WO2023120588A1 - Automobile engine - Google Patents

Automobile engine Download PDF

Info

Publication number
WO2023120588A1
WO2023120588A1 PCT/JP2022/047160 JP2022047160W WO2023120588A1 WO 2023120588 A1 WO2023120588 A1 WO 2023120588A1 JP 2022047160 W JP2022047160 W JP 2022047160W WO 2023120588 A1 WO2023120588 A1 WO 2023120588A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mist
rpm
combustion chamber
engine
Prior art date
Application number
PCT/JP2022/047160
Other languages
French (fr)
Japanese (ja)
Inventor
繁 種田
正己 奥山
Original Assignee
株式会社Hse研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Hse研究所 filed Critical 株式会社Hse研究所
Publication of WO2023120588A1 publication Critical patent/WO2023120588A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an automobile engine mounted on an automobile.
  • a hydrogen engine a first water injection means for injecting water into a combustion chamber of a corresponding cylinder provided for each cylinder of the hydrogen engine or into an intake port communicating with the combustion chamber, and an intake manifold to each intake port of the hydrogen engine.
  • a second water injection means for injecting water into an intake passage connected via an intake passage or an intake passage disposed in an intake manifold or into an intake manifold; detection means for detecting the occurrence of fire; and, when the detection means detects the occurrence of backfire in the intake path of a certain cylinder, based on one or more physical quantities that change due to the occurrence of backfire, provided for the cylinder.
  • the amount of water to be injected by the first water injection means and the amount of water to be injected by the second water injection means are determined, and the first water injection means provided for each cylinder is arranged to inject the determined amount of water.
  • a hydrogen engine system including a water injection means and a control means for controlling the second water injection means is disclosed (see Patent Document 1).
  • the hydrogen engine system disclosed in Patent Document 1 injects water into the combustion chamber of the cylinder or into the intake port communicating with the combustion chamber, and also into the intake passage or the intake manifold arranged in the intake manifold. By injecting water, it is possible to suppress excessive heating of the intake manifold due to backfire.
  • this hydrogen engine system injects water into the combustion chamber of the cylinder, the intake port that communicates with the combustion chamber, the intake passage, the intake passage arranged in the intake manifold, and the intake manifold. No conversion.
  • An object of the present invention is to convert the steam energy of vaporized mist water together with the combustion energy of hydrogen gas into engine power, and to obtain a predetermined engine output from the combustion energy and the steam energy. Another object of the present invention is to provide an automobile engine capable of running an automobile by the combustion energy of hydrogen and the steam energy of water mist. Another object of the present invention is to be able to increase the steam energy as the engine speed (rpm) increases and to increase the engine power (kW) as the engine speed (rpm) increases. To provide an automobile engine.
  • the premise of the present invention for solving the above problems is to have a cylinder with a predetermined volume, a piston that reciprocates in the combustion chamber of the cylinder, and a spark plug that ignites fuel in the combustion chamber of the cylinder, and is mounted on an automobile. It is an automobile engine that uses hydrogen gas as fuel.
  • the automobile engine includes a hydrogen gas nozzle that directly injects hydrogen gas into the combustion chamber of the cylinder, and a mist nozzle that supplies mist-like water to the combustion chamber of the cylinder, and the engine
  • the compression ratio of is in the range of 14:1 to 15:1, and in an automobile engine, hydrogen gas is supplied to the combustion chamber of the cylinder from the hydrogen gas nozzle, and water mist is supplied to the cylinder from the mist nozzle.
  • the hydrogen gas in the combustion chamber is supplied with water and compressed to a predetermined compression ratio by the piston. and convert the combustion energy of the hydrogen gas and the steam energy of the vaporized mist water into motive power.
  • the water supply amount (cc) of mist water supplied to the combustion chamber is increased as the engine speed (rpm) increases.
  • the amount of water mist supplied to the combustion chamber of one cylinder at a speed of 400 rpm or more and less than 1100 rpm of an automobile engine is in the range of 22 to 24 cc, and at a speed of 1100 rpm or more and less than 1500 rpm.
  • the amount of water mist supplied to the combustion chamber of one cylinder is in the range of 29 to 31 cc. and the water supply amount of atomized water supplied to the combustion chamber of one cylinder at the rotational speed of 2000 rpm or more and less than 2600 rpm is in the range of 45 to 47 cc.
  • the amount of water mist supplied to the combustion chamber of one cylinder at a speed of 2600 rpm or more and less than 3500 rpm of an automobile engine is in the range of 53 to 55 cc, and at a speed of 3500 rpm or more and less than 4500 rpm.
  • the amount of water mist supplied to the combustion chamber of one cylinder is in the range of 60 to 62 cc, and the amount of water mist supplied to the combustion chamber of one cylinder at the rotation speed of 4500 rpm or more and less than 6000 rpm is 68 to 70 cc. and the amount of water mist supplied to the combustion chamber of one cylinder at a rotation speed of 6000 rpm or more is in the range of 76 to 78 cc.
  • an automobile engine includes a temperature sensor installed in a cylinder to measure the combustion temperature of the combustion chamber, and in the automobile engine, the combustion temperature of the combustion chamber measured by the temperature sensor is the upper limit temperature. is reached, the amount of water mist supplied to the combustion chamber of one cylinder is increased to keep the combustion temperature of the combustion chamber below the upper limit temperature.
  • the upper limit combustion temperature of the combustion chamber is 400° C.
  • Atomized water is supplied to the combustion chamber of one cylinder with a water supply amount of 1 to 4 cc added to the water supply amount.
  • an automobile engine includes a water mist generating pipe that generates a mist of water, and the water mist generating pipe removes impurities contained in the air flowing therein.
  • An air filter and an electronically controlled throttle installed downstream of the air filter for adjusting the flow rate of air are provided, and a mist nozzle is installed downstream of the electronically controlled throttle in the misty water generating pipe and is installed in the misty water generating pipe. A mist of water is sprayed into the pipe.
  • the mist nozzle has a spray surface that draws a semicircular arc toward the inside of the water mist generating pipe, and a plurality of spray ports for spraying water mist, Perforated on the atomizing surface.
  • the average particle size of the water mist sprayed from the mist nozzle is in the range of 30 to 55 ⁇ m.
  • the average particle size ( ⁇ m) of the water mist that is sprayed into the water mist generating tube is increased.
  • the mist nozzle has an average particle diameter of 30 to 35 ⁇ m in the mist nozzle sprayed from the mist nozzle at a speed of 400 rpm or more and less than 1500 rpm of an automobile engine, and a mist nozzle at a speed of 1500 rpm or more and less than 3500 rpm.
  • the average particle size of the water mist sprayed from the mist nozzle is in the range of 40 to 45 ⁇ m, and the average particle size of the water mist sprayed from the mist nozzle at a rotation speed of 3500 rpm or more is in the range of 50 to 55 ⁇ m.
  • hydrogen gas is supplied from the hydrogen gas nozzle to the combustion chamber of the cylinder, and mist-like water is supplied from the mist nozzle to the combustion chamber of the cylinder, and a predetermined amount of water is supplied by the piston.
  • the hydrogen gas in the combustion chamber compressed to the compression ratio is ignited by a spark plug, and while the hydrogen gas is being burned, the mist-like mist water is vaporized by the combustion heat of the hydrogen gas, and the combustion energy of the hydrogen gas is vaporized. Since the steam energy of the atomized water is converted into power, the steam energy of the vaporized water atom can be converted into the power of the engine together with the combustion energy of the hydrogen gas. Engine output can be obtained, and the vehicle can be driven by the combustion energy of the hydrogen gas and the steam energy of the water mist.
  • An automobile engine which increases the water supply amount (cc) of mist water supplied to the combustion chamber as the engine speed (rpm) increases, is designed to supply mist water to the combustion chamber as the engine speed (rpm) increases.
  • the water feed rate (cc) By increasing the water feed rate (cc), the vapor energy of the vaporized mist water can be increased as the engine speed (rpm) increases, and as the engine speed (rpm) increases, As a result, the engine output (kW) can be increased, and the engine can be smoothly shifted from low-speed rotation to high-speed rotation.
  • the amount of mist water supplied to the combustion chamber of one cylinder at the rotation speed of 400 rpm or more and less than 1100 rpm is in the range of 22 to 24 cc, and the water mist supplied to the combustion chamber of one cylinder at the rotation speed of 1100 rpm or more and less than 1500 rpm.
  • Amount of water in the range of 29 to 31 cc, water supply amount of atomized water to the combustion chamber of one cylinder at the rotation speed of 1500 rpm or more and less than 2000 rpm is in the range of 37 to 39 cc, and the combustion chamber of one cylinder at the rotation speed of 2000 rpm or more to less than 2600 rpm
  • the amount of water mist supplied to the engine is in the range of 45 to 47 cc.
  • the steam energy of the vaporized mist water can be increased as the engine speed (rpm) increases, and the engine output (kW) can be increased as the engine speed (rpm) increases. It is possible to smoothly shift the engine from low speed rotation (400 rpm or more and less than 1100 rpm) to medium speed rotation (2000 rpm or more and less than 2600 rpm).
  • the amount of water mist supplied to the combustion chamber of one cylinder at a rotation speed of 2600 rpm or more and less than 3500 rpm is in the range of 53 to 55 cc.
  • the amount of mist water supplied to the combustion chamber of one cylinder at a rotation speed of 4500 rpm or more and less than 6000 rpm is in the range of 60 to 62 cc, and the water supply amount is in the range of 68 to 70 cc.
  • the amount of water mist supplied to the combustion chamber increases to 52 cc to 77 cc as the engine speed increases from 2600 rpm to 6000 rpm or more.
  • the engine power (kW) increases as the engine speed (rpm) increases.
  • the engine can be smoothly shifted from middle speed rotation (2600 rpm or more and less than 3500 rpm) to high speed rotation (6000 rpm or more).
  • a temperature sensor installed in the cylinder to measure the combustion temperature of the combustion chamber is included, and when the combustion temperature of the combustion chamber measured by the temperature sensor reaches the upper limit temperature, the water supply of atomized water is supplied to the combustion chamber of one cylinder.
  • An automobile engine that increases the amount of water and keeps the combustion temperature in the combustion chamber below the upper limit temperature increases the amount of water mist supplied to the combustion chamber of one cylinder when the upper limit temperature is reached. The increased mist water can cool the combustion chamber, lower the temperature of the combustion chamber below the upper limit temperature, and prevent accidental overheating of the engine.
  • the upper limit combustion temperature of the combustion chamber is 400°C, and when the combustion temperature of the combustion chamber measured by the temperature sensor reaches 400°C, the amount of water supply added 1 to 4cc to the amount of water supply according to the rotation speed is in the form of mist.
  • the amount of water mist supplied to the combustion chamber of one cylinder should be increased by 1 to 4 cc. , the combustion chamber can be cooled by the increased mist water, the temperature of the combustion chamber can be lowered below the upper limit temperature, and inadvertent overheating of the engine can be prevented.
  • misty water generating pipe that generates misty water
  • an air filter that removes impurities contained in the air flowing into the misty water generating pipe
  • an air filter that is installed downstream of the air filter to reduce the flow rate of the air.
  • an electronically controlled throttle for adjusting the mist, and a misting nozzle is installed downstream of the electronically controlled throttle in the water mist generating tube to spray a mist of water into the tube of the water mist generating tube.
  • a mist nozzle has a spray surface forming a semicircular arc toward the inside of a pipe for generating mist, and a plurality of spray holes for spraying mist water are perforated on the spray surface. Since the water mist is sprayed from a plurality of spray ports on the spray surface that draws a semicircular arc, the water mist can be sprayed evenly inside the water mist generating pipe, and all The water mist can be evenly supplied to the combustion chamber of the cylinder, and the steam energy of the water mist vaporized together with the combustion energy of the hydrogen gas can be reliably converted into the power of the engine.
  • the average particle size of the water mist sprayed from the mist nozzle is in the range of 30 to 55 ⁇ m
  • the average particle size is Since the atomized water of particle size is supplied to the combustion chambers of all cylinders, the atomized water can be reliably vaporized in the combustion chambers of those cylinders, and the atomized water is vaporized together with the combustion energy of the hydrogen gas. of steam energy can be used to power the engine.
  • An automobile engine that increases the average particle size ( ⁇ m) of mist water sprayed into the pipe of the mist water generating pipe as the engine speed (rpm) increases is designed to increase the fog as the engine speed (rpm) increases.
  • the steam energy of the vaporized mist water is increased as the engine speed (rpm) increases.
  • the engine output (kW) can be increased, and the engine can be smoothly shifted from low speed rotation to high speed rotation.
  • the average particle size of mist water sprayed from a mist nozzle at a speed of 400 rpm or more and less than 1500 rpm of an automobile engine is in the range of 30 to 35 ⁇ m, and the average particle size of the mist water sprayed from a mist nozzle at a speed of 1500 rpm or more and less than 3500 rpm.
  • An automobile engine with a diameter of 40 to 45 ⁇ m and an average particle diameter of mist water sprayed from a mist nozzle at a rotation speed of 3500 rpm or more is in a range of 50 to 55 ⁇ m.
  • the steam energy of the vaporized atomized water is increased as the engine speed (rpm) increases.
  • the engine output (kW) can be increased as the engine speed (rpm) increases, and the engine can be smoothly shifted from low speed rotation to high speed rotation.
  • 1 is a top view of an automobile equipped with an automobile engine;
  • FIG. 2 is a top view of the automobile 11 on which the automobile engine 10 is mounted
  • FIG. 3 is a rear view of the automobile 11 on which the automobile engine 10 is mounted
  • FIG. 4 is a layout diagram of each device and piping shown as an example
  • FIG. 5 is a configuration diagram of an automobile engine 10 shown as an example
  • FIG. 6 is a diagram showing an example of mist nozzles 38a to 38c
  • FIG. 7 is a diagram showing the relationship between the engine speed of the automobile engine 10 and the amount of water mist supplied.
  • An automobile engine 10 according to the present invention is mounted on an automobile 11 and uses hydrogen gas as its fuel.
  • the type of automobile 11 in which the automobile engine 10 is mounted is not particularly limited.
  • An automobile 11 shown as an example has an automobile engine 10 mounted in a front area 12 (engine room), and a hydrogen gas tank 15 (high-pressure tank) and a water pump unit 16 (see FIG. 4) installed in a rear area 14 (tank room).
  • a water tank 17 is arranged in the intermediate area 13 .
  • the hydrogen gas tank 15 contains gaseous hydrogen at 700 atmospheres. Replenishment of hydrogen gas to the hydrogen gas tank 15 is performed at a hydrogen station. Hydrogen gas is supplied from a hydrogen gas filling port (not shown) of the hydrogen gas tank 15 .
  • the water tank 17 contains tap water (preferably pure water). The water tank 17 is replenished with tap water or pure water from a water filling port (not shown).
  • hydrogen gas is supplied to the automobile engine 10 from the hydrogen gas tank 15 , water mist is generated from pure water supplied from the water tank 17 , and the water mist is supplied (sprayed) to the engine 10 . be.
  • the engine control unit 18 is a physical computer with a central processing unit (CPU or MPU), memory (main memory and cache memory), and mass storage.
  • an idling adjustment valve 19 In the front area 12 (engine room), there are an idling adjustment valve 19, a pressure gauge 20, a fuel supply amount control unit 21, a hydrogen gas nozzle unit 22 installed in the automobile engine 10, and a water mist connected to the automobile engine 10.
  • a generation pipe 23, a water supply amount control unit 24, and a sub electromagnetic valve 25 are installed.
  • a hydrogen gas tank 15 and a low-pressure sub-tank 26 are installed in the rear area 14 (tank room).
  • the hydrogen gas tank 15 is provided with a check valve 27, a pressure reducing valve 28, and a hydrogen gas filling port (not shown).
  • the idling adjustment valve 19 is installed in a pipe 29a (copper pipe) extending between the low-pressure sub-tank 26 in the rear area 14 (tank room) and the fuel supply amount control unit 21.
  • the idling adjustment valve 19 adjusts the idling speed by adjusting the flow rate of hydrogen gas flowing through the pipe 29a while the automobile engine 10 is in operation.
  • the idling adjustment valve 19 is connected to the engine control unit 18 via a signal line (not shown), and its opening/closing and degree of opening are controlled by the engine control unit 18 .
  • the engine control unit 18 uses the idling adjustment valve 19 to control the idling rotation speed, and aims to improve fuel efficiency, maintain a stable idle state, and prevent engine stalling by reducing the idle rotation speed in the idling state of the engine 10 .
  • the idling speed control includes start correction, engine water temperature correction, air conditioner operation correction, D range correction for AT vehicles, and the like.
  • the pressure gauge 20 is arranged downstream of the idling adjustment valve 19 and installed in a pipe 29 a extending between the low pressure sub-tank 26 and the fuel supply amount control unit 21 .
  • the pressure gauge 20 measures the gas pressure of hydrogen gas flowing through the pipe 29a.
  • the pressure gauge 20 is connected to the engine control unit 18 via a signal line (not shown), and transmits to the engine control unit 18 the gas pressure of hydrogen gas measured while the automobile engine 10 is running.
  • a sub-electromagnetic valve 26 and a gas block 30 are installed in a pipe 29a extending between the low-pressure sub-tank 26 and the fuel supply amount control unit 21.
  • the sub-electromagnetic valve 26 and the gas block 30 are connected to the engine control unit 18 via signal lines (not shown), and their opening and closing are controlled by the engine control unit 18 .
  • the gas block 30 has its valve mechanism closed in an emergency such as when hydrogen gas leaks inside the company for some reason, and shuts off hydrogen gas leakage.
  • the fuel supply amount control unit 21 is arranged downstream of the pressure gauge 20 and connected to the low-pressure sub-tank 28 (hydrogen gas tank 15) via a pipe 29a (copper pipe).
  • a plurality of check valves 31 are installed in the fuel supply amount control unit 21 .
  • the fuel supply amount control unit 21 is connected to the engine control unit 18 via a signal line (not shown), and the engine control unit 18 controls the opening/closing and the degree of opening of the check valve 31 .
  • the fuel supply amount control unit 21 adjusts the opening degree of each check valve 31 according to a control signal from the engine control unit 18 while the automobile engine 10 is running, and adjusts the amount of hydrogen gas injected from each hydrogen gas nozzle 32. (The amount of hydrogen gas supplied to the combustion chamber 37 of each cylinder 36) is adjusted.
  • the hydrogen gas nozzle unit 22 is arranged downstream of the fuel supply amount control unit 21 .
  • a plurality of hydrogen gas nozzles 32 are arranged inside the hydrogen gas nozzle unit 22 .
  • piping 29 b (copper pipe) extending from each check valve 31 of the fuel supply amount control unit 21 is connected to the hydrogen gas nozzles 32 of the hydrogen gas nozzle unit 22 .
  • Hydrogen gas is supplied (supplied) from each check valve 31 to each hydrogen gas nozzle 32 through a pipe 29b, and hydrogen gas is injected (supplied) from each hydrogen gas nozzle 32 toward a combustion chamber 37 of each cylinder 36. .
  • the water tank 17 is connected to a water filling port (not shown) via a pipe 33a (copper pipe).
  • the water pump unit 16 is arranged downstream of the water tank 17 and is connected to the water tank 17 via a pipe 30b.
  • the water pump unit 16 has a water supply pump 59, a pressure regulator 60 (water pressure regulator), and a filter 61 for removing impurities contained in water.
  • the water pump unit 16 supplies water (tap water or pure water) in the water tank 17 to the water supply amount control unit 24 by means of the water supply pump 59 .
  • the water pump unit 16 is connected to an engine control unit 18 via a signal line (not shown), and the engine control unit 18 controls the start/stop and pump output.
  • the water pump unit 16 adjusts pump output according to control signals from the engine control unit 18 while the vehicle engine 10 is running.
  • the water supply amount control unit 24 is arranged downstream of the water pump unit 16 and is connected to the water pump unit 16 via a pipe 33c.
  • a water injection solenoid valve 34 is installed in the water supply amount control unit 24 .
  • the water supply amount control unit 24 is connected to the automobile engine 10 via a pipe 33c (copper pipe).
  • the water supply amount control unit 24 is connected to the engine control unit 18 via a signal line (not shown), and the engine control unit 18 controls the opening/closing and the degree of opening of the water injection electromagnetic valve 34 .
  • the water supply amount control unit 24 adjusts the opening degree of the water injection electromagnetic valve 34 according to the control signal from the engine control unit 18 while the automobile engine 10 is running, and the water supplied to the mist nozzle 38 (water injection nozzle). Regulate water supply.
  • the hydrogen gas tank 15 is connected to the low-pressure sub-tank 26 via a pipe 29c (copper pipe).
  • the check valve 27 of the hydrogen gas tank 15 is attached to the top of the hydrogen gas tank 15 .
  • the check valve 27 is connected to an atmospheric release pipe 29d (copper pipe).
  • the pressure reducing valve 28 is installed in a pipe 29c that connects the hydrogen gas tank 15 and the low-pressure sub-tank 26 .
  • the pressure reducing valve 28 reduces the supply pressure (atmospheric pressure) of the hydrogen gas supplied from the hydrogen gas tank 15 .
  • a gas pressure regulator 35 is installed in the pipe 29c that connects the pressure reducing valve 28 and the low-pressure sub-tank 26 .
  • the gas pressure regulator 35 is connected to the engine control unit 18 via a signal line (not shown), and its opening/closing and degree of opening are controlled by the engine control unit 18 .
  • the gas pressure regulator 35 adjusts its opening degree according to a control signal from the engine control unit 18 while the automobile engine 10 is running, and adjusts the supply pressure (atmospheric pressure) of the hydrogen gas supplied from the hydrogen gas tank 15. , to adjust the amount of hydrogen gas supplied.
  • the hydrogen gas contained in the hydrogen gas tank 15 is decompressed to a predetermined pressure through the decompression valve 28, and then flows into the pipe 29c from the decompression valve 28.
  • the pressure regulator 35 adjusts the supply pressure (air supply amount). Hydrogen gas whose supply pressure (air supply amount) has been adjusted by the gas pressure regulator 35 flows into the low-pressure sub-tank 26 through the pipe 29c.
  • the hydrogen gas that has flowed into the low-pressure sub-tank 26 flows from the low-pressure sub-tank 26 into each check valve 31 of the fuel supply amount control unit 21 through the pipe 29a.
  • Hydrogen gas whose air supply amount is adjusted by each check valve 31 is supplied (injected) from each hydrogen gas nozzle 32 to the combustion chamber 37 of each cylinder 36 .
  • the water (tap water or pure water) stored in the water tank 17 flows through the pipe 30b into the water pump unit 16, and the water pump 59 of the water pump unit 16 supplies water to the pipe 33c. and flows into the water supply amount control unit 24 (water injection solenoid valve 34) through the pipe 33c, and supplies water from the water supply amount control unit 24 to the mist nozzle 38 (water injection nozzle) installed in the misty water generating pipe 23. be done.
  • the water is changed into water mist by the mist nozzle 38 , and the water mist is sprayed (supplied) from the mist nozzle 38 into the water mist generating pipe 23 .
  • a 6-cylinder V-type engine is used for the automotive engine 10, and includes a 4-cylinder V-type engine, an 8-cylinder V-type engine, a 12-cylinder V-type engine, a 4-cylinder in-line engine, a 6-cylinder in-line engine, and a 4-cylinder horizontal engine. Opposed engines, 6-cylinder horizontally opposed engines can also be used.
  • the automobile engine 10 includes a cylinder 36 (cylinder) having a predetermined volume, a piston 39, and an ignition plug 40 (spark plug).
  • the automobile engine 10 is equipped with a CVTC valve 41 (Continuous Valve Timing Control) that optimizes the intake system, and an ignition coil 42 that applies a high voltage (20000 to 30000 volts) to the spark plug 40.
  • CVTC valve 41 is connected to engine control unit 18 via signal line 43 .
  • a control signal is sent from the engine control unit 18 to the CVTC valve 41 while the automobile engine 10 is running, and the CVTC valve 41 optimizes the intake system according to the control signal.
  • the ignition coil 42 is connected to the engine control unit 18 via a signal line 43 .
  • An ignition timing control signal is sent to the ignition coil 41 from the engine control unit 18 while the automobile engine 10 is running, and a high voltage is applied to the ignition plug 40 at the ignition timing according to the control signal.
  • a crank angle sensor 44, a POS sensor 45, a temperature sensor 46, and a knock sensor 47 are installed in the automobile engine 10.
  • a front O2 sensor 49 and a rear O2 sensor 49 are installed in the exhaust port 48 of the automobile engine 10 .
  • the exhaust port 48 is connected to the muffler 50 .
  • the crank angle sensor 44 is connected to the engine control unit 18 via a signal line 43.
  • the crank angle sensor 44 continuously detects the reference position and rotation angle of the crankshaft and the rotation speed of the engine 10 while the automobile engine 10 is running, and detects the detected reference position and rotation angle of the crankshaft and the rotation angle of the engine 10. and the number of revolutions are transmitted to the engine control unit 18 .
  • the engine control unit 18 optimally maintains the rotation angle and the rotation speed of the engine 10 based on the reference position and rotation angle of the crankshaft and the rotation speed of the engine 10 received from the crank angle sensor 44 .
  • the POS sensor 45 is connected to the engine control unit 18 via a signal line 43.
  • the POS sensor 45 continuously detects the crank position (angle) (crankshaft position) during operation of the automobile engine 10 and transmits the detected crank position (angle) to the engine control unit 18 .
  • the engine control unit 18 optimally maintains the crank position (angle) based on the crank position (angle) received from the POS sensor 45 .
  • the temperature sensor 46 is connected to the engine control unit 18 via the signal line 43.
  • the temperature sensor 46 continuously detects the temperature of the combustion chamber 37 of the cylinder 36 during operation of the automotive engine 10 and transmits the detected temperature of the combustion chamber 37 to the engine control unit 18 .
  • the engine control unit 18 optimally maintains the combustion chamber temperature based on the temperature of the combustion chamber 37 received from the temperature sensor 46 .
  • the front O2 sensor 49 and the rear O2 sensor 49 are connected to the engine control unit 18 via the signal line 43.
  • the front O2 sensor 49 and the rear O2 sensor 49 continuously measure the oxygen concentration of the exhaust gas flowing through the exhaust port 48 while the automobile engine 10 is running, and transmit the measured oxygen concentration of the exhaust gas to the engine control unit 18. do.
  • the engine control unit 18 transmits a control signal to a catalyst unit (not shown) based on the oxygen concentration of the exhaust gas received from the front O2 sensor 49 and the rear O2 sensor 49, and uses the catalyst unit to detect the oxygen concentration of the exhaust gas. hold optimally.
  • the knock sensor 47 is connected to the engine control unit 18 via the signal line 43.
  • the knock sensor 47 continuously detects the occurrence of knocking while the automobile engine 10 is running, and transmits the detected knocking occurrence signal to the engine control unit 18 .
  • the engine control unit 18 stops (prevents) knocking based on the knocking occurrence signal received from the knock sensor 47 .
  • a spark plug 40, a hydrogen gas nozzle 32, and an exhaust valve (not shown) are attached to the cylinder head of the cylinder 36.
  • a combustion chamber 37 is formed in the cylinder head of the cylinder 36 .
  • the spark plug 40 is connected to a battery (not shown) via an electric wire (not shown) and is connected to the engine control unit 18 via a signal line 43 to operate according to an ignition signal from the engine control unit 18 . generate sparks.
  • the hydrogen gas nozzle 32 is connected to the engine control unit 18 via signal line 43 .
  • An air heat ratio control signal is sent to the hydrogen gas nozzle 32 from the engine control unit 18 while the automobile engine 10 is running.
  • a connecting rod (not shown) is connected to the piston 39 via a piston pin (not shown).
  • the piston 39 reciprocates in the combustion chamber 37 of the cylinder 36, rises in the combustion chamber 37 of the cylinder 36 from the bottom dead center toward the top dead center, reaches the top dead center, and then moves from the top dead center to the bottom dead center. descends toward and reaches bottom dead center.
  • the ignition plug 40 ignites hydrogen gas (fuel) in the combustion chamber 37 at the timing when the piston 39 reaches the top dead center of the combustion chamber 37 of the cylinder 36 .
  • An air filter 51, an air flow meter 52, an electronic control throttle 53, and a mist nozzle 38 (water injection nozzle) are installed in the misty water generating pipe 23.
  • the air filter 51 is arranged on the most upstream side of the water mist generating pipe 23, and removes impurities contained in air (air) flowing into the water mist generating pipe 23 (flowing through the water mist generating pipe 23). do.
  • the air flow meter 52 is arranged downstream of the air filter 51 and connected to the engine control unit 18 via the signal line 43 .
  • the air flow meter 52 continuously measures the flow rate of air flowing through the misty water generating pipe 23 while the automobile engine 10 is running, and transmits the measured air flow rate to the engine control unit 18. .
  • the airflow meter 52 incorporates an intake air temperature sensor (not shown).
  • the intake air temperature sensor is connected to the engine control unit 18 via signal line 43 .
  • the intake air temperature sensor continuously measures the intake air temperature of the air flowing through the misty water generating pipe 23 while the automobile engine 10 is running, and transmits the measured intake air temperature to the engine control unit 18 .
  • the engine control unit 18 adjusts the electronic control throttle 53 (throttle motor) based on the air flow rate received from the air flow meter 52 and the intake air temperature received from the intake air temperature sensor, and the air flowing through the misty water generating pipe 23 is adjusted. to maintain optimal airflow.
  • the electronically controlled throttle 53 is arranged downstream of the airflow meter 52 and includes a throttle 54 (throttle valve), a throttle sensor (not shown) and a throttle motor (not shown).
  • the electronically controlled throttle 53 controls the throttle 54 by receiving an output request according to the depression amount (accelerator opening) of the accelerator pedal 55 as an electric signal.
  • the throttle 54 is installed in the pipe of the water mist generating pipe 23 to change the flow passage cross-sectional area of the water mist generating pipe 23 to increase the supply flow rate of the air flowing through the water mist generating pipe 23. change.
  • the throttle sensor is connected to the engine control unit 18 via a signal line 43, measures the opening of the throttle 54 while the automobile engine 10 is running, and transmits the measured throttle opening to the engine control unit 18.
  • a DC motor or stepping motor is used for the throttle motor.
  • the throttle motor is connected to the engine control unit 18 via a signal line 43, adjusts the opening of the throttle 54 according to a control signal from the engine control unit 18, and adjusts the flow rate of the air flowing through the misty water generating pipe 23. Adjust.
  • the engine control unit 18 calculates the target opening of the throttle 54 from the information of the accelerator pedal opening sensor of the accelerator work unit 56 and compares it with the actual opening of the throttle 54 to obtain the opening deviation. Determines the control amount to the motor. In addition, the engine control unit 18 performs cruise control to control the engine output so that the vehicle runs at a constant speed when the accelerator pedal 55 is released. Cruise control reduces engine power to prevent drive wheels from slipping. Further, the engine control unit 18 closes the throttle valve to reduce the engine output when the vehicle speed reaches a constant speed, thereby performing maximum speed limit control to suppress the vehicle speed.
  • the air (air) that has flowed into the water mist generating pipe 23 is passed through the air filter 51 to remove impurities, and after the air supply amount is adjusted by the throttle 54 , the air flows downstream of the water mist generating pipe 23 .
  • flow towards Water mist is sprayed into the water mist generating pipe 23 from mist nozzles 38 (38a to 38c) (water injection nozzles) installed downstream of the water mist generating pipe 23, and water mist and air (air) are sprayed into the water mist generating pipe 23. is supplied to the combustion chamber 37 of each cylinder 36.
  • An accelerator pedal 55 is connected to the accelerator work unit 56, and an accelerator pedal opening sensor (not shown) is installed.
  • the accelerator pedal opening sensor is connected to the engine control unit 18 via a signal line 43 .
  • the accelerator pedal opening sensor continuously measures the accelerator opening while the automobile engine 10 is running, and transmits the measured accelerator opening to the engine control unit 18 .
  • the engine control unit 18 determines the supply amount (injection amount) of hydrogen gas to be injected into the combustion chamber 37 of the cylinder 36 based on the accelerator opening received from the accelerator pedal opening sensor, and the fog to be supplied (sprayed) to the combustion chamber 37. Adjust the water supply amount.
  • the mist nozzle 38 (water injection nozzle) is arranged on the downstream side of the electronically controlled throttle 53 and is composed of a first mist nozzle 38a, a second mist nozzle 38b and a third mist nozzle 38c.
  • the first to third mist nozzles 38a to 38c have a spray surface 57 forming a semicircular arc toward the interior of the misty water generating pipe 23.
  • the spray surface 57 is perforated with a plurality of spray ports 58 arranged linearly in the circumferential direction.
  • the first to third mist nozzles 38 a to 38 c spray misty water from the spray port 58 of the spray surface 57 toward the interior of the water mist generating pipe 23 .
  • the number of the mist nozzle 38 may be one.
  • the average particle size of the water mist sprayed from the mist nozzle 38 is in the range of 30 to 55 ⁇ m.
  • Electromagnetic valves (not shown) are installed in the first mist nozzle 38a, the second mist nozzle 38b, and the third mist nozzle 38c. Atomized water is not sprayed when the solenoid valve is closed. These solenoid valves are connected to the engine control unit 18 via signal lines 43 . When the solenoid valve of the first mist nozzle 38a is open, the solenoid valves of the second and third mist nozzles 38b and 38c are closed, and when the solenoid valve of the second mist nozzle 38b is open, the first and third 3 The electromagnetic valves of the mist nozzles 38a and 38c are closed. When the electromagnetic valve of the third mist nozzle 38c is open, the electromagnetic valves of the first and second mist nozzles 38a and 38b are closed.
  • the average particle size of the mist water sprayed from the first mist nozzle 38a is in the range of 30 to 35 ⁇ m, and the average particle size of the mist water sprayed from the second mist nozzle 38b is in the range of 40 to 45 ⁇ m. be.
  • the average particle size of the water mist sprayed from the third mist nozzle 38c is in the range of 50 to 55 ⁇ m.
  • the average particle size ( ⁇ m) of the water mist sprayed into the water mist generating pipe 23 increases as the engine speed (rpm) increases.
  • the solenoid valve of the first mist nozzle 38a is opened, and the solenoid valves of the second and third mist nozzles 38b and 38c are closed, and the first mist nozzle 38a is closed.
  • Atomized water having an average particle size of 30 to 35 ⁇ m is sprayed from the nozzle.
  • the solenoid valve of the second mist nozzle 38b is opened, and the solenoid valves of the first and third mist nozzles 38a and 38c are closed, and the second mist nozzle 38b is closed.
  • Atomized water having an average particle size of 40 to 45 ⁇ m is sprayed from the nozzle.
  • the electromagnetic valve of the third mist nozzle 38c is opened, and the electromagnetic valves of the first and second mist nozzles 38a and 38b are closed.
  • Atomized water having a particle size of 50 to 55 ⁇ m is sprayed.
  • the water supply amount (cc) of the misty water supplied to the combustion chamber 37 increases. to increase the amount of spray (cc) sprayed into the tube.
  • the water supply amount (spray amount) of the mist-like water supplied to the combustion chamber 37 of one cylinder 36 at the rotation speed of 800 rpm or more and less than 1100 rpm of the automobile engine 10 is in the range of 22 to 24 cc, preferably 23 cc.
  • the water supply amount (spray amount) of the atomized water supplied to the combustion chamber 37 of one cylinder 36 at 10 rotation speeds of 1100 rpm or more and less than 1500 rpm is in the range of 29 to 31 cc, preferably 30 cc.
  • the water supply amount (spray amount) of atomized water supplied to the combustion chamber 37 of one cylinder 36 at a rotation speed of 1500 rpm or more and less than 2000 rpm of the automobile engine 10 is in the range of 37 to 39 cc, preferably 38 cc.
  • the water supply amount (spray amount) of the atomized water supplied to the combustion chamber 37 of one cylinder 36 at 2000 rpm or more and less than 2600 rpm in 10 is in the range of 45 to 47 cc, preferably 46 cc.
  • the water supply amount (spray amount) of the mist-like water supplied to the combustion chamber 37 of one cylinder 36 when the rotational speed of the automobile engine 10 is 2600 rpm or more and less than 3500 rpm is in the range of 53 to 55 cc, preferably 54 cc.
  • the water supply amount (spray amount) of atomized water supplied to the combustion chamber 37 of one cylinder 36 at a rotation speed of 3500 rpm or more and less than 4500 rpm of the automobile engine 10 is in the range of 60 to 62 cc, preferably 61 cc.
  • the water supply amount (spray amount) of the atomized water supplied to the combustion chamber 37 of one cylinder 36 at 4500 rpm or more and less than 6000 rpm in 10 is in the range of 68 to 70 cc, preferably 69 cc.
  • the water supply amount (spray amount) of atomized water supplied to the combustion chamber 37 of one cylinder 36 at a speed of 6000 rpm or more of the automobile engine 10 is in the range of 76 to 78 cc, preferably 77 cc.
  • the engine 10 cranks and the number of revolutions reaches 400 rpm or more. At that time, a negative pressure is generated in the intake manifold, and the gas lock 30 installed in the fuel line is operated by the generation of the negative pressure to open the gas lock 30 .
  • the engine speed reaches 400 rpm or more, all the solenoid valves installed in the fuel line are actuated to open, and the hydrogen gas in the hydrogen gas tank 15 (high pressure tank) is supplied to the engine 10 . It is assumed that each sensor, each solenoid valve, and the pump are operating normally.
  • the engine control unit 10 opens the solenoid valve of the first mist nozzle 38a, and opens the second mist nozzle 38a. And the electromagnetic valves of the third mist nozzles 38b, 38c are closed.
  • the engine control unit 18 sends The water supply amount control unit 24 adjusts the opening of the water injection electromagnetic valve 34 according to the supplied water amount signal (water supply amount corresponding to the engine speed of the engine 10), and the water supply amount corresponding to the water supply amount signal is adjusted.
  • Water is supplied from the water supply amount control unit 24 to the first mist nozzle 38a (water injection nozzle). mixture) is sprayed (water supplied) from the mist nozzle 38 a into the pipe of the water mist generating pipe 23 , and the water mist (mixture containing air) is supplied to the combustion chamber 37 of each cylinder 36 .
  • the misty water (mixture containing air) is sprayed (supplied) into the misty water generating pipe 23 from the spray ports 58 of the spray surface 57 that draws a semicircular arc.
  • the automobile engine 10 has a spray surface 57 in which the mist nozzles 38a to 38c form a semicircular arc toward the inside of the water mist generating pipe 23, and a plurality of spray ports 58 for spraying water mist. is perforated in the spray surface 58, and mist water is sprayed from a plurality of spray ports 58 of the spray surface 57 forming a semicircular arc. It is possible to evenly supply the atomized water to the combustion chambers 37 of all the cylinders 36 .
  • the engine control unit 18 supplies water mist in a range of 22 to 24 cc (preferably 23 cc) to the combustion chamber 37 of one cylinder 36. Water mist is sprayed from the first mist nozzle 38a toward the inside of the water mist generating pipe 23 so that water is supplied (sprayed).
  • the engine control unit 18 detects that atomized water with an average particle diameter in the range of 30 to 35 ⁇ m enters the combustion chamber 37 of one cylinder 36. Water mist having an average particle diameter in the range of 30 to 35 ⁇ m is sprayed from the first mist nozzle 38a into the water mist generating pipe 23 so as to be supplied (sprayed).
  • the engine control unit 18 applies a high voltage to the ignition plug 40 using the ignition coil 42 to generate a spark in the ignition plug 40.
  • the hydrogen gas in the combustion chamber 37 compressed by the piston 39 to a compression ratio in the range of 14:1 to 15:1 is ignited by the spark of the ignition plug 40 .
  • the hydrogen gas burns at a high temperature, and the water mist instantly vaporizes due to the combustion heat of the hydrogen gas, and the water mist causes a steam explosion.
  • the vaporization of water (steam explosion) pushes the piston 39 downward to rotate the crankshaft.
  • the automobile engine 10 converts the combustion energy of hydrogen gas and the steam energy of vaporized (steam explosion) mist water into power (rotational force).
  • hydrogen gas is supplied from the hydrogen gas nozzle 32 to the combustion chamber 37 of the cylinder 36, and water mist is supplied (sprayed) to the combustion chamber 37 of the cylinder 36 from the mist nozzles 38a to 38c. Then, the hydrogen gas in the combustion chamber 37 compressed to a predetermined compression ratio by the piston 39 is ignited by the ignition plug 40, and while the hydrogen gas is being burned, the mist-like water mist is instantaneously vaporized by the combustion heat of the hydrogen gas.
  • the combustion energy of the hydrogen gas and the steam energy of the vaporized (steam explosion) mist water are converted into power (rotational force)
  • the combustion energy of the hydrogen gas and the vaporized (steam explosion) mist water can be converted into power (rotational force) of the engine 10
  • a predetermined engine output can be obtained from the combustion energy and the steam energy
  • the combustion energy of the hydrogen gas and the steam energy of the mist water The automobile 11 can be driven by
  • the engine control unit 18 When the accelerator pedal 55 is depressed while the automobile 11 is running, the engine control unit 18 outputs a hydrogen gas supply amount signal (air supply amount signal) corresponding to the accelerator opening (depression amount) of the accelerator pedal 55 to the fuel supply amount control unit.
  • the fuel supply amount control unit 21 injects a predetermined amount of hydrogen gas from each hydrogen gas nozzle 32 into the combustion chamber 37 of each cylinder 36 according to the supply amount signal (air supply amount signal), and the engine 10 The number of revolutions increases and the automobile 11 accelerates.
  • the engine control unit 18 keeps the solenoid valve of the first mist nozzle 38a open, and keeps the second and second mist nozzles 38a open.
  • the water supply amount control unit 24 increases the opening of the water injection solenoid valve 34, and the water supply amount is in the range of 29 to 31 cc (preferably 30 cc). Water mist is sprayed from the first mist nozzle 38 a toward the inside of the water mist generating pipe 23 so that the water mist is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 .
  • the engine control unit 18 detects that the atomized water with an average particle diameter in the range of 30 to 35 ⁇ m enters the combustion chamber 37 of one cylinder 36. Water mist having an average particle diameter in the range of 30 to 35 ⁇ m is sprayed from the first mist nozzle 38a into the water mist generating pipe 23 so as to be supplied (sprayed).
  • the engine control unit 18 opens the solenoid valve of the second mist nozzle 38b, and the first and third mist nozzles
  • the solenoid valves 38a and 38c are closed, and the water supply amount control unit 24 is caused to increase the opening of the water injection solenoid valve 34 so that the water supply amount in the range of 37 to 39 cc (preferably 38 cc) is 1.
  • Water mist is sprayed from the second mist nozzle 38b toward the inside of the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chambers 37 of the two cylinders 36 .
  • the engine control unit 18 supplies the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 40 to 45 ⁇ m ( Water mist having an average particle diameter in the range of 40 to 45 ⁇ m is sprayed from the second mist nozzle 38b into the pipe of the water mist generating pipe 23 so as to be sprayed.
  • the engine control unit 18 keeps the solenoid valve of the second mist nozzle 38b open. While maintaining the solenoid valves of the mist nozzles 38a and 38c closed, the water supply amount control unit 24 is caused to increase the opening of the water injection solenoid valve 34, and the water supply amount is in the range of 45 to 47cc (preferably 46cc). Water mist is sprayed from the second mist nozzle 38b into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 .
  • the engine control unit 18 supplies the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 40 to 45 ⁇ m ( Water mist having an average particle diameter in the range of 40 to 45 ⁇ m is sprayed from the second mist nozzle 38b into the pipe of the water mist generating pipe 23 so as to be sprayed.
  • the engine control unit 18 keeps the solenoid valve of the second mist nozzle 38b open. While maintaining the solenoid valves of the mist nozzles 38a and 38b closed, the water supply amount control unit 24 is caused to increase the opening of the water injection solenoid valve 34, and the water supply amount is in the range of 53 to 55 cc (preferably 54 cc). Water mist is sprayed from the second mist nozzle 38b into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 .
  • the engine control unit 18 supplies the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 40 to 45 ⁇ m ( Water mist having an average particle diameter in the range of 40 to 45 ⁇ m is sprayed from the second mist nozzle 38b into the pipe of the water mist generating pipe 23 so as to be sprayed.
  • the engine control unit 18 opens the solenoid valve of the third mist nozzle 38c, and the first and second mist nozzles
  • the electromagnetic valves 38a and 38b are closed, and the opening of the water injection electromagnetic valve 34 is increased by the water supply amount control unit 24 so that the water supply amount in the range of 60 to 62 cc (preferably 61 cc) is 1.
  • Water mist is sprayed from the third mist nozzle 38c into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chambers 37 of the two cylinders 36 .
  • the engine control unit 18 feeds the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 50 to 55 ⁇ m ( Water mist having an average particle diameter in the range of 50 to 55 ⁇ m is sprayed from the third mist nozzle 38c into the pipe of the water mist generating pipe 23 so as to be sprayed.
  • the engine control unit 18 keeps the electromagnetic valve of the third mist nozzle 38c open, and While maintaining the solenoid valves of the mist nozzles 38a and 38b closed, the water supply amount control unit 24 increases the opening of the water injection solenoid valve 34, and the water supply amount in the range of 68 to 70 cc (preferably 69 cc). Water mist is sprayed from the third mist nozzle 38c into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 .
  • the engine control unit 18 supplies the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 50 to 55 ⁇ m ( Water mist having an average particle diameter in the range of 50 to 55 ⁇ m is sprayed from the third mist nozzle 38c into the pipe of the water mist generating pipe 23 so as to be sprayed.
  • the engine control unit 18 keeps the electromagnetic valve of the third mist nozzle 38c open, and the first and second mist nozzles 38a and 38b are kept closed, and the water supply amount control unit 24 is caused to increase the opening of the water injection electromagnetic valve 34 so that the water supply amount in the range of 76 to 78 cc (preferably 77 cc) is sprayed.
  • Water mist is sprayed from the third mist nozzle 38c into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 .
  • the engine control unit 18 feeds (sprays) atomized water having an average particle diameter in the range of 50 to 55 ⁇ m to the combustion chamber 37 of one cylinder 36. Water mist having an average particle diameter in the range of 50 to 55 ⁇ m is sprayed into the water mist generating pipe 23 from the third mist nozzle 38c.
  • the engine control unit 18 switches the second mist nozzle 38b.
  • the electromagnetic valves are opened, the electromagnetic valves of the first and third mist nozzles 38a and 38c are closed, and the water supply amount control unit 24 is caused to reduce the opening of the water injection electromagnetic valve 34 to a range of 37 to 39 cc ( Preferably, 38 cc) of water mist is supplied (sprayed) to the combustion chamber 37 of one cylinder 36, and water mist is supplied from the second mist nozzle 38b toward the inside of the water mist generating pipe 23.
  • the engine control unit 18 detects that the atomized water with an average particle diameter in the range of 40 to 45 ⁇ m is burned in one cylinder 36. Water mist having an average particle diameter in the range of 40 to 45 ⁇ m is sprayed from the second mist nozzle 38b into the pipe of the water mist generating pipe 23 so as to supply water (spray) to the chamber 37 .
  • the engine control unit 18 opens the electromagnetic valve of the first mist nozzle 38a, and the second and third mist nozzles.
  • the electromagnetic valves 38b and 38c are closed, and the opening of the water injection electromagnetic valve 34 is decreased by the water supply amount control unit 24 so that the water supply amount in the range of 22 to 24 cc (preferably 23 cc) is 1.
  • Water mist is sprayed from the first mist nozzle 38 a toward the interior of the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chambers 37 of the two cylinders 36 .
  • the engine control unit 18 When the rotation speed of the engine 10 changes from 1500 rpm or more and less than 2000 rpm to 400 rpm or more and less than 1100 rpm (rotation speed is 400 rpm or more and less than 1500 rpm), the engine control unit 18 generates a mist of water with an average particle diameter in the range of 30 to 35 ⁇ m. Water mist having an average particle diameter in the range of 30 to 35 ⁇ m is sprayed from the first mist nozzle 38 a into the water mist generating pipe 23 so as to be supplied (sprayed) to the combustion chamber 37 of the cylinder 36 .
  • the engine control unit 18 determines that the combustion temperature of the combustion chamber 37 has reached the upper limit temperature, The amount of water mist supplied to the combustion chambers 37 of one cylinder 36 is increased to keep the combustion temperature of the combustion chambers 37 of all cylinders 36 below the upper limit temperature (400°C).
  • the engine control unit 18 feeds the combustion chamber 37 of one cylinder 36 from the mist nozzle 38 with a water supply amount corresponding to the rotation speed plus 1 to 4 cc.
  • the engine control unit 18 controls the solenoid valve of the second mist nozzle 38b. While keeping the solenoid valves of the first and third mist nozzles 38a and 38b closed, the water supply amount control unit 24 increases the opening of the water injection solenoid valve 34 to 53 to 55 cc + (1 4 cc) (preferably 54 cc + 2 to 3 cc) of water mist is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 from the second mist nozzle 38b into the water mist generating pipe 23. spray misty water toward In addition, water mist having an average particle diameter in the range of 40 to 45 ⁇ m is sprayed into the water mist generating pipe 23 from the second mist nozzle 38b.
  • the engine control unit 18 opens the solenoid valve of the third mist nozzle 38c.
  • the solenoid valves of the first and second mist nozzles 38a and 38b are kept closed, and the water supply amount control unit 24 increases the opening of the water injection solenoid valve 34 to 76 to 78 cc + (1 to 4 cc ) (preferably 77 cc + 2 to 3 cc) of water mist is supplied (sprayed) to the combustion chamber 37 of one cylinder 36, from the third mist nozzle 38c toward the inside of the water mist generating pipe 23. to spray mist water.
  • water mist having an average particle diameter in the range of 50 to 55 ⁇ m is sprayed into the water mist generating pipe 23 from the third mist nozzle 38c.
  • the automotive engine 10 increases the water supply amount (cc) of mist water supplied to the combustion chamber 37 of the cylinder 36 as the engine speed (rpm) increases, thereby increasing the engine speed (rpm). It is possible to increase the steam energy of the mist water vaporized as it accompanies, and it is possible to increase the engine output (kW) as the engine speed (rpm) increases, and the engine 10 can be smoothly operated from low speed rotation. It can be shifted to high speed rotation.
  • the water supply amount of mist water supplied to the combustion chamber 37 is increased from 22 cc to 47 cc.
  • the steam energy of the atomized water can be increased, the engine output (kW) can be increased as the engine speed (rpm) increases, and the engine 10 can be smoothly rotated at low speeds (400 rpm or more and less than 1100 rpm). ) to medium speed rotation (2000 rpm or more and less than 2600 rpm).
  • the water supply amount of the mist water supplied to the combustion chamber 37 is increased to 52 cc to 77 cc, so that the engine speed (rpm) increases.
  • the steam energy of the vaporized mist water can be increased, and the engine output (kW) can be increased as the engine speed (rpm) increases. 3500 rpm or less) to high speed rotation (6000 rpm or more).
  • the average particle diameter ( ⁇ m) of mist water sprayed into the water mist generating pipe 23 increases as the engine speed (rpm) increases.
  • the steam energy of the vaporized mist water can be increased as the is increased, the engine output (kW) can be increased as the engine speed (rpm) is increased, and the engine 10 can be operated smoothly. It is possible to shift from low speed rotation to high speed rotation.
  • the average particle size of the mist water sprayed from the first mist nozzle 38a at the rotation speed of 400 rpm or more and less than 1500 rpm is in the range of 30 to 35 ⁇ m, and the mist sprayed from the second mist nozzle 38b at the rotation speed of 1500 rpm or more and less than 3500 rpm.
  • the engine rotation By setting the average particle diameter of the mist water to the range of 40 to 45 ⁇ m and the average particle diameter of the mist water sprayed from the third mist nozzle 38c at the rotation speed of 3500 rpm or more to the range of 50 to 55 ⁇ m, the engine rotation
  • the steam energy of the vaporized mist water can be increased as the engine speed (rpm) increases, and the engine power (kW) can be increased as the engine speed (rpm) increases. 10 can be smoothly shifted from low speed rotation (400 rpm) to high speed rotation (3500 rpm or higher).
  • the automobile engine 10 increases the amount of water mist supplied to the combustion chamber 37 of one cylinder 36 by 1 to 4 cc. , the combustion chamber can be cooled by the increased mist water, the temperature of the combustion chamber 37 can be lowered below the upper limit temperature, and accidental overheating of the engine 10 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

[Problem] To provide an automobile engine capable of converting vapor energy of vaporized atomized water, together with combustion energy of hydrogen gas, into motive power of the engine. [Solution] An automobile engine 10 is provided with a hydrogen gas nozzle 32 for directly injecting hydrogen gas into a combustion chamber 37 of a cylinder 36, and a mist nozzle 38 for feeding mist-like atomized water into the combustion chamber 37, wherein a compression ratio of the engine lies in a range of 14:1 to 15:1. In the automobile engine 10, hydrogen gas is fed into the combustion chamber 37 from the hydrogen gas nozzle 32, and mist-like atomized water is fed into the combustion chamber 37 from the mist nozzle 38, the hydrogen gas in the combustion chamber 37, which has been compressed to a predetermined compression ratio by means of a piston 39, is ignited by means of an ignition plug 40, the mist-like atomized water is vaporized by the heat of combustion of the hydrogen gas while the hydrogen gas nozzle is burned, and the combustion energy of the hydrogen gas and the vapor energy of the vaporized atomized water are converted into motive power.

Description

自動車用エンジンautomotive engine
 本発明は、自動車に搭載される自動車用エンジンに関する。 The present invention relates to an automobile engine mounted on an automobile.
 水素エンジンと、水素エンジンの各気筒について設けられた対応する気筒の燃焼室内又は燃焼室と連通する吸気ポート内に水を噴射する第1の水噴射手段と、水素エンジンの各吸気ポートにインテークマニホールドを介して接続された吸気通路と、吸気通路又はインテークマニホールドに配設された吸気通路内又はインテークマニホールド内に水を噴射する第2の水噴射手段と、水素エンジンの各気筒の吸気経路におけるバックファイアーの発生を検知する検知手段と、検知手段によって或る気筒の吸気経路におけるバックファイアーの発生が検知された場合に、バックファイアーの発生により変化する1種以上の物理量に基づき、気筒について設けられた第1の水噴射手段に噴射させる水の量と第2の水噴射手段に噴射させる水の量とを決定し、決定した量の水を噴射するように、気筒について設けられた第1の水噴射手段と第2の水噴射手段とを制御する制御手段とを備えた水素エンジンシステムが開示されている(特許文献1参照)。 A hydrogen engine, a first water injection means for injecting water into a combustion chamber of a corresponding cylinder provided for each cylinder of the hydrogen engine or into an intake port communicating with the combustion chamber, and an intake manifold to each intake port of the hydrogen engine. a second water injection means for injecting water into an intake passage connected via an intake passage or an intake passage disposed in an intake manifold or into an intake manifold; detection means for detecting the occurrence of fire; and, when the detection means detects the occurrence of backfire in the intake path of a certain cylinder, based on one or more physical quantities that change due to the occurrence of backfire, provided for the cylinder. The amount of water to be injected by the first water injection means and the amount of water to be injected by the second water injection means are determined, and the first water injection means provided for each cylinder is arranged to inject the determined amount of water. A hydrogen engine system including a water injection means and a control means for controlling the second water injection means is disclosed (see Patent Document 1).
特開2016-118109号公報JP 2016-118109 A
 前記特許文献1に開示の水素エンジンシステムは、気筒の燃焼室内又は燃焼室と連通する吸気ポート内に水を噴射するとともに、吸気通路又はインテークマニホールドに配設された吸気通路内又はインテークマニホールド内に水を噴射することで、バックファイアーによってインテークマニホールドが過度に加熱されることを抑止することができる。しかし、この水素エンジンシステムは、気筒の燃焼室内や燃焼室と連通する吸気ポート、吸気通路、インテークマニホールドに配設された吸気通路内、インテークマニホールド内に水を噴射するが、その水を動力に変換することはない。 The hydrogen engine system disclosed in Patent Document 1 injects water into the combustion chamber of the cylinder or into the intake port communicating with the combustion chamber, and also into the intake passage or the intake manifold arranged in the intake manifold. By injecting water, it is possible to suppress excessive heating of the intake manifold due to backfire. However, this hydrogen engine system injects water into the combustion chamber of the cylinder, the intake port that communicates with the combustion chamber, the intake passage, the intake passage arranged in the intake manifold, and the intake manifold. No conversion.
 本発明の目的は、水素ガスの燃焼エネルギーとともに、蒸気化した霧状水の蒸気エネルギーをエンジンの動力に変換することができ、燃焼エネルギーと蒸気エネルギーとから所定のエンジン出力を得ることができるとともに、水素の燃焼エネルギーと霧状水の蒸気エネルギーとによって自動車を走行させることができる自動車用エンジンを提供することにある。本発明の他の目的は、エンジン回転数(rpm)の増加に伴うように蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができる自動車用エンジンを提供することにある。 An object of the present invention is to convert the steam energy of vaporized mist water together with the combustion energy of hydrogen gas into engine power, and to obtain a predetermined engine output from the combustion energy and the steam energy. Another object of the present invention is to provide an automobile engine capable of running an automobile by the combustion energy of hydrogen and the steam energy of water mist. Another object of the present invention is to be able to increase the steam energy as the engine speed (rpm) increases and to increase the engine power (kW) as the engine speed (rpm) increases. To provide an automobile engine.
 前記課題を解決するための本発明の前提は、所定容積のシリンダーと、シリンダーの燃焼室を往復動するピストンと、シリンダーの燃焼室の燃料に点火する点火プラグとを有し、自動車に搭載されて燃料として水素ガスを利用する自動車用エンジンである。 The premise of the present invention for solving the above problems is to have a cylinder with a predetermined volume, a piston that reciprocates in the combustion chamber of the cylinder, and a spark plug that ignites fuel in the combustion chamber of the cylinder, and is mounted on an automobile. It is an automobile engine that uses hydrogen gas as fuel.
 前記前提における本発明の特徴は、自動車用エンジンが、シリンダーの燃焼室に水素ガスを直接噴射する水素ガスノズルと、シリンダーの燃焼室にミスト状の霧状水を給水するミストノズルとを備え、エンジンの圧縮比が、14:1~15:1の範囲にあり、自動車用エンジンでは、水素ガスノズルから水素ガスがシリンダーの燃焼室に給気されるとともに、ミストノズルからミスト状の霧状水がシリンダーの燃焼室に給水され、ピストンによって所定の圧縮比に圧縮された燃焼室の水素ガスを点火プラグによって点火し、水素ガスを燃焼させつつ水素ガスの燃焼熱でミスト状の霧状水を蒸気化させ、水素ガスの燃焼エネルギーと蒸気化した霧状水の蒸気エネルギーとを動力に変換することにある。 A feature of the present invention based on the above premise is that the automobile engine includes a hydrogen gas nozzle that directly injects hydrogen gas into the combustion chamber of the cylinder, and a mist nozzle that supplies mist-like water to the combustion chamber of the cylinder, and the engine The compression ratio of is in the range of 14:1 to 15:1, and in an automobile engine, hydrogen gas is supplied to the combustion chamber of the cylinder from the hydrogen gas nozzle, and water mist is supplied to the cylinder from the mist nozzle. The hydrogen gas in the combustion chamber is supplied with water and compressed to a predetermined compression ratio by the piston. and convert the combustion energy of the hydrogen gas and the steam energy of the vaporized mist water into motive power.
 本発明の一例として、自動車用エンジンでは、そのエンジン回転数(rpm)が増加するにつれて燃焼室に給水する霧状水の給水量(cc)を増加させる。 As an example of the present invention, in an automobile engine, the water supply amount (cc) of mist water supplied to the combustion chamber is increased as the engine speed (rpm) increases.
 本発明の他の一例としては、自動車用エンジンの回転数400rpm以上1100rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が、22~24ccの範囲、回転数1100rpm以上1500rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が、29~31ccの範囲、回転数1500rpm以上2000rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が、37~39ccの範囲、回転数2000rpm以上2600rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が、45~47ccの範囲にある。 As another example of the present invention, the amount of water mist supplied to the combustion chamber of one cylinder at a speed of 400 rpm or more and less than 1100 rpm of an automobile engine is in the range of 22 to 24 cc, and at a speed of 1100 rpm or more and less than 1500 rpm. The amount of water mist supplied to the combustion chamber of one cylinder is in the range of 29 to 31 cc. and the water supply amount of atomized water supplied to the combustion chamber of one cylinder at the rotational speed of 2000 rpm or more and less than 2600 rpm is in the range of 45 to 47 cc.
 本発明の他の一例としては、自動車用エンジンの回転数2600rpm以上3500rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が、53~55ccの範囲、回転数3500rpm以上4500rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が、60~62ccの範囲、回転数4500rpm以上6000rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が、68~70ccの範囲、回転数6000rpm以上における1つのシリンダーの燃焼室に給水する霧状水の給水量が、76~78ccの範囲にある。 As another example of the present invention, the amount of water mist supplied to the combustion chamber of one cylinder at a speed of 2600 rpm or more and less than 3500 rpm of an automobile engine is in the range of 53 to 55 cc, and at a speed of 3500 rpm or more and less than 4500 rpm. The amount of water mist supplied to the combustion chamber of one cylinder is in the range of 60 to 62 cc, and the amount of water mist supplied to the combustion chamber of one cylinder at the rotation speed of 4500 rpm or more and less than 6000 rpm is 68 to 70 cc. and the amount of water mist supplied to the combustion chamber of one cylinder at a rotation speed of 6000 rpm or more is in the range of 76 to 78 cc.
 本発明の他の一例としては、自動車用エンジンが、シリンダーに設置されて燃焼室の燃焼温度を計測する温度センサーを含み、自動車用エンジンでは、温度センサーが計測した燃焼室の燃焼温度が上限温度に達したときに1つのシリンダーの燃焼室に給水する霧状水の給水量を増加させ、燃焼室の燃焼温度を上限温度以下に保持する。 As another example of the present invention, an automobile engine includes a temperature sensor installed in a cylinder to measure the combustion temperature of the combustion chamber, and in the automobile engine, the combustion temperature of the combustion chamber measured by the temperature sensor is the upper limit temperature. is reached, the amount of water mist supplied to the combustion chamber of one cylinder is increased to keep the combustion temperature of the combustion chamber below the upper limit temperature.
 本発明の他の一例としては、燃焼室の上限燃焼温度が、400℃であり、自動車用エンジンでは、温度センサーが計測した燃焼室の燃焼温度が400℃に達したときに、回転数に応じた給水量に1~4ccを加えた給水量の霧状水を1つのシリンダーの燃焼室に給水する。 As another example of the present invention, the upper limit combustion temperature of the combustion chamber is 400° C. In an automobile engine, when the combustion temperature of the combustion chamber measured by the temperature sensor reaches 400° C., Atomized water is supplied to the combustion chamber of one cylinder with a water supply amount of 1 to 4 cc added to the water supply amount.
 本発明の他の一例としては、自動車用エンジンが、ミスト状の霧状水を生成する霧状水生成管を含み、霧状水生成管が、そこに流入するエアーに含まれる不純物を除去するエアーフィルターと、エアーフィルターの下流に設置されてエアーの流量を調節する電子制御スロットルとを備え、ミストノズルが、霧状水生成管における電子制御スロットルの下流に設置されて霧状水生成管の管内にミスト状の霧状水を噴霧する。 As another example of the present invention, an automobile engine includes a water mist generating pipe that generates a mist of water, and the water mist generating pipe removes impurities contained in the air flowing therein. An air filter and an electronically controlled throttle installed downstream of the air filter for adjusting the flow rate of air are provided, and a mist nozzle is installed downstream of the electronically controlled throttle in the misty water generating pipe and is installed in the misty water generating pipe. A mist of water is sprayed into the pipe.
 本発明の他の一例としては、ミストノズルが、霧状水生成管の管内に向かって半円の円弧を画く噴霧面を有し、ミスト状の霧状水を噴霧する複数の噴霧口が、噴霧面に穿孔されている。 As another example of the present invention, the mist nozzle has a spray surface that draws a semicircular arc toward the inside of the water mist generating pipe, and a plurality of spray ports for spraying water mist, Perforated on the atomizing surface.
 本発明の他の一例としては、ミストノズルから噴霧される霧状水の平均粒子径が、30~55μmの範囲にある。 As another example of the present invention, the average particle size of the water mist sprayed from the mist nozzle is in the range of 30 to 55 μm.
 本発明の他の一例として、自動車用エンジンでは、そのエンジン回転数(rpm)が増加するにつれて霧状水生成管の管内に噴霧する霧状水の平均粒子径(μm)を増加させる。 As another example of the present invention, in an automobile engine, as the engine speed (rpm) increases, the average particle size (μm) of the water mist that is sprayed into the water mist generating tube is increased.
 本発明の他の一例としては、自動車用エンジンの回転数400rpm以上1500rpm未満におけるミストノズルから噴霧される霧状水の平均粒子径が、30~35μmの範囲、回転数1500rpm以上3500rpm未満におけるミストノズルから噴霧される霧状水の平均粒子径が、40~45μmの範囲、回転数3500rpm以上におけるミストノズルから噴霧される霧状水の平均粒子径が、50~55μmの範囲にある。 As another example of the present invention, the mist nozzle has an average particle diameter of 30 to 35 μm in the mist nozzle sprayed from the mist nozzle at a speed of 400 rpm or more and less than 1500 rpm of an automobile engine, and a mist nozzle at a speed of 1500 rpm or more and less than 3500 rpm. The average particle size of the water mist sprayed from the mist nozzle is in the range of 40 to 45 μm, and the average particle size of the water mist sprayed from the mist nozzle at a rotation speed of 3500 rpm or more is in the range of 50 to 55 μm.
 本発明に係る自動車用エンジンによれば、水素ガスノズルから水素ガスがシリンダーの燃焼室に給気されるとともに、ミストノズルからミスト状の霧状水がシリンダーの燃焼室に給水され、ピストンによって所定の圧縮比に圧縮された燃焼室の水素ガスを点火プラグによって点火し、水素ガスを燃焼させつつ水素ガスの燃焼熱でミスト状の霧状水を蒸気化させ、水素ガスの燃焼エネルギーと蒸気化した霧状水の蒸気エネルギーとを動力に変換するから、水素ガスの燃焼エネルギーとともに、蒸気化した霧状水の蒸気エネルギーをエンジンの動力に変換することができ、燃焼エネルギーと蒸気エネルギーとから所定のエンジン出力を得ることができるとともに、水素ガスの燃焼エネルギーと霧状水の蒸気エネルギーとによって自動車を走行させることができる。 According to the automobile engine according to the present invention, hydrogen gas is supplied from the hydrogen gas nozzle to the combustion chamber of the cylinder, and mist-like water is supplied from the mist nozzle to the combustion chamber of the cylinder, and a predetermined amount of water is supplied by the piston. The hydrogen gas in the combustion chamber compressed to the compression ratio is ignited by a spark plug, and while the hydrogen gas is being burned, the mist-like mist water is vaporized by the combustion heat of the hydrogen gas, and the combustion energy of the hydrogen gas is vaporized. Since the steam energy of the atomized water is converted into power, the steam energy of the vaporized water atom can be converted into the power of the engine together with the combustion energy of the hydrogen gas. Engine output can be obtained, and the vehicle can be driven by the combustion energy of the hydrogen gas and the steam energy of the water mist.
 エンジン回転数(rpm)が増加するにつれて燃焼室に給水する霧状水の給水量(cc)を増加させる自動車用エンジンは、エンジン回転数(rpm)の増加に伴って燃焼室に給水する霧状水の給水量(cc)を増加させることで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジンをスムースに低速回転から高速回転に移行させることができる。 An automobile engine, which increases the water supply amount (cc) of mist water supplied to the combustion chamber as the engine speed (rpm) increases, is designed to supply mist water to the combustion chamber as the engine speed (rpm) increases. By increasing the water feed rate (cc), the vapor energy of the vaporized mist water can be increased as the engine speed (rpm) increases, and as the engine speed (rpm) increases, As a result, the engine output (kW) can be increased, and the engine can be smoothly shifted from low-speed rotation to high-speed rotation.
 回転数400rpm以上1100rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が22~24ccの範囲、回転数1100rpm以上1500rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が29~31ccの範囲、回転数1500rpm以上2000rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が37~39ccの範囲、回転数2000rpm以上2600rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が45~47ccの範囲にある自動車用エンジンは、エンジン回転数が400rpm~2600rpmへ増加するに伴って燃焼室に給水する霧状水の給水量を22cc~47ccへ増加させることで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジンをスムースに低速回転(400rpm以上1100rpm未満)から中速回転(2000rpm以上2600rpm未満)に移行させることができる。 The amount of mist water supplied to the combustion chamber of one cylinder at the rotation speed of 400 rpm or more and less than 1100 rpm is in the range of 22 to 24 cc, and the water mist supplied to the combustion chamber of one cylinder at the rotation speed of 1100 rpm or more and less than 1500 rpm. Amount of water in the range of 29 to 31 cc, water supply amount of atomized water to the combustion chamber of one cylinder at the rotation speed of 1500 rpm or more and less than 2000 rpm is in the range of 37 to 39 cc, and the combustion chamber of one cylinder at the rotation speed of 2000 rpm or more to less than 2600 rpm The amount of water mist supplied to the engine is in the range of 45 to 47 cc. By increasing to , the steam energy of the vaporized mist water can be increased as the engine speed (rpm) increases, and the engine output (kW) can be increased as the engine speed (rpm) increases. It is possible to smoothly shift the engine from low speed rotation (400 rpm or more and less than 1100 rpm) to medium speed rotation (2000 rpm or more and less than 2600 rpm).
 回転数2600rpm以上3500rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が53~55ccの範囲、回転数3500rpm以上4500rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が60~62ccの範囲、回転数4500rpm以上6000rpm未満における1つのシリンダーの燃焼室に給水する霧状水の給水量が68~70ccの範囲、回転数6000rpm以上における1つのシリンダーの燃焼室に給水する霧状水の給水量が76~78ccの範囲にある自動車用エンジンは、エンジン回転数が2600rpm~6000rpm以上へ増加するに伴って燃焼室に給水する霧状水の給水量を52cc~77ccへ増加させることで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジンをスムースに中速回転(2600rpm以上3500rpm未満)から高速回転(6000rpm以上)に移行させることができる。 The amount of water mist supplied to the combustion chamber of one cylinder at a rotation speed of 2600 rpm or more and less than 3500 rpm is in the range of 53 to 55 cc. The amount of mist water supplied to the combustion chamber of one cylinder at a rotation speed of 4500 rpm or more and less than 6000 rpm is in the range of 60 to 62 cc, and the water supply amount is in the range of 68 to 70 cc. For automobile engines with a water mist supply amount in the range of 76 to 78 cc, the amount of water mist supplied to the combustion chamber increases to 52 cc to 77 cc as the engine speed increases from 2600 rpm to 6000 rpm or more. By increasing the steam energy of the vaporized mist water as the engine speed (rpm) increases, the engine power (kW) increases as the engine speed (rpm) increases. In addition, the engine can be smoothly shifted from middle speed rotation (2600 rpm or more and less than 3500 rpm) to high speed rotation (6000 rpm or more).
 シリンダーに設置されて燃焼室の燃焼温度を計測する温度センサーを含み、温度センサーが計測した燃焼室の燃焼温度が上限温度に達したときに1つのシリンダーの燃焼室に給水する霧状水の給水量を増加させ、燃焼室の燃焼温度を上限温度以下に保持する自動車用エンジンは、上限温度に達したときに1つのシリンダーの燃焼室に給水する霧状水の給水量を増加させることで、増加させた霧状水によって燃焼室を冷却することができ、燃焼室の温度を上限温度以下に下げることができるとともに、エンジンの不用意なオーバーヒートを防ぐことができる。 A temperature sensor installed in the cylinder to measure the combustion temperature of the combustion chamber is included, and when the combustion temperature of the combustion chamber measured by the temperature sensor reaches the upper limit temperature, the water supply of atomized water is supplied to the combustion chamber of one cylinder. An automobile engine that increases the amount of water and keeps the combustion temperature in the combustion chamber below the upper limit temperature increases the amount of water mist supplied to the combustion chamber of one cylinder when the upper limit temperature is reached. The increased mist water can cool the combustion chamber, lower the temperature of the combustion chamber below the upper limit temperature, and prevent accidental overheating of the engine.
 燃焼室の上限燃焼温度が400℃であり、温度センサーが計測した燃焼室の燃焼温度が400℃に達したときに、回転数に応じた給水量に1~4ccを加えた給水量の霧状水を1つのシリンダーの燃焼室に給水する自動車用エンジンは、燃焼室の温度が400℃に達したときに1つのシリンダーの燃焼室に給水する霧状水の給水量を1~4cc増加させることで、増加させた霧状水によって燃焼室を冷却することができ、燃焼室の温度を上限温度以下に下げることができるとともに、エンジンの不用意なオーバーヒートを防ぐことができる。自動車用エンジンは、燃焼室の温度が400℃を超過すると、燃焼室に給水された霧状水が給水された瞬間に蒸発し、水素ガスの燃焼と霧状水の蒸気化とのタイミングが合わず、蒸気エネルギーを動力に変換することができないが、燃焼室の上限燃焼温度が400℃に保持されるから、水素ガスを燃焼させと同時にミスト状の霧状水を蒸気化させることができ、水素ガスの燃焼エネルギーとともに蒸気化した霧状水の蒸気エネルギーをエンジンの動力に確実に変換することができる。 The upper limit combustion temperature of the combustion chamber is 400°C, and when the combustion temperature of the combustion chamber measured by the temperature sensor reaches 400°C, the amount of water supply added 1 to 4cc to the amount of water supply according to the rotation speed is in the form of mist. For automobile engines that supply water to the combustion chamber of one cylinder, when the temperature of the combustion chamber reaches 400°C, the amount of water mist supplied to the combustion chamber of one cylinder should be increased by 1 to 4 cc. , the combustion chamber can be cooled by the increased mist water, the temperature of the combustion chamber can be lowered below the upper limit temperature, and inadvertent overheating of the engine can be prevented. In an automobile engine, when the temperature of the combustion chamber exceeds 400° C., the atomized water supplied to the combustion chamber evaporates at the moment it is supplied, and the timing of the combustion of hydrogen gas and the vaporization of the atomized water are matched. However, since the upper limit combustion temperature of the combustion chamber is kept at 400°C, hydrogen gas can be burned and water mist can be vaporized at the same time. It is possible to reliably convert the steam energy of the vaporized mist water together with the combustion energy of the hydrogen gas into the motive power of the engine.
 ミスト状の霧状水を生成する霧状水生成管を含み、霧状水生成管がそこに流入するエアーに含まれる不純物を除去するエアーフィルターとエアーフィルターの下流に設置されてエアーの流量を調節する電子制御スロットルとを備え、ミストノズルが霧状水生成管における電子制御スロットルの下流に設置されて霧状水生成管の管内にミスト状の霧状水を噴霧する自動車用エンジンは、霧状水生成管においてミスト状の霧状水が噴霧されることで、すべてのシリンダーの燃焼室に霧状水を給水することができ、すべてのシリンダーの燃焼室において霧状水を蒸気化することで、水素ガスの燃焼エネルギーとともに蒸気化した霧状水の蒸気エネルギーをエンジンの動力に確実に変換することができる。 It includes a misty water generating pipe that generates misty water, an air filter that removes impurities contained in the air flowing into the misty water generating pipe, and an air filter that is installed downstream of the air filter to reduce the flow rate of the air. an electronically controlled throttle for adjusting the mist, and a misting nozzle is installed downstream of the electronically controlled throttle in the water mist generating tube to spray a mist of water into the tube of the water mist generating tube. By spraying the water mist in the water generating pipe, the water mist can be supplied to the combustion chambers of all the cylinders, and the water mist can be vaporized in the combustion chambers of all the cylinders. Therefore, the steam energy of the vaporized mist water can be reliably converted into the power of the engine together with the combustion energy of the hydrogen gas.
 ミストノズルが霧状水生成管の管内に向かって半円の円弧を画く噴霧面を有し、ミスト状の霧状水を噴霧する複数の噴霧口が噴霧面に穿孔されている自動車用エンジンは、半円の円弧を画く噴霧面の複数の噴霧口からミスト状の霧状水を噴霧するから、霧状水生成管の管内に満遍なくミスト状の霧状水を噴霧することができ、すべてのシリンダーの燃焼室に霧状水を満遍なく給水することができるとともに、水素ガスの燃焼エネルギーとともに蒸気化した霧状水の蒸気エネルギーをエンジンの動力に確実に変換することができる。 An automobile engine in which a mist nozzle has a spray surface forming a semicircular arc toward the inside of a pipe for generating mist, and a plurality of spray holes for spraying mist water are perforated on the spray surface. Since the water mist is sprayed from a plurality of spray ports on the spray surface that draws a semicircular arc, the water mist can be sprayed evenly inside the water mist generating pipe, and all The water mist can be evenly supplied to the combustion chamber of the cylinder, and the steam energy of the water mist vaporized together with the combustion energy of the hydrogen gas can be reliably converted into the power of the engine.
 ミストノズルから噴霧される霧状水の平均粒子径が30~55μmの範囲にある自動車用エンジンは、前記平均粒子径の霧状水を霧状水生成管の管内に噴霧することで、その平均粒子径の霧状水がすべてのシリンダーの燃焼室に給水されるから、それらシリンダーの燃焼室において霧状水を確実に蒸気化することができ、水素ガスの燃焼エネルギーとともに蒸気化した霧状水の蒸気エネルギーをエンジンの動力として利用することができる。 In an automobile engine in which the average particle size of the water mist sprayed from the mist nozzle is in the range of 30 to 55 μm, the average particle size is Since the atomized water of particle size is supplied to the combustion chambers of all cylinders, the atomized water can be reliably vaporized in the combustion chambers of those cylinders, and the atomized water is vaporized together with the combustion energy of the hydrogen gas. of steam energy can be used to power the engine.
 エンジン回転数(rpm)が増加するにつれて霧状水生成管の管内に噴霧する霧状水の平均粒子径(μm)を増加させる自動車用エンジンは、エンジン回転数(rpm)の増加に伴って霧状水生成管の管内に噴霧する霧状水の平均粒子径(μm)が増加することで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジンをスムースに低速回転から高速回転に移行させることができる。 An automobile engine that increases the average particle size (μm) of mist water sprayed into the pipe of the mist water generating pipe as the engine speed (rpm) increases is designed to increase the fog as the engine speed (rpm) increases. By increasing the average particle diameter (μm) of mist water sprayed into the pipe of the water generating pipe, the steam energy of the vaporized mist water is increased as the engine speed (rpm) increases. As the engine speed (rpm) increases, the engine output (kW) can be increased, and the engine can be smoothly shifted from low speed rotation to high speed rotation.
 自動車用エンジンの回転数400rpm以上1500rpm未満におけるミストノズルから噴霧される霧状水の平均粒子径が30~35μmの範囲、回転数1500rpm以上3500rpm未満におけるミストノズルから噴霧される霧状水の平均粒子径が40~45μmの範囲、回転数3500rpm以上におけるミストノズルから噴霧される霧状水の平均粒子径が50~55μmの範囲にある自動車用エンジンは、エンジン回転数が400rpm~3500rpm以上へ増加するに伴ってミストノズルから噴霧される霧状水の平均粒子径を30μm~55μmへ増加させることで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジンをスムースに低速回転から高速回転に移行させることができる。 The average particle size of mist water sprayed from a mist nozzle at a speed of 400 rpm or more and less than 1500 rpm of an automobile engine is in the range of 30 to 35 μm, and the average particle size of the mist water sprayed from a mist nozzle at a speed of 1500 rpm or more and less than 3500 rpm. An automobile engine with a diameter of 40 to 45 μm and an average particle diameter of mist water sprayed from a mist nozzle at a rotation speed of 3500 rpm or more is in a range of 50 to 55 μm. By increasing the average particle size of the atomized water sprayed from the mist nozzle to 30 μm to 55 μm, the steam energy of the vaporized atomized water is increased as the engine speed (rpm) increases. As a result, the engine output (kW) can be increased as the engine speed (rpm) increases, and the engine can be smoothly shifted from low speed rotation to high speed rotation.
自動車用エンジンを搭載した自動車の一例を示す側面図。The side view which shows an example of the motor vehicle which mounts the motor vehicle engine. 自動車用エンジンを搭載した自動車の上面図。1 is a top view of an automobile equipped with an automobile engine; FIG. 自動車用エンジンを搭載した自動車の背面図。Rear view of a car with an automotive engine. 一例として示す各機器及び配管の配置図。Layout drawing of each device and piping shown as an example. 一例として示す自動車用エンジンの構成図。The block diagram of the engine for motor vehicles shown as an example. ミストノズルの一例を示す図。The figure which shows an example of a mist nozzle. エンジン回転数と霧状水の給水量との関係を示す図。The figure which shows the relationship between engine rotation speed and the water supply amount of mist water.
 本発明の自動車用エンジン10を搭載した自動車11の一例を示す側面図である図1等の添付の図面を参照し、本発明に係る自動車用エンジンの詳細を説明すると、以下のとおりである。尚、図2は、自動車用エンジン10を搭載した自動車11の上面図であり、図3は、自動車用エンジン10を搭載した自動車11の背面図である。図4は、一例として示す各機器及び配管の配置図であり、図5は、一例として示す自動車用エンジン10の構成図である。図6は、ミストノズル38a~38cの一例を示す図であり、図7は、自動車用エンジン10のエンジン回転数と霧状水の給水量との関係を示す図である。 The details of the automotive engine according to the present invention will be described below with reference to the accompanying drawings such as FIG. 2 is a top view of the automobile 11 on which the automobile engine 10 is mounted, and FIG. 3 is a rear view of the automobile 11 on which the automobile engine 10 is mounted. FIG. 4 is a layout diagram of each device and piping shown as an example, and FIG. 5 is a configuration diagram of an automobile engine 10 shown as an example. FIG. 6 is a diagram showing an example of mist nozzles 38a to 38c, and FIG. 7 is a diagram showing the relationship between the engine speed of the automobile engine 10 and the amount of water mist supplied.
 本発明に係る自動車用エンジン10は、自動車11に搭載され、その燃料として水素ガスを利用する。尚、自動車用エンジン10を搭載する自動車11の車種に特に限定はない。一例として示す自動車11は、フロントエリア12(エンジンルーム)に自動車用エンジン10が搭載され、リアエリア14(タンクルーム)に水素ガスタンク15(高圧タンク)及び水ポンプユニット16(図4参照)が設置されているとともに、中間エリア13に水タンク17が配置されている。 An automobile engine 10 according to the present invention is mounted on an automobile 11 and uses hydrogen gas as its fuel. The type of automobile 11 in which the automobile engine 10 is mounted is not particularly limited. An automobile 11 shown as an example has an automobile engine 10 mounted in a front area 12 (engine room), and a hydrogen gas tank 15 (high-pressure tank) and a water pump unit 16 (see FIG. 4) installed in a rear area 14 (tank room). A water tank 17 is arranged in the intermediate area 13 .
 水素ガスタンク15には、700気圧の気体水素が収容されている。水素ガスタンク15への水素ガスの補給は、水素ステーションにおいて行われる。水素ガスは、水素ガスタンク15の水素ガス充填口(図示せず)から補給される。水タンク17には、水道水(好ましくは純水)が収容されている。水タンク17には、水充填口(図示せず)から水道水又は純水が補給される。自動車11では、水素ガスタンク15から水素ガスが自動車用エンジン10に給気され、水タンク17から給水された純水から霧状水が生成され、その霧状水がエンジン10に給水(噴霧)される。 The hydrogen gas tank 15 contains gaseous hydrogen at 700 atmospheres. Replenishment of hydrogen gas to the hydrogen gas tank 15 is performed at a hydrogen station. Hydrogen gas is supplied from a hydrogen gas filling port (not shown) of the hydrogen gas tank 15 . The water tank 17 contains tap water (preferably pure water). The water tank 17 is replenished with tap water or pure water from a water filling port (not shown). In the automobile 11 , hydrogen gas is supplied to the automobile engine 10 from the hydrogen gas tank 15 , water mist is generated from pure water supplied from the water tank 17 , and the water mist is supplied (sprayed) to the engine 10 . be.
 自動車用エンジンの各制御は、エンジンコントロールユニット18(図5参照)によって行われる。エンジンコントロールユニット18は、中央処理部(CPU又はMPU)とメモリ(メインメモリ及びキャッシュメモリ)と大容量記憶領域とを備えた物理的なコンピュータである。  Each control of the automobile engine is performed by the engine control unit 18 (see FIG. 5). The engine control unit 18 is a physical computer with a central processing unit (CPU or MPU), memory (main memory and cache memory), and mass storage.
 フロントエリア12(エンジンルーム)には、アイドリング調整バルブ19、圧力計20、燃料供給量コントロールユニット21、自動車用エンジン10に設置された水素ガスノズルユニット22、自動車用エンジン10に連結された霧状水生成管23、給水量コントロールユニット24、サブ電磁弁25が設置されている。リアエリア14(タンクルーム)には、水素ガスタンク15とともに低圧サブタンク26が設置されている。水素ガスタンク15には、逆止弁27及び減圧弁28、水素ガス充填口(図示せず)が設置されている。 In the front area 12 (engine room), there are an idling adjustment valve 19, a pressure gauge 20, a fuel supply amount control unit 21, a hydrogen gas nozzle unit 22 installed in the automobile engine 10, and a water mist connected to the automobile engine 10. A generation pipe 23, a water supply amount control unit 24, and a sub electromagnetic valve 25 are installed. A hydrogen gas tank 15 and a low-pressure sub-tank 26 are installed in the rear area 14 (tank room). The hydrogen gas tank 15 is provided with a check valve 27, a pressure reducing valve 28, and a hydrogen gas filling port (not shown).
 図4に示すように、アイドリング調整バルブ19は、リアエリア14(タンクルーム)の低圧サブタンク26と燃料供給量コントロールユニット21との間に延びる配管29a(銅パイプ)に設置されている。アイドリング調整バルブ19は、自動車用エンジン10の稼働中に配管29aを通流する水素ガスの流量を調整してアイドリング回転数を調節する。アイドリング調整バルブ19は、信号線(図示せず)を介してエンジンコントロールユニット18に接続され、その開閉や開度がエンジンコントロールユニット18によって制御される。 As shown in FIG. 4, the idling adjustment valve 19 is installed in a pipe 29a (copper pipe) extending between the low-pressure sub-tank 26 in the rear area 14 (tank room) and the fuel supply amount control unit 21. The idling adjustment valve 19 adjusts the idling speed by adjusting the flow rate of hydrogen gas flowing through the pipe 29a while the automobile engine 10 is in operation. The idling adjustment valve 19 is connected to the engine control unit 18 via a signal line (not shown), and its opening/closing and degree of opening are controlled by the engine control unit 18 .
 エンジンコントロールユニット18は、アイドリング調整バルブ19を利用してアイドリング回転数制御を行い、エンジン10のアイドリング状態におけるアイドル回転数低下による燃費向上や安定したアイドル状態の維持、エンストの防止を図る。アイドリング回転数制御では、始動時における始動補正、エンジン水温補正、エアコン作動時の補正、AT車のDレンジ補正等が行われる。 The engine control unit 18 uses the idling adjustment valve 19 to control the idling rotation speed, and aims to improve fuel efficiency, maintain a stable idle state, and prevent engine stalling by reducing the idle rotation speed in the idling state of the engine 10 . The idling speed control includes start correction, engine water temperature correction, air conditioner operation correction, D range correction for AT vehicles, and the like.
 圧力計20は、アイドリング調整バルブ19の下流側に配置され、低圧サブタンク26と燃料供給量コントロールユニット21との間に延びる配管29aに設置されている。圧力計20は、配管29aを通流する水素ガスのガス圧を計測する。圧力計20は、信号線(図示せず)を介してエンジンコントロールユニット18に接続され、自動車用エンジン10の稼働中に計測した水素ガスのガス圧をエンジンコントロールユニット18に送信する。 The pressure gauge 20 is arranged downstream of the idling adjustment valve 19 and installed in a pipe 29 a extending between the low pressure sub-tank 26 and the fuel supply amount control unit 21 . The pressure gauge 20 measures the gas pressure of hydrogen gas flowing through the pipe 29a. The pressure gauge 20 is connected to the engine control unit 18 via a signal line (not shown), and transmits to the engine control unit 18 the gas pressure of hydrogen gas measured while the automobile engine 10 is running.
 低圧サブタンク26と燃料供給量コントロールユニット21との間に延びる配管29aには、サブ電磁弁26とガスブロック30とが設置されている。サブ電磁弁26及びガスブロック30は、信号線(図示せず)を介してエンジンコントロールユニット18に接続され、その開閉がエンジンコントロールユニット18によって制御される。ガスブロック30は、水素ガスが何らかの原因で社内も漏れた場合等の緊急時にその弁機構が閉鎖し、水素ガスのガス漏れを遮断する。 A sub-electromagnetic valve 26 and a gas block 30 are installed in a pipe 29a extending between the low-pressure sub-tank 26 and the fuel supply amount control unit 21. The sub-electromagnetic valve 26 and the gas block 30 are connected to the engine control unit 18 via signal lines (not shown), and their opening and closing are controlled by the engine control unit 18 . The gas block 30 has its valve mechanism closed in an emergency such as when hydrogen gas leaks inside the company for some reason, and shuts off hydrogen gas leakage.
 燃料供給量コントロールユニット21は、圧力計20の下流側に配置され、配管29a(銅パイプ)を介して低圧サブタンク28(水素ガスタンク15)に連結されている。燃料供給量コントロールユニット21には、複数のチェックバルブ31が設置されている。燃料供給量コントロールユニット21は、信号線(図示せず)を介してエンジンコントロールユニット18に接続され、チェックバルブ31の開閉や開度がエンジンコントロールユニット18によって制御される。 The fuel supply amount control unit 21 is arranged downstream of the pressure gauge 20 and connected to the low-pressure sub-tank 28 (hydrogen gas tank 15) via a pipe 29a (copper pipe). A plurality of check valves 31 are installed in the fuel supply amount control unit 21 . The fuel supply amount control unit 21 is connected to the engine control unit 18 via a signal line (not shown), and the engine control unit 18 controls the opening/closing and the degree of opening of the check valve 31 .
 燃料供給量コントロールユニット21は、自動車用エンジン10の稼働中にエンジンコントロールユニット18からの制御信号に従って各チェックバルブ31の開度を調節し、各水素ガスノズル32から噴射される水素ガスの給気量(各シリンダー36の燃焼室37に給気(供給)する水素ガスの給気量)調節する。 The fuel supply amount control unit 21 adjusts the opening degree of each check valve 31 according to a control signal from the engine control unit 18 while the automobile engine 10 is running, and adjusts the amount of hydrogen gas injected from each hydrogen gas nozzle 32. (The amount of hydrogen gas supplied to the combustion chamber 37 of each cylinder 36) is adjusted.
 水素ガスノズルユニット22は、燃料供給量コントロールユニット21の下流側に配置されている。水素ガスノズルユニット22の内部には、複数の水素ガスノズル32が配置されている。水素ガスノズルユニット22では、燃料供給量コントロールユニット21の各チェックバルブ31から延びる配管29b(銅パイプ)が水素ガスノズルユニット22のそれら水素ガスノズル32に接続されている。各チェックバルブ31から配管29bを介して水素ガスが各水素ガスノズル32に給気(供給)され、各水素ガスノズル32から水素ガスが各シリンダー36の燃焼室37に向かって噴射(給気)される。 The hydrogen gas nozzle unit 22 is arranged downstream of the fuel supply amount control unit 21 . A plurality of hydrogen gas nozzles 32 are arranged inside the hydrogen gas nozzle unit 22 . In the hydrogen gas nozzle unit 22 , piping 29 b (copper pipe) extending from each check valve 31 of the fuel supply amount control unit 21 is connected to the hydrogen gas nozzles 32 of the hydrogen gas nozzle unit 22 . Hydrogen gas is supplied (supplied) from each check valve 31 to each hydrogen gas nozzle 32 through a pipe 29b, and hydrogen gas is injected (supplied) from each hydrogen gas nozzle 32 toward a combustion chamber 37 of each cylinder 36. .
 水タンク17は、配管33a(銅パイプ)を介して水充填口(図示せず)に連結されている。水ポンプユニット16は、水タンク17の下流側に配置され、配管30bを介して水タンク17に連結されている。水ポンプユニット16は、給水ポンプ59と、プレッシャーレギュレーター60(水圧力調整装置)と、水に含まれる不純物を除去するフィルター61とを有する。水ポンプユニット16は、給水ポンプ59によって水タンク17の水(水道水又は純水)を給水量コントロールユニット24に給水する。水ポンプユニット16は、信号線(図示せず)を介してエンジンコントロールユニット18に接続され、その発停やポンプ出力がエンジンコントロールユニット18によって制御される。水ポンプユニット16は、自動車用エンジン10の稼働中にエンジンコントロールユニット18からの制御信号に従ってポンプ出力を調節する。 The water tank 17 is connected to a water filling port (not shown) via a pipe 33a (copper pipe). The water pump unit 16 is arranged downstream of the water tank 17 and is connected to the water tank 17 via a pipe 30b. The water pump unit 16 has a water supply pump 59, a pressure regulator 60 (water pressure regulator), and a filter 61 for removing impurities contained in water. The water pump unit 16 supplies water (tap water or pure water) in the water tank 17 to the water supply amount control unit 24 by means of the water supply pump 59 . The water pump unit 16 is connected to an engine control unit 18 via a signal line (not shown), and the engine control unit 18 controls the start/stop and pump output. The water pump unit 16 adjusts pump output according to control signals from the engine control unit 18 while the vehicle engine 10 is running.
 給水量コントロールユニット24は、水ポンプユニット16の下流側に配置され、配管33cを介して水ポンプユニット16に連結されている。給水量コントロールユニット24には、水噴射用電磁弁34が設置されている。給水量コントロールユニット24は、配管33c(銅パイプ)を介して自動車用エンジン10に連結されている。給水量コントロールユニット24は、信号線(図示せず)を介してエンジンコントロールユニット18に接続され、水噴射用電磁弁34の開閉や開度がエンジンコントロールユニット18によって制御される。給水量コントロールユニット24は、自動車用エンジン10の稼働中にエンジンコントロールユニット18からの制御信号に従って水噴射用電磁弁34の開度を調節し、ミストノズル38(水噴射ノズル)に給水する水の給水量を調節する。 The water supply amount control unit 24 is arranged downstream of the water pump unit 16 and is connected to the water pump unit 16 via a pipe 33c. A water injection solenoid valve 34 is installed in the water supply amount control unit 24 . The water supply amount control unit 24 is connected to the automobile engine 10 via a pipe 33c (copper pipe). The water supply amount control unit 24 is connected to the engine control unit 18 via a signal line (not shown), and the engine control unit 18 controls the opening/closing and the degree of opening of the water injection electromagnetic valve 34 . The water supply amount control unit 24 adjusts the opening degree of the water injection electromagnetic valve 34 according to the control signal from the engine control unit 18 while the automobile engine 10 is running, and the water supplied to the mist nozzle 38 (water injection nozzle). Regulate water supply.
 水素ガスタンク15は、配管29c(銅パイプ)を介して低圧サブタンク26に連結されている。水素ガスタンク15の逆止弁27は、水素ガスタンク15の頂部に取り付けられている。逆止弁27には、大気開放用配管29d(銅パイプ)が連結されている。自動車用エンジン10の稼働中又は非稼働中に水素ガスが水素ガスタンク15に向かって逆流したときに逆止弁27が弁機構を閉じ、逆流した水素ガスを大気開放用配管29dから大気に放出する。減圧弁28は、水素ガスタンク15と低圧サブタンク26とを連結する配管29cに設置されている。減圧弁28は、水素ガスタンク15から給気される水素ガスの給気圧(気圧)を減圧する。 The hydrogen gas tank 15 is connected to the low-pressure sub-tank 26 via a pipe 29c (copper pipe). The check valve 27 of the hydrogen gas tank 15 is attached to the top of the hydrogen gas tank 15 . The check valve 27 is connected to an atmospheric release pipe 29d (copper pipe). When the hydrogen gas flows back toward the hydrogen gas tank 15 during operation or non-operation of the automobile engine 10, the check valve 27 closes the valve mechanism and releases the backflowing hydrogen gas to the atmosphere from the atmospheric release pipe 29d. . The pressure reducing valve 28 is installed in a pipe 29c that connects the hydrogen gas tank 15 and the low-pressure sub-tank 26 . The pressure reducing valve 28 reduces the supply pressure (atmospheric pressure) of the hydrogen gas supplied from the hydrogen gas tank 15 .
 減圧弁28と低圧サブタンク26とを連結する配管29cには、ガス圧調整器35が設置されている。ガス圧調整器35は、信号線(図示せず)を介してエンジンコントロールユニット18に接続され、その開閉や開度がエンジンコントロールユニット18によって制御される。ガス圧調整器35は、自動車用エンジン10の稼働中にエンジンコントロールユニット18からの制御信号に従ってその開度を調節し、水素ガスタンク15から給気される水素ガスの給気圧(気圧)を調節し、水素ガスの給気量を調節する。 A gas pressure regulator 35 is installed in the pipe 29c that connects the pressure reducing valve 28 and the low-pressure sub-tank 26 . The gas pressure regulator 35 is connected to the engine control unit 18 via a signal line (not shown), and its opening/closing and degree of opening are controlled by the engine control unit 18 . The gas pressure regulator 35 adjusts its opening degree according to a control signal from the engine control unit 18 while the automobile engine 10 is running, and adjusts the supply pressure (atmospheric pressure) of the hydrogen gas supplied from the hydrogen gas tank 15. , to adjust the amount of hydrogen gas supplied.
 自動車用エンジン10の稼働中では、水素ガスタンク15に収容された水素ガスが減圧弁28を通って所定圧に減圧された後、減圧弁28から配管29cに流入し、配管29cに設置されたガス圧調整器35によって給気圧(給気量)が調節される。ガス圧調整器35によって給気圧(給気量)が調節された水素ガスは配管29cを通って低圧サブタンク26に流入する。低圧サブタンク26に流入した水素ガスは、低圧サブタンク26から配管29aを通って燃料供給量コントロールユニット21の各チェックバルブ31に流入する。各チェックバルブ31によって給気量が調節された水素ガスは各水素ガスノズル32から各シリンダー36の燃焼室37に給気(噴射)される。 During operation of the automobile engine 10, the hydrogen gas contained in the hydrogen gas tank 15 is decompressed to a predetermined pressure through the decompression valve 28, and then flows into the pipe 29c from the decompression valve 28. The pressure regulator 35 adjusts the supply pressure (air supply amount). Hydrogen gas whose supply pressure (air supply amount) has been adjusted by the gas pressure regulator 35 flows into the low-pressure sub-tank 26 through the pipe 29c. The hydrogen gas that has flowed into the low-pressure sub-tank 26 flows from the low-pressure sub-tank 26 into each check valve 31 of the fuel supply amount control unit 21 through the pipe 29a. Hydrogen gas whose air supply amount is adjusted by each check valve 31 is supplied (injected) from each hydrogen gas nozzle 32 to the combustion chamber 37 of each cylinder 36 .
 水ポンプユニット16が起動すると、水タンク17に収容された水(水道水又は純水)が配管30bを通って水ポンプユニット16に流入し、水ポンプユニット16の給水ポンプ59によって配管33cに給水され、配管33cを通って給水量コントロールユニット24(水噴射用電磁弁34)に流入し、給水量コントロールユニット24から霧状水生成管23に設置されたミストノズル38(水噴射ノズル)に給水される。水はミストノズル38によって霧状水に変わり、霧状水がミストノズル38から霧状水生成管23の管内に噴霧(給水)される。 When the water pump unit 16 is activated, the water (tap water or pure water) stored in the water tank 17 flows through the pipe 30b into the water pump unit 16, and the water pump 59 of the water pump unit 16 supplies water to the pipe 33c. and flows into the water supply amount control unit 24 (water injection solenoid valve 34) through the pipe 33c, and supplies water from the water supply amount control unit 24 to the mist nozzle 38 (water injection nozzle) installed in the misty water generating pipe 23. be done. The water is changed into water mist by the mist nozzle 38 , and the water mist is sprayed (supplied) from the mist nozzle 38 into the water mist generating pipe 23 .
 自動車用エンジン10には、6気筒V型エンジンが使用されているが、4気筒V型エンジンや8気筒V型エンジン、12気筒V型エンジン、4気筒直列エンジン、6気筒直列エンジン、4気筒水平対向エンジン、6気筒水平対向エンジンを使用することもできる。自動車用エンジン10は、図5に示すように、所定容積のシリンダー36(気筒)と、ピストン39と、点火プラグ40(スパークプラグ)とを備えている。 A 6-cylinder V-type engine is used for the automotive engine 10, and includes a 4-cylinder V-type engine, an 8-cylinder V-type engine, a 12-cylinder V-type engine, a 4-cylinder in-line engine, a 6-cylinder in-line engine, and a 4-cylinder horizontal engine. Opposed engines, 6-cylinder horizontally opposed engines can also be used. As shown in FIG. 5, the automobile engine 10 includes a cylinder 36 (cylinder) having a predetermined volume, a piston 39, and an ignition plug 40 (spark plug).
 自動車用エンジン10には、吸気系を最適化するCVTCバルブ41(Continuous Valve Timing Control)と、点火プラグ40に高電圧(20000~30000ボルト)を加えるイグニッションコイル42とが設置されている。CVTCバルブ41は、信号線43を介してエンジンコントロールユニット18に接続されている。自動車用エンジン10の稼働中にエンジンコントロールユニット18から制御信号がCVTCバルブ41に送信され、その制御信号に従ってCVTCバルブ41が吸気系を最適化する。イグニッションコイル42は、信号線43を介してエンジンコントロールユニット18に接続されている。イグニッションコイル41には、自動車用エンジン10の稼働中にエンジンコントロールユニット18から点火時期制御信号が送信され、その制御信号に従って点火時期に点火プラグ40へ高電圧を加える。 The automobile engine 10 is equipped with a CVTC valve 41 (Continuous Valve Timing Control) that optimizes the intake system, and an ignition coil 42 that applies a high voltage (20000 to 30000 volts) to the spark plug 40. CVTC valve 41 is connected to engine control unit 18 via signal line 43 . A control signal is sent from the engine control unit 18 to the CVTC valve 41 while the automobile engine 10 is running, and the CVTC valve 41 optimizes the intake system according to the control signal. The ignition coil 42 is connected to the engine control unit 18 via a signal line 43 . An ignition timing control signal is sent to the ignition coil 41 from the engine control unit 18 while the automobile engine 10 is running, and a high voltage is applied to the ignition plug 40 at the ignition timing according to the control signal.
 自動車用エンジン10には、クランク角センサー44と、POSセンサー45と、温度センサー46と、ノックセンサー47とが設置されている。自動車用エンジン10の排気ポート48には、フロントO2センサー49及びリアO2センサー49が設置されている。排気ポート48は、マフラー50に連結されている。 A crank angle sensor 44, a POS sensor 45, a temperature sensor 46, and a knock sensor 47 are installed in the automobile engine 10. A front O2 sensor 49 and a rear O2 sensor 49 are installed in the exhaust port 48 of the automobile engine 10 . The exhaust port 48 is connected to the muffler 50 .
 クランク角センサー44は、信号線43を介してエンジンコントロールユニット18に接続されている。クランク角センサー44は、自動車用エンジン10の稼働中にクランクシャフトの基準位置と回転角及びエンジン10の回転数とを連続的に検出し、検出したクランクシャフトの基準位置と回転角及びエンジン10の回転数とをエンジンコントロールユニット18に送信する。エンジンコントロールユニット18は、クランク角センサー44から受信したクランクシャフトの基準位置と回転角及びエンジン10の回転数とに基づいて回転角及びエンジン10の回転数を最適に保持する。 The crank angle sensor 44 is connected to the engine control unit 18 via a signal line 43. The crank angle sensor 44 continuously detects the reference position and rotation angle of the crankshaft and the rotation speed of the engine 10 while the automobile engine 10 is running, and detects the detected reference position and rotation angle of the crankshaft and the rotation angle of the engine 10. and the number of revolutions are transmitted to the engine control unit 18 . The engine control unit 18 optimally maintains the rotation angle and the rotation speed of the engine 10 based on the reference position and rotation angle of the crankshaft and the rotation speed of the engine 10 received from the crank angle sensor 44 .
 POSセンサー45は、信号線43を介してエンジンコントロールユニット18に接続されている。POSセンサー45は、自動車用エンジン10の稼働中にクランク位置(角)(クランクシャフト位置)を連続的に検出し、検出したクランク位置(角)をエンジンコントロールユニット18に送信する。エンジンコントロールユニット18は、POSセンサー45から受信したクランク位置(角)に基づいてクランク位置(角)を最適に保持する。 The POS sensor 45 is connected to the engine control unit 18 via a signal line 43. The POS sensor 45 continuously detects the crank position (angle) (crankshaft position) during operation of the automobile engine 10 and transmits the detected crank position (angle) to the engine control unit 18 . The engine control unit 18 optimally maintains the crank position (angle) based on the crank position (angle) received from the POS sensor 45 .
 温度センサー46は、信号線43を介してエンジンコントロールユニット18に接続されている。温度センサー46は、自動車用エンジン10の稼働中にシリンダー36の燃焼室37の温度を連続的に検出し、検出した燃焼室37の温度をエンジンコントロールユニット18に送信する。エンジンコントロールユニット18は、温度センサー46から受信した燃焼室37の温度に基づいて燃焼室温度を最適に保持する。 The temperature sensor 46 is connected to the engine control unit 18 via the signal line 43. The temperature sensor 46 continuously detects the temperature of the combustion chamber 37 of the cylinder 36 during operation of the automotive engine 10 and transmits the detected temperature of the combustion chamber 37 to the engine control unit 18 . The engine control unit 18 optimally maintains the combustion chamber temperature based on the temperature of the combustion chamber 37 received from the temperature sensor 46 .
 フロントO2センサー49及びリアO2センサー49は、信号線43を介してエンジンコントロールユニット18に接続されている。フロントO2センサー49及びリアO2センサー49は、自動車用エンジン10の稼働中に排気ポート48を通流する排ガスの酸素濃度を連続的に計測し、計測した排ガスの酸素濃度をエンジンコントロールユニット18に送信する。エンジンコントロールユニット18は、フロントO2センサー49及びリアO2センサー49から受信した排ガスの酸素濃度に基づいて触媒ユニット(図示せず)に制御信号を送信し、触媒ユニットを利用して排ガスの酸素濃度を最適に保持する。 The front O2 sensor 49 and the rear O2 sensor 49 are connected to the engine control unit 18 via the signal line 43. The front O2 sensor 49 and the rear O2 sensor 49 continuously measure the oxygen concentration of the exhaust gas flowing through the exhaust port 48 while the automobile engine 10 is running, and transmit the measured oxygen concentration of the exhaust gas to the engine control unit 18. do. The engine control unit 18 transmits a control signal to a catalyst unit (not shown) based on the oxygen concentration of the exhaust gas received from the front O2 sensor 49 and the rear O2 sensor 49, and uses the catalyst unit to detect the oxygen concentration of the exhaust gas. hold optimally.
 ノックセンサー47は、信号線43を介してエンジンコントロールユニット18に接続されている。ノックセンサー47は、自動車用エンジン10の稼働中にノッキングの発生を連続的に検出し、検出したノッキングの発生信号をエンジンコントロールユニット18に送信する。エンジンコントロールユニット18は、ノックセンサー47から受信したノッキングの発生信号に基づいてノッキングを停止させる(防止する)。 The knock sensor 47 is connected to the engine control unit 18 via the signal line 43. The knock sensor 47 continuously detects the occurrence of knocking while the automobile engine 10 is running, and transmits the detected knocking occurrence signal to the engine control unit 18 . The engine control unit 18 stops (prevents) knocking based on the knocking occurrence signal received from the knock sensor 47 .
 シリンダー36のシリンダーヘッドには、点火プラグ40と水素ガスノズル32と排気バルブ(図示せず)とが取り付けられている。シリンダー36のシリンダーヘッドには、燃焼室37が形成されている。点火プラグ40は、電線(図示せず)を介してバッテリー(図示せず)に接続されているとともに、信号線43を介してエンジンコントロールユニット18に接続され、エンジンコントロールユニット18からの点火信号に従って火花を発生する。水素ガスノズル32は、信号線43を介してエンジンコントロールユニット18に接続されている。水素ガスノズル32には、自動車用エンジン10の稼働中にエンジンコントロールユニット18から空熱比制御信号が送信される。 A spark plug 40, a hydrogen gas nozzle 32, and an exhaust valve (not shown) are attached to the cylinder head of the cylinder 36. A combustion chamber 37 is formed in the cylinder head of the cylinder 36 . The spark plug 40 is connected to a battery (not shown) via an electric wire (not shown) and is connected to the engine control unit 18 via a signal line 43 to operate according to an ignition signal from the engine control unit 18 . generate sparks. The hydrogen gas nozzle 32 is connected to the engine control unit 18 via signal line 43 . An air heat ratio control signal is sent to the hydrogen gas nozzle 32 from the engine control unit 18 while the automobile engine 10 is running.
 ピストン39には、ピストンピン(図示せず)を介してコンロッド(図示せず)が連結されている。ピストン39は、シリンダー36の燃焼室37を往復動し、シリンダー36の燃焼室37を下死点から上死点に向かって上昇し、上死点に達した後、上死点から下死点に向かって下降し、下死点に達する。ピストン39がシリンダー36の燃焼室37の上死点に達したタイミングにおいて点火プラグ40が燃焼室37の水素ガス(燃料)に点火する。 A connecting rod (not shown) is connected to the piston 39 via a piston pin (not shown). The piston 39 reciprocates in the combustion chamber 37 of the cylinder 36, rises in the combustion chamber 37 of the cylinder 36 from the bottom dead center toward the top dead center, reaches the top dead center, and then moves from the top dead center to the bottom dead center. descends toward and reaches bottom dead center. The ignition plug 40 ignites hydrogen gas (fuel) in the combustion chamber 37 at the timing when the piston 39 reaches the top dead center of the combustion chamber 37 of the cylinder 36 .
 霧状水生成管23には、エアーフィルター51と、エアーフローメーター52と、電子制御スロットル53と、ミストノズル38(水噴射ノズル)とが設置されている。エアーフィルター51は、霧状水生成管23の最上流側に配置され、霧状水生成管23に流入する(霧状水生成管23を通流する)エアー(空気)に含まれる不純物を除去する。エアーフローメーター52は、エアーフィルター51の下流側に配置され、信号線43を介してエンジンコントロールユニット18に接続されている。エアーフローメーター52は、自動車用エンジン10の稼働中に霧状水生成管23を通流するエアー(空気)の空気流量を連続的に計測し、計測した空気流量をエンジンコントロールユニット18に送信する。 An air filter 51, an air flow meter 52, an electronic control throttle 53, and a mist nozzle 38 (water injection nozzle) are installed in the misty water generating pipe 23. The air filter 51 is arranged on the most upstream side of the water mist generating pipe 23, and removes impurities contained in air (air) flowing into the water mist generating pipe 23 (flowing through the water mist generating pipe 23). do. The air flow meter 52 is arranged downstream of the air filter 51 and connected to the engine control unit 18 via the signal line 43 . The air flow meter 52 continuously measures the flow rate of air flowing through the misty water generating pipe 23 while the automobile engine 10 is running, and transmits the measured air flow rate to the engine control unit 18. .
 エアーフローメーター52は、吸気温度センサー(図示せず)を内蔵している。吸気温度センサーは、信号線43を介してエンジンコントロールユニット18に接続されている。吸気温度センサーは、自動車用エンジン10の稼働中に霧状水生成管23を通流するエアー(空気)の吸気温度を連続的に計測し、計測した吸気温度をエンジンコントロールユニット18に送信する。エンジンコントロールユニット18は、エアーフローメーター52から受信した空気流量及び吸気温度センサーから受信した吸気温度に基づいて電子制御スロットル53(スロットルモーター)を調節し、霧状水生成管23を通流するエアーの空気流量を最適に保持する。 The airflow meter 52 incorporates an intake air temperature sensor (not shown). The intake air temperature sensor is connected to the engine control unit 18 via signal line 43 . The intake air temperature sensor continuously measures the intake air temperature of the air flowing through the misty water generating pipe 23 while the automobile engine 10 is running, and transmits the measured intake air temperature to the engine control unit 18 . The engine control unit 18 adjusts the electronic control throttle 53 (throttle motor) based on the air flow rate received from the air flow meter 52 and the intake air temperature received from the intake air temperature sensor, and the air flowing through the misty water generating pipe 23 is adjusted. to maintain optimal airflow.
 電子制御スロットル53は、エアーフローメーター52の下流側に配置され、スロットル54(絞り弁)とスロットルセンサー(図示せず)とスロットルモーター(図示せず)とを備えている。電子制御スロットル53は、アクセルペダル55の踏み込み量(アクセル開度)による出力要求を電気信号として受信してスロットル54を制御する。スロットル54は、霧状水生成管23の管内に設置され、霧状水生成管23の流路断面積を変化させ、霧状水生成管23を通流するエアー(空気)の給気流量を変化させる。 The electronically controlled throttle 53 is arranged downstream of the airflow meter 52 and includes a throttle 54 (throttle valve), a throttle sensor (not shown) and a throttle motor (not shown). The electronically controlled throttle 53 controls the throttle 54 by receiving an output request according to the depression amount (accelerator opening) of the accelerator pedal 55 as an electric signal. The throttle 54 is installed in the pipe of the water mist generating pipe 23 to change the flow passage cross-sectional area of the water mist generating pipe 23 to increase the supply flow rate of the air flowing through the water mist generating pipe 23. change.
 スロットルセンサーは、信号線43を介してエンジンコントロールユニット18に接続され、自動車用エンジン10の稼働中にスロットル54の開度を計測し、計測したスロットル開度をエンジンコントロールユニット18に送信する。スロットルモーターには、DCモーター又はステッピングモーターが使用される。スロットルモーターは、信号線43を介してエンジンコントロールユニット18に接続され、エンジンコントロールユニット18からの制御信号に従ってスロットル54の開度を調節し、霧状水生成管23を通流するエアーの流量を調節する。 The throttle sensor is connected to the engine control unit 18 via a signal line 43, measures the opening of the throttle 54 while the automobile engine 10 is running, and transmits the measured throttle opening to the engine control unit 18. A DC motor or stepping motor is used for the throttle motor. The throttle motor is connected to the engine control unit 18 via a signal line 43, adjusts the opening of the throttle 54 according to a control signal from the engine control unit 18, and adjusts the flow rate of the air flowing through the misty water generating pipe 23. Adjust.
 尚、エンジンコントロールユニット18は、アクセルワークユニット56のアクセルペダル開度センサーの情報からスロットル54の目標開度を演算し、それをスロットル54の実開度と比較して開度偏差を求め、スロットルモーターへの制御量を決定する。又、エンジンコントロールユニット18は、アクセルペダル55を離した状態で、一定走行で走行するようにエンジン出力を制御するクルーズコントロールを行う。クルーズコントロールでは、駆動輪のスリップを抑えるようにエンジン出力を下げる。更に、エンジンコントロールユニット18は、定車速に達するとスロットル弁を閉じてエンジン出力を下げて車速を抑える最高速度制限制御を行う。 The engine control unit 18 calculates the target opening of the throttle 54 from the information of the accelerator pedal opening sensor of the accelerator work unit 56 and compares it with the actual opening of the throttle 54 to obtain the opening deviation. Determines the control amount to the motor. In addition, the engine control unit 18 performs cruise control to control the engine output so that the vehicle runs at a constant speed when the accelerator pedal 55 is released. Cruise control reduces engine power to prevent drive wheels from slipping. Further, the engine control unit 18 closes the throttle valve to reduce the engine output when the vehicle speed reaches a constant speed, thereby performing maximum speed limit control to suppress the vehicle speed.
 霧状水生成管23に流入したエアー(空気)は、エアーフィルター51を通流することで不純物が除去され、スロットル54によってその給気量が調節された後、霧状水生成管23の下流に向かって流動する。霧状水生成管23の下流に設置されたミストノズル38(38a~38c)(水噴射ノズル)から霧状水が霧状水生成管23の管内に噴霧され、霧状水とエアー(空気)との混合物が各シリンダー36の燃焼室37に給水(供給)される。 The air (air) that has flowed into the water mist generating pipe 23 is passed through the air filter 51 to remove impurities, and after the air supply amount is adjusted by the throttle 54 , the air flows downstream of the water mist generating pipe 23 . flow towards Water mist is sprayed into the water mist generating pipe 23 from mist nozzles 38 (38a to 38c) (water injection nozzles) installed downstream of the water mist generating pipe 23, and water mist and air (air) are sprayed into the water mist generating pipe 23. is supplied to the combustion chamber 37 of each cylinder 36.
 アクセルワークユニット56には、アクセルペダル55が連結され、アクセルペダル開度センサー(図示せず)が設置されている。アクセルペダル開度センサーは、信号線43を介してエンジンコントロールユニット18に接続されている。アクセルペダル開度センサーは、自動車用エンジン10の稼働中にアクセルの開度を連続的に測定し、測定したアクセル開度をエンジンコントロールユニット18に送信する。エンジンコントロールユニット18は、アクセルペダル開度センサーから受信したアクセル開度に基づいてシリンダー36の燃焼室37に噴射する水素ガスの給気量(噴射量)及び燃焼室37に給水(噴霧)する霧状水の給水量を調節する。 An accelerator pedal 55 is connected to the accelerator work unit 56, and an accelerator pedal opening sensor (not shown) is installed. The accelerator pedal opening sensor is connected to the engine control unit 18 via a signal line 43 . The accelerator pedal opening sensor continuously measures the accelerator opening while the automobile engine 10 is running, and transmits the measured accelerator opening to the engine control unit 18 . The engine control unit 18 determines the supply amount (injection amount) of hydrogen gas to be injected into the combustion chamber 37 of the cylinder 36 based on the accelerator opening received from the accelerator pedal opening sensor, and the fog to be supplied (sprayed) to the combustion chamber 37. Adjust the water supply amount.
 ミストノズル38(水噴射ノズル)は、電子制御スロットル53の下流側に配置され、第1ミストノズル38aと第2ミストノズル38bと第3ミストノズル38cとから形成されている。第1~第3ミストノズル38a~38cは、図6に示すように、霧状水生成管23の管内に向かって半円の円弧を画く噴霧面57を有する。噴霧面57には、周り方向へ直状に並ぶ複数の噴霧口58が穿孔されている。第1~第3ミストノズル38a~38cは、噴霧面57の噴霧口58から霧状水生成管23の管内に向かってミスト状の霧状水を噴霧する。尚、ミストノズル38(水噴射ノズル)が1つであってもよい。ミストノズル38が1つの場合、そのミストノズル38から噴霧される霧状水の平均粒子径は、30~55μmの範囲にある。 The mist nozzle 38 (water injection nozzle) is arranged on the downstream side of the electronically controlled throttle 53 and is composed of a first mist nozzle 38a, a second mist nozzle 38b and a third mist nozzle 38c. As shown in FIG. 6, the first to third mist nozzles 38a to 38c have a spray surface 57 forming a semicircular arc toward the interior of the misty water generating pipe 23. As shown in FIG. The spray surface 57 is perforated with a plurality of spray ports 58 arranged linearly in the circumferential direction. The first to third mist nozzles 38 a to 38 c spray misty water from the spray port 58 of the spray surface 57 toward the interior of the water mist generating pipe 23 . Incidentally, the number of the mist nozzle 38 (water injection nozzle) may be one. When there is one mist nozzle 38, the average particle size of the water mist sprayed from the mist nozzle 38 is in the range of 30 to 55 μm.
 第1ミストノズル38aや第2ミストノズル38b、第3ミストノズル38cには、図示はしていないが、電磁弁が設置され、電磁弁が開のときにミストノズル38a~38cから霧状水が噴霧され、電磁弁が閉のときには霧状水は噴霧されない。それら電磁弁は、信号線43を介してエンジンコントロールユニット18に接続されている。第1ミストノズル38aの電磁弁が開のときは、第2及び第3ミストノズル38b,38cの電磁弁が閉になり、第2ミストノズル38bの電磁弁が開のときは、第1及び第3ミストノズル38a,38cの電磁弁が閉になる。第3ミストノズル38cの電磁弁が開のときは、第1及び第2ミストノズル38a,38bの電磁弁が閉になる。 Electromagnetic valves (not shown) are installed in the first mist nozzle 38a, the second mist nozzle 38b, and the third mist nozzle 38c. Atomized water is not sprayed when the solenoid valve is closed. These solenoid valves are connected to the engine control unit 18 via signal lines 43 . When the solenoid valve of the first mist nozzle 38a is open, the solenoid valves of the second and third mist nozzles 38b and 38c are closed, and when the solenoid valve of the second mist nozzle 38b is open, the first and third 3 The electromagnetic valves of the mist nozzles 38a and 38c are closed. When the electromagnetic valve of the third mist nozzle 38c is open, the electromagnetic valves of the first and second mist nozzles 38a and 38b are closed.
 第1ミストノズル38aから噴霧される霧状水の平均粒子径は、30~35μmの範囲にあり、第2ミストノズル38bから噴霧される霧状水の平均粒子径は、40~45μmの範囲にある。第3ミストノズル38cから噴霧される霧状水の平均粒子径は、50~55μmの範囲にある。自動車用エンジン10では、そのエンジン回転数(rpm)が増加するにつれて霧状水生成管23の管内に噴霧する霧状水の平均粒子径(μm)を増加させる。 The average particle size of the mist water sprayed from the first mist nozzle 38a is in the range of 30 to 35 μm, and the average particle size of the mist water sprayed from the second mist nozzle 38b is in the range of 40 to 45 μm. be. The average particle size of the water mist sprayed from the third mist nozzle 38c is in the range of 50 to 55 μm. In the automobile engine 10, the average particle size (μm) of the water mist sprayed into the water mist generating pipe 23 increases as the engine speed (rpm) increases.
 自動車用エンジン10の回転数800rpm以上1500rpm未満では、第1ミストノズル38aの電磁弁が開になるとともに、第2及び第3ミストノズル38b,38cの電磁弁が閉になり、第1ミストノズル38aから平均粒子径30~35μmの霧状水が噴霧される。自動車用エンジン10の回転数1500rpm以上3500rpm未満では、第2ミストノズル38bの電磁弁が開になるとともに、第1及び第3ミストノズル38a,38cの電磁弁が閉になり、第2ミストノズル38bから平均粒子径は40~45μmの霧状水が噴霧される。自動車用エンジン10の回転数3500rpm以上では、第3ミストノズル38cの電磁弁が開になるとともに、第1及び第2ミストノズル38a,38bの電磁弁が閉になり、第3ミストノズル38cから平均粒子径は50~55μmの霧状水が噴霧される。 When the rotational speed of the automobile engine 10 is 800 rpm or more and less than 1500 rpm, the solenoid valve of the first mist nozzle 38a is opened, and the solenoid valves of the second and third mist nozzles 38b and 38c are closed, and the first mist nozzle 38a is closed. Atomized water having an average particle size of 30 to 35 μm is sprayed from the nozzle. When the rotational speed of the automobile engine 10 is 1500 rpm or more and less than 3500 rpm, the solenoid valve of the second mist nozzle 38b is opened, and the solenoid valves of the first and third mist nozzles 38a and 38c are closed, and the second mist nozzle 38b is closed. Atomized water having an average particle size of 40 to 45 μm is sprayed from the nozzle. When the automobile engine 10 rotates at 3500 rpm or more, the electromagnetic valve of the third mist nozzle 38c is opened, and the electromagnetic valves of the first and second mist nozzles 38a and 38b are closed. Atomized water having a particle size of 50 to 55 μm is sprayed.
 自動車用エンジン10では、そのエンジン回転数(rpm)が増加するにつれて燃焼室37に給水する霧状水の給水量(cc)(第1~第3ミストノズル38a~38cから霧状水生成管23の管内に噴霧される噴霧量(cc))を増加させる。自動車用エンジン10の回転数800rpm以上1100rpm未満における1つのシリンダー36の燃焼室37に給水する霧状水の給水量(噴霧量)は、22~24ccの範囲、好ましくは23ccであり、自動車用エンジン10の回転数1100rpm以上1500rpm未満における1つのシリンダー36の燃焼室37に給水する霧状水の給水量(噴霧量)は、29~31ccの範囲、好ましくは30ccである。 In the automobile engine 10, as the engine speed (rpm) increases, the water supply amount (cc) of the misty water supplied to the combustion chamber 37 (from the first to third mist nozzles 38a to 38c to the misty water generating pipe 23 increases). to increase the amount of spray (cc) sprayed into the tube. The water supply amount (spray amount) of the mist-like water supplied to the combustion chamber 37 of one cylinder 36 at the rotation speed of 800 rpm or more and less than 1100 rpm of the automobile engine 10 is in the range of 22 to 24 cc, preferably 23 cc. The water supply amount (spray amount) of the atomized water supplied to the combustion chamber 37 of one cylinder 36 at 10 rotation speeds of 1100 rpm or more and less than 1500 rpm is in the range of 29 to 31 cc, preferably 30 cc.
 自動車用エンジン10の回転数1500rpm以上2000rpm未満における1つのシリンダー36の燃焼室37に給水する霧状水の給水量(噴霧量)は、37~39ccの範囲、好ましくは38ccであり、自動車用エンジン10の回転数2000rpm以上2600rpm未満における1つのシリンダー36の燃焼室37に給水する霧状水の給水量(噴霧量)は、45~47ccの範囲、好ましくは46ccである。自動車用エンジン10の回転数2600rpm以上3500rpm未満における1つのシリンダー36の燃焼室37に給水する霧状水の給水量(噴霧量)は、53~55ccの範囲、好ましくは54ccである。 The water supply amount (spray amount) of atomized water supplied to the combustion chamber 37 of one cylinder 36 at a rotation speed of 1500 rpm or more and less than 2000 rpm of the automobile engine 10 is in the range of 37 to 39 cc, preferably 38 cc. The water supply amount (spray amount) of the atomized water supplied to the combustion chamber 37 of one cylinder 36 at 2000 rpm or more and less than 2600 rpm in 10 is in the range of 45 to 47 cc, preferably 46 cc. The water supply amount (spray amount) of the mist-like water supplied to the combustion chamber 37 of one cylinder 36 when the rotational speed of the automobile engine 10 is 2600 rpm or more and less than 3500 rpm is in the range of 53 to 55 cc, preferably 54 cc.
 自動車用エンジン10の回転数3500rpm以上4500rpm未満における1つのシリンダー36の燃焼室37に給水する霧状水の給水量(噴霧量)は、60~62ccの範囲、好ましくは61ccであり、自動車用エンジン10の回転数4500rpm以上6000rpm未満における1つのシリンダー36の燃焼室37に給水する霧状水の給水量(噴霧量)は、68~70ccの範囲、好ましくは69ccである。自動車用エンジン10の回転数6000rpm以上における1つのシリンダー36の燃焼室37に給水する霧状水の給水量(噴霧量)は、76~78ccの範囲、好ましくは77ccである。 The water supply amount (spray amount) of atomized water supplied to the combustion chamber 37 of one cylinder 36 at a rotation speed of 3500 rpm or more and less than 4500 rpm of the automobile engine 10 is in the range of 60 to 62 cc, preferably 61 cc. The water supply amount (spray amount) of the atomized water supplied to the combustion chamber 37 of one cylinder 36 at 4500 rpm or more and less than 6000 rpm in 10 is in the range of 68 to 70 cc, preferably 69 cc. The water supply amount (spray amount) of atomized water supplied to the combustion chamber 37 of one cylinder 36 at a speed of 6000 rpm or more of the automobile engine 10 is in the range of 76 to 78 cc, preferably 77 cc.
 自動車用エンジン10におけるエンジン始動の一例としては、キーをスタート位置まで回すと、エンジン10がクランキングして回転数が400rpm以上になる。その際、インテークマニホールドに負圧が発生し、その負圧の発生によって燃料ラインに設置されたガスロック30が作動してガスロック30が開になる。エンジン回転数が400rpm以上になると燃料ラインに設置されたすべての電磁弁が作動して電磁弁が開になり、水素ガスタンク15(高圧タンク)内の水素ガスがエンジン10に供給される。尚、各センサーや各電磁弁、ポンプが正常に作動しているものとする。 As an example of starting the engine in the automobile engine 10, when the key is turned to the start position, the engine 10 cranks and the number of revolutions reaches 400 rpm or more. At that time, a negative pressure is generated in the intake manifold, and the gas lock 30 installed in the fuel line is operated by the generation of the negative pressure to open the gas lock 30 . When the engine speed reaches 400 rpm or more, all the solenoid valves installed in the fuel line are actuated to open, and the hydrogen gas in the hydrogen gas tank 15 (high pressure tank) is supplied to the engine 10 . It is assumed that each sensor, each solenoid valve, and the pump are operating normally.
 自動車用エンジン10が稼働してエンジン10のアイドリング中において、ピストン39がシリンダー36の上死点から下死点に向かって下降を開始してピストン39がシリンダー36の上死点から下死点に達するまでの間の吸気工程では、エンジンコントロールユニット18から送信された水素ガスの供給量信号(アクセル開度に対応した水素ガスの供給量信号)に従って燃料供給量コントロールユニット21がチェックバルブ31の開度を調節し、供給量信号に対応した供給量(給気量)の水素ガスがチェックバルブ31を通過して水素ガスノズル32に給気され、設定供給量の水素ガスが水素ガスノズル32から各シリンダー36の燃焼室37に直接噴射(直噴)される。 While the automobile engine 10 is running and the engine 10 is idling, the piston 39 starts to descend from the top dead center of the cylinder 36 toward the bottom dead center, and the piston 39 moves from the top dead center to the bottom dead center of the cylinder 36. In the intake process until reaching The supply amount (air supply amount) of hydrogen gas corresponding to the supply amount signal passes through the check valve 31 and is supplied to the hydrogen gas nozzle 32, and the set supply amount of hydrogen gas is supplied from the hydrogen gas nozzle 32 to each cylinder. 36 is injected directly into the combustion chamber 37 (direct injection).
 更に、自動車用エンジン10が起動してエンジン10のアイドリング中において、エンジン10の回転数が400rpm以上1100rpm未満の場合、エンジンコントロールユニット10は、第1ミストノズル38aの電磁弁を開にし、第2及び第3ミストノズル38b,38cの電磁弁を閉にする。ピストン39がシリンダー36の上死点から下死点に向かって下降を開始してピストン39がシリンダー36の上死点から下死点に達するまでの間の吸気工程では、エンジンコントロールユニット18から送信された水の給水量信号(エンジン10の回転数に対応した水の給水量)に従って給水量コントロールユニット24が水噴射用電磁弁34の開度を調節し、給水量信号に対応した給水量の水が給水量コントロールユニット24から第1ミストノズル38a(水噴射ノズル)に給水され、設定給水量の水が第1ミストノズル38aによってミスト状の霧状水になり、霧状水(エアーを含む混合物)がミストノズル38aから霧状水生成管23の管内に噴霧(給水)され、霧状水(エアーを含む混合物)が各シリンダー36の燃焼室37に給水される。 Further, when the automobile engine 10 is started and the engine 10 is idling, when the rotation speed of the engine 10 is 400 rpm or more and less than 1100 rpm, the engine control unit 10 opens the solenoid valve of the first mist nozzle 38a, and opens the second mist nozzle 38a. And the electromagnetic valves of the third mist nozzles 38b, 38c are closed. During the intake stroke from when the piston 39 starts moving downward from the top dead center to the bottom dead center of the cylinder 36 until the piston 39 reaches the bottom dead center from the top dead center of the cylinder 36, the engine control unit 18 sends The water supply amount control unit 24 adjusts the opening of the water injection electromagnetic valve 34 according to the supplied water amount signal (water supply amount corresponding to the engine speed of the engine 10), and the water supply amount corresponding to the water supply amount signal is adjusted. Water is supplied from the water supply amount control unit 24 to the first mist nozzle 38a (water injection nozzle). mixture) is sprayed (water supplied) from the mist nozzle 38 a into the pipe of the water mist generating pipe 23 , and the water mist (mixture containing air) is supplied to the combustion chamber 37 of each cylinder 36 .
 ミスト状の霧状水(エアーを含む混合物)は、半円の円弧を画く噴霧面57のそれら噴霧口58から霧状水生成管23の管内に噴霧(給水)される。自動車用エンジン10は、ミストノズル38a~38cが霧状水生成管23の管内に向かって半円の円弧を画く噴霧面57を有し、ミスト状の霧状水を噴霧する複数の噴霧口58が噴霧面58に穿孔され、半円の円弧を画く噴霧面57の複数の噴霧口58からミスト状の霧状水が噴霧されるから、霧状水生成管23の管内に満遍なくミスト状の霧状水を噴霧することができ、すべてのシリンダー36の燃焼室37に霧状水を満遍なく給水することができる。 The misty water (mixture containing air) is sprayed (supplied) into the misty water generating pipe 23 from the spray ports 58 of the spray surface 57 that draws a semicircular arc. The automobile engine 10 has a spray surface 57 in which the mist nozzles 38a to 38c form a semicircular arc toward the inside of the water mist generating pipe 23, and a plurality of spray ports 58 for spraying water mist. is perforated in the spray surface 58, and mist water is sprayed from a plurality of spray ports 58 of the spray surface 57 forming a semicircular arc. It is possible to evenly supply the atomized water to the combustion chambers 37 of all the cylinders 36 .
 尚、自動車用エンジン10の回転数が400rpm以上1100rpm未満の場合においてエンジンコントロールユニット18は、22~24ccの範囲(好ましくは23cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第1ミストノズル38aから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が400rpm以上1100rpm未満の場合(回転数400rpm以上1500rpm未満)においてエンジンコントロールユニット18は、30~35μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第1ミストノズル38aから霧状水生成管23の管内に30~35μmの範囲の平均粒子径の霧状水を噴霧させる。 Incidentally, when the rotation speed of the automobile engine 10 is 400 rpm or more and less than 1100 rpm, the engine control unit 18 supplies water mist in a range of 22 to 24 cc (preferably 23 cc) to the combustion chamber 37 of one cylinder 36. Water mist is sprayed from the first mist nozzle 38a toward the inside of the water mist generating pipe 23 so that water is supplied (sprayed). When the rotation speed of the engine 10 is 400 rpm or more and less than 1100 rpm (the rotation speed is 400 rpm or more and less than 1500 rpm), the engine control unit 18 detects that atomized water with an average particle diameter in the range of 30 to 35 μm enters the combustion chamber 37 of one cylinder 36. Water mist having an average particle diameter in the range of 30 to 35 μm is sprayed from the first mist nozzle 38a into the water mist generating pipe 23 so as to be supplied (sprayed).
 設定供給量の水素ガスが各シリンダー36の燃焼室37に給気(供給)され、設定給水量の霧状水が各シリンダー36の燃焼室367に給水(供給)された後、ピストン39がシリンダー36の下死点から上死点に向かって上昇する圧縮工程では、シリンダー36に給気された水素ガス及びシリンダー36に給水された霧状水(エアーを含む混合物)が圧縮される。圧縮された水素ガス及び霧状水(エアーを含む混合物)の圧力及び温度が増加する。尚、エンジン10の圧縮比は、14:1~15:1の範囲に設定されている。 After a set supply amount of hydrogen gas is supplied to the combustion chamber 37 of each cylinder 36 and a set water supply amount of water mist is supplied to the combustion chamber 367 of each cylinder 36, the piston 39 is pushed into the cylinder. In the compression stroke rising from the bottom dead center to the top dead center of 36, the hydrogen gas supplied to the cylinder 36 and the atomized water (mixture containing air) supplied to the cylinder 36 are compressed. The pressure and temperature of the compressed hydrogen gas and atomized water (mixture with air) increases. The compression ratio of the engine 10 is set within the range of 14:1 to 15:1.
 ピストン39がシリンダー36の上死点に上昇して圧縮が完了した爆発膨張工程では、エンジンコントロールユニット18がイグニッションコイル42を利用して点火プラグ40に高電圧を加え、点火プラグ40に火花を発生させる。爆発膨張工程では、ピストン39によって14:1~15:1の範囲の圧縮比に圧縮された燃焼室37の水素ガスが点火プラグ40の火花によって点火される。水素ガスが点火されると、水素ガスが高温に燃焼し、水素ガスの燃焼熱によってミスト状の霧状水が瞬時に蒸気化し、霧状水が蒸気爆発を起こし、水素ガスの燃焼と霧状水の蒸気化(蒸気爆発)とによってピストン39が押し下げられてクランクシャフトが回転する。自動車用エンジンで10は、水素ガスの燃焼エネルギーと蒸気化(蒸気爆発)した霧状水の蒸気エネルギーとが動力(回転力)に変換される。 In the explosion expansion process in which the piston 39 rises to the top dead center of the cylinder 36 and the compression is completed, the engine control unit 18 applies a high voltage to the ignition plug 40 using the ignition coil 42 to generate a spark in the ignition plug 40. Let In the explosive expansion process, the hydrogen gas in the combustion chamber 37 compressed by the piston 39 to a compression ratio in the range of 14:1 to 15:1 is ignited by the spark of the ignition plug 40 . When the hydrogen gas is ignited, the hydrogen gas burns at a high temperature, and the water mist instantly vaporizes due to the combustion heat of the hydrogen gas, and the water mist causes a steam explosion. The vaporization of water (steam explosion) pushes the piston 39 downward to rotate the crankshaft. The automobile engine 10 converts the combustion energy of hydrogen gas and the steam energy of vaporized (steam explosion) mist water into power (rotational force).
 ピストン39がシリンダー36の下死点から上死点に向かって再び上昇を開始し、ピストン39がシリンダー36の下死点から上死点に達するまでの間の排気工程では、排気バルブが開き、排気ポート48へ燃焼ガス(排気ガス)が流入し、燃焼ガスがシリンダー36の外へ排気される。燃焼ガス(排気ガス)は、排気ポート48からマフラー50を通って外部に排気される。排気工程が終了すると、再びピストン39が上死点から下死点に下降して吸気工程(4サイクル)に戻る。 In the exhaust process during which the piston 39 starts to rise again from the bottom dead center of the cylinder 36 toward the top dead center and reaches the top dead center from the bottom dead center of the cylinder 36, the exhaust valve opens and Combustion gas (exhaust gas) flows into the exhaust port 48 and is exhausted out of the cylinder 36 . Combustion gas (exhaust gas) is exhausted to the outside from the exhaust port 48 through the muffler 50 . When the exhaust stroke ends, the piston 39 descends again from the top dead center to the bottom dead center and returns to the intake stroke (4 cycles).
 自動車用エンジン10は、水素ガスノズル32から水素ガスがシリンダー36の燃焼室37に給気されるとともに、ミストノズル38a~38cからミスト状の霧状水がシリンダー36の燃焼室37に給水(噴霧)され、ピストン39によって所定の圧縮比に圧縮された燃焼室37の水素ガスを点火プラグ40によって点火し、水素ガスを燃焼させつつ水素ガスの燃焼熱でミスト状の霧状水を瞬時に蒸気化させ、水素ガスの燃焼エネルギーと蒸気化(蒸気爆発)した霧状水の蒸気エネルギーとを動力(回転力)に変換するから、水素ガスの燃焼エネルギーとともに、蒸気化(蒸気爆発)した霧状水の蒸気エネルギーをエンジン10の動力(回転力)に変換することができ、燃焼エネルギーと蒸気エネルギーとから所定のエンジン出力を得ることができるとともに、水素ガスの燃焼エネルギーと霧状水の蒸気エネルギーとによって自動車11を走行させることができる。 In the automobile engine 10, hydrogen gas is supplied from the hydrogen gas nozzle 32 to the combustion chamber 37 of the cylinder 36, and water mist is supplied (sprayed) to the combustion chamber 37 of the cylinder 36 from the mist nozzles 38a to 38c. Then, the hydrogen gas in the combustion chamber 37 compressed to a predetermined compression ratio by the piston 39 is ignited by the ignition plug 40, and while the hydrogen gas is being burned, the mist-like water mist is instantaneously vaporized by the combustion heat of the hydrogen gas. Since the combustion energy of the hydrogen gas and the steam energy of the vaporized (steam explosion) mist water are converted into power (rotational force), the combustion energy of the hydrogen gas and the vaporized (steam explosion) mist water can be converted into power (rotational force) of the engine 10, a predetermined engine output can be obtained from the combustion energy and the steam energy, and the combustion energy of the hydrogen gas and the steam energy of the mist water The automobile 11 can be driven by
 自動車用エンジン10では、そのエンジン回転数(rpm)が増加するにつれて燃焼室37に給水する霧状水の給水量(cc)が増加するとともに、そのエンジン回転数(rpm)が増加するにつれて霧状水生成管23の管内に噴霧する霧状水の平均粒子径(μm)が増加する。自動車11の走行中に、アクセルパダル55を踏み込むと、エンジンコントロールユニット18がアクセルペダル55のアクセル開度(踏み込み量)に対応する水素ガスの供給量信号(給気量信号)を燃料供給量コントロールユニット21に送信し、燃料供給量コントロールユニット21が供給量信号(給気量信号)従って所定の給気量の水素ガスを各水素ガスノズル32から各シリンダー36の燃焼室37に噴射させ、エンジン10の回転数が増加して自動車11が加速する。 In the automotive engine 10, as the engine speed (rpm) increases, the water supply amount (cc) of mist water supplied to the combustion chamber 37 increases, and as the engine speed (rpm) increases, the mist water supply increases. The average particle size (μm) of the mist water sprayed into the water generating pipe 23 increases. When the accelerator pedal 55 is depressed while the automobile 11 is running, the engine control unit 18 outputs a hydrogen gas supply amount signal (air supply amount signal) corresponding to the accelerator opening (depression amount) of the accelerator pedal 55 to the fuel supply amount control unit. 21, the fuel supply amount control unit 21 injects a predetermined amount of hydrogen gas from each hydrogen gas nozzle 32 into the combustion chamber 37 of each cylinder 36 according to the supply amount signal (air supply amount signal), and the engine 10 The number of revolutions increases and the automobile 11 accelerates.
 自動車用エンジン10では、自動車11の加速中に、エンジン回転数が1100rpm以上1500rpm未満になった場合、エンジンコントロールユニット18は、第1ミストノズル38aの電磁弁を開に維持し、第2及び第3ミストノズル38b,38cの電磁弁を閉に維持するとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、29~31ccの範囲(好ましくは30cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第1ミストノズル38aから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が1100rpm以上1500rpm未満の場合(回転数400rpm以上1500rpm未満)においてエンジンコントロールユニット18は、30~35μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第1ミストノズル38aから霧状水生成管23の管内に30~35μmの範囲の平均粒子径の霧状水を噴霧させる。 In the automobile engine 10, when the engine speed becomes 1100 rpm or more and less than 1500 rpm during acceleration of the automobile 11, the engine control unit 18 keeps the solenoid valve of the first mist nozzle 38a open, and keeps the second and second mist nozzles 38a open. 3 While maintaining the solenoid valves of the mist nozzles 38b and 38c closed, the water supply amount control unit 24 increases the opening of the water injection solenoid valve 34, and the water supply amount is in the range of 29 to 31 cc (preferably 30 cc). Water mist is sprayed from the first mist nozzle 38 a toward the inside of the water mist generating pipe 23 so that the water mist is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 . When the rotation speed of the engine 10 is 1,100 rpm or more and less than 1,500 rpm (the rotation speed is 400 rpm or more and less than 1,500 rpm), the engine control unit 18 detects that the atomized water with an average particle diameter in the range of 30 to 35 μm enters the combustion chamber 37 of one cylinder 36. Water mist having an average particle diameter in the range of 30 to 35 μm is sprayed from the first mist nozzle 38a into the water mist generating pipe 23 so as to be supplied (sprayed).
 自動車11の加速中に、自動車用エンジン10のエンジン回転数が1500rpm以上2000rpm未満になった場合、エンジンコントロールユニット18は、第2ミストノズル38bの電磁弁を開にし、第1及び第3ミストノズル38a,38cの電磁弁を閉にするとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、37~39ccの範囲(好ましくは38cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が1500rpm以上2000rpm未満の場合(1500rpm以上3500rpm未満)においてエンジンコントロールユニット18は、40~45μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に40~45μmの範囲の平均粒子径の霧状水を噴霧させる。 When the engine speed of the automobile engine 10 becomes 1500 rpm or more and less than 2000 rpm during acceleration of the automobile 11, the engine control unit 18 opens the solenoid valve of the second mist nozzle 38b, and the first and third mist nozzles The solenoid valves 38a and 38c are closed, and the water supply amount control unit 24 is caused to increase the opening of the water injection solenoid valve 34 so that the water supply amount in the range of 37 to 39 cc (preferably 38 cc) is 1. Water mist is sprayed from the second mist nozzle 38b toward the inside of the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chambers 37 of the two cylinders 36 . When the rotation speed of the engine 10 is 1500 rpm or more and less than 2000 rpm (1500 rpm or more and less than 3500 rpm), the engine control unit 18 supplies the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 40 to 45 μm ( Water mist having an average particle diameter in the range of 40 to 45 μm is sprayed from the second mist nozzle 38b into the pipe of the water mist generating pipe 23 so as to be sprayed.
 自動車11の加速中に、自動車用エンジン10のエンジン回転数が2000rpm以上2600rpm未満になった場合、エンジンコントロールユニット18は、第2ミストノズル38bの電磁弁を開に維持し、第1及び第3ミストノズル38a,38cの電磁弁を閉に維持するとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、45~47ccの範囲(好ましくは46cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が2000rpm以上2600rpm未満の場合(1500rpm以上3500rpm未満)においてエンジンコントロールユニット18は、40~45μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に40~45μmの範囲の平均粒子径の霧状水を噴霧させる。 When the engine speed of the automobile engine 10 becomes 2000 rpm or more and less than 2600 rpm during acceleration of the automobile 11, the engine control unit 18 keeps the solenoid valve of the second mist nozzle 38b open. While maintaining the solenoid valves of the mist nozzles 38a and 38c closed, the water supply amount control unit 24 is caused to increase the opening of the water injection solenoid valve 34, and the water supply amount is in the range of 45 to 47cc (preferably 46cc). Water mist is sprayed from the second mist nozzle 38b into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 . When the rotation speed of the engine 10 is 2000 rpm or more and less than 2600 rpm (1500 rpm or more and less than 3500 rpm), the engine control unit 18 supplies the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 40 to 45 μm ( Water mist having an average particle diameter in the range of 40 to 45 μm is sprayed from the second mist nozzle 38b into the pipe of the water mist generating pipe 23 so as to be sprayed.
 自動車11の加速中に、自動車用エンジン10のエンジン回転数が2600rpm以上3500rpm未満になった場合、エンジンコントロールユニット18は、第2ミストノズル38bの電磁弁を開に維持し、第1及び第3ミストノズル38a,38bの電磁弁を閉に維持するとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、53~55ccの範囲(好ましくは54cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が2600rpm以上3500rpm未満の場合(1500rpm以上3500rpm未満)においてエンジンコントロールユニット18は、40~45μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に40~45μmの範囲の平均粒子径の霧状水を噴霧させる。 When the engine speed of the automobile engine 10 becomes 2600 rpm or more and less than 3500 rpm during acceleration of the automobile 11, the engine control unit 18 keeps the solenoid valve of the second mist nozzle 38b open. While maintaining the solenoid valves of the mist nozzles 38a and 38b closed, the water supply amount control unit 24 is caused to increase the opening of the water injection solenoid valve 34, and the water supply amount is in the range of 53 to 55 cc (preferably 54 cc). Water mist is sprayed from the second mist nozzle 38b into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 . When the rotation speed of the engine 10 is 2600 rpm or more and less than 3500 rpm (1500 rpm or more and less than 3500 rpm), the engine control unit 18 supplies the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 40 to 45 μm ( Water mist having an average particle diameter in the range of 40 to 45 μm is sprayed from the second mist nozzle 38b into the pipe of the water mist generating pipe 23 so as to be sprayed.
 自動車11の加速中に、自動車用エンジン10のエンジン回転数が3500rpm以上4500rpm未満になった場合、エンジンコントロールユニット18は、第3ミストノズル38cの電磁弁を開にし、第1及び第2ミストノズル38a,38bの電磁弁を閉にするとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、60~62ccの範囲(好ましくは61cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第3ミストノズル38cから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が3500rpm以上4500rpm未満の場合(回転数3500rpm以上)においてエンジンコントロールユニット18は、50~55μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第3ミストノズル38cから霧状水生成管23の管内に50~55μmの範囲の平均粒子径の霧状水を噴霧させる。 When the engine speed of the automobile engine 10 becomes 3500 rpm or more and less than 4500 rpm during acceleration of the automobile 11, the engine control unit 18 opens the solenoid valve of the third mist nozzle 38c, and the first and second mist nozzles The electromagnetic valves 38a and 38b are closed, and the opening of the water injection electromagnetic valve 34 is increased by the water supply amount control unit 24 so that the water supply amount in the range of 60 to 62 cc (preferably 61 cc) is 1. Water mist is sprayed from the third mist nozzle 38c into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chambers 37 of the two cylinders 36 . When the rotation speed of the engine 10 is 3500 rpm or more and less than 4500 rpm (the rotation speed is 3500 rpm or more), the engine control unit 18 feeds the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 50 to 55 μm ( Water mist having an average particle diameter in the range of 50 to 55 μm is sprayed from the third mist nozzle 38c into the pipe of the water mist generating pipe 23 so as to be sprayed.
 自動車11の加速中に、自動車用エンジン10のエンジン回転数が4500rpm以上6000rpm未満になった場合、エンジンコントロールユニット18は、第3ミストノズル38cの電磁弁を開に維持し、第1及び第2ミストノズル38a,38bの電磁弁を閉に維持するとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、68~70ccの範囲(好ましくは69cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第3ミストノズル38cから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が4500rpm以上6000rpm未満の場合(回転数3500rpm以上)においてエンジンコントロールユニット18は、50~55μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第3ミストノズル38cから霧状水生成管23の管内に50~55μmの範囲の平均粒子径の霧状水を噴霧させる。 When the engine speed of the automobile engine 10 becomes 4500 rpm or more and less than 6000 rpm during acceleration of the automobile 11, the engine control unit 18 keeps the electromagnetic valve of the third mist nozzle 38c open, and While maintaining the solenoid valves of the mist nozzles 38a and 38b closed, the water supply amount control unit 24 increases the opening of the water injection solenoid valve 34, and the water supply amount in the range of 68 to 70 cc (preferably 69 cc). Water mist is sprayed from the third mist nozzle 38c into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 . When the rotation speed of the engine 10 is 4500 rpm or more and less than 6000 rpm (the rotation speed is 3500 rpm or more), the engine control unit 18 supplies the combustion chamber 37 of one cylinder 36 with atomized water having an average particle diameter in the range of 50 to 55 μm ( Water mist having an average particle diameter in the range of 50 to 55 μm is sprayed from the third mist nozzle 38c into the pipe of the water mist generating pipe 23 so as to be sprayed.
 自動車11の加速中に、自動車用エンジン10のエンジン回転数が6000rpm以上になった場合、エンジンコントロールユニット18は、第3ミストノズル38cの電磁弁を開に維持し、第1及び第2ミストノズルの38a,38b電磁弁を閉に維持するとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、76~78ccの範囲(好ましくは77cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第3ミストノズル38cから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が6000rpm以上の場合(回転数3500rpm以上)においてエンジンコントロールユニット18は、50~55μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第3ミストノズル38cから霧状水生成管23の管内に50~55μmの範囲の平均粒子径の霧状水を噴霧させる。 When the engine speed of the automobile engine 10 reaches 6000 rpm or more during acceleration of the automobile 11, the engine control unit 18 keeps the electromagnetic valve of the third mist nozzle 38c open, and the first and second mist nozzles 38a and 38b are kept closed, and the water supply amount control unit 24 is caused to increase the opening of the water injection electromagnetic valve 34 so that the water supply amount in the range of 76 to 78 cc (preferably 77 cc) is sprayed. Water mist is sprayed from the third mist nozzle 38c into the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 . When the rotation speed of the engine 10 is 6000 rpm or more (3500 rpm or more), the engine control unit 18 feeds (sprays) atomized water having an average particle diameter in the range of 50 to 55 μm to the combustion chamber 37 of one cylinder 36. Water mist having an average particle diameter in the range of 50 to 55 μm is sprayed into the water mist generating pipe 23 from the third mist nozzle 38c.
 クルーズコントロールや定車速に達してエンジン出力を下げた場合、例えば、自動車用エンジン10のエンジン回転数が6000rpm以上から1500rpm以上2000rpm未満になった場合、エンジンコントロールユニット18は、第2ミストノズル38bの電磁弁を開にし、第1及び第3ミストノズル38a,38cの電磁弁を閉にするとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を減少させ、37~39ccの範囲(好ましくは38cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が6000rpm以上から1500rpm以上2000rpm未満になった場合(1500rpm以上3500rpm未満)においてエンジンコントロールユニット18は、40~45μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に40~45μmの範囲の平均粒子径の霧状水を噴霧させる。 When the cruise control or the constant vehicle speed is reached and the engine output is reduced, for example, when the engine speed of the automobile engine 10 changes from 6000 rpm or more to 1500 rpm or more and less than 2000 rpm, the engine control unit 18 switches the second mist nozzle 38b. The electromagnetic valves are opened, the electromagnetic valves of the first and third mist nozzles 38a and 38c are closed, and the water supply amount control unit 24 is caused to reduce the opening of the water injection electromagnetic valve 34 to a range of 37 to 39 cc ( Preferably, 38 cc) of water mist is supplied (sprayed) to the combustion chamber 37 of one cylinder 36, and water mist is supplied from the second mist nozzle 38b toward the inside of the water mist generating pipe 23. to be sprayed. When the rotation speed of the engine 10 changes from 6000 rpm or more to 1500 rpm or more and less than 2000 rpm (1500 rpm or more and less than 3500 rpm), the engine control unit 18 detects that the atomized water with an average particle diameter in the range of 40 to 45 μm is burned in one cylinder 36. Water mist having an average particle diameter in the range of 40 to 45 μm is sprayed from the second mist nozzle 38b into the pipe of the water mist generating pipe 23 so as to supply water (spray) to the chamber 37 .
 また、自動車用エンジン10のエンジン回転数が1500rpm以上2000rpm未満から400rpm以上1100rpm未満になった場合、エンジンコントロールユニット18は、第1ミストノズル38aの電磁弁を開にし、第2及び第3ミストノズル38b,38cの電磁弁を閉にするとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を減少させ、22~24ccの範囲(好ましくは23cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第1ミストノズル38aから霧状水生成管23の管内に向かって霧状水を噴霧させる。エンジン10の回転数が1500rpm以上2000rpm未満から400rpm以上1100rpm未満になった場合(回転数400rpm以上1500rpm未満)においてエンジンコントロールユニット18は、30~35μmの範囲の平均粒子径の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第1ミストノズル38aから霧状水生成管23の管内に30~35μmの範囲の平均粒子径の霧状水を噴霧させる。 Further, when the engine speed of the automobile engine 10 changes from 1500 rpm or more and less than 2000 rpm to 400 rpm or more and less than 1100 rpm, the engine control unit 18 opens the electromagnetic valve of the first mist nozzle 38a, and the second and third mist nozzles. The electromagnetic valves 38b and 38c are closed, and the opening of the water injection electromagnetic valve 34 is decreased by the water supply amount control unit 24 so that the water supply amount in the range of 22 to 24 cc (preferably 23 cc) is 1. Water mist is sprayed from the first mist nozzle 38 a toward the interior of the water mist generating pipe 23 so that water is supplied (sprayed) to the combustion chambers 37 of the two cylinders 36 . When the rotation speed of the engine 10 changes from 1500 rpm or more and less than 2000 rpm to 400 rpm or more and less than 1100 rpm (rotation speed is 400 rpm or more and less than 1500 rpm), the engine control unit 18 generates a mist of water with an average particle diameter in the range of 30 to 35 μm. Water mist having an average particle diameter in the range of 30 to 35 μm is sprayed from the first mist nozzle 38 a into the water mist generating pipe 23 so as to be supplied (sprayed) to the combustion chamber 37 of the cylinder 36 .
 自動車用エンジン10の稼働中に、温度センサー46から送信された燃焼室温度が400℃に達した場合、エンジンコントロールユニット18は、燃焼室37の燃焼温度が上限温度に達したと判断し、1つのシリンダー36の燃焼室37に給水する霧状水の給水量を増加させ、すべてのシリンダー36の燃焼室37の燃焼温度を上限温度(400℃)以下に保持する。エンジンコントロールユニット18は、回転数に応じた給水量に1~4ccを加えた給水量の霧状水をミストノズル38から1つのシリンダー36の燃焼室37に給水する。 When the combustion chamber temperature transmitted from the temperature sensor 46 reaches 400° C. during operation of the automobile engine 10, the engine control unit 18 determines that the combustion temperature of the combustion chamber 37 has reached the upper limit temperature, The amount of water mist supplied to the combustion chambers 37 of one cylinder 36 is increased to keep the combustion temperature of the combustion chambers 37 of all cylinders 36 below the upper limit temperature (400°C). The engine control unit 18 feeds the combustion chamber 37 of one cylinder 36 from the mist nozzle 38 with a water supply amount corresponding to the rotation speed plus 1 to 4 cc.
 例えば、自動車用エンジン10のエンジン回転数が2600rpm以上3500rpm未満のときに温度センサー46から送信された燃焼室温度が400℃に達した場合、エンジンコントロールユニット18は、第2ミストノズル38bの電磁弁を開に維持し、第1及び第3ミストノズル38a,38bの電磁弁を閉に維持するとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、53~55cc+(1~4cc)(好ましくは54cc+2~3cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第2ミストノズル38bから霧状水生成管23の管内に向かって霧状水を噴霧させる。尚、第2ミストノズル38bから霧状水生成管23の管内に40~45μmの範囲の平均粒子径の霧状水が噴霧される。 For example, when the engine speed of the automobile engine 10 is 2600 rpm or more and less than 3500 rpm, when the combustion chamber temperature transmitted from the temperature sensor 46 reaches 400° C., the engine control unit 18 controls the solenoid valve of the second mist nozzle 38b. While keeping the solenoid valves of the first and third mist nozzles 38a and 38b closed, the water supply amount control unit 24 increases the opening of the water injection solenoid valve 34 to 53 to 55 cc + (1 4 cc) (preferably 54 cc + 2 to 3 cc) of water mist is supplied (sprayed) to the combustion chamber 37 of one cylinder 36 from the second mist nozzle 38b into the water mist generating pipe 23. spray misty water toward In addition, water mist having an average particle diameter in the range of 40 to 45 μm is sprayed into the water mist generating pipe 23 from the second mist nozzle 38b.
 又、自動車用エンジン10のエンジン回転数が6000rpm以上のときに温度センサー46から送信された燃焼室温度が400℃に達した場合、エンジンコントロールユニット18は、第3ミストノズル38cの電磁弁を開に維持し、第1及び第2ミストノズル38a,38bの電磁弁を閉に維持するとともに、給水量コントロールユニット24に水噴射用電磁弁34の開度を増加させ、76~78cc+(1~4cc)(好ましくは77cc+2~3cc)の給水量の霧状水が1つのシリンダー36の燃焼室37に給水(噴霧)されるように、第3ミストノズル38cから霧状水生成管23の管内に向かって霧状水を噴霧させる。尚、第3ミストノズル38cから霧状水生成管23の管内に50~55μmの範囲の平均粒子径の霧状水が噴霧される。 Further, when the engine speed of the automobile engine 10 is 6000 rpm or more and the temperature of the combustion chamber transmitted from the temperature sensor 46 reaches 400° C., the engine control unit 18 opens the solenoid valve of the third mist nozzle 38c. , the solenoid valves of the first and second mist nozzles 38a and 38b are kept closed, and the water supply amount control unit 24 increases the opening of the water injection solenoid valve 34 to 76 to 78 cc + (1 to 4 cc ) (preferably 77 cc + 2 to 3 cc) of water mist is supplied (sprayed) to the combustion chamber 37 of one cylinder 36, from the third mist nozzle 38c toward the inside of the water mist generating pipe 23. to spray mist water. Further, water mist having an average particle diameter in the range of 50 to 55 μm is sprayed into the water mist generating pipe 23 from the third mist nozzle 38c.
 自動車用エンジン10は、エンジン回転数(rpm)の増加に伴ってシリンダー36の燃焼室37に給水する霧状水の給水量(cc)を増加させることで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジン10をスムースに低速回転から高速回転に移行させることができる。 The automotive engine 10 increases the water supply amount (cc) of mist water supplied to the combustion chamber 37 of the cylinder 36 as the engine speed (rpm) increases, thereby increasing the engine speed (rpm). It is possible to increase the steam energy of the mist water vaporized as it accompanies, and it is possible to increase the engine output (kW) as the engine speed (rpm) increases, and the engine 10 can be smoothly operated from low speed rotation. It can be shifted to high speed rotation.
 例えば、エンジン回転数が400rpm~2600rpmへ増加するに伴って燃焼室37に給水する霧状水の給水量を22cc~47ccへ増加させることで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジン10をスムースに低速回転(400rpm以上1100rpm未満)から中速回転(2000rpm以上2600rpm未満)に移行させることができる。 For example, as the engine speed (rpm) increases from 400 rpm to 2600 rpm, the water supply amount of mist water supplied to the combustion chamber 37 is increased from 22 cc to 47 cc. The steam energy of the atomized water can be increased, the engine output (kW) can be increased as the engine speed (rpm) increases, and the engine 10 can be smoothly rotated at low speeds (400 rpm or more and less than 1100 rpm). ) to medium speed rotation (2000 rpm or more and less than 2600 rpm).
 又、エンジン回転数が2600rpm~6000rpm以上へ増加するに伴って燃焼室37に給水する霧状水の給水量を52cc~77ccへ増加させることで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジン10をスムースに中速回転(2600rpm以上3500rpm未満)から高速回転(6000rpm以上)に移行させることができる。 Also, as the engine speed increases from 2600 rpm to 6000 rpm or more, the water supply amount of the mist water supplied to the combustion chamber 37 is increased to 52 cc to 77 cc, so that the engine speed (rpm) increases. The steam energy of the vaporized mist water can be increased, and the engine output (kW) can be increased as the engine speed (rpm) increases. 3500 rpm or less) to high speed rotation (6000 rpm or more).
 自動車用エンジン10は、エンジン回転数(rpm)の増加に伴って霧状水生成管23の管内に噴霧する霧状水の平均粒子径(μm)が増加することで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジン10をスムースに低速回転から高速回転に移行させることができる。 In the automotive engine 10, the average particle diameter (μm) of mist water sprayed into the water mist generating pipe 23 increases as the engine speed (rpm) increases. The steam energy of the vaporized mist water can be increased as the is increased, the engine output (kW) can be increased as the engine speed (rpm) is increased, and the engine 10 can be operated smoothly. It is possible to shift from low speed rotation to high speed rotation.
 例えば、回転数400rpm以上1500rpm未満における第1ミストノズル38aから噴霧される霧状水の平均粒子径を30~35μmの範囲とし、回転数1500rpm以上3500rpm未満における第2ミストノズル38bから噴霧される霧状水の平均粒子径を40~45μmの範囲とするとともに、回転数3500rpm以上における第3ミストノズル38cから噴霧される霧状水の平均粒子径を50~55μmの範囲とすることで、エンジン回転数(rpm)の増加に伴うように蒸気化した霧状水の蒸気エネルギーを増加させることでき、エンジン回転数(rpm)の増加に伴ってエンジン出力(kW)を増加させることができるとともに、エンジン10をスムースに低速回転(400rpm)から高速回転(3500rpm以上)に移行させることができる。 For example, the average particle size of the mist water sprayed from the first mist nozzle 38a at the rotation speed of 400 rpm or more and less than 1500 rpm is in the range of 30 to 35 μm, and the mist sprayed from the second mist nozzle 38b at the rotation speed of 1500 rpm or more and less than 3500 rpm. By setting the average particle diameter of the mist water to the range of 40 to 45 μm and the average particle diameter of the mist water sprayed from the third mist nozzle 38c at the rotation speed of 3500 rpm or more to the range of 50 to 55 μm, the engine rotation The steam energy of the vaporized mist water can be increased as the engine speed (rpm) increases, and the engine power (kW) can be increased as the engine speed (rpm) increases. 10 can be smoothly shifted from low speed rotation (400 rpm) to high speed rotation (3500 rpm or higher).
 自動車用エンジン10は、シリンダー36の燃焼室37の温度が400℃(上限温度)に達したときに1つのシリンダー36の燃焼室37に給水する霧状水の給水量を1~4cc増加させることで、増加させた霧状水によって燃焼室を冷却することができ、燃焼室37の温度を上限温度以下に下げることができるとともに、エンジン10の不用意なオーバーヒートを防ぐことができる。 When the temperature of the combustion chamber 37 of the cylinder 36 reaches 400° C. (upper limit temperature), the automobile engine 10 increases the amount of water mist supplied to the combustion chamber 37 of one cylinder 36 by 1 to 4 cc. , the combustion chamber can be cooled by the increased mist water, the temperature of the combustion chamber 37 can be lowered below the upper limit temperature, and accidental overheating of the engine 10 can be prevented.
 自動車用エンジン10は、シリンダー36の燃焼室37の温度が400℃(上限温度)を超過すると、燃焼室37に給水された霧状水が給水された瞬間に蒸発し、水素ガスの燃焼と霧状水の蒸気化とのタイミングが合わず、蒸気エネルギーを動力に変換することができないが、燃焼室37の上限燃焼温度が400℃に保持されるから、水素ガスを燃焼させと同時にミスト状の霧状水を蒸気化させることができ、水素ガスの燃焼エネルギーとともに蒸気化した霧状水の蒸気エネルギーをエンジン10の動力(回転力)に確実に変換することができる。 In the automobile engine 10, when the temperature of the combustion chamber 37 of the cylinder 36 exceeds 400° C. (upper limit temperature), the atomized water supplied to the combustion chamber 37 evaporates at the moment it is supplied, and hydrogen gas is burned and misted. Although the timing with the vaporization of liquid water does not match, the steam energy cannot be converted into power, but since the upper limit combustion temperature of the combustion chamber 37 is maintained at 400° C., hydrogen gas is burned and mist is generated at the same time. The water mist can be vaporized, and the steam energy of the vaporized water mist can be reliably converted into the power (rotational force) of the engine 10 together with the combustion energy of the hydrogen gas.
 10  自動車用エンジン
 11  自動車
 12  フロントエリア(エンジンルーム)
 13  中間エリア
 14  リアエリア(タンクルーム)
 15  水素ガスタンク(高圧タンク)
 16  水ポンプユニット
 17  水タンク
 18  エンジンコントロールユニット
 19  アイドリング調整バルブ
 20  圧力計
 21  燃料供給量コントロールユニット
 22  水素ガスノズルユニット
 23  霧状水生成管
 24  給水量コントロールユニット
 25  サブ電磁弁
 26  低圧サブタンク
 27  逆止弁
 28  減圧弁
 29a~29c 配管
 30  ガスブロック
 31  チェックバルブ
 32  水素ガスノズル
 33a~33c 配管
 34  水噴射用電磁弁
 35  ガス圧調整器
 36  シリンダー
 37  燃焼室
 38  ミストノズル(水噴射ノズル)
 38a 第1ミストノズル
 38b 第2ミストノズル
 38c 第3ミストノズル
 39  ピストン
 40  点火プラグ
 41  CVTCバルブ41
 42  イグニッションコイル
 43  信号線
 44  クランク角センサー
 45  POSセンサー
 46  温度センサー
 47  ノックセンサー
 48  排気ポート
 49  フロントO2センサー,リアO2センサー
 50  マフラー
 51  エアーフィルター
 52  エアーフローメーター
 53  電子制御スロットル
 54  スロットル(絞り弁)
 55  アクセルペダル
 56  アクセルワークユニット
 57  噴霧面
 58  噴霧口
 59  給水ポンプ
 60  プレッシャーレギュレーター(水圧力調整装置)
 61  フィルター
 
10 Automotive engine 11 Automobile 12 Front area (engine room)
13 middle area 14 rear area (tank room)
15 Hydrogen gas tank (high pressure tank)
16 water pump unit 17 water tank 18 engine control unit 19 idling adjustment valve 20 pressure gauge 21 fuel supply amount control unit 22 hydrogen gas nozzle unit 23 misty water generating pipe 24 water supply amount control unit 25 sub solenoid valve 26 low pressure sub tank 27 check valve 28 pressure reducing valve 29a to 29c piping 30 gas block 31 check valve 32 hydrogen gas nozzle 33a to 33c piping 34 water injection solenoid valve 35 gas pressure regulator 36 cylinder 37 combustion chamber 38 mist nozzle (water injection nozzle)
38a first mist nozzle 38b second mist nozzle 38c third mist nozzle 39 piston 40 spark plug 41 CVTC valve 41
42 ignition coil 43 signal line 44 crank angle sensor 45 POS sensor 46 temperature sensor 47 knock sensor 48 exhaust port 49 front O2 sensor, rear O2 sensor 50 muffler 51 air filter 52 air flow meter 53 electronically controlled throttle 54 throttle (throttle valve)
55 accelerator pedal 56 accelerator work unit 57 spray surface 58 spray port 59 water supply pump 60 pressure regulator (water pressure adjusting device)
61 filters

Claims (11)

  1.  所定容積のシリンダーと、前記シリンダーの燃焼室を往復動するピストンと、前記シリンダーの燃焼室の燃料に点火する点火プラグとを有し、自動車に搭載されて前記燃料として水素ガスを利用する自動車用エンジンにおいて、
     前記自動車用エンジンが、前記シリンダーの燃焼室に前記水素ガスを直接噴射する水素ガスノズルと、前記シリンダーの燃焼室にミスト状の霧状水を給水するミストノズルとを備え、前記エンジンの圧縮比が、14:1~15:1の範囲にあり、
     前記自動車用エンジンでは、前記水素ガスノズルから水素ガスが前記シリンダーの燃焼室に給気されるとともに、前記ミストノズルからミスト状の霧状水が前記シリンダーの燃焼室に給水され、前記ピストンによって前記圧縮比に圧縮された燃焼室の水素ガスを前記点火プラグによって点火し、前記水素ガスを燃焼させつつ該水素ガスの燃焼熱で前記ミスト状の霧状水を蒸気化させ、前記水素ガスの燃焼エネルギーと前記蒸気化した霧状水の蒸気エネルギーとを動力に変換することを特徴とする自動車用エンジン。
    An automobile having a cylinder with a predetermined volume, a piston that reciprocates in the combustion chamber of the cylinder, and a spark plug that ignites the fuel in the combustion chamber of the cylinder, and that is mounted on the automobile and uses hydrogen gas as the fuel. in the engine,
    The automobile engine includes a hydrogen gas nozzle that directly injects the hydrogen gas into the combustion chamber of the cylinder, and a mist nozzle that supplies mist water to the combustion chamber of the cylinder, and the compression ratio of the engine is , in the range of 14:1 to 15:1,
    In the automobile engine, hydrogen gas is supplied from the hydrogen gas nozzle to the combustion chamber of the cylinder, water mist is supplied to the combustion chamber of the cylinder from the mist nozzle, and the compression is performed by the piston. The ignition plug ignites the hydrogen gas in the combustion chamber that has been compressed to a specific ratio, and while the hydrogen gas is being burned, the misty water is vaporized by the combustion heat of the hydrogen gas, and the combustion energy of the hydrogen gas is generated. and the vapor energy of the vaporized mist water into power.
  2.  前記自動車用エンジンでは、そのエンジン回転数(rpm)が増加するにつれて前記燃焼室に給水する霧状水の給水量(cc)を増加させる請求項1に記載の自動車用エンジン。 The automobile engine according to claim 1, wherein the amount (cc) of mist water supplied to the combustion chamber is increased as the engine speed (rpm) increases.
  3.  前記自動車用エンジンの回転数400rpm以上1100rpm未満における1つの前記シリンダーの燃焼室に給水する霧状水の給水量が、22~24ccの範囲、前記回転数1100rpm以上1500rpm未満における1つの前記シリンダーの燃焼室に給水する霧状水の給水量が、29~31ccの範囲、前記回転数1500rpm以上2000rpm未満における1つの前記シリンダーの燃焼室に給水する霧状水の給水量が、37~39ccの範囲、前記回転数2000rpm以上2600rpm未満における1つの前記シリンダーの燃焼室に給水する霧状水の給水量が、45~47ccの範囲にある請求項2に記載の自動車用エンジン。 The amount of mist water supplied to the combustion chamber of one of the cylinders at a rotation speed of 400 rpm or more and less than 1100 rpm of the automobile engine is in the range of 22 to 24 cc, and the combustion of the one cylinder at the rotation speed of 1100 rpm or more and less than 1500 rpm. The amount of water mist supplied to the chamber is in the range of 29 to 31 cc, and the amount of water mist supplied to the combustion chamber of one of the cylinders at the rotational speed of 1500 rpm or more and less than 2000 rpm is in the range of 37 to 39 cc. 3. The automobile engine according to claim 2, wherein the amount of water mist supplied to the combustion chamber of one of the cylinders at the rotational speed of 2000 rpm or more and less than 2600 rpm is in the range of 45 to 47 cc.
  4.  前記自動車用エンジンの回転数2600rpm以上3500rpm未満における1つの前記シリンダーの燃焼室に給水する霧状水の給水量が、53~55ccの範囲、前記回転数3500rpm以上4500rpm未満における1つの前記シリンダーの燃焼室に給水する霧状水の給水量が、60~62ccの範囲、前記回転数4500rpm以上6000rpm未満における1つの前記シリンダーの燃焼室に給水する霧状水の給水量が、68~70ccの範囲、前記回転数6000rpm以上における1つの前記シリンダーの燃焼室に給水する霧状水の給水量が、76~78ccの範囲にある請求項2又は請求項3に記載の自動車用エンジン。 The amount of mist water supplied to the combustion chamber of one of the cylinders at a rotation speed of 2600 rpm or more and less than 3500 rpm of the automobile engine is in the range of 53 to 55 cc, and the combustion of the one cylinder at the rotation speed of 3500 rpm or more and less than 4500 rpm. The amount of water mist supplied to the chamber is in the range of 60 to 62 cc, and the amount of water mist supplied to the combustion chamber of one of the cylinders at the rotational speed of 4500 rpm or more and less than 6000 rpm is in the range of 68 to 70 cc. 4. The automobile engine according to claim 2, wherein the water supply amount of mist water supplied to the combustion chamber of one of the cylinders at the rotational speed of 6000 rpm or more is in the range of 76 to 78 cc.
  5.  前記自動車用エンジンが、前記シリンダーに設置されて前記燃焼室の燃焼温度を計測する温度センサーを含み、前記自動車用エンジンでは、前記温度センサーが計測した前記燃焼室の燃焼温度が上限温度に達したときに1つの前記シリンダーの燃焼室に給水する霧状水の給水量を増加させ、前記燃焼室の燃焼温度を上限温度以下に保持する請求項1ないし請求項4いずれかに記載の自動車用エンジン。 The automobile engine includes a temperature sensor installed in the cylinder to measure the combustion temperature of the combustion chamber, and in the automobile engine, the combustion temperature of the combustion chamber measured by the temperature sensor reaches an upper limit temperature. 5. The automobile engine according to any one of claims 1 to 4, wherein the amount of water mist supplied to the combustion chamber of one of the cylinders is occasionally increased to keep the combustion temperature of the combustion chamber below the upper limit temperature. .
  6.  前記燃焼室の上限燃焼温度が、400℃であり、前記自動車用エンジンでは、前記温度センサーが計測した前記燃焼室の燃焼温度が400℃に達したときに、前記回転数に応じた給水量に1~4ccを加えた給水量の霧状水を1つの前記シリンダーの燃焼室に給水する請求項5に記載の自動車用エンジン。 The upper limit combustion temperature of the combustion chamber is 400° C., and in the automobile engine, when the combustion temperature of the combustion chamber measured by the temperature sensor reaches 400° C., the water supply amount corresponding to the rotation speed is reduced. 6. An automotive engine as claimed in claim 5, wherein a water supply amount of 1-4 cc plus atomized water is supplied to the combustion chamber of one said cylinder.
  7.  前記自動車用エンジンが、前記ミスト状の霧状水を生成する霧状水生成管を含み、前記霧状水生成管が、そこに流入するエアーに含まれる不純物を除去するエアーフィルターと、前記エアーフィルターの下流に設置されて前記エアーの流量を調節する電子制御スロットルとを備え、前記ミストノズルが、前記霧状水生成管における前記電子制御スロットルの下流に設置されて該霧状水生成管の管内に前記ミスト状の霧状水を噴霧する請求項1ないし請求項6いずれかに記載の自動車用エンジン。 The automobile engine includes a water mist generating pipe that generates the mist water mist, the water mist generating pipe includes an air filter that removes impurities contained in the air that flows into the water mist generating pipe; an electronically controlled throttle installed downstream of the filter to adjust the flow rate of the air; and the mist nozzle is installed downstream of the electronically controlled throttle in the water mist generating pipe. 7. An automobile engine according to any one of claims 1 to 6, wherein the water mist is sprayed into the pipe.
  8.  前記ミストノズルが、前記霧状水生成管の管内に向かって半円の円弧を画く噴霧面を有し、前記ミスト状の霧状水を噴霧する複数の噴霧口が、前記噴霧面に穿孔されている請求項7に記載の自動車用エンジン。 The mist nozzle has a spray surface forming a semicircular arc toward the inside of the water mist generating tube, and a plurality of spray ports for spraying the water mist are drilled in the spray surface. 8. The automotive engine of claim 7.
  9.  前記ミストノズルから噴霧される霧状水の平均粒子径が、30~55μmの範囲にある請求項1ないし請求項8いずれかに記載の自動車用エンジン。 The automobile engine according to any one of claims 1 to 8, wherein the average particle size of mist water sprayed from the mist nozzle is in the range of 30 to 55 µm.
  10.  前記自動車用エンジンでは、そのエンジン回転数(rpm)が増加するにつれて前記霧状水生成管の管内に噴霧する霧状水の平均粒子径(μm)を増加させる請求項9に記載の自動車用エンジン。 10. The automobile engine according to claim 9, wherein the average particle size (μm) of the water mist sprayed into the water mist generating tube increases as the engine speed (rpm) increases. .
  11.  前記自動車用エンジンの回転数400rpm以上1500rpm未満における前記ミストノズルから噴霧される霧状水の平均粒子径が、30~35μmの範囲、前記回転数1500rpm以上3500rpm未満における前記ミストノズルから噴霧される霧状水の平均粒子径が、40~45μmの範囲、前記回転数3500rpm以上における前記ミストノズルから噴霧される霧状水の平均粒子径が、50~55μmの範囲にある請求項10に記載の自動車用エンジン。 The mist sprayed from the mist nozzle has an average particle size of 30 to 35 μm at a rotation speed of 400 rpm or more and less than 1500 rpm, and the mist is sprayed from the mist nozzle at a rotation speed of 1500 rpm or more and less than 3500 rpm. 11. The automobile according to claim 10, wherein the average particle size of the water mist is in the range of 40 to 45 μm, and the average particle size of the mist water sprayed from the mist nozzle at the rotation speed of 3500 rpm or more is in the range of 50 to 55 μm. for engine.
PCT/JP2022/047160 2021-12-23 2022-12-21 Automobile engine WO2023120588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-209003 2021-12-23
JP2021209003A JP2023093884A (en) 2021-12-23 2021-12-23 Automobile engine

Publications (1)

Publication Number Publication Date
WO2023120588A1 true WO2023120588A1 (en) 2023-06-29

Family

ID=86902649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047160 WO2023120588A1 (en) 2021-12-23 2022-12-21 Automobile engine

Country Status (2)

Country Link
JP (1) JP2023093884A (en)
WO (1) WO2023120588A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882005A (en) * 1981-11-12 1983-05-17 Kenji Watanabe Hydrogen gas engine
JP2002155810A (en) * 2000-11-24 2002-05-31 Mutsuo Nozawa Internal combustion engine
JP2003293859A (en) * 2002-04-01 2003-10-15 Ishikawajima Harima Heavy Ind Co Ltd Energy supply system
JP2008057424A (en) * 2006-08-31 2008-03-13 Tomoki Yamazaki Two stroke engine exclusively using hydrogen gas
JP2013024094A (en) * 2011-07-19 2013-02-04 Mitsubishi Motors Corp Knocking suppressing method of engine and device therefor
JP2016501334A (en) * 2012-11-20 2016-01-18 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Internally cooled exhaust gas recirculation system and method for internal combustion engines
JP2016118109A (en) * 2014-12-18 2016-06-30 トヨタ自動車株式会社 Hydrogen engine system
US20180274488A1 (en) * 2017-03-21 2018-09-27 Ford Global Technologies, Llc Method and system for engine water injection
JP2019105224A (en) * 2017-12-13 2019-06-27 マツダ株式会社 Premixing compression ignition type engine
JP2021110294A (en) * 2020-01-10 2021-08-02 トヨタ自動車株式会社 Intake structure for internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882005A (en) * 1981-11-12 1983-05-17 Kenji Watanabe Hydrogen gas engine
JP2002155810A (en) * 2000-11-24 2002-05-31 Mutsuo Nozawa Internal combustion engine
JP2003293859A (en) * 2002-04-01 2003-10-15 Ishikawajima Harima Heavy Ind Co Ltd Energy supply system
JP2008057424A (en) * 2006-08-31 2008-03-13 Tomoki Yamazaki Two stroke engine exclusively using hydrogen gas
JP2013024094A (en) * 2011-07-19 2013-02-04 Mitsubishi Motors Corp Knocking suppressing method of engine and device therefor
JP2016501334A (en) * 2012-11-20 2016-01-18 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Internally cooled exhaust gas recirculation system and method for internal combustion engines
JP2016118109A (en) * 2014-12-18 2016-06-30 トヨタ自動車株式会社 Hydrogen engine system
US20180274488A1 (en) * 2017-03-21 2018-09-27 Ford Global Technologies, Llc Method and system for engine water injection
JP2019105224A (en) * 2017-12-13 2019-06-27 マツダ株式会社 Premixing compression ignition type engine
JP2021110294A (en) * 2020-01-10 2021-08-02 トヨタ自動車株式会社 Intake structure for internal combustion engine

Also Published As

Publication number Publication date
JP2023093884A (en) 2023-07-05

Similar Documents

Publication Publication Date Title
US5718194A (en) In-cylinder water injection engine
CN106499531B (en) A kind of twin-jet nozzle gas/liquid double fuel in-cylinder direct-jet internal combustion engine and control method
CN106481462B (en) A kind of methanol engine cold start system
US4483305A (en) Fuel vaporization device
US20100077986A1 (en) Steam Combustion Engine
CN104421027B (en) System and method for running the engine of burning liquid petroleum gas
HU193154B (en) Internal combustion engine operating by hydrogen gas
US20100326374A1 (en) Internal Combustion Engines
US20090194042A1 (en) Fuel Supply System for a Vehicle Including a Vaporization Device for Converting Fuel and Water into Hydrogen
US20050011501A1 (en) Multi-phase fuel system
WO2023120588A1 (en) Automobile engine
JP2997750B2 (en) Fuel injection engine
US4417547A (en) Engine speed and engine load responsive fluid injection system for an internal combustion engine
JP2001355523A (en) Internal combustion engine
JPS60116845A (en) Fuel supply device of internal-combustion engine
AU2012100192A4 (en) Improved method of reducing fuel consumption of a petrol fuelled four stroke spark ignition engine by altering the engine manifold intake atmosphere by the induction of hot water vapour
JP2024016431A (en) Automobile engine
CN114233540A (en) Cold-start air inlet pipe device of methanol engine and control method thereof
US20050193962A1 (en) Combined-cycle combustion engine based on contribution of carbon dioxide (CO2) to the combustion gases
KR100418957B1 (en) Fuel consumption ratio improvement apparatus of vehicle
JPS6217646B2 (en)
US2895462A (en) Feed device for an internal combustion engine
KR0133960Y1 (en) Fuel supply unit of an lpg automobile
RU2722006C1 (en) Operating method of internal combustion engine (ice) with spark ignition and fuel supply device therefor
JPH0259298B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911290

Country of ref document: EP

Kind code of ref document: A1