WO2023119569A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
WO2023119569A1
WO2023119569A1 PCT/JP2021/047927 JP2021047927W WO2023119569A1 WO 2023119569 A1 WO2023119569 A1 WO 2023119569A1 JP 2021047927 W JP2021047927 W JP 2021047927W WO 2023119569 A1 WO2023119569 A1 WO 2023119569A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source element
beams
light
group
Prior art date
Application number
PCT/JP2021/047927
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 白戸
Original Assignee
パイオニア株式会社
パイオニアスマートセンシングイノベーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニアスマートセンシングイノベーションズ株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2021/047927 priority Critical patent/WO2023119569A1/en
Publication of WO2023119569A1 publication Critical patent/WO2023119569A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out

Definitions

  • the present invention relates to sensor devices.
  • the sensor device includes a light source such as a pulse laser, a deflection unit such as a polygon mirror or a MEMS (Micro Electro Mechanical Systems) mirror, and a receiver such as an avalanche photodiode (APD).
  • the deflection section deflects the plurality of beams temporally repeatedly emitted from the light source section toward a plurality of spatially different measurement positions.
  • the receiver receives reflected light or scattered light from a plurality of measurement positions of a plurality of beams.
  • waveforms generated from a receiving unit are integrated in order to remove noise in the waveform generated from the receiving unit.
  • the inventors of the present application deflect a predetermined beam incident in a predetermined incident direction from a light source unit toward a predetermined measurement position existing in a predetermined irradiation direction by a deflection unit, and deflect the beam from the light source unit in a predetermined incident direction.
  • the waveform generated from the receiving unit by the reflected light or scattered light of the predetermined beam from the measurement position, and the waveform generated from the receiving unit by the reflected light or scattered light from the measurement position of the other predetermined beam waveforms can be integrated to increase the signal-to-noise ratio of these waveforms.
  • One example of the problem to be solved by the present invention is to identify which beam emitted from the light source unit originates the waveform generated in the receiving unit.
  • a light source deflecting a first beam incident in a predetermined first incident direction from the light source unit toward a first measurement position existing in a predetermined first irradiation direction; a deflection unit that deflects a second beam incident in a second incident direction different from the incident direction toward the first measurement position existing in substantially the same direction as the predetermined first irradiation direction; a first receiver that receives reflected light or scattered light from the first measurement position of the first beam; a second receiver that receives reflected light or scattered light from the first measurement position of the second beam; A waveform generated from the first receiving section by the reflected light or the scattered light of the first beam and a waveform generated from the second receiving section by the reflected light or the scattered light of the second beam are integrated.
  • a signal processing unit that A sensor device comprising:
  • each of a first group of beams incident in a predetermined first incident direction from the light source unit is deflected toward each of a plurality of measurement positions existing in a plurality of irradiation directions; a deflection unit that deflects each of the second group of beams incident in different second incident directions toward each of the plurality of measurement positions existing in substantially the same direction as the plurality of irradiation directions; a first receiver that receives reflected light or scattered light from each of the plurality of measurement positions of the first group of beams; a second receiver that receives reflected light or scattered light from each of the plurality of measurement positions of the second group of beams; with In the sensor device, 90% or more of the area where the point group is formed by the second group of beams overlaps 90% or more of the area where the point group is formed by the first group of beams.
  • FIG. 4 is a diagram showing an example of a timing chart of pulse triggering of the first light source element and a timing chart of pulse triggering of the second light source element in the normal mode of the sensor device according to the embodiment; It is a figure for demonstrating an example of operation
  • FIG. 5 is a diagram showing an example of a timing chart of irradiation directions of beams from a deflector in a normal mode of the sensor device according to the embodiment; FIG.
  • FIG. 5 is a diagram showing an example of a timing chart of irradiation directions of beams from a deflection unit in the first high resolution mode of the sensor device according to the embodiment
  • FIG. 10 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit in the second high-resolution mode of the sensor device according to the embodiment
  • FIG. 10 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit in the third high resolution mode of the sensor device according to the embodiment
  • It is a circuit diagram which shows the 1st example of the 1st light source element which concerns on embodiment. It is a figure which shows the 2nd example of the 1st light source element which concerns on embodiment.
  • FIG. 1 is a diagram showing a sensor device 10 according to an embodiment.
  • FIG. 2 is a diagram showing an example of a pulse trigger timing chart of the first light source element 110 and a pulse trigger timing chart of the second light source element 120 in the normal mode of the sensor device 10 according to the embodiment.
  • the arrows indicating the first direction X and the third direction Z indicate that the direction from the base end of the arrow to the tip is the positive direction of the direction indicated by the arrow, and the direction from the tip of the arrow to the base end It indicates that the heading direction is the negative direction of the direction indicated by the arrow.
  • the white circle with a black dot indicating the second direction Y indicates that the direction from the back to the front of the paper is the positive direction of the second direction Y, and the direction from the front to the back of the paper is the negative direction of the second direction Y. showing.
  • the first direction X is one direction parallel to the horizontal direction perpendicular to the vertical direction.
  • the second direction Y is a direction parallel to the vertical direction.
  • the positive direction of the second direction Y is the direction from bottom to top in the vertical direction
  • the negative direction of the second direction Y is the direction from top to bottom in the vertical direction.
  • a third direction Z is a direction parallel to the horizontal direction and perpendicular to the first direction X. As shown in FIG.
  • the positive direction of the third direction Z is from left to right in the horizontal direction
  • the negative direction of the third direction Z is from right to left in the horizontal direction. It is the direction to go.
  • the relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction is not limited to the example described above.
  • the relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction varies depending on the arrangement of the sensor device 10 .
  • the third direction Z may be parallel to the vertical direction.
  • the timing chart in the upper part of FIG. 2 shows the timing chart of the pulse trigger of the first light source element 110 .
  • the horizontal axis of the timing chart in the upper part of FIG. 2 indicates time.
  • the timing chart in the upper part of FIG. 2 shows that the beam is emitted at the trigger timings labeled "A1" to "A5".
  • the beams emitted at the trigger timings denoted by "A1" to "A5" will be referred to as A1 beam to A5 beam, respectively, as required.
  • the timing chart in the lower part of FIG. 2 shows the timing chart of the pulse trigger of the second light source element 120 .
  • the horizontal axis of the timing chart in the lower part of FIG. 2 indicates time.
  • the timing chart in the lower part of FIG. 2 shows that the beam is emitted at the trigger timings labeled “B1” to “B5”.
  • the beams emitted at the trigger timings labeled "B1” to “B5" are referred to as B1 beam to B5 beam, respectively, as required.
  • the sensor device 10 includes a light source section 100, a deflection section 200, a first reception section 310, a second reception section 320, a beam splitter 400 and a signal processing section 500.
  • the light source section 100 has a first light source element 110 and a second light source element 120 .
  • the deflection section 200 has a first reflecting surface 202 , a second reflecting surface 204 , a third reflecting surface 206 and a fourth reflecting surface 208 .
  • Each of the first receiver 310 and the second receiver 320 is, for example, an APD (avalanche photodiode).
  • the first receiver 310 and the second receiver 320 are capable of receiving light independently of each other.
  • the signal processing unit 500 shown in FIG. 1 is a functional block diagram.
  • the signal processing section 500 shown in FIG. 1 is not meant to suggest the actual size or location of the signal processing section 500 in the sensor device 10 .
  • the signal processing unit 500 is implemented by hardware such as a microcomputer, a DSP (digital signal processor), and an FPGA (Field-Programmable Gate Array).
  • the first light source element 110 is, for example, a pulse laser.
  • the wavelength of the beam emitted from the first light source element 110 is infrared rays, for example.
  • the first light source element 110 temporally repeatedly emits a plurality of beams. In the upper timing chart of FIG. 2, the first light source element 110 sequentially emits the A1 beam, the A2 beam, and the A3 beam, and then sequentially emits the A4 beam and the A5 beam.
  • the first light source element 110 may or may not emit other beams at timings between the emission timing of the A3 beam and the emission timing of the A4 beams.
  • the first light source element 110 may or may not emit another beam at a timing after the timing of emitting the A5 beam.
  • the second light source element 120 is, for example, a pulse laser.
  • the wavelength of the beam emitted from the second light source element 120 is infrared rays, for example.
  • the second light source element 120 temporally repeatedly emits a plurality of beams.
  • the second light source element 120 sequentially emits the B1 beam, the B2 beam, and the B3 beam, and then sequentially emits the B4 beam and the B5 beam.
  • the second light source element 120 may or may not emit another beam at a timing between the emission timing of the B3 beam and the emission timing of the B4 beam.
  • the second light source element 120 may or may not emit another beam at a timing after the timing of emitting the B5 beam.
  • the first light source element 110 and the second light source element 120 emit beams at different timings. Specifically, the first light source element 110 and the second light source element 120 emit beams alternately in time.
  • the first light source element 110 and the second light source element 120 are A1 beam, B1 beam, A2 beam, B2 beam, A3 beam, B3 beam, .
  • a plurality of beams are emitted in order of the beam and the B5 beam.
  • the second light source element 120 delays the emission timing of each beam of the first light source element 110 by the time difference ⁇ t, as indicated by the time difference ⁇ t between the emission timing of the A1 beam and the emission timing of the B1 beam.
  • Each beam is emitted at the same timing.
  • the timing at which a group of beams including the A1 beam to A5 beam is incident on the deflection section 200 and the timing at which another group of beams including the B1 beam to B5 beam are incident on the deflection section 200 are different from each other. .
  • a solid-line arrow extending from the first light source element 110 through the beam splitter 400 and the deflection section 200 toward the positive direction side of the deflection section 200 in the third direction Z indicates that the light emitted from the first light source element 110
  • the optical axis of the beam reflected by the first reflective surface 202 is shown.
  • the dashed arrow extending from the second light source element 120 through the beam splitter 400 and the deflection section 200 toward the positive direction side of the deflection section 200 in the third direction Z indicates the timing from the emission timing of the beam from the first light source element 110.
  • the optical axis of the beam emitted from the second light source element 120 with a delay of ⁇ t and reflected by the first reflecting surface 202 is shown.
  • the solid arrows extending from the beam splitter 400 toward the first receiver 310 indicate the optical axes of reflected light or scattered light from the first measurement position P1 to the fifth measurement position P5 of the beam emitted from the first light source element 110. showing.
  • Broken line arrows extending from the beam splitter 400 toward the second receiving unit 320 indicate optical axes of reflected light or scattered light from the first measurement position P1 to the fifth measurement position P5 of the beam emitted from the second light source element 120. showing.
  • the deflection unit 200 indicated by a solid line in FIG. A deflection section 200 is shown.
  • the deflection unit 200 indicated by the solid line is rotated clockwise around the rotational axis parallel to the second direction Y when viewed from the positive direction of the second direction Y.
  • the deflection section 200 is a polygon mirror.
  • the deflection section 200 is not limited to a polygon mirror as long as it is an optical member capable of deflecting the beam emitted from the light source section 100 .
  • the first reflecting surface 202, the second reflecting surface 204, the third reflecting surface 206, and the fourth reflecting surface 208 are arranged in order counterclockwise around the center of the deflection section 200. I'm in.
  • the normal directions of the first reflecting surface 202, the second reflecting surface 204, the third reflecting surface 206, and the fourth reflecting surface 208 are directed in different directions at intervals of 90°.
  • the deflection section 200 when viewed from the positive direction of the second direction Y, the deflection section 200 rotates around the rotation axis parallel to the second direction Y at a constant angular velocity regardless of time. is rotating clockwise. Therefore, the irradiation direction of the beam deflected by the deflection unit 200 rotates clockwise around the rotation axis parallel to the second direction Y at the angular velocity v.
  • the first light source element 110 and the second light source element 120 cause beams to enter from directions different by an angle ⁇ q around a direction perpendicular to the second direction Y when viewed from the deflection section 200 .
  • the optical axis of the beam incident on the deflection section 200 from the second light source element 120 is the optical axis of the beam incident on the deflection section 200 from the first light source element 110.
  • a group of beams including the A1 to A5 beams are incident on the deflection section 200 from the first light source element 110 in a predetermined first incident direction.
  • Another group of beams including the B1 to B5 beams is incident on the deflection section 200 from the second light source element 120 in a second incident direction different from the first incident direction.
  • the timing of the beam emitted from the first light source element 110 and the beam emitted from the first light source element 110 are determined by the deflection unit 200. can be regarded as the same timing in the operation of the sensor device 10 .
  • the timing of the beam emitted from the second light source element 120 and the beam emitted from the second light source element 120 reaches the deflection unit 200 can be regarded as the same timing in the operation of the sensor device 10 .
  • the first light source element 110 and the second light source element 120 deflect the beams at different timings in the same manner as the beam emission timings from the first light source element 110 and the second light source element 120 described with reference to FIG. It is made incident on the part 200 .
  • the irradiation direction of the beam emitted from the first light source element 110 and deflected by the deflection unit 200 and the direction of the beam emitted from the first light source element 110 can be adjusted.
  • the irradiation direction of the beam emitted from the second light source element 120 at a timing delayed by a time difference ⁇ t from the emission timing and deflected by the deflection section 200 can be substantially the same direction.
  • the angle ⁇ q can be approximately equal to v ⁇ t.
  • the first measurement position P1 to the fifth measurement position P5 are spatially shifted from each other.
  • the deflection unit 200 causes each of the A1 beam to A5 beam included in the group of beams emitted from the first light source element 110 to be positioned at the first measurement position P1 to the fifth measurement position P5. and each of the B1 beam to B5 beam included in another group of beams emitted from the second light source element 120 is deflected toward each of the first measurement position P1 to the fifth measurement position P5. are doing.
  • the first receiver 310 receives reflected light or scattered light from the first measurement position P1 to the fifth measurement position P5 of each of the A1 beam to the A5 beam.
  • the second receiver 320 receives reflected light or scattered light from the first measurement position P1 to the fifth measurement position P5 of each of the B1 beam to the B5 beam.
  • reflected light or scattered light from each measurement position of each beam will be referred to as return light as required.
  • the A1 beam is emitted from the first light source element 110, passes through the beam splitter 400, and is incident on the first reflecting surface 202.
  • the A1 beam is reflected by the first reflecting surface 202 and deflected from the first reflecting surface 202 toward the first measurement position P1 existing in the predetermined irradiation direction.
  • the returning light of the A1 beam from the first measurement position P1 is irradiated to the first reflecting surface 202 , reflected by the first reflecting surface 202 and reflected by the beam splitter 400 , and then irradiated to the first receiver 310 .
  • the first receiver 310 is located on the positive side in the first direction X with respect to the second receiver 320 .
  • the returning light from the first measurement position P1 of the A1 beam is not irradiated to the second receiving section 320 but is irradiated to the first receiving section 310 due to the angle ⁇ q. Therefore, the return light from the first measurement position P1 of the A1 beam is not received by the second receiver 320 but is received by the first receiver 310 .
  • the B1 beam is emitted from the second light source element 120 , passes through the beam splitter 400 and enters the first reflecting surface 202 .
  • the B1 beam is reflected by the first reflecting surface 202 and deflected from the first reflecting surface 202 toward the first measurement position P1 that exists in substantially the same direction as the predetermined irradiation direction of the A1 beam.
  • the return light of the B1 beam from the first measurement position P1 is applied to the first reflecting surface 202 , reflected by the first reflecting surface 202 and reflected by the beam splitter 400 , and applied to the second receiving section 320 .
  • the second receiver 320 is located on the negative direction side in the first direction X with respect to the first receiver 310 . Therefore, the return light of the B1 beam from the first measurement position P1 is not irradiated to the first receiving section 310 but is irradiated to the second receiving section 320 due to the angle ⁇ q. Therefore, the return light of the B1 beam from the first measurement position P1 is not received by the first receiver 310 but is received by the second receiver 320 .
  • the signal processing unit 500 integrates the waveform generated from the first receiving unit 310 by the returning light of the A1 beam and the waveform generated from the second receiving unit 320 by the returning light of the B1 beam.
  • the signal-to-noise ratio of these waveforms can be increased compared to when only one of these waveforms is used.
  • these waveforms are, for example, when the light source unit 100 does not have the second light source element 120 and has only the first light source element 110, and after the A1 beam to the A5 beam are irradiated from the first light source element 110, , can be obtained at closer timing than when another beam is irradiated from the first light source element 110 to the first measurement position P1.
  • a memory for storing the waveform generated from the first receiver 310 by the return light of the A1 beam and the waveform generated by the second receiver 320 by the return light of the B1 beam for a relatively long period of time is provided. can be made unnecessary.
  • the A2 beam and the B2 beam are incident on the first reflecting surface 202 in order.
  • the A2 beam and the B2 beam are sequentially deflected toward the second measurement position P2 in the same manner as described for the A1 beam and the B1 beam.
  • the return light from the second measurement position P2 of the A2 beam is received by the first receiver 310 without being irradiated to the second receiver 320 .
  • the return light of the B2 beam from the second measurement position P2 is received by the second receiver 320 without being irradiated to the first receiver 310 .
  • the signal processing unit 500 In the same manner as described for the A1 beam and the B1 beam, the signal processing unit 500 generates a waveform generated from the first receiving unit 310 by the return light from the second measurement position P2 of the A2 beam and the second measurement position P2 of the B2 beam. and the waveform generated from the second receiving section 320 by the return light from the position P2.
  • the A3 beam and the B3 beam are incident on the first reflecting surface 202 in order.
  • the A3 beam and the B3 beam are sequentially deflected toward the third measurement position P3 in the same manner as described for the A1 beam and the B1 beam.
  • the return light from the third measurement position P3 of the A3 beam is received by the first receiver 310 without being irradiated to the second receiver 320 .
  • the return light from the third measurement position P3 of the B3 beam is received by the second receiver 320 without being irradiated to the first receiver 310 .
  • the signal processing unit 500 In the same manner as described for the A1 beam and the B1 beam, the signal processing unit 500 generates a waveform generated from the first receiving unit 310 by the return light from the third measurement position P3 of the A3 beam and the third measurement position P3 of the B3 beam. and the waveform generated from the second receiving section 320 by the return light from the position P3.
  • the angular velocity of rotation of the deflection section 200 is relatively high. For this reason, the beams emitted from the first light source element 110 and the second light source element 120 in the time interval from the emission timing of the A1 beam to the emission timing of the B3 beam are located between the first measurement position P1 and the second measurement position P2. A fourth measurement position P4 located between and a fifth measurement position P5 located between the second measurement position P2 and the third measurement position P3 are not irradiated.
  • the A4 beam is emitted from the first light source element 110 , passes through the beam splitter 400 and enters the second reflecting surface 204 .
  • the A4 beam is reflected by the second reflecting surface 204 and deflected from the second reflecting surface 204 toward the fourth measurement position P4 existing in the predetermined irradiation direction.
  • the return light from the fourth measurement position P4 of the A4 beam is irradiated to the second reflecting surface 204, reflected by the second reflecting surface 204 and reflected by the beam splitter 400, and then irradiated to the first receiving section 310.
  • the return light from the fourth measurement position P4 of the A4 beam is not received by the second receiver 320 but is received by the first receiver 310 in the same manner as described for the A1 beam.
  • the B4 beam is emitted from the second light source element 120 , passes through the beam splitter 400 and enters the second reflecting surface 204 .
  • the B4 beam is reflected by the second reflecting surface 204 and deflected from the second reflecting surface 204 toward the fourth measurement position P4 that exists in substantially the same direction as the predetermined irradiation direction of the A4 beam.
  • the return light from the fourth measurement position P4 of the B4 beam is irradiated to the second reflecting surface 204, reflected by the second reflecting surface 204 and reflected by the beam splitter 400, and then irradiated to the second receiving section 320.
  • the return light from the fourth measurement position P4 of the B4 beam is not received by the first receiver 310 but is received by the second receiver 320 in the same manner as described for the B1 beam.
  • the A5 beam and the B5 beam are incident on the second reflecting surface 204 in order.
  • the A5 beam and the B5 beam are sequentially deflected toward the fifth measurement position P5 in the same manner as described for the A4 beam and the B4 beam.
  • the return light from the fifth measurement position P5 of the A5 beam is received by the first receiver 310 .
  • the return light from the second measurement position P2 of the B5 beam is received by the second receiver 320 .
  • the signal processing unit 500 In the same manner as described for the A4 beam and the B4 beam, the signal processing unit 500 generates a waveform generated from the first receiving unit 310 by the return light from the fifth measurement position P5 of the A5 beam and the fifth measurement position P5 of the B5 beam. and the waveform generated from the second receiving section 320 by the return light from the position P5.
  • the angle difference between the optical axes of two beams irradiated toward adjacent measurement positions among a plurality of measurement positions including the first measurement position P1 to the fifth measurement position P5 is ⁇ p.
  • the first light source element 110 and the second light source element 120 periodically repeat the emission of the A1 beam to the B5 beam shown in FIG.
  • the A1 to B5 beams emitted in a predetermined cycle are deflected toward the first measurement position P1 to the fifth measurement position P5 by the first reflecting surface 202 or the second reflecting surface 204, as described above.
  • the A1 beam to B5 beam emitted in the period next to the predetermined period are subjected to the first measurement by the third reflecting surface 206 or the fourth reflecting surface 208 according to the aspect of the predetermined period described above. It can be deflected toward the position P1 to the fifth measurement position P5.
  • every time the deflection unit 200 makes one clockwise rotation around the rotation axis parallel to the second direction Y when viewed from the positive direction of the second direction Y it is possible to acquire point groups of two frames.
  • the deflection unit 200 directs the beams emitted from the first light source element 110 and the second light source element 120 to the first measurement position P1, the second measurement position P2, and the third measurement position P3.
  • the beams emitted from the first light source element 110 and the second light source element 120 are deflected toward a group of measurement positions, and then the beams emitted from the first light source element 110 and the second light source element 120 are transferred to another group of measurement positions exemplified by the fourth measurement position P4 and the fifth measurement position P5. It is deflected toward the measurement position.
  • Each of the other group of measurement positions is located between adjacent measurement positions of the group of measurement positions. In this method, the resolution of the sensor device 10 can be increased compared to the case where the beam is deflected to only one of the group of measurement positions and the other group of measurement positions.
  • 90% or more, preferably 95% or more, more preferably 99% or more of the area where the point cloud is generated by the other group of beams from the second light source element 120 overlap.
  • the method of deflecting the beams emitted from the first light source element 110 and the second light source element 120 toward the first measurement position P1 to the fifth measurement position P5 by the deflection section 200 is not limited to the above method.
  • the second reflective surface 204 and the fourth reflective surface 208 deflect the A1 and B1 beams toward the first measurement location P1, the A2 and B2 beams toward the second measurement location P2, and the A3 beams toward the second measurement location P2.
  • the beam and the B3 beam are deflected toward the third measuring position P3, the first reflecting surface 202 and the third reflecting surface 206 deflect the A4 beam and the B4 beam toward the fourth measuring position P4, and the A5 beam and the B5 beam are deflected toward the fourth measuring position P4.
  • the beam may be deflected towards the fifth measurement position P5.
  • FIG. 3 is a diagram for explaining an example of the operation of the sensor device 10 according to the embodiment.
  • FIG. 4 is a diagram for explaining an example of the operation of the sensor device according to the comparative example.
  • the arrows attached to the timing charts in the upper, middle and lower stages of FIG. 3 indicate times.
  • the arrows attached to the timing charts in the upper and lower stages of FIG. 4 indicate time.
  • the sensor device according to the comparative example is the same as the sensor device 10 according to the embodiment except that a single receiver is provided instead of the first receiver 310 and the second receiver 320 according to the embodiment. It has become.
  • the timing chart in the upper part of FIG. 3 shows the timing at which beams are emitted from the first light source element 110 and the second light source element 120 .
  • the beam is emitted from the first light source element 110 at the first time t1
  • the beam is emitted from the second light source element 120 at the second time t2.
  • the second time t2 is the time after the first time t1.
  • the beam emitted from the first light source element 110 at the first time t1 is, for example, the A1 beam shown in FIG. 2
  • the beam emitted from the second light source element 120 at the second time t2 is, for example, the B1 beam shown in FIG. Beam.
  • the timing chart in the middle of FIG. 3 shows waveforms output from the first receiving section 310 according to the embodiment.
  • the patterns applied throughout this timing chart schematically show the noise output from the first receiving section 310 .
  • the waveform output from first receiving section 310 has a peak at third time t3.
  • the third time t3 is the time after the second time t2.
  • the peak at the third time t3 is generated from the first receiver 310 by return light of the beam emitted from the first light source element 110 at the first time t1.
  • the signal processing unit 500 converts the peak generated by the first receiving unit 310 from the first time t1 until the first period T1 has passed into the beam emitted from the first light source element 110 at the first time t1. It is treated as a peak generated by return light.
  • the first period T1 according to the embodiment is from the emission timing of the beam from the first light source element 110 to the reception timing of the return light of the beam from the maximum detection distance of the sensor device 10 according to the embodiment at the first receiving unit 310. It is a period until
  • the timing chart in the lower part of FIG. 3 shows waveforms output from the second receiving section 320 according to the embodiment.
  • the patterns applied throughout this timing chart schematically show the noise output from the second receiving section 320 .
  • the waveform output from the second receiving section 320 has a peak at the fourth time t4.
  • the fourth time t4 is the time after the third time t3.
  • the peak at the fourth time t4 is generated from the second receiver 320 by return light of the beam emitted from the second light source element 120 at the second time t2.
  • the signal processing unit 500 converts the peak generated from the second receiving unit 320 from the second time t2 until the second time period T2 has elapsed into the peak of the beam emitted from the second light source element 120 at the second time t2. It is treated as a peak generated by return light.
  • the second period T2 according to the embodiment is from the emission timing of the beam from the second light source element 120 to the reception timing of the return light of the beam from the maximum detection distance of the sensor device 10 according to the embodiment at the second receiving unit 320. It is a period until
  • the timing chart in the upper part of FIG. 4 shows the timing at which beams are emitted from the first light source element 110 and the second light source element 120 in the same way as the timing chart in the upper part of FIG.
  • the timing chart in the lower part of FIG. 4 shows waveforms output from a single receiving unit according to the comparative example.
  • the patterns applied throughout this timing chart schematically show the noise output from a single receiving section.
  • the waveform output from a single receiving section has peaks at the third time t3 and the fourth time t4.
  • the peak at the third time t3 is generated from a single receiving section by return light of the beam emitted from the first light source element 110 at the first time t1.
  • the peak at the fourth time t4 is generated from a single receiver due to return light of the beam emitted from the second light source element 120 at the second time t2.
  • the signal processing unit 500 according to the comparative example converts the peak generated from the single receiving unit from the first time t1 until the first period T1′ has passed into the beam emitted from the first light source element 110 at the first time t1. is treated as a peak generated by the return light of . Further, the signal processing unit 500 according to the comparative example outputs the peak generated from the single receiving unit during the second period T2' from the second time t2 to the second light source element 120 at the second time t2. It is treated as a peak generated by the return light of the beam.
  • FIG. 3 The embodiment of FIG. 3 and the comparative example of FIG. 4 are compared.
  • the peak generated at the third time t3 from the single receiver according to the comparative example is actually generated by return light of the beam emitted from the first light source element 110 at the first time t1, as described above. ing.
  • the peak generated at the third time t3 from the single receiving unit is 0 from a relatively long distance of the beam emitted from the first light source element 110 at the first time t1. or the peak generated by the return light from a relatively short distance of the beam emitted from the second light source element 120 at the second time t2 is determined by a single receiver.
  • the signal processing unit 500 detects a peak generated from a single receiving unit from the first time t1 until the first period T1′ elapses, and Regardless of whether it originates from the beam or from the beam emitted from the second light source element 120, it is treated as a peak generated by return light of the beam emitted from the first light source element 110 at the first time t1. .
  • the signal processing unit 500 according to the comparative example detects the peak generated from the single receiving unit from the second time t2 until the second period T2' elapses as the beam emitted from the first light source element 110. or the beam emitted from the second light source element 120, the peak is treated as the peak generated by the return light of the beam emitted from the second light source element 120 at the second time t2.
  • the peak generated at the third time t3 from the first receiving unit 310 is the peak of the beam emitted from the second light source element 120 at the second time t2 from a relatively short distance. It can be identified that the peak is not caused by return light, but is caused by return light from a relatively long distance of the beam emitted from the first light source element 110 at the first time t1.
  • the first period T1' according to the comparative example cannot be longer than the absolute value of the difference between the first time t1 and the second time t2.
  • the first period T1 according to the embodiment can be longer than the absolute value of the difference between the first time t1 and the second time t2. Therefore, the maximum detection distance of the sensor device 10 according to the embodiment can be made longer than the maximum detection distance of the sensor device 10 according to the comparative example.
  • the signal processing unit 500 integrates the waveform generated from the single receiving unit during the first period T1′ and the waveform generated from the single receiving unit during the second period T2′.
  • the SN ratio of the peak generated from a single receiver at the third time t3 cannot be improved.
  • the signal processing unit 500 integrates the waveform generated from the first receiving unit 310 in the first period T1 and the waveform generated from the second receiving unit 320 in the second period T2. By doing so, it is possible to improve the SN ratio between the peak generated from the first receiving unit 310 at the third time t3 and the peak generated from the second receiving unit 320 at the fourth time t4.
  • the signal processing unit 500 does not include the first receiving unit in the same manner as when the second time t2 is after the first time t1.
  • 310 can be identified as the peak generated by the return light of the beam emitted from the first light source element 110, and the peak of the waveform generated from the second receiving section 320 can be identified as the peak generated by the second light source element 110. It can be identified as the peak generated by the return light of the beam emitted from the light source element 120 .
  • the signal processing unit 500 is designed so that the peak of the waveform generated from the first receiving unit 310 is equal to the first light source element 110 , and the peak of the waveform generated from the second receiving unit 320 was generated by the return light of the beam emitted from the second light source element 120. It can be identified as a peak.
  • FIG. 5 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit 200 in the normal mode of the sensor device 10 according to the embodiment.
  • the horizontal axis of the timing chart in FIG. 5 indicates time.
  • the vertical axis of the timing chart in FIG. 5 indicates the irradiation direction of the beam from the deflecting section 200 .
  • the black circles in the timing chart of FIG. 5 indicate that the beam from the first light source element 110 was deflected by the deflecting section 200 at the times indicated by the black circles.
  • the white circles in the timing chart of FIG. 5 indicate that the beam from the second light source element 120 was deflected by the deflection section 200 at the time marked with the white circle.
  • the deflection speed of the deflection section 200 in the embodiment is the angular velocity of rotation of the deflection section 200 .
  • the beam from the first light source element 110 is deflected by the deflection section 200 in each of the three irradiation directions, and then the beam from the second light source element 120 is deflected by the deflection section 200.
  • the dashed lines surrounding the black and white circles in each of the three irradiation directions indicate the waveform generated from the first receiver 310 by the return light of the beam indicated by the black circle surrounded by the dashed lines, and the waveform surrounded by the dashed lines.
  • the signal processing unit 500 integrates the waveform generated from the second receiving unit 320 by the return light of the beam indicated by the white circles.
  • between the emission timing of the beam from the second light source element 120 and the emission timing of the beam from the first light source element 110 immediately after the emission timing of the beam from the second light source element 120 is, for example, the period from the emission timing of the beam from the second light source element 120 to the reception timing of the return light of the beam from the maximum detection distance of the sensor device 10 according to the embodiment at the second receiving unit 320. That's it.
  • FIG. 6 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit 200 in the first high resolution mode of the sensor device 10 according to the embodiment.
  • the first high resolution mode shown in FIG. 6 is similar to the normal mode shown in FIG. 5 except for the following points.
  • Time interval of emission of a group of beams from the first light source element 110 in the first high resolution mode shown in FIG. 6 and another group of beams from the second light source element 120 in the first high resolution mode shown in FIG. are emitted from the first light source element 110 in the normal mode shown in FIG. 5 and another group from the second light source element 120 in the normal mode shown in FIG. It is shorter than the time interval of beam emission.
  • the time interval of emission of the other group of beams is 1/2 of the time interval of emission of the group of beams from the first light source element 110 in the normal mode shown in FIG. It is 1/2 the time interval between the other group of beams emitted from the light source element 120 .
  • each of the group of beams from the first light source element 110 and each of the other group of beams from the second light source element 120 are emitted at substantially the same timing. there is Even in this case, as described with reference to FIGS.
  • the peak of the waveform generated from the second receiver 320 is the peak generated by the return light of the beam emitted from the second light source element 120. can be identified.
  • the spatial density of the plurality of measurement positions in the first high-resolution mode shown in FIG. 6 is double the spatial density of the plurality of measurement positions in the normal mode shown in FIG. Therefore, in the first high resolution mode shown in FIG. 6, the resolution of the sensor device 10 can be made higher than in the normal mode shown in FIG.
  • FIG. 7 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit 200 in the second high resolution mode of the sensor device 10 according to the embodiment.
  • the second high resolution mode shown in FIG. 7 is similar to the normal mode shown in FIG. 5 except for the following points.
  • the deflection speed of the deflection section 200 in the second high resolution mode shown in FIG. 7 is lower than the deflection speed of the deflection section 200 in the normal mode shown in FIG. Specifically, the deflection speed of the deflection section 200 in the second high resolution mode shown in FIG. 7 is half the deflection speed of the deflection section 200 in the normal mode shown in FIG.
  • each of the group of beams from the first light source element 110 and each of the other group of beams from the second light source element 120 are emitted at substantially the same timing. there is Even in this case, as described with reference to FIGS.
  • the peak of the waveform generated from the second receiver 320 is the peak generated by the return light of the beam emitted from the second light source element 120. can be identified.
  • the spatial density of the plurality of measurement positions in the second high resolution mode shown in FIG. 7 is double the spatial density of the plurality of measurement positions in the normal mode shown in FIG. Therefore, in the second high resolution mode shown in FIG. 7, the resolution of the sensor device 10 can be made higher than in the normal mode shown in FIG.
  • FIG. 8 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit 200 in the third high resolution mode of the sensor device 10 according to the embodiment.
  • the third high resolution mode shown in FIG. 8 is similar to the normal mode shown in FIG. 5 except for the following points.
  • Time interval of emission of a group of beams from the first light source element 110 in the third high resolution mode shown in FIG. 8 and another group of beams from the second light source element 120 in the third high resolution mode shown in FIG. are emitted from the first light source element 110 in the normal mode shown in FIG. 5 and another group from the second light source element 120 in the normal mode shown in FIG. It is shorter than the time interval of beam emission.
  • the time interval of emission of the other group of beams is 1/2 of the time interval of emission of the group of beams from the first light source element 110 in the normal mode shown in FIG. It is 1/2 the time interval between the other group of beams emitted from the light source element 120 .
  • the deflection speed of the deflection section 200 in the third high resolution mode shown in FIG. 8 is lower than the deflection speed of the deflection section 200 in the normal mode shown in FIG. Specifically, the deflection speed of the deflection section 200 in the third high resolution mode shown in FIG. 8 is half the deflection speed of the deflection section 200 in the normal mode shown in FIG.
  • each of the group of beams from the first light source element 110 and each of the other group of beams from the second light source element 120 are emitted at substantially the same timing. there is Even in this case, as described with reference to FIGS.
  • the peak of the waveform generated from the second receiver 320 is the peak generated by the return light of the beam emitted from the second light source element 120. can be identified.
  • the spatial density of the plurality of measurement positions in the third high resolution mode shown in FIG. 8 is four times the spatial density of the plurality of measurement positions in the normal mode shown in FIG. Therefore, in the third high-resolution mode shown in FIG. 8, the sensor device 10 is more sensitive than in the normal mode shown in FIG. 5, the first high-resolution mode shown in FIG. 6, and the second high-resolution mode shown in FIG. resolution can be increased.
  • each of the group of beams from the first light source element 110 and each of the other group of beams from the second light source element 120 are emitted at substantially the same timing.
  • the next beam may be emitted from the first light source element 110 after a predetermined time interval has passed since the second light source element 120 emitted the beam.
  • the time interval is from the emission timing of the beam from the second light source element 120 to the reception timing of the return light of the beam from the maximum detection distance of the sensor device 10 according to the embodiment at the second receiving unit 320. may be less than the period of Even in this case, as described with reference to FIGS.
  • the peak of the waveform generated from the second receiver 320 is the peak generated by the return light of the beam emitted from the second light source element 120. can be identified.
  • FIG. 9 is a circuit diagram showing a first example of the first light source element 110 according to the embodiment. The following matters described using FIG. 9 are also applicable to the second light source element 120 .
  • the capacitor C is charged by the first power supply V1 through the resistor R.
  • the transistor Q When the transistor Q is turned on, current flows through the inductor L, the laser diode D, and the transistor Q due to the discharge of the electric charge stored in the capacitor C.
  • ON/OFF of the transistor Q is controlled by the second power supply V2, the switch S and the gate driver U.
  • the gate driver U is electrically connected by a switch S to the second power supply V2 or grounded. In the example shown in FIG. 9, the gate driver U is electrically connected to the second power supply V2.
  • the first light source element 110 emits a beam generated from the laser diode D. As shown in FIG.
  • the intensity of the beam emitted from the laser diode D is determined depending on the charging voltage of the capacitor C. Therefore, by variably adjusting the voltage of the first power supply V1, the charging voltage of the capacitor C can be variably adjusted. Thereby, the intensity of the beam emitted from the first light source element 110 can be variably adjusted.
  • each of the intensity of the beam emitted from the first light source element 110 and the intensity of the beam emitted from the second light source element 120 can be set below the upper limit allowed in eye-safe.
  • beams are emitted from the first light source element 110 and the second light source element 120 at approximately the same timing.
  • the sum of the intensity of the beam emitted from the first light source element 110 and the intensity of the beam emitted from the second light source element 120 must be less than or equal to the upper limit allowed for eye-safety.
  • each of the intensity of the beam emitted from the first light source element 110 and the intensity of the beam emitted from the second light source element 120 may be set to 1/2 or less of the allowable upper limit for eye-safety. Therefore, depending on whether the sensor device 10 is in the normal mode or in the first to third high resolution modes, light is emitted from the first light source element 110 as described with reference to FIG.
  • the intensity of the beam and the intensity of the beam emitted from the second light source element 120 can be variably adjusted.
  • FIG. 10 is a diagram showing a second example of the first light source element 110 according to the embodiment. The following matters described using FIG. 10 are also applicable to the second light source element 120 .
  • the first light source element 110 has a first split light source element 112 and a second split light source element 114 .
  • the first divided light source element 112 and the second divided light source element 114 are arranged in the third direction Z. As shown in FIG.
  • the first split light source element 112 emits the first split beam b1 toward the negative direction side of the first direction X of the first split light source element 112 .
  • the second split light source element 114 emits the second split beam b2 toward the negative direction side of the first direction X of the second split light source element 114 .
  • the intensity of the second split beam b2 is substantially equal to the intensity of the first split beam b1.
  • the optical axis parallel to the first direction X of the first split beam b1 and the optical axis parallel to the first direction X of the second split beam b2 are shifted in the third direction Z from each other.
  • the spread angle of the second split beam b2 is approximately equal to the spread angle of the first split beam b1. Therefore, when the first split beam b1 and the second split beam b2 are irradiated relatively far from the first light source element 110, the deviation between the optical axis of the first split beam b1 and the optical axis of the second split beam b2 is The effect is negligible.
  • the intensity of the beam emitted from the first light source element 110 can be adjusted so that the split beams are emitted from both the first split light source element 112 and the second split light source element 114, or the first split light source element 112 and the second split light source element It can be variably adjusted depending on whether the split beams are emitted from only one of 114 .
  • split beams can be emitted from both the first split light source element 112 and the second split light source element 114 .
  • split beams are emitted from only one of the first split light source element 112 and the second split light source element 114. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A first reflective surface (202) is irradiated with return light from a first measurement position (P1) in an A1 beam, and a first reception unit (310) is irradiated with return light that has undergone reflection by the first reflective surface (202) and reflection by a beam splitter (400). The first reflective surface (202) is irradiated with return light from a first measurement position (P1) in a B1 beam, and a second reception unit (320) is irradiated with return light that has undergone reflection by the first reflective surface (202) and reflection by the beam splitter (400). A signal processing unit (500) integrates a waveform generated from the first reception unit (310) due to the return light of the A1 beam and a waveform generated from the second reception unit (320) due to the return light of the B1 beam.

Description

センサ装置sensor device
 本発明は、センサ装置に関する。 The present invention relates to sensor devices.
 近年、LiDAR(Light Detection And Ranging)等、様々なセンサ装置が開発されている。センサ装置は、パルスレーザ等の光源部と、ポリゴンミラー、MEMS(Micro Electro Mechanical Systems)ミラー等の偏向部と、アバランシェフォトダイオード(APD)等の受信部と、を備えている。偏向部は、光源部から時間的に繰り返して出射された複数のビームを空間的に互いに異なる複数の計測位置に向けて偏向している。受信部は、複数のビームの複数の計測位置からの反射光又は散乱光を受信している。センサ装置では、例えば特許文献1に記載されているように、受信部から発生する波形のノイズを除去するため、受信部から発生する波形を積算することがある。 In recent years, various sensor devices such as LiDAR (Light Detection And Ranging) have been developed. The sensor device includes a light source such as a pulse laser, a deflection unit such as a polygon mirror or a MEMS (Micro Electro Mechanical Systems) mirror, and a receiver such as an avalanche photodiode (APD). The deflection section deflects the plurality of beams temporally repeatedly emitted from the light source section toward a plurality of spatially different measurement positions. The receiver receives reflected light or scattered light from a plurality of measurement positions of a plurality of beams. In a sensor device, as described in Patent Literature 1, for example, waveforms generated from a receiving unit are integrated in order to remove noise in the waveform generated from the receiving unit.
特開2004-177350号公報JP-A-2004-177350
 本願発明者らは、光源部から所定の入射方向で入射する所定のビームを偏向部によって所定の照射方向に存在する所定の計測位置に向けて偏向し、光源部から当該所定の入射方向と異なる入射方向で入射する所定の他のビームを偏向部によって当該所定の照射方向と略同一方向に存在する当該所定の計測位置に向けて偏向することを検討した。この場合、当該所定のビームの当該計測位置からの反射光又は散乱光によって受信部から発生する波形と、当該所定の他のビームの当該計測位置からの反射光又は散乱光によって受信部から発生する波形と、を積算して、これらの波形のSN比を高くすることができる。しかしながら、上述した場合においては、受信部において発生した波形が、光源部から出射されたいずれのビームに由来するかの識別が難しくなることがある。 The inventors of the present application deflect a predetermined beam incident in a predetermined incident direction from a light source unit toward a predetermined measurement position existing in a predetermined irradiation direction by a deflection unit, and deflect the beam from the light source unit in a predetermined incident direction. A study has been made on deflecting another predetermined beam incident in the incident direction by a deflection section toward the predetermined measurement position existing in substantially the same direction as the predetermined irradiation direction. In this case, the waveform generated from the receiving unit by the reflected light or scattered light of the predetermined beam from the measurement position, and the waveform generated from the receiving unit by the reflected light or scattered light from the measurement position of the other predetermined beam waveforms can be integrated to increase the signal-to-noise ratio of these waveforms. However, in the case described above, it may be difficult to identify which beam emitted from the light source unit the waveform generated in the receiving unit is derived from.
 本発明が解決しようとする課題としては、受信部において発生した波形が、光源部から出射されたいずれのビームに由来するかを識別することが一例として挙げられる。 One example of the problem to be solved by the present invention is to identify which beam emitted from the light source unit originates the waveform generated in the receiving unit.
 請求項1に記載の発明は、
 光源部と、
 前記光源部から所定の第1入射方向に入射する第1ビームを所定の第1照射方向に存在する第1計測位置に向けて偏向し、前記光源部から前記第1ビームの入射後に前記第1入射方向と異なる第2入射方向に入射する第2ビームを前記所定の第1照射方向と略同一方向に存在する前記第1計測位置に向けて偏向する偏向部と、
 前記第1ビームの前記第1計測位置からの反射光又は散乱光を受信する第1受信部と、
 前記第2ビームの前記第1計測位置からの反射光又は散乱光を受信する第2受信部と、
 前記第1ビームの前記反射光又は前記散乱光によって前記第1受信部から発生する波形と、前記第2ビームの前記反射光又は前記散乱光によって前記第2受信部から発生する波形と、を積算する信号処理部と、
を備えるセンサ装置である。
The invention according to claim 1,
a light source;
deflecting a first beam incident in a predetermined first incident direction from the light source unit toward a first measurement position existing in a predetermined first irradiation direction; a deflection unit that deflects a second beam incident in a second incident direction different from the incident direction toward the first measurement position existing in substantially the same direction as the predetermined first irradiation direction;
a first receiver that receives reflected light or scattered light from the first measurement position of the first beam;
a second receiver that receives reflected light or scattered light from the first measurement position of the second beam;
A waveform generated from the first receiving section by the reflected light or the scattered light of the first beam and a waveform generated from the second receiving section by the reflected light or the scattered light of the second beam are integrated. a signal processing unit that
A sensor device comprising:
 請求項7に記載の発明は、
 光源部と、
 前記光源部から所定の第1入射方向に入射する第1群のビームの各々を複数の照射方向に存在する複数の計測位置の各々に向けて偏向し、前記光源部から前記第1入射方向と異なる第2入射方向に入射する第2群のビームの各々を前記複数の照射方向と略同一方向に存在する前記複数の計測位置の各々に向けて偏向する偏向部と、
 前記第1群のビームの前記複数の計測位置の各々からの反射光又は散乱光を受信する第1受信部と、
 前記第2群のビームの前記複数の計測位置の各々からの反射光又は散乱光を受信する第2受信部と、
を備え、
 前記第2群のビームによって点群が形成される領域の90%以上が、前記第1群のビームによって点群が形成される領域の90%以上と重なっている、センサ装置である。
The invention according to claim 7,
a light source;
each of a first group of beams incident in a predetermined first incident direction from the light source unit is deflected toward each of a plurality of measurement positions existing in a plurality of irradiation directions; a deflection unit that deflects each of the second group of beams incident in different second incident directions toward each of the plurality of measurement positions existing in substantially the same direction as the plurality of irradiation directions;
a first receiver that receives reflected light or scattered light from each of the plurality of measurement positions of the first group of beams;
a second receiver that receives reflected light or scattered light from each of the plurality of measurement positions of the second group of beams;
with
In the sensor device, 90% or more of the area where the point group is formed by the second group of beams overlaps 90% or more of the area where the point group is formed by the first group of beams.
実施形態に係るセンサ装置を示す図である。It is a figure which shows the sensor apparatus which concerns on embodiment. 実施形態に係るセンサ装置の通常モードにおける第1光源素子のパルストリガのタイミングチャート及び第2光源素子のパルストリガのタイミングチャートの一例を示す図である。FIG. 4 is a diagram showing an example of a timing chart of pulse triggering of the first light source element and a timing chart of pulse triggering of the second light source element in the normal mode of the sensor device according to the embodiment; 実施形態に係るセンサ装置の動作の一例を説明するための図である。It is a figure for demonstrating an example of operation|movement of the sensor apparatus which concerns on embodiment. 比較例に係るセンサ装置の動作の一例を説明するための図である。It is a figure for demonstrating an example of operation|movement of the sensor apparatus which concerns on a comparative example. 実施形態に係るセンサ装置の通常モードにおける偏向部からのビームの照射方向のタイミングチャートの一例を示す図である。FIG. 5 is a diagram showing an example of a timing chart of irradiation directions of beams from a deflector in a normal mode of the sensor device according to the embodiment; 実施形態に係るセンサ装置の第1高解像モードにおける偏向部からのビームの照射方向のタイミングチャートの一例を示す図である。FIG. 5 is a diagram showing an example of a timing chart of irradiation directions of beams from a deflection unit in the first high resolution mode of the sensor device according to the embodiment; 実施形態に係るセンサ装置の第2高解像モードにおける偏向部からのビームの照射方向のタイミングチャートの一例を示す図である。FIG. 10 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit in the second high-resolution mode of the sensor device according to the embodiment; 実施形態に係るセンサ装置の第3高解像モードにおける偏向部からのビームの照射方向のタイミングチャートの一例を示す図である。FIG. 10 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit in the third high resolution mode of the sensor device according to the embodiment; 実施形態に係る第1光源素子の第1例を示す回路図である。It is a circuit diagram which shows the 1st example of the 1st light source element which concerns on embodiment. 実施形態に係る第1光源素子の第2例を示す図である。It is a figure which shows the 2nd example of the 1st light source element which concerns on embodiment.
 以下、本発明の実施形態、変形例及び実施例について、図面を用いて説明する。すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments, modifications, and examples of the present invention will be described with reference to the drawings. In all the drawings, the same constituent elements are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 本明細書において、「第1」、「第2」、「第3」等の序数詞は、特に断りのない限り、同様の名称が付された構成を単に区別するために付されたものであり、構成の特定の特徴(例えば、順番又は重要度)を意味するものではない。 In the present specification, ordinal numbers such as "first", "second", "third", etc., unless otherwise specified, are merely used to distinguish similarly named configurations. , does not imply any particular feature (eg, order or importance) of the configurations.
 図1は、実施形態に係るセンサ装置10を示す図である。図2は、実施形態に係るセンサ装置10の通常モードにおける第1光源素子110のパルストリガのタイミングチャート及び第2光源素子120のパルストリガのタイミングチャートの一例を示す図である。 FIG. 1 is a diagram showing a sensor device 10 according to an embodiment. FIG. 2 is a diagram showing an example of a pulse trigger timing chart of the first light source element 110 and a pulse trigger timing chart of the second light source element 120 in the normal mode of the sensor device 10 according to the embodiment.
 図1において、第1方向X及び第3方向Zを示す矢印は、当該矢印の基端から先端に向かう方向が当該矢印によって示される方向の正方向であり、かつ当該矢印の先端から基端に向かう方向が当該矢印によって示される方向の負方向であることを示している。第2方向Yを示す黒点付き白丸は、紙面の奥から手前に向かう方向が第2方向Yの正方向であり、紙面の手前から奥に向かう方向が第2方向Yの負方向であることを示している。 In FIG. 1 , the arrows indicating the first direction X and the third direction Z indicate that the direction from the base end of the arrow to the tip is the positive direction of the direction indicated by the arrow, and the direction from the tip of the arrow to the base end It indicates that the heading direction is the negative direction of the direction indicated by the arrow. The white circle with a black dot indicating the second direction Y indicates that the direction from the back to the front of the paper is the positive direction of the second direction Y, and the direction from the front to the back of the paper is the negative direction of the second direction Y. showing.
 第1方向Xは、鉛直方向に直交する水平方向に平行な一方向である。第3方向Zの負方向から見て、第1方向Xの正方向は、水平方向の右から左に向かう方向となっており、第1方向Xの負方向は、水平方向の左から右に向かう方向となっている。第2方向Yは、鉛直方向に平行な方向である。第2方向Yの正方向は、鉛直方向の下から上に向かう方向となっており、第2方向Yの負方向は、鉛直方向の上から下に向かう方向となっている。第3方向Zは、水平方向に平行かつ第1方向Xに直交する一方向である。第1方向Xの負方向から見て、第3方向Zの正方向は、水平方向の左から右に向かう方向となっており、第3方向Zの負方向は、水平方向の右から左に向かう方向となっている。第1方向X、第2方向Y、第3方向Z、水平方向及び鉛直方向の関係は、上述した例に限定されない。第1方向X、第2方向Y、第3方向Z、水平方向及び鉛直方向の関係は、センサ装置10の配置に応じて異なる。例えば、第3方向Zが鉛直方向に平行になっていてもよい。 The first direction X is one direction parallel to the horizontal direction perpendicular to the vertical direction. When viewed from the negative direction of the third direction Z, the positive direction of the first direction X is from right to left in the horizontal direction, and the negative direction of the first direction X is from left to right in the horizontal direction. It is the direction to go. The second direction Y is a direction parallel to the vertical direction. The positive direction of the second direction Y is the direction from bottom to top in the vertical direction, and the negative direction of the second direction Y is the direction from top to bottom in the vertical direction. A third direction Z is a direction parallel to the horizontal direction and perpendicular to the first direction X. As shown in FIG. When viewed from the negative direction of the first direction X, the positive direction of the third direction Z is from left to right in the horizontal direction, and the negative direction of the third direction Z is from right to left in the horizontal direction. It is the direction to go. The relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction is not limited to the example described above. The relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction varies depending on the arrangement of the sensor device 10 . For example, the third direction Z may be parallel to the vertical direction.
 図1において、第1計測位置P1~第5計測位置P5の5つの計測位置において丸印で囲まれた「A1」~「A5」及び「B1」~「B5」は、後述するA1ビーム~A5ビーム及びB1ビーム~B5ビームが丸印で囲まれた「A1」~「A5」及び「B1」~「B5」が付された位置にそれぞれ照射されていることを示している。 In FIG. 1, “A1” to “A5” and “B1” to “B5” surrounded by circles at the five measurement positions of the first measurement position P1 to the fifth measurement position P5 are A1 beams to A5 beams described later. The beam and the B1 to B5 beams are applied to the circled positions marked with "A1" to "A5" and "B1" to "B5", respectively.
 図2の上段のタイミングチャートは、第1光源素子110のパルストリガのタイミングチャートを示している。図2の上段のタイミングチャートの横軸は時間を示している。図2の上段のタイミングチャートでは、「A1」~「A5」が付されたトリガのタイミングにおいてビームが出射されていることを示している。以下、必要に応じて、「A1」~「A5」が付されたトリガのタイミングにおいて出射されたビームを、それぞれ、A1ビーム~A5ビームという。 The timing chart in the upper part of FIG. 2 shows the timing chart of the pulse trigger of the first light source element 110 . The horizontal axis of the timing chart in the upper part of FIG. 2 indicates time. The timing chart in the upper part of FIG. 2 shows that the beam is emitted at the trigger timings labeled "A1" to "A5". Hereinafter, the beams emitted at the trigger timings denoted by "A1" to "A5" will be referred to as A1 beam to A5 beam, respectively, as required.
 図2の下段のタイミングチャートは、第2光源素子120のパルストリガのタイミングチャートを示している。図2の下段のタイミングチャートの横軸は時間を示している。図2の下段のタイミングチャートでは、「B1」~「B5」が付されたトリガのタイミングにおいてビームが出射されていることを示している。以下、必要に応じて、「B1」~「B5」が付されたトリガのタイミングにおいて出射されたビームを、それぞれ、B1ビーム~B5ビームという。 The timing chart in the lower part of FIG. 2 shows the timing chart of the pulse trigger of the second light source element 120 . The horizontal axis of the timing chart in the lower part of FIG. 2 indicates time. The timing chart in the lower part of FIG. 2 shows that the beam is emitted at the trigger timings labeled “B1” to “B5”. Hereinafter, the beams emitted at the trigger timings labeled "B1" to "B5" are referred to as B1 beam to B5 beam, respectively, as required.
 図1に示すように、センサ装置10は、光源部100、偏向部200、第1受信部310、第2受信部320、ビームスプリッタ400及び信号処理部500を備えている。光源部100は、第1光源素子110及び第2光源素子120を有している。偏向部200は、第1反射面202、第2反射面204、第3反射面206及び第4反射面208を有している。第1受信部310及び第2受信部320の各々は、例えば、APD(アバランシェフォトダイオード)である。第1受信部310及び第2受信部320は、互いに独立して光を受信可能になっている。図1に示す信号処理部500は、機能ブロック図である。したがって、図1に示す信号処理部500は、センサ装置10における信号処理部500の実際の大きさ又は位置を示唆するものではない。信号処理部500は、例えばマイクロコンピュータ、DSP(デジタルシグナルプロセッサ)、FPGA(Field-Programmable Gate Array)等のハードウェアによって実現されている。 As shown in FIG. 1, the sensor device 10 includes a light source section 100, a deflection section 200, a first reception section 310, a second reception section 320, a beam splitter 400 and a signal processing section 500. The light source section 100 has a first light source element 110 and a second light source element 120 . The deflection section 200 has a first reflecting surface 202 , a second reflecting surface 204 , a third reflecting surface 206 and a fourth reflecting surface 208 . Each of the first receiver 310 and the second receiver 320 is, for example, an APD (avalanche photodiode). The first receiver 310 and the second receiver 320 are capable of receiving light independently of each other. The signal processing unit 500 shown in FIG. 1 is a functional block diagram. Accordingly, the signal processing section 500 shown in FIG. 1 is not meant to suggest the actual size or location of the signal processing section 500 in the sensor device 10 . The signal processing unit 500 is implemented by hardware such as a microcomputer, a DSP (digital signal processor), and an FPGA (Field-Programmable Gate Array).
 第1光源素子110は、例えばパルスレーザである。第1光源素子110から出射されるビームの波長は例えば赤外線である。 The first light source element 110 is, for example, a pulse laser. The wavelength of the beam emitted from the first light source element 110 is infrared rays, for example.
 第1光源素子110は、複数のビームを時間的に繰り返して出射している。図2の上段のタイミングチャートにおいて、第1光源素子110は、A1ビーム、A2ビーム及びA3ビームを順に出射した後、A4ビーム及びA5ビームを順に出射している。第1光源素子110は、A3ビームの出射タイミングと、A4ビームの出射タイミングと、の間のタイミングにおいて、他のビームを出射していてもよいし、又は出射していなくてもよい。第1光源素子110は、A5ビームの出射タイミング後のタイミングにおいて、他のビームを出射していてもよいし、又は出射していなくてもよい。 The first light source element 110 temporally repeatedly emits a plurality of beams. In the upper timing chart of FIG. 2, the first light source element 110 sequentially emits the A1 beam, the A2 beam, and the A3 beam, and then sequentially emits the A4 beam and the A5 beam. The first light source element 110 may or may not emit other beams at timings between the emission timing of the A3 beam and the emission timing of the A4 beams. The first light source element 110 may or may not emit another beam at a timing after the timing of emitting the A5 beam.
 第2光源素子120は、例えばパルスレーザである。第2光源素子120から出射されるビームの波長は例えば赤外線である。 The second light source element 120 is, for example, a pulse laser. The wavelength of the beam emitted from the second light source element 120 is infrared rays, for example.
 第2光源素子120は、複数のビームを時間的に繰り返して出射している。図2の下段のタイミングチャートにおいて、第2光源素子120は、B1ビーム、B2ビーム及びB3ビームを順に出射した後、B4ビーム及びB5ビームを順に出射している。第2光源素子120は、B3ビームの出射タイミングと、B4ビームの出射タイミングと、の間のタイミングにおいて、他のビームを出射していてもよいし、又は出射していなくてもよい。第2光源素子120は、B5ビームの出射タイミング後のタイミングにおいて、他のビームを出射していてもよいし、又は出射していなくてもよい。 The second light source element 120 temporally repeatedly emits a plurality of beams. In the lower timing chart of FIG. 2, the second light source element 120 sequentially emits the B1 beam, the B2 beam, and the B3 beam, and then sequentially emits the B4 beam and the B5 beam. The second light source element 120 may or may not emit another beam at a timing between the emission timing of the B3 beam and the emission timing of the B4 beam. The second light source element 120 may or may not emit another beam at a timing after the timing of emitting the B5 beam.
 図2に示すように、通常モードにおいて、第1光源素子110及び第2光源素子120は、異なるタイミングでビームを出射している。具体的には、第1光源素子110及び第2光源素子120は、時間的に交互にビームを出射している。図2に示す例おいて、第1光源素子110及び第2光源素子120は、A1ビーム、B1ビーム、A2ビーム、B2ビーム、A3ビーム、B3ビーム、・・・、A4ビーム、B4ビーム、A5ビーム及びB5ビームの順で複数のビームを出射している。図2に示す例では、A1ビームの出射タイミングとB1ビームの出射タイミングとの時間差Δtによって示されるように、第2光源素子120は、第1光源素子110の各ビームの出射タイミングから時間差Δt遅れたタイミングで各ビームを出射している。これによって、A1ビーム~A5ビームを含む一群のビームが偏向部200に入射するタイミングと、B1ビーム~B5ビームを含む他の一群のビームが偏向部200に入射するタイミングと、が互いに異なっている。 As shown in FIG. 2, in the normal mode, the first light source element 110 and the second light source element 120 emit beams at different timings. Specifically, the first light source element 110 and the second light source element 120 emit beams alternately in time. In the example shown in FIG. 2, the first light source element 110 and the second light source element 120 are A1 beam, B1 beam, A2 beam, B2 beam, A3 beam, B3 beam, . A plurality of beams are emitted in order of the beam and the B5 beam. In the example shown in FIG. 2, the second light source element 120 delays the emission timing of each beam of the first light source element 110 by the time difference Δt, as indicated by the time difference Δt between the emission timing of the A1 beam and the emission timing of the B1 beam. Each beam is emitted at the same timing. As a result, the timing at which a group of beams including the A1 beam to A5 beam is incident on the deflection section 200 and the timing at which another group of beams including the B1 beam to B5 beam are incident on the deflection section 200 are different from each other. .
 図1において、第1光源素子110からビームスプリッタ400及び偏向部200を経由して偏向部200の第3方向Zの正方向側に向けて延びる実線矢印は、第1光源素子110から出射されて第1反射面202によって反射されたビームの光軸を示している。第2光源素子120からビームスプリッタ400及び偏向部200を経由して偏向部200の第3方向Zの正方向側に向けて延びる破線矢印は、第1光源素子110からの上記ビームの出射タイミングから時間差Δt遅れたタイミングで第2光源素子120から出射されて第1反射面202によって反射されたビームの光軸を示している。ビームスプリッタ400から第1受信部310に向けて延びる実線矢印は、第1光源素子110から出射されたビームの第1計測位置P1~第5計測位置P5からの反射光又は散乱光の光軸を示している。ビームスプリッタ400から第2受信部320に向けて延びる破線矢印は、第2光源素子120から出射されたビームの第1計測位置P1~第5計測位置P5からの反射光又は散乱光の光軸を示している。 In FIG. 1 , a solid-line arrow extending from the first light source element 110 through the beam splitter 400 and the deflection section 200 toward the positive direction side of the deflection section 200 in the third direction Z indicates that the light emitted from the first light source element 110 The optical axis of the beam reflected by the first reflective surface 202 is shown. The dashed arrow extending from the second light source element 120 through the beam splitter 400 and the deflection section 200 toward the positive direction side of the deflection section 200 in the third direction Z indicates the timing from the emission timing of the beam from the first light source element 110. The optical axis of the beam emitted from the second light source element 120 with a delay of Δt and reflected by the first reflecting surface 202 is shown. The solid arrows extending from the beam splitter 400 toward the first receiver 310 indicate the optical axes of reflected light or scattered light from the first measurement position P1 to the fifth measurement position P5 of the beam emitted from the first light source element 110. showing. Broken line arrows extending from the beam splitter 400 toward the second receiving unit 320 indicate optical axes of reflected light or scattered light from the first measurement position P1 to the fifth measurement position P5 of the beam emitted from the second light source element 120. showing.
 図1において実線で示された偏向部200は、第1光源素子110から出射されたビームが第1反射面202によって偏向部200の第3方向Zの正方向側に向けて反射されるタイミングにおける偏向部200を示している。図1において実線で示された偏向部200を第2方向Yの正方向から見て第2方向Yに平行な回転軸の周りに時計回りに回転させた状態の破線は、第1光源素子110からの上記ビームの出射タイミングから時間差Δt遅れたタイミングで第2光源素子120から出射されたビームが第1反射面202によって偏向部200の第3方向Zの正方向側に向けて反射されるタイミングにおける偏向部200を示している。 The deflection unit 200 indicated by a solid line in FIG. A deflection section 200 is shown. In FIG. 1, the deflection unit 200 indicated by the solid line is rotated clockwise around the rotational axis parallel to the second direction Y when viewed from the positive direction of the second direction Y. The timing at which the beam emitted from the second light source element 120 is reflected by the first reflecting surface 202 toward the positive direction side of the third direction Z of the deflection section 200 at a timing delayed by a time difference Δt from the timing of the beam emitted from the shows the deflection section 200 at .
 実施形態において、偏向部200は、ポリゴンミラーである。ただし、偏向部200は、光源部100から出射されたビームを偏向させることができる光学部材であれば、ポリゴンミラーに限定されない。第2方向Yの正方向から見て、第1反射面202、第2反射面204、第3反射面206及び第4反射面208は、偏向部200の中心の周りに反時計回りに順に並んでいる。第1反射面202、第2反射面204、第3反射面206及び第4反射面208の各々の法線方向は、90°間隔で互いに異なる方向に向けられている。偏向部200に付された円弧矢印で示すように、第2方向Yの正方向から見て、偏向部200は、第2方向Yに平行な回転軸の周りに、時間によらず一定の角速度で時計回りに回転している。したがって、偏向部200によって偏向されるビームの照射方向は、第2方向Yに平行な回転軸の周りに、角速度vで時計回りに回転する。 In the embodiment, the deflection section 200 is a polygon mirror. However, the deflection section 200 is not limited to a polygon mirror as long as it is an optical member capable of deflecting the beam emitted from the light source section 100 . When viewed from the positive direction of the second direction Y, the first reflecting surface 202, the second reflecting surface 204, the third reflecting surface 206, and the fourth reflecting surface 208 are arranged in order counterclockwise around the center of the deflection section 200. I'm in. The normal directions of the first reflecting surface 202, the second reflecting surface 204, the third reflecting surface 206, and the fourth reflecting surface 208 are directed in different directions at intervals of 90°. As indicated by the arc arrow attached to the deflection section 200, when viewed from the positive direction of the second direction Y, the deflection section 200 rotates around the rotation axis parallel to the second direction Y at a constant angular velocity regardless of time. is rotating clockwise. Therefore, the irradiation direction of the beam deflected by the deflection unit 200 rotates clockwise around the rotation axis parallel to the second direction Y at the angular velocity v.
 第1光源素子110及び第2光源素子120は、偏向部200から見て第2方向Yに垂直な方向の周りに角度Δq異なる方向からビームを入射させている。具体的には、第2方向Yの正方向から見て、第2光源素子120から偏向部200に入射するビームの光軸は、第1光源素子110から偏向部200に入射するビームの光軸に対して、これら2つの光軸の交差部を中心として時計回りに角度Δq傾いている。これによって、A1ビーム~A5ビームを含む一群のビームが第1光源素子110から所定の第1入射方向に偏向部200に入射している。また、B1ビーム~B5ビームを含む他の一群のビームが第2光源素子120から当該第1入射方向と異なる第2入射方向に偏向部200に入射している。 The first light source element 110 and the second light source element 120 cause beams to enter from directions different by an angle Δq around a direction perpendicular to the second direction Y when viewed from the deflection section 200 . Specifically, when viewed from the positive direction of the second direction Y, the optical axis of the beam incident on the deflection section 200 from the second light source element 120 is the optical axis of the beam incident on the deflection section 200 from the first light source element 110. , is tilted clockwise by an angle Δq about the intersection of these two optical axes. As a result, a group of beams including the A1 to A5 beams are incident on the deflection section 200 from the first light source element 110 in a predetermined first incident direction. Another group of beams including the B1 to B5 beams is incident on the deflection section 200 from the second light source element 120 in a second incident direction different from the first incident direction.
 第1光源素子110から出射されるビームの速度が光速で極めて高いことに鑑みると、第1光源素子110からビームが出射されるタイミングと、第1光源素子110から出射されたビームが偏向部200に到達するタイミングと、はセンサ装置10の動作において同一タイミングとみなすことができる。同様にして、第2光源素子120から出射されるビームの速度が光速で極めて高いことに鑑みると、第2光源素子120からビームが出射されるタイミングと、第2光源素子120から出射されたビームが偏向部200に到達するタイミングと、はセンサ装置10の動作において同一タイミングとみなすことができる。したがって、図2を用いて説明した第1光源素子110及び第2光源素子120からのビームの出射タイミングと同様にして、第1光源素子110及び第2光源素子120は、異なるタイミングでビームを偏向部200に入射させている。 Considering that the speed of the beam emitted from the first light source element 110 is extremely high in terms of the speed of light, the timing of the beam emitted from the first light source element 110 and the beam emitted from the first light source element 110 are determined by the deflection unit 200. can be regarded as the same timing in the operation of the sensor device 10 . Similarly, considering that the speed of the beam emitted from the second light source element 120 is extremely high at the speed of light, the timing of the beam emitted from the second light source element 120 and the beam emitted from the second light source element 120 reaches the deflection unit 200 can be regarded as the same timing in the operation of the sensor device 10 . Therefore, the first light source element 110 and the second light source element 120 deflect the beams at different timings in the same manner as the beam emission timings from the first light source element 110 and the second light source element 120 described with reference to FIG. It is made incident on the part 200 .
 角度Δqを角速度v及び時間差Δtに対して適切に設定することで、第1光源素子110から出射されて偏向部200によって偏向されたビームの照射方向と、第1光源素子110からの上記ビームの出射タイミングから時間差Δt遅れたタイミングで第2光源素子120から出射されて偏向部200によって偏向されたビームの照射方向と、を略同一方向にすることができる。例えば、角度Δqは、v×Δtと略等しくすることができる。 By appropriately setting the angle Δq with respect to the angular velocity v and the time difference Δt, the irradiation direction of the beam emitted from the first light source element 110 and deflected by the deflection unit 200 and the direction of the beam emitted from the first light source element 110 can be adjusted. The irradiation direction of the beam emitted from the second light source element 120 at a timing delayed by a time difference Δt from the emission timing and deflected by the deflection section 200 can be substantially the same direction. For example, the angle Δq can be approximately equal to v×Δt.
 第1光源素子110及び第2光源素子120から出射されたビームによって第1計測位置P1~第5計測位置P5の点群を取得する方法の一例について説明する。第1計測位置P1~第5計測位置P5は、空間的に互いにずれている。以下の例で説明するように、偏向部200は、第1光源素子110から出射された一群のビームに含まれるA1ビーム~A5ビームの各々を第1計測位置P1~第5計測位置P5の各々に向けて偏向しており、第2光源素子120から出射された他の一群のビームに含まれるB1ビーム~B5ビームの各々を第1計測位置P1~第5計測位置P5の各々に向けて偏向している。また、第1受信部310は、A1ビーム~A5ビームの各々の第1計測位置P1~第5計測位置P5からの反射光又は散乱光を受信している。第2受信部320は、B1ビーム~B5ビームの各々の第1計測位置P1~第5計測位置P5からの反射光又は散乱光を受信している。以下、必要に応じて、各ビームの各計測位置からの反射光又は散乱光を戻り光という。 An example of a method of acquiring point groups of the first measurement position P1 to the fifth measurement position P5 by beams emitted from the first light source element 110 and the second light source element 120 will be described. The first measurement position P1 to the fifth measurement position P5 are spatially shifted from each other. As will be described in the following example, the deflection unit 200 causes each of the A1 beam to A5 beam included in the group of beams emitted from the first light source element 110 to be positioned at the first measurement position P1 to the fifth measurement position P5. and each of the B1 beam to B5 beam included in another group of beams emitted from the second light source element 120 is deflected toward each of the first measurement position P1 to the fifth measurement position P5. are doing. Also, the first receiver 310 receives reflected light or scattered light from the first measurement position P1 to the fifth measurement position P5 of each of the A1 beam to the A5 beam. The second receiver 320 receives reflected light or scattered light from the first measurement position P1 to the fifth measurement position P5 of each of the B1 beam to the B5 beam. Hereinafter, reflected light or scattered light from each measurement position of each beam will be referred to as return light as required.
 まず、A1ビームが第1光源素子110から出射されてビームスプリッタ400を透過して第1反射面202に入射する。これによって、A1ビームは、第1反射面202によって反射されて、第1反射面202から所定の照射方向に存在する第1計測位置P1に向けて偏向される。A1ビームの第1計測位置P1からの戻り光は、第1反射面202に照射されて、第1反射面202の反射及びビームスプリッタ400の反射を経て、第1受信部310に照射される。第1受信部310は、第2受信部320に対して第1方向Xの正方向側に位置している。したがって、A1ビームの第1計測位置P1からの戻り光は、上記角度Δqに起因して、第2受信部320に照射されず、第1受信部310に照射されている。このため、A1ビームの第1計測位置P1からの戻り光は、第2受信部320に受信されず、第1受信部310に受信される。 First, the A1 beam is emitted from the first light source element 110, passes through the beam splitter 400, and is incident on the first reflecting surface 202. As a result, the A1 beam is reflected by the first reflecting surface 202 and deflected from the first reflecting surface 202 toward the first measurement position P1 existing in the predetermined irradiation direction. The returning light of the A1 beam from the first measurement position P1 is irradiated to the first reflecting surface 202 , reflected by the first reflecting surface 202 and reflected by the beam splitter 400 , and then irradiated to the first receiver 310 . The first receiver 310 is located on the positive side in the first direction X with respect to the second receiver 320 . Therefore, the returning light from the first measurement position P1 of the A1 beam is not irradiated to the second receiving section 320 but is irradiated to the first receiving section 310 due to the angle Δq. Therefore, the return light from the first measurement position P1 of the A1 beam is not received by the second receiver 320 but is received by the first receiver 310 .
 A1ビームが第1光源素子110から出射された後、B1ビームが第2光源素子120から出射されてビームスプリッタ400を透過して第1反射面202に入射する。これによって、B1ビームは、第1反射面202によって反射されて、第1反射面202からA1ビームの上記所定の照射方向と略同一方向に存在する第1計測位置P1に向けて偏向される。B1ビームの第1計測位置P1からの戻り光は、第1反射面202に照射されて、第1反射面202の反射及びビームスプリッタ400の反射を経て、第2受信部320に照射される。第2受信部320は、第1受信部310に対して第1方向Xの負方向側に位置している。したがって、B1ビームの第1計測位置P1からの戻り光は、上記角度Δqに起因して、第1受信部310に照射されず、第2受信部320に照射されている。このため、B1ビームの第1計測位置P1からの戻り光は、第1受信部310に受信されず、第2受信部320に受信される。 After the A1 beam is emitted from the first light source element 110 , the B1 beam is emitted from the second light source element 120 , passes through the beam splitter 400 and enters the first reflecting surface 202 . As a result, the B1 beam is reflected by the first reflecting surface 202 and deflected from the first reflecting surface 202 toward the first measurement position P1 that exists in substantially the same direction as the predetermined irradiation direction of the A1 beam. The return light of the B1 beam from the first measurement position P1 is applied to the first reflecting surface 202 , reflected by the first reflecting surface 202 and reflected by the beam splitter 400 , and applied to the second receiving section 320 . The second receiver 320 is located on the negative direction side in the first direction X with respect to the first receiver 310 . Therefore, the return light of the B1 beam from the first measurement position P1 is not irradiated to the first receiving section 310 but is irradiated to the second receiving section 320 due to the angle Δq. Therefore, the return light of the B1 beam from the first measurement position P1 is not received by the first receiver 310 but is received by the second receiver 320 .
 信号処理部500は、A1ビームの戻り光によって第1受信部310から発生する波形と、B1ビームの戻り光によって第2受信部320から発生する波形と、を積算する。これらの波形が積算される場合、これらの波形の一方のみが用いられる場合と比較して、これらの波形のSN比を高くすることができる。また、これらの波形は、例えば、光源部100が第2光源素子120を有さず第1光源素子110のみを有している場合において第1光源素子110からA1ビーム~A5ビームを照射した後、第1光源素子110から第1計測位置P1に他のビームが照射された場合と比較して、近接したタイミングで取得することができる。したがって、実施形態では、A1ビームの戻り光によって第1受信部310から発生する波形と、B1ビームの戻り光によって第2受信部320から発生する波形と、比較的長期間保存するためのメモリを不要にすることができる。 The signal processing unit 500 integrates the waveform generated from the first receiving unit 310 by the returning light of the A1 beam and the waveform generated from the second receiving unit 320 by the returning light of the B1 beam. When these waveforms are integrated, the signal-to-noise ratio of these waveforms can be increased compared to when only one of these waveforms is used. Further, these waveforms are, for example, when the light source unit 100 does not have the second light source element 120 and has only the first light source element 110, and after the A1 beam to the A5 beam are irradiated from the first light source element 110, , can be obtained at closer timing than when another beam is irradiated from the first light source element 110 to the first measurement position P1. Therefore, in the embodiment, a memory for storing the waveform generated from the first receiver 310 by the return light of the A1 beam and the waveform generated by the second receiver 320 by the return light of the B1 beam for a relatively long period of time is provided. can be made unnecessary.
 B1ビームが第2光源素子120から出射された後、A2ビーム及びB2ビームが第1反射面202に順に入射する。A1ビーム及びB1ビームで説明した態様と同様にして、A2ビーム及びB2ビームは、第2計測位置P2に向けて順に偏向される。A2ビームの第2計測位置P2からの戻り光は、第2受信部320に照射されず、第1受信部310に受信される。B2ビームの第2計測位置P2からの戻り光は、第1受信部310に照射されず、第2受信部320に受信される。A1ビーム及びB1ビームで説明した態様と同様にして、信号処理部500は、A2ビームの第2計測位置P2からの戻り光によって第1受信部310から発生する波形と、B2ビームの第2計測位置P2からの戻り光によって第2受信部320から発生する波形と、を積算する。 After the B1 beam is emitted from the second light source element 120, the A2 beam and the B2 beam are incident on the first reflecting surface 202 in order. The A2 beam and the B2 beam are sequentially deflected toward the second measurement position P2 in the same manner as described for the A1 beam and the B1 beam. The return light from the second measurement position P2 of the A2 beam is received by the first receiver 310 without being irradiated to the second receiver 320 . The return light of the B2 beam from the second measurement position P2 is received by the second receiver 320 without being irradiated to the first receiver 310 . In the same manner as described for the A1 beam and the B1 beam, the signal processing unit 500 generates a waveform generated from the first receiving unit 310 by the return light from the second measurement position P2 of the A2 beam and the second measurement position P2 of the B2 beam. and the waveform generated from the second receiving section 320 by the return light from the position P2.
 B2ビームが第2光源素子120から出射された後、A3ビーム及びB3ビームが第1反射面202に順に入射する。A1ビーム及びB1ビームで説明した態様と同様にして、A3ビーム及びB3ビームは、第3計測位置P3に向けて順に偏向される。A3ビームの第3計測位置P3からの戻り光は、第2受信部320に照射されず、第1受信部310に受信される。B3ビームの第3計測位置P3からの戻り光は、第1受信部310に照射されず、第2受信部320に受信される。A1ビーム及びB1ビームで説明した態様と同様にして、信号処理部500は、A3ビームの第3計測位置P3からの戻り光によって第1受信部310から発生する波形と、B3ビームの第3計測位置P3からの戻り光によって第2受信部320から発生する波形と、を積算する。 After the B2 beam is emitted from the second light source element 120, the A3 beam and the B3 beam are incident on the first reflecting surface 202 in order. The A3 beam and the B3 beam are sequentially deflected toward the third measurement position P3 in the same manner as described for the A1 beam and the B1 beam. The return light from the third measurement position P3 of the A3 beam is received by the first receiver 310 without being irradiated to the second receiver 320 . The return light from the third measurement position P3 of the B3 beam is received by the second receiver 320 without being irradiated to the first receiver 310 . In the same manner as described for the A1 beam and the B1 beam, the signal processing unit 500 generates a waveform generated from the first receiving unit 310 by the return light from the third measurement position P3 of the A3 beam and the third measurement position P3 of the B3 beam. and the waveform generated from the second receiving section 320 by the return light from the position P3.
 実施形態においては、偏向部200の回転の角速度が比較的高くなっている。このため、A1ビームの出射タイミングからB3ビームの出射タイミングまでの時間区間において第1光源素子110及び第2光源素子120から出射されたビームは、第1計測位置P1と第2計測位置P2との間に位置する第4計測位置P4と、第2計測位置P2と第3計測位置P3との間に位置する第5計測位置P5と、には照射されていない。 In the embodiment, the angular velocity of rotation of the deflection section 200 is relatively high. For this reason, the beams emitted from the first light source element 110 and the second light source element 120 in the time interval from the emission timing of the A1 beam to the emission timing of the B3 beam are located between the first measurement position P1 and the second measurement position P2. A fourth measurement position P4 located between and a fifth measurement position P5 located between the second measurement position P2 and the third measurement position P3 are not irradiated.
 A3ビームが第1光源素子110から出射された後、A4ビームが第1光源素子110から出射されてビームスプリッタ400を透過して第2反射面204に入射する。これによって、A4ビームは、第2反射面204によって反射されて、第2反射面204から所定の照射方向に存在する第4計測位置P4に向けて偏向される。A4ビームの第4計測位置P4からの戻り光は、第2反射面204に照射されて、第2反射面204の反射及びビームスプリッタ400の反射を経て、第1受信部310に照射される。A1ビームで説明した態様と同様にして、A4ビームの第4計測位置P4からの戻り光は、第2受信部320に受信されず、第1受信部310に受信される。 After the A3 beam is emitted from the first light source element 110 , the A4 beam is emitted from the first light source element 110 , passes through the beam splitter 400 and enters the second reflecting surface 204 . As a result, the A4 beam is reflected by the second reflecting surface 204 and deflected from the second reflecting surface 204 toward the fourth measurement position P4 existing in the predetermined irradiation direction. The return light from the fourth measurement position P4 of the A4 beam is irradiated to the second reflecting surface 204, reflected by the second reflecting surface 204 and reflected by the beam splitter 400, and then irradiated to the first receiving section 310. The return light from the fourth measurement position P4 of the A4 beam is not received by the second receiver 320 but is received by the first receiver 310 in the same manner as described for the A1 beam.
 A4ビームが第1光源素子110から出射された後、B4ビームが第2光源素子120から出射されてビームスプリッタ400を透過して第2反射面204に入射する。これによって、B4ビームは、第2反射面204によって反射されて、第2反射面204からA4ビームの上記所定の照射方向と略同一方向に存在する第4計測位置P4に向けて偏向される。B4ビームの第4計測位置P4からの戻り光は、第2反射面204に照射されて、第2反射面204の反射及びビームスプリッタ400の反射を経て、第2受信部320に照射される。B1ビームで説明した態様と同様にして、B4ビームの第4計測位置P4からの戻り光は、第1受信部310に受信されず、第2受信部320に受信される。 After the A4 beam is emitted from the first light source element 110 , the B4 beam is emitted from the second light source element 120 , passes through the beam splitter 400 and enters the second reflecting surface 204 . As a result, the B4 beam is reflected by the second reflecting surface 204 and deflected from the second reflecting surface 204 toward the fourth measurement position P4 that exists in substantially the same direction as the predetermined irradiation direction of the A4 beam. The return light from the fourth measurement position P4 of the B4 beam is irradiated to the second reflecting surface 204, reflected by the second reflecting surface 204 and reflected by the beam splitter 400, and then irradiated to the second receiving section 320. The return light from the fourth measurement position P4 of the B4 beam is not received by the first receiver 310 but is received by the second receiver 320 in the same manner as described for the B1 beam.
 B4ビームが第2光源素子120から出射された後、A5ビーム及びB5ビームが第2反射面204に順に入射する。A4ビーム及びB4ビームで説明した態様と同様にして、A5ビーム及びB5ビームは、第5計測位置P5に向けて順に偏向される。また、A5ビームの第5計測位置P5からの戻り光は、第1受信部310に受信される。B5ビームの第2計測位置P2からの戻り光は、第2受信部320に受信される。A4ビーム及びB4ビームで説明した態様と同様にして、信号処理部500は、A5ビームの第5計測位置P5からの戻り光によって第1受信部310から発生する波形と、B5ビームの第5計測位置P5からの戻り光によって第2受信部320から発生する波形と、を積算する。 After the B4 beam is emitted from the second light source element 120, the A5 beam and the B5 beam are incident on the second reflecting surface 204 in order. The A5 beam and the B5 beam are sequentially deflected toward the fifth measurement position P5 in the same manner as described for the A4 beam and the B4 beam. Also, the return light from the fifth measurement position P5 of the A5 beam is received by the first receiver 310 . The return light from the second measurement position P2 of the B5 beam is received by the second receiver 320 . In the same manner as described for the A4 beam and the B4 beam, the signal processing unit 500 generates a waveform generated from the first receiving unit 310 by the return light from the fifth measurement position P5 of the A5 beam and the fifth measurement position P5 of the B5 beam. and the waveform generated from the second receiving section 320 by the return light from the position P5.
 図1に示す例では、第1計測位置P1に向けて照射されたA1ビームの光軸と第4計測位置P4に向けて照射されたA4ビームの光軸との角度差Δpによって示されるように、第1計測位置P1~第5計測位置P5を含む複数の計測位置のうち隣り合う計測位置に向けて照射される2つのビームの光軸の角度差がΔpとなっている。 In the example shown in FIG. 1, as shown by the angle difference Δp between the optical axis of the A1 beam irradiated toward the first measurement position P1 and the optical axis of the A4 beam irradiated toward the fourth measurement position P4, , the angle difference between the optical axes of two beams irradiated toward adjacent measurement positions among a plurality of measurement positions including the first measurement position P1 to the fifth measurement position P5 is Δp.
 第1光源素子110及び第2光源素子120は、図2に示したA1ビーム~B5ビームの出射を周期的に繰り返している。所定の周期において出射されたA1ビーム~B5ビームは、上述したように、第1反射面202又は第2反射面204によって第1計測位置P1~第5計測位置P5に向けて偏向させている。これに対して、当該所定の周期の次の周期において出射されたA1ビーム~B5ビームは、上述した所定の周期の態様に準じて、第3反射面206又は第4反射面208によって第1計測位置P1~第5計測位置P5に向けて偏向させることができる。この場合、第2方向Yの正方向から見て偏向部200が第2方向Yに平行な回転軸の周りに時計回りに1回転するごとに2フレームの点群を取得することができる。 The first light source element 110 and the second light source element 120 periodically repeat the emission of the A1 beam to the B5 beam shown in FIG. The A1 to B5 beams emitted in a predetermined cycle are deflected toward the first measurement position P1 to the fifth measurement position P5 by the first reflecting surface 202 or the second reflecting surface 204, as described above. On the other hand, the A1 beam to B5 beam emitted in the period next to the predetermined period are subjected to the first measurement by the third reflecting surface 206 or the fourth reflecting surface 208 according to the aspect of the predetermined period described above. It can be deflected toward the position P1 to the fifth measurement position P5. In this case, every time the deflection unit 200 makes one clockwise rotation around the rotation axis parallel to the second direction Y when viewed from the positive direction of the second direction Y, it is possible to acquire point groups of two frames.
 上述した方法においては、偏向部200は、第1光源素子110及び第2光源素子120から出射されたビームを、第1計測位置P1、第2計測位置P2及び第3計測位置P3に例示される一群の計測位置に向けて偏向させて、その後、第1光源素子110及び第2光源素子120から出射されたビームを、第4計測位置P4及び第5計測位置P5に例示される他の一群の計測位置に向けて偏向させている。当該他の一群の計測位置の各々は、当該一群の計測位置の隣り合う計測位置の間に位置している。この方法においては、当該一群の計測位置及び当該他の一群の計測位置の一方のみにビームが偏向される場合と比較して、センサ装置10の解像度を高くすることができる。 In the method described above, the deflection unit 200 directs the beams emitted from the first light source element 110 and the second light source element 120 to the first measurement position P1, the second measurement position P2, and the third measurement position P3. The beams emitted from the first light source element 110 and the second light source element 120 are deflected toward a group of measurement positions, and then the beams emitted from the first light source element 110 and the second light source element 120 are transferred to another group of measurement positions exemplified by the fourth measurement position P4 and the fifth measurement position P5. It is deflected toward the measurement position. Each of the other group of measurement positions is located between adjacent measurement positions of the group of measurement positions. In this method, the resolution of the sensor device 10 can be increased compared to the case where the beam is deflected to only one of the group of measurement positions and the other group of measurement positions.
 また、実施形態においては、上述したように、第1光源素子110から出射された一群のビームによって第1受信部310に発生する波形と、第2光源素子120から出射された他の一群のビームによって第2受信部320に発生する波形と、が積算されている。したがって、第3方向Zの負方向から見て、第1光源素子110から出射されて偏向部200によって複数の計測位置に向けて偏向された一群のビームによって点群が生成される領域の比較的多くの部分と、第2光源素子120から出射されて偏向部200によって複数の計測位置に向けて偏向された他の一群のビームによって点群が生成される領域の比較的多くの部分と、が重なり合っている。例えば、第3方向Zの負方向から見て、第1光源素子110からの当該一群のビームによって点群が生成される領域の90%以上、好ましくは95%以上、より好ましくは99%以上と、第2光源素子120からの当該他の一群のビームによって点群が生成される領域の90%以上、好ましくは95%以上、より好ましくは99%以上と、が重なり合っている。 Further, in the embodiment, as described above, the waveform generated in the first receiver 310 by the group of beams emitted from the first light source element 110 and the other group of beams emitted from the second light source element 120 and the waveform generated in the second receiving unit 320 by . Therefore, when viewed from the negative direction of the third direction Z, the area where the point group is generated by the group of beams emitted from the first light source element 110 and deflected toward the plurality of measurement positions by the deflection section 200 is relatively large. A large part and a relatively large part of the area where the point cloud is generated by another group of beams emitted from the second light source element 120 and deflected toward the plurality of measurement positions by the deflection unit 200. They overlap. For example, when viewed from the negative direction of the third direction Z, 90% or more, preferably 95% or more, and more preferably 99% or more of the area where the point group is generated by the group of beams from the first light source element 110. , 90% or more, preferably 95% or more, more preferably 99% or more of the area where the point cloud is generated by the other group of beams from the second light source element 120 overlap.
 第1光源素子110及び第2光源素子120から出射されたビームを偏向部200によって第1計測位置P1~第5計測位置P5に向けて偏向する方法は、上述した方法に限定されない。例えば、第2反射面204及び第4反射面208が、A1ビーム及びB1ビームを第1計測位置P1に向けて偏向し、A2ビーム及びB2ビームを第2計測位置P2に向けて偏向し、A3ビーム及びB3ビームを第3計測位置P3に向けて偏向し、第1反射面202及び第3反射面206が、A4ビーム及びB4ビームを第4計測位置P4に向けて偏向し、A5ビーム及びB5ビームを第5計測位置P5に向けて偏向してもよい。 The method of deflecting the beams emitted from the first light source element 110 and the second light source element 120 toward the first measurement position P1 to the fifth measurement position P5 by the deflection section 200 is not limited to the above method. For example, the second reflective surface 204 and the fourth reflective surface 208 deflect the A1 and B1 beams toward the first measurement location P1, the A2 and B2 beams toward the second measurement location P2, and the A3 beams toward the second measurement location P2. The beam and the B3 beam are deflected toward the third measuring position P3, the first reflecting surface 202 and the third reflecting surface 206 deflect the A4 beam and the B4 beam toward the fourth measuring position P4, and the A5 beam and the B5 beam are deflected toward the fourth measuring position P4. The beam may be deflected towards the fifth measurement position P5.
 図3は、実施形態に係るセンサ装置10の動作の一例を説明するための図である。図4は、比較例に係るセンサ装置の動作の一例を説明するための図である。図3の上段、中段及び下段の各々のタイミングチャートに付された矢印は、時間を示している。図4の上段及び下段の各々のタイミングチャートに付された矢印は、時間を示している。 FIG. 3 is a diagram for explaining an example of the operation of the sensor device 10 according to the embodiment. FIG. 4 is a diagram for explaining an example of the operation of the sensor device according to the comparative example. The arrows attached to the timing charts in the upper, middle and lower stages of FIG. 3 indicate times. The arrows attached to the timing charts in the upper and lower stages of FIG. 4 indicate time.
 比較例に係るセンサ装置は、実施形態に係る第1受信部310及び第2受信部320に代えて単一の受信部が設けられている点を除いて、実施形態に係るセンサ装置10と同様となっている。 The sensor device according to the comparative example is the same as the sensor device 10 according to the embodiment except that a single receiver is provided instead of the first receiver 310 and the second receiver 320 according to the embodiment. It has become.
 図3の上段のタイミングチャートは、第1光源素子110及び第2光源素子120からビームが出射されるタイミングを示している。このタイミングチャートでは、第1時間t1に第1光源素子110からビームが出射され、第2時間t2に第2光源素子120からビームが出射されている。第2時間t2は、第1時間t1の後の時間である。第1時間t1に第1光源素子110から出射されたビームは、例えば図2に示すA1ビームであり、第2時間t2に第2光源素子120から出射されたビームは、例えば図2に示すB1ビームである。 The timing chart in the upper part of FIG. 3 shows the timing at which beams are emitted from the first light source element 110 and the second light source element 120 . In this timing chart, the beam is emitted from the first light source element 110 at the first time t1, and the beam is emitted from the second light source element 120 at the second time t2. The second time t2 is the time after the first time t1. The beam emitted from the first light source element 110 at the first time t1 is, for example, the A1 beam shown in FIG. 2, and the beam emitted from the second light source element 120 at the second time t2 is, for example, the B1 beam shown in FIG. Beam.
 図3の中段のタイミングチャートは、実施形態に係る第1受信部310から出力される波形を示している。このタイミングチャートの全体に亘って付されたパターンは、第1受信部310から出力されるノイズを模式的に示したものである。このタイミングチャートにおいて、第1受信部310から出力される波形は、第3時間t3にピークを有している。第3時間t3は、第2時間t2の後の時間である。第3時間t3の当該ピークは、第1光源素子110から第1時間t1に出射されたビームの戻り光によって第1受信部310から発生している。 The timing chart in the middle of FIG. 3 shows waveforms output from the first receiving section 310 according to the embodiment. The patterns applied throughout this timing chart schematically show the noise output from the first receiving section 310 . In this timing chart, the waveform output from first receiving section 310 has a peak at third time t3. The third time t3 is the time after the second time t2. The peak at the third time t3 is generated from the first receiver 310 by return light of the beam emitted from the first light source element 110 at the first time t1.
 実施形態に係る信号処理部500は、第1時間t1から第1期間T1経過するまでに第1受信部310から発生したピークを、第1光源素子110から第1時間t1に出射されたビームの戻り光によって発生したピークとして取り扱っている。実施形態に係る第1期間T1は、当該ビームの第1光源素子110からの出射タイミングから実施形態に係るセンサ装置10の最大検出距離からの当該ビームの戻り光の第1受信部310の受信タイミングまでの期間となっている。 The signal processing unit 500 according to the embodiment converts the peak generated by the first receiving unit 310 from the first time t1 until the first period T1 has passed into the beam emitted from the first light source element 110 at the first time t1. It is treated as a peak generated by return light. The first period T1 according to the embodiment is from the emission timing of the beam from the first light source element 110 to the reception timing of the return light of the beam from the maximum detection distance of the sensor device 10 according to the embodiment at the first receiving unit 310. It is a period until
 図3の下段のタイミングチャートは、実施形態に係る第2受信部320から出力される波形を示している。このタイミングチャートの全体に亘って付されたパターンは、第2受信部320から出力されるノイズを模式的に示したものである。このタイミングチャートにおいて、第2受信部320から出力される波形は、第4時間t4にピークを有している。第4時間t4は、第3時間t3の後の時間である。第4時間t4の当該ピークは、第2光源素子120から第2時間t2に出射されたビームの戻り光によって第2受信部320から発生している。 The timing chart in the lower part of FIG. 3 shows waveforms output from the second receiving section 320 according to the embodiment. The patterns applied throughout this timing chart schematically show the noise output from the second receiving section 320 . In this timing chart, the waveform output from the second receiving section 320 has a peak at the fourth time t4. The fourth time t4 is the time after the third time t3. The peak at the fourth time t4 is generated from the second receiver 320 by return light of the beam emitted from the second light source element 120 at the second time t2.
 実施形態に係る信号処理部500は、第2時間t2から第2期間T2経過するまでに第2受信部320から発生したピークを、第2光源素子120から第2時間t2に出射されたビームの戻り光によって発生したピークとして取り扱っている。実施形態に係る第2期間T2は、当該ビームの第2光源素子120からの出射タイミングから実施形態に係るセンサ装置10の最大検出距離からの当該ビームの戻り光の第2受信部320の受信タイミングまでの期間となっている。 The signal processing unit 500 according to the embodiment converts the peak generated from the second receiving unit 320 from the second time t2 until the second time period T2 has elapsed into the peak of the beam emitted from the second light source element 120 at the second time t2. It is treated as a peak generated by return light. The second period T2 according to the embodiment is from the emission timing of the beam from the second light source element 120 to the reception timing of the return light of the beam from the maximum detection distance of the sensor device 10 according to the embodiment at the second receiving unit 320. It is a period until
 図4の上段のタイミングチャートは、図3の上段のタイミングチャートと同様にして、第1光源素子110及び第2光源素子120からビームが出射されるタイミングを示している。 The timing chart in the upper part of FIG. 4 shows the timing at which beams are emitted from the first light source element 110 and the second light source element 120 in the same way as the timing chart in the upper part of FIG.
 図4の下段のタイミングチャートは、比較例に係る単一の受信部から出力される波形を示している。このタイミングチャートの全体に亘って付されたパターンは、単一の受信部から出力されるノイズを模式的に示したものである。このタイミングチャートにおいて、単一の受信部から出力される波形は、第3時間t3及び第4時間t4にピークを有している。第3時間t3の当該ピークは、第1光源素子110から第1時間t1に出射されたビームの戻り光によって単一の受信部から発生している。第4時間t4の当該ピークは、第2光源素子120から第2時間t2に出射されたビームの戻り光によって単一の受信部から発生している。 The timing chart in the lower part of FIG. 4 shows waveforms output from a single receiving unit according to the comparative example. The patterns applied throughout this timing chart schematically show the noise output from a single receiving section. In this timing chart, the waveform output from a single receiving section has peaks at the third time t3 and the fourth time t4. The peak at the third time t3 is generated from a single receiving section by return light of the beam emitted from the first light source element 110 at the first time t1. The peak at the fourth time t4 is generated from a single receiver due to return light of the beam emitted from the second light source element 120 at the second time t2.
 比較例に係る信号処理部500は、第1時間t1から第1期間T1´経過するまでに単一の受信部から発生したピークを、第1光源素子110から第1時間t1に出射されたビームの戻り光によって発生したピークとして取り扱っている。また、比較例に係る信号処理部500は、第2時間t2から第2期間T2´経過するまでに単一の受信部から発生したピークを、第2光源素子120から第2時間t2に出射されたビームの戻り光によって発生したピークとして取り扱っている。 The signal processing unit 500 according to the comparative example converts the peak generated from the single receiving unit from the first time t1 until the first period T1′ has passed into the beam emitted from the first light source element 110 at the first time t1. is treated as a peak generated by the return light of . Further, the signal processing unit 500 according to the comparative example outputs the peak generated from the single receiving unit during the second period T2' from the second time t2 to the second light source element 120 at the second time t2. It is treated as a peak generated by the return light of the beam.
 図3の実施形態と図4の比較例とを比較する。 The embodiment of FIG. 3 and the comparative example of FIG. 4 are compared.
 比較例に係る単一の受信部から第3時間t3に発生したピークは、実際には、上述したように、第1光源素子110から第1時間t1に出射されたビームの戻り光によって発生している。しかしながら、比較例に係る信号処理部500は、単一の受信部から第3時間t3に発生した当該ピークが、第1光源素子110から第1時間t1に出射されたビームの比較的遠距離からの戻り光によって発生したピークであるか、又は第2光源素子120から第2時間t2に出射されたビームの比較的近距離からの戻り光によって発生したピークであるかを、単一の受信部から発生した波形から識別することができない。このため、比較例に係る信号処理部500は、第1時間t1から第1期間T1´経過するまでに単一の受信部から発生したピークを、当該ピークが第1光源素子110から出射されたビームに由来するか又は第2光源素子120から出射されたビームに由来するかにかかわらず、第1光源素子110から第1時間t1に出射されたビームの戻り光によって発生したピークとして取り扱っている。また、比較例に係る信号処理部500は、第2時間t2から第2期間T2´経過するまでに単一の受信部から発生したピークを、当該ピークが第1光源素子110から出射されたビームに由来するか又は第2光源素子120から出射されたビーム由来するかにかかわらず、第2光源素子120から第2時間t2に出射されたビームの戻り光によって発生したピークとして取り扱っている。 The peak generated at the third time t3 from the single receiver according to the comparative example is actually generated by return light of the beam emitted from the first light source element 110 at the first time t1, as described above. ing. However, in the signal processing unit 500 according to the comparative example, the peak generated at the third time t3 from the single receiving unit is 0 from a relatively long distance of the beam emitted from the first light source element 110 at the first time t1. or the peak generated by the return light from a relatively short distance of the beam emitted from the second light source element 120 at the second time t2 is determined by a single receiver. cannot be discerned from the waveform generated from Therefore, the signal processing unit 500 according to the comparative example detects a peak generated from a single receiving unit from the first time t1 until the first period T1′ elapses, and Regardless of whether it originates from the beam or from the beam emitted from the second light source element 120, it is treated as a peak generated by return light of the beam emitted from the first light source element 110 at the first time t1. . In addition, the signal processing unit 500 according to the comparative example detects the peak generated from the single receiving unit from the second time t2 until the second period T2' elapses as the beam emitted from the first light source element 110. or the beam emitted from the second light source element 120, the peak is treated as the peak generated by the return light of the beam emitted from the second light source element 120 at the second time t2.
 これに対して、実施形態においては、図1を用いて説明したように、第2受信部320が、第1光源素子110から第1時間t1に出射されたビームの戻り光を受信しないようになっている。したがって、実施形態に係る信号処理部500は、第1受信部310から第3時間t3に発生したピークが、第2光源素子120から第2時間t2に出射されたビームの比較的近距離からの戻り光によって発生したピークでなく、第1光源素子110から第1時間t1に出射されたビームの比較的遠距離からの戻り光によって発生したピークであると識別することができる。 On the other hand, in the embodiment, as described with reference to FIG. It's becoming Therefore, in the signal processing unit 500 according to the embodiment, the peak generated at the third time t3 from the first receiving unit 310 is the peak of the beam emitted from the second light source element 120 at the second time t2 from a relatively short distance. It can be identified that the peak is not caused by return light, but is caused by return light from a relatively long distance of the beam emitted from the first light source element 110 at the first time t1.
 図3の実施形態と図4の比較例との比較より、比較例に係る第1期間T1´は、第1時間t1と第2時間t2との差の絶対値より長くすることができない。これに対して、実施形態に係る第1期間T1は、第1時間t1と第2時間t2との差の絶対値より長くすることができる。したがって、実施形態に係るセンサ装置10の最大検出距離は、比較例に係るセンサ装置10の最大検出距離より長くすることができる。  From the comparison between the embodiment of FIG. 3 and the comparative example of FIG. 4, the first period T1' according to the comparative example cannot be longer than the absolute value of the difference between the first time t1 and the second time t2. In contrast, the first period T1 according to the embodiment can be longer than the absolute value of the difference between the first time t1 and the second time t2. Therefore, the maximum detection distance of the sensor device 10 according to the embodiment can be made longer than the maximum detection distance of the sensor device 10 according to the comparative example.
 また、比較例においては、信号処理部500が、第1期間T1´において単一の受信部から発生した波形と、第2期間T2´において単一の受信部から発生した波形と、を積算しても、第3時間t3に単一の受信部から発生したピークのSN比を向上させることができない。これに対して、実施形態においては、信号処理部500が、第1期間T1において第1受信部310から発生した波形と、第2期間T2において第2受信部320から発生した波形と、を積算することで、第3時間t3に第1受信部310から発生したピークと第4時間t4に第2受信部320から発生したピークとのSN比を向上させることができる。 Further, in the comparative example, the signal processing unit 500 integrates the waveform generated from the single receiving unit during the first period T1′ and the waveform generated from the single receiving unit during the second period T2′. However, the SN ratio of the peak generated from a single receiver at the third time t3 cannot be improved. In contrast, in the embodiment, the signal processing unit 500 integrates the waveform generated from the first receiving unit 310 in the first period T1 and the waveform generated from the second receiving unit 320 in the second period T2. By doing so, it is possible to improve the SN ratio between the peak generated from the first receiving unit 310 at the third time t3 and the peak generated from the second receiving unit 320 at the fourth time t4.
 図3に示す実施形態では、第2時間t2が第1時間t1の後になる場合について説明した。しかしながら、第1時間t1が第2時間t2の後になる場合においても、第2時間t2が第1時間t1の後になる場合と同様にして、実施形態に係る信号処理部500は、第1受信部310から発生した波形のピークが、第1光源素子110から出射されたビームの戻り光によって発生したピークであると識別することができ、第2受信部320から発生した波形のピークが、第2光源素子120から出射されたビームの戻り光によって発生したピークであると識別することができる。また、第1時間t1と第2時間t2とが略同一の場合であっても、実施形態に係る信号処理部500は、第1受信部310から発生した波形のピークが、第1光源素子110から出射されたビームの戻り光によって発生したピークであると識別することができ、第2受信部320から発生した波形のピークが、第2光源素子120から出射されたビームの戻り光によって発生したピークであると識別することができる。 In the embodiment shown in FIG. 3, the case where the second time t2 is after the first time t1 has been described. However, even when the first time t1 is after the second time t2, the signal processing unit 500 according to the embodiment does not include the first receiving unit in the same manner as when the second time t2 is after the first time t1. 310 can be identified as the peak generated by the return light of the beam emitted from the first light source element 110, and the peak of the waveform generated from the second receiving section 320 can be identified as the peak generated by the second light source element 110. It can be identified as the peak generated by the return light of the beam emitted from the light source element 120 . Further, even when the first time t1 and the second time t2 are substantially the same, the signal processing unit 500 according to the embodiment is designed so that the peak of the waveform generated from the first receiving unit 310 is equal to the first light source element 110 , and the peak of the waveform generated from the second receiving unit 320 was generated by the return light of the beam emitted from the second light source element 120. It can be identified as a peak.
 図5は、実施形態に係るセンサ装置10の通常モードにおける偏向部200からのビームの照射方向のタイミングチャートの一例を示す図である。 FIG. 5 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit 200 in the normal mode of the sensor device 10 according to the embodiment.
 図5のタイミングチャートの横軸は、時間を示している。図5のタイミングチャートの縦軸は、偏向部200からのビームの照射方向を示している。図5のタイミングチャートの黒丸は、当該黒丸が付された時間に第1光源素子110からのビームが偏向部200によって偏向されたことを示している。図5のタイミングチャートの白丸は、当該白丸が付された時間に第2光源素子120からのビームが偏向部200によって偏向されたことを示している。図5のタイミングチャートの複数の黒丸を通過する実線の傾き及び図5のタイミングチャートの複数の白丸を通過する実線の傾きは、偏向部200の偏向速度を示している。実施形態における偏向部200の偏向速度は、偏向部200の回転の角速度である。 The horizontal axis of the timing chart in FIG. 5 indicates time. The vertical axis of the timing chart in FIG. 5 indicates the irradiation direction of the beam from the deflecting section 200 . The black circles in the timing chart of FIG. 5 indicate that the beam from the first light source element 110 was deflected by the deflecting section 200 at the times indicated by the black circles. The white circles in the timing chart of FIG. 5 indicate that the beam from the second light source element 120 was deflected by the deflection section 200 at the time marked with the white circle. The slope of a solid line passing through a plurality of black circles in the timing chart of FIG. 5 and the slope of a solid line passing through a plurality of white circles in the timing chart of FIG. The deflection speed of the deflection section 200 in the embodiment is the angular velocity of rotation of the deflection section 200 .
 図5に示す通常モードにおいては、3つの照射方向の各々において、第1光源素子110からのビームが偏向部200によって偏向され、その後、第2光源素子120からのビームが偏向部200によって偏向されている。図5において、3つの照射方向の各々における黒丸及び白丸を囲む破線は、当該破線によって囲まれた黒丸によって示されるビームの戻り光によって第1受信部310から発生する波形と、当該破線によって囲まれた白丸によって示されるビームの戻り光によって第2受信部320から発生する波形と、を信号処理部500が積算していることを示している。 In the normal mode shown in FIG. 5, the beam from the first light source element 110 is deflected by the deflection section 200 in each of the three irradiation directions, and then the beam from the second light source element 120 is deflected by the deflection section 200. ing. In FIG. 5, the dashed lines surrounding the black and white circles in each of the three irradiation directions indicate the waveform generated from the first receiver 310 by the return light of the beam indicated by the black circle surrounded by the dashed lines, and the waveform surrounded by the dashed lines. The signal processing unit 500 integrates the waveform generated from the second receiving unit 320 by the return light of the beam indicated by the white circles.
 図5に示す通常モードにおいて、第2光源素子120からのビームの出射タイミングと、第2光源素子120からの当該ビームの出射タイミング直後の第1光源素子110からのビームの出射タイミングと、の間の時間間隔は、例えば、第2光源素子120からの当該ビームの出射タイミングから実施形態に係るセンサ装置10の最大検出距離からの当該ビームの戻り光の第2受信部320の受信タイミングまでの期間以上となっている。 In the normal mode shown in FIG. 5, between the emission timing of the beam from the second light source element 120 and the emission timing of the beam from the first light source element 110 immediately after the emission timing of the beam from the second light source element 120 is, for example, the period from the emission timing of the beam from the second light source element 120 to the reception timing of the return light of the beam from the maximum detection distance of the sensor device 10 according to the embodiment at the second receiving unit 320. That's it.
 図6は、実施形態に係るセンサ装置10の第1高解像モードにおける偏向部200からのビームの照射方向のタイミングチャートの一例を示す図である。図6に示す第1高解像モードは、以下の点を除いて、図5に示した通常モードと同様である。 FIG. 6 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit 200 in the first high resolution mode of the sensor device 10 according to the embodiment. The first high resolution mode shown in FIG. 6 is similar to the normal mode shown in FIG. 5 except for the following points.
 図6に示す第1高解像モードにおける第1光源素子110からの一群のビームの出射の時間間隔及び図6に示す第1高解像モードにおける第2光源素子120からの他の一群のビームの出射の時間間隔は、それぞれ、図5に示す通常モードにおける第1光源素子110からの一群のビームの出射の時間間隔及び図5に示す通常モードにおける第2光源素子120からの他の一群のビームの出射の時間間隔より短くなっている。具体的には、図6に示す第1高解像モードにおける第1光源素子110からの一群のビームの出射の時間間隔及び図6に示す第1高解像モードにおける第2光源素子120からの他の一群のビームの出射の時間間隔は、それぞれ、図5に示す通常モードにおける第1光源素子110からの一群のビームの出射の時間間隔の1/2及び図5に示す通常モードにおける第2光源素子120からの他の一群のビームの出射の時間間隔の1/2となっている。 Time interval of emission of a group of beams from the first light source element 110 in the first high resolution mode shown in FIG. 6 and another group of beams from the second light source element 120 in the first high resolution mode shown in FIG. are emitted from the first light source element 110 in the normal mode shown in FIG. 5 and another group from the second light source element 120 in the normal mode shown in FIG. It is shorter than the time interval of beam emission. Specifically, the time interval between the group of beams emitted from the first light source element 110 in the first high resolution mode shown in FIG. The time interval of emission of the other group of beams is 1/2 of the time interval of emission of the group of beams from the first light source element 110 in the normal mode shown in FIG. It is 1/2 the time interval between the other group of beams emitted from the light source element 120 .
 図6に示す第1高解像モードでは、第1光源素子110からの一群のビームの各々と、第2光源素子120からの他の一群のビームの各々と、が略同一タイミングで出射されている。この場合であっても、図3及び図4を用いて説明したように、実施形態に係る信号処理部500は、第1受信部310から発生した波形のピークが、第1光源素子110から出射されたビームの戻り光によって発生したピークであると識別することができ、第2受信部320から発生した波形のピークが、第2光源素子120から出射されたビームの戻り光によって発生したピークであると識別することができる。 In the first high-resolution mode shown in FIG. 6, each of the group of beams from the first light source element 110 and each of the other group of beams from the second light source element 120 are emitted at substantially the same timing. there is Even in this case, as described with reference to FIGS. The peak of the waveform generated from the second receiver 320 is the peak generated by the return light of the beam emitted from the second light source element 120. can be identified.
 図6に示す第1高解像モードにおける複数の計測位置の空間密度は、図5に示す通常モードにおける複数の計測位置の空間密度の2倍となっている。したがって、図6に示す第1高解像モードにおいては、図5に示す通常モードにおいてよりも、センサ装置10の解像度を高くすることができる。 The spatial density of the plurality of measurement positions in the first high-resolution mode shown in FIG. 6 is double the spatial density of the plurality of measurement positions in the normal mode shown in FIG. Therefore, in the first high resolution mode shown in FIG. 6, the resolution of the sensor device 10 can be made higher than in the normal mode shown in FIG.
 図7は、実施形態に係るセンサ装置10の第2高解像モードにおける偏向部200からのビームの照射方向のタイミングチャートの一例を示す図である。図7に示す第2高解像モードは、以下の点を除いて、図5に示した通常モードと同様である。 FIG. 7 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit 200 in the second high resolution mode of the sensor device 10 according to the embodiment. The second high resolution mode shown in FIG. 7 is similar to the normal mode shown in FIG. 5 except for the following points.
 図7に示す第2高解像モードにおける偏向部200の偏向速度は、図5に示す通常モードにおける偏向部200の偏向速度より低くなっている。具体的には、図7に示す第2高解像モードにおける偏向部200の偏向速度は、図5に示す通常モードにおける偏向部200の偏向速度の1/2となっている。 The deflection speed of the deflection section 200 in the second high resolution mode shown in FIG. 7 is lower than the deflection speed of the deflection section 200 in the normal mode shown in FIG. Specifically, the deflection speed of the deflection section 200 in the second high resolution mode shown in FIG. 7 is half the deflection speed of the deflection section 200 in the normal mode shown in FIG.
 図7に示す第2高解像モードでは、第1光源素子110からの一群のビームの各々と、第2光源素子120からの他の一群のビームの各々と、が略同一タイミングで出射されている。この場合であっても、図3及び図4を用いて説明したように、実施形態に係る信号処理部500は、第1受信部310から発生した波形のピークが、第1光源素子110から出射されたビームの戻り光によって発生したピークであると識別することができ、第2受信部320から発生した波形のピークが、第2光源素子120から出射されたビームの戻り光によって発生したピークであると識別することができる。 In the second high-resolution mode shown in FIG. 7, each of the group of beams from the first light source element 110 and each of the other group of beams from the second light source element 120 are emitted at substantially the same timing. there is Even in this case, as described with reference to FIGS. The peak of the waveform generated from the second receiver 320 is the peak generated by the return light of the beam emitted from the second light source element 120. can be identified.
 図7に示す第2高解像モードにおける複数の計測位置の空間密度は、図5に示す通常モードにおける複数の計測位置の空間密度の2倍となっている。したがって、図7に示す第2高解像モードにおいては、図5に示す通常モードにおいてよりも、センサ装置10の解像度を高くすることができる。 The spatial density of the plurality of measurement positions in the second high resolution mode shown in FIG. 7 is double the spatial density of the plurality of measurement positions in the normal mode shown in FIG. Therefore, in the second high resolution mode shown in FIG. 7, the resolution of the sensor device 10 can be made higher than in the normal mode shown in FIG.
 図8は、実施形態に係るセンサ装置10の第3高解像モードにおける偏向部200からのビームの照射方向のタイミングチャートの一例を示す図である。図8に示す第3高解像モードは、以下の点を除いて、図5に示した通常モードと同様である。 FIG. 8 is a diagram showing an example of a timing chart of irradiation directions of beams from the deflection unit 200 in the third high resolution mode of the sensor device 10 according to the embodiment. The third high resolution mode shown in FIG. 8 is similar to the normal mode shown in FIG. 5 except for the following points.
 図8に示す第3高解像モードにおける第1光源素子110からの一群のビームの出射の時間間隔及び図8に示す第3高解像モードにおける第2光源素子120からの他の一群のビームの出射の時間間隔は、それぞれ、図5に示す通常モードにおける第1光源素子110からの一群のビームの出射の時間間隔及び図5に示す通常モードにおける第2光源素子120からの他の一群のビームの出射の時間間隔より短くなっている。具体的には、図8に示す第3高解像モードにおける第1光源素子110からの一群のビームの出射の時間間隔及び図8に示す第3高解像モードにおける第2光源素子120からの他の一群のビームの出射の時間間隔は、それぞれ、図5に示す通常モードにおける第1光源素子110からの一群のビームの出射の時間間隔の1/2及び図5に示す通常モードにおける第2光源素子120からの他の一群のビームの出射の時間間隔の1/2となっている。 Time interval of emission of a group of beams from the first light source element 110 in the third high resolution mode shown in FIG. 8 and another group of beams from the second light source element 120 in the third high resolution mode shown in FIG. are emitted from the first light source element 110 in the normal mode shown in FIG. 5 and another group from the second light source element 120 in the normal mode shown in FIG. It is shorter than the time interval of beam emission. Specifically, the time interval between the group of beams emitted from the first light source element 110 in the third high resolution mode shown in FIG. The time interval of emission of the other group of beams is 1/2 of the time interval of emission of the group of beams from the first light source element 110 in the normal mode shown in FIG. It is 1/2 the time interval between the other group of beams emitted from the light source element 120 .
 図8に示す第3高解像モードにおける偏向部200の偏向速度は、図5に示す通常モードにおける偏向部200の偏向速度より低くなっている。具体的には、図8に示す第3高解像モードにおける偏向部200の偏向速度は、図5に示す通常モードにおける偏向部200の偏向速度の1/2となっている。 The deflection speed of the deflection section 200 in the third high resolution mode shown in FIG. 8 is lower than the deflection speed of the deflection section 200 in the normal mode shown in FIG. Specifically, the deflection speed of the deflection section 200 in the third high resolution mode shown in FIG. 8 is half the deflection speed of the deflection section 200 in the normal mode shown in FIG.
 図8に示す第3高解像モードでは、第1光源素子110からの一群のビームの各々と、第2光源素子120からの他の一群のビームの各々と、が略同一タイミングで出射されている。この場合であっても、図3及び図4を用いて説明したように、実施形態に係る信号処理部500は、第1受信部310から発生した波形のピークが、第1光源素子110から出射されたビームの戻り光によって発生したピークであると識別することができ、第2受信部320から発生した波形のピークが、第2光源素子120から出射されたビームの戻り光によって発生したピークであると識別することができる。 In the third high-resolution mode shown in FIG. 8, each of the group of beams from the first light source element 110 and each of the other group of beams from the second light source element 120 are emitted at substantially the same timing. there is Even in this case, as described with reference to FIGS. The peak of the waveform generated from the second receiver 320 is the peak generated by the return light of the beam emitted from the second light source element 120. can be identified.
 図8に示す第3高解像モードにおける複数の計測位置の空間密度は、図5に示す通常モードにおける複数の計測位置の空間密度の4倍となっている。したがって、図8に示す第3高解像モードにおいては、図5に示す通常モード、図6に示す第1高解像モード及び図7に示す第2高解像モードにおいてよりも、センサ装置10の解像度を高くすることができる。 The spatial density of the plurality of measurement positions in the third high resolution mode shown in FIG. 8 is four times the spatial density of the plurality of measurement positions in the normal mode shown in FIG. Therefore, in the third high-resolution mode shown in FIG. 8, the sensor device 10 is more sensitive than in the normal mode shown in FIG. 5, the first high-resolution mode shown in FIG. 6, and the second high-resolution mode shown in FIG. resolution can be increased.
 高解像モードにおけるセンサ装置10の動作は、図6~図8に示した例に限定されない。例えば、図6~図8に示す例では、第1光源素子110からの一群のビームの各々と、第2光源素子120からの他の一群のビームの各々と、が略同一タイミングで出射されている。しかしながら、第2光源素子120からビームが出射された時間から所定の時間間隔が経過した後に第1光源素子110から次のビームが出射されてもよい。この例において、当該時間間隔は、第2光源素子120からの当該ビームの出射タイミングから実施形態に係るセンサ装置10の最大検出距離からの当該ビームの戻り光の第2受信部320の受信タイミングまでの期間未満にしてもよい。この場合であっても、図3及び図4を用いて説明したように、実施形態に係る信号処理部500は、第1受信部310から発生した波形のピークが、第1光源素子110から出射されたビームの戻り光によって発生したピークであると識別することができ、第2受信部320から発生した波形のピークが、第2光源素子120から出射されたビームの戻り光によって発生したピークであると識別することができる。 The operation of the sensor device 10 in the high resolution mode is not limited to the examples shown in FIGS. 6-8. For example, in the examples shown in FIGS. 6 to 8, each of the group of beams from the first light source element 110 and each of the other group of beams from the second light source element 120 are emitted at substantially the same timing. there is However, the next beam may be emitted from the first light source element 110 after a predetermined time interval has passed since the second light source element 120 emitted the beam. In this example, the time interval is from the emission timing of the beam from the second light source element 120 to the reception timing of the return light of the beam from the maximum detection distance of the sensor device 10 according to the embodiment at the second receiving unit 320. may be less than the period of Even in this case, as described with reference to FIGS. The peak of the waveform generated from the second receiver 320 is the peak generated by the return light of the beam emitted from the second light source element 120. can be identified.
 図9は、実施形態に係る第1光源素子110の第1例を示す回路図である。図9を用いて説明する以下の事項は、第2光源素子120にも適用可能である。 FIG. 9 is a circuit diagram showing a first example of the first light source element 110 according to the embodiment. The following matters described using FIG. 9 are also applicable to the second light source element 120 .
 図9に示す回路では、容量Cが抵抗Rを介して第1電源V1によって充電されている。トランジスタQがオン状態になると容量Cに充電された電荷の放電によってインダクタL、レーザーダイオードD及びトランジスタQに電流が流れる。トランジスタQのオン・オフは、第2電源V2、スイッチS及びゲートドライバUによって制御されている。ゲートドライバUは、スイッチSによって、第2電源V2に電気的に接続され、又は接地される。図9に示す例において、ゲートドライバUは、第2電源V2に電気的に接続されている。レーザーダイオードDに電流が流れることで、第1光源素子110は、レーザーダイオードDから発生するビームを出射している。  In the circuit shown in FIG. 9, the capacitor C is charged by the first power supply V1 through the resistor R. When the transistor Q is turned on, current flows through the inductor L, the laser diode D, and the transistor Q due to the discharge of the electric charge stored in the capacitor C. ON/OFF of the transistor Q is controlled by the second power supply V2, the switch S and the gate driver U. The gate driver U is electrically connected by a switch S to the second power supply V2 or grounded. In the example shown in FIG. 9, the gate driver U is electrically connected to the second power supply V2. When current flows through the laser diode D, the first light source element 110 emits a beam generated from the laser diode D. As shown in FIG.
 レーザーダイオードDから発せられるビームの強度は、容量Cの充電電圧に依存して決定される。したがって、第1電源V1の電圧を可変に調整することで、容量Cの充電電圧を可変に調整することができる。これによって、第1光源素子110から発せられるビームの強度を可変に調整することができる。  The intensity of the beam emitted from the laser diode D is determined depending on the charging voltage of the capacitor C. Therefore, by variably adjusting the voltage of the first power supply V1, the charging voltage of the capacitor C can be variably adjusted. Thereby, the intensity of the beam emitted from the first light source element 110 can be variably adjusted.
 図6~図8に示した第1高解像モード~第3高解像モードにおいて第1光源素子110から出射されるビームの強度及び第2光源素子120から出射されるビームの強度は、それぞれ、図5に示した通常モードにおいて第1光源素子110から出射されるビームの強度及び第2光源素子120から出射されるビームの強度より低くすることができる。 The intensity of the beam emitted from the first light source element 110 and the intensity of the beam emitted from the second light source element 120 in the first to third high resolution modes shown in FIGS. , the intensity of the beam emitted from the first light source element 110 and the intensity of the beam emitted from the second light source element 120 in the normal mode shown in FIG.
 具体的には、図5に示した通常モードでは、第1光源素子110及び第2光源素子120から略同一タイミングでビームが出射されることがない。この場合、第1光源素子110から出射されるビームの強度及び第2光源素子120から出射されるビームの強度の各々は、アイセーフにおいて許容される上限以下にすることができる。これに対して、図6~図8に示した第1高解像モード~第3高解像モードでは、第1光源素子110及び第2光源素子120から略同一タイミングでビームが出射されることがある。この場合、第1光源素子110から出射されるビームの強度及び第2光源素子120から出射されるビームの強度の和が、アイセーフにおいて許容される上限以下となる必要がある。例えば、第1光源素子110から出射されるビームの強度及び第2光源素子120から出射されるビームの強度の各々は、アイセーフにおいて許容される上限の1/2以下にしてもよい。したがって、センサ装置10が通常モードであるか、又は第1高解像モード~第3高解像モードであるかによって、図9を用いて説明したように、第1光源素子110から出射されるビームの強度及び第2光源素子120から出射されるビームの強度を可変に調整することができる。 Specifically, in the normal mode shown in FIG. 5, beams are not emitted from the first light source element 110 and the second light source element 120 at approximately the same timing. In this case, each of the intensity of the beam emitted from the first light source element 110 and the intensity of the beam emitted from the second light source element 120 can be set below the upper limit allowed in eye-safe. On the other hand, in the first to third high resolution modes shown in FIGS. 6 to 8, beams are emitted from the first light source element 110 and the second light source element 120 at approximately the same timing. There is In this case, the sum of the intensity of the beam emitted from the first light source element 110 and the intensity of the beam emitted from the second light source element 120 must be less than or equal to the upper limit allowed for eye-safety. For example, each of the intensity of the beam emitted from the first light source element 110 and the intensity of the beam emitted from the second light source element 120 may be set to 1/2 or less of the allowable upper limit for eye-safety. Therefore, depending on whether the sensor device 10 is in the normal mode or in the first to third high resolution modes, light is emitted from the first light source element 110 as described with reference to FIG. The intensity of the beam and the intensity of the beam emitted from the second light source element 120 can be variably adjusted.
 図10は、実施形態に係る第1光源素子110の第2例を示す図である。図10を用いて説明する以下の事項は、第2光源素子120にも適用可能である。 FIG. 10 is a diagram showing a second example of the first light source element 110 according to the embodiment. The following matters described using FIG. 10 are also applicable to the second light source element 120 .
 第1光源素子110は、第1分割光源素子112及び第2分割光源素子114を有している。第1分割光源素子112及び第2分割光源素子114は、第3方向Zに並んでいる。第1分割光源素子112は、第1分割光源素子112の第1方向Xの負方向側に向けて第1分割ビームb1を出射している。第2分割光源素子114は、第2分割光源素子114の第1方向Xの負方向側に向けて第2分割ビームb2を出射している。第2分割ビームb2の強度は、第1分割ビームb1の強度と略等しくなっている。第1分割ビームb1の第1方向Xに平行な光軸と第2分割ビームb2の第1方向Xに平行な光軸とは第3方向Zに互いにずれている。一方、第2分割ビームb2の拡がり角は、第1分割ビームb1の拡がり角と略等しくなっている。したがって、第1分割ビームb1及び第2分割ビームb2が第1光源素子110から比較的遠方に照射された場合、第1分割ビームb1の光軸と第2分割ビームb2の光軸とのずれの影響は無視することができる。 The first light source element 110 has a first split light source element 112 and a second split light source element 114 . The first divided light source element 112 and the second divided light source element 114 are arranged in the third direction Z. As shown in FIG. The first split light source element 112 emits the first split beam b1 toward the negative direction side of the first direction X of the first split light source element 112 . The second split light source element 114 emits the second split beam b2 toward the negative direction side of the first direction X of the second split light source element 114 . The intensity of the second split beam b2 is substantially equal to the intensity of the first split beam b1. The optical axis parallel to the first direction X of the first split beam b1 and the optical axis parallel to the first direction X of the second split beam b2 are shifted in the third direction Z from each other. On the other hand, the spread angle of the second split beam b2 is approximately equal to the spread angle of the first split beam b1. Therefore, when the first split beam b1 and the second split beam b2 are irradiated relatively far from the first light source element 110, the deviation between the optical axis of the first split beam b1 and the optical axis of the second split beam b2 is The effect is negligible.
 第1光源素子110から出射されるビームの強度は、第1分割光源素子112及び第2分割光源素子114の双方から分割ビームを出射させるか、又は第1分割光源素子112及び第2分割光源素子114の一方のみから分割ビームを出射させるかによって、可変に調整することができる。例えば、図5に示した通常モードにおいては、第1分割光源素子112及び第2分割光源素子114の双方から分割ビームを出射させることができる。これに対して、図6~図8に示した第1高解像モード~第3高解像モードでは、第1分割光源素子112及び第2分割光源素子114の一方のみから分割ビームを出射させることができる。これによって、図6~図8に示した第1高解像モード~第3高解像モードにおいて第1光源素子110から出射されるビームの強度を、図5に示した通常モードにおいて第1光源素子110から出射されるビームの強度より低くすることができる。 The intensity of the beam emitted from the first light source element 110 can be adjusted so that the split beams are emitted from both the first split light source element 112 and the second split light source element 114, or the first split light source element 112 and the second split light source element It can be variably adjusted depending on whether the split beams are emitted from only one of 114 . For example, in the normal mode shown in FIG. 5, split beams can be emitted from both the first split light source element 112 and the second split light source element 114 . On the other hand, in the first to third high resolution modes shown in FIGS. 6 to 8, split beams are emitted from only one of the first split light source element 112 and the second split light source element 114. be able to. As a result, the intensity of the beam emitted from the first light source element 110 in the first high-resolution mode to the third high-resolution mode shown in FIGS. It can be less than the intensity of the beam emitted from element 110 .
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above with reference to the drawings, these are examples of the present invention, and various configurations other than those described above can be adopted.
10 センサ装置
100 光源部
110 第1光源素子
112 第1分割光源素子
114 第2分割光源素子
120 第2光源素子
200 偏向部
202 第1反射面
204 第2反射面
206 第3反射面
208 第4反射面
310 第1受信部
320 第2受信部
400 ビームスプリッタ
500 信号処理部
C 容量
D レーザーダイオード
L インダクタ
P1 第1計測位置
P2 第2計測位置
P3 第3計測位置
P4 第4計測位置
P5 第5計測位置
Q トランジスタ
R 抵抗
S スイッチ
U ゲートドライバ
V1 第1電源
V2 第2電源
X 第1方向
Y 第2方向
Z 第3方向
b1 第1分割ビーム
b2 第2分割ビーム
10 sensor device 100 light source section 110 first light source element 112 first divided light source element 114 second divided light source element 120 second light source element 200 deflection section 202 first reflecting surface 204 second reflecting surface 206 third reflecting surface 208 fourth reflection Surface 310 First receiver 320 Second receiver 400 Beam splitter 500 Signal processor C Capacitor D Laser diode L Inductor P1 First measurement position P2 Second measurement position P3 Third measurement position P4 Fourth measurement position P5 Fifth measurement position Q Transistor R Resistor S Switch U Gate driver V1 First power supply V2 Second power supply X First direction Y Second direction Z Third direction b1 First split beam b2 Second split beam

Claims (7)

  1.  光源部と、
     前記光源部から所定の第1入射方向に入射する第1ビームを所定の第1照射方向に存在する第1計測位置に向けて偏向し、前記光源部から前記第1ビームの入射後に前記第1入射方向と異なる第2入射方向に入射する第2ビームを前記所定の第1照射方向と略同一方向に存在する前記第1計測位置に向けて偏向する偏向部と、
     前記第1ビームの前記第1計測位置からの反射光又は散乱光を受信する第1受信部と、
     前記第2ビームの前記第1計測位置からの反射光又は散乱光を受信する第2受信部と、
     前記第1ビームの前記反射光又は前記散乱光によって前記第1受信部から発生する波形と、前記第2ビームの前記反射光又は前記散乱光によって前記第2受信部から発生する波形と、を積算する信号処理部と、
    を備えるセンサ装置。
    a light source;
    deflecting a first beam incident in a predetermined first incident direction from the light source unit toward a first measurement position existing in a predetermined first irradiation direction; a deflection unit that deflects a second beam incident in a second incident direction different from the incident direction toward the first measurement position existing in substantially the same direction as the predetermined first irradiation direction;
    a first receiver that receives reflected light or scattered light from the first measurement position of the first beam;
    a second receiver that receives reflected light or scattered light from the first measurement position of the second beam;
    A waveform generated from the first receiving section by the reflected light or the scattered light of the first beam and a waveform generated from the second receiving section by the reflected light or the scattered light of the second beam are integrated. a signal processing unit that
    A sensor device comprising:
  2.  請求項1に記載のセンサ装置において、
     前記偏向部が、前記光源部から前記第1ビームの入射後に前記第1入射方向に入射する第3ビームを前記第1照射方向と異なる第2照射方向に存在する第2計測位置に向けて偏向し、前記光源部から前記第2ビームの入射後に前記第2入射方向に入射する第4ビームを前記第2照射方向と略同一方向に存在する前記第2計測位置に向けて偏向し、
     前記第1受信部が、前記第3ビームの前記第2計測位置からの反射光又は散乱光を受信し、
     前記第2受信部が、前記第4ビームの前記第2計測位置からの反射光又は散乱光を受信し、
     前記信号処理部が、前記第3ビームの前記反射光又は前記散乱光によって前記第1受信部から発生する波形と、前記第4ビームの前記反射光又は前記散乱光によって前記第2受信部から発生する波形と、を積算する、センサ装置。
    In the sensor device according to claim 1,
    The deflection unit deflects a third beam incident in the first incident direction after the first beam is incident from the light source unit toward a second measurement position existing in a second irradiation direction different from the first irradiation direction. and deflecting a fourth beam incident in the second incident direction from the light source unit after the second beam is incident, toward the second measurement position existing in substantially the same direction as the second irradiation direction,
    The first receiving unit receives reflected light or scattered light from the second measurement position of the third beam,
    The second receiving unit receives reflected light or scattered light from the second measurement position of the fourth beam,
    The signal processing unit generates a waveform generated from the first receiving unit by the reflected light or the scattered light of the third beam and a waveform generated from the second receiving unit by the reflected light or the scattered light of the fourth beam A sensor device that integrates a waveform to and from.
  3.  請求項2に記載のセンサ装置において、
     前記第3ビームが、所定の第1モードにおいて、前記センサ装置の最大検出距離からの前記第2ビームの反射光又は散乱光の前記第2受信部の受信タイミングと同時又はその後、前記光源部から出射され、
     前記第3ビームが、前記第1モードと異なる第2モードにおいて、前記センサ装置の最大検出距離からの前記第2ビームの反射光又は散乱光の前記第2受信部の受信タイミング前、前記光源部から出射される、センサ装置。
    In the sensor device according to claim 2,
    The third beam is emitted from the light source unit in a predetermined first mode at the same time as or after the second receiving unit receives the reflected light or scattered light of the second beam from the maximum detection distance of the sensor device. emitted,
    In a second mode in which the third beam is different from the first mode, before the reception timing of the second receiving section of the reflected light or the scattered light of the second beam from the maximum detection distance of the sensor device, the light source section A sensor device emitted from.
  4.  請求項3に記載のセンサ装置において、
     前記第2モードにおける前記光源部の前記第1入射方向の一群のビームの出射の時間間隔及び前記第2モードにおける前記光源部の前記第2入射方向の他の一群のビームの出射の時間間隔が、それぞれ、前記第1モードにおける前記光源部の前記第1入射方向の前記一群のビームの出射の時間間隔及び前記第1モードにおける前記光源部の前記第2入射方向の他の一群のビームの出射の時間間隔より短い、センサ装置。
    In the sensor device according to claim 3,
    A time interval of emission of a group of beams in the first incident direction of the light source unit in the second mode and a time interval of emission of the other group of beams in the second incident direction of the light source unit in the second mode are , respectively, the time interval between the emission of the group of beams in the first incident direction of the light source unit in the first mode and the emission of another group of beams in the second incident direction of the light source unit in the first mode, respectively. sensor device, shorter than the time interval of
  5.  請求項3又は4に記載のセンサ装置において、
     前記第2モードにおける前記偏向部の偏向速度が前記第1モードにおける前記偏向部の偏向速度より低い、センサ装置。
    In the sensor device according to claim 3 or 4,
    A sensor device, wherein the deflection speed of the deflection section in the second mode is lower than the deflection speed of the deflection section in the first mode.
  6.  請求項3~5のいずれか一項に記載のセンサ装置において、
     前記第2モードにおける前記光源部の前記第1入射方向の一群のビームの強度及び前記第2モードにおける前記光源部の前記第2入射方向の他の一群のビームの強度が、それぞれ、前記第1モードにおける前記光源部の前記第1入射方向の前記一群のビームの強度及び前記第1モードにおける前記光源部の前記第2入射方向の他の一群のビームの強度より低い、センサ装置。
    In the sensor device according to any one of claims 3 to 5,
    The intensity of the group of beams in the first incident direction of the light source unit in the second mode and the intensity of the other group of beams in the second incident direction of the light source unit in the second mode are respectively equal to the first A sensor arrangement, lower than the intensity of the group of beams in the first direction of incidence of the light source section in a mode and the intensity of the other group of beams in the second direction of incidence of the light source section in the first mode.
  7.  光源部と、
     前記光源部から所定の第1入射方向に入射する第1群のビームの各々を複数の照射方向に存在する複数の計測位置の各々に向けて偏向し、前記光源部から前記第1入射方向と異なる第2入射方向に入射する第2群のビームの各々を前記複数の照射方向と略同一方向に存在する前記複数の計測位置の各々に向けて偏向する偏向部と、
     前記第1群のビームの前記複数の計測位置の各々からの反射光又は散乱光を受信する第1受信部と、
     前記第2群のビームの前記複数の計測位置の各々からの反射光又は散乱光を受信する第2受信部と、
    を備え、
     前記第1群のビームによって点群が形成される領域の90%以上と、前記第2群のビームによって点群が形成される領域の90%以上と、が重なり合っている、センサ装置。
    a light source;
    each of a first group of beams incident in a predetermined first incident direction from the light source unit is deflected toward each of a plurality of measurement positions existing in a plurality of irradiation directions; a deflection unit that deflects each of the second group of beams incident in different second incident directions toward each of the plurality of measurement positions existing in substantially the same direction as the plurality of irradiation directions;
    a first receiver that receives reflected light or scattered light from each of the plurality of measurement positions of the first group of beams;
    a second receiver that receives reflected light or scattered light from each of the plurality of measurement positions of the second group of beams;
    with
    The sensor device, wherein 90% or more of the area where the point cloud is formed by the first group of beams and 90% or more of the area where the point group is formed by the second group of beams overlap.
PCT/JP2021/047927 2021-12-23 2021-12-23 Sensor device WO2023119569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047927 WO2023119569A1 (en) 2021-12-23 2021-12-23 Sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047927 WO2023119569A1 (en) 2021-12-23 2021-12-23 Sensor device

Publications (1)

Publication Number Publication Date
WO2023119569A1 true WO2023119569A1 (en) 2023-06-29

Family

ID=86901784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047927 WO2023119569A1 (en) 2021-12-23 2021-12-23 Sensor device

Country Status (1)

Country Link
WO (1) WO2023119569A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215089A (en) * 2010-04-02 2011-10-27 Pulstec Industrial Co Ltd Three-dimensional shape measuring apparatus
US20150009485A1 (en) * 2013-07-02 2015-01-08 Electronics And Telecommunications Research Institute Laser radar system
JP2018109560A (en) * 2017-01-04 2018-07-12 オムロンオートモーティブエレクトロニクス株式会社 Scanning type distance measuring device
JP2021110739A (en) * 2020-01-07 2021-08-02 三星電子株式会社Samsung Electronics Co., Ltd. Lidar device and operating method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215089A (en) * 2010-04-02 2011-10-27 Pulstec Industrial Co Ltd Three-dimensional shape measuring apparatus
US20150009485A1 (en) * 2013-07-02 2015-01-08 Electronics And Telecommunications Research Institute Laser radar system
JP2018109560A (en) * 2017-01-04 2018-07-12 オムロンオートモーティブエレクトロニクス株式会社 Scanning type distance measuring device
JP2021110739A (en) * 2020-01-07 2021-08-02 三星電子株式会社Samsung Electronics Co., Ltd. Lidar device and operating method thereof

Similar Documents

Publication Publication Date Title
US11300684B2 (en) Scanning lidar systems for three-dimensional sensing
JP7330551B2 (en) Noise adaptive solid-state lidar system
US9841495B2 (en) Lidar system with improved scanning speed for high-resolution depth mapping
JP6780308B2 (en) Object detection device, sensing device and mobile device
JP6644348B2 (en) Object detection device, sensing device, and mobile device
JP6547942B2 (en) Semiconductor laser drive device, light scanning device, object detection device, and moving body device
US11592530B2 (en) Detector designs for improved resolution in lidar systems
CN110914705A (en) Integrated LIDAR lighting power control
JP2018004426A (en) Object detector, sensing device, and mobile body device
JP6824236B2 (en) Laser distance measuring device
US11947009B2 (en) Range imaging apparatus and method
US20220113378A1 (en) Methods and Systems for Dithering Active Sensor Pulse Emissions
US20240128707A1 (en) Apparatus for projecting linear laser beams
WO2023119569A1 (en) Sensor device
US20210382177A1 (en) System for monitoring surroundings of vehicle
US11614542B1 (en) Lidar photosensor amplification circuit
JP6908015B2 (en) Optical ranging device and optical ranging method
WO2022244273A1 (en) Light source device and sensor device
US20210302543A1 (en) Scanning lidar systems with flood illumination for near-field detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969004

Country of ref document: EP

Kind code of ref document: A1