WO2023116896A1 - 一种去除离子束刻蚀***颗粒的方法和离子束刻蚀*** - Google Patents

一种去除离子束刻蚀***颗粒的方法和离子束刻蚀*** Download PDF

Info

Publication number
WO2023116896A1
WO2023116896A1 PCT/CN2022/141484 CN2022141484W WO2023116896A1 WO 2023116896 A1 WO2023116896 A1 WO 2023116896A1 CN 2022141484 W CN2022141484 W CN 2022141484W WO 2023116896 A1 WO2023116896 A1 WO 2023116896A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
ion beam
beam etching
etching system
particles
Prior art date
Application number
PCT/CN2022/141484
Other languages
English (en)
French (fr)
Inventor
王想
刘小波
孙宏博
窦阳
王怡楠
胡冬冬
陈璐
许开东
Original Assignee
江苏鲁汶仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器股份有限公司 filed Critical 江苏鲁汶仪器股份有限公司
Publication of WO2023116896A1 publication Critical patent/WO2023116896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32871Means for trapping or directing unwanted particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for removing particles of an ion beam etching system and an ion beam etching system, which is a structural modification of ion beam etching equipment, and aims to efficiently remove particles produced by the ion beam etching system without opening the cavity. particles.
  • Ion beam etching is to fill inert gases such as argon, krypton, and xenon into the discharge chamber of the ion source, and ionize it to form a plasma, and then extract and accelerate the ions in a beam form by the gate, with a certain energy
  • the ion beam enters the studio, shoots to the solid surface, hits the atoms on the solid surface, makes the material atoms sputter, and achieves the purpose of etching, which belongs to the purely physical bombardment process.
  • process etching on complex systems such as various metals and oxides, debris and particles of various sizes will be sputtered in the reaction chamber.
  • Volatile particles are difficult to be pumped away by the molecular pump, resulting in deposition of by-products on the inner wall of the chamber. This not only creates particle contamination, but also causes the process to drift over time, making the process less repeatable. Therefore, it is necessary to clean the plasma processing chamber. However, in actual use, cleaning will cause process interruption and reduce the production efficiency of plasma processing equipment.
  • the current research on the accumulation of polymers on the etching cavity wall during the etching process has given a variety of measures in the industry and has achieved good improvement effects.
  • the most widely used method is the automatic dry etching without wafer.
  • the cleaning method usually uses fluorine-rich gases such as NF3 to remove inorganic polymers, and oxygen-rich gases such as O2 to remove organic polymers and deposit a layer of polymers similar to silicon dioxide on the inner wall of the etching chamber after cleaning. Wafer-free self-cleaning steps can effectively improve chamber deposition.
  • fluorine-rich gases such as NF3 to remove inorganic polymers
  • oxygen-rich gases such as O2
  • the invention patent with publication number CN105097445B provides a method for removing particles in an etching chamber, including: forming a coating in a dry etching chamber, placing a wafer in the dry etching chamber, etching the metal-containing layer of the wafer, and placing the wafer Remove the circle from the dry etch chamber. After the wafer is removed from the dry etch chamber, the coating is removed.
  • This patent is equivalent to sticking a layer of protective film on the inner wall of the cavity. After removing the protective film after the process, the cavity still needs to be cleaned, but it can maintain the cleanliness of the inner wall of the cavity and prevent the adhesion of particles.
  • the patent application with the publication number CN101727025A discloses a method for removing photoresist residues and etching reactant particles, including: sequentially forming a layer to be etched and a patterned photoresist layer on a semiconductor substrate; The layer is a mask, and the layer to be etched is etched; the photoresist layer is removed by ashing method; the semiconductor substrate with each film layer is placed in the solution spray circulation pool, and the photoresist residue is removed by spraying the first solution, and at the same time The first solution with photoresist residue flows out from the solution spray circulation pool; the second solution is sprayed to remove the etching reactant particles remaining in the etching process, and the second solution with etching reactant particles flows from the solution Outflow from jet circulation pool.
  • the invention ensures that photoresist residues and etching reactant particles can be effectively removed, and improves the performance of semiconductor devices.
  • This invention is aimed at how to remove the particles already contained on the etching wafer and protect the required wafer layer from damage, which is not related to my invention.
  • the invention patent with the publication number CN109216241B discloses an intelligent self-cleaning method for etching by-products, which is suitable for dry etching process of semiconductors, provides a process control system and a dry etching equipment, and also includes the following steps: Step S1, the process control system collects the first process parameters in the dry etching process before the dry etching equipment executes before the dry etching process corresponding to the dry etching equipment starts; step S2, the process control system according to The first process parameter is to obtain the second process parameter for self-cleaning the dry etching equipment; step S3, the process control system performs a self-cleaning process for the dry etching equipment according to the second process parameter; step S4, dry etching The device executes the corresponding dry etching process, and returns to step S1 after the dry etching process is completed.
  • the invention reduces the source of etching defect particles caused by polymer accumulation during the etching process, and improves the problem of the first chip effect in wafer batch operations.
  • the invention is to provide a process control system, read the process parameters of different batches, compare with the standard value, and then perform self-cleaning to ensure the consistency of process conditions. As for how to self-clean, it is not explained, and it is also related to my invention not big.
  • the purpose of the present invention is to A method and device for removing particles in an ion beam etching system are provided.
  • the neutralizer part of the ion beam etching system is used to emit electrons, so that the particles in the cavity are negatively charged, and the charged Particle suction, without opening the cavity, can efficiently remove particles and improve the production efficiency of plasma treatment equipment.
  • An ion beam etching system adds a layer of third grid on the basis of the reaction chamber of the original ion beam etching system. Specifically, screw holes are opened at both ends of the grid and fixed on the inner wall of the reaction chamber through insulating pieces.
  • the grid is connected to a DC power supply to generate a positive voltage, and the voltage value is adjusted within 100kv according to the size of the particles to be removed.
  • the third grid c is arranged at the bottom of the cavity to improve efficiency.
  • the third grid c is made of hard metal, such as molybdenum and nickel, and the mesh size is less than 5mm, which is convenient for particles of different sizes to pass through.
  • the shape of the third grid c may be circular, square or irregular.
  • the ion source of the ion beam etching system is first disconnected, and then the lower electrode is rotated 90° to be perpendicular to the The position of the third grid c, open the neutralizer for a period of time, a large number of electrons generated by the neutralizer will attach to the particles, making the various particles originally sputtered in the reaction chamber negatively charged, and then the third grid c A positive voltage is applied through the third DC power supply c. At this time, the negatively charged particles will move towards the third grid c under the action of the electric field.
  • the suction hole of the molecular pump Below the third grid c is the suction hole of the molecular pump. At this time, the particles will pass through Through the mesh of the third grid c, it is sucked away by the molecular pump and discharged out of the chamber, which is convenient for fast and effective removal of particles and prevents the deposition of particles inside the reaction chamber.
  • the ion source is a radio frequency excitation ion source, which is used to generate an ion beam in process etching, which consists of a radio frequency power supply, a matching device, a radio frequency coil, a grounding capacitor C, a discharge chamber, a first DC power supply a, and a first filter a , the first grid a, the second DC power supply b, the second filter b, and the second grid b.
  • the ion source is a Kaufman-type ion source, or an ECR ion source.
  • the radio frequency power supply is connected with the radio frequency coil through the matching device, ionizes the gas introduced into the discharge chamber, and then leads the ion beam through the two-layer grid, which is the principle of ion beam generation in the ion beam etching system.
  • the lower electrode is the carrier of the wafer in the ion beam etching system, which can rotate and revolve to change the incident angle of the ion beam to achieve etching at different angles on both sides.
  • rotating it 90° to a position perpendicular to the grid c is on the one hand to reduce the deposition of particles on the surface of the lower electrode, and on the other hand to completely expose the grid c to the reaction chamber, so that more thorough adsorption can be achieved. particles.
  • the neutralizer is used to excite and generate electrons, which attach to the particles in the reaction chamber and make them negatively charged. It can be a radio frequency neutralizer, a hot cathode neutralizer, a hollow cathode neutralizer, or an electron cyclotron resonance neutralizer.
  • the present invention contains a neutralizer for the ion beam etching system, which will provide a specific condition for a large amount of electrons, and add a grid to make the particles negatively charged. If other etching systems do not have this environment, even if the grid is added, it will not be possible. Achieve efficient particle removal.
  • the present invention is easy to implement, and only needs to fix the grid in the cavity with screws and fixtures, and the grid is connected to the DC power supply, and the purpose of placing the grid at the bottom is to improve efficiency.
  • the particle removal efficiency of the present invention can be improved by increasing the number of electrons generated by the neutralizer and increasing the voltage value of the DC power supply c.
  • the greater the number of electrons the easier it is to be collided and adsorbed by the particles; the higher the voltage on the grid c, the stronger the electric field generated, even the larger particles far away from the grid can move towards the grid under the action of the electric field, thus being Molecular pump pumps out the chamber.
  • the working principle of the present invention is different from that of the electrostatic precipitator.
  • the latter maintains an electrostatic field sufficient to ionize the gas through a high-voltage direct current on two metal anodes and cathodes with different curvature radii.
  • the electrons, anions and cations generated after the ionization of the gas are adsorbed on the dust passing through the electric field, so that the dust obtains a charge.
  • the charged dust moves to the electrode with opposite polarity in disguise and deposits on the electrode. The purpose of dust and gas separation.
  • FIG. 1 is a schematic structural diagram of an ion beam etching system according to the present invention.
  • Fig. 2 is a comparison experiment of particle removal effect before and after installing the third grid c in Example 1.
  • 1-first DC power supply a 2-second DC power supply b, 3-first filter a, 4-second filter b, 5-capacitor C, 6-radio frequency power supply, 7-discharge chamber, 8-RF coil, 9-plasma, 10-first grid a, 11-second grid b, 12-third grid c, 13-lower electrode, 14-molecular pump, 15-neutralizer, 16-the third DC power supply c, 17-reaction chamber.
  • An ion beam etching system includes: a first grid, a second grid, a third grid, a neutralizer and an air extraction hole, the first grid and the second grid are used for The plasma is accelerated, the third grid is located on the side of the second grid away from the first grid, the neutralizer is located above the third grid, the gas extraction hole is located below the third grid, and the gas extraction hole and the molecular pump Connection for pumping gas from the reaction chamber.
  • a layer of grid can be added at the bottom of the reaction chamber of the ion beam etching system, and the material of the grid can be a conductive material, such as a metal material, and the grid can be recorded as the third grid c or metal grid , the grid is connected to a DC power supply to generate a positive voltage, and the voltage value is adjusted within 100kv according to the size of the particles to be removed.
  • Both ends of the third grid are provided with threaded holes, and the threaded holes are used to fix the third grid on the inner wall of the reaction chamber by connecting with an insulator.
  • the third grid is arranged at the bottom of the reaction chamber, and the angle between the extension direction of the third grid and the bottom inner wall of the reaction chamber is smaller than a preset angle, and the preset angle It can be smaller, so that the extension square of the third grid is parallel or nearly parallel to the inner wall of the bottom of the reaction chamber.
  • the extension directions of the first grid and the second grid are parallel, and both are perpendicular to the extension direction of the third grid.
  • the material of the third grid is metal, such as molybdenum or nickel.
  • the mesh size of the third grid is below 5mm.
  • the shape of the third grid is circular, square or irregular.
  • the neutralizer is a radio frequency neutralizer, a hot cathode neutralizer, a hollow cathode neutralizer or an electron cyclotron resonance neutralizer.
  • the system also includes a lower electrode directly above the third grid, the lower electrode is used to place a wafer; the lower electrode is used to move to the third grid before a positive voltage is applied to the third grid. Above the side of the third grid.
  • the radio frequency power supply 6 is connected to the radio frequency coil 8 through a matching device, and the other end of the radio frequency coil 8 is connected to a grounding capacitor, and the capacitor is used to balance the voltage at both ends of the radio frequency coil.
  • the gas introduced into the discharge chamber 7 is ionized by inductive coupling to generate plasma, and the first DC power supply a passes through the first filter a to apply a positive voltage to the first grid a to accelerate and attract electrons in the plasma, The plasma is energized, and the positive ions in the plasma pass through the first grid a under the action of the sheath voltage.
  • the second DC power supply b applies a negative voltage to the second grid b through the second filter b, and the positive ions passing through the first grid a are accelerated to pass through the second grid b under the action of the negative electric field to form an ion beam , the ion beam is neutralized by the electrons generated by the neutralizer 15, and finally bombards the wafer on the surface of the lower electrode with a certain energy and angle, so that material atoms are sputtered to achieve the purpose of etching.
  • the lower electrode is used to change the incident angle of the ion beam relative to the wafer on the lower electrode by rotating and revolving.
  • the ion source of the ion beam etching system is first disconnected, and the lower electrode 13 is located at the third grid
  • the lower electrode 13 can also be moved to the side above the third grid by rotating the lower electrode directly above the third grid, for example, the lower electrode 13 is rotated 90° to be vertical
  • the extension direction of the lower electrode is perpendicular to the extension direction of the third grid (on the one hand, in order to reduce the deposition of particles on the surface of the lower electrode, on the other hand, the third grid c is completely exposed In the reaction chamber, so that the particles can be more thoroughly adsorbed).
  • the neutralizer When the neutralizer is turned on, a large amount of electrons generated by the neutralizer 15 will attach to the particles, so that the various non-volatile particles originally sputtered in the reaction chamber will be negatively charged, and then the third grid c will pass through the third DC power supply c Apply a positive voltage, and at this time, the negatively charged particles will move towards the third grid c under the action of the electric field.
  • Below the third grid c is the suction hole of the molecular pump 14. At this time, the particles will pass through the third grid The mesh of c is sucked away by the molecular pump below, and discharged out of the chamber along the pipeline, so as to achieve the purpose of removing particles.
  • the voltage value of the positive voltage applied by the third grid is adjusted within 100kv according to the size of the particles to be removed.
  • Embodiment 2 Confirmation experiment of particle removal effect
  • the number of particles with a size of 0.12um was tested with the SP1 detector, and 10 groups of detection data were recorded.
  • the number of 0.12um particles is generally around 900.
  • adopt device and method that the present invention provides choose the circular molybdenum grid of diameter 38cm, mesh diameter 2mm, metal grid is fixed on reaction chamber bottom (metal grid two ends are connected with reaction chamber by insulator), in After the process is over, turn on the neutralizer for 10 minutes, and then apply a positive voltage of 8KV through the DC power supply connected to the third grid c. After 5 minutes, use the SP1 detector to detect the number of particles with a size of 0.12um. Repeat this experiment for 10 times and record the data At this time, the number of 0.12um particles is generally about 20, which meets the requirements of the process, as shown in Figure 2.
  • Example 2 only the number of particles with a size of 0.12um was detected for comparison and reference. In fact, the particle sizes in the reaction chamber are different, and the larger grid, larger grid voltage and application time, and longer neutralization The power-on time of the device can greatly improve the removal efficiency of particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明涉及一种去除离子束刻蚀***颗粒的方法和装置,是在离子束刻蚀***反应腔底部增设一层金属栅网,该栅网连接直流电源产生一个正电压,所施加正电压的电压值根据需清除颗粒物的大小在100kv以内调节。金属栅网c的材质是如钼或者镍的坚硬金属,网孔在5mm以下。当刻蚀工艺完毕后,将离子束刻蚀***的离子源断开,将下电极旋转至垂直于栅网c的位置;打开中和器产生大量电子附着在需要去除的颗粒物上后带上负电;栅网c通过直流电源c施加一个正电压,带负电的颗粒会在电场的作用下向着栅网c方向移动;颗粒物会穿过栅网c的网孔,被分子泵抽走,排出腔外,快速有效去除颗粒,防止反应腔内部颗粒的沉积,提高离子体处理设备的生产效率。

Description

一种去除离子束刻蚀***颗粒的方法和离子束刻蚀***
本申请要求于2021年12月24日提交中国专利局、申请号为202111598567.X、发明创造名称为“一种去除离子束刻蚀***颗粒的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种去除离子束刻蚀***颗粒的方法和离子束刻蚀***,是对离子束刻蚀设备的结构改造,是为了在不开腔的前提下,高效去除离子束刻蚀***产生的颗粒。
背景技术
离子束刻蚀(IBE)是把氩、氪、氙之类的惰性气体充入离子源放电室,并使其电离形成等离子体,然后由栅极将离子呈束状引出并加速,具有一定能量的离子束进入工作室,射向固体表面,撞击固体表面原子,使材料原子发生溅射,达到刻蚀目的,属于纯物理轰击过程。当对各种金属以及氧化物等复杂体系进行工艺刻蚀时,会在反应腔内溅射出各种大小不一的碎屑及颗粒,加之反应腔内气压较低,较大、较远的非挥发性颗粒很难被分子泵抽走,导致副产物在腔室内壁沉积。这不仅会产生颗粒沾污,也会导致工艺随时间漂移使工艺过程的重复性下降。因此需要对等离子体处理腔室进行清洗。但是在实际使用过程中,清洗将导致工艺中断,降低等离子体处理设备的生产效率。
目前对于刻蚀工艺过程中聚合物在刻蚀腔壁的堆积的研究在工业上已给出了多种措施且已经具有很好的改善效果,其中使用最广泛的如无晶圆自动干法蚀刻清洁方法通常使用NF3等富氟气体去除无机类聚合物,使用O 2等富氧气体去除有机类聚合物并在清洁之后的刻蚀腔体内壁上沉淀一层类似二氧化硅的聚合物,这些无晶圆自清洁步骤能有效改善腔体的沉积。但对于离子束刻蚀(IBE)工艺过程中产生的例如金属颗粒物等碎屑的处理在工业上尚没有有效的解决办法,只能每隔一定时间段进行开腔处理,严重影响设备产能。
公开号为CN105097445B的发明专利,提供了去除蚀刻室中的颗粒的方法,包括:在干蚀刻室中形成涂层,将晶圆放置在干蚀刻室内,蚀刻晶圆的含 金属层,以及将晶圆移出干蚀刻室。在将晶圆移出干蚀刻室之后,去除涂层。该专利相当于在腔体内壁贴一层保护膜,工艺后将保护膜去掉,还是要开腔清理,但可以维持腔体内壁的清洁,防止颗粒的附着。
公开号为CN101727025A的专利申请公开了一种去除光刻胶残留及刻蚀反应物颗粒的方法,包括:在半导体衬底上依次形成待刻蚀层和图案化光刻胶层;以光刻胶层为掩膜,刻蚀待刻蚀层;灰化法去除光刻胶层;将带有各膜层的半导体衬底放入溶液喷射循环池内,用第一溶液喷射去除光刻胶残留,同时带有光刻胶残留的第一溶液从溶液喷射循环池内流出;通入第二溶液喷射去除刻蚀过程中残留的刻蚀反应物颗粒,同时带有刻蚀反应物颗粒的第二溶液从溶液喷射循环池内流出。本发明保证光刻胶残留及刻蚀反应物颗粒能被有效去除,提高了半导体器件的性能。该发明是针对刻蚀晶圆上已经含有颗粒后,如何去除该颗粒,并保护所需晶圆图层不受损伤方法,和本人发明不相关。
公开号为CN109216241B的发明专利公开了一种刻蚀副产物智能自清洁方法,适用于对半导体干法刻蚀工艺过程,提供一工艺控制***及一干法刻蚀设备,还包括以下步骤:步骤S1,工艺控制***于干法刻蚀设备对应的干法刻蚀工艺开始之前,采集干法刻蚀设备执行之前的干法刻蚀工艺过程中的第一工艺参数;步骤S2,工艺控制***根据第一工艺参数,获得对干法刻蚀设备进行自清洁的第二工艺参数;步骤S3,工艺控制***根据第二工艺参数对干法刻蚀设备执行自清洁工艺;步骤S4,干法刻蚀设备执行对应的干法刻蚀工艺,待干法刻蚀工艺执行完毕后返回步骤S1。该发明减少刻蚀过程中因聚合物累积造成的刻蚀缺陷颗粒源,改善晶圆批次作业的首枚效应问题。该发明是提供一工艺控制***,读取不同批次的工艺参数,和标准值进行对比,然后进行自清洁,以保证工艺条件的一致性,至于如何自清洁,未说明,也和本人发明关系不大。
发明内容
为了克服现有的半导体领域离子束刻蚀设备由于是用惰性气体进行物理轰击,所以不适用ICP无晶圆清洗工艺,只能开腔清洗去除颗粒,严重影响设备产能的不足,本发明的目的是提供一种去除离子束刻蚀***颗粒的方法和装 置,通过增加金属栅网,栅网上加正电压,利用离子束刻蚀***中和器部件发射电子,使腔内颗粒带上负电,将带电颗粒吸走,无需开腔,就能高效去除颗粒,提高离子体处理设备的生产效率。
为解决上述技术问题,本发明是这样实现的:
一种离子束刻蚀***,是在原有离子束刻蚀***反应腔的基础上增加一层第三栅网,具体来说是在栅网两端开螺纹孔通过绝缘件固定在反应腔内壁。该栅网连接至直流电源产生一个正电压,该电压值根据需清除颗粒物的大小在100kv以内调节。
较佳地,该第三栅网c设置在腔体的底部,是为了提高效率。
所述第三栅网c是由坚硬金属制成,例如:钼,镍,网孔在5mm以下,方便不同大小的颗粒物穿过。所述第三栅网c形状可以是圆形,方形或不规则形状。
上述去除离子束刻蚀***颗粒的运行方法,当刻蚀工艺完毕后,需要处理刻蚀***颗粒时,首先将离子束刻蚀***的离子源断开,然后将下电极旋转90°至垂直于第三栅网c的位置,打开中和器一段时间,中和器产生的大量电子会附着在颗粒物上,使原本溅射在反应腔内的各种颗粒带上负电,然后第三栅网c通过第三直流电源c施加一个正电压,此时带负电的颗粒会在电场的作用下向着第三栅网c方向移动,第三栅网c下面为分子泵的抽气孔,此时颗粒物会穿过第三栅网c的网孔,被分子泵抽走,排出腔外,便于快速有效的去除颗粒,防止反应腔内部颗粒的沉积。
所述离子源为射频激发离子源,用于工艺刻蚀中产生离子束,其由射频电源,匹配器,射频线圈,接地电容C,放电腔,第一直流电源a,第一滤波器a,第一栅网a,第二直流电源b,第二滤波器b,第二栅网b组成。
或者,离子源是Kaufman型离子源,也可以是ECR离子源。
射频电源经匹配器与射频线圈相连,将放电腔内通入的气体电离,然后经过两层栅网引出离子束,其为离子束刻蚀***离子束产生的原理。
所述下电极为离子束刻蚀***晶圆的载台,其本身可以自转公转来改变离子束入射角,实现两侧不同角度刻蚀。去除颗粒时,将其旋转90°至垂直于 栅网c的位置是一方面是为了减少颗粒沉积在下电极表面,另一方面是将栅网c完全暴露在反应腔内,从而可以更彻底的吸附颗粒。
所述中和器用于激发产生电子,附着在反应腔内颗粒物上,使其带负电。可以是射频中和器,可以是热阴极中和器,可以是空心阴极中和器,可以是电子回旋共振中和器。
本发明有以下积极的效果:
(1)本发明针对离子束刻蚀***含有中和器,会提供达大量电子的特定条件,增设栅网使得颗粒带上负电,别的刻蚀***若无该环境,即使增设栅网也无法实现高效去除颗粒。
(2)本发明易于实施,只需要将栅网用螺丝及固定件固定在腔体内,栅网连接到直流电源即可,而放在底部是为了提高效率。
(3)本发明去除颗粒的工作效率可以通过提高中和器产生电子的数量,提高直流电源c的电压数值来提升。电子的数量越多,越容易被颗粒物碰撞吸附;栅网c上电压越高,产生的电场越强,即使远离栅网的较大颗粒物也能在电场的作用下向栅网方向运动,从而被分子泵抽走排出腔外。
(4)本发明的工作原理不同于电除尘器,后者是在两曲率半径相差较大的金属阳极和阴极上,通过高压直流电,维持一个足以使气体电离的静电场。气体电离后所生成的电子、阴离子和阳离子,吸附在通过电场的粉尘上,而使粉尘获得电荷,荷电粉尘在电场力的作用下,变相电极性相反的电极运动而沉积在电极上,达到粉尘和气体分离的目的。
附图说明
图1为本发明一种离子束刻蚀***的结构示意图。
图2是实施例1安装第三栅网c前后颗粒去除效果比较实验。
其中:1-第一直流电源a、2-第二直流电源b、3-第一滤波器a、4-第二滤波器b、5-电容C、6-射频电源、7-放电腔、8-射频线圈、9-等离子体、10-第一栅网a、11-第二栅网b、12-第三栅网c、13-下电极、14-分子泵、15-中和器、16-第三直流电源c、17-反应腔。
具体实施方式
下面结合具体实施方式对本发明做进一步的详细说明。
实施例1
本发明一种离子束刻蚀***的结构示意图。一种离子束刻蚀***,该***包括:第一栅网、第二栅网、第三栅网、中和器和抽气孔,第一栅网和第二栅网用于为反应腔内的等离子体加速,第三栅网位于第二栅网的远离第一栅网的一侧,中和器位于第三栅网的上方,抽气孔位于第三栅网的下方,且抽气孔与分子泵连接,用于抽取反应腔中的气体。也就是说,可以在离子束刻蚀***反应腔的底部增加一层栅网,栅网的材料可以为导体材料,例如为金属材料,该栅网可以记为第三栅网c或金属栅网,该栅网连接至直流电源产生一个正电压,该电压值根据需清除颗粒物的大小在100kv以内调节。
所述第三栅网两端开设有螺纹孔,所述螺纹孔用于通过与绝缘件连接,使所述第三栅网固定在反应腔内壁。所述第三栅网设置在反应腔腔体的底部,所述第三栅网的延伸方向与所述反应腔腔体的底部内壁之间的夹角小于预设夹角,该预设夹角可以较小,使第三栅网的延伸方形与反应腔腔体的底部内壁平行或接***行。所述第一栅网和所述第二栅网的延伸方向平行,且均与所述第三栅网的延伸方向垂直。所述第三栅网的材质是金属,例如为钼或者镍等。所述第三栅网的网孔尺寸在5mm以下。所述第三栅网的形状是圆形,方形或不规则形状等。
所述中和器为射频中和器、热阴极中和器、空心阴极中和器或者电子回旋共振中和器。该***还包括位于所述第三栅网正上方的下电极,所述下电极用于放置晶圆;所述下电极用于在所述第三栅网被施加正电压之前,移动到所述第三栅网的侧上方。
当需要对晶圆进行刻蚀时,射频电源6经匹配器与射频线圈8相连,射频线圈8另一端与接地电容相连,电容用来平衡射频线圈两端的电压。通过电感耦合方式将放电腔7内通入的气体电离产生等离子体,第一直流电源a经过第一滤波器a给第一栅网a施加一个正电压用于加速吸引等离子体中的电子,给等离子体赋能,等离子体中的正离子在鞘层电压的作用下穿过第一栅网a。第二直流电源b经过第二滤波器b给第二栅网b施加一个负电压,穿过第一栅网 a的正离子在该负电场的作用下加速穿过第二栅网b形成离子束,离子束再经过中和器15产生的电子的中和,最后以一定的能量和角度轰击在下电极表面的晶圆上,使材料原子发生溅射,达到刻蚀目的。在所述刻蚀工艺进行的过程中,所述下电极用于通过自转公转来改变离子束相对于所述下电极上的晶圆的入射角。
当利用所述离子束刻蚀***刻蚀工艺结束,需要对离子束刻蚀***溅射的颗粒进行去除时,首先将离子束刻蚀***的离子源断开,在下电极13位于第三栅网c正上方时,还可以通过旋转位于所述第三栅网正上方的下电极,以使所述下电极移动到所述第三栅网的侧上方,例如将下电极13旋转90°至垂直于第三栅网c的位置,此时下电极的延伸方向与所述第三栅网的延伸方向垂直(一方面是为了减少颗粒沉积在下电极表面,另一方面是将第三栅网c完全暴露在反应腔内,从而可以更彻底的吸附颗粒)。打开中和器,中和器15产生的大量电子会附着在颗粒物上,使原本溅射在反应腔内的各种非挥发性颗粒带上负电,然后第三栅网c经第三直流电源c施加一个正电压,此时带负电的颗粒会在电场的作用下向着第三栅网c方向移动,第三栅网c下面为分子泵14的抽气孔,此时颗粒物会穿过第三栅网c的网孔,被下面的分子泵抽走,顺着管道排出腔外,从而达到去除颗粒的目的。所述第三栅网所施加正电压的电压值根据需清除颗粒物的大小在100kv以内调节。通过调节提高中和器产生电子的数量,调节提高与所述第三栅网的第三直流电源的电压数值以来提升去除颗粒的效率。
实施例2颗粒清除效果的证实实验
针对本发明对颗粒清除效果的考察,首先在未安装栅网的条件下,在离子束刻蚀结束后,用SP1检测仪测试了0.12um大小的颗粒数量,并记录了10组检测数据,该0.12um颗粒数量普遍在900个左右。然后采用本发明提供的装置与方法,选取直径38cm的圆形鉬栅网,网孔直径2mm,将金属栅网固定在反应腔底部(金属栅网两端与反应腔通过绝缘件连接),在工艺结束后,打开中和器10min,然后通过与第三栅网c连接的直流电源施加8KV的正电压,5min后同样用SP1检测仪检测0.12um大小的颗粒数量,重复10此实验并记录数据,此时0.12um颗粒的数量普遍在20个左右,满足工艺的要求,见图2 所示。
本实施例2仅检测了0.12um大小的颗粒数量供对比参考,实际上反应腔内的颗粒大小不一,较大的栅网、较大的栅网电压与施加时间、以及较长的中和器通电时间都可以大大提高颗粒的清除效率。
上述具体实施方式不以任何形式限制本发明的技术方案,凡是采用等同替换或等效变换的方式所获得的技术方案均落在本发明的保护范围。

Claims (17)

  1. 一种离子束刻蚀***,其特征在于,包括:
    位于离子束刻蚀***的反应腔内的第三栅网,所述第三栅网用于连接直流电源产生的正电压;
    位于所述反应腔内的第一栅网和第二栅网,所述第一栅网用于连接直流电源产生的正电压,所述第二栅网用于连接直流电压产生的负电压,所述第一栅网和所述第二栅网用于为所述反应腔内的等离子体加速,所述第三栅网位于所述第二栅网的远离所述第一栅网的一侧;
    位于所述第三栅网的上方的中和器,所述中和器用于产生电子;
    位于所述第三栅网下方的与分子泵连接的抽气孔。
  2. 根据权利要求1所述的离子束刻蚀***,其特征在于,所述第三栅网两端开设有螺纹孔,所述螺纹孔用于通过与绝缘件连接,使所述第三栅网固定在反应腔内壁。
  3. 根据权利要求1或2所述的离子束刻蚀***,其特征在于,所述第三栅网设置在反应腔腔体的底部,所述第三栅网的延伸方向与所述反应腔腔体的底部内壁之间的夹角小于预设夹角。
  4. 根据权利要求1或2所述的离子束刻蚀***,其特征在于,所述第一栅网和所述第二栅网的延伸方向平行,且均与所述第三栅网的延伸方向垂直。
  5. 根据权利要求1或2所述的离子束刻蚀***,其特征在于,所述中和器为射频中和器、热阴极中和器、空心阴极中和器或者电子回旋共振中和器。
  6. 根据权利要求1或2所述的离子束刻蚀***,其特征在于,所述第三栅网的材质是金属。
  7. 根据权利要求6所述的离子束刻蚀***,其特征在于,所述第三栅网的材质是钼或者镍。
  8. 根据权利要求1或2所述的离子束刻蚀***,其特征在于,所述第三栅网的网孔尺寸在5mm以下。
  9. 根据权利要求1或2所述的离子束刻蚀***,其特征在于,所述第三 栅网的形状是圆形,方形或不规则形状。
  10. 根据权利要求1或2所述的离子束刻蚀***,其特征在于,还包括:
    位于所述第三栅网正上方的下电极,所述下电极用于放置晶圆;所述下电极用于在所述第三栅网被施加正电压之前,移动到所述第三栅网的侧上方。
  11. 一种去除离子束刻蚀***颗粒的方法,应用于权利要求1-10任一项所述的离子束刻蚀***,其特征在于:
    当利用所述离子束刻蚀***刻蚀工艺完毕后,将所述离子束刻蚀***的离子源断开,打开位于所述第三栅网上方的中和器,所述中和器产生的电子用于附着在需要去除的颗粒物上;
    控制所述第三栅网连接正电压,用于提供电场,带负电的颗粒物在所述电场的作用下向所述第三栅网方向移动,所述第三栅网下方的与分子泵连接的抽气孔用于抽走所述带负电的颗粒物。
  12. 根据权利要求11所述的去除离子束刻蚀***颗粒的方法,其特征在于,所述第三栅网所施加正电压的电压值根据需清除颗粒物的大小在100kv以内调节。
  13. 根据权利要求11所述的去除离子束刻蚀***颗粒的方法,其特征在于,所述方法还包括:
    通过旋转位于所述第三栅网正上方的下电极,以使所述下电极移动到所述第三栅网的侧上方。
  14. 根据权利要求13所述的去除离子束刻蚀***颗粒的方法,其特征在于,所述下电极位于所述第三栅网的侧上方时,所述下电极的延伸方向与所述第三栅网的延伸方向垂直。
  15. 根据权利要求11-14任一项所述的去除离子束刻蚀***颗粒的方法,其特征在于,在所述刻蚀工艺进行的过程中,所述下电极用于通过自转公转来改变离子束相对于所述下电极上的晶圆的入射角。
  16. 根据权利要求11-14任一项所述的去除离子束刻蚀***颗粒的方法,其特征在于,所述方法还包括:
    通过调节提高中和器产生电子的数量,调节提高与所述第三栅网的第三直流电源的电压数值以来提升去除颗粒的效率。
  17. 根据权利要求11-14任一项所述的去除离子束刻蚀***颗粒的方法,其特征在于,在所述刻蚀工艺进行的过程中,是通过电感耦合方式将放电腔内通入的气体电离产生等离子体,第一直流电源经过第一滤波器给所述第一栅网施加一个正电压用于加速吸引等离子体中的电子,给等离子体赋能,等离子体中的正离子在鞘层电压的作用下穿过所述第一栅网;
    第二直流电源经过第二滤波器给所述第二栅网施加一个负电压,穿过所述第一栅网的正离子在该负电场的作用下加速穿过所述第二栅网形成离子束,离子束再经过所述中和器产生的电子的中和,最后以一定的能量和角度轰击在下电极表面的晶圆上,使材料原子发生溅射,达到刻蚀目的。
PCT/CN2022/141484 2021-12-24 2022-12-23 一种去除离子束刻蚀***颗粒的方法和离子束刻蚀*** WO2023116896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111598567.XA CN116344306A (zh) 2021-12-24 2021-12-24 一种去除离子束刻蚀***颗粒的方法和装置
CN202111598567.X 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116896A1 true WO2023116896A1 (zh) 2023-06-29

Family

ID=86879480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141484 WO2023116896A1 (zh) 2021-12-24 2022-12-23 一种去除离子束刻蚀***颗粒的方法和离子束刻蚀***

Country Status (3)

Country Link
CN (1) CN116344306A (zh)
TW (1) TW202331894A (zh)
WO (1) WO2023116896A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116721966A (zh) * 2023-08-11 2023-09-08 青禾晶元(天津)半导体材料有限公司 一种改善压电薄膜厚度均匀性的方法及压电衬底与应用
CN117238743A (zh) * 2023-11-10 2023-12-15 合肥晶合集成电路股份有限公司 改善晶圆边缘环状缺陷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992244A (en) * 1998-03-04 1999-11-30 Regents Of The University Of Minnesota Charged particle neutralizing apparatus and method of neutralizing charged particles
CN209676564U (zh) * 2018-12-28 2019-11-22 核工业西南物理研究院 一种射频感应耦合线性离子源
CN113383435A (zh) * 2019-02-01 2021-09-10 朗姆研究公司 利用气体处理及脉冲化的离子束蚀刻

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992244A (en) * 1998-03-04 1999-11-30 Regents Of The University Of Minnesota Charged particle neutralizing apparatus and method of neutralizing charged particles
CN209676564U (zh) * 2018-12-28 2019-11-22 核工业西南物理研究院 一种射频感应耦合线性离子源
CN113383435A (zh) * 2019-02-01 2021-09-10 朗姆研究公司 利用气体处理及脉冲化的离子束蚀刻

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116721966A (zh) * 2023-08-11 2023-09-08 青禾晶元(天津)半导体材料有限公司 一种改善压电薄膜厚度均匀性的方法及压电衬底与应用
CN116721966B (zh) * 2023-08-11 2023-10-31 青禾晶元(天津)半导体材料有限公司 一种改善压电薄膜厚度均匀性的方法及压电衬底与应用
CN117238743A (zh) * 2023-11-10 2023-12-15 合肥晶合集成电路股份有限公司 改善晶圆边缘环状缺陷的方法
CN117238743B (zh) * 2023-11-10 2024-02-09 合肥晶合集成电路股份有限公司 改善晶圆边缘环状缺陷的方法

Also Published As

Publication number Publication date
CN116344306A (zh) 2023-06-27
TW202331894A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2023116896A1 (zh) 一种去除离子束刻蚀***颗粒的方法和离子束刻蚀***
US5879575A (en) Self-cleaning plasma processing reactor
TWI755798B (zh) 電感耦合電漿處理系統
JP6982560B2 (ja) プラズマフィルタリングのためのシステム及び処理
CN103594316A (zh) 用于等离子体处理装置的等离子体挡环及其使用的方法
US11289312B2 (en) Physical vapor deposition (PVD) chamber with in situ chamber cleaning capability
KR100782621B1 (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
JP6007070B2 (ja) スパッタリング方法及びスパッタリング装置
JP2010533933A (ja) プロセス監視に使用される分圧分析器のための原位置イオン源洗浄
JP4642809B2 (ja) プラズマ処理方法及びプラズマ処理装置
KR100798160B1 (ko) 플라즈마 에칭방법
US20190323127A1 (en) Texturing and plating nickel on aluminum process chamber components
KR100745966B1 (ko) 플라즈마 처리장치 및 이의 세정 방법
US20090288942A1 (en) Particulate capture in a plasma tool
JPH07106307A (ja) プラズマ処理装置およびプラズマ処理方法
JP2628795B2 (ja) 物理蒸着室中のシールドの清浄方法
JPH09148310A (ja) 半導体製造装置およびそのクリーニング方法ならびに半導体ウエハの取り扱い方法
JP6867818B2 (ja) 基板処理装置および基板処理方法
TWI431681B (zh) 洗淨方法及真空處理裝置
JP3784727B2 (ja) 半導体製造装置のパーティクル除去装置
JPH11121437A (ja) 真空処理装置
KR100655217B1 (ko) 고주파 플라즈마 챔버의 세정 방법
CN219873426U (zh) 一种半导体预清洗设备
JP2006019626A (ja) プラズマ処理装置及びその洗浄方法
CN1507652A (zh) 包覆剂、利用该包覆剂形成包覆膜的耐等离子体性部件及具有该耐等离子体性部件的等离子体处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910206

Country of ref document: EP

Kind code of ref document: A1