인장시험을 실시하여 평가하였으며, 잔류응력은 X-ray diffraction 방식인 Stresstech Group에서 제조한 XSTRESS 3000 모델의 장비를 이용하였으며, 측정 파라미터로 Exp. Time: 40s, Radiation: CrKa, Detector distance: 50s의 조건에서 표면의 잔류응력을 측정하였다. 또한, 각 시편을 이용하여 코일 형태의 스프링 부재를 제작하였으며, 감겨 있는 상태의 스프링을 1.5m 길이로 당긴 후 다시 원상태로 감는 방식의 반복 테스트를 통해 내구성을 평가하였으며, 그 결과를 표 4에 함께 기재하였다.
구분 압연방향
잔류응력
(MPa)
압연 45° 방향 잔류응력
(MPa)
인장강도
(MPa)
항복강도
(MPa)
내구성
(회)
1 263 193 1674 1627 13.2만
2 328 262 1705 1636 15만 이상
3 265 194 1730 1635 15만 이상
4 287 232 1712 1662 12.4만
5 249 158 1647 1615 14.2만
6 338 256 1798 1764 15만 이상
7 165 116 1578 1511 11.4만
8 186 114 1629 1579 12.1만
9 343 274 1846 1785 12.0만
10 197 102 1765 1714 12.9만
11 318 238 1771 1731 11.8만
12 263 197 1781 1744 11.1만
13 281 181 1441 1297 5.9만
14 231 217 1476 1321 5.0만
15 226 139 1641 1608 6.2만
16 164 85 1491 1447 6.6만
17 61 28 1556 1321 7.9만
18 191 94 1375 1227 9.1만
19 145 93 1411 1265 8.1만
20 159 98 1716 1556 7.7만
표 1 내지 표 4에 나타난 바와 같이, 본 발명의 합금조성 및 제조조건을 모두 만족하는 시편 1 내지 시편 12는 마르텐사이트의 분율이 90부피 % 이상이고, 압연 방향으로 연신된 마르텐사이트 비율이 50% 이상이며, 장단축비가 2:1 이상인 마르텐사이트 패킷의 비율이 50% 이상인 것을 확인할 수 있다. 또한, 시편 1 내지 시편 12은 압연방향의 잔류응력이 70MPa 이상이고, 압연방향에 대한 45°방향의 잔류응력이 30MPa 이상이며, 1500MPa 이상의 인장강도 및 1300MPa 이상의 항복강도, 10만회 이상의 내구성 시험 결과를 모두 만족하는 것을 확인할 수 있다.
반면, 본 발명의 합금조성 및 제조조건 중 어느 하나 이상을 만족하지 않는 시편 13 내지 20은, 본원발명이 제한하는 마르텐사이트의 분율, 압연 방향으로 연신된 마르텐사이트 비율 및 장단축비가 2:1 이상인 마르텐사이트 패킷의 비율 중 어느 하나 이상을 만족하지 않는 것을 확인할 수 있다.
시편 13는 압연 종료 후 5초를 경과하여 냉각이 개시된 시편으로, 페라이트 분율이 높아 목적하는 강도 및 내구성을 확보하지 못하는 것을 확인할 수 있다.
시편 14는 압연 종료 온도가 낮은 경우이고, 시편 16은 냉각속도가 느린 경우로서, 이들 시편은 펄라이트 및 베이나이트의 분율이 높아 본 발명이 목적하는 마르텐사이트 분율을 확보하지 못하며, 목적하는 강도 및 내구성을 확보하지 못하는 것을 확인할 수 있다.
시편 15는 냉각종료 온도 및 권취 온도가 높은 경우로, 베이나이트의 분율이 높아 목적하는 내구성을 확보하지 못하는 것을 확인할 수 있다.
시편 17은 냉간압하율이 낮은 경우로, 장단축비가 2:1 이상인 마르텐사이트 패킷의 비율이 낮고 마르텐사이트의 잔류응력이 낮아서 목적하는 내구성을 확보하지 못하는 것을 확인할 수 있다.
시편 18은 탄소(C)의 함량이 낮은 경우이고, 시편 19는 타이타늄(Ti) 및 보론(B)의 함량이 낮은 경우로서, 마르텐사이트의 분율이 현저히 낮아 목적하는 수준의 강도 및 내구성을 확보하지 못하는 것을 확인할 수 있다.
시편 20은 망간(Mn)의 함량이 높은 경우로, 마르텐사이트로의 변태가 충분히 일어나지 않아 잔류 오스테나이트가 다량 형성되었으며, 인장강도 및 항복강도는 우수한 반면 내구성이 열위한 것을 확인할 수 있다.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.

Claims (17)

  1. 중량%로, C: 0.11~0.30%, Mn: 0.1~3.0%, Si: 0.5% 이하(0% 제외), Al: 0.1% 이하(0% 제외), P: 0.05% 이하(0% 포함), S: 0.03% 이하(0% 포함), N: 0.03% 이하(0% 포함), 나머지 Fe 및 불가피한 불순물을 포함하고,
    90부피% 이상의 마르텐사이트를 미세조직으로 포함하며,
    상기 마르텐사이트의 압연방향 잔류응력은 70MPa 이상인, 고탄소 강판.
  2. 제1항에 있어서,
    Ti: 0.005~0.1중량%를 더 포함하는, 고탄소 강판.
  3. 제2항에 있어서,
    중량%로, Nb: 0.05% 이하, V: 0.05% 이하, Cr: 1.0% 이하, Mo: 1.0% 이하 및 B: 0.005% 이하 중의 1종 이상을 더 포함하는, 고탄소 강판.
  4. 제1항에 있어서,
    상기 마르텐사이트의 압연방향에 대한 45° 방향의 잔류응력은 30MPa 이상인, 고탄소 강판.
  5. 제1항에 있어서,
    상기 마르텐사이트 중 압연방향을 따라 연신된 마르텐사이트의 비율이 50% 이상인, 고탄소 강판.
  6. 제1항에 있어서,
    상기 마르텐사이트의 전체 패킷 중 장단축 비가 2:1 이상인 패킷의 비율이 50% 이상인, 고탄소 강판.
  7. 제1항에 있어서,
    페라이트 및 잔류오스테나이트 중에서 선택된 1종 이상을 10부피% 이하(0% 포함)의 합계 분율로 포함하고,
    펄라이트 및 베이나이트 중에서 선택된 1종 이상을 5부피% 이하(0% 포함)의 합계 분율로 포함하는, 고탄소 강판.
  8. 제1항에 있어서,
    상기 강판의 항복강도는 1300MPa 이상이고, 인장강도는 1500MPa 이상인, 고탄소 강판.
  9. 제1항에 있어서,
    상기 강판의 탄소(C) 함량은 0.20중량% 초과이며,
    상기 마르텐사이트의 압연방향 잔류응력은 190MPa 이상인, 고탄소 강판.
  10. 제9항에 있어서,
    상기 강판의 항복강도는 1590MPa 이상이고, 인장강도는 1640MPa 이상인, 고탄소 강판.
  11. 제1항 내지 제10항 중 어느 한 항의 고탄소 강판을 이용하여 부품으로, 내구성 테스트 결과가 10만회 이상인, 산업용 또는 자동차용 부품.
  12. 중량%로, C: 0.11~0.30%, Mn: 0.1~3.0%, Si: 0.5% 이하(0% 제외), Al: 0.1% 이하(0% 제외), P: 0.05% 이하(0% 포함), S: 0.03% 이하(0% 포함), N: 0.03% 이하(0% 포함), 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 1100℃ 이상의 온도범위에서 가열하는 단계;
    상기 가열된 슬라브를 800~950℃의 압연 종료 온도에서 열간압연하여 열연강판을 제공하는 단계;
    상기 열간압연 완료 후 5초 이내에 50~1000℃/sec의 냉각속도로 350℃ 이하의 냉각종료온도까지 상기 열연강판을 급냉하고 권취하는 단계; 및
    상기 권취 후 열처리를 생략하고, 20~50%의 압하율로 상기 열연강판을 냉간압연하는 단계;를 포함하는, 고탄소 강판의 제조방법.
  13. 제12항에 있어서,
    상기 슬라브는, Ti: 0.005~0.1중량%를 더 포함하는, 고탄소 강판의 제조방법.
  14. 제13항에 있어서,
    상기 슬라브는, 중량%로, Nb: 0.05% 이하, V: 0.05% 이하, Cr: 1.0% 이하, Mo: 1.0% 이하 및 B: 0.005% 이하 중의 1종 이상을 더 포함하는, 고탄소 강판의 제조방법.
  15. 제12항에 있어서,
    상기 슬라브에 포함되는 탄소(C) 함량은 0.20중량% 초과인, 고탄소 강판의 제조방법.
  16. 제12항에 있어서,
    상기 급냉된 열연강판은 90부피% 이상의 마르텐사이트를 포함하는, 고탄소 강판의 제조방법.
  17. 제12항에 있어서,
    상기 냉간압연 후 담금질을 실시하지 않는, 고탄소 강판의 제조방법.
PCT/KR2022/020723 2021-12-20 2022-12-19 내구성이 우수한 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품 WO2023121182A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0182581 2021-12-20
KR1020210182581A KR20230093723A (ko) 2021-12-20 2021-12-20 내구성이 우수한 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품

Publications (1)

Publication Number Publication Date
WO2023121182A1 true WO2023121182A1 (ko) 2023-06-29

Family

ID=86903354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020723 WO2023121182A1 (ko) 2021-12-20 2022-12-19 내구성이 우수한 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품

Country Status (2)

Country Link
KR (1) KR20230093723A (ko)
WO (1) WO2023121182A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130070825A (ko) * 2011-12-20 2013-06-28 주식회사 포스코 점용접성, 강도 및 연신율이 우수한 자동차용 강판 및 그 제조방법
JP2014201781A (ja) * 2013-04-02 2014-10-27 新日鐵住金株式会社 靭性と圧延方向の剛性に優れた高強度熱延鋼板およびその製造方法
KR101467064B1 (ko) * 2012-12-26 2014-12-01 현대제철 주식회사 1180MPa급 자동차용 고강도 냉연강판 및 그 제조 방법
JP2016003352A (ja) * 2014-06-16 2016-01-12 株式会社神戸製鋼所 衝突特性に優れる超高強度鋼板
KR20210079831A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 항복비가 우수한 고강도 열연강판 및 그 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011118A1 (de) 2008-11-21 2010-05-27 Muhr Und Bender Kg Vergüteter Federstahl, Federelement und Verfahren zur Herstellung eines Federelements
EP2548976A4 (en) 2010-03-18 2014-10-01 Nhk Spring Co Ltd SPRING STEEL AND SURFACE TREATMENT METHOD FOR A STEEL MATERIAL
WO2020002285A1 (en) 2018-06-26 2020-01-02 Tata Steel Nederland Technology B.V. Cold-rolled martensite steel with high strength and high bendability and method of producing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130070825A (ko) * 2011-12-20 2013-06-28 주식회사 포스코 점용접성, 강도 및 연신율이 우수한 자동차용 강판 및 그 제조방법
KR101467064B1 (ko) * 2012-12-26 2014-12-01 현대제철 주식회사 1180MPa급 자동차용 고강도 냉연강판 및 그 제조 방법
JP2014201781A (ja) * 2013-04-02 2014-10-27 新日鐵住金株式会社 靭性と圧延方向の剛性に優れた高強度熱延鋼板およびその製造方法
JP2016003352A (ja) * 2014-06-16 2016-01-12 株式会社神戸製鋼所 衝突特性に優れる超高強度鋼板
KR20210079831A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 항복비가 우수한 고강도 열연강판 및 그 제조방법

Also Published As

Publication number Publication date
KR20230093723A (ko) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2016104881A1 (ko) 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2018110853A1 (ko) 저온역 버링성이 우수한 고강도 복합조직강 및 그 제조방법
WO2017111524A1 (ko) 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
WO2015099222A1 (ko) 용접성 및 버링성이 우수한 열연강판 및 그 제조방법
WO2020022778A1 (ko) 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
WO2012043984A2 (ko) 수소유기균열 저항성이 우수한 라인 파이프용 강판 및 그 제조 방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2023121182A1 (ko) 내구성이 우수한 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품
WO2019125018A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2016072679A1 (ko) 강도와 충격 인성이 우수한 선재 및 그 제조방법
WO2017086745A1 (ko) 전단가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2022050500A1 (ko) 핫스탬핑용 소재 및 그 제조방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
WO2020130329A1 (ko) 성형성이 우수한 고강도 열연강판 및 그 제조방법
WO2020080602A1 (ko) 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재
WO2024143768A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2024136281A1 (ko) 고강도 강판 및 그 제조 방법
WO2023096453A1 (ko) 연신율이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2023106898A1 (ko) 핫 스탬핑용 소재
WO2024080657A1 (ko) 강판 및 이의 제조방법
WO2023018270A1 (ko) 고강도 고인성 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911815

Country of ref document: EP

Kind code of ref document: A1