WO2023120733A1 - Battery structure - Google Patents

Battery structure Download PDF

Info

Publication number
WO2023120733A1
WO2023120733A1 PCT/JP2022/047795 JP2022047795W WO2023120733A1 WO 2023120733 A1 WO2023120733 A1 WO 2023120733A1 JP 2022047795 W JP2022047795 W JP 2022047795W WO 2023120733 A1 WO2023120733 A1 WO 2023120733A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current collector
positive electrode
lithium ion
ion battery
Prior art date
Application number
PCT/JP2022/047795
Other languages
French (fr)
Japanese (ja)
Inventor
堀江英明
仁寿 大倉
川崎洋志
雄介 水野
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2023120733A1 publication Critical patent/WO2023120733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery structure including a lithium ion battery module.
  • Battery pack racks are required to have a simple configuration so that lithium ion battery modules and battery packs can be flexibly configured when configuring a battery system according to a desired power capacity.
  • An object of the present invention is to provide a battery structure comprising a battery pack, a battery pack rack, and the like, which allows a flexible configuration of a battery system.
  • a battery structure of one embodiment of the present invention has a positive electrode resin current collector, a positive electrode active material layer, a separator, a negative electrode active material layer and a negative electrode resin current collector.
  • a stacked battery in which a plurality of planar single cells are stacked and including a frame member for sealing a material layer; The aspect ratio is 1:100 to 1:1000, where the aspect ratio is the length of the long side of the unit cell.
  • the planes at both ends of the stacking direction of the unit cell are substantially parallel to each other or form an angle of -5° to 5°. are installed in a substantially parallel state.
  • a battery structure with good space efficiency can be obtained by stacking a plurality of lithium-ion battery modules, and a battery system can be flexibly configured.
  • FIG. 1 is a partially cutaway perspective view schematically showing an example of a cell unit.
  • FIG. 2 is a perspective view schematically showing an example of a light emitting section.
  • FIG. 3 is a partially cutaway perspective view schematically showing an example of a lithium-ion battery module.
  • FIG. 4 is a functional block diagram of a battery system including lithium ion battery modules.
  • FIG. 5 is a diagram showing the structure of a lithium ion battery module and a battery module management device.
  • FIG. 6 is a diagram showing the structure of a battery pack rack.
  • FIG. 7 is a diagram showing the structure of a battery slot in a battery pack rack.
  • the assembled battery is formed by connecting a plurality of single cell units, and each single cell unit includes a single cell and a light emitting section.
  • the cell units are preferably connected in series within the assembled battery. First, a single cell unit including a single cell and a light emitting portion will be described.
  • FIG. 1 is a partially cutaway perspective view schematically showing an example of a cell unit.
  • FIG. 1 shows a single cell unit 30 including a single cell 10 which is a lithium ion battery and a light emitting section 20 .
  • the unit cell 10 includes a positive electrode 12 in which a positive electrode active material layer 15 is formed on the surface of a substantially rectangular flat positive current collector 17, and a negative electrode active material layer on the surface of a substantially rectangular flat negative current collector 19.
  • a negative electrode 13 on which 16 is formed is similarly laminated with a substantially flat separator 14 interposed therebetween, and is formed in a substantially rectangular flat plate shape as a whole.
  • This positive electrode and negative electrode function as a positive electrode and a negative electrode of a lithium ion battery.
  • the cell 10 has a flat sheet-like shape, and has an aspect ratio of 1:100 to 1:1000 when the ratio of the thickness to the length of the long side is taken as the aspect ratio. .
  • the single cell 10 is arranged between the positive electrode current collector 17 and the negative electrode current collector 19, the peripheral edge portion of the separator 14 is fixed between the positive electrode current collector 17 and the negative electrode current collector 19, and the positive electrode active material layer 15, an annular frame member 18 that seals the separator 14 and the negative electrode active material layer 16 .
  • the positive electrode current collector 17 and the negative electrode current collector 19 are positioned by the frame member 18 so as to face each other with a predetermined gap. They are positioned to face each other with a gap.
  • the distance between the positive electrode current collector 17 and the separator 14 and the distance between the negative electrode current collector 19 and the separator 14 are adjusted according to the capacity of the lithium ion battery.
  • the positional relationship between the conductor 19 and the separator 14 is determined so as to obtain the required spacing.
  • the positive electrode active material layer contains a positive electrode active material.
  • the lithium-containing transition metal phosphate may have a transition metal site partially substituted with another transition metal.
  • the positive electrode active material is preferably a coated positive electrode active material coated with a conductive aid and a coating resin.
  • the positive electrode active material is covered with the coating resin, the volume change of the electrode is moderated, and the expansion of the electrode can be suppressed.
  • Conductive agents include metallic conductive agents [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive agents [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), and mixtures thereof.
  • metallic conductive agents aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.
  • carbon-based conductive agents [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), and mixtures thereof.
  • One of these conductive aids may be used alone, or two or more thereof may be used in combination.
  • these alloys or metal oxides may be used.
  • aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive aids and mixtures thereof are more preferable, and silver, gold, aluminum, stainless steel and carbon are more preferable.
  • the shape (form) of the conductive aid is not limited to a particle form, and may be in a form other than a particle form, such as carbon nanofibers, carbon nanotubes, etc., which are practically used as so-called filler-type conductive aids. may
  • the ratio of the coating resin and the conductive aid is not particularly limited, but from the viewpoint of the internal resistance of the battery, etc., the weight ratio of the coating resin (resin solid content weight): conductive aid is 1:0.01. 1:50 is preferable, and 1:0.2 to 1:3.0 is more preferable.
  • the coating resin for example, the resin described in Patent Document 2 as a non-aqueous secondary battery active material coating resin can be suitably used.
  • the positive electrode active material layer may contain a conductive aid other than the conductive aid contained in the coated positive electrode active material.
  • a conductive aid the same conductive aid as contained in the above-described coated positive electrode active material can be suitably used.
  • the positive electrode active material layer preferably contains a positive electrode active material and is a non-binding material that does not contain a binder that binds the positive electrode active materials together.
  • the non-bound body means that the position of the positive electrode active material is not fixed by a binder (also referred to as a binder), and the positive electrode active material and the current collector are irreversibly fixed to each other. means no.
  • the positive electrode active material layer may contain an adhesive resin.
  • the adhesive resin for example, a non-aqueous secondary battery active material coating resin described in Patent Document 2 is mixed with a small amount of organic solvent to adjust the glass transition temperature to room temperature or lower, and, for example, Those described as adhesives in Patent Document 3 can be preferably used.
  • adhesive resin is a resin that does not solidify even if the solvent component is volatilized and dried, and has adhesiveness (the property of adhering by applying a slight pressure without using water, solvent, heat, etc.) means
  • a solution-drying type electrode binder used as a binding material means one that evaporates a solvent component to dry and solidify, thereby firmly adhering and fixing active materials to each other. Therefore, the solution-drying type electrode binder (binding material) and the adhesive resin are different materials.
  • the thickness of the positive electrode active material layer is not particularly limited, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m, from the viewpoint of battery performance.
  • the negative electrode active material layer contains a negative electrode active material.
  • known negative electrode active materials for lithium ion batteries can be used. cokes (e.g., pitch coke, needle coke, petroleum coke, etc.), carbon fibers, etc.], silicon-based materials [silicon, silicon oxide (SiO x ), silicon-carbon composites (carbon particles with silicon and/or coated with silicon carbide, silicon particles or silicon oxide particles coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon- nickel alloys, silicon-iron alloys, silicon-titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (e.g., polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium and titanium), metal oxides (titanium oxide and lithium-titanium oxide) and metal alloy
  • the negative electrode active material may be a coated negative electrode active material coated with the same conductive aid and coating resin as the coated positive electrode active material described above.
  • the conductive aid and the coating resin the same conductive aid and coating resin as those of the coated positive electrode active material described above can be suitably used.
  • the negative electrode active material layer may contain a conductive aid other than the conductive aid contained in the coated negative electrode active material.
  • a conductive aid the same conductive aid as contained in the above-described coated positive electrode active material can be suitably used.
  • the negative electrode active material layer is preferably a non-binding material that does not contain a binder that binds the negative electrode active materials together. Further, like the positive electrode active material layer, it may contain an adhesive resin.
  • the thickness of the negative electrode active material layer is not particularly limited, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m, from the viewpoint of battery performance.
  • Materials constituting the positive electrode current collector and the negative electrode current collector include metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, and baked carbon. , conductive polymer materials, conductive glass, and the like. Among these materials, aluminum is preferable for the positive electrode current collector, and copper is preferable for the negative electrode current collector, from the viewpoints of weight reduction, corrosion resistance, and high conductivity.
  • the current collector is preferably a resin current collector made of a conductive polymer material.
  • the shape of the current collector is not particularly limited, and may be a sheet-like current collector made of the above material or a deposited layer made of fine particles made of the above material.
  • the thickness of the current collector is not particularly limited, it is preferably 50 to 500 ⁇ m.
  • the conductive polymer material that constitutes the resin current collector for example, a conductive polymer or a resin to which a conductive agent is added as necessary can be used.
  • the conductive agent that constitutes the conductive polymer material the same conductive aid as that contained in the above-described coated positive electrode active material can be preferably used.
  • resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), poly Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or mixtures thereof etc.
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • PET polyethylene terephthalate
  • PEN polyethernitrile
  • PTFE poly Tetrafluoroethylene
  • SBR polyacrylonitrile
  • PAN polymethyl acrylate
  • PMA polymethyl methacrylate
  • PVdF polyvinylidene fluoride
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene film and porous polypropylene, non-woven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces. , alumina, titania, and other known separators for lithium ion batteries. Further, as the separator, a sulfide-based or oxide-based inorganic solid electrolyte, or a polymer-based organic solid electrolyte or the like can be applied. By applying a solid electrolyte, an all-solid battery can be constructed.
  • the positive electrode active material layer and the negative electrode active material layer contain an electrolytic solution.
  • an electrolytic solution a known electrolytic solution containing an electrolyte and a non-aqueous solvent, which is used for manufacturing known lithium ion batteries, can be used.
  • electrolyte those used in known electrolytic solutions can be used .
  • examples include lithium salts of organic acids such as LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 and LiC( CF3SO2 ) 3 .
  • imide- based electrolytes [LiN( FSO2 ) 2 , LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 , etc.] and LiPF6 .
  • non-aqueous solvent those used in known electrolytic solutions can be used.
  • compounds, amide compounds, sulfones, sulfolane, etc. and mixtures thereof can be used.
  • the electrolyte concentration of the electrolytic solution is preferably 1-5 mol/L, more preferably 1.5-4 mol/L, and even more preferably 2-3 mol/L. If the electrolyte concentration of the electrolytic solution is less than 1 mol/L, the battery may not have sufficient input/output characteristics, and if it exceeds 5 mol/L, the electrolyte may precipitate.
  • the electrolyte concentration of the electrolytic solution can be confirmed by extracting the electrode for the lithium ion battery or the electrolytic solution constituting the lithium ion battery without using a solvent or the like and measuring the concentration.
  • the inventors of the present invention have developed a configuration that does not use electrical wiring, specifically, for each unit cell included in the assembled battery, and measuring the characteristics of the unit cell. As a result, they have found a configuration including a light-emitting portion that outputs an optical signal based on the characteristics, and a light-receiving portion that collectively receives the optical signals output from the respective light-emitting portions.
  • the optical signal received by the light receiving unit is analyzed (for example, by a data processing unit connected to the light receiving unit), and the wires are connected to each unit cell as in the conventional method. Therefore, the risk of short circuits between cells can be avoided.
  • the labor for wiring can be reduced, and the manufacturing cost of the assembled battery can be reduced.
  • FIG. 2 is a perspective view schematically showing an example of a light emitting part.
  • the light emitting unit 20 shown in FIG. 2 includes a wiring board 21 having wiring inside or on the surface thereof, and a light emitting element 22 and control elements 23a and 23b mounted on the wiring board 21 .
  • Voltage measurement terminals 24 and 25 are provided at the ends of the wiring board.
  • the voltage measurement terminals 24 and 25 are provided at positions where one voltage measurement terminal contacts the positive electrode current collector and the other voltage measurement terminal contacts the negative electrode current collector when connected to the cell. That is, the voltage measurement terminals 24 and 25 are voltage measurement terminals for measuring the voltage between the positive electrode current collector and the negative electrode current collector of the unit cell, respectively.
  • the voltage measurement terminals 24 and 25 are electrically connected to the control elements 23a and 23b, and the control elements 23a and 23b are electrically connected to the light emitting element 22.
  • the light emission of the light emitting unit 20 is controlled so that the power consumption varies according to the voltage of the cell.
  • a measurement terminal may be provided on the surface of the wiring board 21 that is the back side of the light emitting element 22 .
  • This measurement terminal can be used as a temperature measurement terminal by connecting a temperature sensor to measure the temperature of the cell, or as a terminal to measure the physical change of the cell by connecting it to a strain gauge, piezoelectric element, etc. can be used.
  • the measurement terminals are also electrically connected to the control elements 23 a and 23 b , and the control elements 23 a and 23 b are electrically connected to the light emitting element 22 .
  • the light emission of the light emitting unit 20 is controlled, for example, so that the power consumption changes according to the temperature of the cells.
  • a rigid board or a flexible board can be used as the wiring board that constitutes the light emitting part.
  • the wiring substrate is shaped as shown in FIG. 2, it is preferable to use a flexible substrate.
  • Arbitrary semiconductor elements such as ICs and LSIs can be used as control elements.
  • FIG. 2 shows an example in which two control elements are mounted, the number of control elements is not limited, and may be one or three or more.
  • the light-emitting element an element capable of converting an electric signal into an optical signal, such as an LED element or an organic EL element, can be used, and an LED element is preferable. It should be noted that it is not essential to have a wiring board in the light-emitting section, and the light-emitting section may be configured by connecting the control element and the light-emitting element without using the board.
  • the light-emitting part is electrically connected to the negative electrode current collector and the positive electrode current collector of the cell, and can receive power supply from the lithium ion battery.
  • the light-emitting portion When the light-emitting portion is electrically connected to the negative electrode current collector and the positive electrode current collector, the light-emitting element can emit light by receiving power supply from the lithium ion battery.
  • an electrode for receiving power supply is not shown in FIG. 2, it is preferable to provide the light emitting portion with an electrode other than the voltage measuring terminal.
  • the negative electrode current collector and the positive electrode current collector are preferably resin current collectors, and the negative electrode current collector and the positive electrode current collector are preferably directly coupled and electrically connected to the electrodes of the light emitting portion.
  • a resin current collector When a resin current collector is used, the resin current collector and the electrode of the light emitting part are brought into contact with each other, and the resin current collector is heated to soften the resin, thereby directly bonding the resin current collector and the electrode of the light emitting part. be able to.
  • electrical connection can be made by interposing other bonding materials having conductivity such as solder, conductive tape, conductive adhesive, anisotropic conductive film (ACF) between the current collector and the light emitting part. can also
  • FIG. 3 is a partially cutaway perspective view schematically showing an example of a lithium-ion battery module.
  • the lithium ion battery module 1 has an assembled battery 50 formed by connecting a plurality of single cell units 30 .
  • the upper surfaces of the negative electrode current collectors 19 and the lower surfaces of the positive electrode current collectors 17 of the adjacent unit cells 10 are stacked so as to be adjacent to each other.
  • a plurality of so-called bipolar single cell units 30 are connected in series.
  • FIG. 3 shows a configuration in which five single cell units 30 are stacked, the number of stacked single cells may be more or less than five. In one implementation, the number of stacks of cell units 30 may be 20 or more.
  • the assembled battery 50 is a laminated battery in which a plurality of single cell units are laminated. That is, the assembled battery 50 has a flat shape in which the flat sheet-like unit cells 10 are stacked. At this time, the planes at both ends of the battery pack 50 in the stacking direction and the planes at both ends of the cell 10 in the stacking direction are substantially parallel to each other, or form an angle of -5° to 5°. Moreover, the thickness of the assembled battery 50 in the stacking direction is, for example, 10 mm or more and 60 mm or less when 40 layers of cell units are stacked.
  • a plurality of unit cells each having a positive electrode layer provided on one side of a single resin current collector and a negative electrode layer provided on the other side of the resin current collector are stacked with an electrolyte layer interposed therebetween.
  • a laminated structure may be employed.
  • the light-emitting portions 20 included in each cell unit 30 are arranged in a row.
  • FIG. 3 shows a form in which the light-emitting portions 20 are arranged in a line
  • the positional relationship of the light-emitting portions between different cell units is not limited, and the light-emitting portions are provided on different side surfaces of the cell units. The position may be shifted on the same side.
  • the lithium ion battery module 1 has an optical waveguide 60 arranged adjacent to or in close proximity to the light emitting surface of the light emitting section 20 .
  • the lithium-ion battery module 1 has an exterior body 70 that houses a plurality of cell units 30 and optical waveguides 60 .
  • an exterior body 70 that houses a plurality of cell units 30 and optical waveguides 60 .
  • a part of the exterior body is removed in order to explain the configuration of the assembled battery.
  • a metal can case, a polymer-metal composite film, or the like can be used.
  • a conductive sheet is provided on the negative electrode current collector 19 on the uppermost surface of the assembled battery 50 , and a part of the conductive sheet is drawn out from the exterior body 70 to become the lead wiring 59 .
  • a conductive sheet is provided on the positive electrode current collector 17 on the lowermost surface of the assembled battery 50 , and a part of the conductive sheet is drawn out from the exterior body 70 to become the lead wiring 57 .
  • the conductive sheet is not particularly limited as long as it is a material having conductivity, and metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, and materials described as resin current collectors are appropriately selected. can be used as The lead wiring can be used to charge and discharge the assembled battery.
  • the optical waveguide 60 provides a common optical path for optical signals output from the light emitting units 20 of the plurality of single cell units 30 .
  • the optical waveguide 60 extending in the stacking direction of the cells is arranged adjacent to or close to the light emitting surface of the light emitting section 20 .
  • the optical waveguide 60 may be a light guide plate having a sufficient width (length in the direction perpendicular to the stacking direction of the cells) to receive the optical signal from the light emitting section 20 .
  • the width dimension of the optical waveguide 60 should be larger than the maximum dimension of the light emitting surface of the light emitting part 20 (diameter if the light emitting surface is circular, diagonal if rectangular).
  • the optical waveguide 60 can be arranged so as to cover all of the light emitting surfaces of the plurality of light emitting portions 20 (each corresponding to a plurality of stacked single cells). Moreover, the optical waveguide 60 can be arranged so as to cover the light emitting direction of the light emitting section 20 (including the case where the light emitting direction is aligned with the vertical direction of the light emitting surface and the case where it is inclined from the vertical direction of the light emitting surface).
  • an additional component such as a lens may be used, or a light guide plate subjected to light condensing processing may be used.
  • an optical waveguide 60 extending in a direction orthogonal to the stacking direction of the unit cells.
  • the light guide plate as the optical waveguide 60 can cover all of the light emitting surfaces of the plurality of light emitting portions 20, and is tapered toward the light output portion so that the light is output from the tapered light output portion.
  • An optical signal can be received by the light receiver 80 .
  • the optical waveguide 60 may be an optical fiber.
  • a tape-type fiber in which a plurality of core wires are bundled may be used.
  • a space is provided between the light emitting direction of the light emitting section 20 and the inner surface of the exterior body 70, and a spatial optical system is provided between the light receiving section 80 and the light receiving section 80. may be configured.
  • an additional component such as a reflector may be used inside the exterior body 70, or the inner surface of the exterior body 70 may be processed as a reflective surface. .
  • Light emitted from the light emitting units 20 provided in each of the 20 or more unit cell units 30 arranged adjacent to or close to one optical waveguide 60 is optically coupled to the optical waveguide 60 and emitted from the optical output unit. emitted.
  • a part of the optical waveguide 60 is pulled out from the exterior body 70 and serves as an optical output section from which optical signals that have entered and propagated from the respective light emitting sections 20 are emitted.
  • An optical signal emitted from the optical output section is received by the light receiving section 80 .
  • the light-receiving unit 80 includes a light-receiving element 81 , and by inversely converting an optical signal into an electric signal by the light-receiving element 81 , an electric signal indicating the state inside the cell unit 30 included in the assembled battery 50 can be obtained. .
  • a photodiode, a phototransistor, or the like can be used as the light receiving element 81, and a photodiode is preferable.
  • the light-receiving section 80 may be configured using an LED element, which is a light-emitting element, as a light-receiving element.
  • the optical signal emitted from the light output section is received by the light receiving section 80 arranged inside the exterior body 70 . received.
  • the light-receiving section 80 and the optical waveguide 60 which are arranged apart from the assembled battery, are not electrically connected, and information is transmitted between the light-receiving section 80 and the optical waveguide 60 by optical signals. That is, it means that the light receiving section 80 and the assembled battery 50 are electrically insulated.
  • the outer package 70 accommodates the assembled battery 50 and at least a portion of the optical waveguide 60 and lead wires 57 and 59 .
  • the exterior body 70 can be constructed using a metal can case or a polymer-metal composite film.
  • the exterior body 70 is sealed so as to maintain the internal pressure reduction.
  • the control elements 23a and 23b of the light emitting section 20 are configured to function as a measurement circuit that measures the characteristics of the corresponding single cell 10 and generates a characteristic signal representing the measured characteristics. For example, a binary signal corresponding to the voltages input to the voltage measurement terminals 24 and 25 is generated as the characteristic signal.
  • the characteristic signal can be generated by converting the voltage input to the voltage measurement terminal into a binary signal using a lookup table that defines voltage ranges and corresponding signal patterns. Also, the voltage input to the voltage measurement terminal may be converted into an 8-bit (or 16-bit) binary signal by analog/digital conversion and generated.
  • the measurement circuits of the control elements 23a and 23b can convert the output of the temperature sensor connected to the measurement terminal described above into a binary signal, or convert the output of a strain gauge, piezoelectric element, etc. into a binary signal. .
  • the control elements 23a and 23b are configured to function as a control circuit that outputs a control signal obtained by encoding the characteristic signal every predetermined period.
  • a control signal encoded into a predetermined pattern is supplied to the light emitting section 20 , and an optical signal corresponding to the control signal is output to the optical waveguide 60 .
  • the control elements 23a and 23b encode a unique identifier to the corresponding cell unit 30 together with the characteristic signal, add it to the control signal, and output it. Since the optical signal is output based on the control signal in which the identifier is encoded together with the characteristic signal of the corresponding cell unit 30, it is possible to identify which cell the state information is on the receiving side.
  • FIG. 4 shows a battery system including a lithium ion battery module.
  • a stationary high-voltage high-capacity battery system is shown.
  • a plurality of lithium ion battery modules 1a-1n are connected in series to form a battery pack 200.
  • FIG. For example, a battery pack 200 that outputs 6600 V is formed by serially connecting 40 lithium-ion battery modules each including an assembled battery 50 in which 48 cells 30 are stacked.
  • a battery system capable of outputting power equivalent to commercial power is configured.
  • Various battery systems can be configured by arbitrarily setting the number of stacked cells, the number of connected lithium-ion battery modules, and the number of connected battery packs.
  • the lithium ion battery module 1 is coupled via an optical waveguide 60 to a battery module management device 201 including a light receiving section 80 and a signal processing device 100 .
  • Each signal processing device 100 is connected to a battery pack management device 202 , and a plurality of battery pack management devices 202 a - 202 n are connected to a battery system management device 203 .
  • the battery module management device 201 is composed of the light receiving unit 80 and the signal processing device 100 .
  • the lithium-ion battery 1 module includes a voltmeter for measuring the input/output voltage of the assembled battery connected to the lead wiring 57 and the lead wiring 59, and the input/output current of the assembled battery connected to the lead wiring 57. It has an ammeter for measurement, and one or more temperature sensors installed on the ambient temperature of the assembled battery 50, the inner surface or the outer surface of the exterior body 70, or the like.
  • the light-receiving unit 80 includes a light-receiving element optically connected to the optical waveguide 60, and any communication method can be applied between the plurality of light-emitting units 20 and the light-receiving unit 80. Since a plurality of light-emitting portions 20 use the optical waveguide 60 as a common optical path, the light-receiving portion 80 identifies the signal emitted from the light-emitting portion 20 of which unit cell 10 .
  • the signal processing device 100 acquires the characteristic signal for each unit cell of the lithium ion battery module 1 received by the light receiving unit 80, the data from the voltmeter, the ammeter, and the temperature sensor, and obtains the state of each unit cell from the acquired data. to estimate the state of each single cell.
  • FIG. 5 shows the structure of the lithium-ion battery module and the battery module management device.
  • a module management device board 211 is attached to the side surface of the exterior body 70 from which the optical waveguide 60 and the lead wires 57 and 59 of the lithium ion battery module 1 are drawn.
  • the light receiving unit 80 and the signal processing device 100 that constitute the battery module management device 201 are mounted on the module management device board 211 and housed in the housing 212 together with the lithium ion battery module 1 .
  • FIG. 5 shows the positional relationship of each member before assembly so that the stored state of the module management device board 211 can be understood.
  • the module management device board 211 has connection terminals 213 for electrically connecting the lead wiring 57 (positive electrode), the lead wiring 59 (negative electrode), and the connection fittings for connecting the lithium ion battery modules 1 to each other. (positive electrode) and a connection terminal 214 (negative electrode) are attached.
  • a connection terminal 215 for electrically connecting an output terminal of the signal processing device 100 and a communication line connecting between the battery module management device 201 and the battery pack management device 202 is attached.
  • the connection terminals 213, 214, and 215 are represented by rectangular parallelepipeds for the sake of simplification of the drawing, but connectors, plugs, or the like can be applied according to the application.
  • the light receiving section 80 is mounted on the surface opposite to the end surface of the optical waveguide 60 on the module management device board 211, and the light receiving section 80 is mounted on the opposite side of the board, the optical waveguide 60 is extended, or the board may be passed through and coupled to the light receiving portion 80 .
  • the signal processing device 100 may be mounted on the same surface as the connection terminals 215 .
  • the battery pack management device 202 can be configured by an on-board computer including a general-purpose integrated circuit in which a processor, memory, etc. are integrated, or a dedicated integrated circuit in which FPGA, ASIC, etc. are integrated.
  • the battery pack management device 202 acquires information such as the state of the lithium ion battery module 1 via the communication circuit of the battery module management device 201 . Furthermore, the battery pack management device 202 measures the output voltage of the battery pack, the current during charging and discharging, the temperature distribution of the battery pack, and the like.
  • the battery pack management device 202 analyzes the state of the battery pack based on the obtained information and measurement results, and monitors and controls the battery pack. For example, information from the signal processing device 100 can be used to detect and disconnect a lithium-ion battery module in which an abnormality has occurred, or to cut off the output of a battery pack and disconnect it from the battery system. In addition, measurement results and analysis results can be transmitted to the battery system management device 203, which is a higher management device.
  • the battery system management device 203 has a function equivalent to a so-called PCS (Power Conditioning Subsystem), and has functions such as DC/AC conversion, charge/discharge control, and grid connection functions.
  • the battery system management device 203 is connected to a plurality of battery pack management devices 202 via communication lines, analyzes the state of the battery packs from the acquired information, and determines whether the battery pack management device 202 or the battery A command is sent to the module management device 201 .
  • PCS Power Conditioning Subsystem
  • FIG. 6 shows the structure of the battery pack rack.
  • FIG. 6A is a schematic diagram of the internal structure of rack 300 viewed from the front.
  • the battery pack 200 is housed in one housing, and from top to bottom is a fan slot 301 incorporating a plurality of cooling fans, a management slot 302 housing a battery pack management device 202, and a battery housing a lithium ion battery module 1. It has slots 303 1 -303 n .
  • the lithium ion battery module 1 including the assembled battery 50 which is a flat-shaped laminated battery is installed in a state substantially parallel to the installation surface (bottom surface) of the rack 300 .
  • the rack 300 also has a plurality of rectifying slots 304 1 -304 m for heat dissipation of the lithium ion battery modules 1 .
  • FIG. 6B is a schematic diagram of the internal structure of the rack 300 viewed from the side.
  • a space is provided on the front surface of the rack as a cable duct 305 for connecting the battery pack management device 202 and the communication unit of the battery module management device 201 coupled to the lithium ion battery module 1 .
  • the rear surface of the rack is provided with a space that serves as an exhaust duct 306 so that the air sucked from the front/lower side of the rack comes into contact with the lithium ion battery module 1 and is sucked up by the cooling fan from the rear/upper side.
  • a plurality of lithium ion battery modules 1 are connected in series by a connecting terminal connecting the positive electrode of the lithium ion battery module to the negative electrode of the upper lithium ion battery module and a connecting terminal connecting the negative electrode to the positive electrode of the lower lithium ion battery module. Connecting.
  • the cylindrical cells are arranged vertically and horizontally. , a space is generated between the wound cells. According to the present embodiment, cells can be efficiently integrated without such wasted space.
  • FIG. 7 shows a connection form of the lithium ion battery module in the battery slot.
  • the rack 300 includes a plurality of shelf boards 311 that are installed substantially parallel to the installation surface (bottom surface) of the rack and that are substantially parallel to each other.
  • a management slot 302 and battery slots 303 1 to 303 n accommodated in the housing 202 and the housing 212 are arranged on the shelf board 311 .
  • the configuration of the battery slots 303 1 to 303 n may be any structure as long as the lithium ion battery module 1 can be accommodated.
  • a plurality of assembled batteries 50 can be installed in a substantially parallel state. Moreover, it is sufficient that the plane of the end portion in the stacking direction of the assembled battery 50, which is a stacked battery, and the surface of the shelf plate 311 are substantially parallel.
  • the bottom area of the unit cell 10 is defined as the wound-type unit cell. Larger than the base area of the cell.
  • the lithium ion battery module 1 including the assembled battery 50 in which the single cells 10 are stacked is installed on the shelf board 311, the bottom area of the single cells 10 occupies 30% or more of the shelf board area.
  • the bottom area of the cell 10 may be larger than the bottom area of the wound type cell, and may occupy 50% or more of the area of the shelf board.
  • a connection terminal 214 (negative electrode) attached to the housing 212 of the battery slot 303 1 and a connection terminal 213 (positive electrode) of the lower battery slot 303 2 are connected by a connection fitting 312 .
  • the connection terminal 214 (negative electrode) of the battery slot 303 2 is further connected to the connection terminal 213 (positive electrode) of the lower battery slot 303 3 with a connection fitting 312 .
  • the housings 212 for housing the lithium-ion battery modules 1 are placed upside down for each battery slot, with the upper negative electrode and the lower positive electrode, the lower negative electrode and the lower positive electrode in this order.
  • a plurality of lithium ion battery modules 1 can be connected in series.
  • a 40-stage series connection battery pack 200 with an output of 6600 V can be configured.
  • connection terminal 215 attached to the housing 212 of the lithium ion battery module 1 is connected to the communication line 314, and each battery module management device 201 can communicate with the battery pack management device 202 in the management slot 302. .
  • connection fittings 312 and 313 are shown as squares for the sake of simplification of the drawing, but any shape and material can be used as long as the connection terminals 213 and 214 can be connected to each other, such as plate-like metal or wire.
  • the communication line 314 is also represented by a square for the sake of simplification of the drawing, but it may be appropriately selected according to the communication method such as bus wiring or ring wiring.
  • the battery structure of the present invention can be used, for example, as a power source for electric vehicles, hybrid electric vehicles, etc. and as a power source for portable electronic devices.
  • Negative Electrode Current Collector 20 Light Emitting Part 21 Wiring Board 22 Light Emitting Elements 23a, 23b Control Elements 24, 25 Measurement Terminal 30 Cell unit 50 Battery pack 57, 59 Lead wire 60 Optical waveguide 70 Exterior body 80 Light receiving part 100 Signal processing device 101 Microcomputer circuit 102 Memory circuit 103 Communication circuit 200 Battery pack 201 Battery module management device 202 Battery pack management device 203 Battery System management device 211 Module management device board 212 Housings 213, 214, 215 Connection terminal 301 Fan slot 302 Management slot 303 Battery slot 304 Rectification slot 305 Cable duct 306 Exhaust duct 311 Shelf boards 312, 313 Connection fitting 314 Communication line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

The present invention provides a battery structure which is composed of: a battery pack that is capable of flexibly constituting a battery system; a rack for battery packs; and the like. This battery structure is provided with: a battery stack that is obtained by stacking a plurality of planar single cells, each of which has a positive electrode resin collector, a positive electrode active material layer, a separator, a negative electrode active material layer and a negative electrode resin collector, while comprising a frame material that seals the positive electrode active material layer, the separator and the negative electrode active material layer; and a rack (300) in which the battery stack is contained.

Description

電池構造battery structure
 本発明は、リチウムイオン電池モジュールを含む電池構造に関する。 The present invention relates to a battery structure including a lithium ion battery module.
 電気自動車およびハイブリッド電気自動車等の電源および携帯型電子機器の電源としてリチウムイオン電池の単電池を複数個積層した組電池が用いられている(例えば、特許文献1参照)。また、組電池を、無停電電源、電力貯蔵システムなどに適用される据置き型電池として用いる場合には、さらに複数の組電池を直列または並列に接続している。このように多数の組電池を接続する際には、接続の容易性、量産性のみならず、安全かつ効率的に使用するための構造が求められている(例えば、特許文献2,3参照)。 As a power source for electric vehicles, hybrid electric vehicles, etc. and for portable electronic devices, assembled batteries in which a plurality of lithium ion cells are stacked are used (see, for example, Patent Document 1). Moreover, when the assembled battery is used as a stationary battery applied to an uninterruptible power supply, an electric power storage system, etc., a plurality of assembled batteries are connected in series or in parallel. When connecting a large number of battery packs in this way, not only ease of connection and mass productivity but also a structure for safe and efficient use is required (see Patent Documents 2 and 3, for example). .
国際公開第2009/119075号WO2009/119075 特開2003-288883号公報Japanese Patent Application Laid-Open No. 2003-288883 国際公開第2015/140952号WO2015/140952
 周知の巻回型電池を用いて、所定の電力容量を満たすように当該巻回型電池を複数接続する場合、当該巻回型電池を平置きで重ねていくと、充填効率および製造プロセスの低下の恐れがある。このため、当該巻回型電池を複数接続する際の設置の仕方および電池用ラックを含む構造には一定の制限がある。電池パック用ラックにおいては、所望の電力容量に応じて電池システムを構成する際に、リチウムイオン電池モジュールおよび電池パックの柔軟な構成が可能なように簡易な構成が求められている。 When using well-known wound batteries and connecting a plurality of the wound batteries so as to satisfy a predetermined power capacity, if the wound batteries are laid flat and stacked, charging efficiency and the manufacturing process deteriorate. There is a risk of Therefore, when connecting a plurality of wound batteries, there are certain restrictions on the installation method and the structure including the battery rack. Battery pack racks are required to have a simple configuration so that lithium ion battery modules and battery packs can be flexibly configured when configuring a battery system according to a desired power capacity.
 本発明の目的は、電池システムを柔軟に構成することができる電池パックおよび電池パック用ラック等からなる電池構造を提供することにある。 An object of the present invention is to provide a battery structure comprising a battery pack, a battery pack rack, and the like, which allows a flexible configuration of a battery system.
 本発明の一実施態様の電池構造は、正極樹脂集電体、正極活物質層、セパレータ、負極活物質層および負極樹脂集電体を有し、前記正極活物質層、前記セパレータおよび前記負極活物質層を封止する枠材を含む、平面状の単電池が複数積層された積層電池と、前記積層電池を収容するラックと、を備え、前記単電池は、前記単電池の厚さと、前記単電池の長辺の長さ、との比をアスペクト比としたときに、1:100~1:1000のアスペクト比からなり、前記積層電池は、該積層電池の積層方向両端の平面と、前記単電池の積層方向両端の平面とが略平行、または、そのなす角度が-5°~5°であり、前記積層電池は、該積層電池の積層方向両端の平面と、前記ラックの底面と、が略平行の状態で複数設置されていることを特徴とする。 A battery structure of one embodiment of the present invention has a positive electrode resin current collector, a positive electrode active material layer, a separator, a negative electrode active material layer and a negative electrode resin current collector. A stacked battery in which a plurality of planar single cells are stacked and including a frame member for sealing a material layer; The aspect ratio is 1:100 to 1:1000, where the aspect ratio is the length of the long side of the unit cell. The planes at both ends of the stacking direction of the unit cell are substantially parallel to each other or form an angle of -5° to 5°. are installed in a substantially parallel state.
 本発明によれば、複数のリチウムイオン電池モジュールを積層した、空間効率の良い電池構造とすることができ、電池システムを柔軟に構成することが可能である。 According to the present invention, a battery structure with good space efficiency can be obtained by stacking a plurality of lithium-ion battery modules, and a battery system can be flexibly configured.
図1は、単電池ユニットの例を模式的に示す一部切り欠き斜視図である。FIG. 1 is a partially cutaway perspective view schematically showing an example of a cell unit. 図2は、発光部の例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of a light emitting section. 図3は、リチウムイオン電池モジュールの一例を模式的に示す一部切り欠き斜視図である。FIG. 3 is a partially cutaway perspective view schematically showing an example of a lithium-ion battery module. 図4は、リチウムイオン電池モジュールを含む電池システムの機能ブロック図である。FIG. 4 is a functional block diagram of a battery system including lithium ion battery modules. 図5は、リチウムイオン電池モジュールと電池モジュール管理装置の構造を示す図である。FIG. 5 is a diagram showing the structure of a lithium ion battery module and a battery module management device. 図6は、電池パックのラックの構造を示す図である。FIG. 6 is a diagram showing the structure of a battery pack rack. 図7は、電池パックのラックの電池スロットの構造を示す図である。FIG. 7 is a diagram showing the structure of a battery slot in a battery pack rack.
 以下、本発明の実施形態を詳細に説明する。なお、本明細書において、リチウムイオン電池と記載する場合、リチウムイオン二次電池も含む概念とする。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in this specification, when describing a lithium ion battery, the concept includes a lithium ion secondary battery.
  [単電池ユニット]
 組電池は、単電池ユニットが複数個接続されてなり、単電池ユニットは単電池と発光部とを備えている。単電池ユニットは組電池内で直列に接続されていることが好ましい。まず、単電池および発光部を備える単電池ユニットについて説明する。
[Single battery unit]
The assembled battery is formed by connecting a plurality of single cell units, and each single cell unit includes a single cell and a light emitting section. The cell units are preferably connected in series within the assembled battery. First, a single cell unit including a single cell and a light emitting portion will be described.
 図1は、単電池ユニットの例を模式的に示す一部切り欠き斜視図である。図1にはリチウムイオン電池である単電池10と発光部20を備える単電池ユニット30を示している。単電池10は、略矩形平板状の正極集電体17の表面に正極活物質層15が形成された正極12と、同様に略矩形平板状の負極集電体19の表面に負極活物質層16が形成された負極13とが、同様に略平板状のセパレータ14を介して積層されて構成され、全体として略矩形平板状に形成されている。この正極と負極とがリチウムイオン電池の正極および負極として機能する。一例として、単電池10は、扁平なシート状の形状を有し、厚さと長辺の長さとの比をアスペクト比としたときに、1:100~1:1000のアスペクト比を有している。 FIG. 1 is a partially cutaway perspective view schematically showing an example of a cell unit. FIG. 1 shows a single cell unit 30 including a single cell 10 which is a lithium ion battery and a light emitting section 20 . The unit cell 10 includes a positive electrode 12 in which a positive electrode active material layer 15 is formed on the surface of a substantially rectangular flat positive current collector 17, and a negative electrode active material layer on the surface of a substantially rectangular flat negative current collector 19. A negative electrode 13 on which 16 is formed is similarly laminated with a substantially flat separator 14 interposed therebetween, and is formed in a substantially rectangular flat plate shape as a whole. This positive electrode and negative electrode function as a positive electrode and a negative electrode of a lithium ion battery. As an example, the cell 10 has a flat sheet-like shape, and has an aspect ratio of 1:100 to 1:1000 when the ratio of the thickness to the length of the long side is taken as the aspect ratio. .
 単電池10は、正極集電体17および負極集電体19の間に配置されて正極集電体17および負極集電体19の間にセパレータ14の周縁部を固定し、かつ正極活物質層15、セパレータ14および負極活物質層16を封止する、環状の枠部材18を有する。 The single cell 10 is arranged between the positive electrode current collector 17 and the negative electrode current collector 19, the peripheral edge portion of the separator 14 is fixed between the positive electrode current collector 17 and the negative electrode current collector 19, and the positive electrode active material layer 15, an annular frame member 18 that seals the separator 14 and the negative electrode active material layer 16 .
 正極集電体17および負極集電体19は、枠部材18により所定間隔をもって対向するように位置決めされているとともに、セパレータ14と正極活物質層15および負極活物質層16も枠部材18により所定間隔をもって対向するように位置決めされている。 The positive electrode current collector 17 and the negative electrode current collector 19 are positioned by the frame member 18 so as to face each other with a predetermined gap. They are positioned to face each other with a gap.
 正極集電体17とセパレータ14との間の間隔、および、負極集電体19とセパレータ14との間の間隔はリチウムイオン電池の容量に応じて調整され、これら正極集電体17、負極集電体19およびセパレータ14の位置関係は必要な間隔が得られるように定められている。 The distance between the positive electrode current collector 17 and the separator 14 and the distance between the negative electrode current collector 19 and the separator 14 are adjusted according to the capacity of the lithium ion battery. The positional relationship between the conductor 19 and the separator 14 is determined so as to obtain the required spacing.
 以下に、単電池を構成する各構成要素の好ましい態様について説明する。正極活物質層には正極活物質が含まれる。正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO2、LiNiO2、LiAlMnO4、LiMnO2およびLiMn24等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO4、LiNi1-xCox2、LiMn1-yCoy2、LiNi1/3Co1/3Al1/32およびLiNi0.8Co0.15Al0.052)および金属元素が3種類以上である複合酸化物[例えばLiMaM’bM’’c2(M、M’およびM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/32)等]、リチウム含有遷移金属リン酸塩(例えばLiFePO4、LiCoPO4、LiMnPO4およびLiNiPO4)、遷移金属酸化物(例えばMnO2およびV25)、遷移金属硫化物(例えばMoS2およびTiS2)および導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレンおよびポリ-p-フェニレンおよびポリビニルカルバゾール)等が挙げられ、2種以上を併用してもよい。なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。 Preferred aspects of each component that constitutes the cell will be described below. The positive electrode active material layer contains a positive electrode active material. Examples of positive electrode active materials include composite oxides of lithium and transition metals (composite oxides containing one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 and LiMn 2 O 4 , etc.), transition metal elements Two kinds of composite oxides (for example, LiFeMnO4 , LiNi1 -xCoxO2 , LiMn1 - yCoyO2 , LiNi1 / 3Co1 / 3Al1/ 3O2 and LiNi0.8Co0.15Al 0.05 O 2 ) and composite oxides containing three or more metal elements [for example, LiM a M′ b M″ c O 2 (M, M′ and M″ are different transition metal elements, a+b+c=1 LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), etc.], lithium-containing transition metal phosphates (e.g. LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), transition metal oxides (e.g. MnO 2 and V 2 O 5 ), transition metal sulfides (e.g. MoS 2 and TiS 2 ) and conductive polymers (e.g. polyaniline, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene and polyvinylcarbazole), etc. You may use 2 or more types together. The lithium-containing transition metal phosphate may have a transition metal site partially substituted with another transition metal.
 正極活物質は、導電助剤および被覆用樹脂で被覆された被覆正極活物質であることが好ましい。正極活物質の周囲が被覆用樹脂で被覆されていると、電極の体積変化が緩和され、電極の膨張を抑制することができる。 The positive electrode active material is preferably a coated positive electrode active material coated with a conductive aid and a coating resin. When the positive electrode active material is covered with the coating resin, the volume change of the electrode is moderated, and the expansion of the electrode can be suppressed.
 導電助剤としては、金属系導電助剤[アルミニウム、ステンレス(SUS)、銀、金、銅およびチタン等]、炭素系導電助剤[グラファイトおよびカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラックおよびサーマルランプブラック等)等]、およびこれらの混合物等が挙げられる。これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金または金属酸化物として用いられてもよい。なかでも、電気的安定性の観点から、より好ましくはアルミニウム、ステンレス、銀、金、銅、チタン、炭素系導電助剤およびこれらの混合物であり、さらに好ましくは銀、金、アルミニウム、ステンレスおよび炭素系導電助剤であり、特に好ましくは炭素系導電助剤である。また、これらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料[好ましくは、上記した導電助剤のうち金属のもの]をめっき等でコーティングしたものでもよい。 Conductive agents include metallic conductive agents [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive agents [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), and mixtures thereof. One of these conductive aids may be used alone, or two or more thereof may be used in combination. Moreover, these alloys or metal oxides may be used. Among them, from the viewpoint of electrical stability, aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive aids and mixtures thereof are more preferable, and silver, gold, aluminum, stainless steel and carbon are more preferable. A conductive additive, particularly preferably a carbon-based conductive additive. These conductive aids may also be those obtained by coating a conductive material [preferably a metal one of the above-described conductive aids] around a particulate ceramic material or a resin material by plating or the like.
 導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノファイバー、カーボンナノチューブ等、いわゆるフィラー系導電助剤として実用化されている形態であってもよい。 The shape (form) of the conductive aid is not limited to a particle form, and may be in a form other than a particle form, such as carbon nanofibers, carbon nanotubes, etc., which are practically used as so-called filler-type conductive aids. may
 被覆用樹脂と導電助剤の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆用樹脂(樹脂固形分重量):導電助剤が1:0.01~1:50であることが好ましく、1:0.2~1:3.0であることがより好ましい。 The ratio of the coating resin and the conductive aid is not particularly limited, but from the viewpoint of the internal resistance of the battery, etc., the weight ratio of the coating resin (resin solid content weight): conductive aid is 1:0.01. 1:50 is preferable, and 1:0.2 to 1:3.0 is more preferable.
 被覆用樹脂としては、例えば、特許文献2に、非水系二次電池活物質被覆用樹脂として記載されたものを好適に用いることができる。 As the coating resin, for example, the resin described in Patent Document 2 as a non-aqueous secondary battery active material coating resin can be suitably used.
 また、正極活物質層は、被覆正極活物質に含まれる導電助剤以外にも導電助剤を含んでもよい。導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。 In addition, the positive electrode active material layer may contain a conductive aid other than the conductive aid contained in the coated positive electrode active material. As the conductive aid, the same conductive aid as contained in the above-described coated positive electrode active material can be suitably used.
 正極活物質層は、正極活物質を含み、正極活物質同士を結着する結着材を含まない非結着体であることが好ましい。ここで、非結着体とは、正極活物質が結着剤(バインダともいう)により位置を固定されておらず、正極活物質同士および正極活物質と集電体が不可逆的に固定されていないことを意味する。 The positive electrode active material layer preferably contains a positive electrode active material and is a non-binding material that does not contain a binder that binds the positive electrode active materials together. Here, the non-bound body means that the position of the positive electrode active material is not fixed by a binder (also referred to as a binder), and the positive electrode active material and the current collector are irreversibly fixed to each other. means no.
 正極活物質層には、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、例えば、特許文献2に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、および、例えば、特許文献3に粘着剤として記載されたもの等を好適に用いることができる。なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱などを使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着材として用いられる溶液乾燥型の電極バインダーは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。従って、溶液乾燥型の電極バインダー(結着材)と粘着性樹脂とは異なる材料である。 The positive electrode active material layer may contain an adhesive resin. As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in Patent Document 2 is mixed with a small amount of organic solvent to adjust the glass transition temperature to room temperature or lower, and, for example, Those described as adhesives in Patent Document 3 can be preferably used. In addition, adhesive resin is a resin that does not solidify even if the solvent component is volatilized and dried, and has adhesiveness (the property of adhering by applying a slight pressure without using water, solvent, heat, etc.) means On the other hand, a solution-drying type electrode binder used as a binding material means one that evaporates a solvent component to dry and solidify, thereby firmly adhering and fixing active materials to each other. Therefore, the solution-drying type electrode binder (binding material) and the adhesive resin are different materials.
 正極活物質層の厚みは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 Although the thickness of the positive electrode active material layer is not particularly limited, it is preferably 150 to 600 μm, more preferably 200 to 450 μm, from the viewpoint of battery performance.
 負極活物質層には負極活物質が含まれる。負極活物質としては、公知のリチウムイオン電池用負極活物質が使用でき、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂およびフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークスおよび石油コークス等)および炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素および/または炭化珪素で被覆したもの、珪素粒子または酸化珪素粒子の表面を炭素および/または炭化珪素で被覆したもの並びに炭化珪素等)および珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金および珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレンおよびポリピロール等)、金属(スズ、アルミニウム、ジルコニウムおよびチタン等)、金属酸化物(チタン酸化物およびリチウム・チタン酸化物等)および金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金およびリチウム-アルミニウム-マンガン合金等)等およびこれらと炭素系材料との混合物等が挙げられる。 The negative electrode active material layer contains a negative electrode active material. As the negative electrode active material, known negative electrode active materials for lithium ion batteries can be used. cokes (e.g., pitch coke, needle coke, petroleum coke, etc.), carbon fibers, etc.], silicon-based materials [silicon, silicon oxide (SiO x ), silicon-carbon composites (carbon particles with silicon and/or coated with silicon carbide, silicon particles or silicon oxide particles coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon- nickel alloys, silicon-iron alloys, silicon-titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (e.g., polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium and titanium), metal oxides (titanium oxide and lithium-titanium oxide) and metal alloys (such as lithium-tin alloys, lithium-aluminum alloys and lithium-aluminum-manganese alloys), etc., and these and carbon-based Mixtures with materials and the like are included.
 また、負極活物質は、上述した被覆正極活物質と同様の導電助剤および被覆用樹脂で被覆された被覆負極活物質であってもよい。導電助剤および被覆用樹脂としては、上述した被覆正極活物質と同様の導電助剤および被覆用樹脂を好適に用いることができる。 Also, the negative electrode active material may be a coated negative electrode active material coated with the same conductive aid and coating resin as the coated positive electrode active material described above. As the conductive aid and the coating resin, the same conductive aid and coating resin as those of the coated positive electrode active material described above can be suitably used.
 また、負極活物質層は、被覆負極活物質に含まれる導電助剤以外にも導電助剤を含んでもよい。導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。 In addition, the negative electrode active material layer may contain a conductive aid other than the conductive aid contained in the coated negative electrode active material. As the conductive aid, the same conductive aid as contained in the above-described coated positive electrode active material can be suitably used.
 負極活物質層は、正極活物質層と同様に、負極活物質同士を結着する結着材を含まない非結着体であることが好ましい。また、正極活物質層と同様に、粘着性樹脂が含まれていてもよい。 Like the positive electrode active material layer, the negative electrode active material layer is preferably a non-binding material that does not contain a binder that binds the negative electrode active materials together. Further, like the positive electrode active material layer, it may contain an adhesive resin.
 負極活物質層の厚みは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 Although the thickness of the negative electrode active material layer is not particularly limited, it is preferably 150 to 600 μm, more preferably 200 to 450 μm, from the viewpoint of battery performance.
 正極集電体および負極集電体(以下まとめて単に集電体ともいう)を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケルおよびこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。これらの材料のうち、軽量化、耐食性、高導電性の観点から、正極集電体としてはアルミニウムであることが好ましく、負極集電体としては銅であることが好ましい。 Materials constituting the positive electrode current collector and the negative electrode current collector (hereinafter collectively referred to as current collectors) include metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, and baked carbon. , conductive polymer materials, conductive glass, and the like. Among these materials, aluminum is preferable for the positive electrode current collector, and copper is preferable for the negative electrode current collector, from the viewpoints of weight reduction, corrosion resistance, and high conductivity.
 また、集電体は、導電性高分子材料からなる樹脂集電体であることが好ましい。集電体の形状は特に限定されず、上記の材料からなるシート状の集電体、および、上記の材料で構成された微粒子からなる堆積層であってもよい。集電体の厚さは、特に限定されないが、50~500μmであることが好ましい。 In addition, the current collector is preferably a resin current collector made of a conductive polymer material. The shape of the current collector is not particularly limited, and may be a sheet-like current collector made of the above material or a deposited layer made of fine particles made of the above material. Although the thickness of the current collector is not particularly limited, it is preferably 50 to 500 μm.
 樹脂集電体を構成する導電性高分子材料としては例えば、導電性高分子や、樹脂に必要に応じて導電剤を添加したものを用いることができる。導電性高分子材料を構成する導電剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。 As the conductive polymer material that constitutes the resin current collector, for example, a conductive polymer or a resin to which a conductive agent is added as necessary can be used. As the conductive agent that constitutes the conductive polymer material, the same conductive aid as that contained in the above-described coated positive electrode active material can be preferably used.
 導電性高分子材料を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂またはこれらの混合物等が挙げられる。電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)およびポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)およびポリメチルペンテン(PMP)である。 Examples of resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), poly Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or mixtures thereof etc. From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferred, more preferably polyethylene (PE), polypropylene (PP) and polymethylpentene. (PMP).
 セパレータとしては、ポリエチレンまたはポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維およびアラミド繊維等)またはガラス繊維等からなる不織布、およびそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。さらに、セパレータとして、硫化物系、酸化物系の無機系固体電解質、または高分子系の有機系固体電解質などを適用することもできる。固体電解質の適用により、全固体電池を構成することができる。 Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene film and porous polypropylene, non-woven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces. , alumina, titania, and other known separators for lithium ion batteries. Further, as the separator, a sulfide-based or oxide-based inorganic solid electrolyte, or a polymer-based organic solid electrolyte or the like can be applied. By applying a solid electrolyte, an all-solid battery can be constructed.
 正極活物質層および負極活物質層には電解液が含まれる。電解液としては、公知のリチウムイオン電池の製造に用いられる、電解質および非水溶媒を含有する公知の電解液を使用することができる。 The positive electrode active material layer and the negative electrode active material layer contain an electrolytic solution. As the electrolytic solution, a known electrolytic solution containing an electrolyte and a non-aqueous solvent, which is used for manufacturing known lithium ion batteries, can be used.
 電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiN(FSO22、LiPF6、LiBF4、LiSbF6、LiAsF6およびLiClO4等の無機酸のリチウム塩、LiN(CF3SO22、LiN(C25SO22およびLiC(CF3SO23等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力および充放電サイクル特性の観点から好ましいのはイミド系電解質[LiN(FSO22、LiN(CF3SO22およびLiN(C25SO22等]およびLiPF6である。 As the electrolyte , those used in known electrolytic solutions can be used . Examples include lithium salts of organic acids such as LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 and LiC( CF3SO2 ) 3 . Among these, imide- based electrolytes [LiN( FSO2 ) 2 , LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 , etc.] and LiPF6 .
 非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状または鎖状炭酸エステル、鎖状カルボン酸エステル、環状または鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等およびこれらの混合物を用いることができる。 As the non-aqueous solvent, those used in known electrolytic solutions can be used. compounds, amide compounds, sulfones, sulfolane, etc. and mixtures thereof can be used.
 電解液の電解質濃度は、1~5mol/Lであることが好ましく、1.5~4mol/Lであることがより好ましく、2~3mol/Lであることがさらに好ましい。電解液の電解質濃度が1mol/L未満であると、電池の充分な入出力特性が得られないことがあり、5mol/Lを超えると、電解質が析出してしまうことがある。なお、電解液の電解質濃度は、リチウムイオン電池用電極またはリチウムイオン電池を構成する電解液を、溶媒などを用いずに抽出して、その濃度を測定することで確認することができる。 The electrolyte concentration of the electrolytic solution is preferably 1-5 mol/L, more preferably 1.5-4 mol/L, and even more preferably 2-3 mol/L. If the electrolyte concentration of the electrolytic solution is less than 1 mol/L, the battery may not have sufficient input/output characteristics, and if it exceeds 5 mol/L, the electrolyte may precipitate. The electrolyte concentration of the electrolytic solution can be confirmed by extracting the electrode for the lithium ion battery or the electrolytic solution constituting the lithium ion battery without using a solvent or the like and measuring the concentration.
  [発光部]
 従来、単電池それぞれの端子間電圧等の監視は、単電池と測定素子との間を金属配線により電気的に接続し、さらに測定素子と監視制御装置との間も電気的に接続していた。単電池それぞれと配線で電気的に接続されていると、単電池間の短絡のリスクがあり、加えて、配線の手間が煩雑となる等の問題が生じていた。
[Light-emitting part]
Conventionally, the voltage between the terminals of each cell was monitored by electrically connecting the cell and the measuring element with metal wiring, and also electrically connecting the measuring element and the monitoring control device. . If the cells are electrically connected to each other by wiring, there is a risk of short-circuiting between the cells.
 このような問題を解決することを意図して、本発明の発明者らは、電気的配線を用いない構成、具体的には、組電池に含まれる単電池それぞれに、単電池の特性を測定して当該特性に基づいて光信号を出力する発光部と、各発光部から出力される光信号をまとめて受信する受光部と、を備える構成を見出した。当該発明者らが見出した構成によれば、受光部で受信した光信号を解析(例えば、受光部に接続したデータ処理部で解析)することにより、従来のように単電池それぞれと配線接続することによる、単電池間の短絡のリスクを回避することができる。加えて、配線の手間が軽減され、組電池の製造コストを低減することができる。 With the intention of solving such problems, the inventors of the present invention have developed a configuration that does not use electrical wiring, specifically, for each unit cell included in the assembled battery, and measuring the characteristics of the unit cell. As a result, they have found a configuration including a light-emitting portion that outputs an optical signal based on the characteristics, and a light-receiving portion that collectively receives the optical signals output from the respective light-emitting portions. According to the configuration discovered by the inventors, the optical signal received by the light receiving unit is analyzed (for example, by a data processing unit connected to the light receiving unit), and the wires are connected to each unit cell as in the conventional method. Therefore, the risk of short circuits between cells can be avoided. In addition, the labor for wiring can be reduced, and the manufacturing cost of the assembled battery can be reduced.
 図2は、発光部の例を模式的に示す斜視図である。図2に示す発光部20は、その内部または表面に配線を有する配線基板21と、配線基板21に実装された発光素子22、制御素子23a、23bを備える。また、配線基板の端部には電圧測定端子24、25が設けられている。電圧測定端子24、25は単電池に接続した際に一方の電圧測定端子が正極集電体に接触し、他方の電圧測定端子が負極集電体に接触する位置に設けられている。すなわち、電圧測定端子24、25はそれぞれ単電池の正極集電体と負極集電体の間の電圧を測定する電圧測定端子となる。 FIG. 2 is a perspective view schematically showing an example of a light emitting part. The light emitting unit 20 shown in FIG. 2 includes a wiring board 21 having wiring inside or on the surface thereof, and a light emitting element 22 and control elements 23a and 23b mounted on the wiring board 21 . Voltage measurement terminals 24 and 25 are provided at the ends of the wiring board. The voltage measurement terminals 24 and 25 are provided at positions where one voltage measurement terminal contacts the positive electrode current collector and the other voltage measurement terminal contacts the negative electrode current collector when connected to the cell. That is, the voltage measurement terminals 24 and 25 are voltage measurement terminals for measuring the voltage between the positive electrode current collector and the negative electrode current collector of the unit cell, respectively.
 電圧測定端子24および25は制御素子23a、23bと電気的に接続されており、制御素子23a、23bは発光素子22と電気的に接続されている。発光部20の発光は、単電池の電圧に応じて電力消費量が変化するように制御される。 The voltage measurement terminals 24 and 25 are electrically connected to the control elements 23a and 23b, and the control elements 23a and 23b are electrically connected to the light emitting element 22. The light emission of the light emitting unit 20 is controlled so that the power consumption varies according to the voltage of the cell.
 なお、配線基板21の、発光素子22の裏側にあたる面に、測定端子(図示略)が設けられてもよい。この測定端子は、単電池の温度を測定するための温度センサと接続して、温度測定端子として利用したり、ひずみゲージ、圧電素子等と接続して単電池の物理的変化を測定する端子として利用することができる。この測定端子も制御素子23a、23bと電気的に接続されており、制御素子23a、23bは発光素子22と電気的に接続されている。発光部20の発光は、例えば、単電池の温度に応じて電力消費量が変化するように制御される。 A measurement terminal (not shown) may be provided on the surface of the wiring board 21 that is the back side of the light emitting element 22 . This measurement terminal can be used as a temperature measurement terminal by connecting a temperature sensor to measure the temperature of the cell, or as a terminal to measure the physical change of the cell by connecting it to a strain gauge, piezoelectric element, etc. can be used. The measurement terminals are also electrically connected to the control elements 23 a and 23 b , and the control elements 23 a and 23 b are electrically connected to the light emitting element 22 . The light emission of the light emitting unit 20 is controlled, for example, so that the power consumption changes according to the temperature of the cells.
 発光部を構成する配線基板としてはリジッド基板またはフレキシブル基板を使用することができる。図2に示すような配線基板の形状とする場合はフレキシブル基板とすることが好ましい。制御素子としてはIC、LSI等の任意の半導体素子を使用することができる。また、図2には制御素子を2つ実装した例を示しているが、制御素子の数は限定されるものではなく、1つでもよく、3つ以上であってもよい。発光素子としてはLED素子、有機EL素子等の、電気信号を光信号に変換することのできる素子を使用することができ、LED素子であることが好ましい。なお、発光部において配線基板を有することは必須ではなく、制御素子および発光素子が基板を介さずに結線されることにより発光部を構成していてもよい。 A rigid board or a flexible board can be used as the wiring board that constitutes the light emitting part. When the wiring substrate is shaped as shown in FIG. 2, it is preferable to use a flexible substrate. Arbitrary semiconductor elements such as ICs and LSIs can be used as control elements. Also, although FIG. 2 shows an example in which two control elements are mounted, the number of control elements is not limited, and may be one or three or more. As the light-emitting element, an element capable of converting an electric signal into an optical signal, such as an LED element or an organic EL element, can be used, and an LED element is preferable. It should be noted that it is not essential to have a wiring board in the light-emitting section, and the light-emitting section may be configured by connecting the control element and the light-emitting element without using the board.
 発光部は、単電池の負極集電体および正極集電体と電気的に接続されており、リチウムイオン電池からの電力供給を受けることができるようになっている。発光部が負極集電体および正極集電体と電気的に接続されていると、リチウムイオン電池からの電力供給を受けて発光素子を発光させることができる。図2には電力供給を受けるための電極は図示していないが、電圧測定端子とは別の電極を発光部に設けておくことが好ましい。 The light-emitting part is electrically connected to the negative electrode current collector and the positive electrode current collector of the cell, and can receive power supply from the lithium ion battery. When the light-emitting portion is electrically connected to the negative electrode current collector and the positive electrode current collector, the light-emitting element can emit light by receiving power supply from the lithium ion battery. Although an electrode for receiving power supply is not shown in FIG. 2, it is preferable to provide the light emitting portion with an electrode other than the voltage measuring terminal.
 また、負極集電体および正極集電体は樹脂集電体であることが好ましく、負極集電体および正極集電体が発光部の電極に直接結合して電気的に接続されていることが好ましい。樹脂集電体を使用する場合、樹脂集電体と発光部の電極を接触させ、樹脂集電体を加熱して樹脂を軟化させることにより、樹脂集電体と発光部の電極を直接結合させることができる。また、半田、導電性テープ、導電性接着剤、異方性導電フィルム(ACF)等の導電性を有する他の接合材を集電体と発光部の間に介して電気的な接続を行うこともできる。 In addition, the negative electrode current collector and the positive electrode current collector are preferably resin current collectors, and the negative electrode current collector and the positive electrode current collector are preferably directly coupled and electrically connected to the electrodes of the light emitting portion. preferable. When a resin current collector is used, the resin current collector and the electrode of the light emitting part are brought into contact with each other, and the resin current collector is heated to soften the resin, thereby directly bonding the resin current collector and the electrode of the light emitting part. be able to. Also, electrical connection can be made by interposing other bonding materials having conductivity such as solder, conductive tape, conductive adhesive, anisotropic conductive film (ACF) between the current collector and the light emitting part. can also
  [リチウムイオン電池モジュール]
 図3は、リチウムイオン電池モジュールの一例を模式的に示す一部切り欠き斜視図である。リチウムイオン電池モジュール1は、単電池ユニット30が複数個接続されてなる組電池50を有する。組電池50では、隣り合う単電池10の負極集電体19の上面と正極集電体17の下面が隣接するように積層されている。いわゆるバイポーラ型の単電池ユニット30が複数個直列接続されている。図3は、5つの単電池ユニット30を積層した形態を示しているが、単電池の積層数は5より多くても、または5より少なくてもよい。一実装例では、単電池ユニット30の積層数は20以上であり得る。
[Lithium-ion battery module]
FIG. 3 is a partially cutaway perspective view schematically showing an example of a lithium-ion battery module. The lithium ion battery module 1 has an assembled battery 50 formed by connecting a plurality of single cell units 30 . In the assembled battery 50, the upper surfaces of the negative electrode current collectors 19 and the lower surfaces of the positive electrode current collectors 17 of the adjacent unit cells 10 are stacked so as to be adjacent to each other. A plurality of so-called bipolar single cell units 30 are connected in series. Although FIG. 3 shows a configuration in which five single cell units 30 are stacked, the number of stacked single cells may be more or less than five. In one implementation, the number of stacks of cell units 30 may be 20 or more.
 上述したように、組電池50は、単電池ユニットが複数積層された積層電池である。すなわち、組電池50は、扁平なシート状の単電池10を積み重ねた扁平な形状を有している。このとき、組電池50の積層方向両端の平面と、単電池10の積層方向両端の平面とが略平行、または、そのなす角度が-5°~5°である。また、組電池50の積層方向の厚みは、例えば、単電池ユニットを40層積層した場合、10mm以上60mm以下である。なお、その他の積層電池の構成として、一枚の樹脂集電体の片面に正極層を設け、この樹脂集電体の他方の面に負極層を設けた単電池を、電解質層を介して複数積層した構成としてもよい。 As described above, the assembled battery 50 is a laminated battery in which a plurality of single cell units are laminated. That is, the assembled battery 50 has a flat shape in which the flat sheet-like unit cells 10 are stacked. At this time, the planes at both ends of the battery pack 50 in the stacking direction and the planes at both ends of the cell 10 in the stacking direction are substantially parallel to each other, or form an angle of -5° to 5°. Moreover, the thickness of the assembled battery 50 in the stacking direction is, for example, 10 mm or more and 60 mm or less when 40 layers of cell units are stacked. In addition, as another configuration of the laminated battery, a plurality of unit cells each having a positive electrode layer provided on one side of a single resin current collector and a negative electrode layer provided on the other side of the resin current collector are stacked with an electrolyte layer interposed therebetween. A laminated structure may be employed.
 組電池50の外表面(側面)には各単電池ユニット30が備える発光部20が一列に並んでいる。図3には発光部20が一列に並んでいる形態を示しているが、異なる単電池ユニット間における発光部の位置関係は限定されるものではなく、単電池ユニットの異なる側面に発光部が設けられていてもよいし、同じ側面においてその位置がずれていてもよい。さらに、リチウムイオン電池モジュール1は、発光部20の発光面に隣接または近接して配置された光導波路60を有する。 On the outer surface (side surface) of the assembled battery 50, the light-emitting portions 20 included in each cell unit 30 are arranged in a row. Although FIG. 3 shows a form in which the light-emitting portions 20 are arranged in a line, the positional relationship of the light-emitting portions between different cell units is not limited, and the light-emitting portions are provided on different side surfaces of the cell units. The position may be shifted on the same side. Furthermore, the lithium ion battery module 1 has an optical waveguide 60 arranged adjacent to or in close proximity to the light emitting surface of the light emitting section 20 .
 リチウムイオン電池モジュール1は、複数の単電池ユニット30および光導波路60を収容する外装体70を有する。図3においては、組電池の構成を説明するために外装体の一部を除去して示している。外装体としては、金属缶ケース、高分子金属複合フィルム等を使用することができる。 The lithium-ion battery module 1 has an exterior body 70 that houses a plurality of cell units 30 and optical waveguides 60 . In FIG. 3, a part of the exterior body is removed in order to explain the configuration of the assembled battery. As the exterior body, a metal can case, a polymer-metal composite film, or the like can be used.
 組電池50の最上面の負極集電体19の上には導電性シートが設けられ、導電性シートの一部が外装体70から引き出されて引出配線59となる。また、組電池50の最下面の正極集電体17の上には導電性シートが設けられ、導電性シートの一部が外装体70から引き出されて引出配線57となる。導電性シートとしては導電性を有する材料であれば特に限定されず、銅、アルミニウム、チタン、ステンレス鋼、ニッケルおよびこれらの合金等の金属材料、並びに、樹脂集電体として記載した材料を適宜選択して用いることができる。引出配線を用いて、組電池への充電および組電池からの放電を行うことができる。 A conductive sheet is provided on the negative electrode current collector 19 on the uppermost surface of the assembled battery 50 , and a part of the conductive sheet is drawn out from the exterior body 70 to become the lead wiring 59 . A conductive sheet is provided on the positive electrode current collector 17 on the lowermost surface of the assembled battery 50 , and a part of the conductive sheet is drawn out from the exterior body 70 to become the lead wiring 57 . The conductive sheet is not particularly limited as long as it is a material having conductivity, and metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, and materials described as resin current collectors are appropriately selected. can be used as The lead wiring can be used to charge and discharge the assembled battery.
 光導波路60は、複数の単電池ユニット30の発光部20から出力される光信号の共通の光路を提供する。図3に示すように、単電池の積層方向に延伸した光導波路60は、発光部20の発光面に隣接または近接して配置される。光導波路60は、発光部20からの光信号を受光するのに十分な幅(単電池の積層方向に直交する方向の長さ)を有する導光板としてもよい。光導波路60を導光板で構成する場合、光導波路60の幅方向寸法を発光部20の発光面の最大寸法(発光面が円形の場合は直径、矩形の場合は対角線)よりも大きくするとよい。 The optical waveguide 60 provides a common optical path for optical signals output from the light emitting units 20 of the plurality of single cell units 30 . As shown in FIG. 3 , the optical waveguide 60 extending in the stacking direction of the cells is arranged adjacent to or close to the light emitting surface of the light emitting section 20 . The optical waveguide 60 may be a light guide plate having a sufficient width (length in the direction perpendicular to the stacking direction of the cells) to receive the optical signal from the light emitting section 20 . When the optical waveguide 60 is composed of a light guide plate, the width dimension of the optical waveguide 60 should be larger than the maximum dimension of the light emitting surface of the light emitting part 20 (diameter if the light emitting surface is circular, diagonal if rectangular).
 光導波路60として導光板を用いる場合、複数の発光部20の発光面(各々が積層された複数の単電池に対応する)のすべてを覆うように光導波路60を配置することができる。また、発光部20の発光方向(発光面の鉛直方向に一致する場合および発光面の鉛直方向にから傾斜している場合を含む)を覆うように光導波路60を配置することができる。 When a light guide plate is used as the optical waveguide 60, the optical waveguide 60 can be arranged so as to cover all of the light emitting surfaces of the plurality of light emitting portions 20 (each corresponding to a plurality of stacked single cells). Moreover, the optical waveguide 60 can be arranged so as to cover the light emitting direction of the light emitting section 20 (including the case where the light emitting direction is aligned with the vertical direction of the light emitting surface and the case where it is inclined from the vertical direction of the light emitting surface).
 また、光導波路60としての導光板に対する発光部20からの光信号の結合効率を高めるために、レンズなどの追加部品を用いてもよく、集光加工を施した導光板を用いてもよい。さらに、単電池の積層方向に直交する方向に延伸した光導波路60を用いることも可能である。この場合、光導波路60としての導光板は、複数の発光部20の発光面のすべてを覆うことが可能で、光出力部に向かうテーパー形状とすることにより、先細りの光出力部から出力される光信号を受光部80で受信することができる。 Further, in order to increase the coupling efficiency of the optical signal from the light emitting unit 20 to the light guide plate as the optical waveguide 60, an additional component such as a lens may be used, or a light guide plate subjected to light condensing processing may be used. Furthermore, it is also possible to use an optical waveguide 60 extending in a direction orthogonal to the stacking direction of the unit cells. In this case, the light guide plate as the optical waveguide 60 can cover all of the light emitting surfaces of the plurality of light emitting portions 20, and is tapered toward the light output portion so that the light is output from the tapered light output portion. An optical signal can be received by the light receiver 80 .
 光導波路60は、光ファイバとしてもよく、例えば、複数の心線を束ねたテープ型ファイバを用いてもよい。また、受光部80が外装体70の内部に配置されている場合には、発光部20の発光方向と外装体70の内面との間に空間を設け、受光部80との間に空間光学系を構成してもよい。このとき、発光部20からの光信号の結合効率を高めるために、外装体70の内部に反射板などの追加部品を用いてもよく、外装体70の内面を反射面として加工してもよい。 The optical waveguide 60 may be an optical fiber. For example, a tape-type fiber in which a plurality of core wires are bundled may be used. Further, when the light receiving section 80 is arranged inside the exterior body 70, a space is provided between the light emitting direction of the light emitting section 20 and the inner surface of the exterior body 70, and a spatial optical system is provided between the light receiving section 80 and the light receiving section 80. may be configured. At this time, in order to increase the coupling efficiency of the optical signal from the light emitting unit 20, an additional component such as a reflector may be used inside the exterior body 70, or the inner surface of the exterior body 70 may be processed as a reflective surface. .
 1つの光導波路60に隣接または近接して配置された20個以上の単電池ユニット30の各々に備えられた発光部20からの発光は、光学的に光導波路60に結合され、光出力部から出射される。本実施形態において、光導波路60の一部は、外装体70から引き出されて、各々の発光部20から入射し伝搬した光信号が出射する光出力部となっている。光出力部から出射した光信号は、受光部80により受信される。 Light emitted from the light emitting units 20 provided in each of the 20 or more unit cell units 30 arranged adjacent to or close to one optical waveguide 60 is optically coupled to the optical waveguide 60 and emitted from the optical output unit. emitted. In the present embodiment, a part of the optical waveguide 60 is pulled out from the exterior body 70 and serves as an optical output section from which optical signals that have entered and propagated from the respective light emitting sections 20 are emitted. An optical signal emitted from the optical output section is received by the light receiving section 80 .
 外装体の外に出た光導波路の一端から出射された光信号は、受光部80により受信される。受光部80は受光素子81を備えており、受光素子81によって光信号を電気信号に逆変換することにより、組電池50に含まれる単電池ユニット30内の状態を示す電気信号を得ることができる。受光素子81としてはフォトダイオード、フォトトランジスタ等を使用することができ、フォトダイオードが好ましい。発光素子であるLED素子を受光素子として用いて受光部80を構成してもよい。 An optical signal emitted from one end of the optical waveguide that has exited the exterior body is received by the light receiving section 80 . The light-receiving unit 80 includes a light-receiving element 81 , and by inversely converting an optical signal into an electric signal by the light-receiving element 81 , an electric signal indicating the state inside the cell unit 30 included in the assembled battery 50 can be obtained. . A photodiode, a phototransistor, or the like can be used as the light receiving element 81, and a photodiode is preferable. The light-receiving section 80 may be configured using an LED element, which is a light-emitting element, as a light-receiving element.
 なお、光出力部を含む光導波路60の全体が外装体70の内部に収容されている場合には、光出力部から出射した光信号は、外装体70の内部に配置された受光部80により受信される。 When the entire optical waveguide 60 including the light output section is housed inside the exterior body 70 , the optical signal emitted from the light output section is received by the light receiving section 80 arranged inside the exterior body 70 . received.
 組電池と離間して配置される受光部80と光導波路60との間は、電気的に接続されておらず、光信号によって受光部80と光導波路60の間の情報伝達がされる。すなわち、受光部80と組電池50とが電気的に絶縁されていることを意味している。 The light-receiving section 80 and the optical waveguide 60, which are arranged apart from the assembled battery, are not electrically connected, and information is transmitted between the light-receiving section 80 and the optical waveguide 60 by optical signals. That is, it means that the light receiving section 80 and the assembled battery 50 are electrically insulated.
 外装体70は、組電池50と、光導波路60および引出配線57、59の少なくとも一部を収容する。外装体70は、金属缶ケースまたは高分子金属複合フィルムを用いて構成することができる。外装体70は、内部の減圧を保つように封止される。 The outer package 70 accommodates the assembled battery 50 and at least a portion of the optical waveguide 60 and lead wires 57 and 59 . The exterior body 70 can be constructed using a metal can case or a polymer-metal composite film. The exterior body 70 is sealed so as to maintain the internal pressure reduction.
 発光部20の制御素子23a、23bは、対応する単電池10の特性を測定し、測定された特性を表す特性信号を生成する測定回路として機能するように構成されている。例えば、電圧測定端子24,25に入力される電圧に対応するバイナリー信号を特性信号として生成する。特性信号は、電圧範囲と対応する信号パターンを定義した、ルックアップテーブルを使って、電圧測定端子に入力された電圧をバイナリー信号に変換して生成することができる。また、電圧測定端子に入力された電圧を、アナログ/デジタル変換により8ビット(または16ビット)バイナリー信号に変換して生成してもよい。 The control elements 23a and 23b of the light emitting section 20 are configured to function as a measurement circuit that measures the characteristics of the corresponding single cell 10 and generates a characteristic signal representing the measured characteristics. For example, a binary signal corresponding to the voltages input to the voltage measurement terminals 24 and 25 is generated as the characteristic signal. The characteristic signal can be generated by converting the voltage input to the voltage measurement terminal into a binary signal using a lookup table that defines voltage ranges and corresponding signal patterns. Also, the voltage input to the voltage measurement terminal may be converted into an 8-bit (or 16-bit) binary signal by analog/digital conversion and generated.
 同様に、制御素子23a、23bの測定回路は、上述した測定端子に接続された温度センサの出力をバイナリー信号に変換したり、ひずみゲージ、圧電素子等の出力をバイナリー信号に変換することができる。 Similarly, the measurement circuits of the control elements 23a and 23b can convert the output of the temperature sensor connected to the measurement terminal described above into a binary signal, or convert the output of a strain gauge, piezoelectric element, etc. into a binary signal. .
 制御素子23a、23bは、所定の期間毎に特性信号を符号化した制御信号を出力する制御回路として機能するように構成されている。所定のパターンに符号化された制御信号は、発光部20に供給され、制御信号に応じた光信号が、光導波路60に出力される。また、制御素子23a、23bは、特性信号と共に対応する単電池ユニット30に、固有の識別子を符号化して制御信号に付加して出力する。対応する単電池ユニット30の特性信号と共に識別子が符号化された制御信号に基づいて光信号が出力されるので、受信側において、いずれの単電池の状態情報であるかを識別することができる。 The control elements 23a and 23b are configured to function as a control circuit that outputs a control signal obtained by encoding the characteristic signal every predetermined period. A control signal encoded into a predetermined pattern is supplied to the light emitting section 20 , and an optical signal corresponding to the control signal is output to the optical waveguide 60 . In addition, the control elements 23a and 23b encode a unique identifier to the corresponding cell unit 30 together with the characteristic signal, add it to the control signal, and output it. Since the optical signal is output based on the control signal in which the identifier is encoded together with the characteristic signal of the corresponding cell unit 30, it is possible to identify which cell the state information is on the receiving side.
  [電池システム]
 図4に、リチウムイオン電池モジュールを含む電池システムを示す。据置き型の高電圧大容量の電池システムを示している。複数のリチウムイオン電池モジュール1a-1nが直列に接続され、電池パック200を構成している。例えば、単電池30を48個積層した組電池50を含むリチウムイオン電池モジュールを、40段直列接続して6600Vを出力する電池パック200とする。複数の電池パック200a-200nを並列接続することにより、商用電源に相当する出力が可能な電池システムを構成する。単電池の積層数、リチウムイオン電池モジュールの接続数、電池パックの接続数を、それぞれ任意に設定することにより、様々な電池システムを構成することができる。
[Battery system]
FIG. 4 shows a battery system including a lithium ion battery module. A stationary high-voltage high-capacity battery system is shown. A plurality of lithium ion battery modules 1a-1n are connected in series to form a battery pack 200. FIG. For example, a battery pack 200 that outputs 6600 V is formed by serially connecting 40 lithium-ion battery modules each including an assembled battery 50 in which 48 cells 30 are stacked. By connecting a plurality of battery packs 200a to 200n in parallel, a battery system capable of outputting power equivalent to commercial power is configured. Various battery systems can be configured by arbitrarily setting the number of stacked cells, the number of connected lithium-ion battery modules, and the number of connected battery packs.
 リチウムイオン電池モジュール1には、光導波路60を介して、受光部80と信号処理装置100とを含む電池モジュール管理装置201に結合されている。各々の信号処理装置100は、電池パック管理装置202に接続され、複数の電池パック管理装置202a-202nが、電池システム管理装置203に接続されている。 The lithium ion battery module 1 is coupled via an optical waveguide 60 to a battery module management device 201 including a light receiving section 80 and a signal processing device 100 . Each signal processing device 100 is connected to a battery pack management device 202 , and a plurality of battery pack management devices 202 a - 202 n are connected to a battery system management device 203 .
 電池モジュール管理装置201は、受光部80と信号処理装置100とから構成されている。リチウムイオン電池1モジュールには、引出配線57と引出配線59とに接続された、組電池の入出力電圧を測定するための電圧計、引出配線57に接続された、組電池の入出力電流を測定するための電流計、および組電池50の周囲温度、外装体70の内面または外面などに設置された1または複数の温度センサを備えている。 The battery module management device 201 is composed of the light receiving unit 80 and the signal processing device 100 . The lithium-ion battery 1 module includes a voltmeter for measuring the input/output voltage of the assembled battery connected to the lead wiring 57 and the lead wiring 59, and the input/output current of the assembled battery connected to the lead wiring 57. It has an ammeter for measurement, and one or more temperature sensors installed on the ambient temperature of the assembled battery 50, the inner surface or the outer surface of the exterior body 70, or the like.
 受光部80は、光導波路60と光学的に接続された受光素子を含み、複数の発光部20と受光部80との間の通信方式は、任意の方式を適用することができる。複数の発光部20が光導波路60を共通の光路として使用するので、受光部80において、どの単電池10の発光部20から発光された信号かを識別している。 The light-receiving unit 80 includes a light-receiving element optically connected to the optical waveguide 60, and any communication method can be applied between the plurality of light-emitting units 20 and the light-receiving unit 80. Since a plurality of light-emitting portions 20 use the optical waveguide 60 as a common optical path, the light-receiving portion 80 identifies the signal emitted from the light-emitting portion 20 of which unit cell 10 .
 信号処理装置100は、受光部80で受信したリチウムイオン電池モジュール1の単電池ごとの特性信号、電圧計、電流計および温度センサからのデータを取得し、取得したデータから各々の単電池の状態を決定し、各々の単電池の状態を推定する。 The signal processing device 100 acquires the characteristic signal for each unit cell of the lithium ion battery module 1 received by the light receiving unit 80, the data from the voltmeter, the ammeter, and the temperature sensor, and obtains the state of each unit cell from the acquired data. to estimate the state of each single cell.
 図5に、リチウムイオン電池モジュールと電池モジュール管理装置の構造を示す。リチウムイオン電池モジュール1の光導波路60および引出配線57,59が引き出された外装体70の側面に、モジュール管理装置基板211が取り付けられている。モジュール管理装置基板211には、電池モジュール管理装置201を構成する受光部80と信号処理装置100とが搭載され、リチウムイオン電池モジュール1と共に筐体212に格納されている。図5は、モジュール管理装置基板211の格納状態がわかるように、便宜的に、各部材の組み立て前の位置関係を表している。  Fig. 5 shows the structure of the lithium-ion battery module and the battery module management device. A module management device board 211 is attached to the side surface of the exterior body 70 from which the optical waveguide 60 and the lead wires 57 and 59 of the lithium ion battery module 1 are drawn. The light receiving unit 80 and the signal processing device 100 that constitute the battery module management device 201 are mounted on the module management device board 211 and housed in the housing 212 together with the lithium ion battery module 1 . For convenience, FIG. 5 shows the positional relationship of each member before assembly so that the stored state of the module management device board 211 can be understood.
 モジュール管理装置基板211には、引出配線57(正極)および引出配線59(負極)と、リチウムイオン電池モジュール1同士を接続するための接続金具とを、それぞれ電気的に接続するための接続端子213(正極)および接続端子214(負極)が取り付けられている。また、信号処理装置100の出力端子と、電池モジュール管理装置201と電池パック管理装置202との間を接続する通信線とを、電気的に接続するための接続端子215が取り付けられている。接続端子213,214,215は、図の簡略化のために直方体で表しているが、用途に応じたコネクタ、プラグ等を適用することができる。 The module management device board 211 has connection terminals 213 for electrically connecting the lead wiring 57 (positive electrode), the lead wiring 59 (negative electrode), and the connection fittings for connecting the lithium ion battery modules 1 to each other. (positive electrode) and a connection terminal 214 (negative electrode) are attached. A connection terminal 215 for electrically connecting an output terminal of the signal processing device 100 and a communication line connecting between the battery module management device 201 and the battery pack management device 202 is attached. The connection terminals 213, 214, and 215 are represented by rectangular parallelepipeds for the sake of simplification of the drawing, but connectors, plugs, or the like can be applied according to the application.
 モジュール管理装置基板211上の光導波路60の端面と対向する面に受光部80が搭載されているが、基板の反対の面に受光部80を搭載し、光導波路60を延長して、または基板を貫通させて受光部80に結合させてもよい。信号処理装置100も同様に、接続端子215と同一の面に搭載するようにしてもよい。 The light receiving section 80 is mounted on the surface opposite to the end surface of the optical waveguide 60 on the module management device board 211, and the light receiving section 80 is mounted on the opposite side of the board, the optical waveguide 60 is extended, or the board may be passed through and coupled to the light receiving portion 80 . Similarly, the signal processing device 100 may be mounted on the same surface as the connection terminals 215 .
 電池パック管理装置202は、プロセッサとメモリ等が集積された汎用の集積回路、またはFPGA,ASIC等が集積された専用の集積回路などを含むオンボードコンピュータなどにより構成することができる。電池パック管理装置202は、電池モジュール管理装置201の通信回路を介して、リチウムイオン電池モジュール1の状態などの情報を取得する。さらに、電池パック管理装置202は、電池パックの出力電圧、充放電時の電流、電池パックの温度分布などの計測を行う。 The battery pack management device 202 can be configured by an on-board computer including a general-purpose integrated circuit in which a processor, memory, etc. are integrated, or a dedicated integrated circuit in which FPGA, ASIC, etc. are integrated. The battery pack management device 202 acquires information such as the state of the lithium ion battery module 1 via the communication circuit of the battery module management device 201 . Furthermore, the battery pack management device 202 measures the output voltage of the battery pack, the current during charging and discharging, the temperature distribution of the battery pack, and the like.
 電池パック管理装置202は、取得した情報や計測した結果から電池パックの状態を解析して、電池パックの監視制御を行う。例えば、信号処理装置100からの情報により異常の発生したリチウムイオン電池モジュールを検知して切り離したり、電池パックの出力を遮断して、電池システムから切り離すことができる。また、上位の管理装置である電池システム管理装置203に、計測した結果や解析した結果を送信することができる。 The battery pack management device 202 analyzes the state of the battery pack based on the obtained information and measurement results, and monitors and controls the battery pack. For example, information from the signal processing device 100 can be used to detect and disconnect a lithium-ion battery module in which an abnormality has occurred, or to cut off the output of a battery pack and disconnect it from the battery system. In addition, measurement results and analysis results can be transmitted to the battery system management device 203, which is a higher management device.
 電池システム管理装置203は、いわゆるPCS(Power Conditioning Subsystem)に相当する機能を有し、直流/交流変換、充放電の制御、系統連系機能などを有している。電池システム管理装置203は、複数の電池パック管理装置202と通信回線で接続され、取得した情報から電池パックの状態を解析したり、電池システムの運転状況に応じて、電池パック管理装置202又は電池モジュール管理装置201へ指令を送出する。 The battery system management device 203 has a function equivalent to a so-called PCS (Power Conditioning Subsystem), and has functions such as DC/AC conversion, charge/discharge control, and grid connection functions. The battery system management device 203 is connected to a plurality of battery pack management devices 202 via communication lines, analyzes the state of the battery packs from the acquired information, and determines whether the battery pack management device 202 or the battery A command is sent to the module management device 201 .
  [電池パックのラック]
 図6に、電池パックのラックの構造を示す。図6Aはラック300の前面から見た内部構造の概略図である。電池パック200は、1つの筐体に収められ、上から順に、複数の冷却ファンが組み込まれたファンスロット301、電池パック管理装置202を収容する管理スロット302、リチウムイオン電池モジュール1を収容する電池スロット3031-303nを有している。上述したように、扁平な形状の積層電池である組電池50を含むリチウムイオン電池モジュール1は、ラック300の設置面(底面)と略平行の状態で設置される。すなわち、扁平な形状の積層電池を平置きで、ラック300の内部に、単電池、組電池を密に縦積みすることができ、空間効率の良い電池構造とすることができる。また、ラック300には、リチウムイオン電池モジュール1の放熱のために、複数の整流スロット3041-304mを有している。
[Battery pack rack]
FIG. 6 shows the structure of the battery pack rack. FIG. 6A is a schematic diagram of the internal structure of rack 300 viewed from the front. The battery pack 200 is housed in one housing, and from top to bottom is a fan slot 301 incorporating a plurality of cooling fans, a management slot 302 housing a battery pack management device 202, and a battery housing a lithium ion battery module 1. It has slots 303 1 -303 n . As described above, the lithium ion battery module 1 including the assembled battery 50 which is a flat-shaped laminated battery is installed in a state substantially parallel to the installation surface (bottom surface) of the rack 300 . That is, flat-shaped stacked batteries can be laid flat, and unit cells and assembled batteries can be densely vertically stacked inside the rack 300, and a battery structure with good space efficiency can be obtained. The rack 300 also has a plurality of rectifying slots 304 1 -304 m for heat dissipation of the lithium ion battery modules 1 .
 図6Bはラック300の側面から見た内部構造の概略図である。ラックの前面は、電池パック管理装置202と、リチウムイオン電池モジュール1に結合された電池モジュール管理装置201の通信部とを接続するケーブルダクト305となる空間が設けられている。ラックの後面は、ラックの前面・下方から吸気した空気が、リチウムイオン電池モジュール1に接し、後面・上方から冷却ファンに吸い上げられるようにした排気ダクト306となる空間が設けられている。 FIG. 6B is a schematic diagram of the internal structure of the rack 300 viewed from the side. A space is provided on the front surface of the rack as a cable duct 305 for connecting the battery pack management device 202 and the communication unit of the battery module management device 201 coupled to the lithium ion battery module 1 . The rear surface of the rack is provided with a space that serves as an exhaust duct 306 so that the air sucked from the front/lower side of the rack comes into contact with the lithium ion battery module 1 and is sucked up by the cooling fan from the rear/upper side.
 複数のリチウムイオン電池モジュール1は、図3に示したように、正極となる引出配線57と負極となる引出配線59が、外装体70から引き出されている。リチウムイオン電池モジュールの正極を上段のリチウムイオン電池モジュールの負極と接続する接続端子と、負極を下段のリチウムイオン電池モジュールの正極と接続する接続端子とにより、複数のリチウムイオン電池モジュール1を直列に接続する。 In the plurality of lithium ion battery modules 1, as shown in FIG. A plurality of lithium ion battery modules 1 are connected in series by a connecting terminal connecting the positive electrode of the lithium ion battery module to the negative electrode of the upper lithium ion battery module and a connecting terminal connecting the negative electrode to the positive electrode of the lower lithium ion battery module. Connecting.
 例えば、代表的な巻回型単電池として18650型電池を用いて電池ジュールを構成する場合、充填密度と製造プロセスとを考慮すると、円筒形の単電池を縦にして、横方向並べることになり、巻回型単電池の間に空間が生じる。本実施形態によれば、このような無駄な空間がなく、効率よく単電池を集積することができる。 For example, when forming a battery module using 18650-type batteries as typical wound-type cells, considering the packing density and the manufacturing process, the cylindrical cells are arranged vertically and horizontally. , a space is generated between the wound cells. According to the present embodiment, cells can be efficiently integrated without such wasted space.
 図7に、電池スロットにおけるリチウムイオン電池モジュールの接続形態を示す。ラック300には、ラックの設置面(底面)と略平行に設置され、互いに略平行な複数の棚板311を備えている。棚板311には、筐体202および筐体212にそれぞれ収容された管理スロット302および電池スロット3031-303nが配置されている。電池スロット3031-303nの構成は、リチウムイオン電池モジュール1を収容することができれば、どのような構造でもよく、積層電池である組電池50の積層方向両端の平面と、ラックの底面とが略平行の状態で、組電池50を複数設置できればよい。また、積層電池である組電池50の積層方向端部の平面と、棚板311の面とが略平行であればよい。 FIG. 7 shows a connection form of the lithium ion battery module in the battery slot. The rack 300 includes a plurality of shelf boards 311 that are installed substantially parallel to the installation surface (bottom surface) of the rack and that are substantially parallel to each other. A management slot 302 and battery slots 303 1 to 303 n accommodated in the housing 202 and the housing 212 are arranged on the shelf board 311 . The configuration of the battery slots 303 1 to 303 n may be any structure as long as the lithium ion battery module 1 can be accommodated. A plurality of assembled batteries 50 can be installed in a substantially parallel state. Moreover, it is sufficient that the plane of the end portion in the stacking direction of the assembled battery 50, which is a stacked battery, and the surface of the shelf plate 311 are substantially parallel.
 上述した従来の巻回型単電池を複数接続する場合と比較する。ケースに収容され独立した1つの巻回型単電池の各軸への投影面積のうち最も大きい面積を、巻回型単電池の底面積と定義すると、単電池10の底面積は、巻回型単電池の底面積より大きい。単電池10を積層した組電池50を含むリチウムイオン電池モジュール1を棚板311に設置した場合に、単電池10の底面積は、棚板の面積の30%以上を占めている。さらに、単電池10の底面積は、巻回型単電池の底面積より大きく、棚板の面積の50%以上を占める構成とすることもできる。 Compare with the case of connecting multiple conventional wound-type single cells described above. Assuming that the largest area among the projection areas of one wound-type cell housed in a case and independent on each axis is defined as the bottom area of the wound-type unit cell, the bottom area of the unit cell 10 is defined as the wound-type unit cell. Larger than the base area of the cell. When the lithium ion battery module 1 including the assembled battery 50 in which the single cells 10 are stacked is installed on the shelf board 311, the bottom area of the single cells 10 occupies 30% or more of the shelf board area. Furthermore, the bottom area of the cell 10 may be larger than the bottom area of the wound type cell, and may occupy 50% or more of the area of the shelf board.
 電池スロット3031の筐体212に取り付けられた接続端子214(負極)と、下段の電池スロット3032の接続端子213(正極)とが接続金具312で接続される。電池スロット3032の接続端子214(負極)は、さらに下段の電池スロット3033の接続端子213(正極)と、接続金具312で接続される。このようにして、電池スロットごとに、リチウムイオン電池モジュール1を収容する筐体212を、天地逆さまに戴置していき、上段の負極と下段の正極、下段の負極とさらに下段の正極と順次接続していくことにより、複数のリチウムイオン電池モジュール1を直列に接続することができる。最上部の電池スロット3031の正極と、最下部の電池スロット303nの負極とから電力を取り出すことにより、例えば、40段直列接続、出力6600Vの電池パック200を構成することができる。 A connection terminal 214 (negative electrode) attached to the housing 212 of the battery slot 303 1 and a connection terminal 213 (positive electrode) of the lower battery slot 303 2 are connected by a connection fitting 312 . The connection terminal 214 (negative electrode) of the battery slot 303 2 is further connected to the connection terminal 213 (positive electrode) of the lower battery slot 303 3 with a connection fitting 312 . In this manner, the housings 212 for housing the lithium-ion battery modules 1 are placed upside down for each battery slot, with the upper negative electrode and the lower positive electrode, the lower negative electrode and the lower positive electrode in this order. By connecting, a plurality of lithium ion battery modules 1 can be connected in series. By extracting power from the positive electrode of the uppermost battery slot 303 1 and the negative electrode of the lowermost battery slot 303 n , for example, a 40-stage series connection battery pack 200 with an output of 6600 V can be configured.
 リチウムイオン電池モジュール1の筐体212に取り付けられた接続端子215は、通信線314に接続され、電池モジュール管理装置201の各々は、管理スロット302の電池パック管理装置202と通信を行うことができる。 The connection terminal 215 attached to the housing 212 of the lithium ion battery module 1 is connected to the communication line 314, and each battery module management device 201 can communicate with the battery pack management device 202 in the management slot 302. .
 接続金具312,313は、図の簡略化のために方形で表しているが、板状の金属、線材など、接続端子213,214同士を接続することができれば、形状、材質は問わない。通信線314も、図の簡略化のために方形で表しているが、バス配線、リング配線など通信方式に応じて適宜選択すればよい。 The connection fittings 312 and 313 are shown as squares for the sake of simplification of the drawing, but any shape and material can be used as long as the connection terminals 213 and 214 can be connected to each other, such as plate-like metal or wire. The communication line 314 is also represented by a square for the sake of simplification of the drawing, but it may be appropriately selected according to the communication method such as bus wiring or ring wiring.
 本発明の電池構造は、例えば電気自動車およびハイブリッド電気自動車等の電源および携帯型電子機器の電源に利用できる。 The battery structure of the present invention can be used, for example, as a power source for electric vehicles, hybrid electric vehicles, etc. and as a power source for portable electronic devices.
10 単電池
12 正極
13 負極
14 セパレータ
15 正極活物質層
16 負極活物質層
17 正極集電体
18 枠部材
19 負極集電体
20 発光部
21 配線基板
22 発光素子
23a、23b 制御素子
24、25 測定端子
30 単電池ユニット
50 組電池
57、59 引出配線
60 光導波路
70 外装体
80 受光部
100 信号処理装置
101 マイコン回路
102 メモリ回路
103 通信回路
200 電池パック
201 電池モジュール管理装置
202 電池パック管理装置
203 電池システム管理装置
211 モジュール管理装置基板
212 筐体
213,214,215 接続端子
301 ファンスロット
302 管理スロット
303 電池スロット
304 整流スロット
305 ケーブルダクト
306 排気ダクト
311 棚板
312,313 接続金具
314 通信線
10 Cell 12 Positive Electrode 13 Negative Electrode 14 Separator 15 Positive Electrode Active Material Layer 16 Negative Electrode Active Material Layer 17 Positive Electrode Current Collector 18 Frame Member 19 Negative Electrode Current Collector 20 Light Emitting Part 21 Wiring Board 22 Light Emitting Elements 23a, 23b Control Elements 24, 25 Measurement Terminal 30 Cell unit 50 Battery pack 57, 59 Lead wire 60 Optical waveguide 70 Exterior body 80 Light receiving part 100 Signal processing device 101 Microcomputer circuit 102 Memory circuit 103 Communication circuit 200 Battery pack 201 Battery module management device 202 Battery pack management device 203 Battery System management device 211 Module management device board 212 Housings 213, 214, 215 Connection terminal 301 Fan slot 302 Management slot 303 Battery slot 304 Rectification slot 305 Cable duct 306 Exhaust duct 311 Shelf boards 312, 313 Connection fitting 314 Communication line

Claims (10)

  1.  正極樹脂集電体、正極活物質層、セパレータ、負極活物質層および負極樹脂集電体を有し、前記正極活物質層、前記セパレータおよび前記負極活物質層を封止する枠材を含む、平面状の単電池が複数積層された積層電池と、
     前記積層電池を収容するラックと、を備え、
     前記単電池は、前記単電池の厚さと、前記単電池の長辺の長さとの比をアスペクト比としたときに、1:100~1:1000のアスペクト比からなり、
     前記積層電池は、該積層電池の積層方向両端の平面と、前記単電池の積層方向両端の平面とが略平行、または、そのなす角度が-5°~5°であり、
     前記積層電池は、該積層電池の積層方向両端の平面と、前記ラックの設置面とが略平行の状態で設置されている、
     電池構造。
    A positive electrode resin current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode resin current collector, and a frame material for sealing the positive electrode active material layer, the separator, and the negative electrode active material layer, a laminated battery in which a plurality of planar cells are laminated;
    and a rack that houses the stacked battery,
    The single cell has an aspect ratio of 1:100 to 1:1000, where the aspect ratio is the ratio of the thickness of the single cell to the length of the long side of the single cell,
    In the laminated battery, the planes at both ends of the laminated battery in the stacking direction and the planes at both ends of the unit cell in the stacking direction are substantially parallel to each other, or form an angle of -5° to 5°,
    The stacked battery is installed in a state in which the planes of both ends of the stacked battery in the stacking direction and the installation surface of the rack are substantially parallel.
    battery structure.
  2.  前記積層電池は、扁平なシート状の前記単電池を積み重ねた扁平な形状を呈し、
     前記ラックは、互いに略平行な棚板を複数備え、
     前記棚板に、前記積層電池がそれぞれ配置され、
     隣り合う前記積層電池の積層方向端部の平面と、前記棚板の面とが略平行である、
     請求項1に記載の電池構造。
    The laminated battery has a flat shape in which the flat sheet-like unit cells are stacked,
    The rack includes a plurality of shelf boards substantially parallel to each other,
    The stacked batteries are arranged on the shelf plates,
    The planes of the ends of the adjacent stacked batteries in the stacking direction are substantially parallel to the surface of the shelf plate,
    The battery structure according to claim 1.
  3.  ケースに収容され独立した1つの巻回型単電池の各軸への投影面積のうち最も大きい面積を、巻回型単電池の底面積と定義したときに、
     前記単電池の底面積は、前記巻回型単電池の底面積より大きく、且つ、前記棚板の面積の30%以上を占めており、
     前記棚板には、前記単電池を含む前記積層電池が設置されている、
     請求項1または2に記載の電池構造。
    When the largest area among the projected areas of each axis of the single wound-type cell housed in the case and independent is defined as the bottom area of the wound-type cell,
    The base area of the unit cell is larger than the bottom area of the wound type unit cell and occupies 30% or more of the area of the shelf plate,
    The stacked battery including the single cell is installed on the shelf board,
    The battery structure according to claim 1 or 2.
  4.  前記単電池の底面積は、前記巻回型単電池の底面積より大きく、且つ、前記棚板の面積の50%以上を占めており、
     前記棚板には、前記単電池を含む前記積層電池が設置されている、
     請求項3に記載の電池構造。
    The base area of the unit cell is larger than the bottom area of the wound type unit cell and occupies 50% or more of the area of the shelf plate,
    The stacked battery including the single cell is installed on the shelf board,
    The battery structure according to claim 3.
  5.  前記単電池を40個積層したときの積層電池の厚みは、10mm以上60mm以下である、
     請求項1に記載の電池構造。
    The thickness of the laminated battery when 40 cells are laminated is 10 mm or more and 60 mm or less.
    The battery structure according to claim 1.
  6.  複数のリチウムイオン電池モジュールが積層された電池パックにおいて、
     第1のリチウムイオン電池モジュールの正極集電体に接続された引出配線と、隣接する第2のリチウムイオン電池モジュールの負極集電体に接続された引出配線とを接続する第1の接続端子と、
     前記第1のリチウムイオン電池モジュールの負極集電体に接続された引出配線と、隣接する第3のリチウムイオン電池モジュールの正極集電体に接続された引出配線とを接続する第2の接続端子とを備え、
     前記複数のリチウムイオン電池モジュールの直列接続を含む、
     電池パック。
    In a battery pack in which multiple lithium-ion battery modules are stacked,
    a first connection terminal that connects the lead wire connected to the positive electrode current collector of the first lithium ion battery module and the lead wire connected to the negative electrode current collector of the adjacent second lithium ion battery module; ,
    A second connection terminal for connecting the lead wire connected to the negative electrode current collector of the first lithium ion battery module and the lead wire connected to the positive electrode current collector of the adjacent third lithium ion battery module. and
    comprising a series connection of the plurality of lithium ion battery modules;
    battery pack.
  7.  前記リチウムイオン電池モジュールの各々は、
     発光部からの光信号を送出する光導波路の端面を含み、
     前記第1の接続端子と前記第2の接続端子との間の前記端面と対向する位置に設けられた受光部、および前記受光部からの信号を処理するモジュール管理装置をさらに含む、
     請求項6に記載の電池パック。
    Each of the lithium ion battery modules includes:
    Including an end face of an optical waveguide that transmits an optical signal from the light emitting part,
    further comprising a light receiving unit provided at a position facing the end surface between the first connection terminal and the second connection terminal, and a module management device that processes a signal from the light receiving unit;
    The battery pack according to claim 6.
  8.  前記モジュール管理装置の各々と接続された電池パック管理装置をさらに備えた、
     請求項7に記載の電池パック。
    further comprising a battery pack management device connected to each of the module management devices;
    The battery pack according to claim 7.
  9.  請求項7に記載の電池パックに積層されたリチウムイオン電池モジュールの各々を収容する棚を備えた、
     電池パック用ラック。
    A shelf for accommodating each of the lithium-ion battery modules stacked in the battery pack according to claim 7,
    Battery pack rack.
  10.  前記第1のリチウムイオン電池モジュールの正極集電体に接続された引出配線と接続され、隣接する前記第2のリチウムイオン電池モジュールの負極集電体に接続された引出配線と接続される第1の接続金具と、
     前記第1のリチウムイオン電池モジュールの負極集電体に接続された引出配線と接続され、隣接する前記第3のリチウムイオン電池モジュールの正極集電体に接続された引出配線と接続される第2の接続金具とをさらに備えた、
     請求項9に記載の電池パック用ラック。
    A first lead wire connected to the positive electrode current collector of the first lithium ion battery module and connected to the lead wire connected to the negative electrode current collector of the adjacent second lithium ion battery module. connection fittings of
    a second lead wire connected to the negative electrode current collector of the first lithium ion battery module and connected to the lead wire connected to the positive electrode current collector of the adjacent third lithium ion battery module; further comprising a connection fitting of
    The battery pack rack according to claim 9.
PCT/JP2022/047795 2021-12-24 2022-12-24 Battery structure WO2023120733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-210103 2021-12-24
JP2021210103A JP2023094668A (en) 2021-12-24 2021-12-24 battery structure

Publications (1)

Publication Number Publication Date
WO2023120733A1 true WO2023120733A1 (en) 2023-06-29

Family

ID=86902914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047795 WO2023120733A1 (en) 2021-12-24 2022-12-24 Battery structure

Country Status (2)

Country Link
JP (1) JP2023094668A (en)
WO (1) WO2023120733A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092607A (en) * 2008-10-03 2010-04-22 Nissan Motor Co Ltd Current collector for bipolar secondary battery
JP2013191389A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Lamination structure cell
JP2019021384A (en) * 2017-07-11 2019-02-07 日産自動車株式会社 battery
JP2021082457A (en) * 2019-11-18 2021-05-27 三洋化成工業株式会社 Lithium ion battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092607A (en) * 2008-10-03 2010-04-22 Nissan Motor Co Ltd Current collector for bipolar secondary battery
JP2013191389A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Lamination structure cell
JP2019021384A (en) * 2017-07-11 2019-02-07 日産自動車株式会社 battery
JP2021082457A (en) * 2019-11-18 2021-05-27 三洋化成工業株式会社 Lithium ion battery pack

Also Published As

Publication number Publication date
JP2023094668A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
TWI469414B (en) Battery
US11355794B2 (en) Secondary battery module
JP7475825B2 (en) Lithium-ion battery module and battery pack
TW202040153A (en) Lithium ion battery and method for assessing deterioration of lithium ion battery
EP4027428A1 (en) Lithium-ion battery module
JP2021082391A (en) Lithium-ion battery module and battery pack
CN114207930A (en) Lithium ion battery module and battery pack
WO2023120733A1 (en) Battery structure
WO2023120732A1 (en) Battery module
JP7161504B2 (en) cell unit
WO2022220297A1 (en) Battery module management device and battery module management method
JP2022164044A (en) Battery module management device and management method thereof
WO2014069842A1 (en) Battery module including led device on pcb
JP2022164043A (en) Battery module management device and management method thereof
JP7102051B2 (en) Lithium ion battery module
WO2023127964A1 (en) Battery module and method for manufacturing same
WO2022249641A1 (en) Battery
WO2023136353A1 (en) Battery inspection method
JP7275247B1 (en) Secondary battery module
WO2022244759A1 (en) Inspection method for layered sheet, production method for layered sheet, and production method for battery pack
JP2022030073A (en) Lithium ion battery module and control method therefor
JP2022176621A (en) Method for inspecting battery sheet, method for manufacturing battery sheet, and method for manufacturing battery pack
JP2022176623A (en) Method for inspecting laminated sheet, method for manufacturing laminated sheet, and method for manufacturing battery pack
JP2022176624A (en) Method for inspecting laminated sheet, method for manufacturing laminated sheet, and method for manufacturing battery pack
WO2017105114A1 (en) Electrode lead for pouch-type secondary battery and pouch-type secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911434

Country of ref document: EP

Kind code of ref document: A1