WO2023121093A1 - 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지 - Google Patents

탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2023121093A1
WO2023121093A1 PCT/KR2022/020101 KR2022020101W WO2023121093A1 WO 2023121093 A1 WO2023121093 A1 WO 2023121093A1 KR 2022020101 W KR2022020101 W KR 2022020101W WO 2023121093 A1 WO2023121093 A1 WO 2023121093A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
carbon nanotube
nanotube dispersion
electrode
carbon nanotubes
Prior art date
Application number
PCT/KR2022/020101
Other languages
English (en)
French (fr)
Inventor
김택경
유광현
강성균
Original Assignee
주식회사 베터리얼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220171427A external-priority patent/KR20230096854A/ko
Application filed by 주식회사 베터리얼 filed Critical 주식회사 베터리얼
Publication of WO2023121093A1 publication Critical patent/WO2023121093A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present specification relates to a carbon nanotube dispersion, a method for preparing the same, an electrode slurry composition including the same, an electrode including the same, and a lithium secondary battery including the same.
  • a secondary battery is a battery that can be used repeatedly through a charging process in the opposite direction to a discharging process in which chemical energy is converted into electrical energy.
  • a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and the positive electrode and negative electrode generally consist of an electrode current collector and an electrode active material layer formed on the electrode current collector.
  • the electrode active material layer is prepared by applying an electrode slurry composition including an electrode active material, a conductive material, a binder, and the like on an electrode current collector, drying it, and then rolling it.
  • the conductive material is to improve the conductivity of the electrode active material, and conventionally, a point-shaped conductive material such as carbon black has been mainly used.
  • a point-shaped conductive material such as carbon black
  • the dotted conductive material does not have a high electrical conductivity improvement effect, it must be used in an excessive amount to obtain a sufficient effect, thereby reducing the content of the electrode active material and lowering the battery capacity.
  • silicon-based anode materials are emerging as high-capacity materials are required to overcome the limitations of graphite (low theoretical capacity).
  • silicon reacts with lithium it not only generates a large initial irreversible capacity due to volume expansion at the level of 100 to 400%, but also loses electrical contact due to active material structure collapse and separation from the current collector during charging and discharging, resulting in a loss of electrode life characteristics. cause a decrease in
  • linear carbon nanotubes single-wall or multi-wall carbon nanotubes
  • carbon nanotubes have problems in that, due to the nature of the material itself, which grows in a bundle type or entangle type, its dispersibility in the slurry is poor, resulting in poor coating properties and processability, and is not evenly distributed in the electrode active material layer.
  • a method of preparing a carbon nanotube dispersion by first mixing carbon nanotubes with a dispersant and a solvent and then applying the carbon nanotube dispersion to an electrode slurry composition has been applied.
  • battery efficiency may be affected depending on the type of dispersant, the purity of SWCNT, and the degree of water dispersion.
  • It relates to a carbon nanotube dispersion with improved dispersion stability, a method for preparing the same, an electrode slurry composition including the same, an electrode including the same, and a lithium secondary battery including the same.
  • An exemplary embodiment of the present invention is a single-walled carbon nanotube (SWCNT) having a purity of 95% or more;
  • the cellulose-based dispersant provides a carbon nanotube dispersion having a value calculated by Equation 1 below of 7 or more and 13 or less.
  • an exemplary embodiment of the present invention is a single-walled carbon nanotube (SWCNT) having a purity of 95% or more; and mixing a cellulose-based dispersing agent.
  • SWCNT single-walled carbon nanotube
  • an electrode slurry composition including the above-described carbon nanotube dispersion, a silicon-based electrode active material, and a binder.
  • another embodiment of the present invention provides an electrode including an electrode active material layer formed by the electrode slurry composition described above.
  • another embodiment of the present invention provides a lithium secondary battery including the electrode described above.
  • the carbon nanotube dispersion according to an exemplary embodiment of the present invention has an effect of improving dispersion stability.
  • 'carbon nanotube dispersion means a dispersion containing carbon nanotubes. Specifically, it means that the carbon nanotubes are dispersed in the dispersion and do not aggregate with each other.
  • 'carbon nanotube' means 'single-wall carbon nanotube' unless otherwise specified.
  • a single-walled carbon nanotube refers to a carbon nanotube having a single number of bonds constituting the wall.
  • the carbon nanotubes may have a secondary shape in which a plurality of carbon nanotubes are aggregated or arranged, and for example, a plurality of carbon nanotubes are arranged or aligned side by side in a certain direction. It may be a bundle type carbon nanotube in the form of a bundle or rope, or an entangled type carbon nanotube in the form of a sphere or potato in which a plurality of carbon nanotubes are entangled without a certain direction.
  • An exemplary embodiment of the present invention is a single-walled carbon nanotube (SWCNT) having a purity of 95% or more;
  • the cellulose-based dispersant provides a carbon nanotube dispersion having a value calculated by Equation 1 below of 7 or more and 13 or less.
  • the carbon nanotube dispersion according to an exemplary embodiment of the present invention includes single-walled carbon nanotubes having excellent conductivity, and has improved dispersibility of the carbon nanotubes, thereby minimizing mutual phenomena between the carbon nanotubes. This characteristic can be confirmed from the remarkably low viscosity of the dispersion.
  • a carbon nanotube dispersion according to an exemplary embodiment of the present invention includes a cellulose-based dispersant.
  • the cellulose-based dispersant has characteristics of high dispersibility and high lithium ion conductivity. That is, when manufacturing a lithium ion battery using the carbon nanotube dispersion containing the cellulose-based dispersant, it is possible to manufacture a lithium ion battery with high performance.
  • the cellulose-based dispersant is characterized in that the value calculated by Equation 1 is 7 or more and 13 or less. Preferably, the value calculated by Equation 1 may be 8 or more and 10 or less, or 9 or more and 11 or less.
  • the structural stability of the dispersant is improved, the dispersibility of the dispersion is improved, the viscosity of the dispersion is stabilized, and the carbon nanotubes included in the dispersion can be evenly distributed.
  • the dispersion liquid having the above characteristics is applied to a battery, there is an effect of improving the efficiency and capacity of the battery.
  • the degree of substitution of the cellulose-based dispersant may be 0.3 or more and 2 or less. Preferably, it may be 0.5 or more and 1.2 or less or 0.7 or more and 1 or less. When the above numerical range is satisfied, the solubility of the dispersant in the dispersion is excellent, and the dispersibility of the carbon nanotubes can be improved.
  • the degree of substitution of the cellulose-based dispersant means the average number of substituent groups substituted on cellulose per cellulose repeating unit.
  • the substituent group may be a methyl group, an ethyl group, a hydroxyl group, a benzyl group, a trityl group, a cyano group, a carboxymethyl group, a carboxyethyl group, a hydroxyethyl group, an aminoethyl group, a nitro group, and the like.
  • the weight average molecular weight of the cellulose-based dispersant may be 30,000 to 1,000,000. Preferably, it may be 50,000 to 800,000 or 60,000 to 200,000. When the above numerical range is satisfied, the solubility of the dispersant in the dispersion is excellent, the dispersibility of the carbon nanotubes can be improved, and the dispersion stability can be improved.
  • a unit of the weight average molecular weight may be g/mol.
  • the cellulose-based dispersant is methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, benzyl cellulose, trityl cellulose, cyanoethyl cellulose, carboxymethyl cellulose (CMC), carboxyethyl It may be cellulose, aminoethyl cellulose, nitrocellulose, cellulose ether, carboxymethylcellulose sodium salt (CMCNa), or a combination thereof.
  • the cellulose-based dispersant may be carboxymethyl cellulose (CMC), carboxymethyl cellulose sodium salt (CMCNa), or a combination thereof. These materials have good solubility in water, high thickening properties, and excellent coating properties. Battery performance can be improved when a dispersion containing the material is applied to a battery.
  • CMC carboxymethyl cellulose
  • CMCNa carboxymethyl cellulose sodium salt
  • the specific surface area (BET) of the single-walled carbon nanotubes may be 750 m 2 /g or more. Preferably, it may be 900 m 2 /g or more or 1,000 m 2 /g or more.
  • the upper limit is not particularly limited, but may be 2,000 m 2 /g or less, 1,800 m 2 /g or less, or 1,500 m 2 /g or less. Within the above numerical range, it is possible to control aggregation of single-walled carbon nanotubes and improve electrical conductivity.
  • the carbon nanotube dispersion includes single-walled carbon nanotubes (SWCNTs) having a purity of 95% or more.
  • the purity of the single-walled carbon nanotubes may be 96% or more, 97% or more, preferably 99% or more.
  • the purity may refer to the weight ratio of the carbon element (C) in the mass of the carbon nanotubes.
  • the content of the single-walled carbon nanotubes may be 0.1 wt% to 5 wt% based on the total weight of the carbon nanotube dispersion. In addition, it may be 0.4wt% to 4wt% or 1wt% to 2wt%.
  • the loading amount decreases during electrode manufacturing, increasing process cost, and binder migration occurs during electrode drying, resulting in reduced adhesive strength or increased viscosity of the carbon nanotube dispersion. this can happen That is, when the above numerical range is satisfied, the initial efficiency and high-rate retention capacity of the manufactured electrode can be improved.
  • the single-walled carbon nanotubes may include two or more carbon nanotube units.
  • the carbon nanotube unit may have a cylindrical shape in which a graphite sheet has a nano-sized diameter, and has an sp 2 bonding structure.
  • the diameter of the carbon nanotube unit may be 1 nm or more and 200 nm or less, 1 nm or more and 150 nm or less, or 1 nm or more and 100 nm or less. It is possible to improve the dispersibility of carbon nanotubes within the above numerical range and to prevent an increase in resistance when applied to an electrode.
  • the length of the carbon nanotube unit may be 0.1 ⁇ m or more and 200 ⁇ m or less, 0.1 ⁇ m or more and 150 ⁇ m or less, or 0.5 ⁇ m or more and 100 ⁇ m or less. It is possible to improve the dispersibility of carbon nanotubes within the above numerical range and to prevent an increase in resistance when applied to an electrode.
  • the aspect ratio (length/diameter) of the carbon nanotubes may be 5 to 50,000 or 10 to 15,000. It is possible to improve the dispersibility of carbon nanotubes within the above numerical range and to prevent an increase in resistance when applied to an electrode.
  • the average particle diameter (D50) of the carbon nanotubes may be 0.1 ⁇ m to 10 ⁇ m, 0.5 ⁇ m to 1 ⁇ m, 1 ⁇ m to 5 ⁇ m, or 2 ⁇ m to 4 ⁇ m.
  • the average particle diameter (D50) means a particle diameter corresponding to 50% of the cumulative number in the particle diameter distribution curve of carbon nanotubes.
  • the average particle diameter (D50) can be measured using, for example, a laser diffraction method. Within this range, carbon nanotubes do not aggregate with each other and dispersibility can be improved.
  • the specific surface area (BET) of the carbon nanotubes is 10 to 5,000 m 2 /g, preferably may be 30 m 2 /g to 3,000 m 2 /g, more preferably 500 m 2 /g to 2000 m 2 /g.
  • the specific surface area of the carbon nanotubes satisfies the above numerical range, the effect of improving conductivity is excellent.
  • the average particle diameter (D10) of the single-walled carbon nanotubes may be 0.1 um or more and 10 um or less. Preferably, it may be 0.3um or more and 8um or less, or 0.5um or more and 5um or less.
  • the average particle diameter (D90) of the single-walled carbon nanotubes may be 0.1 um or more and 20 um or less. Preferably, it may be 1um or more and 20um or less or 5um or more and 20um or less.
  • the average particle diameter (D10) means a particle diameter corresponding to 10% of the cumulative number
  • the average particle diameter (D50) means a particle diameter corresponding to 50% of the cumulative number
  • the average The particle diameter (D90) means a particle diameter corresponding to 90% of the number accumulation amount.
  • carbon nanotubes do not aggregate with each other and dispersibility may be improved.
  • the carbon nanotube dispersion may further include multi-wall carbon nanotubes in addition to the above-described single-wall carbon nanotubes.
  • an aqueous solvent may be included.
  • the aqueous solvent may use at least one selected from the group consisting of water, alcohol and ether.
  • the aqueous solvent is ethers (dioxane, tetrahydrofuran, methyl cellosolve, etc.), ether alcohols (ethoxy ethanol, methoxy ethoxy ethanol, etc.), esters (methyl acetate , ethyl acetate, etc.), ketones (cyclohexanone, methylethyl ketone, etc.), alcohols (ethanol, isopropanol, phenol, etc.), lower carboxylic acids (acetic acid, etc.), amines (triethylamine, new methanol amine, etc.), nitrogen Containing polar solvents (N, N-dimethylformamide, nitromethane, N-methylpyrrolidone, acetonitrile, etc.), sulfur compounds (dimethyl sulfoxide, etc.), etc. can be used.
  • ethers dioxane, tetrahydrofuran, methyl cellosolve, etc.
  • the carbon nanotube dispersion may have a viscosity of 10,000 cPs or less at 25° C. and a shear rate of 15 sec ⁇ 1 .
  • it may be 5,000 cPs or less, 3,000 cPs or less, or 2,000 cPs or less.
  • the lower the viscosity the better, so the lower limit is not particularly limited, but may be 10 cPs or more, 30 cPs or more, or 50 cPs or more.
  • the carbon nanotubes of the carbon nanotube dispersion do not agglomerate with each other, and the processability is improved when used in electrode manufacturing.
  • the viscosity of the carbon nanotube dispersion may be measured by a method commonly used in the field to which this technology belongs. For example, using Brookfield's DV NextCP Rheometer, it may be measured at a measurement temperature of 25 °C and a shear rate of 15 sec -1 . For more accurate measurement, the prepared carbon nanotube dispersion may be measured after being stored at 25° C. for one week.
  • An exemplary embodiment of the present invention is a single-walled carbon nanotube (SWCNT) having a purity of 95% or more; and mixing a cellulose-based dispersing agent.
  • SWCNT single-walled carbon nanotube
  • the purity is 95% or more single-walled carbon nanotube (SWCNT);
  • mixing the cellulose-based dispersant may be performed under a temperature condition in which physical properties do not change. For example, it may be carried out at a temperature of 50 ° C or less, more specifically 5 ° C to 50 ° C.
  • the preparation method of the carbon nanotube dispersion may include dispersing the single-walled carbon nanotubes (SWCNTs) having a purity of 95% or more.
  • SWCNTs single-walled carbon nanotubes
  • the step of dispersing the single-walled carbon nanotubes (SWCNTs) having a purity of 95% or more is a ball mill, a bead mill, a disc mill, or a basket. It may be performed by a method such as a basket mill or a high pressure homogenizer, and more specifically, it may be performed by a milling method using a disk mill or a high pressure homogenizer.
  • the size of the beads may be appropriately determined according to the type and amount of carbon nanotubes and the type of dispersant, specifically, the diameter of the beads is 0.1 mm to 5 mm, more specifically 0.5 mm. mm to 4 mm.
  • the bead milling process may be performed at a speed of 2,000 rpm to 10,000 rpm, and more specifically, at a speed of 5,000 rpm to 9,000 rpm.
  • the milling by the high-pressure homogenizer for example, by pressurizing the mixture with a plunger pump of the high-pressure homogenizer and pushing it through the gap of the homogenization valve, cavitation, shear, It is made by forces such as impact and explosion.
  • the step of dispersing the single-walled carbon nanotubes (SWCNTs) having a purity of 95% or more is 10 to 120 minutes, more specifically 20 minutes, so that the carbon nanotubes can be sufficiently dispersed. to 90 minutes.
  • An exemplary embodiment of the present invention provides an electrode slurry composition including the above-described carbon nanotube dispersion, an electrode active material, and a binder.
  • the electrode active material includes a silicon-based electrode active material.
  • the silicon-based electrode active material includes metal silicon (Si), silicon oxide (SiOx, where 0 ⁇ x ⁇ 2), silicon carbide (SiC), and a Si—Y alloy (where Y is an alkali metal, an alkaline earth metal, a Group 13 element, or a Group 14 element). It is an element selected from the group consisting of elements, transition metals, rare earth elements, and combinations thereof, and may include at least one selected from the group consisting of Si).
  • the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, It may be selected from the group consisting of Se, Te, Po, and combinations thereof.
  • the silicon-based electrode active material exhibits higher capacitance characteristics than the carbon-based electrode active material
  • when the silicon-based electrode active material is additionally included better capacitance characteristics can be obtained.
  • the silicon-based electrode active material has a large volume change during charging and discharging, and when charging and discharging are repeated, battery characteristics rapidly deteriorate and cycle characteristics are not sufficient, which makes commercialization difficult.
  • carbon nanotubes are used as a conductive material as in the present invention, an effect of improving cycle characteristics can be obtained when a silicon-based electrode active material is applied. Therefore, when the electrode slurry composition of the present invention including the carbon nanotube dispersion and the silicon-based electrode active material of the present invention is used, a secondary battery having excellent capacity characteristics and cycle characteristics can be implemented.
  • the electrode active material may further include another type of electrode active material together with the silicon-based electrode active material.
  • the other types of electrode active materials include, for example, carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metallic compounds capable of being alloyed with lithium, such as Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys, or Al alloys; metal oxides capable of doping and undoping lithium, such as SnO2, vanadium oxide, and lithium vanadium oxide;
  • a composite including the metallic compound and a carbonaceous material may be used, such as a Sn-C composite, and among these, a carbonaceous material is particularly preferable.
  • the total amount of the electrode active material which is a combination of the silicon-based electrode active material and other types of electrode active materials, is 70 to 99 wt%, preferably 80 to 99 wt% based on the total solid content in the electrode slurry composition It may be 98wt%.
  • the content of the electrode active material satisfies the above range, excellent capacity characteristics can be implemented.
  • the binder is for securing adhesion between active materials or between the active material and the current collector, and general binders used in the art may be used, and the type is not particularly limited.
  • the binder include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxylate.
  • Methylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated - EPDM, styrene-butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one of them alone or a mixture of two or more may be used.
  • CMC Methylcellulose
  • EPDM ethylene-propylene-diene polymer
  • SBR styrene-butadiene rubber
  • fluororubber or various copolymers thereof, and the like, and one of them alone or a mixture of two or more may be used.
  • the binder may be included in an amount of 5 wt% or less, preferably 1 to 3 wt%, based on the total solid content in the electrode slurry composition.
  • excellent electrode adhesion may be implemented while minimizing an increase in electrode resistance.
  • the electrode slurry composition may further include a solvent, if necessary, for viscosity control.
  • the solvent may be water, an organic solvent, or a mixture thereof.
  • the organic solvent include amide-based polar organic solvents such as dimethylformamide (DMF), diethyl formamide, dimethyl acetamide (DMAc), and N-methyl pyrrolidone (NMP); Methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl alcohols such as -2-propanol (tert-butanol), pentanol, hexanol, heptanol or octanol; glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-
  • the electrode slurry composition may further include additives such as a viscosity modifier and a filler, if necessary.
  • the electrode including an electrode active material layer formed by the electrode slurry composition described above.
  • the electrode may be prepared by applying the electrode slurry composition of the present invention described above and drying it to form an electrode active material layer. More specifically, the electrode active material layer is obtained by applying the electrode slurry composition on the electrode current collector and then drying it, or applying the electrode slurry composition on a separate support body and then peeling it from the support body. It can be formed through a method of lamination on the entire surface. If necessary, after forming the electrode active material layer through the above method, a rolling process may be additionally performed. At this time, drying and rolling may be performed under appropriate conditions in consideration of the physical properties of the electrode to be finally manufactured, and are not particularly limited.
  • the electrode current collector is not particularly limited as long as it is a material that has conductivity without causing chemical change in the battery, for example, copper, stainless steel, aluminum, nickel, titanium, alloys thereof. , surface treatment with carbon, nickel, titanium, silver, etc., or calcined carbon may be used.
  • the electrode current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and fine irregularities may be formed on the surface of the current collector to enhance bonding strength of the electrode active material.
  • the electrode current collector may be used in various forms such as, for example, a film, sheet, foil, net, porous material, foam, or non-woven fabric.
  • the electrode may be a negative electrode.
  • One embodiment of the present invention provides a lithium secondary battery including the electrode described above.
  • An exemplary embodiment of the present invention is an anode; cathode; and a separator and an electrolyte provided between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode is the above-described lithium secondary battery.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ion movement, and can be used without particular limitation as long as it is normally used as a separator in a secondary battery.
  • a porous polymer film as the separator for example, a porous film made of a polyolefin polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer
  • a polymer film or a laminated structure of two or more layers thereof may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in manufacturing a lithium secondary battery, It is not limited to these.
  • Single-walled carbon nanotubes with a purity of 99% (TUBALL 01RW03, specific surface area: 1,160 m 2 /g manufactured by OCSiAl), carboxymethyl cellulose as a cellulosic dispersant ⁇ degree of substitution (DS) 0.87, manufactured by sigma aldrich , product number 419273, weight average molecular weight 90,000 ⁇ , a mixture of 1 kg was prepared by mixing water as a solvent, and then mixed using a high-shear force in-line mixer (IM001 K&S Co.), and then mixed using a high-pressure homogenizer under high pressure. treatment to prepare a carbon nanotube dispersion. At this time, D10 of the single-walled carbon nanotubes was 0.88um, D50 was 4.72um, and D90 was 18.5um.
  • a carbon nanotube dispersion was prepared in the same manner as in Example 1, except that 80% pure single-walled carbon nanotubes (TUBALL 01RW02, manufactured by OCSiAl) were used instead of 99% pure single-walled carbon nanotubes.
  • a carbon nanotube dispersion was prepared in the same manner as in Example 1, except that single-walled carbon nanotubes (TUBALL 01RW01, manufactured by OCSiAl) having a purity of 75% were used instead of single-walled carbon nanotubes having a purity of 99%.
  • single-walled carbon nanotubes (TUBALL 01RW01, manufactured by OCSiAl) having a purity of 75% were used instead of single-walled carbon nanotubes having a purity of 99%.
  • a carbon nanotube dispersion was prepared in the same manner as in Example 1, except that polyvinylpyrrolidone and tannic acid were used instead of carboxymethyl cellulose as a dispersant, and single-walled carbon nanotubes having particle size characteristics in Table 1 below were used. did
  • a carbon nanotube dispersion was prepared in the same manner as in Example 1, except that polyvinylpyrrolidone and HP20 (Sokalan HP20, manufactured by BASF) were used instead of carboxymethyl cellulose as a dispersing agent.
  • a carbon nanotube dispersion was prepared in the same manner as in Example 1, except that polyvinylpyrrolidone was used as a dispersant instead of carboxymethyl cellulose.
  • a carbon nanotube dispersion was prepared in the same manner as in Example 1, except that carboxymethyl cellulose ⁇ degree of substitution (DS) 1.2 ⁇ , weight average molecular weight 90,000 ⁇ was used instead of the carboxymethyl cellulose used in Example 1. did At this time, the value calculated by Equation 1 below of the carboxymethyl cellulose was 13.33.
  • Example 2 The same method as in Example 1 except that carboxymethyl cellulose ⁇ degree of substitution (DS) 0.6, 332601000, manufactured by Thermo Scientific ⁇ , weight average molecular weight 90,000 ⁇ was used instead of the carboxymethyl cellulose used in Example 1. A carbon nanotube dispersion was prepared. At this time, the value calculated by Equation 1 below of the carboxymethyl cellulose was 6.67.
  • DS carboxymethyl cellulose ⁇ degree of substitution
  • Carboxymethyl cellulose ⁇ degree of substitution (DS) 0.87, 419303, manufactured by Sigma-Aldrich ⁇ , weight average molecular weight 250,000 ⁇ was used instead of the carboxymethyl cellulose used in Example 1.
  • a carbon nanotube dispersion was prepared by the method. At this time, the value calculated by Equation 1 below of the carboxymethyl cellulose was 3.48.
  • the content of impurities that may be incorporated during the electrode manufacturing process was analyzed using an electric furnace. According to the test procedure KS L 3412, the sample was dried and cooled to room temperature in a desiccator.
  • test vessel containing the sample was placed in the electric furnace, air was injected into the furnace at a slow speed, and the electric furnace was operated so that the temperature of the sample reached 500 ° C. within 1 hour or 750 ° C. within 2 hours.
  • the sample was periodically mixed, and at the time of completion of ashing (black stain disappeared), the temperature of the electric furnace was raised to 950 ° C and maintained for 1 hour. After taking out the test vessel containing the ash from the electric furnace and cooling it to room temperature in a desiccator, the mass of the test vessel including the ash was measured. The sample was put into an electric furnace at 950 °C again and heated for 30 minutes, and then the mass (C) was measured to ⁇ 0.002 g.
  • the titration was terminated when the color changed from dark red to transparent.
  • the degree of substitution of the cellulose-based dispersant was calculated using Equation 1 below.
  • the A is the number of millimoles (mmol/g) of sodium hydroxide used to neutralize 1 g of the cellulosic dispersant, and the units of the coefficients of A of 0.162 and 0.058 are g/mmol.
  • the A was calculated using Equation 2 below.
  • B is the volume (mL) of sodium hydroxide standard solution added
  • D is the volume (mL) of hydrochloric acid standard solution used during titration
  • E is the concentration (mol/L) of the hydrochloric acid standard solution used during titration
  • F is the weight (g) of the cellulosic dispersant sample.
  • Detector RI-detector; Column: Agilent PL aquagel-OH30 8um; eluent: 0.2M NaNO3+0.01M NaH2PO4 (pH 7); Standard material: Measured using Gel permeation chromatography (GPC) method using PEF/PEO.
  • GPC Gel permeation chromatography
  • a laser diffraction method was used and a commercially available laser diffraction particle size measuring device (Malvern Mastersizer 3000) was used.
  • the average particle diameter (D50) at 50% of the particle diameter distribution was calculated by the measuring device.
  • D10 and D90 mean particle sizes at 10% and 90% of the particle size distribution, respectively.
  • Brookfield's DVNextCP Rheometer was used and measured at a temperature of 25 °C and a shear rate of 15 sec -1 .
  • a coin cell was manufactured in the following manner.
  • An electrode active material (including silicon microparticle and graphite at a weight ratio of 7:93) was mixed with water in the carbon nanotube dispersions of each Example and Comparative Example, and mixed for 30 minutes by a ball-mill method to prepare an electrode slurry.
  • the electrode slurry was applied to a Cu foil current collector and dried for 4 hours at 60° C. under vacuum conditions.
  • a coin half cell was manufactured by using Li metal as a counter electrode.
  • the separator was prepared with the composition of Celgard 2450 and the electrolyte was LiPF6 (1.3 M) in ethylene carbonate (EC): diethylene carbonate (DEC) in 30:70 volume ratio with 10 wt% of fluoroethylene carbonate (FEC) and injected.
  • the initial charge/discharge characteristics of the coin cell were evaluated at room temperature and 0.1 A/g in the voltage range of 0.01 to 1.5V.
  • the late charge and discharge characteristics of the coin cell were evaluated at 2 A/g and 4 A/g, respectively.
  • the carbon nanotube dispersion containing the single-walled carbon nanotubes having a purity of 99% and the cellulose-based dispersant having a value calculated by Equation 1 of 7 or more and 13 or less has a low viscosity, maintaining initial efficiency and high rate It was confirmed that the capacity was high (Example 1).
  • the purity of the single-walled carbon tubes was less than 95%, the viscosity was high, and the initial efficiency and high rate retention capacity were low (Comparative Examples 1 and 2).

Abstract

본 명세서는 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT) 및 셀룰로오스계 분산제를 포함하고, 상기 셀룰로오스계 분산제는 수학식 1로 계산된 값이 7 이상 13 이하인 것인 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지를 제공한다.

Description

탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지
본 출원은 2021년 12월 22일자로 한국 특허청에 제출된 제10-2021-0185214호 및 2022년 12월 9일자로 한국 특허청에 제출된 제10-2022-0171427호에 대한 출원일의 이익을 주장하며, 그 내용은 본 명세서에 포함된다.
본 명세서는 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지에 관한 것이다.
이차 전지는 화학에너지가 전기 에너지로 변환되는 방전과 역방향인 충전 과정을 통하여 반복적으로 사용할 수 있는 전지이다. 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성되며, 상기 양극 및 음극은 일반적으로 전극 집전체와, 전극 집전체 상에 형성된 전극 활물질층으로 이루어진다. 상기 전극 활물질층은 전극 활물질, 도전재, 바인더 등을 포함하는 전극 슬러리 조성물을 전극 집전체 상에 도포, 건조한 후 압연하는 방식으로 제조된다.
도전재는 전극 활물질의 전도성을 개선하기 위한 것으로, 종래에는 카본 블랙과 같은 점형 도전재가 주로 사용되었다. 그러나, 점형 도전재는 전기 전도성 향상 효과가 높지 않아 충분한 효과를 얻기 위해서는 과량으로 사용되어야 하고, 이로 인해 전극 활물질 함량이 감소하여 전지 용량이 저하된다는 문제점이 있었다.
이와 같은 문제점을 개선하기 위해 도전재로 전도성이 높은 탄소나노튜브(Carbon NanoTube, CNT)를 적용하는 시도가 활발하게 이루어지고 있다. 탄소나노튜브는 적은 양으로도 높은 전도성을 구현할 수 있기 때문에, 탄소나노튜브를 사용할 경우, 카본 블랙을 사용하는 경우에 비해 도전재 함량을 현저하게 줄일 수 있으며, 이에 따라 전기 용량을 높일 수 있다는 장점이 있다.
한편, 흑연의 한계 (낮은 이론 용량)를 극복하기 위해 고용량 소재가 요구됨에 따라 실리콘 기반의 음극재가 대두되고 있다. 그러나, 실리콘은 리튬과 반응 시, 100~400% 수준의 부피팽창으로 인해 초기 비가역 용량이 크게 발생할 뿐만 아니라, 충방전 도중 활물질 구조 붕괴 및 집전체로부터의 탈리가 일어나 전기적 접촉을 손실함으로써 전극 수명 특성의 저하를 야기시킨다.
따라서, 실리콘의 부피팽창을 완충시키고, 전기적 접촉을 유지할 수 있도록 선형의 탄소나노튜브 (단일벽 또는 다중벽 탄소나노튜브) 도입이 절실하다.
그러나, 탄소나노튜브는 번들 타입 또는 인탱글 타입으로 성장하는 소재 자체의 특성상 슬러리 내에서의 분산성이 떨어져 코팅성 및 공정성이 떨어지고, 전극 활물질층 내에서 고르게 분포하지 않는다는 문제점이 있다. 이와 같은 문제점을 개선하기 위해, 탄소나노튜브를 분산제 및 용매와 먼저 혼합하여 탄소나노튜브 분산액을 제조한 후 상기 탄소나노튜브 분산액을 전극 슬러리 조성물에 적용하는 방법이 적용되고 있다.
또한, 각종 분산제 종류, SWCNT 순도 및 수분산 정도 등에 따라 전지 효율에 영향을 끼칠 수도 있다.
[선행기술문헌]
[특허문헌]
JP 2010-251293 A
분산 안정성이 개선된 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지에 관한 것이다.
본 발명의 일 실시상태는 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT); 및
셀룰로오스계 분산제를 포함하고,
상기 셀룰로오스계 분산제는 하기 수학식 1로 계산된 값이 7 이상 13 이하인 것인 탄소나노튜브 분산액을 제공한다.
[수학식 1]
셀룰로오스계 분산제의 치환도(degree of substitution: DS)/(셀룰로오스계 분산제의 중량평균분자량) * 106
또한, 본 발명의 일 실시상태는 본 발명의 일 실시상태는 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT); 및 셀룰로오스계 분산제를 혼합하는 단계를 포함하는 것인 상술한 탄소나노튜브 분산액의 제조방법을 제공한다.
또한, 본 발명의 다른 실시상태는 상술한 탄소나노튜브 분산액, 실리콘계 전극 활물질 및 바인더를 포함하는 전극 슬러리 조성물을 제공한다.
또한, 본 발명의 다른 실시상태는 상술한 전극 슬러리 조성물에 의해 형성된 전극 활물질층을 포함하는 전극을 제공한다.
또한, 본 발명의 다른 실시상태는 상술한 전극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시상태에 따른 탄소나노튜브 분산액은 분산 안정성이 개선된 효과를 갖는다.
이하, 본 발명에 대해 상세히 설명한다.
본 명세서에 있어서, '탄소나노튜브 분산액'은 탄소나노튜브를 포함하는 분산액을 의미한다. 구체적으로, 분산액에 탄소나노튜브가 분산된 것을 의미하며, 서로 응집되지 않은 것을 의미한다.
본 명세서에 있어서, 다른 언급이 없는 한 '탄소나노튜브'는 '단일벽 탄소나노튜브'를 의미한다.
본 명세서에 있어서, 단일벽 탄소나노튜브는 벽을 이루고 있는 결합수가 1개인 탄소나노튜브를 의미한다.
본 명세서에 있어서, 상기 탄소나노튜브는 복수개의 탄소나노튜브가 응집되거나, 배열되어 형성되는 2차 형상을 갖는 것일 수 있으며, 예를 들면, 복수 개의 탄소나노튜브가 일정한 방향으로 나란하게 배열 또는 정렬된 다발(bundle) 혹은 로프(rope) 형태의 번들형(bundle type) 탄소나노튜브 또는 복수 개의 탄소나노튜브가 일정한 방향성 없이 얽힌 구 또는 포테이토 형태의 인탱글형(entangled type) 탄소나노튜브일 수 있다.
본 발명의 일 실시상태는 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT); 및
셀룰로오스계 분산제를 포함하고,
상기 셀룰로오스계 분산제는 하기 수학식 1로 계산된 값이 7 이상 13 이하인 것인 탄소나노튜브 분산액을 제공한다.
[수학식 1]
셀룰로오스계 분산제의 치환도(degree of substitution: DS)/(셀룰로오스계 분산제의 중량평균분자량) * 106
본 발명의 일 실시상태에 따른 탄소나노튜브 분산액은 도전성이 우수한 단일벽 탄소나노튜브를 포함하면서도, 탄소나노튜브의 분산성이 향상되어 탄소나노튜브끼리 서로 현상이 최소화된 특성을 갖는다. 상기 특성은 분산액의 점도가 현저히 낮은 것으로부터 확인할 수 있다.
본 발명의 일 실시상태에 따른 탄소나노튜브 분산액은 셀룰로오스계 분산제를 포함한다. 상기 셀룰로오스계 분산제는 분산성과 리튬이온 도전성이 높은 특징을 갖는다. 즉, 상기 셀룰로오스계 분산제를 포함하는 탄소나노튜브 분산액을 이용하여 리튬이온 전지를 제조 시, 성능이 높은 리튬이온 전지를 제조할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 셀룰로오스계 분산제는 상기 수학식 1로 계산된 값이 7 이상 13 이하인 것을 특징으로 한다. 바람직하게는, 상기 수학식 1로 계산된 값이 8 이상 10 이하 또는 9 이상 11 이하일 수 있다. 상기 수치 범위를 만족할 때, 분산제의 구조 안정성이 향상되고, 분산액의 분산성이 향상되고, 분산액의 점도가 안정되며, 분산액에 포함된 탄소나노튜브가 고르게 분포할 수 있다. 상기와 같은 특성을 갖는 분산액을 전지에 적용 시, 전지의 효율과 용량이 향상되는 효과가 있다.
본 발명의 일 실시상태에 있어서, 상기 셀룰로오스계 분산제의 치환도는 0.3 이상 2 이하일 수 있다. 바람직하게는, 0.5 이상 1.2 이하 또는 0.7 이상 1 이하일 수 있다. 상기 수치 범위를 만족할 때, 분산제의 분산액에 대한 용해도가 우수하며, 탄소나노튜브의 분산성을 향상시킬 수 있다.
본 발명의 일 실시상태에 있어서, 상기 셀룰로오스계 분산제의 치환도는 셀룰로오스 반복 단위 당 셀룰로오스에 치환된 치환 그룹의 평균 개수를 의미한다. 이때, 상기 치환 그룹은 메틸기, 에틸기, 히드록시기, 벤질기, 트리틸기, 시아노기, 카르복시메틸기, 카르복시에틸기, 히드록시 에틸기, 아미노에틸기, 니트로기 등일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 셀룰로오스계 분산제의 중량평균분자량이 3만 내지 100만일 수 있다. 바람직하게는, 5만 내지 80만 또는 6만 내지 20만일 수 있다. 상기 수치 범위를 만족할 때, 분산제의 분산액에 대한 용해도가 우수하며, 탄소나노튜브의 분산성을 향상시킬 수 있으며, 분산 안정성을 향상시킬 수 있다. 상기 중량평균분자량의 단위는 g/mol일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 셀룰로오스계 분산제는 메틸셀룰로오스, 에틸셀룰로오스, 히드록시에틸셀룰로오스, 벤질셀룰로오스, 트리틸셀룰로오스, 시아노에틸셀룰로오스, 카르복시메틸셀룰로오스(Carboxy Methyl Cellulose; CMC), 카르복시에틸셀룰로오스, 아미노에틸셀룰로오스, 니트로셀룰로오스, 셀룰로오스에테르, 카르복시메틸셀룰로오스 나트륨염(CMCNa) 또는 이들의 조합일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 셀룰로오스계 분산제는 카르복시메틸셀룰로오스(CMC), 카르복시메틸셀룰로오스 나트륨염(CMCNa) 또는 이들의 조합일 수 있다. 상기 물질들은 물에 대한 용해도가 좋고, 증점성이 높으며, 우수한 코팅성을 갖는다. 상기 재료를 포함하는 분산액을 전지에 적용 시 전지 성능이 향상될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 단일벽 탄소나노튜브의 비표면적(BET)가 750 m2/g 이상일 수 있다. 바람직하게는, 900 m2/g 이상 또는 1,000 m2/g 이상일 수 있다. 상한은 특별히 한정하지 않으나, 2,000 m2/g 이하 1,800 m2/g 이하 또는 1,500 m2/g 이하일 수 있다. 상기 수치 범위에서, 단일벽 탄소나노튜브의 응집 현상을 제어하고 전기전도도를 향상시킬 수 있다.
본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브 분산액은 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT)를 포함한다.
본 발명의 일 실시상태에 있어서, 상기 단일벽 탄소나노튜브(SWCNT)의 순도는 96% 이상, 97% 이상, 바람직하게는 99% 이상일 수 있다. 상기 순도는 탄소나노튜브 질량 중 탄소 원소(C)의 중량비를 의미할 수 있다. 상기 수치 범위를 만족할 때, 탄소나노튜브의 전기전도도가 향상되는 효과가 있다.
본 발명의 일 실시상태에 있어서, 상기 단일벽 탄소나노튜브의 함량이 상기 탄소나노튜브 분산액 전체 중량을 기준으로 0.1wt% 내지 5wt%일 수 있다. 또한, 0.4wt% 내지 4wt% 또는 1wt% 내지 2wt%일 수 있다. 상기 수치 범위를 초과하는 경우, 전극 제조 시에 로딩량이 줄어들어 공정비용이 증가하고, 전극 건조 시에 바인더 마이그레이션(migration)이 발생하여 접착력이 감소하거나, 탄소나노튜브 분산액의 점도가 증가한다는 등의 문제점이 발생할 수 있다. 즉, 상기 수치범위를 만족할 때, 제조된 전극의 초기 효율 및 고율 유지용량이 향상될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 단일벽 탄소나노튜브는 2 이상의 탄소나노튜브 단위체를 포함할 수 있다. 상기 탄소나노튜브 단위체는 흑연 시트(graphite sheet)가 나노 크기 직경의 실린더 형태를 가질 수 있으며, sp2 결합 구조를 가진다.
본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브 단위체의 직경은 1 nm 이상 200 nm 이하, 1 nm 이상 150 nm 이하 또는 1 nm 이상 100 nm 이하일 수 있다. 상기 수치 범위에서 탄소나노튜브의 분산성을 향상시키고, 전극에 적용 시 저항이 증가하는 것을 방지할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브 단위체의 길이는 0.1μm 이상 200μm 이하, 0.1μm 이상 150μm 이하 또는 0.5μm 이상 100μm 이하일 수 있다. 상기 수치 범위에서 탄소나노튜브의 분산성을 향상시키고, 전극에 적용 시 저항이 증가하는 것을 방지할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브의 종횡비(길이/직경)가 5 내지 50,000 또는 10 내지 15,000일 수 있다. 상기 수치 범위에서 탄소나노튜브의 분산성을 향상시키고, 전극에 적용 시 저항이 증가하는 것을 방지할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브의 평균 입경(D50)이 0.1 ㎛ 내지 10 ㎛, 0.5 ㎛ 내지 1 ㎛, 1 ㎛ 내지 5 ㎛, 2 ㎛ 내지 4 ㎛일 수 있다. 상기 평균 입경(D50)은 탄소나노튜브의 입경 분포 곡선에 있어서, 개수 누적량의 50%에 해당하는 입경을 의미하는 것이며. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 범위에서 탄소나노튜브가 서로 응집되지 않고, 분산성이 향상될 수 있다.본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브의 비표면적(BET)은 10 내지 5,000m2/g, 바람직하게는 30m2/g 내지 3,000m2/g, 더욱 바람직하게는 500m2/g 내지 2000m2/g 일 수 있다. 탄소나노튜브의 비표면적이 상기 수치 범위를 만족할 경우, 전도성 향상 효과가 우수한 효과가 있다.
본 발명의 일 실시상태에 있어서, 상기 단일벽 탄소나노튜브의 평균 입경(D10)가 0.1um 이상 10um 이하일 수 있다. 바람직하게는, 0.3um 이상 8um 이하 또는 0.5um 이상 5um 이하일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 단일벽 탄소나노튜브의 평균 입경(D90)가 0.1um 이상 20um 이하일 수 있다. 바람직하게는, 1um 이상 20um 이하 또는 5um 이상 20um 이하일 수 있다.
상기 평균 입경(D10)은 탄소나노튜브의 입경 분포 곡선에 있어서, 개수 누적량의 10%에 해당하는 입경을 의미하고, 평균 입경(D50)은 개수 누적량의 50%에 해당하는 입경을 의미하고, 평균 입경(D90)은 개수 누적량의 90%에 해당하는 입경을 의미한다.
상기 평균 입경 조건 중 어느 하나 이상을 만족할 때, 탄소나노튜브가 서로 응집되지 않고, 분산성이 향상될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브 분산액은 상술한 단일벽 탄소나노튜브 외에 다중벽 탄소나노튜브를 더 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 수계 용매를 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 수계 용매는 물, 알코올 및 에테르로 이루어진 군으로부터 선택된 어느 하나 이상을 사용할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 수계 용매는 에테르류(디옥산, 테트라하이드로 푸란, 메틸셀로솔브 등), 에테르 알코올(에톡시 에탄올, 메톡시 에톡시 에탄올 등), 에스테르류(초산메틸, 초산에틸 등), 케톤류(시클로헥사논, 메틸에틸 케톤 등), 알코올류(에탄올, 이소프로판올, 페놀 등 ), 저급 카르본산(초산 등), 아민류(트리에틸아민, 새 메탄올 아민 등 ), 질소 함유 극성 용매(N, N-디메틸포름아미드, 니트로메탄, N-메틸피롤리돈, 아세토니트릴 등 ), 유황 화합물류(디메틸 술폭사이드 등) 등을 사용할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브 분산액의 25℃ 및 15 sec-1의 전단 속도(shear rate)에서의 점도가 10,000 cPs 이하일 수 있다. 바람직하게는 5,000 cPs 이하, 3,000 cPs 이하 또는 2,000 cPs 이하일 수 있다. 본 발명의 목적을 고려할 때, 상기 점도는 낮을수록 좋으므로 하한은 특별히 한정하지 않으나, 10 cPs 이상, 30 cPs 이상 또는 50 cPs 이상일 수 있다. 상기 점도 범위를 만족할 때, 탄소나노튜브 분산액의 탄소나노튜브가 서로 응집되지 않고, 전극 제조에 사용시 공정성이 개선된 효과를 갖는다.
상기 탄소나노튜브 분산액의 점도는 이 기술이 속하는 분야에서 일반적으로 사용되는 방법으로 측정될 수 있다. 예를 들어, Brookfield사의 DV NextCP Rheometer를 사용하여, 25℃의 측정 온도 및 15 sec-1의 전단 속도에서 측정된 것일 수 있다. 보다 정확한 측정을 위해, 제조된 탄소나노튜브 분산액을 1주일 동안 25℃에서 보관한 후 측정할 수 있다.
본 발명의 일 실시상태는 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT); 및 셀룰로오스계 분산제를 혼합하는 단계를 포함하는 것인 상술한 탄소나노튜브 분산액의 제조방법을 제공한다.
본 발명의 일 실시상태에 있어서, 상기 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT); 및 셀룰로오스계 분산제를 혼합하는 단계는 물성이 변화하지 않는 온도 조건 하에서 수행될 수 있다. 예를 들어, 50℃ 이하, 보다 구체적으로는 5℃ 내지 50℃의 온도에서 수행될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 탄소나노튜브 분산액의 제조방법은 상기 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT)를 분산시키는 단계를 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT)를 분산시키는 단계는 볼 밀(ball mill), 비드 밀(bead mill), 디스크 밀(disc mill) 또는 바스켓 밀(basket mill), 고압 균질기(high pressure homogenizer) 등의 방법에 의해 수행될 수 있으며, 보다 구체적으로는 디스크 밀 또는 고압 균질기(high pressure homogenizer)를 이용한 밀링 방법에 의해 수행될 수 있다.
상기 디스크 밀에 의한 밀링 시, 비드의 크기는 탄소나노튜브의 종류와 양, 그리고 분산제의 종류에 따라 적절히 결정될 수 있으며, 구체적으로는 상기 비드의 직경은 0.1㎜ 내지 5㎜, 보다 구체적으로는 0.5㎜ 내지 4㎜일 수 있다. 또, 비드 밀링 공정은 2,000rpm 내지 10,000rpm의 속도로 수행될 수 있고, 보다 구체적으로는 5,000rpm 내지 9,000rpm의 속도로 수행될 수 있다.
상기 고압 균질기에 의한 밀링은, 예컨대 고압균질기의 플런저 펌프(plunger pump)로 상기 혼합물 가압하고 균질용 밸브의 틈으로 이를 밀어냄으로써 상기 틈을 통과할 때의 공동(cavitation), 전단(shear), 충격(impact) 및 파열(explosion) 등의 힘에 의해 이루어지게 된다.
본 발명의 일 실시상태에 있어서, 상기 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT)를 분산시키는 단계는 탄소나노튜브가 충분히 분산될 수 있도록, 10분 내지 120분, 보다 구체적으로는 20분 내지 90분 동안 수행될 수 있다.
본 발명의 일 실시상태는 상술한 탄소나노튜브 분산액, 전극 활물질 및 바인더를 포함하는 전극 슬러리 조성물을 제공한다.
본 발명의 일 실시상태에 있어서, 상기 전극 활물질은 실리콘계 전극 활물질을 포함한다. 상기 실리콘계 전극 활물질은, 금속 실리콘(Si), 실리콘 산화물(SiOx, 여기서 0<x<2) 실리콘 탄화물(SiC) 및 Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 실리콘계 전극 활물질은 탄소계 전극 활물질에 비해 높은 용량 특성을 나타내므로, 실리콘계 전극 활물질을 추가로 포함할 경우, 더 우수한 용량 특성을 얻을 수 있다. 다만, 실리콘계 전극 활물질은 충방전 시에 부피 변화가 커 충방전이 반복되면 전지 특성이 급격히 저하되어 사이클 특성이 충분하지 못하고, 이로 인해 상용화에 어려움이 있었다. 그러나, 본 발명과 같이 탄소나노튜브를 도전재로 사용할 경우, 실리콘계 전극 활물질 적용 시에 사이클 특성이 개선되는 효과를 얻을 수 있다. 따라서, 본 발명의 탄소나노튜브 분산액과 실리콘계 전극 활물질을 포함하는 본 발명의 전극 슬러리 조성물을 사용하면, 용량 특성과 사이클 특성이 우수한 이차 전지를 구현할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전극 활물질은 상기 실리콘계 전극 활물질과 함께 다른 종류의 전극 활물질을 더 포함할 수 있다. 상기 다른 종류의 전극 활물질로는, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 사용할 수 있으며, 이 중에서도 탄소질 재료가 특히 바람직하다.
본 발명의 일 실시상태에 있어서, 상기 전극 활물질은 상기 실리콘계 전극 활물질과 다른 종류의 전극 활물질을 합한 전극 활물질의 총량은 전극 슬러리 조성물 내 전체 고형분 함량을 기준으로 70 내지 99wt%, 바람직하게는 80 내지 98wt%일 수 있다. 전극 활물질의 함량이 상기 범위를 만족할 때, 우수한 용량 특성을 구현할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 바인더는 활물질들 간 또는 활물질과 집전체와의 접착력을 확보하기 위한 것으로, 당해 기술 분야에서 사용되는 일반적인 바인더들이 사용될 수 있으며, 그 종류가 특별히 한정되는 것은 아니다. 상기 바인더로는, 예를 들면, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 바인더는 전극 슬러리 조성물 내의 전체 고형분 함량을 기준으로 5wt% 이하로 포함될 수 있으며, 바람직하게는 1 내지 3wt%로 포함될 수 있다. 바인더의 함량이 상기 범위를 만족할 경우, 전극 저항 증가를 최소화하면서 우수한 전극 접착력을 구현할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전극 슬러리 조성물은, 점도 조절 등을 위해, 필요에 따라, 용매를 추가로 포함할 수 있다. 이때, 상기 용매는 물, 유기 용매 또는 이들의 혼합물일 수 있다. 상기 유기 용매로는 예를 들면, 디메틸포름아미드(DMF), 디에틸 포름아미드, 디메틸 아세트아미드(DMAc), N-메틸 피롤리돈(NMP) 등의 아미드계 극성 유기 용매; 메탄올, 에탄올, 1-프로판올, 2-프로판올(이소프로필 알코올), 1-부탄올(n-부탄올), 2-메틸-1-프로판올(이소부탄올), 2-부탄올(sec-부탄올), 1-메틸-2-프로판올(tert-부탄올), 펜탄올, 헥산올, 헵탄올 또는 옥탄올 등의 알코올류; 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,3-부탄디올, 1,5-펜탄디올, 또는 헥실렌글리콜 등의 글리콜류; 글리세린, 트리메티롤프로판, 펜타에리트리톨, 또는 소르비톨 등의 다가 알코올류; 에틸렌글리콜모노 메틸에테르, 디에틸렌글리콜모노 메틸에테르, 트리에틸렌글리콜 모노 메틸에테르, 테트라 에틸렌글리콜모노 메틸에테르, 에틸렌글리콜모노 에틸에테르, 디에틸렌글리콜모노 에틸에테르, 트리에틸렌글리콜 모노 에틸에테르, 테트라 에틸렌글리콜모노 에틸에테르, 에틸렌글리콜모노 부틸 에테르, 디에틸렌글리콜모노 부틸 에테르, 트리에틸렌글리콜 모노 부틸 에테르, 또는 테트라 에틸렌글리콜모노 부틸 에테르 등의 글리콜 에테르류; 아세톤, 메틸 에틸 케톤, 메틸프로필 케톤, 또는 사이클로펜타논 등의 케톤류; 초산에틸, γ-부틸 락톤, 및 ε-프로피오락톤 등의 에스테르류 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시상태에 있어서, 상기 전극 슬러리 조성물은, 필요에 따라 점도 조절제, 충진제 등과 같은 첨가제를 추가로 포함할 수 있다.
본 발명의 일 실시상태는 상술한 전극 슬러리 조성물에 의해 형성된 전극 활물질층을 포함하는 전극을 제공한다. 구체적으로, 상기 전극은 상술한 본 발명의 전극 슬러리 조성물을 도포하고, 건조시켜 전극 활물질층을 형성함으로써 제조될 수 있다. 보다 구체적으로는, 상기 전극 활물질층은 전극 집전체 상에 전극 슬러리 조성물를 도포한 후, 건조하는 방법, 또는 전극 슬러리 조성물을 별도의 지지체 상에 도포한 다음, 이 지지체로부터 박리하여 얻은 필름을 전극 집전체 상에 라미네이션하는 방법을 통해 형성할 수 있다. 필요에 따라, 상기와 같은 방법을 통해 전극 활물질층을 형성한 다음, 압연하는 공정을 추가로 실시할 수 있다. 이때, 건조 및 압연을 최종적으로 제조하고자 하는 전극의 물성을 고려하여 적절한 조건에서 수행될 수 있으며, 특별히 한정되지 않는다.
본 발명의 일 실시상태에 있어서, 상기 전극 집전체는 전지에 화학적 변화를 유발하지 않으면서도 도전성을 가진 소재라면 특별히 제한되지 않으며, 예를 들어 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 이들의 합금, 이들의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것 또는 소성 탄소 등이 사용될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 집전체 표면에 미세한 요철을 형성하여 전극 활물질의 결합력을 강화시킬 수도 있다. 또한, 상기 전극 집전체는 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전극은 음극일 수 있다.
본 발명의 일 실시상태는 상술한 전극을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 일 실시상태는 양극; 음극; 및 상기 양극 및 음극 사이에 구비된 분리막 및 전해질을 포함하고, 상기 양극 및 음극 중 어느 하나 이상이 상술한 전극인 것인 리튬 이차 전지를 제공한다.
본 발명의 일 실시상태에 있어서, 상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하다. 구체적으로는, 상기 분리막으로 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
이하, 실시예를 통해 본 발명을 더욱 상세히 설명한다.
<실시예 1>
순도가 99%인 단일벽 탄소나노튜브(TUBALL 01RW03, 비표면적: 1,160m2/g OCSiAl社 제조), 셀룰로오스계 분산제로서 카르복시메틸 셀룰로오스{치환도(degree of substitution: DS) 0.87, sigma aldrich社 제조, 제품번호 419273, 중량평균 분자량 9만}, 용매로서 물을 혼합하여 1kg의 혼합물을 제조한 후, 고-전단력 인-라인 믹서 (IM001 K&S社)를 이용하여 혼합하고, 고압균질기를 이용하여 고압 처리하여 탄소나노튜브 분산액을 제조하였다. 이때, 단일벽 탄소나노튜브의 D10이 0.88um, D50이 4.72um이고, D90이 18.5um이었다.
이때, 상기 카르복시메틸 셀룰로오스의 하기 수학식 1로 계산된 값이 9.67이었다.
[수학식 1]
셀룰로오스계 분산제의 치환도(degree of substitution: DS)/(셀룰로오스계 분산제의 중량평균분자량) * 106
<비교예 1>
순도가 99%인 단일벽 탄소나노튜브 대신 순도가 80%인 단일벽 탄소나노튜브(TUBALL 01RW02, OCSiAl社 제조)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 분산액을 제조하였다.
<비교예 2>
순도가 99%인 단일벽 탄소나노튜브 대신 순도가 75%인 단일벽 탄소나노튜브(TUBALL 01RW01, OCSiAl社 제조)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 분산액을 제조하였다.
<비교예 3>
분산제로 카르복시메틸 셀룰로오스 대신, 폴리비닐피롤리돈 및 탄닌산을 사용하고, 아래 표 1의 입도 특성을 갖는 단일벽 탄소나노튜브를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 분산액을 제조하였다.
<비교예 4>
분산제로 카르복시메틸 셀룰로오스 대신, 폴리비닐피롤리돈 및 HP20(Sokalan HP20, BASF社 제조)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 분산액을 제조하였다.
<비교예 5>
분산제로 카르복시메틸 셀룰로오스 대신, 폴리비닐피롤리돈 단독 물질을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 분산액을 제조하였다.
<비교예 6>
실시예 1에서 사용된 카르복시메틸 셀룰로오스 대신, 카르복시메틸 셀룰로오스{치환도(degree of substitution: DS) 1.2}, 중량평균 분자량 9만}을 사용한 것 외에는 실시예 1과 동일한 방법으로 탄소나노튜브 분산액을 제조하였다. 이때, 상기 카르복시메틸 셀룰로오스의 하기 수학식 1로 계산된 값이 13.33이었다.
<비교예 7>
실시예 1에서 사용된 카르복시메틸 셀룰로오스 대신, 카르복시메틸 셀룰로오스{치환도(degree of substitution: DS) 0.6, 332601000, Thermo Scientific社 제조}, 중량평균 분자량 9만}을 사용한 것 외에는 실시예 1과 동일한 방법으로 탄소나노튜브 분산액을 제조하였다. 이때, 상기 카르복시메틸 셀룰로오스의 하기 수학식 1로 계산된 값이 6.67이었다.
<비교예 8>
실시예 1에서 사용된 카르복시메틸 셀룰로오스 대신, 카르복시메틸 셀룰로오스{치환도(degree of substitution: DS) 0.87, 419303, Sigma-Aldrich社 제조}, 중량평균 분자량 25만}을 사용한 것 외에는 실시예 1과 동일한 방법으로 탄소나노튜브 분산액을 제조하였다. 이때, 상기 카르복시메틸 셀룰로오스의 하기 수학식 1로 계산된 값이 3.48이었다.
<물성 평가>
단일벽 탄소나노튜브의 순도 측정
아래 계산식의 방법으로 순도를 측정 및 계산하였다.
[계산식]
순도=100*(시험용기와 회분량-시험용기질량)/(시험용기와 건조된 시료질량-시험용기질량)
구체적으로, 전기로를 이용하여 전극 제조공정 중에 혼입될 수 있는 불순물 함량을 분석하였다. 테스트 절차 KS L 3412 방법에 따라 시료를 건조하고 데시게이터 안에서 상온까지 온도를 낮추었다.
저울을 이용하여 건조시킨 시험 용기(A)의 질량을 ±0.002 g 단위까지 측정하고, 데시게이터 안에 있는 시료의 온도가 상온까지 내려오자마자 25 내지 50 g의 시료(B)를 도가니 안에 넣어 질량을 측정하였다. 시료와 시험 용기를 ±0.002 g 단위까지 질량을 재측정한다.
시료를 포함한 시험 용기를 전기로 안에 위치시킨 후 느린 속도로 공기를 전기로 안으로 주입하고, 시료의 온도가 1시간 내에 500 ℃ 또는 2시간 내에 750 ℃에 도달하도록 전기로를 작동시켰다.
시료의 산화를 돕기 위하여, 시료를 주기적으로 혼합하여 주었으며, 회분화가 완료된 시점에서 (검은 얼룩이 사라짐) 전기로의 온도를 다시 950 ℃까지 승온시키고 1시간 동안 유지하였다. 전기로에서 재를 포함한 시험 용기를 꺼내고 데시케이터 안에서 상온까지 냉각한 후 재를 포함한 시험 용기의 질량을 측정하였다. 시료를 다시 950 ℃의 전기로 속에 넣고 30분 동안 가열한 다음, 질량(C)을 ±0.002 g 단위까지 측정하였다.
셀룰로오스계 분산제의 치환도 측정
250ml 비커에 실시예 및 비교예에서 사용된 셀룰로오스계 분산제 샘플 4g, 95% 에탄올 용액 75ml 및 페놀프탈레인 (1% 에탄올 용액)을 넣고 교반하면서 수산화 나트륨 표준 용액 (0.4mol/L)을 첨가하였다.
이후, 자석 가열 교반기를 이용하여 교반하고, 염산 표준 용액(0.4mol/L)으로 적정하였다.
검붉은 색에서 투명한 색을 띄게 되면 적정을 종료하였다.
아래 식 1을 이용하여 셀룰로오스계 분산제의 치환도를 계산하였다.
[식 1]
DS = (0.162 * A) / (1- 0.058 * A)
상기 A는 셀룰로오스계 분산제 1g을 중화하기 위해 사용되는 수산화 나트륨의 밀리몰수(mmol/g)이고, 상기 A의 계수 0.162 및 0.058의 단위는 g/mmol이이다.
상기 A는 아래 식 2를 이용하여 계산하였다.
[식 2]
A = (B*C - D*E)/F
식 2에서,
B는 첨가된 수산화 나트륨 표준 용액의 부피(mL)이고,
C는 첨가된 수산화 나트륨 표준 용액의 농도(mol/L)이고,
D는 적정 시 사용된 염산 표준 용액의 부피(mL)이고,
E는 적정 시 사용된 염산 표준 용액의 농도(mol/L)이고,
F는 셀룰로오스계 분산제 샘플의 무게(g)이다.
셀룰로오스계 분산제의 중량평균 분자량 측정
검출기: RI-detector; 컬럼: Agilent PL aquagel-OH30 8um; eluent: 0.2M NaNO3+0.01M NaH2PO4 (pH 7); 표준물질: PEF/PEO를 사용한 Gel permeation chromatography (GPC)법을 사용하여 측정한다.
단일벽 탄소나노튜브의 입도 측정 방법
레이저 회절법(laser diffraction method)을 사용하였으며 시판중인 레이저 회절 입도 측정 장치(Malvern Mastersizer3000)를 사용하였다. 측정 장치에서 입경 분포의 50%기준에서의 평균 입경(D50)을 산출하였다. 한편, D10및 D90은 각각, 입경 분포 10% 및 90%에서의 입도를 의미한다.
분산액의 점도 측정 방법
Brookfield사의 DVNextCP Rheometer를 사용하였으며, 25℃의 온도 및 15 sec-1의 전단 속도에서 측정하였다.
셀 초기 효율 측정
아래와 같은 방법으로 코인셀을 제작하였다.
각 실시예 및 비교예의 탄소나노튜브 분산액에 전극 활물질(Silicon microparticle 및 graphite를 7:93의 중량비로 포함)을 물과 함께 혼합하고 볼-밀 방법으로 30분 동안 혼합하여 전극 슬러리를 제조하였다.
상기 전극 슬러리를 Cu foil 집전체에 도포하고, 60℃ 및 진공 조건에서 4시간 동안 건조하였다.
상기 건조된 전극을 직경 11mm에 맞게 펀칭한 뒤, 대극을 Li metal로 하여 코인 하프 셀을 제작하였다. 이때, 분리막은 Celgard 2450, 전해질은 LiPF6 (1.3 M) in ethylene carbonate (EC): diethylene carbonate (DEC) in 30:70 volume ratio with 10 wt% of fluoroethylene carbonate (FEC)의 조성으로 준비하여 주액하였다.
전압 범위 0.01~1.5V로 상온 및 0.1 A/g에서 코인셀의 초기 충방전 특성을 평가하였다.
셀 고율 유지 용량 측정
위 제조된 코인 셀에 대해, 2A/g 및 4A/g에서 각각 코인셀의 후기 충방전 특성을 평가하였다.
구분 실시예 1 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6 비교예 7 비교예 8
SWCNT 순도 99% 80% 75% 99% 99% 99% 99% 99% 99%
셀룰로오스계 분산제의 치환도 0.87 0.87 0.87 미포함 미포함 미포함 1.2 0.6 0.87
셀룰로오스계 분산제의 중량평균 분자량 90,000 90,000 90,000 미포함 미포함 미포함 90,000 90,000 250,000
수학식 1 9.67 9.67 9.67 - - - 13.33 6.67 3.48
D10(um) 0.88 0.89 0.89 0.45 0.88 0.88 1.51 2.22 2.05
D50(um) 4.72 4.73 4.74 1.59 4.72 4.72 5.1 8.11 22
D90(um) 18.5 21.75 23.74 9.74 18.5 18.5 30 32.1 90.3
점도(cps) 1,411 4,500 7,196 79.8 15,000 초과 15,000 초과 4,060 5,044 15,000 초과
초기효율(%) 78.5 71.4 70.6 71.5 71.1 63.4 72.5 72.3 72
고율유지용량(mAh/g, @2A/g) 300 100 100 100 80 측정 불가 150 140 110
고율유지용량(mAh/g, @4A/g) 200 50 50 60 40 측정 불가 90 80 60
상기 결과로부터, 순도가 99%인 단일벽 탄소나노튜브 및 수학식 1로 계산된 값이 7 이상 13 이하인 셀룰로오스계 분산제를 포함하는 탄소나노튜브 분산액은 점도가 낮게 나타났으며, 초기 효율 및 고율 유지 용량이 높은 것을 확인할 수 있었다(실시예 1). 반면에, 단일벽 탄소튜브의 순도가 95%에 미달하는 경우 점도가 높게 나타났으며, 초기 효율 및 고율 유지 용량이 낮은 것을 확인할 수 있었다(비교예 1 및 2).또한, 단일벽 탄소튜브의 순도가 95% 이상이라도 셀룰로오스계 분산제를 포함하지 않는 경우 초기 효율 및 고율 유지 용량이 낮은 것을 확인할 수 있었다(비교예 3 내지 5).
한편, 단일벽 탄소튜브의 순도가 95% 이상이라도 수학식 1로 계산된 값이 7에 미달하거나(비교예 7 및 8), 수학식 1로 계산된 값이 13을 초과하는 경우(비교예 6) 초기 효율 및 고율 유지 용량이 낮은 것을 확인할 수 있었다.

Claims (16)

  1. 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT); 및
    셀룰로오스계 분산제를 포함하고,
    상기 셀룰로오스계 분산제는 하기 수학식 1로 계산된 값이 7 이상 13 이하인 것인 탄소나노튜브 분산액.
    [수학식 1]
    셀룰로오스계 분산제의 치환도(degree of substitution: DS)/(셀룰로오스계 분산제의 중량평균분자량) * 106
  2. 청구항 1에 있어서,
    상기 셀룰로오스계 분산제의 치환도는 0.3 이상 2 이하인 것인 탄소나노튜브 분산액.
  3. 청구항 1에 있어서,
    상기 셀룰로오스계 분산제의 중량평균분자량이 3만 내지 100만인 것인 탄소나노튜브 분산액.
  4. 청구항 1에 있어서,
    상기 셀룰로오스계 분산제는 메틸셀룰로오스, 에틸셀룰로오스, 히드록시에틸셀룰로오스, 벤질셀룰로오스, 트리틸셀룰로오스, 시아노에틸셀룰로오스, 카르복시메틸셀룰로오스(Carboxy Methyl Cellulose; CMC), 카르복시에틸셀룰로오스, 아미노에틸셀룰로오스, 니트로셀룰로오스, 셀룰로오스에테르, 카르복시메틸셀룰로오스 나트륨염(CMCNa) 또는 이들의 조합인 것인 탄소나노튜브 분산액.
  5. 청구항 1에 있어서,
    상기 단일벽 탄소나노튜브의 비표면적(BET)가 750 m2/g 이상인 것인 탄소나노튜브 분산액.
  6. 청구항 1에 있어서,
    상기 단일벽 탄소나노튜브의 함량이 상기 탄소나노튜브 분산액 전체 중량을 기준으로 0.1wt% 내지 5wt%인 것인 탄소나노튜브 분산액.
  7. 청구항 1에 있어서,
    상기 단일벽 탄소나노튜브의 평균 입경(D10)가 0.1um 이상 10um 이하인 것인 탄소나노튜브 분산액.
  8. 청구항 1에 있어서,
    수계 용매를 포함하는 것인 탄소나노튜브 분산액.
  9. 청구항 1에 있어서,
    상기 단일벽 탄소나노튜브의 평균 입경(D10)가 0.1um 이상 10um 이하인 것인 탄소나노튜브 분산액.
  10. 청구항 1에 있어서,
    25℃ 및 15 sec-1의 전단 속도(shear rate)에서의 점도가 10,000 cPs 이하인 것인 탄소나노튜브 분산액
  11. 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT); 및 셀룰로오스계 분산제를 혼합하는 단계를 포함하는 것인 청구항 1 내지 10 중 어느 한 항에 따른 탄소나노튜브 분산액의 제조방법.
  12. 청구항 11에 있어서,
    상기 순도가 95% 이상인 단일벽 탄소나노튜브(SWCNT)를 분산시키는 단계를 포함하는 것인 탄소나노튜브 분산액의 제조방법.
  13. 청구항 1 내지 10 중 어느 한 항에 따른 탄소나노튜브 분산액, 전극 활물질 및 바인더를 포함하는 전극 슬러리 조성물.
  14. 청구항 13에 따른 전극 슬러리 조성물에 의해 형성된 전극 활물질층을 포함하는 전극.
  15. 청구항 14에 있어서,
    상기 전극은 음극인 것인 전극.
  16. 청구항 15에 따른 전극을 포함하는 리튬 이차 전지.
PCT/KR2022/020101 2021-12-22 2022-12-12 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지 WO2023121093A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0185214 2021-12-22
KR20210185214 2021-12-22
KR1020220171427A KR20230096854A (ko) 2021-12-22 2022-12-09 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지
KR10-2022-0171427 2022-12-09

Publications (1)

Publication Number Publication Date
WO2023121093A1 true WO2023121093A1 (ko) 2023-06-29

Family

ID=86903261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020101 WO2023121093A1 (ko) 2021-12-22 2022-12-12 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2023121093A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100114399A (ko) * 2009-04-15 2010-10-25 한국과학기술연구원 메탈와이어를 이용한 전도성필름 제조방법 및 전도성필름
JP2012214320A (ja) * 2011-03-31 2012-11-08 Cci Corp ナノカーボン用分散剤およびナノカーボン分散液
KR20180080464A (ko) * 2017-01-04 2018-07-12 한국전기연구원 다중벽 탄소나노튜브에 의해 분산되는 인쇄용 단일벽 탄소나노튜브 페이스트
JP2020011934A (ja) * 2018-07-20 2020-01-23 東洋インキScホールディングス株式会社 化合物、分散剤、電池用分散組成物、電極、電池
KR20210015714A (ko) * 2019-08-01 2021-02-10 주식회사 엘지화학 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100114399A (ko) * 2009-04-15 2010-10-25 한국과학기술연구원 메탈와이어를 이용한 전도성필름 제조방법 및 전도성필름
JP2012214320A (ja) * 2011-03-31 2012-11-08 Cci Corp ナノカーボン用分散剤およびナノカーボン分散液
KR20180080464A (ko) * 2017-01-04 2018-07-12 한국전기연구원 다중벽 탄소나노튜브에 의해 분산되는 인쇄용 단일벽 탄소나노튜브 페이스트
JP2020011934A (ja) * 2018-07-20 2020-01-23 東洋インキScホールディングス株式会社 化合物、分散剤、電池用分散組成物、電極、電池
KR20210015714A (ko) * 2019-08-01 2021-02-10 주식회사 엘지화학 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법

Similar Documents

Publication Publication Date Title
WO2014104842A1 (ko) 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
WO2016182100A1 (ko) 3차원 그물구조 형태의 전기화학소자용 전극, 이의 제조 방법 및 이를 포함하는 전기화학소자
WO2016047835A1 (ko) 셀룰로오스 나노섬유 분리막을 포함하는 전기화학소자 및 이의 제조방법
WO2017082546A1 (ko) 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2020091345A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2020122602A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2020197344A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2020149682A1 (ko) 음극 및 이를 포함하는 리튬 이차 전지
WO2019168308A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019156462A1 (ko) 신규한 도전재, 상기 도전재를 포함하는 전극, 상기 전극을 포함하는 이차 전지, 및 상기 도전재의 제조 방법
WO2019194662A1 (ko) 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법
WO2024053889A1 (ko) 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 이차전지
WO2010117134A2 (ko) 전기저장장치의 양극 제조용 조성물, 상기 조성물로 제조되는 전기저장장치의 양극, 및 이를 포함하는 전기저장장치
WO2019168278A1 (ko) 음극 슬러리 조성물, 이를 이용하여 제조된 음극 및 이차전지
WO2019212162A1 (ko) 리튬-황 이차전지용 바인더 및 이를 포함하는 리튬-황 이차전지
WO2017209383A1 (ko) 탄소계 섬유 시트 및 이를 포함하는 리튬-황 전지
WO2021066557A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2023121093A1 (ko) 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지
WO2024090660A1 (ko) 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지
WO2024090661A1 (ko) 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지
WO2023068781A1 (ko) 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지
WO2023068780A1 (ko) 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지
KR20230096854A (ko) 탄소나노튜브 분산액, 이의 제조방법, 이를 포함하는 전극 슬러리 조성물, 이를 포함하는 전극 및 이를 포함하는 리튬 이차전지
WO2023121420A1 (ko) 음극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911726

Country of ref document: EP

Kind code of ref document: A1