WO2023116809A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023116809A1
WO2023116809A1 PCT/CN2022/140905 CN2022140905W WO2023116809A1 WO 2023116809 A1 WO2023116809 A1 WO 2023116809A1 CN 2022140905 W CN2022140905 W CN 2022140905W WO 2023116809 A1 WO2023116809 A1 WO 2023116809A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
subband
frequency
downlink
frequency resource
Prior art date
Application number
PCT/CN2022/140905
Other languages
English (en)
French (fr)
Inventor
刘云峰
郭志恒
马蕊香
谢信乾
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023116809A1 publication Critical patent/WO2023116809A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • a time division duplexing (TDD) system usually the downlink (downlink, DL) occupies the main time resources, and the uplink (uplink, UL) occupies less time resources, which will cause UL coverage Poor, long delay.
  • a subband full duplex (subband fullduplex, SBFD) system is proposed.
  • the frequency domain resources of a component carrier (CC) can be divided into multiple subbands, and the transmission directions of different subbands can be the same or different, so that simultaneous transmission can be realized on the same time domain resources. and reception, thereby increasing uplink transmission resources, reducing UL delay and enhancing UL coverage.
  • cross link interference cross link interference
  • the CLI between terminal devices is the interference from UL to DL
  • the CLI between network devices is the interference from DL to UL.
  • a demodulation reference signal (demodulation reference signal, DMRS) is usually used to perform channel estimation on the channel where the data resides, and then the result of the channel estimation is used for data demodulation.
  • DMRS demodulation reference signal
  • the interference received at the DMRS increases.
  • the newly added interference will reduce the accuracy of DMRS channel estimation and demodulation performance.
  • the present application provides a communication method and device, which are used to improve the accuracy of DMRS channel estimation and demodulation performance.
  • the present application provides a communication method, which can be applied to a terminal device, a processor, a chip or a functional module in the terminal device.
  • the method may include: receiving first configuration information and second configuration information, and/or third configuration information and fourth configuration information from a network device; the first configuration information indicates the first downlink subband and the first downlink subband on the carrier The frequency domain range of the second downlink sub-band and the time-domain symbol position where the uplink demodulation reference signal UL DMRS is located; the second configuration information indicates the first time-frequency resource on the first downlink sub-band and the first time-frequency resource on the first downlink sub-band The frequency domain range of the second time-frequency resource on the two downlink subbands; the third configuration information indicates the frequency domain range of the first uplink subband on the carrier and the time domain symbol position where the downlink demodulation reference signal DL DMRS is located ; The fourth configuration information indicates the frequency domain range of the third time-frequency resource and the fourth time-frequency resource on the first uplink subband.
  • the terminal device can be made to perform interference measurement based on the first time-frequency resource and the second time-frequency resource, and/or the third time-frequency resource and the fourth time-frequency resource, thereby improving the accuracy of DMRS channel estimation and improving demodulation performance.
  • the second configuration information indicates that the frequency domain range of the first time-frequency resource is all resource blocks (resource blocks, RBs) of the first downlink subband; the second configuration The information indicates that the frequency domain range of the second time-frequency resource is all RBs of the second downlink subband; the fourth configuration information indicates that the frequency domain range of the third time-frequency resource is the first uplink subband all RBs in the subband; the fourth configuration information indicates that the frequency domain range of the fourth time-frequency resource is all RBs in the first uplink subband.
  • the second configuration information can accurately indicate the frequency domain ranges of the first time-frequency resource and the second time-frequency resource
  • the fourth configuration information can accurately indicate the frequency domain ranges of the third time-frequency resource and the fourth time-frequency resource.
  • the second configuration information indicates that the number of RBs occupied by the first time-frequency resource is M1, and the number of RBs occupied by the second time-frequency resource is M2;
  • the fourth configuration information indicates that the number of RBs occupied by the third time-frequency resource is N1, and the number of RBs occupied by the fourth time-frequency resource is N2; M1, M2, N1, and N2 are greater than or equal to 1 Integer, where M1 RBs are part of the RBs included in the first downlink subband, M2 RBs are part of the RBs included in the second downlink subband, and N1 and N2 RBs are all Part of the RBs included in the first uplink subband.
  • the second configuration information can accurately indicate the frequency domain ranges of the first time-frequency resource and the second time-frequency resource
  • the fourth configuration information can accurately indicate the frequency domain ranges of the third time-frequency resource and the fourth time-frequency resource.
  • frequency domain resources of the first time-frequency resource and the second time-frequency resource are determined according to the first configuration information and the second configuration information, and/or, according to the The third configuration information and the fourth configuration information determine frequency domain resources of the third time-frequency resource and the fourth time-frequency resource; wherein, the frequency domain resources of the first time-frequency resource include: The RBs corresponding to the largest RB sequence number of the first downlink subband are M1 RBs at the end position; the frequency domain resource of the second time-frequency resource includes: the resource block corresponding to the smallest RB sequence number of the second downlink subband M2 RBs at the starting position; the frequency domain resource of the third time-frequency resource includes: N1 RBs starting at the RB corresponding to the smallest RB sequence number of the first uplink subband; the fourth The frequency domain resource B of the time-frequency resource includes: N2 RBs with the RB corresponding to the largest RB sequence number of the first uplink subband as the end position.
  • M1 equals M2 and N1 equals N2. This implementation is relatively simple.
  • the time-domain symbol position where the first time-frequency resource and the second time-frequency resource are located is the time-domain symbol position where the UL DMRS is located
  • the third time-frequency resource and the The time-domain symbol position where the fourth time-frequency resource is located is the time-domain symbol position where the DL DMRS is located.
  • the symbol type of part or all symbols in the first downlink subband in the first time slot in the first time slot is downlink
  • the symbol type in the first time slot in the first time range The symbol type of part or all symbols of one time slot in the second downlink subband is downlink, and part or all symbols of the one time slot in the first time range are in the first uplink subband
  • the symbol type for is Uplink.
  • the time period during which the symbol type of the first downlink subband is downlink within the first time range is the same as the time period during which the symbol type of the second downlink subband is downlink.
  • the present application provides a communication method, which can be applied to a network device, a processor, a chip or a functional module in the network device.
  • the method may include: determining first configuration information and second configuration information, and/or, third configuration information and fourth configuration information; and sending the first configuration information and the second configuration information to a terminal device, and /or, the third configuration information and the fourth configuration information; wherein, the first configuration information indicates the frequency domain range of the first downlink subband and the second downlink subband on the carrier and the uplink demodulation reference signal The time-domain symbol position where the UL DMRS is located; the second configuration information indicates the frequency domain range of the first time-frequency resource on the first downlink sub-band and the second time-frequency resource on the second downlink sub-band The third configuration information indicates the frequency domain range of the first uplink subband on the carrier and the time domain symbol position where the downlink demodulation reference signal DL DMRS is located; the fourth configuration information indicates the first uplink subband The frequency domain range of the third time
  • the terminal device can determine the first time-frequency resource and the second time-frequency resource, and/or, the third time-frequency resource and the fourth time-frequency resource, and based on the first time-frequency resource and the second time-frequency resource , and/or, the third time-frequency resource and the fourth time-frequency resource perform interference measurement, thereby improving the accuracy of DMRS channel estimation and improving demodulation performance.
  • the second configuration information indicates that the frequency domain range of the first time-frequency resource is all RBs of the first downlink subband; the second configuration information indicates that the second time-frequency resource The frequency domain range of the frequency resource is all RBs of the second downlink subband; the fourth configuration information indicates that the frequency domain range of the third time-frequency resource is all RBs of the first uplink subband; the The fourth configuration information indicates that the frequency domain range of the fourth time-frequency resource is all RBs of the first uplink subband.
  • the second configuration information can accurately indicate the frequency domain ranges of the first time-frequency resource and the second time-frequency resource, and the fourth configuration information can accurately indicate the frequency domain ranges of the third time-frequency resource and the fourth time-frequency resource.
  • the second configuration information indicates that the number of RBs occupied by the first time-frequency resource is M1, and the number of RBs occupied by the second time-frequency resource is M2;
  • the fourth configuration information indicates that the number of RBs occupied by the third time-frequency resource is N1, and the number of RBs occupied by the fourth time-frequency resource is N2; M1, M2, N1, and N2 are greater than or equal to 1 Integer, where M1 RBs are part of the RBs included in the first downlink subband, M2 RBs are part of the RBs included in the second downlink subband, and N1 and N2 RBs are all Part of the RBs included in the first uplink subband.
  • the second configuration information can accurately indicate the frequency domain ranges of the first time-frequency resource and the second time-frequency resource
  • the fourth configuration information can accurately indicate the frequency domain ranges of the third time-frequency resource and the fourth time-frequency resource.
  • the frequency domain resource of the first time-frequency resource includes: M1 RBs with the RB corresponding to the largest RB sequence number of the first downlink subband as the end position;
  • the frequency domain resources of resources include: M2 RBs starting from the resource block corresponding to the smallest RB sequence number of the second downlink subband;
  • the frequency domain resources of the third time-frequency resources include: The RB corresponding to the smallest RB sequence number of the uplink subband is the N1 RBs of the starting position;
  • the frequency domain resource of the fourth time-frequency resource includes: the RB corresponding to the largest RB sequence number of the first uplink subband is the end position N2 RBs.
  • M1 equals M2 and N1 equals N2. This implementation is relatively simple.
  • the time-domain symbol position where the first time-frequency resource and the second time-frequency resource are located is the time-domain symbol position where the UL DMRS is located
  • the third time-frequency resource and the The time-domain symbol position where the fourth time-frequency resource is located is the time-domain symbol position where the DL DMRS is located.
  • the symbol type of part or all symbols in the first downlink subband in the first time slot in the first time slot is downlink
  • the symbol type in the first time slot in the first time range The symbol type of part or all symbols of one time slot in the second downlink subband is downlink, and part or all symbols of the one time slot in the first time range are in the first uplink subband
  • the symbol type for is Uplink.
  • the time period during which the symbol type of the first downlink subband is downlink within the first time range is the same as the time period during which the symbol type of the second downlink subband is downlink.
  • the present application provides a communication method, which can be applied to a terminal device, a processor, a chip or a functional module in the terminal device.
  • the signal of the terminal device received by the network device and the adjacent frequency self-interference caused by the signal sent by the network device can be aligned in time symbols, which is conducive to the suppression of adjacent frequency self-interference .
  • the last one or more symbols of the symbols contained in the nth time slot of the first subband are uplink
  • the first subband is the first downlink subband
  • the n is an integer greater than or equal to 0
  • the first subband contains one or more symbols at the beginning of the symbols contained in the n+1th time slot
  • no uplink signal is sent in the last symbol of the symbols included in the nth time slot of the first subband. In this way, it can ensure that the network device switches to the sending state after receiving the signal on the uplink symbol to send the signal on the downlink symbol.
  • configuration information from the network device is received, the configuration information indicates the N TA, and the value of offset is 0.
  • the present application provides a communication method, which can be applied to a terminal device, a processor, a chip or a functional module in the terminal device.
  • the signal of the terminal device received by the network device and the adjacent frequency self-interference caused by the signal sent by the network device can be aligned in time symbols, which is conducive to the suppression of adjacent frequency self-interference .
  • the last one or more symbols of the symbols contained in the nth time slot of the first subband are uplink
  • the first subband is the first downlink subband
  • the n is an integer greater than or equal to 0
  • the first subband contains one or more symbols at the beginning of the symbols contained in the n+1th time slot
  • no uplink signal is received in the last symbol of the symbols included in the nth time slot of the first subband. In this way, it can ensure that the network device switches to the sending state after receiving the signal on the uplink symbol to send the signal on the downlink symbol.
  • configuration information is sent to the terminal device, where the configuration information indicates the N TA, and the value of offset is 0.
  • the present application further provides a communication device, which may be a terminal device, and has a function of implementing the method in the above-mentioned first aspect or each possible design example of the first aspect.
  • a communication device which may be a terminal device, and has a function of implementing the method in the above-mentioned first aspect or each possible design example of the first aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above-mentioned first aspect or in each possible design example of the first aspect, for details, refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive messages or data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to execute corresponding functions in the first aspect or each possible design example of the first aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, which may be a network device, and has a function of implementing the method in the above-mentioned second aspect or each possible design example of the second aspect.
  • a communication device which may be a network device, and has a function of implementing the method in the above-mentioned second aspect or each possible design example of the second aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above-mentioned second aspect or in each possible design example of the second aspect.
  • these units can perform the corresponding functions in the above-mentioned second aspect or in each possible design example of the second aspect.
  • refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive messages or data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to execute corresponding functions in the second aspect or each possible design example of the second aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, which may be a terminal device, and has a function of implementing the method in the above third aspect or each possible design example of the third aspect.
  • a communication device which may be a terminal device, and has a function of implementing the method in the above third aspect or each possible design example of the third aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above third aspect or in each possible design example of the third aspect, for details, refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive messages or data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to execute corresponding functions in the third aspect or each possible design example of the third aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, which may be a network device, and has a function of implementing the method in the fourth aspect or each possible design example of the fourth aspect.
  • a communication device which may be a network device, and has a function of implementing the method in the fourth aspect or each possible design example of the fourth aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above fourth aspect or in each possible design example of the fourth aspect, for details, refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive messages or data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to perform corresponding functions in the fourth aspect or each possible design example of the fourth aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the embodiment of the present application provides a communication system, which may include the terminal device and network device mentioned above.
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium stores program instructions, and when the program instructions are run on the computer, the computer executes the first aspect and its In any possible design, or in the second aspect and any possible design thereof, or in the third aspect and any possible design thereof, or in the fourth aspect and any possible design thereof.
  • Exemplary, computer readable storage media may be any available media that can be accessed by a computer.
  • computer readable media may include non-transitory computer readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable Except for electrically programmable read-only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instruction or data structure and can Any other media accessed by a computer.
  • random-access memory random-access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • the embodiment of the present application provides a computer program product, including computer program codes or instructions, when the computer program codes or instructions are run on a computer, making any one of the above-mentioned first aspect or the first aspect possible design, or the second aspect or any possible design of the second aspect, or the third aspect or any possible design of the third aspect, or any possible design of the third aspect or the third aspect The method described in the design was carried out.
  • the present application also provides a chip, including a processor, the processor is coupled with a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the above-mentioned first
  • a chip including a processor, the processor is coupled with a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the above-mentioned first
  • the processor is coupled with a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the above-mentioned first
  • the processor is coupled with a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the above-mentioned first
  • the processor is coupled with a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the above-mentioned first
  • the processor is coupled with a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the above-mentioned first
  • FIG. 1 is a schematic diagram of a TDD system provided by the present application.
  • Fig. 2 is the schematic diagram of a kind of SBFD system provided by the present application.
  • FIG. 3 is a schematic diagram of an interfering cell provided by the present application.
  • FIG. 4 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 5 is a schematic diagram of RB-level resource reservation provided by the present application.
  • FIG. 6 is a schematic diagram of RE-level resource reservation provided by the present application.
  • FIG. 7 is a flowchart of a communication method provided by the present application.
  • FIG. 8 is a schematic diagram of reducing interference provided by the present application.
  • FIG. 9 is a schematic diagram of a reserved resource provided by the present application.
  • FIG. 10 is a schematic diagram of RB reservation provided by the present application.
  • Figure 11 is a schematic diagram of a time range provided by this application.
  • FIG. 12 is a flowchart of another communication method provided by the present application.
  • FIG. 13 is a schematic diagram of another reserved resource provided by the present application.
  • FIG. 14 is a schematic diagram of another reserved resource provided by this application.
  • FIG. 15 is a schematic diagram of another reserved resource provided by this application.
  • FIG. 16 is a schematic diagram of subbands divided by a carrier provided by the present application.
  • FIG. 17 is a schematic diagram of another reserved resource provided by this application.
  • FIG. 18 is a schematic diagram of an RB range indication provided by the present application.
  • FIG. 19 is a schematic diagram of subcarriers corresponding to different categories and CDM groups provided by the present application.
  • FIG. 20 is a schematic diagram of another reserved resource provided by the present application.
  • FIG. 21 is a schematic diagram of another reserved resource provided by this application.
  • FIG. 22 is a schematic diagram of another reserved resource provided by this application.
  • FIG. 23 is a schematic diagram of another reserved resource provided by this application.
  • FIG. 24 is a schematic diagram of another reserved resource provided by this application.
  • FIG. 25 is a flow chart of another communication method provided by the present application.
  • FIG. 26 is a schematic diagram of switching from UL symbols to DL symbols provided by the present application.
  • FIG. 27 is another schematic diagram of switching from UL symbols to DL symbols provided by the present application.
  • FIG. 28 is a schematic diagram of 4 time slots UL DMRS sharing provided by the present application.
  • FIG. 29 is a schematic diagram of UL DMRS pilot sharing of an SBFD cell provided by the present application.
  • FIG. 30 is a schematic diagram of UL DMRS pilot sharing provided by the present application.
  • FIG. 31 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 32 is a structural diagram of a communication device provided by the present application.
  • Embodiments of the present application provide a communication method and device, which are used to improve the accuracy of DMRS channel estimation and demodulation performance.
  • the method and the device described in this application are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
  • Fig. 1 shows a schematic diagram of a TDD system.
  • a TDD system which may be referred to as traditional (legacy) TDD
  • the time domain resources occupied by the downlink are more than those occupied by the uplink, as shown in the downlink and uplink in FIG. 1 .
  • the frequency domain resource is a CC as an example.
  • the time domain resources occupied by the downlink are more than those occupied by the uplink.
  • the available resources are less, the coverage is poor, and the time delay is long.
  • uplink and downlink are relative terms.
  • the terminal equipment is uplink to the terminal equipment ((terminal equipment, TE) or (user equipment, UE)
  • the terminal equipment is downlink to the network equipment. If the downlink is from the network device to the terminal device, then the uplink is from the terminal device to the network device (this article takes this as an example).
  • the SBFD system In order to reduce the time delay of the uplink, for the TDD system, the SBFD system is proposed.
  • the frequency domain resources of a component carrier (CC) can be divided into multiple subbands, and the transmission directions of different subbands can be the same or different, so that simultaneous transmission can be realized on the same time domain resources. and reception, thereby increasing uplink transmission resources, reducing uplink delay, and enhancing uplink coverage.
  • CC component carrier
  • FIG. 2 shows a schematic diagram of an SBFD system.
  • FIG. 2 illustrates that the frequency domain resource is a CC as an example.
  • the CC refers to a segment of continuous frequency domain resources, which can be configured corresponding to a cell.
  • the CC can be divided into three subbands.
  • the three subbands are subband 0, subband 1, and subband 2.
  • the transmission directions of different subbands may be different.
  • Figure 2 shows an example in which the transmission direction of subband 1 is uplink among the three subbands, and the transmission directions of subband 0 and subband 2 are downlink, and the frequencies of the three subbands do not overlap. It can be seen from FIG.
  • the maximum frequency of subband 0 may be understood as the maximum value of frequency in the frequency domain where subband 0 is located
  • the minimum frequency of subband 1 may be understood as the minimum value of frequency in the frequency domain where subband 1 is located.
  • network device 0 serves terminal devices in cells 0, 3 and 4, and different cells use the same CC.
  • Network device 0 sends DL signals and receives UL signals in cell 0 at the same time.
  • network device 0 sends DL signals and receives UL signals in cell 3 at the same time, and network device 0 sends DL signals and receives UL signals in cell 4 at the same time.
  • a UE receives a DL signal or sends a UL signal.
  • the transmission direction corresponding to the DL signal is downlink transmission, and the transmission direction corresponding to the UL signal is UL transmission.
  • the transmission direction of different UEs can be different. It will bring cross link interference (cross link interference, CLI) between UEs (UE-UE), CLI between cells (cell-cell) and self-interference (self-interference, SI) of the cell.
  • CLI cross link interference
  • UE-UE CLI is the interference of UL signals to DL signals.
  • UE-UE CLI can be further divided into UE-UE CLI within a cell (intra cell) and UE-UE CLI of different cells (inter cell).
  • Intra cell UE-UE CLI refers to the UE-UE CLI caused by the different transmission directions of two UEs in a cell
  • Inter cell UE-UE CLI refers to the two UEs that cause UE-UE CLI in different cells.
  • the cell-cell CLI is the interference of DL signals of other cells on the UL signals of this cell. It can be further divided into the cell-cell CLI inside a network device and the cell-cell CLI of different network devices.
  • the cell-cell CLI within a network device refers to the cell-cell CLI between two cells served by a network device, and the cell-cell CLI of different network devices refers to the two cells that cause the cell-cell CLI to belong to different network devices. It can be understood that when a network device only serves one cell, there is no cell-cell CLI inside a network device.
  • the SI of a cell refers to the interference of the DL signal of the cell on the UL signal of the cell.
  • a demodulation reference signal (demodulation reference signal, DMRS) is usually used to perform channel estimation on the channel where the data resides, and then the result of the channel estimation is used for data demodulation.
  • DMRS demodulation reference signal
  • the interference to DL DMRS includes co-directional interference from other cells (DL to DL interference), and interlayer interference to DL DMRS (interference when different DMRS occupy the same time-frequency resource).
  • the interference received by UL DMRS includes UL co-direction interference and UL DMRS interlayer interference.
  • adjacent frequency cell-cell CLI refers to the DL signal that causes cell-cell CLI interference.
  • the adjacent frequency SI refers to the SI caused by the simultaneous presence of DL signals and UL signals in the cell.
  • the DL signals and UL signals are in different subbands, and the different subbands on one CC are located
  • the frequency is different, so the SI of the cell is the adjacent frequency SI; the adjacent frequency UE-UE CLI interference is added at the DL DMRS, and the adjacent frequency UE-UE CLI interference refers to the UL signal that causes UE-UE CLI interference and the interfered
  • the frequencies of the DL signals are different.
  • the UL DMRS adds adjacent frequency cell-cell CLI, adjacent frequency SI, and same-frequency cell-cell CLI, which reduces UL co-directional interference , relatively speaking, the same-frequency cell-cell CLI is much greater than the UL co-direction interference.
  • the same-frequency cell-cell CLI means that the DL signal interfered by the cell-cell CLI has the same frequency as the interfered UL signal; frequency UE-UE CLI interference.
  • the interference received at the DMRS increases.
  • the newly added interference will reduce the accuracy of DMRS channel estimation and demodulation performance.
  • an embodiment of the present application proposes a communication method to improve the accuracy of DMRS channel estimation and further improve demodulation performance.
  • Fig. 4 shows a schematic structural diagram of a communication system to which the embodiment of the present application is applicable.
  • the communication system includes at least one network device and at least one terminal device.
  • the communication system shown in FIG. 4 includes a network device 1 and a network device 2 .
  • terminal device 1 sends an uplink signal
  • terminal device 2 receives a downlink signal.
  • terminal device 3 There are two terminal devices within the coverage of one cell served by the network device 2 , as shown in the terminal device 3 and the terminal device 4 in FIG. 4 .
  • the terminal device 3 sends an uplink signal
  • the terminal device 4 receives a downlink signal.
  • a network device is a device with a wireless transceiver function or a chip that can be set on the network device, and the network device includes but is not limited to: a base station (generation node B, gNB), a radio network controller (radio network controller, RNC), a node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, Wi-Fi) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., may also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU).
  • RNC radio network controller
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Functions of the radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • a CU may be divided into network devices in the access network RAN, or a CU may be divided into network devices in the core network CN, which is not limited.
  • Terminal equipment may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, smart wearable devices (smart glasses, smart watches, smart headphones, etc.), wireless terminals in smart homes, etc., can also be Chips or chip modules (or chip systems) that can be installed in the above devices.
  • the embodiments of the present application do not limit the application scenarios.
  • At least one network device among the plurality of network devices adopts SBFD. That is to say, there may be two scenarios: the first scenario is that all network devices use SBFD, for example, network device 1 and network device 2 in Figure 4 both use SBFD; the second scenario is that some network devices use SBFD, and some network devices
  • the equipment adopts legacy TDD.
  • network equipment 1 adopts SBFD
  • network equipment 2 adopts legacy TDD.
  • a network device using the SBFD time slot ratio may be called an SBFD network device
  • a cell using the SBFD time slot ratio may be called an SBFD cell.
  • a third scenario which is referred to as a heterogeneous ratio scenario in this application.
  • the uplink transmission resources can be increased by increasing the resources occupied by the uplink in Figure 1, the delay of the uplink can be reduced, and the coverage of the uplink can be enhanced (which can be called new ( New) TDD).
  • Downlink transmission resources can be configured as downlink time-frequency resources corresponding to the slot format on a CC, and uplink transmission resources can be configured as uplink time-frequency resources in a CC slot format.
  • a cell using the time slot ratio of legacy TDD may be called a legacy TDD cell, and a cell using the time slot ratio of New TDD may be called a New TDD cell.
  • a mute resource pattern (pattern) is designed for the above three scenarios, and each network device indicates the pattern to the terminal device, so that the terminal device performs interference measurement based on the mute resource.
  • the embodiments of the present application mainly relate to the configuration of symbol types on time domain resources. The following first provides an introduction to some terms.
  • Time domain resources and frequency domain resources can be considered as resource pairs formed by time domain resources and frequency domain resources.
  • the time domain resources refer to orthogonal frequency division modulation (orthogonal frequency division modulation, OFDM) symbols (referred to as symbols in this document) occupied in the time domain.
  • OFDM orthogonal frequency division modulation
  • the embodiment of the present application does not limit the minimum granularity of time domain resources.
  • the minimum granularity of the time-domain resource is one OFDM symbol, and may also be a mini-slot, a slot, or the like.
  • One mini-slot may include multiple OFDM symbols, and multiple here may refer to two or more than two symbols.
  • 1 slot may include 14 OFDM symbols or 12 OFDM symbols.
  • Frequency domain resources refer to resources occupied in the frequency domain, or referred to as frequency resources.
  • the minimum granularity of the frequency domain resource may be 1 subcarrier, or may be a physical resource block (physical resource block, PRB), or a resource block group (resource block group, RBG), etc.
  • PRB physical resource block
  • RBG resource block group
  • One PRB includes 12 subcarriers in the frequency domain, and one RBG may include 2 PRBs, 4 PRBs, 8 PRBs, or 16 PRBs.
  • mute resource is just an example of a name, and may also be called by other names, such as reserved resources.
  • the mute resource is a time-frequency resource occupied by a zero-power signal (including a zero-power uplink signal and a zero-power downlink signal). That is, the terminal device does not send and/or receive useful signals on the mute resource.
  • resource reservation may include resource block (resource block, RB) level resource reservation and resource unit (resource element, RE) level resource reservation.
  • RB-level resource reservation means reserving all subcarriers on one or more symbols on one RB.
  • FIG. 5 shows a schematic diagram of resource reservation at the RB level. It can be seen from FIG. 5 that all subcarriers on symbol 2 in one RB are reserved.
  • RE-level resource reservation indicates that one or more subcarriers on one or more symbols are reserved on one RB.
  • FIG. 6 shows a schematic diagram of RE-level resource reservation. It can be seen from FIG. 6 that subcarrier 6 on symbol 2 in one RB is reserved. It should be understood that FIG. 5 and FIG. 6 are only examples, and are not intended to limit the present application.
  • symbols represent symbols in the time domain, such as OFDM symbols, and it should be understood that the symbols and time-domain symbols appearing in this document are two representations of the same concept.
  • one RB includes 12 subcarriers in the frequency domain, and includes 14 symbols or 12 symbols in the time domain.
  • an RB includes 12 subcarriers in the frequency domain and 14 symbols in the time domain as an example for illustration.
  • (3) CC indicating a segment of continuous frequency domain resources, which may correspond to a cell configuration.
  • Subbands It is designed that the frequency domain resources occupied by one subband may be smaller than the frequency domain resources occupied by one CC, and the frequency domain resources of different subbands do not overlap.
  • Multiple subbands may be continuous or discontinuous in the frequency domain. For example, a design in which multiple subbands are discontinuous in subbands may be that there may be a guard interval between every two subbands in the multiple subbands. Similarly, a design in which multiple subbands are continuous in the frequency domain may be that there is no guard interval between every two subbands in the multiple subbands.
  • High-level signaling it may refer to the signaling sent by the high-level protocol layer, and the high-level protocol layer is the protocol layer above the physical layer.
  • the high-level protocol layer may include at least one of the following protocol layers: a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a non-access stratum (non access stratum, NAS).
  • network devices can implement the configuration of symbol categories on a CC in the following two ways: high-level configuration/RRC layer signaling configuration, downlink control indicator 2-0 (downlink control indicator 2-0, DCI 2-0) Dynamic indication, DCI 2-0 dynamic indication is also called slot format indicator (SFI).
  • high-level configuration/RRC layer signaling configuration downlink control indicator 2-0 (downlink control indicator 2-0, DCI 2-0) Dynamic indication
  • DCI 2-0 dynamic indication is also called slot format indicator (SFI).
  • the network device can notify the terminal device through the RRC layer signaling to realize the configuration of the symbol category within a certain period.
  • This scheme may also be referred to as an RRC-configured slot format.
  • the configuration parameters in the high-level configuration scheme can be further divided into: cell-level configuration parameters, such as TDD-Config Common (TDD-ConfigCommon), and terminal equipment-level configuration parameters, such as TDD-specific configuration (TDD-ConfigDedicated).
  • TDD-ConfigCommon supports both single-cycle configuration and double-cycle configuration.
  • TDD-ConfigDedicated is a configuration parameter at the terminal device level, each terminal device can be configured individually, and each terminal device can modify the direction of the flexible symbol in TDD-ConfigCommon.
  • the information contained in the TDD-ConfigDedicated includes: the identification (identity, ID) of the time slot, the number of uplink symbols of the time slot, the number of downlink symbols of the time slot, and the like.
  • the high-level configuration scheme there may be only cell-level configuration parameters, or there may be cell-level configuration parameters and terminal-level configuration parameters at the same time.
  • the high-level configuration scheme may be called RRC time slot in the embodiment of this application format configuration.
  • the embodiment of the present application provides a communication method, which is applied to a scenario where all network devices in a communication system adopt SBFD.
  • the specific process of the method may include:
  • Step 701 The network device determines first configuration information and second configuration information.
  • the first configuration information indicates the frequency domain range of the first downlink subband and the second downlink subband on the carrier and the time domain symbol position where the UL DMRS of the cell is located; the second configuration information indicates the first downlink Frequency domain ranges of the first time-frequency resource on the subband and the second time-frequency resource on the second downlink subband.
  • Step 702 The network device sends the first configuration information and the second configuration information to a terminal device.
  • Step 703 The terminal device determines the first time-frequency resource and the second time-frequency resource on a carrier in a time slot within a first time range according to the first configuration information and the second configuration information .
  • the terminal device may determine the first time-frequency resource and the second time-frequency resource on the carrier in each time slot within the first time range according to the first configuration information and the second configuration information resource.
  • Step 704 The terminal device receives the zero-power downlink signal on the first time-frequency resource and the second time-frequency resource.
  • the adjacent frequency cell-cell CLI and adjacent frequency SI are added to the UL DMRS; the adjacent frequency UE-UE CLI interference is added to the DL DMRS, including Inter cell UE-UE CLI and Intra cell UE-UE CLI.
  • the adjacent frequency UE-UE CLI interference is added to the DL DMRS, including Inter cell UE-UE CLI and Intra cell UE-UE CLI.
  • one network device serves 3 cells, and when network device 0 and other network devices both use SBFD, cell 0 will be interfered by other 6 cells and adjacent frequency SI.
  • the carrier may be divided into three subbands, such as a first uplink subband, a first downlink subband, and a second downlink subband.
  • the first uplink subband, the first downlink subband and the second downlink subband are continuous frequency domain resources on the corresponding frequency domain resources on the carrier; the frequency of the first uplink subband greater than the frequency of the first downlink subband, and the frequency of the second downlink subband is greater than the frequency of the first uplink subband.
  • the first uplink subband corresponding to cell 0 is subband 0-2, and the corresponding first downlink subband is subband 0-1, the second downlink subband is subband 0-3, the first uplink subband corresponding to cell 1 is subband 1-2, and the corresponding first downlink subband is subband 1-1,
  • the second downlink sub-band is sub-band 1-3.
  • the network device determines the first time-frequency resource on the first downlink sub-band and the second time-frequency resource on the second downlink sub-band, it indicates to the terminal device, so that the terminal When the device receives the zero-power downlink signal on the first time-frequency resource and the second time-frequency resource, it may measure adjacent frequency UE-UE CLI interference, and in addition, the network device When the zero-power downlink signal is sent on the second time-frequency resource, the adjacent frequency cell-cell CLI and adjacent frequency SI interference of UL DMRS can be reduced.
  • FIG. 8 is a schematic diagram of reducing UL DMRS adjacent frequency cell-cell CLI and adjacent frequency SI.
  • both the first time-frequency resource and the second time-frequency resource may be referred to as mute resources (or reserved resources, etc.), and for convenience of illustration, only mute resources are shown in FIG. 8 .
  • the silent resource located in the first downlink subband (subband 0-1 and subband 1-1) in FIG. 8 is the first time-frequency resource, located in the second downlink subband (subband 0-3 and subband 1-1).
  • the silent resource in 1-3) is the second time-frequency resource.
  • the network device and other network devices exchange time slot format and cycle (such as cell-level TDD cycle), etc., such as the starting symbol position of DMRS, the number of symbols occupied by DMRS and other information.
  • time slot format and cycle such as cell-level TDD cycle
  • the above information is used by the network device to determine the first A time-frequency resource and a second time-frequency resource.
  • the network device sends a capability query request to the terminal device to query whether the terminal device supports sub-band full-duplex capability; the network device sends capability information to the terminal device, and the capability information includes Information about whether the terminal device holds subband full-duplex capability. Further, the network device configures the first time-frequency resource and the second time-frequency resource according to the capability information of the terminal device.
  • the network device may configure the frequency domain range of the first time-frequency resource to be all RBs of the first downlink subband, and the frequency domain range of the second time-frequency resource to be The range is all RBs of the second downlink subband. This reduces overhead.
  • the second configuration information indicates that the frequency domain range of the first time-frequency resource is all RBs of the first downlink subband; and the second configuration information indicates that the The frequency domain range of the second time-frequency resource is all RBs of the second downlink subband.
  • the terminal device may determine the A frequency range of the first time-frequency resource and the second time-frequency resource on a carrier in each time slot within the first time range.
  • the second configuration information may be indicated by a flag (flag) or a parameter.
  • the subbands in the opposite direction refer to subbands with opposite transmission directions.
  • the adjacent frequency interference caused by other RBs is relatively small and can be ignored. Therefore, in order to reduce the number of RBs occupied by reserved resources, when the network device determines the specific first time-frequency resource in the first downlink subband and the frequency domain resource in the second time-frequency resource in the second downlink subband, It can be determined that the frequency domain resource is the edge RB on the corresponding subband.
  • the edge RB of the first downlink subband refers to the RB at the edge adjacent to the first uplink subband in the first downlink subband
  • the edge RB of the second downlink subband refers to the RB in the second downlink subband RBs at the edge adjacent to the first uplink sub-band.
  • the network device may configure the frequency domain resources of the first time-frequency resource to include: M1 RBs with the RB corresponding to the largest RB sequence number of the first downlink subband as the end position; and, configuring The frequency domain resource of the second time-frequency resource includes: M2 RBs starting from the RB corresponding to the smallest RB sequence number of the second downlink subband.
  • M1 RBs are part of the RBs included in the first downlink subband
  • the M2 RBs are part of the RBs included in the second downlink subband.
  • M1 and M2 are integers greater than or equal to 1.
  • a carrier includes 150 RBs as an example.
  • subband 0-1 includes RB0-49
  • subband 0-2 includes RB 50-99
  • subband 0-3 includes RB 100-149
  • subband 1-1 includes RB 0-49
  • subband 1-2 includes RB 50-99
  • subband 1-3 includes RB 100-149.
  • the frequency domain resource occupied by the first time-frequency resource in subband 0-1 includes M1 RBs with RB49 as the end position on subband 0-1, that is, RB50-M1 to RB49 That is to say, RB50-M1 to RB49 are the edge RBs of subband 0-1; the frequency domain resources occupied by the second time-frequency resource in subband 0-3 include RB100 on subband 0-3 as the starting position
  • the M2 RBs include RB100 to RB99+M2, that is to say, RB100 to RB99+M2 are edge RBs of subbands 0-3.
  • the edge RBs of subband 1-1 are RB50-M1 to RB49
  • the edge RBs of subband 1-3 are RB100 to RB99+M2.
  • the downlink subbands namely subband 0-1 and subband 0-3, and each edge RB in subband 1-1 and subband 1-3 determine subbands in the manner of RB-level resource reservation. Carriers do not use RE-level resource reservation.
  • the positions of the first time-frequency resource on the first downlink subband and the second time-frequency resource on the second downlink subband may be as shown in Table 1 below.
  • the M1 edge RBs are the M1 RBs corresponding to the largest RB sequence number of the first downlink subband, which are the end positions.
  • the M2 edge RBs are the M2 RBs corresponding to the smallest RB sequence number of the second downlink subband as the starting position.
  • M1 may be equal to M2.
  • the second configuration information may indicate that the number of RBs occupied by the first time-frequency resource is M1, and that the number of RBs occupied by the second time-frequency resource is The number is M2.
  • the terminal device may determine frequency domain resources of the first time-frequency resource and the second time-frequency resource according to the first configuration information and the second configuration information. Specifically, for the content included in the frequency domain resource of the first time-frequency resource and the content included in the frequency domain resource of the second time-frequency resource determined by the terminal device, reference may be made to the foregoing related description, and details are not repeated here.
  • the second configuration information may contain a value, for example, when the second configuration information contains ⁇ 2 ⁇ , it means that the second configuration information indicates the first time-frequency resource Occupies 2 RBs with the second time-frequency resource respectively.
  • Example a2 assuming that M1 is 1 and M2 is 2, the second configuration information contains ⁇ 1, 2 ⁇ , which means that the second configuration information indicates that the number of RBs occupied by the first time-frequency resource is 1, And the number of RBs occupied by the second time-frequency resource is 2.
  • the second configuration information when the second configuration information indicates the frequency domain range of the first time-frequency resource on the first downlink subband and the second time-frequency resource on the second downlink subband, it may also be By indicating the number of bits occupied by RBs of the first time-frequency resource in the first downlink subband and the number of bits occupied by RBs of the second time-frequency resource in the second downlink subband accomplish.
  • the second configuration information may include a first bit group, the first bit group includes a plurality of bits, and the plurality of bits correspond to the first downlink subband and the second downlink subband Band corresponding RB, the position of the RB corresponding to the bit whose value is the first value among the multiple bits is the frequency domain position of the first time-frequency resource and the second time-frequency resource in the corresponding downlink subband .
  • the first time-frequency resource occupies the RB whose RB number is 4 in the first downlink subband
  • the second time-frequency resource occupies the second downlink subband.
  • the second configuration information may include 0000111000, where a bit with a value of 1 indicates the corresponding position of the RB occupied by the first time-frequency resource and the second time-frequency resource.
  • the second configuration information includes three bit groups and the start positions or end positions of RBs respectively corresponding to the three bit groups, and each bit group in the three bit groups includes at least one Bits, each of the two bit groups in the three bit groups has a second value corresponding to the first downlink sub-band and the second downlink sub-band, and the two bit groups
  • the number of bits included in each bit group indicates the number of RBs, and the number of RBs corresponding to the two bit groups and the start position or end position of the corresponding RB indicate that the first time-frequency resource is in the The frequency domain position of the first downlink subband and the frequency domain position of the second time-frequency resource in the second downlink subband.
  • the second configuration information includes 1011, wherein the first 1 is the first bit group, 0 is the second bit group, and the last two 1s are the third bit group, and the bits with a value of 1 are two
  • the bit groups "1" and "11" respectively correspond to the first downlink subband and the second downlink subband.
  • the number of bits in the first bit group is 1, indicating that the number of RBs occupied by the first time-frequency resource in the first downlink subband is 1
  • the number of bits in the third bit group is 2, indicating that the number of RBs occupied by the second time-frequency resource in the second downlink subband is 2.
  • the time-domain symbol positions where the first time-frequency resource and the second time-frequency resource are located are the time-domain symbol positions where the UL DMRS of the current cell is located. In this way, the terminal device can accurately determine the first time-frequency resource and the second time-frequency resource in combination with the second configuration information and the first configuration information.
  • part or all of the symbols in the one time slot in the first time range are downlink in the first downlink subband, and the one time slot in the first time range
  • the symbol type of part or all of the symbols in the second downlink subband is downlink
  • part or all of the symbols of the one time slot in the first time range are of the symbol type in the first uplink subband for uplink.
  • the duration of the single cycle or the double cycle configured in the RRC slot format is T, and T includes N time slots, and the first time range is part or all of the N time slots.
  • the duration of the single cycle or the double cycle configured in the RRC slot format of different cells is the same.
  • the time period during which the symbol type of the first downlink subband is downlink within the first time range is the same as the time period during which the symbol type of the second downlink subband is downlink.
  • the network device may further determine fifth configuration information, where the fifth configuration information is used to indicate time domain resources of the first time-frequency resource and the second time-frequency resource .
  • the fifth configuration information may include information indicating time-domain symbol positions where the first time-frequency resource and the second time-frequency resource are located in any time slot within the first time range.
  • the fifth configuration information may include at least two information of the first time-frequency resource's start time-domain symbol, end time-domain symbol, and time-domain symbol length, and the second time-frequency resource's At least two pieces of information in the start time domain symbol, the end time domain symbol, and the length of the time domain symbol.
  • the fifth configuration information may include ⁇ 3,1 ⁇ , which indicates that the starting symbol number of the first time-frequency resource and the second time-frequency resource is 3, and the symbol length is 1. If the time-domain symbol positions of the first time-frequency resource and the second time-frequency resource are different, they may be configured separately.
  • the fifth configuration information may further include information indicating the first time range, the first time range is within a second time range, and the second time range is the duration T or the Integer multiples of the above-mentioned duration T.
  • the fifth configuration information contains 11110, it means that the first time range is the first 4 time slots, such as time slot 1 to time slot 4 shown in FIG. 11 , and the second time range There are 5 time slots, for example, time slot 1 to time slot 5 shown in FIG. 11 .
  • the information indicating the first time range may include at least two of a start time slot, an end time slot, and a number of time slots of the first time-frequency resource and the second time-frequency resource. information.
  • the information indicating the first time range may include at least two information of a start time slot, an end time slot, and a number of time slots. In this case, it indicates that the reserved resources in the uplink and downlink subbands can have the same time range.
  • constraint condition A1 may be a subset of constraint condition A, and constraint condition A may be at least one of the following:
  • the symbol category of at least one symbol contained in the one slot is DL in the downlink subband, and the symbol category in the uplink subband is UL; or,
  • the symbol category of at least one of the symbols contained in the one time slot is DL in the downlink subband, and the symbol category in the uplink subband is flexible (flexible, F); or,
  • At least one of the symbols contained in the one time slot has a symbol category of F in the downlink subband, and a symbol category of the uplink subband of UL; or,
  • At least one of the symbols included in the one time slot has a symbol type F in the downlink subband, and a symbol type F in the uplink subband.
  • M1 and M2 consecutive edge RBs are configured for resource reservation, other RBs are not used for resource reservation, and the above-mentioned continuous edge M1 and M2 RB resource reservation Reservations may be referred to as continuous RB-level resource reservations.
  • some or all of the other RBs may use discrete RB-level resource reservation.
  • the discrete RB-level resource reservation refers to reserving M4 RBs in every M3 RBs, where M3 and M4 are positive integers, and M4 is smaller than M3.
  • the default value of M4 is 1.
  • the network device configures discrete RB-level resources in the first downlink subband, and the reserved frequency domain range is all RBs in the first downlink subband, and the network device configures discrete RB-level resources in the second downlink subband.
  • the frequency domain range reserved for RB-level resources is all RBs in the second downlink subband; for the indication method of the frequency domain range reserved for discrete RB-level resources, refer to the above-mentioned first possible example. method, can refer to each other.
  • the network device may determine that the frequency domain resources reserved by the discrete RB-level resources are edge RBs (that is, some RBs) on the corresponding subband.
  • the edge RB of the first downlink subband refers to the RB at the edge adjacent to the first uplink subband in the first downlink subband
  • the edge RB of the second downlink subband refers to the RB in the second downlink subband RBs at the edge adjacent to the first uplink sub-band.
  • the indication manner of the frequency domain range reserved by discrete RB-level resources refer to the method involved in the second possible example above, and refer to each other.
  • the first M41 RBs of every M31 RBs are used for resource reservation, and M31 and M41 are positive integers, And M41 is less than M31; within the frequency domain range of the discrete RB-level resource reservation in the second downlink subband, the first M42 RBs in every M32 RBs are used for resource reservation, M32 and M42 are positive integers, And M42 is smaller than M32.
  • M31 and M32 are equal, and M41 and M42 are equal.
  • the second configuration information may indicate discrete RB-level resource reservation parameters M31 and M41 in the first downlink subband, and the second downlink subband The parameters M32 and M42 of discrete RB-level resource reservation in the band, the terminal device can determine the first downlink subband and the second downlink subband according to the first configuration information and the second configuration information RBs reserved by discrete RB-level resources in a subband.
  • the following three examples are used to illustrate how the second configuration information indicates the discrete RB-level resource reservation parameters M31 and M41 in the first downlink subband, and the discrete RB level resource reservation parameters in the second downlink subband Parameters M32 and M42 of level resource reservation:
  • the second configuration information may contain a value. For example, when the second configuration information contains ⁇ 2 ⁇ , it indicates that the second configuration information indicates that discrete RB-level resources in the first downlink subband are reserved On frequency domain resources and frequency domain resources reserved by discrete RB-level resources in the second downlink subband, the first RB of every two RBs is used for resource reservation.
  • the frequency domain resources reserved by discrete RB-level resources in the first downlink sub-band are RB0-49, at this time RB ⁇ 0,2,4,6,8,10,12,14,16,18,20, 22,24,26,28,30,32,34,36,38,40,42,44,46,48 ⁇ for resource reservation.
  • Example a4 assume that M31 and M32 are equal, and M41 and M42 are equal.
  • the second configuration information may contain two values. For example, when the second configuration information contains ⁇ 4,2 ⁇ , it indicates that the second configuration information indicates discrete RB-level resources in the first downlink subband On the reserved frequency domain resources and the reserved frequency domain resources of discrete RB-level resources in the second downlink subband, the first 2 RBs of every 4 RBs are used for resource reservation.
  • the frequency domain resources reserved by discrete RB-level resources in the first downlink sub-band are RB0-49, at this time RB ⁇ 0,1,4,5,8,9,12,13,16,17,20, 21,24,25,28,29,32,33,36,37,40,41,44,45,48,49 ⁇ for resource reservation.
  • the second configuration information may include four values. For example, when the second configuration information includes ⁇ 4, 2; 2, 1 ⁇ , it indicates that the second configuration information indicates discrete The first 2 RBs of every 4 RBs on the frequency domain resources reserved by the RB level resources are used for resource reservation, and every 2 RBs on the frequency domain resources reserved by the discrete RB level resources in the second downlink subband The first 1 RB in the RB is used for resource reservation.
  • edge RBs are configured for resource reservation, and other RBs are not used for resource reservation.
  • some or all of the other RBs may use RE-level resource reservation, and the above-mentioned resource reservation may be referred to as additional RE-level resource reservation.
  • the overhead of reserved resources increases, and the accuracy of UL DMRS channel estimation improves.
  • the network device configures in the first downlink subband the frequency domain range of the RB where the extra RE level resource reservation is located is all RBs in the first downlink subband, and the network device configures in the second downlink subband
  • the frequency domain range of the RB where the additional RE-level resources are reserved is all RBs in the second downlink subband; for the indication method of the RB where the additional RE-level resources are reserved, refer to the method involved in the first possible example above , can refer to each other.
  • the network device may determine that the RBs where the extra RE level resources are reserved are edge RBs (that is, some RBs) on the corresponding subband.
  • the edge RB of the first downlink subband refers to the RB at the edge adjacent to the first uplink subband in the first downlink subband
  • the edge RB of the second downlink subband refers to the RB in the second downlink subband RBs at the edge adjacent to the first uplink sub-band.
  • the interval between REs occupied in each RB of the extra RE-level resource reservation is m31 REs, and the minimum subcarrier ID in the occupied REs is m41, m31 is a positive integer, and m41 is an integer, and m31 is less than 13, and m41 is less than 12.
  • the interval between REs occupied in each RB of the extra RE-level resource reservation is m32 REs, and the minimum subcarrier ID of the occupied REs is m42, m32 is a positive integer, and m42 is Integer, and m32 is less than 13, and m42 is less than 12.
  • the default values of m41 and m42 are 0.
  • n31 and m32 are equal, and m41 and m42 are equal.
  • the second configuration information may indicate the parameters m31 and m41 of each RB of the RB where the extra RE level resource reservation in the first downlink subband is located, and the The parameters m32 and m42 of each RB of the RB where the extra RE level resources are reserved in the second downlink subband, the terminal device may determine the first configuration information and the second configuration information Subcarriers occupied in each RB of the RB where the additional RE level resource reservation in the downlink subband and the second downlink subband is located.
  • the following three examples are used to illustrate how the second configuration information indicates the parameters m31 and m41 of each RB of the RB where the extra RE level resource reservation in the first downlink subband is located, and how the second downlink subband The parameters m32 and m42 of each RB of the RB where the extra RE level resource reservation in the band is located.
  • the second configuration information may contain a value. For example, when the second configuration information contains ⁇ 4 ⁇ , it indicates that the second configuration information indicates the RB where the extra RE level resources in the first downlink subband are reserved. In each RB of the second downlink subband, and in each RB of the RB where the extra RE level resources are reserved in the second downlink subband, the minimum subcarrier ID of the occupied RE is 0, and the interval between occupied REs is 4 REs , that is, the occupied REs are ⁇ 0,4,8 ⁇ .
  • the second configuration information may contain two values. For example, when the second configuration information contains ⁇ 4, 2 ⁇ , it indicates that the second configuration information indicates that the additional RE level resource reservation in the first downlink subband Reservation in each RB of the RB and the additional RE level resource reservation in each RB of the second downlink subband, the minimum subcarrier ID of the occupied RE is 2, and the interval between occupied REs is 4 REs, that is, the occupied REs are ⁇ 2,6,10 ⁇ .
  • the second configuration information may include four values. For example, when the second configuration information includes ⁇ 4,1; 3,0 ⁇ , it indicates that the second configuration information indicates that additional The minimum subcarrier ID of the occupied REs in each RB of the RE-level resource reservation is 1, and the interval between occupied REs is 4 REs, that is, the occupied REs are ⁇ 1, 5, 9 ⁇ . The minimum value of the subcarrier ID of the occupied REs in each RB of the RB where the extra RE level resources are reserved in the second downlink subband is 0, and the interval between occupied REs is 3 REs, that is, the occupied REs are ⁇ 0, 3,6,9 ⁇ .
  • the symbols, the first time range, and the second time of the discrete RB-level resource reservation and the additional RE-level resource reservation are The ranges are the same as those in the first possible example and the second possible example, which can be referred to each other. Refer to the above-mentioned first possible example for how the network device 0 indicates the symbols, the first time range, and the second time range of the discrete RB-level resource reservation and the additional RE-level resource reservation. and the method involved in the second possible example.
  • the terminal equipment can be made to perform interference measurement based on the first time-frequency resource and the second time-frequency resource, thereby improving demodulation performance.
  • the embodiment of the present application also provides another communication method, which is applied to a scenario where all network devices in a communication system use SBFD.
  • the specific process of the method may include:
  • Step 1201 The network device determines third configuration information and fourth configuration information.
  • the third configuration information indicates the frequency domain range of the first uplink subband on the carrier and the time domain symbol position where the DL DMRS of the cell is located; the fourth configuration information indicates the third time frequency on the first uplink subband resource and the frequency domain range of the fourth time-frequency resource.
  • Step 1202 The network device sends the third configuration information and the fourth configuration information to a terminal device.
  • Step 1203 The terminal device determines the third time-frequency resource and the fourth time-frequency resource on the carrier in a time slot within the first time range according to the third configuration information and the fourth configuration information .
  • the terminal device may determine the third time-frequency resource and the fourth time-frequency resource on the carrier in each time slot within the first time range according to the third configuration information and the fourth configuration information resource.
  • Step 1204 The network device sends a zero-power uplink signal on the third time-frequency resource and the fourth time-frequency resource.
  • the first uplink subband corresponding to cell 0 is subband 0-2, and the corresponding first downlink subband is Sub-band 0-1, the second downlink sub-band is sub-band 0-3, the first uplink sub-band corresponding to cell 1 is sub-band 1-2, the corresponding first downlink sub-band is sub-band 1-1, the first The second downlink sub-band is sub-band 1-3.
  • the network device determines the third time-frequency resource and the fourth time-frequency resource on the first uplink subband, it indicates to the terminal device, so that the terminal device can use the third time-frequency resource on the third time-frequency resource and the fourth time-frequency resource to send a zero-power uplink signal, the network device can measure the adjacent frequency cell-cell CLI and the adjacent frequency SI on the third time-frequency resource and the fourth time-frequency resource, and in addition, the terminal device is in When the zero-power uplink signal is sent on the third time-frequency resource and the fourth time-frequency resource, the adjacent frequency UE-UE CLI interference of DL DMRS can be reduced.
  • both the third time-frequency resource and the fourth time-frequency resource may be referred to as mute resources, and for convenience of illustration, only mute resources are shown in FIG. 8 .
  • the silent resources located in the first uplink subband (subband 0-2 and subband 1-2) in FIG. 8 are the third time-frequency resource and the fourth time-frequency resource.
  • the network device and other network devices exchange time slot format and cycle (such as cell-level TDD cycle), etc., such as the starting symbol position of DMRS, the number of symbols occupied by DMRS and other information.
  • time slot format and cycle such as cell-level TDD cycle
  • the above information is used by the network device to determine the first Three time-frequency resources and a fourth time-frequency resource.
  • the network device sends a capability query request to the terminal device to query whether the terminal device supports sub-band full-duplex capability; the network device sends capability information to the terminal device, and the capability information includes Information about whether the terminal device holds subband full-duplex capability. Further, the network device configures the third time-frequency resource and the fourth time-frequency resource according to the capability information of the terminal device.
  • the network device may configure the third time-frequency resource and the fourth time-frequency resource to be the same time-frequency resource. That is, the network device may configure the frequency domain range of the third time-frequency resource to be all RBs of the first uplink subband, and the frequency domain range of the fourth time-frequency resource to be the first uplink subband All RBs of the subband. This reduces overhead.
  • the fourth configuration information may indicate that the frequency domain range of the third time-frequency resource is all RBs of the first uplink subband; the fourth configuration information indicates that the first uplink subband The frequency domain range of the four time-frequency resources is all RBs of the first uplink subband. Further, the terminal device may determine the frequency domain range of the first uplink subband on the carrier indicated by the third configuration information and the content indicated by the fourth configuration information to determine the Frequency ranges of the third time-frequency resource and the fourth time-frequency resource on the carrier in each time slot.
  • the fourth configuration information may be indicated by a flag (flag) or a parameter.
  • the subbands in the opposite direction refer to subbands with opposite transmission directions.
  • the adjacent frequency interference caused by other RBs is relatively small and can be ignored. Therefore, in order to reduce the number of RBs occupied by reserved resources, the network device can determine the frequency domain resource where it is located when determining the specific frequency domain resources of the third time-frequency resource and the fourth time-frequency resource in the first uplink sub-band is the edge RB on the corresponding subband.
  • the edge RB of the first uplink subband refers to the edge RB adjacent to the first downlink subband in the first uplink subband, and the edge RB adjacent to the second downlink subband in the first uplink subband adjacent edge RB.
  • the network device may configure the frequency domain resource of the third time-frequency resource to include: N1 RBs starting from the RB corresponding to the smallest RB sequence number of the first uplink subband; and, configuring The frequency domain resource of the fourth time-frequency resource includes: N2 RBs with the RB corresponding to the largest RB sequence number of the first uplink subband as the end position.
  • the N1 and N2 RBs are part of the RBs included in the first uplink subband.
  • N1 and N2 are integers greater than or equal to 1.
  • the frequency domain resources occupied by the third time-frequency resource in subband 0-2 include N1 RBs starting from RB50 on subband 0-2, that is, including RB50 to RB49+ N1, that is to say, RB50 to RB49+N1 are the lower edge RBs of subband 0-2; the frequency domain resource occupied by the fourth time-frequency resource in subband 0-2 includes RB99 on subband 0-2 as the end position
  • the N2 RBs include RB100-N2 to RB99, that is to say, RB100-N2 to RB99 are the upper edge RBs of subband 0-2.
  • the lower edge RBs of subband 1-2 are RB50 to RB49+N1
  • the upper edge RBs of subband 1-2 are RB100-N2 to RB99.
  • each edge RB in the uplink subbands determines subcarriers in the manner of RB-level resource reservation instead of RE-level resource reservation.
  • the positions of the third time-frequency resource and the fourth time-frequency resource on the first uplink subband may be as shown in Table 2 below.
  • the N1 RBs at the edge are the N1 RBs corresponding to the smallest RB sequence number of the first uplink subband.
  • the N2 edge RBs are the N2 RBs at the end position where the RBs corresponding to the largest RB sequence number of the first uplink subband are.
  • N1 may be equal to N2.
  • N1 and N2 may be equal to M1 and M2 mentioned above.
  • the fourth configuration information may indicate that the number of RBs occupied by the third time-frequency resource is N1, and that the number of RBs occupied by the fourth time-frequency resource is The number is N2.
  • the terminal device may determine frequency domain resources of the third time-frequency resource and the fourth time-frequency resource according to the third configuration information and the fourth configuration information. Specifically, for the content included in the frequency domain resource of the third time-frequency resource and the content included in the frequency domain resource of the fourth time-frequency resource determined by the terminal device, reference may be made to the foregoing related description, and details are not repeated here.
  • Four configuration information includes ⁇ 2, 1 ⁇ , where 2 represents the number of RBs adjacent to the first downlink sub-band in the first uplink sub-band, that is, indicates the number of RBs occupied by the third time-frequency resource The number of RBs is 2; 1 indicates the number of RBs adjacent to the second downlink subband in the first uplink subband, that is, the number of RBs occupied by the fourth time-frequency resource is 1.
  • the fourth configuration information indicates the frequency domain range of the third time-frequency resource and the fourth time-frequency resource on the first uplink sub-band, it may also be indicated by indicating the third time-frequency resource and the frequency range of the fourth time-frequency resource.
  • the fourth time-frequency resource is realized by the number of bits occupied by RBs in the first uplink subband.
  • the fourth configuration information may include a second bit group, the second bit group includes a plurality of bits, the plurality of bits correspond to the RBs corresponding to the first uplink subband, and the plurality of bits The position of the RB corresponding to the bit whose value is the first value among the bits is the position in the frequency domain of the corresponding first uplink sub-band of the third time-frequency resource and the fourth time-frequency resource.
  • the third time-frequency resource occupies the RBs whose RB numbers are 5 and 6 in the first uplink subband
  • the fourth time-frequency resource occupies the first The RB whose RB number is 9 in the uplink subband.
  • the fourth configuration information may include 11001, where a bit with a value of 1 indicates a position corresponding to the RB occupied by the third time-frequency resource and the fourth time-frequency resource.
  • the fourth configuration information includes three bit groups, each bit group in the three bit groups includes at least one bit, and the value of each bit in the three bit groups is the second The two bit groups of the value correspond to the first uplink subband, and the number of bits included in each of the two bit groups indicates the number of RBs.
  • the fourth configuration information includes 1101, wherein the first two 1s are the first bit group, 0 is the second bit group, and the last 1 is the third bit group, wherein two bits with a value of 1 are Bit groups "11" and "1" correspond to the first uplink sub-band.
  • the number of bits in the first bit group is 2, indicating that the number of RBs adjacent to the first downlink subband occupied by the third time-frequency resource in the first uplink subband is 2
  • the number of bits in the third bit group is 1, indicating that the number of RBs adjacent to the second downlink subband occupied by the fourth time-frequency resource in the first downlink subband is 1.
  • the time-domain symbol positions where the third time-frequency resource and the fourth time-frequency resource are located are the time-domain symbol positions where the DL DMRS of the current cell is located. In this way, the terminal device can accurately determine the third time-frequency resource and the fourth time-frequency resource in combination with the foregoing fourth configuration information and third configuration information.
  • the first time range may be the same as the first time range involved in the above-mentioned embodiment shown in FIG. 7 .
  • the first time range may be the same as the first time range involved in the above-mentioned embodiment shown in FIG. 7 .
  • the network device may also determine sixth configuration information, where the sixth configuration information is used to indicate time domain resources of the third time-frequency resource and the fourth time-frequency resource .
  • the sixth configuration information may include information indicating time-domain symbol positions where the third time-frequency resource and the fourth time-frequency resource are located in any time slot within the first time range.
  • the sixth configuration information may include at least two pieces of information in the start time domain symbol, the end time domain symbol, and the length of the time domain symbol of the third time-frequency resource, and the information including the fourth time-frequency resource At least two pieces of information in the start time domain symbol, the end time domain symbol, and the length of the time domain symbol.
  • the sixth configuration information may include ⁇ 2,1 ⁇ , indicating that the starting symbol number of the third time-frequency resource and the fourth time-frequency resource is 2, and the symbol length is 1. If the time-domain symbol positions of the third time-frequency resource and the fourth time-frequency resource are different, they may be configured separately.
  • the sixth configuration information may further include information indicating the first time range, the first time range belongs to a second time range, and the second time range is a duration T or the duration T Integer multiples of .
  • duration T reference may be made to the description about T involved in the embodiment shown in FIG. 7 , which will not be repeated here.
  • the sixth configuration information contains 11110, it means that the first time range is the first 4 time slots, such as time slot 1 to time slot 4 shown in FIG. 11 .
  • the second time range is 5 time slots, such as time slot 1 to time slot 5 shown in FIG. 11 .
  • the information indicating the first time range may include at least two of the start time slot, the end time slot, and the number of time slots of the third time-frequency resource and the fourth time-frequency resource. information.
  • the information indicating the first time range may include at least two information of a start time slot, an end time slot, and a number of time slots. In this case, it indicates that the reserved resources in the uplink and downlink subbands can have the same time range.
  • resource reservations can be made in the method of discrete RB-level resource reservation or additional RE-level resource reservation in the downlink sub-band resource reservation.
  • the network device 0 indicates to the terminal device the discrete RB-level resource reservation or the extra RE-level resource reservation in subbands 0-2
  • the terminal equipment can be made to perform interference measurement based on the third time-frequency resource and the fourth time-frequency resource, thereby improving demodulation performance.
  • a plurality of configuration information mentioned above may be included in the same information, or several configuration information in the plurality of configuration information may be included in the same information, which is not limited in this application.
  • the above-mentioned embodiments shown in FIG. 7 and FIG. 12 refer to the case where the carrier includes three subbands, including two downlink subbands and one uplink subband in the middle, which can be called DUD.
  • the sub-bands in the carrier may also have multiple cases.
  • a carrier includes three subbands, two uplink subbands and one downlink subband in the middle, which may be called UDUs.
  • the carrier includes an uplink subband and a downlink subband, where the frequency of the downlink subband is higher than that of the uplink subband, which may be called UD.
  • the carrier includes an uplink subband and a downlink subband, where the frequency of the uplink subband is greater than that of the downlink subband, which may be called a DU. It should be understood that the above three examples are only examples, and there are many other situations, which will not be listed here in this application.
  • the first downlink subband and the second downlink subband in case DUD may be called downlink subband or DL subband, and the first uplink subband may be called uplink subband or UL subband; in case UDU , the two uplink subbands may be called the first uplink subband and the second uplink subband, the first uplink subband and the second uplink subband may be called uplink subbands or UL subbands, and one downlink subband may be called The first downlink subband, the first downlink subband can be called the downlink subband or DL subband; the downlink subband in the cases UD and DU can be called the first downlink subband or DL subband, the uplink subband It may be called the first uplink subband or UL subband.
  • the principle of the UDU is similar to that of the DUD in Figure 7 and Figure 12, except that the scheme principle of the downlink subband in Figure 7 corresponds to the uplink subband in the UDU, and the principle of the scheme of the uplink subband in Figure 12 Corresponds to the downlink subband in the UDU.
  • the uplink subbands include the first uplink subband and the second uplink subband
  • the downlink subbands include the first downlink subband.
  • the first uplink subband, the first downlink subband and the second downlink subband are continuous frequency domain resources on the corresponding frequency domain resources on the carrier; the frequency of the first uplink subband
  • the frequency of the second uplink subband is lower than the frequency of the first downlink subband, and the frequency of the second uplink subband is greater than the frequency of the first downlink subband.
  • the downlink sub-bands corresponding to cell 0 are sub-bands 0-2, and the corresponding low-frequency uplink sub-bands are sub-bands Band 0-1, the high-frequency uplink sub-band is sub-band 0-3, the downlink sub-band corresponding to cell 1 is sub-band 1-2, the corresponding low-frequency uplink sub-band is sub-band 1-1, and the high-frequency The uplink subbands are subbands 1-3.
  • a carrier includes 150 RBs as an example. Accordingly, as shown in Figure 13, subbands 0-1 include RBs 0-49, subbands 0-2 include RBs 50-99, and subbands 0-3 include RBs 100-149. Similarly, subband 1-1 includes RB 0-49, subband 1-2 includes RB 50-99, and subband 1-3 includes RB 100-149.
  • the reserved resources in subband 0-1 may include N1 RBs with RB49 as the end position on subband 0-1, that is, including RB50-N1 to RB49, that is, RB50-N1 RB49 is the edge RB of subband 0-1;
  • the reserved resources in subband 0-3 may include N2 RBs starting from RB100 on subband 0-3, that is, including RB100 to RB99+N2, or That is to say, RB100 to RB99+N2 are the edge RBs of subband 0-3;
  • the reserved resources in subband 0-2 can include M1 RBs with RB50 as the starting position on subband 0-2, that is, including RB50 to RB49+M1, that is to say, RB50 to RB49+M1 are the lower edge RBs of subband 0-2;
  • the reserved resources in subband 0-2 may include M2 RBs with RB99 as the end position on subband 0-2, That is, RB
  • edge RBs of subband 1-1 are RB50-N1 to RB49
  • the edge RBs of subband 1-3 are RB100 to RB99+N2
  • the lower edge RBs of subband 1-2 are RB50 to RB49+M1.
  • Upper edge RBs with 1-2 are RB100-M2 to RB99.
  • the uplink subbands namely subband 0-1 and subband 0-3, and each edge RB in subband 1-1 and subband 1-3 determine subbands in the way of RB level resource reservation. Carriers do not use RE-level resource reservation. The same applies to downlink subband 0-2 and subband 1-2.
  • the positions of the reserved resources on the uplink subband and the reserved resources on the downlink subband may be as shown in Table 3 below.
  • the M1 edge RBs are the M1 RBs corresponding to the smallest RB sequence number of the first downlink subband.
  • the M2 edge RBs are the M2 RBs corresponding to the largest RB sequence number of the first downlink subband, which are the end positions.
  • the N1 RBs at the edge are the N1 RBs at the end position, and the RBs corresponding to the maximum RB sequence number of the first uplink subband (that is, the low-frequency uplink subband) are RBs.
  • the edge N2 RBs are N2 RBs whose resource block corresponding to the smallest RB sequence number of the second uplink subband (ie, the high-frequency uplink subband) is the starting position.
  • the downlink subband and uplink subband resource reservation The method of discrete RB-level resource reservation or additional RE-level resource reservation is used for resource reservation.
  • the determination of the first time range and the second time range is similar to the method in the case of DUD, which can be referred to each other, and will not be described in detail here.
  • the principle of the network device instructing the terminal device to reserve resources is similar to the methods shown in FIG. 7 and FIG. 12 , which can be referred to each other and will not be described in detail here.
  • the frequency domain position of the reserved resource in the downlink subband may be M1 RBs adjacent to the uplink subband, and the frequency domain position of the reserved resource in the uplink subband may be are the N1 RBs adjacent to the downlink subband.
  • the downlink subband includes a first downlink subband, and the uplink subband includes a first uplink subband.
  • the diagram of resources reserved in the uplink subband and the downlink subband may be as shown in FIG. 14 .
  • the downlink subband corresponding to cell 0 is subband 0-2, and the corresponding uplink subband is subband 0-1.
  • the downlink subband corresponding to cell 1 is subband 1-2, and the corresponding uplink subband is subband 1-1.
  • subbands 0-1 include RBs 0-49
  • subbands 0-2 include RBs 50-99
  • subband 1-1 includes RB 0-49
  • subband 1-2 includes RB 50-99.
  • the reserved resources in subband 0-1 may include N1 RBs with RB49 as the end position on subband 0-1, that is, including RB50-N1 to RB49, that is, RB50-N1 RB49 is the edge RB adjacent to subband 0-1 and subband 0-2; the reserved resources in subband 0-2 may include M1 RBs starting from RB50 on subband 0-2, that is RB50 to RB49+M1 are included, that is to say, RB50 to RB49+M1 are edge RBs adjacent to subband 0-2 and subband 0-1.
  • the edge RBs of subband 1-1 are RB50-N1 to RB49
  • the edge RBs of subband 1-2 are RB50 to RB49+M1.
  • each edge RB in the uplink subbands determines subcarriers by means of RB-level resource reservation instead of RE-level resource reservation.
  • the positions of the reserved resources on the uplink subband and the reserved resources on the downlink subband may be as shown in Table 4 below.
  • the M1 edge RBs are the M1 RBs corresponding to the smallest RB sequence number of the first downlink subband.
  • the N1 RBs at the edge are the N1 RBs at the end position where the RBs corresponding to the largest RB sequence number of the first uplink subband are.
  • the downlink subband and uplink subband resource reservation The method of discrete RB-level resource reservation or additional RE-level resource reservation is used for resource reservation.
  • the determination of the first time range and the second time range is similar to the method in the case of DUD, which can be referred to each other, and will not be described in detail here.
  • the principle of the network device instructing the terminal device to reserve resources is similar to the principle of the method shown in FIG. 7 and FIG. 12 , which can be referred to each other, and will not be described in detail here.
  • the diagram of resources reserved in the uplink subband and the downlink subband may be as shown in FIG. 15 .
  • the downlink subband corresponding to cell 0 is subband 0-1, and the corresponding uplink subband is subband 0-2.
  • the downlink subband corresponding to cell 1 is subband 1-1, and the corresponding uplink subband is subband 1-2.
  • subbands 0-1 include RBs 0-49
  • subbands 0-2 include RBs 50-99
  • subband 1-1 includes RB 0-49
  • subband 1-2 includes RB 50-99.
  • the reserved resources in subband 0-1 may include M1 RBs with RB49 as the end position on subband 0-1, that is, including RB50-M1 to RB49, that is, RB50-M1 RB49 is the edge RB adjacent to subband 0-1 and subband 0-2; the reserved resources in subband 0-2 may include N1 RBs starting from RB50 on subband 0-2, that is RB50 to RB49+N1 are included, that is to say, RB50 to RB49+N1 are edge RBs adjacent to subband 0-2 and subband 0-1.
  • the edge RBs of subband 1-1 are RB50-M1 to RB49
  • the edge RBs of subband 1-2 are RB50 to RB49+N1.
  • each edge RB in the downlink subbands determines subcarriers by means of resource reservation at the RB level, instead of resource reservation at the RE level.
  • the positions of the reserved resources on the uplink subband and the reserved resources on the downlink subband may be as shown in Table 5 below.
  • the M1 edge RBs are the M1 RBs corresponding to the largest RB sequence number of the first downlink subband, which are the end positions.
  • the N1 RBs at the edge are the N1 RBs corresponding to the smallest RB sequence number of the first uplink subband.
  • the downlink subband and uplink subband resource reservation The method of discrete RB-level resource reservation or additional RE-level resource reservation is used for resource reservation.
  • the determination of the first time range and the second time range is similar to the method in the case of DUD, which can be referred to each other, and will not be described in detail here.
  • the principle of the network device instructing the terminal device to reserve resources is similar to the principle of the method shown in FIG. 7 and FIG. 12 , which can be referred to each other, and will not be described in detail here.
  • the foregoing embodiments show a scenario where all network devices in a communication system adopt SBFD.
  • the following describes in detail the configuration of reserved resources in another scenario where some network devices in the communication system use SBFD and some network devices use legacy TDD.
  • the cell carrier corresponding to the network device adopting SBFD can be divided into 3 subbands (DUD and UDU), or 2 subbands (DU and UD), or other situations.
  • the carrier of the cell corresponding to the network device adopting legacy TDD can be divided into multiple subbands in the frequency domain according to the same division method as the above-mentioned SBFD cell.
  • the specific reserved resources may include RB-level reservation and RE-level reservation.
  • the subband in the same direction as the legacy TDD cell is denoted as subband i
  • the subband in the SBFD cell in the opposite direction as subband i is denoted as subband j
  • the subband in the opposite direction is denoted as subband j.
  • Bands refer to subbands with different transmission directions
  • the same-direction subbands refer to subbands with the same transmission direction.
  • constraint condition B1 is a subset of constraint condition B, and constraint condition B can be at least one of the following:
  • At least one of the symbols contained in the one time slot has a symbol type of the subband i as DL, and a symbol type of the subband j as UL; or,
  • At least one of the symbols included in the one time slot has a symbol category of DL in the subband i, and a symbol category of the subband j of F; or,
  • At least one of the symbols included in the one time slot has a symbol type of the subband i being UL, and a symbol type of the subband j of being DL; or,
  • At least one of the symbols contained in the one time slot has a symbol type of UL in the subband i, and a symbol type of F in the subband j; or,
  • At least one of the symbols included in the one time slot has a symbol category of F in the subband i, and a symbol category of the subband j of UL; or,
  • At least one of the symbols included in the one time slot has a symbol category of F in the subband i, and a symbol category of the subband j of DL; or,
  • At least one of the symbols included in the one time slot has a symbol type F in the subband i, and a symbol type F in the subband j.
  • the subband i and the subband j are subbands in the same direction. It can be understood that in a time slot in legacy TDD, the category of a symbol is the same on the entire CC.
  • the determination of the subband i and the CC of legacy TDD in the same direction may refer to the determination criteria of the subband i and the subband j.
  • the resource reservation method can be as follows:
  • RB level reservation methods can be as follows:
  • Consecutive nj and i RBs adjacent to subband i in subband j are reserved;
  • the symbol of the reserved time-frequency resource of subband i the symbol of the DMRS of the adjacent SBFD cell and this cell on subband j in this time unit;
  • the symbol where the time-frequency resource reserved for subband j is located the symbol where the DMRS of the adjacent legacy TDD cell is located in this time unit.
  • the methods of RE level reservation can be as follows:
  • the RB where the reserved resource is located the RB in subband j that has not been reserved at the RB level;
  • the subcarrier where the reserved resource is located the subcarrier where the DMRS of the adjacent legacy TDD cell is located in this time unit;
  • the symbol of the reserved resource the symbol of the DMRS of the adjacent legacy TDD cell in this time unit.
  • the resource reservation method can be as follows:
  • RB-level reservation methods can be as follows:
  • the symbol of the reserved time-frequency resource of subband x the symbol of the DMRS of the adjacent SBFD cell on subband y in this time unit.
  • RE-level reservation methods can be as follows:
  • the RB where the reserved resource is located the RB where the subband y is located;
  • the subcarrier where the reserved resource is located the subcarrier where the DMRS of this time unit is located on the subband y of the adjacent SBFD cell;
  • the symbol of the reserved resource the symbol of the DMRS in the time unit on the subband y of the adjacent SBFD cell.
  • network device 0 adopts SBFD
  • network device 1 adopts legacy TDD
  • network device 0 corresponds to SBFD cell
  • network device 1 corresponds to legacy TDD cell 1 for example.
  • the subbands divided by the carrier of cell 0 may be as shown in FIG. 16 .
  • cell 0 corresponds to low frequency downlink subbands 0-1, uplink subbands 0-2 and high frequency downlink subbands 0-3.
  • cell 1 can be divided into subband 1-1, subband 1-2 and subband 1-3, wherein subband 1-1 and subband 1-3 are related to subband 0-1 It is in the same direction as subband 0-3, and subband 1-2 is in the opposite direction from subband 0-2, that is, subband 1-1, subband 1-2, and subband 1-3 are all downlink subbands.
  • FIG. 16 the subbands divided by the carrier of cell 0 may be as shown in FIG. 16 .
  • cell 0 corresponds to low frequency downlink subbands 0-1, uplink subbands 0-2 and high frequency downlink subbands 0-3.
  • cell 1 can be divided into subband 1-1, subband 1-2 and subband 1-3, wherein subband 1-1 and subband 1-3 are
  • subband 0-1 includes RB 0-49
  • subband 0-2 includes RB 50-99
  • subband 0-3 includes RB 100-149
  • subband 1-1 includes RB 0-49
  • subband 1-2 includes RB 50-99
  • subband 1-3 includes RB 100-149.
  • This embodiment is resource reservation when the SBFD cell and the legacy TDD cell coexist in the case of DUD.
  • the resource reservation method can be as follows:
  • One way to reserve resources can be:
  • the interference brought by DL subbands 0-1, 0-3, 1-1, and 1-3 to adjacent cells and subbands 0-2 of this cell is adjacent frequency interference (cell-cell CLI interference and SI), and edge RB uses RB-level resource reservation to reduce the impact of adjacent channel interference.
  • the specific location of reserved resources can be as follows:
  • RBs reserved for subband 0-1 and subband 1-1 are RB50-M1 ⁇ RB49; reserved RBs for subband 0-3 and subband 1-3 are RB100 ⁇ RB99+M2;
  • Time domain location the symbols where the UL DMRS (if any) of the neighbor cell and the current cell are located.
  • M1 can be equal to M2.
  • UL subband 0-2 brings adjacent frequency interference (UE-UE CLI interference) to the subbands 0-1, 0-3, 1-1, 1-3 of this cell and adjacent cells, and the edge RB adopts RB level Resource reservation to reduce the impact of adjacent frequency UE-UE CLI interference.
  • UE-UE CLI interference adjacent frequency interference
  • the specific location of reserved resources can be as follows:
  • Frequency domain position RB50 ⁇ RB49+N1, and RB100-N2 ⁇ RB99;
  • Time domain location the symbol where the DL DMRS of the neighboring cell and the current cell are located.
  • N1 may be equal to N2.
  • M1 and M2 are equal to N1 and N2.
  • UL subbands 0-2 bring intra-frequency UE-UE CLI interference to subbands 1-2 of adjacent legacy TDD cells, and the impact of intra-frequency CLI interference can be reduced through RE-level reservation.
  • the specific location of reserved resources can be as follows:
  • the frequency domain position of RB RB50+N1 ⁇ RB 99-N2, the frequency domain position of the subcarrier where the RE reserved in the RB is located: the subcarrier where the DL DMRS of the subband 1-2 of the legacy TDD cell is located;
  • Time domain position the symbol where the DL DMRS of the subband 1-2 of the adjacent legacy TDD cell is located.
  • DL subbands 1-2 bring co-channel interference to adjacent SBFD cells, and RE-level reservation can be used to reduce the impact of co-frequency UE-UE CLI interference.
  • RE-level reservation can be used to reduce the impact of co-frequency UE-UE CLI interference.
  • the specific location of reserved resources can be as follows:
  • the frequency domain position of the RB RB50-RB99; the subcarrier where the RE reserved in the RB is located: the subcarrier where the UL DMRS of the subband 0-2 of the adjacent SBFD cell is located;
  • Time domain position the symbol where the UL DMRS of the subband 0-2 of the adjacent SBFD cell is located.
  • the subcarrier where the DL DMRS of the legacy TDD cell is located is in subband 1-1, subband 1-2 and subband 1-3 are the same, and the symbol where the DL DMRS of the legacy TDD cell is located is in subband 1-1, Same in subband 1-2 and subband 1-3.
  • the positions of reserved resources in each subband may be as shown in Table 6 below.
  • the M1 RBs at the edge are the DL subband 0-1, and the RBs corresponding to the largest RB sequence number of 1-1 are the M1 RBs at the end position.
  • the M2 RBs at the edge are the DL subbands 0-3, and the RBs corresponding to the smallest RB sequence number of 1-3 are the M2 RBs at the starting position.
  • the N1 RBs at the edge are the N1 RBs corresponding to the smallest RB sequence number of the UL subband 0-2, which are the starting positions.
  • the N2 edge RBs are the N2 RBs corresponding to the largest RB sequence number of the UL subband 0-2, which are the end positions.
  • Another method 2 for reserving resources can be:
  • Subbands 0-2 are reserved at the RE level, and the location of reserved resources can be:
  • the frequency domain position of the RB RB50-RB99; the subcarrier where the RE reserved in the RB is located: the subcarrier where the DL DMRS of the subband 1-2 of the adjacent legacy TDD cell is located;
  • Time domain position the symbol where the DL DMRS of the subband 1-2 of the adjacent legacy TDD cell is located.
  • the method for reserving resources of other subbands is the same as the method involved in the first method of reserving resources, and will not be described in detail here.
  • Another way three to reserve resources can be:
  • M1, M2, N1, and N2 are all 50.
  • the resources reserved by subbands 0-1, 0-2, 0-3, 1-1, and 1-3 are occupied
  • the RBs are all RBs of the corresponding subband. It can be understood that at this time, subbands 0-2 do not need RE-level resource reservation.
  • Other methods for reserving resources are the same as those involved in the first method of reserving resources, and will not be described in detail here.
  • the manner in which network device 0 indicates to the terminal device the resources reserved for RE levels in subbands 0-2 may be as follows:
  • the network device 0 indicates a range to the terminal device, and the range is greater than or equal to the range of the RB where the reserved resources are located.
  • the number of the starting RB is an integer multiple of 4, such as 0, 4, 8; the minimum value of the number of RBs is not less than min ⁇ 24,N 0 ⁇ , and the number of RBs
  • the number is an integer multiple of 4, where N 0 is the number of RBs included in the UL subband 0-2, and min ⁇ a,b ⁇ means to take the smaller value of variable a and variable b.
  • the overlapping part is understood as the RB-level resource reservation, and if it exceeds the RB-level resource reservation, it indicates that it will not be processed.
  • the indicated range is ⁇ 52,48 ⁇ , indicating that the starting RB number is 52, and the number of RBs is 48.
  • RB 99 and RB level resources of UL subband 0-2 are reserved for RB 99 Overlap, RB 99 is processed according to RB-level resource reservation, and RB 100 exceeds the resource reservation of the UL subband, and is not processed.
  • the network device 0 indicates to the terminal device two pieces of information among the starting RB number, the number of RBs and the ending RB number.
  • the number of the starting RB, the number of RBs and the number of the ending RB are integers.
  • Another method is: when the parameter indicating the RB where the reserved resource is located is default, it indicates that the RB where the reserved resource is located is the RB where the UL subband is located.
  • Another method is: use 1 bit to indicate whether it is associated with the interference measurement of RB-level resource reservation, and if associated, all RBs in the UL subband that are not reserved are reserved at the RE level.
  • the manner in which the network device 1 indicates to the terminal device the resources reserved in subbands 1-2 is similar to the manner in which network device 0 indicates to the terminal device the resources reserved in RE levels in subbands 0-2, and may refer to each other.
  • the network device 0 and the network device 1 indicate to the terminal device the subcarriers occupied by the reserved resource in the RB may also be in the following manner:
  • An indication manner of a subcarrier may be: indicating the position of the subcarrier by enumeration.
  • the indicated subcarriers are ⁇ s1, s3, s5, s7, s9, s11 ⁇ , it means that the subcarriers ⁇ 1, 3, 5, 7, 9, 11 ⁇ are reserved.
  • Another manner of indicating subcarriers may be: indicating the starting subcarrier number, the number of continuous subcarriers, and the number of interval subcarriers.
  • the initial subcarrier number is 0 by default, the number of continuous subcarriers is 1 by default, and the number of interval subcarriers is 2 by default; or, the initial subcarrier number is 1 by default, and the number of continuous subcarriers is 1 by default , the default number of interval subcarriers is 2; or, the default number of initial subcarriers is 0, the default number of continuous subcarriers is 2, and the default number of interval subcarriers is 6; or, the default number of initial subcarriers is 2, The default number of continuous subcarriers is 2, and the default number of interval subcarriers is 6; or, the default number of starting subcarriers is 4, the default number of continuous subcarriers is 2, and the default number of interval subcarriers is 6.
  • the starting subcarrier number is ⁇ 1 ⁇
  • the number of continuous subcarriers is ⁇ 1 ⁇
  • the number of interval subcarriers is ⁇ 2 ⁇ , which means that the starting subcarrier number is 1, the last subcarrier is one subcarrier, and the next reserved subcarrier
  • the interval between 2 subcarriers, that is, the subcarrier ⁇ 1, 3, 5, 7, 9, 11 ⁇ is reserved.
  • Another manner of indicating the subcarriers may be: indicating reserved subcarriers among the 12 subcarriers through a 12-bit (bit) bitmap (bitmap).
  • DMRS category or called DMRS type
  • code division multiplexing code domain multiplexing
  • CDM code domain multiplexing
  • ID identity, ID
  • DMRS categories can be divided into category 1 (or type 1) (type1) and category 2 (or type 2) (type2).
  • the length of the DMRS symbol can be determined according to the parameters configured by the high layer, and the position of the subcarrier where the DMRS is located can be determined according to the ID of the DMRS category and the CDM group;
  • the subcarriers of CDM group 0 of type1 are ⁇ 0,2,4,6,8,10 ⁇ , the subcarriers of CDM group 1 of type1 are ⁇ 1,3,5,7,9,11 ⁇ , and the subcarriers of type2
  • the subcarriers of CDM group 0 are ⁇ 0,1,6,7 ⁇ , the subcarriers of type2 CDM group 1 are ⁇ 2,3,8,9 ⁇ , and the subcarriers of type2 CDM group 2 are ⁇ 4 ,5,10,11 ⁇ .
  • the default DMRS category is one of type1 and type2.
  • the ID of the CDM group is default, and the CDM group where the default resource reservation is located is ⁇ 0 ⁇ , ⁇ 1 ⁇ , ⁇ 2 ⁇ , ⁇ 0,1 ⁇ , ⁇ 0,2 ⁇ , ⁇ 1,2 ⁇ , ⁇ 0,1 ,2 ⁇ in one.
  • the indicated information contains DMRS category ⁇ type 1 ⁇ , CDM group ⁇ 1 ⁇ , it indicates that the CDM group1 of DMRS category type 1 is reserved, that is, subcarriers ⁇ 1,3,5,7,9,11 ⁇ are reserved ;
  • DMRS category default which is the default value.
  • an indication method of subcarriers and symbols where reserved resources are located may be: for UL subbands 0-2 of the SBFD cell, the subcarriers and symbols where the REs reserved in the RB are located are the DL DMRS of the cell Subcarriers and symbols; for DL subbands 1-2 of a legacy cell, the subcarriers and symbols where the RE reserved in the RB are located are the subcarriers and symbols where the UL DMRS of this cell is located; a flag or a parameters to indicate.
  • An indication manner of the symbol where the reserved resource is located may be: indicating the reserved symbol among the 14 symbols through a 14-bit (bitmap) bitmap. For example, it is indicated by a 14-bit bitmap: ⁇ 00110000000000 ⁇ , where 1 indicates that the corresponding symbol is reserved.
  • the way network device 1 indicates to terminal devices the subcarriers where reserved resources are located in subbands 1-2 is similar to the way network device 0 indicates to terminal devices where subcarriers where RE-level reserved resources are located in subbands 0-2 , can refer to each other.
  • the way network device 0 indicates to the terminal device the symbol of the reserved resource in subband 0-2, and the way network device 1 indicates to the terminal device the symbol of the reserved resource in subband 1-2 can also refer to the above
  • the methods involved in the embodiments shown in FIG. 7 and FIG. 12 may refer to each other.
  • the first time range and the second time range of subband 0-1, subband 0-2, subband 0-3, subband 1-1, subband 1-2, and subband 1-3 are the same ( Including RB-level resource reservation and RE-level resource reservation).
  • part or all symbols of a time slot in the first time range are in the first downlink subband (such as subband 0-1) in the SBFD cell.
  • the symbol type is downlink
  • the symbol type in the first time range The symbol type of part or all of the symbols in the one time slot in the second downlink subband (such as subband 0-3) in the SBFD cell is downlink
  • the one time slot in the first time range Part or all of the symbols in the first uplink subband (such as subbands 0-2) in the SBFD cell have a symbol type of uplink.
  • the time period during which the symbol type of the first downlink subband is downlink within the first time range is the same as the time period during which the symbol type of the second downlink subband is downlink.
  • the duration of the single-cycle or double-cycle configuration of the RRC slot format is T, T includes N time slots, and the first time range is part or all of the N time slots .
  • the duration of the single cycle or double cycle configured in the RRC slot format of the SBFD cell and the legacy TDD cell is the same.
  • constraint condition A1 is a subset of constraint condition A, and constraint condition A can be at least one of the following:
  • At least one of the symbols contained in the one time slot has a symbol category of the downlink subband of the SBFD cell as DL, and a symbol category of the uplink subband of the SBFD cell is UL; or,
  • the symbol category of at least one of the symbols contained in the one time slot is DL in the downlink subband of the SBFD cell, and the symbol category of the uplink subband in the SBFD cell is F; or,
  • At least one of the symbols contained in the one time slot has a symbol category of F in the downlink subband of the SBFD cell, and a symbol category of the uplink subband of the SBFD cell is UL; or,
  • At least one of the symbols included in the one time slot has a symbol type of F in the downlink subband of the SBFD cell, and a symbol type of the uplink subband of the SBFD cell.
  • the time slot belongs to the first time range.
  • the subband v is a subband in the SBFD cell
  • the subband w is a subband other than the subband v in the subbands of the SBFD cell.
  • the constraint condition B1 is a subset of the constraint condition B, and the constraint condition B can be at least one of the following:
  • At least one of the symbols contained in the one time slot is DL in the subband v, and the symbol category in the subband w or legacy TDD CC is UL; or,
  • At least one of the symbols contained in the one time slot is DL in the subband v, and the symbol category in the subband w or legacy TDD CC is F; or,
  • At least one of the symbols included in the one time slot is UL in the subband v, and the symbol category in the subband w or legacy TDD CC is DL; or,
  • At least one of the symbols included in the one time slot is UL in the subband v, and the symbol category in the subband w or legacy TDD CC is F; or,
  • At least one of the symbols included in the one time slot has a symbol category of F in the subband v, and a symbol category of the CC of the subband w or legacy TDD is UL; or,
  • At least one of the symbols contained in the one time slot has a symbol category of F in the subband v, and a symbol category of the CC of the subband w or legacy TDD is DL; or,
  • At least one of the symbols contained in the one time slot has a symbol type F in the subband v, and a symbol type F in the subband w.
  • the methods for network device 0 and network device 1 to indicate the first time range and the second time range to the terminal device may be similar to the indication methods involved in FIG. 7 and FIG. 12 , and may refer to each other.
  • the discrete RB-level resource reservation in the downlink sub-band resource reservation or the additional The resource reservation method of RE level is used for resource reservation.
  • network device 0 Based on the reserved resources configured above, network device 0 indicates to the terminal device the resource reserved in subband 0-1 and subband 0-3, and network device 0 indicates to the terminal the resource reserved at the RB level in subband 0-2. Refer to the methods involved in the above-mentioned embodiments shown in FIG. 7 and FIG. 12 for the instruction method of the device, and the instruction method of the network device 1 to the terminal device regarding the reserved resources in subband 1-1 and subband 1-3.
  • the interference brought by DL subbands 0-1 and 0-3 to adjacent cells and subbands 0-2 of this cell is adjacent frequency interference (A1: adjacent frequency cell-cell CLI interference and B: self-interference);
  • the interference brought by DL subbands 1-1 and 1-3 to subband 0-2 of adjacent cells is adjacent frequency interference (A2: adjacent frequency cell-cell CLI interference);
  • the interference caused by -2 is co-channel interference (C: same-frequency cell-cell CLI interference).
  • the subbands divided by the carrier of cell 0 may be as shown in FIG. 20 .
  • cell 0 corresponds to low frequency uplink subbands 0-1, downlink subbands 0-2 and high frequency uplink subbands 0-3.
  • cell 1 can be divided into subband 1-1, subband 1-2 and subband 1-3, wherein subband 1-1 and subband 1-3 are related to subband 0-1
  • subband 1-2 is in the same direction as subband 0-2, that is, subband 1-1, subband 1-2, and subband 1-3 are all downlink subbands.
  • a carrier includes 150 RBs as an example for illustration.
  • subband 0-1 includes RB 0-49
  • subband 0-2 includes RB 50-99
  • subband 0-3 includes RB 100-149
  • subband 1-1 includes RB 0-49
  • subband 1-2 includes RB 50-99
  • subband 1-3 includes RB 100-149. This embodiment is for resource reservation when the SBFD cell and the legacy TDD cell coexist in the case of UDU.
  • the first two ways among the three ways of reserving resources for each subband can be referred to the two ways shown in Figure 20 for details, and the brief description can be as follows:
  • Method 1 The specific location of reserved resources can be as follows:
  • Subband 0-1 frequency domain position: RB-level reserved: reserved RBs are RB50-N1 ⁇ RB49; RE-level reserved: DL DMRS of subband 1-1 of legacy TDD cell in RBs of RB0 ⁇ RB49-N1 The subcarrier where it is located; the position in the time domain: the position of the sub-band 1-1DL DMRS symbol in the legacy TDD cell.
  • Subband 0-3 frequency domain position: RB-level reserved: reserved RBs are RB100 ⁇ RB99+N2; RE-level reserved: DL DMRS of subbands 1-3 of legacy TDD cells in RB100+N2 ⁇ 149 The subcarrier where it is located; time domain position: the position of the subband 1-3DL DMRS symbol in the legacy TDD cell.
  • N1 may be equal to N2.
  • Sub-band 0-2 and sub-band 1-2 frequency domain position: RB50 ⁇ RB49+M1 and RB100-M2 ⁇ RB99, no RE level reservation; time domain position: the symbol position of UL DMRS in neighboring cells and this cell.
  • M1 can be equal to M2.
  • M1 and M2 are equal to N1 and N2.
  • Sub-band 1-1 frequency domain position: no RB-level reservation; RE-level reservation: subcarriers of UL DMRS of sub-band 0-1 adjacent to SBFD cells in RB0 ⁇ RB49; time domain position: adjacent to SBFD cells The symbol position of the UL DMRS of the subband 0-1.
  • Subbands 1-3 frequency domain location: no RB-level reservation; RE-level reservation: UL DMRS subcarriers of subbands 0-3 adjacent to SBFD cells in RB100 ⁇ RB149; time domain location: adjacent SBFD cells The symbol position of the UL DMRS of subband 0-3.
  • the subcarrier where the DL DMRS of the legacy TDD cell is located is in subband 1-1, subband 1-2 and subband 1-3 are the same, and the symbol where the DL DMRS of the legacy TDD cell is located is in subband 1-1, Same in subband 1-2 and subband 1-3.
  • the positions of reserved resources in each subband corresponding to mode one may be as shown in Table 7 below.
  • the M1 RBs at the edge are the DL subbands 0-2, and the RBs corresponding to the smallest RB sequence number of 1-2 are the M1 RBs at the starting position.
  • the M2 RBs at the edge are the DL subbands 0-2, and the RBs corresponding to the largest RB sequence number of 1-2 are the M2 RBs at the end position.
  • the N1 RBs at the edge are the N1 RBs corresponding to the largest RB sequence number of the UL subband 0-1, which are the end positions.
  • the N2 edge RBs are the N2 RBs where the resource block corresponding to the smallest RB sequence number of the UL subband 0-3 is the starting position.
  • Subband 0-1 frequency domain position: no RB level reservation; RE level reservation: DL DMRS subcarrier of subband 1-1 of legacy TDD cell in RB0 ⁇ RB49 RB; time domain position: legacy TDD cell
  • the subband 1-1DL DMRS symbols are in position.
  • Subband 0-3 frequency domain position: no RB level reservation; RE level reservation: DL DMRS subcarriers of subbands 1-3 of legacy TDD cells in RB100 ⁇ 149 RBs; time domain position: legacy TDD cell Subband 1-3DL DMRS symbols are in position.
  • the method for reserving resources of other subbands is the same as the method involved in the first method of reserving resources, and will not be described in detail here.
  • M1, M2, N1, and N2 are all 50.
  • the resources reserved by subbands 0-1, 0-2, 0-3, 1-1, and 1-3 are occupied
  • the RBs are all RBs of the corresponding subband. It can be understood that at this time, subbands 0-2 do not need RE-level resource reservation.
  • Other methods for reserving resources are the same as those involved in the first method of reserving resources, and will not be described in detail here.
  • the first time range and the second time range please refer to the determination method when the SBFD cell and the legacy TDD cell coexist in the above DUD case.
  • the first time range and the second time range of subband 0-1, subband 0-2, subband 0-3, subband 1-1, subband 1-2, and subband 1-3 are the same ( Including RB-level resource reservation and RE-level resource reservation).
  • how network device 0 indicates to terminal devices the resources reserved in subband 0-1, subband 0-2 and subband 0-3, and how network device 1 indicates to terminal devices
  • the indication method of reserved resources in subband 1-2 and subband 1-3 to terminal equipment please refer to the indication method of resource reservation when SBFD cell and legacy TDD cell coexist in the above DUD case.
  • the subbands divided by the carrier of cell 0 may be as shown in FIG. 21 .
  • cell 0 corresponds to uplink subband 0-1 and downlink subband 0-2, wherein the frequency of the downlink subband is higher than the frequency of the uplink subband.
  • cell 1 can be divided into subband 1-1 and subband 1-2, in which subband 1-1 is opposite to subband 0-1, and subband 1-2 is in the opposite direction to subband 1-2.
  • 0-2 are in the same direction, that is, sub-band 1-1 and sub-band 1-2 are both downlink sub-bands.
  • FIG. 21 it is described by taking a carrier including 100 RBs as an example.
  • subband 0-1 includes RB 0-49
  • subband 0-2 includes RB 50-99
  • subband 1-1 includes RB 0-49
  • subband 1-2 includes RB 50-99. This embodiment is for resource reservation when the SBFD cell and the legacy TDD cell coexist under the UD condition.
  • the first two ways among the three ways of reserving resources for each subband can be referred to the two ways shown in Figure 21 for details, and a brief description can be as follows:
  • Method 1 The specific location of reserved resources can be as follows:
  • Subband 0-1 frequency domain position: RB-level reserved: reserved RBs are RB50-N1 ⁇ RB49; RE-level reserved: DL DMRS of subband 1-1 of legacy TDD cell in RBs of RB0 ⁇ RB49-N1 The subcarrier where it is located; the position in the time domain: the position of the sub-band 1-1DL DMRS symbol in the legacy TDD cell.
  • N1 may be equal to N2.
  • Sub-band 0-2 and sub-band 1-2 frequency domain position: RB level reservation: reserved RB is RB50 ⁇ RB49+M1; no RE level reservation; time domain position: adjacent cell and this cell UL DMRS (if exists ) at the symbol position.
  • M1 can be equal to M2.
  • M1 and M2 are equal to N1 and N2.
  • Subband 1-1 frequency domain position: no RB-level reservation; RE-level reservation: the subcarrier where the UL DMRS of the adjacent SBFD cell is located in the RBs of RB0-RB49; time domain position: the symbol position where the UL DMRS of the adjacent SBFD cell is located.
  • the subcarrier where the DL DMRS of the legacy TDD cell is located is the same in subband 1-1 and subband 1-2, and the symbol where the DL DMRS of the legacy TDD cell is located is the same in subband 1-1 and subband 1-2 .
  • the positions of reserved resources in each subband corresponding to mode one may be as shown in Table 8 below.
  • the M1 edge RBs are the DL subbands 0-2, and the resource block corresponding to the smallest RB sequence number of 1-2 is the M1 RBs at the starting position.
  • the N1 RBs at the edge are the N1 RBs corresponding to the largest RB sequence number of the UL subband 0-1, which are the end positions.
  • Subband 0-1 frequency domain position: no RB level reservation; RE level reservation: DL DMRS subcarrier of subband 1-1 of legacy TDD cell in RB0 ⁇ RB49 RB; time domain position: legacy TDD cell
  • the DL DMRS symbols in the subband 1-1 are in position.
  • the method for reserving resources of other subbands is the same as the method involved in the first method of reserving resources, and will not be described in detail here.
  • M1, M2, N1, and N2 are all 50.
  • the resources reserved by subbands 0-1, 0-2, 0-3, 1-1, and 1-3 are occupied
  • the RBs are all RBs of the corresponding subband. It can be understood that at this time, subbands 0-2 do not need RE-level resource reservation.
  • Other methods for reserving resources are the same as those involved in the first method of reserving resources, and will not be described in detail here.
  • the determination method of the first time range and the second time range please refer to the determination method when the SBFD cell and the legacy TDD cell coexist in the above DUD case.
  • the first time range and the second time range of subband 0-1, subband 0-2, subband 1-1, and subband 1-2 are the same (including RB level resource reservation and RE level resource reservation Keep).
  • the discrete RB-level resource reservation in the downlink sub-band resource reservation or the additional The resource reservation method of RE level is used for resource reservation.
  • how network device 0 indicates to terminal devices the reserved resources in subband 0-1 and subband 0-2, and how network device 1 reserves resources in subband 1-1 and subband 1-2
  • the indication method of resource reservation to the terminal equipment please refer to the indication method of resource reservation when the SBFD cell and the legacy TDD cell coexist in the above DUD case.
  • the subbands divided by the carrier of cell 0 may be as shown in FIG. 22 .
  • cell 0 corresponds to downlink subband 0-1 and uplink subband 0-2, wherein the frequency of the uplink subband is higher than that of the downlink subband.
  • cell 1 can be divided into subband 1-1 and subband 1-2, where subband 1-1 is in the same direction as subband 0-1, and subband 1-2 is in the same direction as subband 1-2.
  • 0-2 in the opposite direction that is, sub-band 1-1 and sub-band 1-2 are both downlink sub-bands.
  • FIG. 21 it is described by taking a carrier including 100 RBs as an example.
  • subband 0-1 includes RB 0-49
  • subband 0-2 includes RB 50-99
  • subband 1-1 includes RB 0-49
  • subband 1-2 includes RB 50-99. This embodiment is for resource reservation when the SBFD cell and the legacy TDD cell coexist in the case of DU.
  • the first two ways among the three ways of reserving resources for each subband can be referred to the two ways shown in Figure 22 for details, and a brief description can be as follows:
  • Method 1 The specific location of reserved resources can be as follows:
  • Sub-band 0-1 and sub-band 1-1 frequency domain position: RB-level reserved: reserved RBs are RB50-M1 ⁇ RB49; no RE-level reservation; time domain position: symbol position of UL DMRS in neighboring cells and this cell .
  • M1 can be equal to M2.
  • Subband 0-2 frequency domain position: RB-level reserved: reserved RBs are RB50 ⁇ RB49+N1; RE-level reserved: DL DMRS of subbands 1-2 of legacy TDD cells in RB50+N1 ⁇ 99 The subcarrier where it is located; time domain position: the symbol position where the DL DMRS of the subband 1-2 of the legacy TDD cell is located.
  • N1 may be equal to N2.
  • M1 and M2 are equal to N1 and N2.
  • Subband 1-2 frequency domain position: no RB-level reservation; RE-level reservation: the subcarrier where the UL DMRS of the adjacent SBFD cell is located in the RBs of RB50 ⁇ RB99; time domain position: the symbol position of the UL DMRS of the adjacent SBFD cell.
  • the subcarrier where the DL DMRS of the legacy TDD cell is located is the same in subband 1-1 and subband 1-2, and the symbol where the DL DMRS of the legacy TDD cell is located is the same in subband 1-1 and subband 1-2 .
  • the M1 RBs at the edge are the DL subband 0-1, and the RBs corresponding to the largest RB sequence number of 1-1 are the M1 RBs at the end position.
  • the N1 RBs at the edge are the N1 RBs corresponding to the smallest RB sequence number of the UL subband 0-2, which are the starting positions.
  • Subband 0-2 frequency domain position: no RB level reservation; RE level reservation: DL DMRS subcarrier of subband 1-2 of legacy TDD cell in RB50 ⁇ RB99 RB; time domain position: legacy TDD cell The symbol position of the subband 1-2 DL DMRS.
  • the method for reserving resources of other subbands is the same as the method involved in the first method of reserving resources, and will not be described in detail here.
  • M1, M2, N1, and N2 are all 50.
  • the resources reserved by subbands 0-1, 0-2, 0-3, 1-1, and 1-3 are occupied
  • the RBs are all RBs of the corresponding subband. It can be understood that at this time, subbands 0-2 do not need RE-level resource reservation.
  • Other methods for reserving resources are the same as those involved in the first method of reserving resources, and will not be described in detail here.
  • the determination method of the first time range and the second time range please refer to the determination method when the SBFD cell and the legacy TDD cell coexist in the above DUD case.
  • the first time range and the second time range of subband 0-1, subband 0-2, subband 1-1, and subband 1-2 are the same (including RB level resource reservation and RE level resource reservation Keep).
  • the discrete RB-level resource reservation in the downlink sub-band resource reservation or the additional The resource reservation method of RE level is used for resource reservation.
  • how network device 0 indicates to terminal devices the reserved resources in subband 0-1 and subband 0-2, and how network device 1 reserves resources in subband 1-1 and subband 1-2
  • the indication method of resource reservation to the terminal equipment please refer to the indication method of resource reservation when the SBFD cell and the legacy TDD cell coexist in the above DUD case.
  • a possible manner of reserving resources may be as shown in FIG. 23 .
  • the disparate ratio scenario can be understood as follows:
  • the uplink transmission resources can be increased by increasing the resources occupied by the uplink in Figure 1, reducing the uplink delay and enhancing the coverage of the uplink (It can be called New TDD).
  • the downlink transmission resource may correspond to a CC configured as a downlink time-frequency resource
  • the uplink transmission resource may correspond to a CC configured as an uplink time-frequency resource.
  • a cell using the time slot ratio of legacy TDD may be called a legacy TDD cell, and a cell using the time slot ratio of New TDD may be called a New TDD cell.
  • time slot k is a DL time slot in the legacy TDD cell and a UL time slot in the new TDD cell, that is, at time slot k, the network device in the legacy TDD system sends a DL signal, and the UE in the new TDD system Send UL signal.
  • the interference of the DL signal to the UL signal is the same-frequency cell-cell CLI
  • the interference of the UL signal to the DL signal is the same-frequency UE-UE CLI.
  • resource reservation can also be used to improve the accuracy of DMRS channel estimation.
  • the time slot format of cell 0 is configured as DSUDD (the format of time slot 0-4)
  • the time slot format of cell 1 is configured as DSUUU, where the time slot format S indicates that in this time slot, some symbol types are DL , part of the symbol type is UL, and part of the symbol type is F.
  • Figure 23 shows that in time slot k (such as time slot 3, 4), the legacy TDD cell (such as cell 0) is a DL time slot (the symbols contained in the time slot are all DL), and the new TDD cell (such as cell 1 ) system is a UL time slot (the types of symbols contained in the time slot are all UL) (the subbands are not distinguished at this time).
  • the RBs where the reserved resources are located are all RBs included in the CC.
  • Reserved resources can be reserved in the following ways:
  • the subcarrier where the reserved resource is located the subcarrier where the UL DMRS of the adjacent New TDD cell is located;
  • the symbol where the reserved resource is located the symbol where the UL DMRS of the adjacent New TDD cell is located;
  • the time slot where the reserved resource is located at least one of the symbols contained in the time slot is DL in the legacy TDD cell, and the symbol type in the adjacent new TDD cell is UL;
  • Period of resource reservation duration T or an integer multiple of the duration T.
  • duration T reference may be made to the description about T involved in the embodiment shown in FIG. 7 , which will not be repeated here.
  • the subcarrier where the reserved resource is located the subcarrier where the DL DMRS of the adjacent legacy TDD cell is located;
  • the symbol where the reserved resource is located the symbol where the DL DMRS of the adjacent legacy TDD cell is located;
  • the time slot where the reserved resource is located at least one of the symbols contained in the time slot is DL in the legacy TDD cell, and the symbol type in the adjacent new TDD cell is UL;
  • Period of resource reservation duration T or an integer multiple of the duration T.
  • duration T reference may be made to the description about T involved in the embodiment shown in FIG. 7 , which will not be repeated here.
  • the indication method from the network device to the terminal device please refer to the indication method described in RE-level resource reservation when SBFD and legacy TDD coexist, and refer to each other.
  • the positions of the reserved resources of the new TDD cell and the legacy TDD cell in the disparate ratio scenario can be shown in Table 10 below.
  • subcarriers where the reserved resources are located include subcarriers 0-11, it is RB-level resource reservation at this time.
  • the resource reservation scheme for the SBFD system in the above embodiments is for terminal devices that can identify the configuration of the subband time slot format, and the resources for terminal devices that cannot recognize the configuration of the subband time slot format Reserved for brief explanation.
  • the terminal equipment that can recognize the configuration of the subband slot format can be called a subband full-duplex terminal equipment (SBFD UE), and the terminal equipment that cannot recognize the configuration of the subband slot format can be called a legacy terminal equipment (legacy UE).
  • SBFD UE subband full-duplex terminal equipment
  • legacy UE legacy terminal equipment
  • UE the category of a symbol is the same in the entire CC in the frequency domain, which can be called CC slot format configuration.
  • the slot format of a symbol in different subbands can be different, which can be called subband slot format configuration.
  • the CC slot format configuration and the subband slot format configuration are RRC slot format configurations.
  • the reserved time-frequency resources are reserved for RB-level resources.
  • the slot format configuration on the DL subband is the same as the CC slot format configuration.
  • the slot format configuration on the UL subband is different from the CC slot format configuration.
  • the DL subband includes the first downlink subband and the second downlink subband
  • the UL subband includes the first uplink subband.
  • the DL subband includes the first downlink subband
  • the UL subband includes the first uplink subband and the second uplink subband.
  • the DL subband includes the first downlink subband
  • the UL subband includes the first uplink subband.
  • the time slot format configurations of the first uplink subband and the second uplink subband are the same.
  • the time-frequency resource reserved in the DL subband is the same as that of the SBFD UE.
  • the time-frequency range of the reserved resource in the UL subband may be as follows:
  • RB where the reserved resources are located all RBs in the UL subband.
  • the symbol where the resource is reserved For a symbol in the symbol where the UL subband is located, when the symbol types configured by the legacy UE and the SBFD UE are different and the constraint condition C1 is satisfied, the time-frequency resources formed by the symbol in the UL subband need to be reserved .
  • constraint condition C1 is a subset of constraint condition C, and constraint condition C can be:
  • the category of a symbol is DL;
  • SBFD UEs according to the configuration of the subband slot format, the category of a symbol in the UL subband is UL; or,
  • the category of a symbol is DL; for SBFD UEs, according to the configuration of the subband slot format, the category of a symbol in the UL subband is F; or,
  • the type of a symbol is F; for SBFD UEs, according to the subband slot format configuration, the symbol type of a symbol in the UL subband is UL.
  • the symbols where the guard interval frequency domain resources are located constitute the guard interval time-frequency resources, and the legacy UE reserves the guard interval time-frequency resources.
  • the time slot where the reserved resource is located determine the time slot where the reserved resource is located according to the time slot to which the symbol where the reserved resource is located belongs.
  • the indication method for the reserved resources in a time slot for legacy UE can be as follows:
  • a possible way to indicate the range of the frequency domain where the reserved resources are located may be:
  • one piece of information 1 indicates the start RB, RB length and two pieces of information in the frequency domain range 1 of the reserved resource 1, and the frequency domain range 1 includes UL subbands. , the frequency domain range where the guard interval between the UL subband and the DL subband is located.
  • Use one piece of information 2 to indicate the start RB, RB length and end RB of the frequency domain range 2 of the reserved resource 2 the start position of the frequency domain range 2 is the minimum frequency of the DL subband, The end position of the frequency domain range 2 is the maximum frequency of the DL subband, and the DL subband includes one or two DL subbands.
  • the uplink subband includes the first uplink subband and the second uplink subband
  • an information 1 indicates the starting RB of the frequency domain range 1 of the reserved resource 1, the RB length and End the two pieces of information in the RB
  • the frequency domain range 1 includes the first uplink subband
  • Use one piece of information 2 to indicate the start RB, RB length and end RB of the frequency domain range 2 of the reserved resource 2 the start position of the frequency domain range 2 is the minimum frequency of the DL subband, The end position of the frequency domain range 2 is the maximum frequency of the DL subband.
  • a piece of information 3 indicates the start RB, RB length, and end RB of the frequency domain range 3 of the reserved resource 3.
  • the frequency domain range 3 includes the second uplink subband, and the second uplink The frequency domain range where the guard interval between the subband and the first downlink subband is located.
  • the RB corresponding to the guard interval also needs to be reserved, that is, the start position or end position of the reserved resource needs to be updated.
  • this embodiment of the present application also provides another communication method.
  • the specific process of the method may include:
  • Step 2501 The terminal device sends a first uplink signal to the network device on the sixth time-frequency resource, and correspondingly, the network device receives the first uplink signal from the terminal device on the sixth time-frequency resource.
  • the first uplink subband, the first downlink subband and the second downlink subband are continuous frequency domain resources on the corresponding frequency domain resources on the carrier; the frequency of the first uplink subband greater than the frequency of the first downlink subband, and the frequency of the second downlink subband is greater than the frequency of the first uplink subband.
  • the network device sends configuration information to the terminal device, the configuration information indicates that the value of N TA, offset is 0, and correspondingly, the terminal The device receives configuration information from the network device, where the configuration information indicates the N TA, and the value of offset is 0.
  • the signal of the terminal device received by the network device and the adjacent frequency self-interference caused by the signal sent by the network device can be aligned in time symbols, which is conducive to the suppression of adjacent frequency self-interference .
  • the value of N TA,offset is N TA, offset,0 if the time symbol alignment between the adjacent frequency self-interference signal and the received signal of the terminal device is not considered.
  • the duplex mode of the cell is TDD.
  • the network device configures the information timing advance offset value N TA for the terminal device, and the value of offset is N TA, offset,0 .
  • the frequency domain range of the CC of the cell is within the frequency range 1 (Frequency range 1) defined in 3GPP technical specification 38.104
  • the value of N TA, offset, 0 is in ⁇ 25600, 39936 ⁇ one.
  • the duplex mode of the cell is FDD
  • the value of N TA, offset, 0 is one of ⁇ 0, 25600, 39936 ⁇ .
  • the N TA, offset field does not exist.
  • the value of N TA, offset, 0 can be based on the duplex mode (TDD or FDD) and the frequency domain range of the CC (FR1 or frequency range 2 (Frequency range 2, FR2 )), determined in combination with the predefined values in Table 7.1.2-2 in 3GPP Technical Specification 38.133 Version G60.
  • the duplex mode of the cell is TDD
  • the frequency domain range is FR1
  • the frequency band where the CC of the cell is located is not compatible with Evolved Universal Terrestrial Radio Access-New Radio (Evolved Universal Terrestrial Radio Access-New Radio, E-UTRA- NR) coexists, and does not coexist with Narrowband Internet of Things-New Radio (NB-IoT–NR)
  • the value of N TA, offset,0 is 25600.
  • the duplex mode of the cell is TDD
  • the frequency domain range is FR1
  • the frequency band where the CC of the cell is located coexists with E-UTRA-NR and/or NB-IoT–NR
  • the value of N TA, offset, 0 is 39936 .
  • the value of N TA, offset,0 is 13792.
  • k has the following three situations:
  • the length of k symbols is greater than or equal to N TA, offset, 0 T c .
  • k is an integer greater than or equal to 1.
  • the last one or more symbols of the symbols contained in the nth time slot of the first subband are uplink
  • the first subband is the first downlink subband
  • the n is an integer greater than or equal to 0, and the first subband or Multiple symbols are downlink, and no uplink signal is sent in the last symbol of the symbols included in the nth time slot of the first subband.
  • k is 1.
  • a period T includes 5 time slots, namely time slots 1, 2, 3, 4, and 5.
  • time slots 1, 2, 3, 4, and 5 there are 10 time slots, numbered as time slots 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and there is switching from UL symbols to DL symbols in subband 0 and subband 2 point.
  • the last one or more symbols of the 5th time slot of subband 0 are uplink, and the first 1 or more symbols of the 6th time slot of subband 0 are downlink.
  • the last symbol of the 5 time slots does not send uplink signals.
  • a period T includes 5 time slots, which are time slots 1, 2, 3, 4, and 5 respectively.
  • time slots there are 10 time slots, numbered as time slots 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and there are UL symbol switching in sub-band 0, sub-band 1 and sub-band 2 Switch point to DL symbols.
  • the last one or more symbols of the 5th time slot of subband 0 are uplink, and the first 1 or more symbols of the 6th time slot of subband 0 are downlink.
  • the last symbol of the 5 time slots does not send uplink signals.
  • D represents a DL symbol
  • F represents an F symbol
  • U represents a UL symbol
  • a time slot contains only D, which means that the symbol types of the time slot are all DL
  • a time slot only contains U, which means that the symbol types of the time slot are all UL
  • a time slot includes D, F and U at the same time, which means The slots include DL symbols, UL symbols and F symbols.
  • the signal transmitted by the network device and the signal received by the network device can be time-symbol-aligned, which is beneficial to self-interference suppression.
  • N TA and offset in the communication method shown in Figure 25 can also be applied to the scenario where the network device supports simultaneous transmission and reception on the same time-frequency resource, that is, the scenario where the network device supports full-duplex at the same frequency .
  • the signal of the terminal device received by the network device and the self-interference caused by the signal sent by the network device can be time-symbol-aligned, which is beneficial to the suppression of the same-frequency self-interference.
  • the network device switches to the sending state after receiving the signal on the UL symbol and does not need to send the signal on the DL symbol. Switching time, the value of k in the communication method shown in FIG. 25 is 0.
  • the starting symbol position of UL and DL type A (type A) DMRS is configured by the parameter DMRS type A position (dmrs-TypeA-Position) configured by the RRC layer.
  • DMRS type A position (dmrs-TypeA-Position) configured by the RRC layer.
  • the specific starting symbol position of DMRS can be configured in the following two ways:
  • Method 1 The parameter dmrs-TypeA-Position configured by RRC represents the starting position of DL DMRS, and the parameter dmrs-TypeA-Position-UL configured by RRC indicates the starting position of the symbol of UL DMRS, or the parameter configured by RRC is added dmrs-TypeA-Position-offset, indicating the offset of the starting position of the UL DMRS relative to the starting position of the DL DMRS.
  • Method 2 The parameter dmrs-TypeA-Position configured by RRC represents the starting position of UL DMRS, and the parameter dmrs-TypeA-Position-DL configured by RRC indicates the starting position of the symbol of DL DMRS, or the parameter configured by RRC is added dmrs-TypeA-Position-offset, indicating the offset of the starting position of the DL DMRS relative to the starting position of the UL DMRS.
  • the present application also provides a resource reservation method and configuration for multi-transmission time interval (transmission time interval, TTI) pilot sharing (also called multi-slot DMRS sharing).
  • TTI transmission time interval
  • DMRS sharing multi-slot DMRS sharing
  • the channel between the UE and the network equipment changes little between consecutive n time slots, and the channel information obtained through the UL DMRS estimation of the first time slot can be used for subsequent 2-n time slots, at this time, the subsequent 2-nth time slots may not use UL DMRS to reduce the overhead of UL DMRS.
  • the first time slot may be called the first UL DMRS shared time slot, and the 2-n time slots may be called other UL DMRS shared time slots.
  • the network device may indicate the start time slot and the end time slot of the shared pilot. Specifically, the network device may indicate the number of timeslots shared by the pilot by adding a new field in the DCI.
  • an example of a manner of reserving resources may be shown in the example of UL DMRS sharing of 4 time slots shown in FIG. 28 .
  • slot 0 has a UL DMRS
  • slot 1, slot 2, and slot 3 share channel information estimated from the UL DMRS of slot 0.
  • a new field may be added to the DCI to indicate that the DMRS sharing duration is 4 time slots.
  • the resources reserved in the DL subband can be used to improve the accuracy of UL DMRS channel estimation, and at the same time can be used to estimate the adjacent frequency brought by the UL subband to the DL subband on the DL subband UE-UE CLI Considering that the UE-UE CLI interference of the adjacent frequency is relatively small, when there is no need to use UL DMRS for channel estimation in the next 2-n time slots, there is no need to continue to reserve resources in the DL subband to estimate the UE-UE CLI of the adjacent frequency.
  • UE CLI interference however, adjacent frequency self-interference and adjacent frequency cell-cell CLI are relatively large, DL DMRS changes in different time slots, resources continue to be reserved in UL subbands, and the relationship between DL subbands and UL subbands can be updated Measurement results of adjacent-frequency self-interference and adjacent-frequency cell-cell CLI interference.
  • the period of the TDD configuration is 5 time slots, which are respectively time slots 0, 1, 2, 3, and 4, and time slot 4 does not require resource reservation.
  • time slots When UL DMRS is not shared, both uplink and downlink reserved resources need to be configured on time slots 0, 1, 2, and 3.
  • time slot 1 When UL DMRS pilots are shared in time slots 0, 1, 2, and 3, time slot 1, The DL subbands of time slot 2 and time slot 3 do not need to reserve resources, that is, no downlink resource reservation is required.
  • the time-frequency position of the reserved resource changes relative to when the UL DMRS is not shared, and needs to be reconfigured through high-layer signaling.
  • time slot 0 is the first UL DMRS shared time slot
  • time slots 1, 2, and 3 are other UL DMRS shared time slots
  • the indication mode of the reserved resource of the first UL DMRS shared time slot can be
  • the indication manner of the reserved resources of the other UL DMRS shared time slots may be the following manner d2.
  • Mode d1 On the first UL DMRS shared time slot, configure uplink and downlink reserved resources at the same time, and the way the network device indicates to the terminal device can refer to the methods involved in the above-mentioned embodiments shown in FIG. 7 and FIG. 12 , and can See each other.
  • Way d2 On the other UL DMRS shared time slots, only uplink reserved resources are configured, and the way the network equipment indicates to the terminal equipment can refer to the methods involved in the above-mentioned embodiments shown in Figure 7 and Figure 12, and can be referred to each other .
  • the indication manner of the reserved resource of the first UL DMRS shared time slot may be the following manner d3, and the indication manner of the reserved resource of the other UL DMRS shared time slot may be the following manner d4.
  • Mode d3 On the first UL DMRS shared time slot, configure uplink and downlink reserved resources in the SBFD cell at the same time, and configure downlink reserved resources in the legacy TDD cell. Refer to the method involved in the above embodiment shown in Figure 17 for the way the network device indicates to the terminal device, and refer to each other.
  • Mode d4 On the other UL DMRS shared time slots, only uplink reserved resources are configured in the SBFD cell, and no reserved resources are configured in the legacy TDD cell.
  • the network device serving the SBFD cell indicates to the terminal device, refer to the method involved in the above embodiment shown in FIG. 17 , and refer to each other.
  • Figure 29 shows UL DMRS pilot sharing for SBFD cells.
  • the indication mode of the reserved resources of the first UL DMRS shared time slot may be the following mode d5, and the indication mode of the reserved resources of the other UL DMRS shared time slots may be the following mode d6.
  • Mode d5 On the first UL DMRS shared time slot, configure downlink reserved resources in the legacy TDD cell, and configure uplink reserved resources in the New TDD cell.
  • the network device indicates to the terminal device, refer to the method involved in the above embodiment shown in FIG. 23 , and refer to each other.
  • Mode d6 On the other UL DMRS shared time slots, no reserved resources are configured in the legacy TDD cell, and uplink reserved resources are configured in the New TDD cell. Refer to the method involved in the above embodiment shown in FIG. 23 for the manner in which the network device serving the New TDD cell indicates to the terminal device, and may refer to each other.
  • Figure 30 shows UL DMRS pilot sharing.
  • a communication device 3100 may include a transceiver unit 3101 and a processing unit 3102 .
  • the transceiver unit 3101 is used for the communication device 3100 to receive information (message or data) or send information (message or data), and the processing unit 3102 is used to control and manage the actions of the communication device 3100 .
  • the processing unit 3102 may also control the steps performed by the transceiver unit 3101 .
  • the communication device 3100 may specifically be the terminal device in the above embodiments, a processor in the terminal device, or a chip, or a chip system, or a functional module, etc.; or, the communication device 3100 may specifically be It is the network device in the above embodiments, the processor of the network device, or a chip, or a chip system, or a functional module.
  • the communication device 3100 when used to realize the functions of the terminal device in the embodiments described above in FIG. 7 and/or in FIG. 12 , it may specifically include:
  • the transceiver unit 3101 is configured to receive first configuration information and second configuration information, and/or, third configuration information and fourth configuration information from a network device;
  • the first configuration information indicates the first downlink sub-band on the carrier band and the frequency domain range of the second downlink subband and the time domain symbol position where the uplink demodulation reference signal UL DMRS is located;
  • the second configuration information indicates the first time-frequency resource and the first downlink subband on the first downlink subband The frequency domain range of the second time-frequency resource on the second downlink subband;
  • the third configuration information indicates the frequency domain range of the first uplink subband on the carrier and the time domain where the downlink demodulation reference signal DL DMRS is located symbol position;
  • the fourth configuration information indicates the frequency domain range of the third time-frequency resource and the fourth time-frequency resource on the first uplink subband;
  • the frequency band and the second downlink subband are continuous frequency domain resources on the corresponding frequency domain resources on the carrier
  • the frequency of the second downlink subband is greater than the frequency of the first uplink subband;
  • the processing unit 3102 is configured to determine a carrier in a time slot within a first time range according to the first configuration information and the second configuration information The first time-frequency resource and the second time-frequency resource on the network, and/or determine the one time slot in the first time range according to the third configuration information and the fourth configuration information The third time-frequency resource and the fourth time-frequency resource on the medium carrier;
  • the transceiver unit 3101 is further configured to receive the zero power on the first time-frequency resource and the second time-frequency resource a downlink signal; and/or, sending a zero-power uplink signal on the third time-frequency resource and the fourth time-frequency resource.
  • the second configuration information indicates that the frequency domain range of the first time-frequency resource is all RBs of the first downlink subband; the second configuration information indicates that the second The frequency domain range of the time-frequency resource is all RBs of the second downlink subband; the fourth configuration information indicates that the frequency domain range of the third time-frequency resource is all RBs of the first uplink subband; The fourth configuration information indicates that the frequency domain range of the fourth time-frequency resource is all RBs of the first uplink subband.
  • the second configuration information indicates that the number of RBs occupied by the first time-frequency resource is M1, and the number of RBs occupied by the second time-frequency resource is M2;
  • the fourth configuration information indicates that the number of RBs occupied by the third time-frequency resource is N1, and the number of RBs occupied by the fourth time-frequency resource is N2;
  • M1, M2, N1, and N2 are greater than or equal to An integer of 1, where M1 RBs are part of the RBs included in the first downlink subband, M2 RBs are part of the RBs included in the second downlink subband, and N1 and N2 RBs It is a part of the RBs included in the first uplink subband.
  • the processing unit 3102 is specifically configured to: determine frequency domain resources of the first time-frequency resource and the second time-frequency resource according to the first configuration information and the second configuration information, and /or, determine frequency domain resources of the third time-frequency resource and the fourth time-frequency resource according to the third configuration information and the fourth configuration information; wherein, the frequency domain resources of the first time-frequency resource
  • the resource includes: M1 RBs with the RB corresponding to the largest RB sequence number of the first downlink subband as the end position;
  • the frequency domain resource of the second time-frequency resource includes: the minimum RB of the second downlink subband
  • the resource block corresponding to the RB sequence number is M2 RBs at the starting position;
  • the frequency domain resource of the third time-frequency resource includes: N1 RBs with the minimum RB sequence number corresponding to the first uplink subband as the starting position RB:
  • the frequency domain resource B of the fourth time-frequency resource includes: N2 RBs with the RB corresponding to the largest RB sequence number of the
  • M1 is equal to M2, and N1 is equal to N2.
  • the time-domain symbol positions where the first time-frequency resource and the second time-frequency resource are located are the time-domain symbol positions where the UL DMRS is located
  • the third time-frequency resource and the time-domain symbol position where the fourth time-frequency resource is located is the time-domain symbol position where the DL DMRS is located.
  • the symbol type of part or all of the symbols in the first downlink subband in the first time slot in the first time range is downlink
  • the one time slot in the first time range The symbol type of part or all of the symbols in the second downlink subband is downlink
  • part or all of the symbols of the one time slot in the first time range are of the symbol type in the first uplink subband for uplink.
  • a time period during which the symbol type of the first downlink subband is downlink is the same as a time period during which the symbol type of the second downlink subband is downlink.
  • the communication device 3100 when used to implement the functions of the network device in the embodiment described in FIG. 7 and/or FIG. 12 , it may specifically include:
  • the processing unit 3102 is configured to determine the first configuration information and the second configuration information, and/or, the third configuration information and the fourth configuration information; the first configuration information indicates the first downlink subband and the second subband on the carrier The frequency domain range of the downlink subband and the time domain symbol position where the uplink demodulation reference signal UL DMRS is located; the second configuration information indicates the first time-frequency resource on the first downlink subband and the second downlink The frequency domain range of the second time-frequency resource on the subband; the third configuration information indicates the frequency domain range of the first uplink subband on the carrier and the time domain symbol position where the downlink demodulation reference signal DL DMRS is located; the The fourth configuration information indicates frequency domain ranges of the third time-frequency resource and the fourth time-frequency resource on the first uplink subband; the first uplink subband, the first downlink subband and the The second downlink subband is a continuous frequency domain resource on the corresponding frequency domain resource on the carrier; the frequency of the first uplink subband is greater than the frequency of the first
  • the second configuration information indicates that the frequency domain range of the first time-frequency resource is all RBs of the first downlink subband; the second configuration information indicates that the second The frequency domain range of the time-frequency resource is all RBs of the second downlink subband; the fourth configuration information indicates that the frequency domain range of the third time-frequency resource is all RBs of the first uplink subband; The fourth configuration information indicates that the frequency domain range of the fourth time-frequency resource is all RBs of the first uplink subband.
  • the second configuration information indicates that the number of RBs occupied by the first time-frequency resource is M1, and the number of RBs occupied by the second time-frequency resource is M2;
  • the fourth configuration information indicates that the number of RBs occupied by the third time-frequency resource is N1, and the number of RBs occupied by the fourth time-frequency resource is N2;
  • M1, M2, N1, and N2 are greater than or equal to An integer of 1, where M1 RBs are part of the RBs included in the first downlink subband, M2 RBs are part of the RBs included in the second downlink subband, and N1 and N2 RBs It is a part of the RBs included in the first uplink subband.
  • the frequency domain resources of the first time-frequency resource include: M1 RBs with the RB corresponding to the largest RB sequence number of the first downlink subband as the end position; the frequency domain resources of the second time-frequency resource
  • the domain resource includes: M2 RBs starting from the resource block corresponding to the smallest RB sequence number of the second downlink subband;
  • the frequency domain resource of the third time-frequency resource includes: the first uplink subband
  • the RB corresponding to the smallest RB sequence number of the first uplink subband is N1 RBs at the starting position;
  • the frequency domain resource of the fourth time-frequency resource includes: N2 RBs with the RB corresponding to the largest RB sequence number of the first uplink subband as the end position RB.
  • M1 is equal to M2, and N1 is equal to N2.
  • the time-domain symbol positions where the first time-frequency resource and the second time-frequency resource are located are the time-domain symbol positions where the UL DMRS is located
  • the third time-frequency resource and the time-domain symbol position where the fourth time-frequency resource is located is the time-domain symbol position where the DL DMRS is located.
  • the symbol type of some or all symbols in the first downlink subband in the first time slot in the first time range is downlink
  • the symbol type in the first time slot in the first time range The symbol type of part or all symbols of one time slot in the second downlink subband is downlink, and part or all symbols of the one time slot in the first time range are in the first uplink subband
  • the symbol type for is Uplink.
  • a time period during which the symbol type of the first downlink subband is downlink is the same as a time period during which the symbol type of the second downlink subband is downlink.
  • the communication device 3100 when used to implement the functions of the terminal device in the embodiment described in FIG. 25, it may specifically include:
  • the transceiver unit 3101 is configured to send the first uplink signal to the network device on the sixth time-frequency resource, the sending time of the first uplink signal is t1-(N TA T c +N TA, offset T c ), so
  • the N TA T c is the time advance amount, the N TA is greater than or equal to 0, the N TA, offset T c is the time advance offset value, the N TA, offset is 0, and the T c is Time unit, the size of the Tc is 1/(48000*4096), and the unit of the Tc is second;
  • the frequency domain resource where the sixth time-frequency resource is located is on the first uplink subband;
  • the last one or more symbols of the symbols contained in the nth time slot of the first subband are uplink
  • the first subband is the first downlink subband
  • the n is an integer greater than or equal to 0
  • the first one or more symbols of the symbols contained in the n+1th time slot of the first subband are downlink
  • No uplink signal is sent in the last symbol of the symbols included in the nth time slot of the first subband.
  • the transceiving unit 3101 is further configured to receive configuration information from the network device, where the configuration information indicates the N TA, and the value of offset is 0.
  • the communication device 3100 when used to implement the functions of the network device in the embodiment described in FIG. 25, it may specifically include:
  • the transceiver unit 3101 is configured to receive a first uplink signal from a terminal device at a sixth time-frequency resource, the sending time of the first uplink signal is t1-(N TA T c +N TA, offset T c ), so
  • the N TA T c is the time advance amount, the N TA is greater than or equal to 0, the N TA, offset T c is the time advance offset value, the N TA, offset is 0, and the T c is Time unit, the size of the Tc is 1/(48000*4096), and the unit of the Tc is second;
  • the frequency domain resource where the sixth time-frequency resource is located is on the first uplink subband;
  • the last one or more symbols of the symbols contained in the nth time slot of the first subband are uplink
  • the first subband is the first downlink subband
  • the n is an integer greater than or equal to 0
  • the first one or more symbols of the symbols contained in the n+1th time slot of the first subband are downlink
  • No uplink signal is received in the last symbol of the symbols contained in the nth time slot of the first subband.
  • the transceiving unit 3101 is further configured to send configuration information to the terminal device, where the configuration information indicates the N TA, and the value of offset is 0.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • a communication device 3200 may include a transceiver 3201 and a processor 3202 .
  • the communication device 3200 may further include a memory 3203 .
  • the memory 3203 can be set inside the communication device 3200 , and can also be set outside the communication device 3200 .
  • the processor 3202 may control the transceiver 3201 to receive and send information, messages or data, and the like.
  • the processor 3202 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor 3202 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the transceiver 3201, the processor 3202 and the memory 3203 are connected to each other.
  • the transceiver 3201, the processor 3202 and the memory 3203 are connected to each other through a bus 3204;
  • the bus 3204 can be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 32 , but it does not mean that there is only one bus or one type of bus.
  • the memory 3203 is used to store programs and the like.
  • the program may include program code including computer operation instructions.
  • the memory 3203 may include RAM, and may also include non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 3202 executes the application program stored in the memory 3203 to realize the above functions, thereby realizing the functions of the communication device 3200 .
  • the communication apparatus 3200 may be the terminal device in the foregoing embodiments; it may also be the network device in the foregoing embodiments.
  • the transceiver 3201 when the communication device 3200 realizes the functions of the terminal device in the embodiment shown in FIG. 7, the transceiver 3201 can realize the transceiving operation performed by the terminal device in the embodiment shown in FIG. 7;
  • the controller 3202 can implement other operations performed by the terminal device in the embodiment shown in FIG. 7 except the transceiving operation.
  • the transceiver 3201 can implement the transceiving operations performed by the network equipment in the embodiment shown in FIG. 7; processing The controller 3202 can implement other operations performed by the network device in the embodiment shown in FIG. 7 except the transceiving operation.
  • the transceiver 3201 can implement the transceiving operations performed by the network equipment in the embodiment shown in FIG. 7; processing The controller 3202 can implement other operations performed by the network device in the embodiment shown in FIG. 7 except the transceiving operation.
  • the transceiver 3201 can realize the transceiving operation performed by the terminal device in the embodiment shown in FIG. 12 ;
  • the controller 3202 can implement other operations performed by the terminal device in the embodiment shown in FIG. 12 except the transceiving operation.
  • the transceiver 3201 can implement the transceiving operations performed by the network equipment in the embodiment shown in FIG. 12 ;
  • the controller 3202 can implement other operations performed by the network device in the embodiment shown in FIG. 12 except the transceiving operation.
  • the transceiver 3201 can realize the transceiving operation performed by the terminal device in the embodiment shown in FIG. 25 ;
  • the controller 3202 can implement other operations performed by the terminal device in the embodiment shown in FIG. 25 except the transceiving operation.
  • the transceiver 3201 can implement the transceiving operations performed by the network equipment in the embodiment shown in FIG. 25; processing The controller 3202 can implement other operations performed by the network device in the embodiment shown in FIG. 25 except the transceiving operation.
  • the transceiver 3201 can implement the transceiving operations performed by the network equipment in the embodiment shown in FIG. 25; processing The controller 3202 can implement other operations performed by the network device in the embodiment shown in FIG. 25 except the transceiving operation.
  • the embodiments of the present application provide a communication system, and the communication system may include the terminal device and the network device involved in the above embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, including a processor, the processor is coupled to a memory, and is configured to call a program in the memory so that the chip implements the communication method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, the chip is coupled with a memory, and the chip is used to implement the communication method provided in the foregoing method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,以提高解调性能。终端设备根据接收的第一配置信息和第二配置信息确定第一时频资源和第二时频资源,在第一时频资源和第二时频资源上接收零功率下行信号;和/或,根据接收的第三配置信息和第四配置信息确定第三时频资源和第四时频资源,在第三时频资源和第四时频资源上发送零功率上行信号;第一配置信息指示第一下行子带和第二下行子带的频域范围及UL DMRS的时域符号位置;第二配置信息指示第一下行子带上的第一时频资源和第二下行子带上的第二时频资源的频域范围;第三配置信息指示第一上行子带的频域范围及DL DMRS的时域符号位置;第四配置信息指示第一上行子带上的第三时频资源和第四时频资源的频域范围。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年12月24日提交中国专利局、申请号为202111596767.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在时分双工(time division duplexing,TDD)***中,通常下行链路(downlink,DL)占据了主要的时间资源,上行链路(uplink,UL)占用的时间资源较少,这会造成UL覆盖较差,时延较长。为此,提出了子带全双工(subband fullduplex,SBFD)***。在SBFD***中,可将一个分量载波(component carrier,CC)的频域资源划分为多个子带,不同子带的传输方向可以相同,也可以不同,从而实现在相同时域资源上可以同时发送和接收,从而增加了上行传输资源,可降低UL的时延,增强UL的覆盖。但是在相同的时域资源上,多个终端设备同时进行上行传输或下行传输,会带来终端设备间和网络设备间的交叉链路干扰(cross link interference,CLI)。终端设备间的CLI为UL对DL的干扰,网络设备间的CLI为DL对UL的干扰。
在数据传输的过程中,通常采用解调参考信号(demodulation reference signal,DMRS)对数据所在的信道进行信道估计,进而将信道估计的结果用于数据的解调。
然而,目前,多个网络设备中至少一个网络设备采用SBFD的场景下,相对于传统的(legacy)TDD场景,在DMRS(包括DL DMRS和UL DMRS)处受到的干扰增加。新增的干扰会降低DMRS信道估计的准确性,降低解调性能。
发明内容
本申请提供一种通信方法及装置,用以提高DMRS信道估计的准确性,提高解调性能。
第一方面,本申请提供了一种通信方法,该方法可以应用于终端设备,终端设备中的处理器、芯片或者一个功能模块。该方法可以包括:接收来自网络设备的第一配置信息和第二配置信息,和/或,第三配置信息和第四配置信息;所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及上行解调参考信号UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围;所述第三配置信息指示所述载波上第一上行子带的频域范围及下行解调参考信号DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围;所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的 频率;进而,根据所述第一配置信息和所述第二配置信息确定第一时间范围内的一个时隙中载波上的所述第一时频资源和所述第二时频资源,在所述第一时频资源和所述第二时频资源上接收所述零功率下行信号;和/或,根据所述第三配置信息和所述第四配置信息确定所述第一时间范围内的所述一个时隙中载波上的所述第三时频资源和所述第四时频资源,在所述第三时频资源和所述第四时频资源上发送零功率上行信号。
通过上述方法,可以使终端设备基于第一时频资源和第二时频资源,和/或,第三时频资源和第四时频资源进行干扰测量,从而提高DMRS信道估计的准确性,提高解调性能。
在一个可能的设计中,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部资源块(resource block,RB);所述第二配置信息指示所述第二时频资源的频域范围为所述第二下行子带的全部RB;所述第四配置信息指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。这样第二配置信息可以准确指示第一时频资源和第二时频资源的频域范围,第四配置信息可以准确指示第三时频资源和第四时频资源的频域范围。
在一个可能的设计中,所述第二配置信息指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2;所述第四配置信息指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2;M1,M2,N1,N2为大于或者等于1的整数,其中,M1个RB为所述第一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。这样第二配置信息可以准确指示第一时频资源和第二时频资源的频域范围,第四配置信息可以准确指示第三时频资源和第四时频资源的频域范围。
在一个可能的设计中,根据所述第一配置信息和所述第二配置信息,确定所述第一时频资源和所述第二时频资源的频域资源,和/或,根据所述第三配置信息和所述第四配置信息确定所述第三时频资源和所述第四时频资源的频域资源;其中,所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;所述第二时频资源的频域资源包括:以所述第二下行子带的最小RB序号对应的资源块为起始位置的M2个RB;所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB;所述第四时频资源的频域资源B包括:以所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。这样终端设备可以准确地确定所述第一时频资源和所述第二时频资源的频域资源,和/或,所述第三时频资源和所述第四时频资源的频域资源。
在一个可能的设计中,M1等于M2,N1等于N2。这样实现比较简单。
在一个可能的设计中,所述第一时频资源和所述第二时频资源所在的时域符号位置为所述UL DMRS所在的时域符号位置,所述第三时频资源和所述第四时频资源所在的时域符号位置为所述DL DMRS所在的时域符号位置。
在一个可能的设计中,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
在一个可能的设计中,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
第二方面,本申请提供了一种通信方法,该方法可以应用于网络设备,网络设备中的处理器、芯片或者一个功能模块。该方法可以包括:确定第一配置信息和第二配置信息,和/或,第三配置信息和第四配置信息;并向终端设备发送所述第一配置信息和所述第二配置信息,和/或,所述第三配置信息和所述第四配置信息;其中,所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及上行解调参考信号UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围;所述第三配置信息指示所述载波上第一上行子带的频域范围及下行解调参考信号DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围;所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率。
通过上述方法,可以使终端设备确定第一时频资源和第二时频资源,和/或,第三时频资源和第四时频资源,并基于第一时频资源和第二时频资源,和/或,第三时频资源和第四时频资源进行干扰测量,从而提高DMRS信道估计的准确性,提高解调性能。
在一个可能的设计中,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部RB;所述第二配置信息指示所述第二时频资源的频域范围为所述第二下行子带的全部RB;所述第四配置信息指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。这样第二配置信息可以准确指示第一时频资源和第二时频资源的频域范围,第四配置信息可以准确指示第三时频资源和第四时频资源的频域范围。
在一个可能的设计中,所述第二配置信息指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2;所述第四配置信息指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2;M1,M2,N1,N2为大于或者等于1的整数,其中,M1个RB为所述第一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。这样第二配置信息可以准确指示第一时频资源和第二时频资源的频域范围,第四配置信息可以准确指示第三时频资源和第四时频资源的频域范围。
在一个可能的设计中,所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;所述第二时频资源的频域资源包括:以所述第二下行子带的最小RB序号对应的资源块为起始位置的M2个RB;所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB;所述第四时频资源的频域资源包括:以所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。
在一个可能的设计中,M1等于M2,N1等于N2。这样实现比较简单。
在一个可能的设计中,所述第一时频资源和所述第二时频资源所在的时域符号位置为所述UL DMRS所在的时域符号位置,所述第三时频资源和所述第四时频资源所在的时域 符号位置为所述DL DMRS所在的时域符号位置。
在一个可能的设计中,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
在一个可能的设计中,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
第三方面,本申请提供了一种通信方法,该方法可以应用于终端设备,终端设备中的处理器、芯片或者一个功能模块。该方法可以包括:在第六时频资源上向网络设备发送第一上行信号,所述第一上行信号的发送时间为t1-(N TAT c+N TA,offsetT c),所述N TAT c为时间提前量,所述N TA大于或者等于0,所述N TA,offsetT c为时间提前量偏移值,所述N TA,offset大小为0,所述T c为时间单元,所述T c的大小为1/(48000*4096),所述T c的单位为秒;所述第六时频资源所在的频域资源在第一上行子带上;所述t1是第一下行信号到达所述终端设备的时间,所述t1=t0+N TAT c/2,第五时频资源用于所述网络设备发送所述第一下行信号,所述第一下行信号的发送时间为t0,所述第五时频资源所在的频域资源在第一下行子带和/或第二下行子带上,所述第五时频资源和所述第六时频资源的起始时刻为t0;其中,所述第一上行子带,所述第一下行子带和所述第二下行子带为载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率。
通过上述方法,N TA,offset的值为0时,网络设备接收到的终端设备的信号和网络设备发送信号带来的邻频自干扰可以在时间上符号对齐,有利于邻频自干扰的抑制。
在一个可能的设计中,第一子带在第n个时隙上所包含符号的最后一个或多个符号为上行,所述第一子带为所述第一下行子带、所述第二下行子带或者所述第一上行子带,所述n为大于或者等于0的整数,所述第一子带在第n+1个时隙上所包含符号的起始一个或多个符号为下行,在所述第一子带的第n个时隙所包含符号的最后一个符号不发送上行信号。这样可以保证网络设备接收上行符号上的信号后切换到发送状态在下行符号上发送信号。
在一个可能的设计中,接收来自所述网络设备的配置信息,所述配置信息指示所述N TA, offset的值为0。
第四方面,本申请提供了一种通信方法,该方法可以应用于终端设备,终端设备中的处理器、芯片或者一个功能模块。该方法可以包括:在第六时频资源接收来自终端设备的第一上行信号,所述第一上行信号的发送时间为t1-(N TAT c+N TA,offsetT c),所述N TAT c为时间提前量,所述N TA大于或者等于0,所述N TA,offsetT c为时间提前量偏移值,所述N TA, offset大小为0,所述T c为时间单元,所述T c的大小为1/(48000*4096),所述T c的单位为秒;所述第六时频资源所在的频域资源在第一上行子带上;所述t1是第一下行信号到达所述终端设备的时间,所述t1=t0+N TAT c/2,第五时频资源用于所述网络设备发送所述第一下行信号,所述第一下行信号的发送时间为t0,所述第五时频资源所在的频域资源在第一下行子带和/或第二下行子带上,所述第五时频资源和所述第六时频资源的起始时刻为t0;其中,所述第一上行子带,所述第一下行子带和所述第二下行子带为载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子 带的频率大于所述第一上行子带的频率。
通过上述方法,N TA,offset的值为0时,网络设备接收到的终端设备的信号和网络设备发送信号带来的邻频自干扰可以在时间上符号对齐,有利于邻频自干扰的抑制。
在一个可能的设计中,第一子带在第n个时隙上所包含符号的最后一个或多个符号为上行,所述第一子带为所述第一下行子带、所述第二下行子带或者所述第一上行子带,所述n为大于或者等于0的整数,所述第一子带在第n+1个时隙上所包含符号的起始一个或多个符号为下行,在所述第一子带的第n个时隙所包含符号的最后一个符号不接收上行信号。这样可以保证网络设备接收上行符号上的信号后切换到发送状态在下行符号上发送信号。
在一个可能的设计中,向所述终端设备发送配置信息,所述配置信息指示所述N TA,offset的值为0。
第五方面,本申请还提供了一种通信装置,所述通信装置可以是终端设备,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发消息或数据,以及用于与通信***中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第六方面,本申请还提供了一种通信装置,所述通信装置可以是网络设备,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发消息或数据,以及用于与通信***中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第七方面,本申请还提供了一种通信装置,所述通信装置可以是终端设备,该通信装置具有实现上述第三方面或第三方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可 以执行上述第三方面或第三方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发消息或数据,以及用于与通信***中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第三方面或第三方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第八方面,本申请还提供了一种通信装置,所述通信装置可以是网络设备,该通信装置具有实现上述第四方面或第四方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第四方面或第四方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发消息或数据,以及用于与通信***中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第四方面或第四方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第九方面,本申请实施例提供了一种通信***,可以包括上述提及的终端设备和网络设备等。
第十方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计中,或第二方面及其任一可能的设计中,或第三方面及其任一可能的设计中,或第四方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第十一方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码或指令的,当计算机程序代码或指令在计算机上运行时,使得上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中,或者上述第三方面或第三方面任一种可能的设计中,或者上述第三方面或第三方面任一种可能的设计中所述的方法被执行。
第十二方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中,或者上述第三方面或第三方面任一种可能的设计中,或者上述第四方面或第四方面任一种可能的设计中所述的方法。
上述第五方面至第十二方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或者第二方面或第二方面中的各种可能方案,或者第三方面或第三方面中的各种可能方案,或者第四方面或第四方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种TDD***的示意图;
图2为本申请提供的一种SBFD***的示意图;
图3为本申请提供的一种干扰小区示意图;
图4为本申请提供的一种通信***的架构示意图;
图5为本申请提供的一种RB级别资源预留的示意图;
图6为本申请提供的一种RE级别资源预留的示意图;
图7为本申请提供的一种通信方法的流程图;
图8为本申请提供的一种减少干扰的示意图;
图9为本申请提供的一种预留资源的示意图;
图10为本申请提供的一种RB预留示意图;
图11为本申请提供的一种时间范围的示意图;
图12为本申请提供的另一种通信方法的流程图;
图13为本申请提供的另一种预留资源的示意图;
图14为本申请提供的另一种预留资源的示意图;
图15为本申请提供的另一种预留资源的示意图;
图16为本申请提供的一种载波划分的子带的示意图;
图17为本申请提供的另一种预留资源的示意图;
图18为本申请提供的一种RB的范围指示的示意图;
图19为本申请提供的一种不同类别和CDM组对应的子载波的示意图;
图20为本申请提供的另一种预留资源的示意图;
图21为本申请提供的另一种预留资源的示意图;
图22为本申请提供的另一种预留资源的示意图;
图23为本申请提供的另一种预留资源的示意图;
图24为本申请提供的另一种预留资源的示意图;
图25为本申请提供的另一种通信方法的流程图;
图26为本申请提供的一种UL符号切换到DL符号的示意图;
图27为本申请提供的另一种UL符号切换到DL符号的示意图;
图28为本申请提供的一种4个时隙UL DMRS共享的示意图;
图29为本申请提供的一种SBFD小区的UL DMRS导频共享示意图;
图30为本申请提供的一种UL DMRS导频共享的示意图;
图31为本申请提供的一种通信装置的结构示意图;
图32为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以提高DMRS信道估计的准确性,提高解调性能。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
下面对本申请实施例涉及的两种***进行说明:
图1示出了一种TDD***的示意图。TDD***(可称为传统(legacy)TDD)中,通常下行链路占用的时域资源多于上行链路占用的时域资源,例如图1中下行链路和上行链路所示。其中,图1中以频域资源是一个CC为例。从图1可以看出,下行链路占用的时域资源多于上行链路占用的时域资源。对于上行链路来说,可用的资源较少,覆盖较差,时延较长。可以理解的是,上行和下行是相对而言的,如果网络设备到终端设备((terminal equipment,TE)或(user equipment,UE))是上行,那么终端设备到网络设备是下行。如果网络设备到终端设备是下行,那么终端设备到网络设备是上行(本文以此为例)。
为了降低上行链路的时延,针对TDD***,提出了SBFD***。在SBFD***中,可将一个分量载波(component carrier,CC)的频域资源划分为多个子带,不同子带的传输方向可以相同,也可以不同,从而实现在相同时域资源上可以同时发送和接收,从而增加了上行传输资源,可降低上行链路的时延,增强上行链路的覆盖。
图2示出了一种SBFD***的示意图。图2以频域资源为一个CC为例说明,CC指一段连续的频域资源,可以对应一个小区配置。如图2所示,CC可分为3个子带,例如在图2中3个子带分别为子带0、子带1和子带2。不同子带的传输方向可以不同。图2以3个子带中的子带1的传输方向是上行,子带0和子带2的传输方向是下行为例示出,所述3个子带的频率无重叠。从图2可以看出,增加了终端设备可用的上行传输资源。可以理解的是,3个子带间可能存在保护间隔(guard band),子带0的最大频率和子带1的最小频率之间存在一定的频率间隔,子带1的最大频率和子带2的最小频率之间存在一定的频率间隔。子带0的最大频率可理解为子带0所在频域范围中频率的最大值,子带1的最小频率可理解为子带1所在频域范围中频率的最小值。
在SBFD***中,在一个网络设备同时服务多个小区的终端设备时,如图3所示,网络设备0服务小区(cell)0,3和4的终端设备,不同的小区使用相同的CC。网络设备0在小区0同时发送DL信号及接收UL信号,类似的,网络设备0在小区3同时发送DL信号及接收UL信号,网络设备0在小区4同时发送DL信号及接收UL信号。
在一个小区内,一个UE接收DL信号或者发送UL信号,其中,DL信号对应的传输方向为下行传输,UL信号对应的传输方向为UL传输,不同UE的传输方向可以不同。会带来UE间(UE-UE)的交叉链路干扰(cross link interference,CLI)和小区间(cell-cell) 的CLI以及小区的自干扰(self-interference,SI)。
UE-UE CLI为UL信号对DL信号的干扰,UE-UE CLI可进一步分为一个小区内部(intra cell)的UE-UE CLI和不同小区(inter cell)的UE-UE CLI。Intra cell UE-UE CLI指一个cell内的2个UE的传输方向不同引起的UE-UE CLI,Inter cell UE-UE CLI指引起UE-UE CLI的2个UE在不同的cell。
cell-cell CLI为其他小区的DL信号对本小区UL信号的干扰。可一进步分为一个网络设备内部的cell-cell CLI和不同网络设备的cell-cell CLI。一个网络设备内部的cell-cell CLI指一个网络设备服务的2个小区之间的cell-cell CLI,不同网络设备的cell-cell CLI指引起cell-cell CLI的2个cell属于不同的网络设备。可以理解的是,当一个网络设备仅服务一个小区时,不存在一个网络设备内部的cell-cell CLI。
小区的SI指小区的DL信号对本小区UL信号的干扰。
目前,在数据传输的过程中,通常采用解调参考信号(demodulation reference signal,DMRS)对数据所在的信道进行信道估计,进而将信道估计的结果用于数据的解调。
在TDD***中,DL DMRS受到的干扰包括其他小区的同向干扰(DL对DL的干扰),DL DMRS的层间干扰(不同的DMRS占用相同的时频资源时的干扰)。UL DMRS受到的干扰包括UL同向干扰,UL DMRS层间干扰。
在网络设备均采用SBFD时,相比于TDD场景,UL DMRS处新增了邻频cell-cell CLI,邻频SI,所述邻频cell-cell CLI,指引起cell-cell CLI干扰的DL信号和被干扰的UL信号的频率不同,所述邻频SI,指小区内同时存在DL信号和UL信号而引起的SI,DL信号和UL信号在不同的子带,一个CC上不同子带所在的频率不同,故而小区的SI为邻频SI;DL DMRS处新增了邻频UE-UE CLI干扰,所述邻频UE-UE CLI干扰,指引起UE-UE CLI干扰的UL信号和被干扰的DL信号的频率不同。
在一些网络设备采用SBFD,一些网络设备采用TDD时,相比于TDD场景,UL DMRS处新增了邻频cell-cell CLI,邻频SI,同频cell-cell CLI,减少了UL同向干扰,相对而言,同频cell-cell CLI远大于UL同向干扰,同频cell-cell CLI指cell-cell CLI干扰的DL信号和被干扰的UL信号的频率相同;DL DMRS处新增了邻频UE-UE CLI干扰。
由上述可知,在多个网络设备中至少一个网络设备采用SBFD的场景下,相对于传统的TDD场景,在DMRS(包括DL DMRS和UL DMRS)处受到的干扰增加。新增的干扰会降低DMRS信道估计的准确性,降低解调性能。
基于此,本申请实施例提出一种通信方法,来提高DMRS信道估计的准确性,进而提高解调性能。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
本申请实施例提供的通信方法,可以应用于SBFD***的上行链路和下行链路存在交叉干扰的场景。图4示出了本申请实施例适用的一种通信***的架构示意图。在该通信***中包括至少一个网络设备和至少一个终端设备。例如,图4所示该通信***中包括网络设备1和网络设备2。网络设备1服务的一个小区的覆盖范围内存在两个终端设备,如图4中终端设备1和终端设备2所示。其中,终端设备1发送上行信号,终端设备2接收下行信号。网络设备2服务的一个小区的覆盖范围内存在两个终端设备,如图4中终端设备3和终端设备4所示。其中,终端设备3发送上行信号,终端设备4接收下行信号。
网络设备为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端等等,也可以是能够设置于以上设备的芯片或芯片模组(或芯片***)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
需要说明的是,图4所示的通信***中网络设备和每个网络设备的覆盖范围内存在的终端设备的数量仅为示例,实际中还可以存在更多或更少的设备,本申请对此不作限定。
在上述通信***中,多个网络设备中至少一个网络设备采用SBFD。也就是说可能存在两种场景:第一种场景为所有网络设备均采用SBFD,例如图4中的网络设备1和网络设备2均采用SBFD;第二种场景为部分网络设备采用SBFD,部分网络设备采用legacy TDD,例如图4中网络设备1采用SBFD,网络设备2采用legacy TDD。采用SBFD的时隙配比的网络设备可称为SBFD网络设备,采用SBFD的时隙配比的小区可称为SBFD小区。此外,还可能存在第三种场景,本申请称为异配比场景。异配比场景即除了采用SBFD***外,还可通过增加图1中上行链路占用的资源来增加上行传输资源,降低上行链路的时延,增强上行链路的覆盖(可称为新(New)TDD)。下行传输资源可对应一个CC上时隙格式配置为下行的时频资源,上行传输资源可对应一个CC上时隙格式配置为上行的 时频资源。当一个小区采用legacy TDD的时隙配比,一个小区采用New TDD的时隙配比时,2个小区采用的时隙配比存在差异,此场景可称为异配比场景。
采用legacy TDD的时隙配比的小区可称为legacy TDD小区,采用New TDD的时隙配比的小区可称为New TDD小区。
本申请实施例中针对上述三种场景设计静默(mute)资源的图样(pattern),以及各个网络设备将上述图样指示给终端设备,以使终端设备基于该mute资源进行干扰测量。本申请实施例主要涉及对时域资源上符号类型的配置。下面首先提供一些术语的介绍。
(1)资源,包括时域资源和频域资源,可认为是时域资源和频域资源形成的资源对。其中,时域资源指时域上所占用的正交频分调制(orthogonal frequency division modulation,OFDM)符号(在本文中简称为符号)。本申请实施例对时域资源的最小粒度不作限制。例如,时域资源的最小粒度为1个OFDM符号,也可以是微时隙(mini-slot),时隙(slot)等。1个微时隙可以包括多个OFDM符号,这里的多个可以指两个或者两个以上。1个时隙可以包括14个OFDM符号或者12个OFDM符号。
频域资源指在频域上所占用的资源,或称为频率资源。频域资源的最小粒度可为1个子载波,也可以是物理资源块(physical resource block,PRB),或者资源块组(resource block group,RBG)等。一个PRB在频域上包括12个子载波,一个RBG可以包括2个PRB、4个PRB、8个PRB,或者,16个PRB。
(2)mute资源,应理解,mute资源仅仅是一个名称示例,还可以称为其他名称,例如预留资源等。
示例性的,mute资源是零功率信号(包括零功率上行信号和零功率下行信号)占用的时频资源。也即终端设备在该mute资源上不发送和/或接收有用信号。
其中,网络设备确定mute资源的过程可以理解为资源预留过程。可选的,资源预留可以包括资源块(resource block,RB)级别资源预留和资源单元(resource element,RE)级别资源预留。
具体的,RB级别资源预留表示在一个RB上预留一个或多个符号上的全部子载波。例如图5示出了一种RB级别资源预留的示意图,由图5可以看出,预留了一个RB中符号2上的全部子载波。RE级别资源预留表示在一个RB上预留一个或多个符号上一个或多个子载波。例如图6示出了一种RE级别资源预留的示意图,由图6可以看出,预留了一个RB中符号2上的子载波6。应理解,图5和图6仅是示例,不作为对本申请的限定。
需要说明的是,符号表示时域上符号,例如OFDM符号,应理解,在本文中出现的符号和时域符号为同等概念的两种表述。
可选的,一个RB在频域上包括12个子载波,在时域上包括14个符号或者12个符号。在图5和图6中以一个RB在频域上包括12个子载波,在时域上包括14个符号为例说明。
(3)CC,指示一段连续的频域资源,可以对应一个小区配置。
(4)子带,设计上一个子带所占的频域资源可以小于一个CC所占的频域资源,不同子带的频域资源无重叠。多个子带在频域上可以连续或者不连续,例如,一种多个子带在子带不连续的设计可以是多个子带中每两个子带之间可以存在保护间隔。类似地,一种多个子带在频域上连续的设计可以是多个子带中每两个子带之间不存在保护间隔。
(5)高层信令:可以是指高层协议层发出的信令,高层协议层为物理层以上的协议层。其中,高层协议层可以包括以下协议层中的至少一个:MAC层、RLC层、PDCP层、 RRC层和非接入层(non access stratum,NAS)。
5G NR中,网络设备可以通过如下2种方式实现1个CC上符号类别的配置:高层配置/RRC层信令配置、下行控制信息2-0(downlink control indicator 2-0,DCI 2-0)动态指示,DCI 2-0动态指示也称为时隙格式指示(slot format indicator,SFI)。
在高层配置方案中,网络设备可以通过RRC层信令通知终端设备,实现一定周期内符号类别的配置。该方案也可称为RRC配置的时隙格式。高层配置的方案中的配置参数可进一步分为:小区级的配置参数,如TDD公共配置(TDD-ConfigCommon),和终端设备级别的配置参数,如TDD专用配置(TDD-ConfigDedicated)。
TDD-ConfigCommon中包含的信息有:TDD-ConfigCommon的周期、周期下行时隙数、周期上行时隙数、周期下行符号数和周期上行符号数等。TDD-ConfigCommon既支持单周期的配置,又支持双周期的配置。
TDD-ConfigDedicated是终端设备级别的配置参数,每个终端设备可单独配置,每个终端设备可以修改TDD-ConfigCommon中灵活符号的方向。TDD-ConfigDedicated的中包含的信息有:时隙的标识(identity,ID)、时隙的上行符号数和时隙的下行符号数等。
在高层配置方案中,可以只有小区级的配置参数,或者,同时存在小区级的配置参数和终端级的配置参数,为了避免后续引起误解,本申请实施例中可以称高层配置方案为RRC时隙格式配置。
基于以上描述,本申请实施例提供了一种通信方法,应用于通信***中的所有网络设备均采用SBFD的场景。参阅图7所示,该方法的具体流程可以包括:
步骤701:网络设备确定第一配置信息和第二配置信息。
所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及本小区UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围。
步骤702:所述网络设备向终端设备发送所述第一配置信息和所述第二配置信息。
步骤703:所述终端设备根据所述第一配置信息和所述第二配置信息确定第一时间范围内的一个时隙中载波上的所述第一时频资源和所述第二时频资源。
其中,所述终端设备可以根据所述第一配置信息和所述第二配置信息确定第一时间范围内的每一个时隙中载波上的所述第一时频资源和所述第二时频资源。
步骤704:所述终端设备在所述第一时频资源和所述第二时频资源上接收所述零功率下行信号。
在所有网络设备均采用SBFD的场景中,相比于TDD场景,UL DMRS处新增了邻频cell-cell CLI,邻频SI;DL DMRS处新增了邻频UE-UE CLI干扰,包括Inter cell UE-UE CLI和Intra cell UE-UE CLI。例如图3所示的干扰小区示意图,一个网络设备服务3个小区,网络设备0和其他网络设备均采用SBFD时,小区0会受到其他6个小区的干扰以及邻频SI。
在一种可选的实施方式中,网络设备采用SBFD的场景中,载波可以分为3个子带,例如第一上行子带、第一下行子带和第二下行子带。所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率。
例如,以网络设备0的小区0和网络设备1的小区1为例说明,如图8所示,小区0对应的第一上行子带为子带0-2,对应的第一下行子带为子带0-1,第二下行子带为子带0-3,小区1对应的第一上行子带为子带1-2,对应的第一下行子带为子带1-1,第二下行子带为子带1-3。
由于上述提及的干扰,网络设备确定所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源后,指示给终端设备,以使终端设备在所述第一时频资源和所述第二时频资源上接收所述零功率下行信号时,可以测量邻频UE-UE CLI干扰,此外,网络设备在所述第一时频资源和所述第二时频资源上发送所述零功率下行信号时,可以减少UL DMRS的邻频cell-cell CLI和邻频SI干扰。例如图8中的(b)所示的减少UL DMRS的邻频cell-cell CLI以及邻频SI的示意。其中,第一时频资源和第二时频资源均可以称之为静默(mute)资源(或预留资源等),为方便示出,在图8中仅以静默资源示出。应理解,图8中位于第一下行子带(子带0-1和子带1-1)中的静默资源为第一时频资源,位于第二下行子带(子带0-3和子带1-3)中的静默资源为第二时频资源。
可选的,网络设备与其他网络设备交互时隙格式及周期(如小区级TDD周期)等,例如DMRS的起始符号位置,DMRS占用的符号个数等信息,上述信息用于网络设备确定第一时频资源和第二时频资源。
示例性的,网络设备向所述终端设备发送能力查询请求,以查询所述终端设备是否支持子带全双工能力;所述网络设备向所述终端设备发送能力信息,所述能力信息中包括所述终端设备是否持子带全双工能力的信息。进一步地,所述网络设备根据所述终端设备的能力信息来配置所述第一时频资源和所述第二时频资源。
在第一种可能的示例中,所述网络设备可以配置所述第一时频资源的频域范围为所述第一下行子带的全部RB,以及所述第二时频资源的频域范围为所述第二下行子带的全部RB。这样可以降低开销。
进一步地,在这种情况中,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部RB;以及所述第二配置信息指示所述第二时频资源的频域范围为所述第二下行子带的全部RB。进一步地,所述终端设备可以根据所述第一配置信息指示的所述载波上第一下行子带和第二下行子带的频域范围,以及所述第二配置信息指示的内容,确定所述第一时间范围内的每一个时隙中载波上的所述第一时频资源和所述第二时频资源的频率范围。
在上述第一种可能的示例中,所述第二配置信息可以通过一个标志位(flag)或者一个参数来指示。
在第二种可能的示例中,由于上述涉及的干扰主要是由子带包括的RB中和异向子带相邻的边缘RB造成的,所述异向子带指传输方向相反的子带。其他RB造成的邻频干扰相对较小,可以忽略。因此,为减少预留资源的占用的RB数,网络设备在确定具体的第一下行子带中第一时频资源和第二下行子带中第二时频资源中的频域资源时,可以确定所在的频域资源为相应子带上的边缘RB。其中,第一下行子带的边缘RB是指第一下行子带中与第一上行子带相邻的边缘处的RB,第二下行子带的边缘RB是指第二下行子带中与第一上行子带相邻的边缘处的RB。
可选的,所述网络设备可以配置所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;以及,配置所述第二时频资源的 频域资源包括:以所述第二下行子带的最小RB序号对应的RB为起始位置的M2个RB。其中,M1个RB为所述第一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB。M1,M2为大于或者等于1的整数。
例如,以一个载波包括150个RB为例说明。相应地,如图9所示,子带0-1包括RB0-49,子带0-2包括RB 50-99,子带0-3包括RB 100-149。同理,子带1-1包括RB 0-49,子带1-2包括RB 50-99,子带1-3包括RB 100-149。对于网络设备0的小区0,所述第一时频资源在子带0-1占用的频域资源包括子带0-1上RB49为结束位置的M1个RB,也即包括RB50-M1至RB49,也就是说RB50-M1至RB49为子带0-1的边缘RB;所述第二时频资源在子带0-3占用的频域资源包括子带0-3上RB100为起始位置的M2个RB,也即包括RB100至RB99+M2,也就是说RB100至RB99+M2为子带0-3的边缘RB。同理,子带1-1的边缘RB为RB50-M1至RB49,子带1-3的边缘RB为RB100至RB99+M2。
进一步地,如图9所示,下行子带即子带0-1和子带0-3,以及子带1-1和子带1-3中每个边缘RB以RB级别资源预留的方式确定子载波,不采用RE级别资源预留。
可选的,第一下行子带上的第一时频资源和第二下行子带上的第二时频资源所在的位置可以如下表1所示。
表1
Figure PCTCN2022140905-appb-000001
所述边缘M1个RB为所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB。所述边缘M2个RB为所述第二下行子带的最小RB序号对应的RB为起始位置的M2个RB。
一种可选的实施方式中,M1可以等于M2。
进一步地,在上述第二种可能的示例中,所述第二配置信息可以指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2。进而,所述终端设备可以根据所述第一配置信息和所述第二配置信息,确定所述第一时频资源和所述第二时频资源的频域资源。具体的,所述终端设备确定的所述第一时频资源的频域资源包括的内容和所述第二时频资源的频域资源包括的内容可以参见前述相关描述,此处不再赘述。
下面通过两个示例来说明,所述第二配置信息如何指示所述第一时频资源所占用的RB的个数M1和所述第二时频资源所占用的RB个数为M2:
示例a1,假设M1和M2相等时,所述第二配置信息可以包含一个值,例如所述第二 配置信息包含{2}时,即表明所述第二配置信息指示所述第一时频资源和所述第二时频资源分别占用2个RB。
示例a2,假设M1为1,M2为2,所述第二配置信息包含{1,2},即表明所述第二配置信息指示所述第一时频资源所占用的RB个数为1,以及所述第二时频资源所占用的RB个数为2。
除上述方法外,所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围时,还可以通过指示所述第一时频资源在所述第一下行子带中的RB占用的比特数,以及所述第二时频资源在所述第二下行子带中的RB占用的比特数来实现。
一种方式中,所述第二配置信息可以包括第一比特组,所述第一比特组包括多个比特,所述多个比特对应所述第一下行子带和所述第二下行子带对应的RB,所述多个比特中取值为第一值的比特对应的RB的位置为所述第一时频资源和所述第二时频资源在对应的下行子带的频域位置。
例如,如图10所示的RB预留示意图,所述第一时频资源占用所述第一下行子带中RB编号为4的RB,所述第二时频资源占用所述第二下行子带中RB编号为10和11的RB。此时所述第二配置信息可以包括0000111000,其中取值为1的比特表示所述第一时频资源和所述第二时频资源占用的RB对应的位置。
另一种方式中,所述第二配置信息包括三个比特组和所述三个比特组分别对应的RB的起始位置或结束位置,所述三个比特组中每个比特组包括至少一个比特,所述三个比特组中每个比特取值均为第二值的两个比特组分别对应所述第一下行子带和所述第二下行子带,所述两个比特组中每个比特组包括的比特个数指示RB的个数,所述两个比特组分别对应的RB的个数以及分别对应的RB的起始位置或结束位置指示所述第一时频资源在所述第一下行子带的频域位置以及所述第二时频资源在所述第二下行子带的频域位置。
例如,所述第二配置信息包括1011,其中第一个1为第一个比特组,0为第二个比特组,后两个1为第三个比特组,其中取值为1的比特两个比特组“1”和“11”分别对应所述第一下行子带和所述第二下行子带。其中,第一个比特组的比特数为1,表示所述第一时频资源在所述第一下行子带中占用的RB的个数为1;所述第三个比特组的比特数为2,表示所述第二时频资源在所述第二下行子带中占用的RB的个数为2。
在一种可选的实施方式中,所述第一时频资源和所述第二时频资源所在的时域符号位置为所述本小区UL DMRS所在的时域符号位置。这样,所述终端设备就可以结合上述第二配置信息和第一配置信息准确地确定所述第一时频资源和所述第二时频资源。
可选的,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
可选的,RRC时隙格式配置的单周期或双周期的时长为T,T包括N个时隙,所述第一时间范围为N个时隙中的部分或全部时隙。
可选的,不同小区的RRC时隙格式配置的单周期或双周期的时长相同。
一种示例中,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
在一种可选的实施方式中,所述网络设备还可以确定第五配置信息,所述第五配置信息用于指示所述第一时频资源和所述第二时频资源的时域资源。
可选的,所述第五配置信息可以包含指示所述第一时间范围内任意一个时隙中所述第一时频资源和所述第二时频资源所在的时域符号位置的信息。
例如,所述第五配置信息可以包括所述第一时频资源的起始时域符号,结束时域符号,时域符号长度中的至少两个信息,以及包括所述第二时频资源的起始时域符号,结束时域符号,时域符号长度中的至少两个信息。例如,所述第五配置信息可以包括{3,1},表明所述第一时频资源和所述第二时频资源的起始符号编号为3,符号长度为1。若第一时频资源和第二时频资源所在的时域符号位置不同,可分别配置。
一种方式中,所述第五配置信息还可以包含指示所述第一时间范围的信息,所述第一时间范围在第二时间范围内,所述第二时间范围为所述时长T或者所述时长T的整数倍。例如,所述第五配置信息中包含11110,则表示所述第一时间范围为前4个时隙,例如图11所示中示出的时隙1到时隙4,所述第二时间范围为5个时隙,例如图11所示中示出的时隙1到时隙5。
可选的,所述指示所述第一时间范围的信息可以包括所述第一时频资源和所述第二时频资源的起始时隙,结束时隙,时隙个数中的至少两个信息。
或者,所述指示所述第一时间范围的信息可以包括起始时隙,结束时隙,时隙个数中的至少两个信息。在这种情况下,表明可以上下行子带中的预留资源的时间范围相同。
可选的,所述第二时间范围内的一个时隙满足约束条件A1时,所述一个时隙属于第一时间范围。其中,约束条件A1可以是约束条件A的子集,约束条件A可以为以下至少一项:
所述一个时隙所包含的符号中至少一个符号在下行子带的符号类别为DL,在上行子带的符号类别为UL;或者,
所述一个时隙所包含的符号中至少一个符号在下行子带的符号类别为DL,在上行子带的符号类别为灵活(flexible,F);或者,
所述一个时隙所包含的符号中至少一个符号在下行子带的符号类别为F,在上行子带的符号类别为UL;或者,
所述一个时隙所包含的符号中至少一个符号在下行子带的符号类别为F,在上行子带的符号类别为F。
在第三种可能的示例中,上述第二种可能的示例中配置了边缘连续M1,M2个RB用于资源预留,其他RB不用于资源预留,上述边缘连续M1,M2个RB资源预留可称为连续的RB级别资源预留。在该第三种可能的示例中,其他RB中的部分或者全部RB可采用离散的RB级别资源预留。此时,相对于第二种可能的示例,预留资源的开销增加,UL DMRS的信道估计的准确性提高。所述离散的RB级别资源预留是指在每M3个RB中预留M4个RB,M3和M4为正整数,且M4小于M3。
一种可选的实施方式中,M4默认值为1。
可选的,网络设备在第一下行子带中配置离散的RB级别资源预留的频域范围为所述第一下行子带的全部RB,网络设备在第二下行子带中配置离散的RB级别资源预留的频域范围为所述第二下行子带的全部RB;所述离散的RB级别资源预留的频域范围的指示方式可参见上述第一种可能的示例中涉及的方法,可以相互参见。
可选的,网络设备可以确定离散的RB级别资源预留的频域资源为相应子带上的边缘RB(即部分RB)。其中,第一下行子带的边缘RB是指第一下行子带中与第一上行子带相邻的边缘处的RB,第二下行子带的边缘RB是指第二下行子带中与第一上行子带相邻的边缘处的RB。所述离散的RB级别资源预留的频域范围的指示方式可参见上述第二种可能的示例中涉及的方法,可以相互参见。
示例性的,在第一下行子带中所述离散的RB级别资源预留的频域范围内,每M31个RB中的前M41个RB用于资源预留,M31和M41为正整数,且M41小于M31;在第二下行子带中所述离散的RB级别资源预留的频域范围内,每M32个RB中的前M42个RB用于资源预留,M32和M42为正整数,且M42小于M32。
一种可选的实施方式中,M31和M32相等,M41和M42相等。
进一步地,在上述第三种可能的示例中,所述第二配置信息可以指示所述第一下行子带中离散的RB级别资源预留的参数M31和M41,以及所述第二下行子带中离散的RB级别资源预留的参数M32和M42,所述终端设备可以根据所述第一配置信息和所述第二配置信息,确定所述第一下行子带和所述第二下行子带中离散的RB级别资源预留的RB。
下面通过三个示例来说明,所述第二配置信息如何指示所述第一下行子带中离散的RB级别资源预留的参数M31和M41,和所述第二下行子带中离散的RB级别资源预留的参数M32和M42:
示例a3,假设M31和M32相等,M41和M42相等,且M41为默认值,例如M41为1。所述第二配置信息可包含一个值,例如所述第二配置信息包含{2}时,即表明所述第二配置信息指示所述第一下行子带中离散的RB级别资源预留的频域资源和所述第二下行子带中离散的RB级别资源预留的频域资源上,每2个RB中的前1个RB用于资源预留。假设第一下行子带中离散的RB级别资源预留的频域资源为RB0-49,此时RB{0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48}进行资源预留。
示例a4,假设M31和M32相等,M41和M42相等。所述第二配置信息可包含两个值,例如所述第二配置信息包含{4,2}时,即表明所述第二配置信息指示所述第一下行子带中离散的RB级别资源预留的频域资源和所述第二下行子带中离散的RB级别资源预留的频域资源上,每4个RB中的前2个RB用于资源预留。假设第一下行子带中离散的RB级别资源预留的频域资源为RB0-49,此时RB{0,1,4,5,8,9,12,13,16,17,20,21,24,25,28,29,32,33,36,37,40,41,44,45,48,49}进行资源预留。
示例a5,假设M31为4,M32为3,M41为2,M42为1。所述第二配置信息可包含四个值,例如所述第二配置信息包含{4,2;2,1}时,即表明所述第二配置信息指示所述第一下行子带中离散的RB级别资源预留的频域资源上每4个RB中的前2个RB用于资源预留,所述第二下行子带中离散的RB级别资源预留的频域资源上每2个RB中的前1个RB用于资源预留。
在第四种可能的示例中,上述第二种可能的示例中配置了边缘RB用于资源预留,其他RB不用于资源预留。在该第四种可能的示例中,其他RB中的部分或者全部RB可采用RE级别资源预留,上述资源预留可称为额外RE级别资源预留。此时,相对于第二种可能的示例,预留资源的开销增加,UL DMRS的信道估计的准确性提高。
可选的,网络设备在第一下行子带中配置额外RE级别资源预留所在RB的频域范围为所述第一下行子带的全部RB,网络设备在第二下行子带中配置额外RE级别资源预留所 在RB的频域范围为所述第二下行子带的全部RB;所述额外RE级别资源预留所在RB的指示方式可参见上述第一种可能的示例中涉及的方法,可以相互参见。
可选的,网络设备可以确定额外RE级别资源预留所在RB为相应子带上的边缘RB(即部分RB)。其中,第一下行子带的边缘RB是指第一下行子带中与第一上行子带相邻的边缘处的RB,第二下行子带的边缘RB是指第二下行子带中与第一上行子带相邻的边缘处的RB。所述额外RE级别资源预留所在RB的指示方式可参见上述第二种可能的示例中涉及的方法,可以相互参见。
在第一下行子带中,额外RE级别资源预留所在RB的每个RB中占用的RE之间间隔m31个RE,占用的RE中子载波ID最小值为m41,m31为正整数,m41为整数,且m31小于13,m41小于12。在第二下行子带中,额外RE级别资源预留所在RB的每个RB中占用的RE之间间隔m32个RE,占用的RE中子载波ID最小值为m42,m32为正整数,m42为整数,且m32小于13,m42小于12。
一种可选的实施方式中,m41和m42默认值为0。
一种可选的实施方式中,m31和m32相等,m41和m42相等。
进一步地,在上述第三种可能的示例中,所述第二配置信息可以指示所述第一下行子带中额外RE级别资源预留所在RB的每个RB的参数m31和m41,以及所述第二下行子带中额外RE级别资源预留所在RB的每个RB的参数m32和m42,所述终端设备可以根据所述第一配置信息和所述第二配置信息,确定所述第一下行子带和所述第二下行子带中的额外RE级别资源预留所在RB的每个RB中占用的子载波。
下面通过三个示例来说明,所述第二配置信息如何指示所述第一下行子带中额外RE级别资源预留所在RB的每个RB的参数m31和m41,和所述第二下行子带中额外RE级别资源预留所在RB的每个RB的参数m32和m42。
示例a6,假设m31和m32相等,m41和m42相等,且m41为默认值,例如m41为0。所述第二配置信息可包含一个值,例如所述第二配置信息包含{4}时,即表明所述第二配置信息指示所述第一下行子带中额外RE级别资源预留所在RB的每个RB,和所述第二下行子带中额外RE级别资源预留所在RB的每个RB中,占用的RE的子载波ID最小值为0,占用RE之间的间隔为4个RE,即占用的RE为{0,4,8}。
示例a7,假设m31和m32相等,m41和m42相等。所述第二配置信息可包含两个值,例如所述第二配置信息包含{4,2}时,即表明所述第二配置信息指示所述第一下行子带中额外RE级别资源预留所在RB的每个RB和所述第二下行子带中额外RE级别资源预留所在RB的每个RB中,占用的RE的子载波ID最小值为2,占用RE之间的间隔为4个RE,即占用的RE为{2,6,10}。
示例a8,假设m31为4,m32为3,m41为1,m42为0。所述第二配置信息可包含四个值,例如所述第二配置信息包含{4,1;3,0}时,即表明所述第二配置信息指示所述第一下行子带中额外RE级别资源预留所在RB的每个RB中占用的RE的子载波ID最小值为1,占用RE之间的间隔为4个RE,即占用的RE为{1,5,9},所述第二下行子带中额外RE级别资源预留所在RB的每个RB中占用的RE的子载波ID最小值为0,占用RE之间的间隔为3个RE,即占用的RE为{0,3,6,9}。
在所述第三种可能的示例和所述第四种可能的示例中,所述离散的RB级别资源预留和所述额外RE级别资源预留所在的符号、第一时间范围和第二时间范围,与所述第一种 可能的示例和所述第二种可能的示例中的相同,可以相互参见。网络设备0针对所述离散的RB级别资源预留和所述额外RE级别资源预留所在的符号、第一时间范围和第二时间范围的指示方式,可以参见上述所述第一种可能的示例和所述第二种可能的示例中的涉及的方法。
采用上述方法,可以使终端设备基于上述第一时频资源和第二时频资源进行干扰测量,从而提高解调性能。
基于以上描述,本申请实施例还提供了另一种通信方法,应用于通信***中的所有网络设备均采用SBFD的场景。参阅图12所示,该方法的具体流程可以包括:
步骤1201:网络设备确定第三配置信息和第四配置信息。
所述第三配置信息指示载波上第一上行子带的频域范围及本小区DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围。
步骤1202:所述网络设备向终端设备发送所述第三配置信息和所述第四配置信息。
步骤1203:所述终端设备根据所述第三配置信息和所述第四配置信息确定第一时间范围内的一个时隙中载波上的所述第三时频资源和所述第四时频资源。
其中,所述终端设备可以根据所述第三配置信息和所述第四配置信息确定第一时间范围内的每一个时隙中载波上的所述第三时频资源和所述第四时频资源。
步骤1204:所述网络设备在所述第三时频资源和所述第四时频资源上发送零功率上行信号。
其中,所述第一上行子带,以及所述第一上行子带和第一下行子带及第二下行子带之间的关系,可以参见上述图7所示的实施例中涉及的相关描述,此处不再重复描述。
仍以网络设备0的小区0和网络设备1的小区1为例说明,如图8所示,小区0对应的第一上行子带为子带0-2,对应的第一下行子带为子带0-1,第二下行子带为子带0-3,小区1对应的第一上行子带为子带1-2,对应的第一下行子带为子带1-1,第二下行子带为子带1-3。
由于上述提及的干扰,网络设备确定的所述第一上行子带上的第三时频资源和第四时频资源后,指示给终端设备,以使终端设备在所述第三时频资源和第四时频资源上发送零功率上行信号,网络设备在所述第三时频资源和所述第四时频资源上可测量邻频cell-cell CLI和邻频SI,此外,终端设备在所述第三时频资源和第四时频资源上发送零功率上行信号时,是可以减少DL DMRS的邻频UE-UE CLI干扰的。例如图8中的(a)所示的减少DL DMRS的邻频Inter cell UE-UE CLI以及邻频Intra cell UE-UE CLI的示意。其中,第三时频资源和第四时频资源均可以称之为静默(mute)资源,为方便示出,在图8中仅以静默资源示出。应理解,图8中位于第一上行子带(子带0-2和子带1-2)中的静默资源为第三时频资源和第四时频资源。
可选的,网络设备与其他网络设备交互时隙格式及周期(如小区级TDD周期)等,例如DMRS的起始符号位置,DMRS占用的符号个数等信息,上述信息用于网络设备确定第三时频资源和第四时频资源。
示例性的,网络设备向所述终端设备发送能力查询请求,以查询所述终端设备是否支持子带全双工能力;所述网络设备向所述终端设备发送能力信息,所述能力信息中包括所述终端设备是否持子带全双工能力的信息。进一步地,所述网络设备根据所述终端设备的 能力信息来配置所述第三时频资源和所述第四时频资源。
在第一种可能的示例中,所述网络设备可以配置所述第三时频资源和所述第四时频资源为相同的时频资源。也即,所述网络设备可以配置所述第三时频资源的频域范围为所述第一上行子带的全部RB,以及所述第四时频资源的频域范围为所述第一上行子带的全部RB。这样可以降低开销。
进一步地,在这种情况中,所述第四配置信息可以指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。进一步地,所述终端设备可以根据所述第三配置信息指示的所述载波上第一上行子带频域范围,以及所述第四配置信息指示的内容,确定所述第一时间范围内的每一个时隙中载波上的所述第三时频资源和所述第四时频资源的频率范围。
在上述第一种可能的示例中,所述第四配置信息可以通过一个标志位(flag)或者一个参数来指示。
在第二种可能的示例中,由于上述涉及的干扰主要是由子带包括的RB中和异向子带相邻的边缘RB造成的,所述异向子带指传输方向相反的子带。其他RB造成的邻频干扰相对较小,可以忽略。因此,为减少预留资源的占用的RB数,网络设备在确定具体的第一上行子带中第三时频资源和第四时频资源中的频域资源时,可以确定所在的频域资源为相应子带上的边缘RB。其中,所述第一上行子带的边缘RB是指所述第一上行子带中与第一下行子带相邻的边缘RB,以及所述第一上行子带中与第二下行子带相邻的边缘RB。
可选的,所述网络设备可以配置所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB;以及,配置所述第四时频资源的频域资源包括:以所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。其中,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。N1,N2为大于或者等于1的整数。
例如,仍以一个载波包括150个RB为例说明,如图9所示。对于网络设备0的小区0,所述第三时频资源在子带0-2占用的频域资源包括子带0-2上RB50为起始位置的N1个RB,也即包括RB50至RB49+N1,也就是说RB50至RB49+N1为子带0-2的下边缘RB;所述第四时频资源在子带0-2占用的频域资源包括子带0-2上RB99为结束位置的N2个RB,也即包括RB100-N2至RB99,也就是说RB100-N2至RB99为子带0-2的上边缘RB。同理,子带1-2的下边缘RB为RB50至RB49+N1,子带1-2的上边缘RB为RB100-N2至RB99。
进一步地,如图9所示,上行子带即子带0-2和子带1-2中每个边缘RB以RB级别资源预留的方式确定子载波,不采用RE级别资源预留。
可选的,第一上行子带上的第三时频资源和第四时频资源所在的位置可以如下表2所示。
表2
Figure PCTCN2022140905-appb-000002
Figure PCTCN2022140905-appb-000003
所述边缘N1个RB为所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB。所述边缘N2个RB为所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。
一种可选的实施方式中,N1可以等于N2。
另一种可选的实施方式中,N1和N2可以与上述涉及的M1和M2相等。
进一步地,在上述第二种可能的示例中,所述第四配置信息可以指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2。进而,所述终端设备可以根据所述第三配置信息和所述第四配置信息,确定所述第三时频资源和所述第四时频资源的频域资源。具体的,所述终端设备确定的所述第三时频资源的频域资源包括的内容和所述第四时频资源的频域资源包括的内容可以参见前述相关描述,此处不再赘述。
下面通过一个示例来说明,所述第四配置信息如何指示所述第三时频资源所占用的RB的个数N1和所述第四时频资源所占用的RB个数为N2:所述第四配置信息包括{2,1},其中,2表示所述第一上行子带中与所述第一下行子带相邻的RB的个数,也即表明第三时频资源所占用的RB的个数为2;1表示所述第一上行子带中与所述第二下行子带相邻的RB的个数,也即表明所述第四时频资源所占用的RB的个数为1。
除上述方法外,所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围时,还可以通过指示所述第三时频资源和所述第四时频资源在所述第一上行子带中的RB占用的比特数来实现。
一种方式中,所述第四配置信息可以包括第二比特组,所述第二比特组包括多个比特,所述多个比特对应所述第一上行子带对应的RB,所述多个比特中取值为第一值的比特对应的RB的位置为所述第三时频资源和所述第四时频资源在对应的所述第一上行子带的频域位置。
例如,如图10所示的RB预留示意图,所述第三时频资源占用所述第一上行子带中RB编号为5和6的RB,所述第四时频资源占用所述第一上行子带中RB编号为9的RB。此时所述第四配置信息可以包括11001,其中取值为1的比特表示所述第三时频资源和所述第四时频资源占用的RB对应的位置。
另一种方式中,所述第四配置信息包括三个比特组,所述三个比特组中每个比特组包括至少一个比特,所述三个比特组中每个比特取值均为第二值的两个比特组对应所述第一上行子带,所述两个比特组中每个比特组包括的比特个数指示RB的个数。
例如,所述第四配置信息包括1101,其中前两个1为第一个比特组,0为第二个比特组,最后一个1为第三个比特组,其中取值为1的比特两个比特组“11”和“1”对应所述第一上行子带。其中,第一个比特组的比特数为2,表示所述第三时频资源在所述第一上行子带中占用的与所述第一下行子带相邻的RB的个数为2;所述第三个比特组的比特数为1, 表示所述第四时频资源在所述第一下行子带中占用的与所述第二下行子带相邻的RB的个数为1。
在一种可选的实施方式中,所述第三时频资源和所述第四时频资源所在的时域符号位置为所述本小区DL DMRS所在的时域符号位置。这样,所述终端设备就可以结合上述第四配置信息和第三配置信息准确地确定所述第三时频资源和所述第四时频资源。
其中,在该实施例中,所述第一时间范围与上述图7所示的实施例中涉及的第一时间范围可以相同,具体可以参见上述涉及的相关描述,此处不再赘述。
在一种可选的实施方式中,所述网络设备还可以确定第六配置信息,所述第六配置信息用于指示所述第三时频资源和所述第四时频资源的时域资源。
可选的,所述第六配置信息可以包含指示所述第一时间范围内任意一个时隙中所述第三时频资源和所述第四时频资源所在的时域符号位置的信息。
例如,所述第六配置信息可以包括所述第三时频资源的起始时域符号,结束时域符号,时域符号长度中的至少两个信息,以及包括所述第四时频资源的起始时域符号,结束时域符号,时域符号长度中的至少两个信息。例如,所述第六配置信息可以包括{2,1},表明所述第三时频资源和所述第四时频资源的起始符号编号为2,符号长度为1。若第三时频资源和第四时频资源所在的时域符号位置不同,可分别配置。
一种方式中,所述第六配置信息还可以包含指示所述第一时间范围的信息,所述第一时间范围属于第二时间范围,所述第二时间范围为时长T或者所述时长T的整数倍。其中,所述时长T可以参见图7所示的实施例中涉及的关于T的描述,此处不再赘述。例如,所述第六配置信息中包含11110,则表示所述第一时间范围为前4个时隙,例如图11中示出的时隙1到时隙4。所述第二时间范围为5个时隙,例如图11中示出的时隙1到时隙5。
可选的,所述指示所述第一时间范围的信息可以包括所述第三时频资源和所述第四时频资源的起始时隙,结束时隙,时隙个数中的至少两个信息。
或者,所述指示所述第一时间范围的信息可以包括起始时隙,结束时隙,时隙个数中的至少两个信息。在这种情况下,表明可以上下行子带中的预留资源的时间范围相同。
需要说明的是,上行子带中未进行资源预留的其他RB,可采用下行子带资源预留中的离散RB级别资源预留或者额外RE级别资源预留的方法来进行资源预留。网络设备0针对子带0-2中的离散RB级别资源预留或者额外RE级别资源预留向终端设备的指示方式可以参见上述下行子带中实施例涉及的方法。
采用上述方法,可以使终端设备基于上述第三时频资源和第四时频资源进行干扰测量,从而提高解调性能。
需要说明的是,上述涉及的多个配置信息可以包含在同一个信息中,或者多个配置信息中的几个配置信息可以包含在同一个信息中,本申请对此不作限定。
需要说明的是,上述图7所示的实施例中所示的方法和图12所示的实施例中的方法可以同时执行,以实现终端设备在所述第一时频资源和所述第二时频资源上接收所述零功率下行信号,以及在所述第三时频资源和所述第四时频资源上发送零功率上行信号。具体的,这种情况是上述两个实施例的结合,具体过程可以参见上述两个实施例的介绍,此处不再详细描述。
需要说明的是,上述如图7和图12所示的实施例中涉及的是载波中包含三个子带, 其中两个下行子带和中间的一个上行子带的情况,可以称为DUD。可选的,除上述情况外,载波中的子带还可以有多种情况。例如,载波中包含三个子带,其中两个上行子带和中间的一个下行子带,可以称为UDU。又例如,载波中包括一个上行子带和一个下行子带,其中下行子带的频率大于上行子带的频率,可以称为UD。又例如,载波中包括一个上行子带和一个下行子带,其中上行子带的频率大于下行子带的频率,可以称为DU。应理解,上述三种举例仅仅为示例,还存在其他多种情况,本申请此处不再一一列举。为方便描述,情况DUD中的第一下行子带和第二下行子带可称为下行子带或者DL子带,第一上行子带可称为上行子带或者UL子带;情况UDU中,两个上行子带可称为第一上行子带和第二上行子带,第一上行子带和第二上行子带可称为上行子带或者UL子带,一个下行子带可称为第一下行子带,第一下行子带可称为下行子带或者DL子带;情况UD和DU中的下行子带可称为第一下行子带或者DL子带,上行子带可称为第一上行子带或者UL子带。
一种实施例中,UDU的情况原理与图7和图12中DUD的情况类似,只是图7中下行子带的方案原理对应UDU中的上行子带,图12中的上行子带的方案原理对应UDU中的下行子带。下面通过图13所示的示例简单介绍UDU情况下配置的mute资源。
在UDU的情况下,上行子带包括第一上行子带和第二上行子带,下行子带包括第一下行子带。所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率小于所述第一下行子带的频率,所述第二上行子带的频率大于所述第一下行子带的频率。
例如,以网络设备0的小区0和网络设备1的小区1为例说明,如图13所示,小区0对应的下行子带为子带0-2,对应的低频率的上行子带为子带0-1,高频率的上行子带为子带0-3,小区1对应的下行子带为子带1-2,对应的低频率的上行子带为子带1-1,高频率的上行子带为子带1-3。
例如,以一个载波包括150个RB为例说明。相应地,如图13所示,子带0-1包括RB 0-49,子带0-2包括RB 50-99,子带0-3包括RB 100-149。同理,子带1-1包括RB 0-49,子带1-2包括RB 50-99,子带1-3包括RB 100-149。对于网络设备0的小区0,在子带0-1的预留资源可以包括子带0-1上RB49为结束位置的N1个RB,也即包括RB50-N1至RB49,也就是说RB50-N1至RB49为子带0-1的边缘RB;在子带0-3的预留资源可以包括子带0-3上RB100为起始位置的N2个RB,也即包括RB100至RB99+N2,也就是说RB100至RB99+N2为子带0-3的边缘RB;在子带0-2的预留资源可以包括子带0-2上RB50为起始位置的M1个RB,也即包括RB50至RB49+M1,也就是说RB50至RB49+M1为子带0-2的下边缘RB;在子带0-2的预留资源可以包括子带0-2上RB99为结束位置的M2个RB,也即包括RB100-M2至RB99,也就是说RB100-M2至RB99为子带0-2的上边缘RB。同理,子带1-1的边缘RB为RB50-N1至RB49,子带1-3的边缘RB为RB100至RB99+N2,子带1-2的下边缘RB为RB50至RB49+M1,子带1-2的上边缘RB为RB100-M2至RB99。
进一步地,如图13所示,上行子带即子带0-1和子带0-3,以及子带1-1和子带1-3中每个边缘RB以RB级别资源预留的方式确定子载波,不采用RE级别资源预留。下行子带0-2以及子带1-2同理。
可选的,上行子带上的预留资源和下行子带上的预留资源所在的位置可以如下表3所示。
表3
Figure PCTCN2022140905-appb-000004
所述边缘M1个RB为所述第一下行子带的最小RB序号对应的RB为起始位置的M1个RB。所述边缘M2个RB为所述第一下行子带的最大RB序号对应的RB为结束位置的M2个RB。
所述边缘N1个RB为所述第一上行子带(即低频率的上行子带)的最大RB序号对应的RB为结束位置的N1个RB。所述边缘N2个RB为所述第二上行子带(即高频率的上行子带)的最小RB序号对应的资源块为起始位置的N2个RB。
需要说明的是,下行子带和上行子带中未进行资源预留的其他RB,可参见小区0和小区1均为DUD情况下的SBFD小区时,下行子带和上行子带资源预留中的离散RB级别资源预留或者额外RE级别资源预留的方法来进行资源预留。
第一时间范围和第二时间范围的确定和DUD情况下的方法类似,可相互参见,此处不再详细描述。
具体的,基于上述预留资源的配置,网络设备向终端设备指示预留资源的原理与图7和图12中示出的方法类似,可以相互参见,此处不再详细描述。
一种实施方式中,在DU和UD的情况中,下行子带中预留资源的频域位置可以是与上行子带相邻的M1个RB,上行子带中预留资源的频域位置可以是与下行子带相邻的N1个RB。所述下行子带包括第一下行子带,所述上行子带包括第一上行子带。
例如,当下行子带的频率大于上行子带的频率时,上行子带和下行子带中预留资源的示意可以如图14所示。
以网络设备0的小区0和网络设备1的小区1为例说明,如图14所示,小区0对应的下行子带为子带0-2,对应的上行子带为子带0-1,小区1对应的下行子带为子带1-2,对应的上行子带为子带1-1。
假设一个载波包括100个RB为例说明。相应地,如图14所示,子带0-1包括RB 0-49,子带0-2包括RB 50-99。同理,子带1-1包括RB 0-49,子带1-2包括RB 50-99。对于网络设备0的小区0,在子带0-1的预留资源可以包括子带0-1上RB49为结束位置的N1个RB,也即包括RB50-N1至RB49,也就是说RB50-N1至RB49为子带0-1与子带0-2相邻的边缘RB;在子带0-2的预留资源可以包括子带0-2上RB50为起始位置的M1个RB,也即包括RB50至RB49+M1,也就是说RB50至RB49+M1为子带0-2与子带0-1相邻的边缘RB。同理,子带1-1的边缘RB为RB50-N1至RB49,子带1-2的边缘RB为RB50至RB49+M1。
进一步地,如图14所示,上行子带即子带0-1和子带1-1中每个边缘RB以RB级别资源预留的方式确定子载波,不采用RE级别资源预留。下行子带0-2以及子带1-2同理。
可选的,上行子带上的预留资源和下行子带上的预留资源所在的位置可以如下表4所示。
表4
Figure PCTCN2022140905-appb-000005
所述边缘M1个RB为所述第一下行子带的最小RB序号对应的RB为起始位置的M1个RB。
所述边缘N1个RB为所述第一上行子带的最大RB序号对应的RB为结束位置的N1个RB。
需要说明的是,下行子带和上行子带中未进行资源预留的其他RB,可参见小区0和小区1均为DUD情况下的SBFD小区时,下行子带和上行子带资源预留中的离散RB级别资源预留或者额外RE级别资源预留的方法来进行资源预留。
第一时间范围和第二时间范围的确定和DUD情况下的方法类似,可相互参见,此处不再详细描述。
具体的,基于上述预留资源的配置,网络设备向终端设备指示预留资源的原理与图7和图12中示出的方法原理类似,可以相互参见,此处不再详细描述。
又例如,当下行子带的频率小于上行子带的频率时,上行子带和下行子带中预留资源的示意可以如图15所示。
以网络设备0的小区0和网络设备1的小区1为例说明,如图15所示,小区0对应的下行子带为子带0-1,对应的上行子带为子带0-2,小区1对应的下行子带为子带1-1,对应的上行子带为子带1-2。
假设一个载波包括100个RB为例说明。相应地,如图15所示,子带0-1包括RB 0-49,子带0-2包括RB 50-99。同理,子带1-1包括RB 0-49,子带1-2包括RB 50-99。对于网络设备0的小区0,在子带0-1的预留资源可以包括子带0-1上RB49为结束位置的M1个RB,也即包括RB50-M1至RB49,也就是说RB50-M1至RB49为子带0-1与子带0-2相邻的边缘RB;在子带0-2的预留资源可以包括子带0-2上RB50为起始位置的N1个RB,也即包括RB50至RB49+N1,也就是说RB50至RB49+N1为子带0-2与子带0-1相邻的边缘RB。同理,子带1-1的边缘RB为RB50-M1至RB49,子带1-2的边缘RB为RB50至RB49+N1。
进一步地,如图15所示,下行子带即子带0-1和子带1-1中每个边缘RB以RB级别资源预留的方式确定子载波,不采用RE级别资源预留。上行子带0-2以及子带1-2同理。
可选的,上行子带上的预留资源和下行子带上的预留资源所在的位置可以如下表5所示。
表5
Figure PCTCN2022140905-appb-000006
所述边缘M1个RB为所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB。
所述边缘N1个RB为所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB。
需要说明的是,下行子带和上行子带中未进行资源预留的其他RB,可参见小区0和小区1均为DUD情况下的SBFD小区时,下行子带和上行子带资源预留中的离散RB级别资源预留或者额外RE级别资源预留的方法来进行资源预留。
第一时间范围和第二时间范围的确定和DUD情况下的方法类似,可相互参见,此处不再详细描述。
具体的,基于上述预留资源的配置,网络设备向终端设备指示预留资源的原理与图7和图12中示出的方法原理类似,可以相互参见,此处不再详细描述。
应理解,上述列举的情况仅为示例,不作为对本申请的限定。
需要说明的是,上述实施例示出的是通信***中所有网络设备均采用SBFD的场景。下面对另一种场景,即通信***中部分网络设备采用SBFD,部分网络设备采用legacy TDD的场景中预留资源的配置进行详细说明。
在这种场景下,采用SBFD的网络设备对应的小区载波上可以分为3个子带(DUD和UDU),或2个子带(DU和UD),或者其他情况等。可以将采用legacy TDD的网络设备对应的小区的载波在频域上按照上述SBFD小区相同的划分方式分为多个子带。具体的预留资源可以包括RB级别预留和RE级别预留。
其中,一个时隙中,针对SBFD小区,与legacy TDD小区同向的子带记为子带i,SBFD小区中与子带i异向的子带记为子带j,所述异向的子带指传输方向不同的子带,所述同向的子带指传输方向相同的子带。
可选的,所述子带i和所述子带j在一个时隙满足约束条件B1时,所述子带i和所述子带j为异向子带。其中,约束条件B1是约束条件B的子集,约束条件B可以为以下至 少一项:
所述一个时隙所包含的符号中至少一个符号在所述子带i的符号类别为DL,在所述子带j的符号类别为UL;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带i的符号类别为DL,在所述子带j的符号类别为F;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带i的符号类别为UL,在所述子带j的符号类别为DL;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带i的符号类别为UL,在所述子带j的符号类别为F;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带i的符号类别为F,在所述子带j的符号类别为UL;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带i的符号类别为F,在所述子带j的符号类别为DL;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带i的符号类别为F,在所述子带j的符号类别为F。
所述子带i和所述子带j不满足所述约束条件B1时,所述子带i和所述子带j为同向的子带。可以理解的是,legacy TDD中的一个时隙中,一个符号的类别在整个CC上相同。所述子带i和legacy TDD的CC同向的判断可以参考所述子带i和所述子带j的判断准则。
一个时隙中进行资源预留时,其资源预留的方式可以如下:
RB级别预留方式可以如下:
子带i中与异向子带j相邻的连续mi,j个RB进行预留;
子带j中与异向子带i相邻的连续nj,i个RB进行预留;
子带i预留时频资源所在的符号:相邻SBFD小区及本小区在子带j上在该时间单元的DMRS所在的符号;
子带j预留时频资源所在的符号:相邻legacy TDD小区在该时间单元的DMRS所在符号。
RE级预留的方式可以为:
预留资源所在RB:子带j中未进行RB级预留的RB;
预留资源所在子载波:相邻legacy TDD小区在该时间单元的DMRS所在子载波;
预留资源所在符号:相邻legacy TDD小区在该时间单元的DMRS所在符号。
一个时隙中,针对legacy TDD小区,与SBFD小区中某一子带同向的子带为子带x,与SBFD小区中的子带异向的子带为子带y。一个时隙中进行资源预留时,其资源预留的方式可以如下:
RB级预留方式可以如下:
子带x中与子带y相邻的连续mx,y个RB进行预留;
子带x预留时频资源所在的符号:相邻SBFD小区在子带y上在该时间单元的DMRS所在的符号。
RE级预留方式可以如下:
预留资源所在RB:子带y所在的RB;
预留资源所在子载波:相邻SBFD小区子带y上在该时间单元的DMRS所在的子载波;
预留资源所在的符号:相邻SBFD小区子带y上在该时间单元的DMRS所在的符号。
下面,以网络设备0采用SBFD,网络设备1采用legacy TDD,网络设备0对应SBFD小区0,网络设备1对应legacy TDD小区1为例进行说明。
在一个实施例中,小区0的载波划分的子带可以如图16所示。具体的,小区0对应低频率下行子带0-1,上行子带0-2和高频率下行子带0-3。按照小区0的子带划分方式,可以将小区1划分为子带1-1、子带1-2和子带1-3,其中,子带1-1和子带1-3与子带0-1与子带0-3同向,子带1-2与子带0-2异向,也即子带1-1、子带1-2和子带1-3均为下行子带。如图17所示,以一个载波包括150个RB为例说明。具体的,如图17所示,子带0-1包括RB 0-49,子带0-2包括RB 50-99,子带0-3包括RB 100-149。同理,子带1-1包括RB 0-49,子带1-2包括RB 50-99,子带1-3包括RB 100-149。此实施例为DUD情况下的SBFD小区和legacy TDD小区共存时的资源预留。在一个时隙中进行资源预留时,其资源预留的方式可以如下:
一种预留资源的方式一可以为:
DL子带0-1、0-3、1-1、1-3对相邻小区及本小区的子带0-2带来的干扰为邻频干扰(cell-cell CLI干扰及SI),边缘RB采用RB级别的资源预留来减少邻频干扰的影响。预留资源的具***置可以如下:
频域位置:子带0-1和子带1-1预留RB为RB50-M1~RB49;子带0-3和子带1-3预留RB为RB100~RB99+M2;
时域位置:邻小区及本小区UL DMRS(若存在)所在符号。
可选的,M1可以等于M2。
UL子带0-2给本小区及相邻小区的子带0-1,0-3,1-1,1-3带来了邻频干扰(UE-UE CLI干扰),边缘RB采用RB级的资源预留来减少邻频UE-UE CLI干扰的影响。预留资源的具***置可以如下:
频域位置:RB50~RB49+N1,以及RB100-N2~RB99;
时域位置:邻小区及本小区DL DMRS所在符号。
可选的,N1可以等于N2。
一种可能的方式中M1和M2与N1和N2均相等。
UL子带0-2给相邻的legacy TDD小区的子带1-2带来了同频UE-UE CLI干扰,可通过RE级预留来减少同频CLI干扰的影响。预留资源的具***置可以如下:
RB的频域位置:RB50+N1~RB 99-N2,RB中预留的RE所在的子载波的频域位置:legacy TDD小区的子带1-2的DL DMRS所在的子载波;
时域位置:相邻的legacy TDD小区的子带1-2的DL DMRS所在的符号。
DL子带1-2对相邻的SBFD小区带来了同频干扰,可通过RE级预留来减少同频UE-UE CLI干扰的影响。预留资源的具***置可以如下:
RB的频域位置:RB50-RB99;RB中预留的RE所在的子载波:相邻的SBFD小区的子带0-2的UL DMRS所在的子载波;
时域位置:相邻的SBFD小区的子带0-2的UL DMRS所在的符号。
可选的,legacy TDD小区的DL DMRS所在的子载波在子带1-1,子带1-2和子带1-3中相同,legacy TDD小区的DL DMRS所在的符号在子带1-1,子带1-2和子带1-3中相同。
上述各个子带的预留资源的位置可以参见图17所示。
示例性的,各个子带中预留资源所在的位置可以如下表6所示。
表6
Figure PCTCN2022140905-appb-000007
所述边缘M1个RB为所述DL子带0-1,1-1的最大RB序号对应的RB为结束位置的M1个RB。所述边缘M2个RB为所述DL子带0-3,1-3的最小RB序号对应的RB为起始位置的M2个RB。
所述边缘N1个RB为所述UL子带0-2的最小RB序号对应的RB为起始位置的N1个RB。所述边缘N2个RB为所述UL子带0-2的最大RB序号对应的RB为结束位置的N2个RB。
另一种预留资源的方式二可以为:
子带0-2采用RE级预留,预留资源的位置可以为:
RB的频域位置:RB50-RB99;RB中预留的RE所在的子载波:相邻的legacy TDD小区的子带1-2的DL DMRS所在的子载波;
时域位置:相邻的legacy TDD小区的子带1-2的DL DMRS所在的符号。
其他子带的预留资源的方法与前述预留资源的方式一涉及的方法相同,此处不再详细描述。
另一种预留资源的方式三可以为:
在前述预留资源的方式一中,M1,M2,N1,N2均为50,此时子带0-1、0-2、0-3、1-1、1-3预留的资源所占用的RB为对应子带的全部RB。可以理解的是,此时子带0-2不需RE级资源预留。其他的预留资源的方法与前述预留资源的方式一涉及的方法相同,此处不再详细描述。网络设备0针对子带0-2中RE级别预留资源向终端设备的指示方式可以如下:
预留资源所在的RB的方式为:
一种方法为:网络设备0向终端设备指示一个范围,该范围大于或等于预留资源所在的RB的范围。例如,指示起始RB的编号和RB个数,起始RB的编号为4的整数倍,如0,4,8;RB个数的最小值不小于min{24,N 0},且RB个数为4的整数倍,其中N 0为UL子带0-2包含的RB个数,min{a,b}表示取变量a和变量b中的较小值。当指示的该范围和RB级预留重叠时,重叠的部分按照RB级资源预留理解,超出RB级资源预留时,表明不处理。例如,图18中:指示的范围为{52,48},表示起始RB编号为52,RB个数为48,此时,RB 99和UL子带0-2的RB级资源预留RB 99重叠,RB 99按照RB级别资源预留处理,RB 100超出了UL子带的资源预留,不处理。
又一种方法为:网络设备0向终端设备指示起始RB的编号、RB的个数和结束RB的编号中的两个信息。起始RB的编号、RB的个数和结束RB的编号为整数。
又一种方法为:当指示预留资源所在的RB的参数缺省时,表明预留资源所在的RB为UL子带所在RB。
另一种方法为:通过1比特指示是否和RB级资源预留的干扰测量关联,若关联,UL子带中未作为预留的RB均采用RE级预留。
网络设备1针对子带1-2中预留资源向终端设备的指示方式,与网络设备0针对子带0-2中RE级别预留资源向终端设备的指示方式类似,可以相互参见。
在一种可选的实施方式中,网络设备0和网络设备1向终端设备指示预留资源在RB中占用的子载波还可以有如下方式:
一种子载波的指示方式可以为:通过枚举的方式指示子载波的位置。
例如,指示所在的子载波为{s1,s3,s5,s7,s9,s11},即表示子载波{1,3,5,7,9,11}预留。
又一种子载波的指示方式可以为:指示起始子载波编号,持续子载波个数,间隔子载波个数。
可选的,起始子载波编号默认为0,持续子载波个数默认为1,间隔子载波个数默认为2;或者,起始子载波编号默认为1,持续子载波个数默认为1,间隔子载波个数默认为2;或者,起始子载波编号默认为0,持续子载波个数默认为2,间隔子载波个数默认为6;或者,起始子载波编号默认为2,持续子载波个数默认为2,间隔子载波个数默认为6;或者,起始子载波编号默认为4,持续子载波个数默认为2,间隔子载波个数默认为6。
例如,起始子载波编号{1},持续子载波个数{1},间隔子载波个数{2},表示起始子载波编号为1,持续一个子载波,与下一个预留子载波之间的间隔2个子载波,也即子载波{1,3,5,7,9,11}预留。
可选的,持续子载波个数,间隔子载波个数缺省时,可以采用默认值。
又一种子载波的指示方式可以为:通过12比特(bit)的位图(bitmap)指示12个子载波中预留的子载波。
例如,通过12bit的bitmap:{010101010101}指示,其中,1表示对应的该子载波预留。
又一种子载波的指示方式可以为:通过DMRS类别(或称DMRS类型),码分复用(code domain multiplexing,CDM)组(group)的标识(identity,ID)指示。DMRS类别可分为类别1(或类型1)(type1)和类别2(或类型2)(type2)。DMRS符号的长度可根据高层配置的参数来确定、DMRS所在的子载波位置可根据DMRS类别和CDM group的ID来确定;如图19所示的不同类别和CDM组对应的子载波的示意图中,type1的CDM group 0 所在的子载波为{0,2,4,6,8,10},type1的CDM group 1所在的子载波为{1,3,5,7,9,11},type2的CDM group 0所在的子载波为{0,1,6,7},type2的CDM group 1所在的子载波为{2,3,8,9},type2的CDM group 2所在的子载波为{4,5,10,11}。
可选的:若DMRS类别缺省,默认的DMRS类别为type1和type2中的一个。
CDM group的ID缺省,默认资源预留所在的CDM group为{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}中的一个。
例如,当指示的信息中包含DMRS类别{type 1},CDM group{1},表明DMRS类别type 1的CDM group1预留,即子载波{1,3,5,7,9,11}预留;可选的,DMRS类别缺省,为默认值。
可选的,一种预留资源所在子载波及符号的指示方式可以为:对于SBFD小区的UL子带0-2,RB中预留的RE所在的子载波及符号为本小区DL DMRS所在的子载波及符号;对于legacy小区的DL子带1-2,RB中预留的RE所在的子载波及符号为本小区UL DMRS所在的子载波及符号;可以通过一个标志位(flag)或者一个参数来指示。
一种预留资源所在符号的指示方式可以为:通过14比特(bit)的位图(bitmap)指示14个符号中预留的符号。例如,通过14bit的bitmap:{00110000000000}指示,其中,1表示对应的符号预留。
网络设备1针对子带1-2中预留资源所在子载波向终端设备的指示方式,与网络设备0针对子带0-2中RE级别预留资源所在子载波的向终端设备的指示方式类似,可以相互参见。网络设备0针对子带0-2中RE预留资源所在符号向终端设备的指示方式,以及网络设备1针对子带1-2中预留资源所在符号向终端设备的指示方式,还可以参见上述图7和图12所示的实施例中涉及的方法,可以相互参见。
可选的,子带0-1、子带0-2、子带0-3、子带1-1、子带1-2和子带1-3的第一时间范围和第二时间范围相同(包括RB级别资源预留和RE级别资源预留)。
可选的,第一时间范围内的一个时隙的部分或者全部符号在SBFD小区中的第一下行子带(如子带0-1)的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在SBFD小区中的第二下行子带(如子带0-3)的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在SBFD小区中的第一上行子带(如子带0-2)的符号类型为上行。
一种示例中,在SBFD小区中,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
可选的,在SBFD小区中,RRC时隙格式配置的单周期或双周期的时长为T,T包括N个时隙,所述第一时间范围为N个时隙中的部分或全部时隙。
可选的,SBFD小区和legacy TDD小区的RRC时隙格式配置的单周期或双周期的时长相同。
可选的,所述第二时间范围内的一个时隙满足约束条件A1时,所述一个时隙属于第一时间范围。其中,约束条件A1是约束条件A的子集,约束条件A可以为以下至少一项:
所述一个时隙所包含的符号中至少一个符号在SBFD小区的下行子带的符号类别为DL,在SBFD小区的上行子带的符号类别为UL;或者,
所述一个时隙所包含的符号中至少一个符号在SBFD小区的下行子带的符号类别为DL,在SBFD小区的上行子带的符号类别为F;或者,
所述一个时隙所包含的符号中至少一个符号在SBFD小区的下行子带的符号类别为F,在SBFD小区的上行子带的符号类别为UL;或者,
所述一个时隙所包含的符号中至少一个符号在SBFD小区的下行子带的符号类别为F,在SBFD小区的上行子带的符号类别为F。
可选的,所述第二时间范围内的一个时隙上,子带v与子带w或者legacy TDD的CC满足约束条件B1时,所述一个时隙属于第一时间范围。所述子带v为SBFD小区中的一个子带,所述子带w为SBFD小区的子带中除所述子带v之外的一个子带。其中,约束条件B1是约束条件B的子集,约束条件B可以为以下至少一项:
所述一个时隙所包含的符号中至少一个符号在所述子带v的符号类别为DL,在所述子带w或者legacy TDD的CC的符号类别为UL;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带v的符号类别为DL,在所述子带w或者legacy TDD的CC的符号类别为F;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带v的符号类别为UL,在所述子带w或者legacy TDD的CC的符号类别为DL;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带v的符号类别为UL,在所述子带w或者legacy TDD的CC的符号类别为F;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带v的符号类别为F,在所述子带w或者legacy TDD的CC的符号类别为UL;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带v的符号类别为F,在所述子带w或者legacy TDD的CC的符号类别为DL;或者,
所述一个时隙所包含的符号中至少一个符号在所述子带v的符号类别为F,在所述子带w的符号类别为F。
网络设备0和网络设备1向终端设备指示第一时间范围和第二时间范围的方法可以与图7和图12中涉及的指示方法类似,可以相互参见。
需要说明的是,下行子带中未进行资源预留的其他RB,可采用小区0和小区1均为DUD情况下的SBFD小区时下行子带资源预留中的离散RB级别资源预留或者额外RE级别资源预留的方法来进行资源预留。
基于上述配置的预留资源,网络设备0针对子带0-1和子带0-3中预留资源向终端设备的指示方式,网络设备0针对子带0-2中RB级别预留资源向终端设备的指示方式,以及网络设备1针对子带1-1和子带1-3中预留资源向终端设备的指示方式,可以参见上述图7和图12所示的实施例中涉及的方法。
在一种可能的情况中,如图16所示的子带划分的场景中,当同时存在同频和邻频干扰,考虑到干扰的强度的大小,部分资源可以不需要预留。
其中,DL子带0-1、0-3对相邻小区及本小区的子带0-2带来的干扰为邻频干扰(A1:邻频cell-cell CLI干扰及B:自干扰);DL子带1-1、1-3对相邻小区的子带0-2带来的干扰为邻频干扰(A2:邻频cell-cell CLI干扰);DL子带1-2对子带0-2带来的干扰为同频干扰(C:同频cell-cell CLI干扰)。
如果A1+B+A2远小于C,则邻频CLI干扰及邻频SI带来的干扰相比于同频CLI干扰较小,子带1-1,1-3,子带0-1,0-3不需要资源预留,即图17中M1=0,M2=0。
在另一个实施例中,小区0的载波划分的子带可以如图20所示。具体的,小区0对 应低频率上行子带0-1,下行子带0-2和高频率上行子带0-3。按照小区0的子带划分方式,可以将小区1划分为子带1-1、子带1-2和子带1-3,其中,子带1-1和子带1-3与子带0-1与子带0-3异向,子带1-2与子带0-2同向,也即子带1-1、子带1-2和子带1-3均为下行子带。如图20所示,以一个载波包括150个RB为例说明。具体的,子带0-1包括RB 0-49,子带0-2包括RB 50-99,子带0-3包括RB 100-149。同理,子带1-1包括RB 0-49,子带1-2包括RB 50-99,子带1-3包括RB 100-149。此实施例为UDU情况下的SBFD小区和legacy TDD小区共存时的资源预留。
具体的,各个子带的预留资源的三种方式中的前两种方式可以详见图20中的示意的两种方式,简单说明可以如下:
方式一、预留资源的具***置可以如下:
子带0-1:频域位置:RB级预留:预留RB为RB50-N1~RB49;RE级预留:RB0~RB49-N1的RB中legacy TDD小区的子带1-1的DL DMRS所在子载波;时域位置:legacy TDD小区的子带1-1DL DMRS所符号在位置。
子带0-3:频域位置:RB级预留:预留RB为RB100~RB99+N2;RE级预留:RB100+N2~149的RB中legacy TDD小区的子带1-3的DL DMRS所在子载波;时域位置:legacy TDD小区的子带1-3DL DMRS所符号在位置。
可选的,N1可以等于N2。
子带0-2和子带1-2:频域位置:RB50~RB49+M1以及RB100-M2~RB99,无RE级预留;时域位置:邻小区及本小区UL DMRS所在符号位置。
可选的,M1可以等于M2。
一种可能的方式中M1和M2与N1和N2均相等。
子带1-1:频域位置:无RB级预留;RE级预留:RB0~RB49的RB中邻SBFD小区的子带0-1的UL DMRS所在子载波;时域位置:邻SBFD小区的子带0-1的UL DMRS所在符号位置。
子带1-3:频域位置:无RB级预留;RE级预留:RB100~RB149的RB中邻SBFD小区的子带0-3的UL DMRS所在子载波;时域位置:邻SBFD小区的子带0-3的UL DMRS所在符号位置。
可选的,legacy TDD小区的DL DMRS所在的子载波在子带1-1,子带1-2和子带1-3中相同,legacy TDD小区的DL DMRS所在的符号在子带1-1,子带1-2和子带1-3中相同。
示例性的,方式一对应的各个子带中预留资源所在的位置可以如下表7所示。
表7
Figure PCTCN2022140905-appb-000008
Figure PCTCN2022140905-appb-000009
所述边缘M1个RB为所述DL子带0-2,1-2的最小RB序号对应的RB为起始位置的M1个RB。所述边缘M2个RB为所述DL子带0-2,1-2的最大RB序号对应的RB为结束位置的M2个RB。
所述边缘N1个RB为所述UL子带0-1的最大RB序号对应的RB为结束位置的N1个RB。所述边缘N2个RB为所述UL子带0-3的最小RB序号对应的资源块为起始位置的N2个RB。
方式二、预留资源的具***置可以如下:
子带0-1:频域位置:无RB级预留;RE级预留:RB0~RB49的RB中legacy TDD小区的子带1-1的DL DMRS所在子载波;时域位置:legacy TDD小区的子带1-1DL DMRS所符号在位置。
子带0-3:频域位置:无RB级预留;RE级预留:RB100~149的RB中legacy TDD小区的子带1-3的DL DMRS所在子载波;时域位置:legacy TDD小区的子带1-3DL DMRS所符号在位置。
其他子带的预留资源的方法与前述预留资源的方式一涉及的方法相同,此处不再详细描述。
方式三、预留资源的具***置可以如下:
在前述预留资源的方式一中,M1,M2,N1,N2均为50,此时子带0-1、0-2、0-3、1-1、1-3预留的资源所占用的RB为对应子带的全部RB。可以理解的是,此时子带0-2不需RE级资源预留。其他的预留资源的方法与前述预留资源的方式一涉及的方法相同,此处不再详细描述。
第一时间范围和第二时间范围的确定方法可以参见上述DUD情况下的SBFD小区和legacy TDD小区共存时确定方法。可选的,子带0-1、子带0-2、子带0-3、子带1-1、子带1-2和子带1-3的第一时间范围和第二时间范围相同(包括RB级别资源预留和RE级别资源预留)。
需要说明的是,下行子带中未进行资源预留的其他RB,可参见小区0和小区1均为DUD情况下的SBFD小区时下行子带资源预留中的离散RB级别资源预留或者额外RE级 别资源预留的方法来进行资源预留。
基于上述配置的预留资源,网络设备0针对子带0-1、子带0-2和子带0-3中预留资源向终端设备的指示方式,以及网络设备1针对子带1-1、子带1-2和子带1-3中预留资源向终端设备的指示方式,可以参见上述DUD情况下的SBFD小区和legacy TDD小区共存时的资源预留的指示方式。
在又一个实施例中,小区0的载波划分的子带可以如图21所示。具体的,小区0对应上行子带0-1和下行子带0-2,其中下行子带的频率高于上行子带的频率。按照小区0的子带划分方式,可以将小区1划分为子带1-1和子带1-2,其中,子带1-1与子带0-1异向,子带1-2与子带0-2同向,也即子带1-1、子带1-2均为下行子带。如图21所示,以一个载波包括100个RB为例说明。具体的,子带0-1包括RB 0-49,子带0-2包括RB 50-99。同理,子带1-1包括RB 0-49,子带1-2包括RB 50-99。此实施例为UD情况下的SBFD小区和legacy TDD小区共存时的资源预留。
具体的,各个子带的预留资源的三种方式中的前两种方式可以详见图21中的示意的两种方式,简单说明可以如下:
方式一、预留资源的具***置可以如下:
子带0-1:频域位置:RB级预留:预留RB为RB50-N1~RB49;RE级预留:RB0~RB49-N1的RB中legacy TDD小区的子带1-1的DL DMRS所在子载波;时域位置:legacy TDD小区的子带1-1DL DMRS所符号在位置。
可选的,N1可以等于N2。
子带0-2和子带1-2:频域位置:RB级预留:预留RB为RB50~RB49+M1;无RE级预留;时域位置:邻小区及本小区UL DMRS(若存在)所在符号位置。
可选的,M1可以等于M2。
一种可能的方式中M1和M2与N1和N2均相等。
子带1-1:频域位置:无RB级预留;RE级预留:RB0~RB49的RB中邻SBFD小区UL DMRS所在子载波;时域位置:邻SBFD小区UL DMRS所在符号位置。
可选的,legacy TDD小区的DL DMRS所在的子载波在子带1-1和子带1-2中相同,legacy TDD小区的DL DMRS所在的符号在子带1-1和子带1-2中相同。
示例性的,方式一对应的各个子带中预留资源所在的位置可以如下表8所示。
表8
Figure PCTCN2022140905-appb-000010
Figure PCTCN2022140905-appb-000011
所述边缘M1个RB为所述DL子带0-2,1-2的最小RB序号对应的资源块为起始位置的M1个RB。
所述边缘N1个RB为所述UL子带0-1的最大RB序号对应的RB为结束位置的N1个RB。
方式二、预留资源的具***置可以如下:
子带0-1:频域位置:无RB级预留;RE级预留:RB0~RB49的RB中legacy TDD小区的子带1-1的DL DMRS所在子载波;时域位置:legacy TDD小区的子带1-1的DL DMRS所符号在位置。
其他子带的预留资源的方法与前述预留资源的方式一涉及的方法相同,此处不再详细描述。
方式三、预留资源的具***置可以如下:
在前述预留资源的方式一中,M1,M2,N1,N2均为50,此时子带0-1、0-2、0-3、1-1、1-3预留的资源所占用的RB为对应子带的全部RB。可以理解的是,此时子带0-2不需RE级资源预留。其他的预留资源的方法与前述预留资源的方式一涉及的方法相同,此处不再详细描述。
第一时间范围和第二时间范围的确定方法可以参见上述DUD情况下的SBFD小区和legacy TDD小区共存时确定方法。
可选的,子带0-1、子带0-2、子带1-1、和子带1-2的第一时间范围和第二时间范围相同(包括RB级别资源预留和RE级别资源预留)。
需要说明的是,下行子带中未进行资源预留的其他RB,可采用小区0和小区1均为DUD情况下的SBFD小区时下行子带资源预留中的离散RB级别资源预留或者额外RE级别资源预留的方法来进行资源预留。
基于上述配置的预留资源,网络设备0针对子带0-1和子带0-2中预留资源向终端设备的指示方式,以及网络设备1针对子带1-1和子带1-2中预留资源向终端设备的指示方式,可以参见上述DUD情况下的SBFD小区和legacy TDD小区共存时的资源预留的指示方式。
在又一个实施例中,小区0的载波划分的子带可以如图22所示。具体的,小区0对 应下行子带0-1和上行子带0-2,其中上行子带的频率高于下行子带的频率。按照小区0的子带划分方式,可以将小区1划分为子带1-1和子带1-2,其中,子带1-1与子带0-1同向,子带1-2与子带0-2异向,也即子带1-1、子带1-2均为下行子带。如图21所示,以一个载波包括100个RB为例说明。具体的,子带0-1包括RB 0-49,子带0-2包括RB 50-99。同理,子带1-1包括RB 0-49,子带1-2包括RB 50-99。此实施例为DU情况下的SBFD小区和legacy TDD小区共存时的资源预留。
具体的,各个子带的预留资源的三种方式中的前两种方式可以详见图22中的示意的两种方式,简单说明可以如下:
方式一、预留资源的具***置可以如下:
子带0-1和子带1-1:频域位置:RB级预留:预留RB为RB50-M1~RB49;无RE级预留;时域位置:邻小区及本小区UL DMRS所在符号位置。
可选的,M1可以等于M2。
子带0-2:频域位置:RB级预留:预留RB为RB50~RB49+N1;RE级预留:RB50+N1~99的RB中legacy TDD小区的子带1-2的DL DMRS所在子载波;时域位置:legacy TDD小区的子带1-2的DL DMRS所在符号位置。
可选的,N1可以等于N2。
一种可能的方式中M1和M2与N1和N2均相等。
子带1-2:频域位置:无RB级预留;RE级预留:RB50~RB99的RB中邻SBFD小区UL DMRS所在子载波;时域位置:邻SBFD小区UL DMRS所在符号位置。
可选的,legacy TDD小区的DL DMRS所在的子载波在子带1-1和子带1-2中相同,legacy TDD小区的DL DMRS所在的符号在子带1-1和子带1-2中相同。
示例性的,方式一对应的各个子带中预留资源所在的位置可以如下表9所示。
表9
Figure PCTCN2022140905-appb-000012
Figure PCTCN2022140905-appb-000013
所述边缘M1个RB为所述DL子带0-1,1-1的最大RB序号对应的RB为结束位置的M1个RB。
所述边缘N1个RB为所述UL子带0-2的最小RB序号对应的RB为起始位置的N1个RB。
方式二、预留资源的具***置可以如下:
子带0-2:频域位置:无RB级预留;RE级预留:RB50~RB99的RB中legacy TDD小区的子带1-2的DL DMRS所在子载波;时域位置:legacy TDD小区的子带1-2 DL DMRS所在符号位置。
其他子带的预留资源的方法与前述预留资源的方式一涉及的方法相同,此处不再详细描述。
方式三、预留资源的具***置可以如下:
在前述预留资源的方式一中,M1,M2,N1,N2均为50,此时子带0-1、0-2、0-3、1-1、1-3预留的资源所占用的RB为对应子带的全部RB。可以理解的是,此时子带0-2不需RE级资源预留。其他的预留资源的方法与前述预留资源的方式一涉及的方法相同,此处不再详细描述。
第一时间范围和第二时间范围的确定方法可以参见上述DUD情况下的SBFD小区和legacy TDD小区共存时确定方法。
可选的,子带0-1、子带0-2、子带1-1、和子带1-2的第一时间范围和第二时间范围相同(包括RB级别资源预留和RE级别资源预留)。
需要说明的是,下行子带中未进行资源预留的其他RB,可采用小区0和小区1均为DUD情况下的SBFD小区时下行子带资源预留中的离散RB级别资源预留或者额外RE级别资源预留的方法来进行资源预留。
基于上述配置的预留资源,网络设备0针对子带0-1和子带0-2中预留资源向终端设备的指示方式,以及网络设备1针对子带1-1和子带1-2中预留资源向终端设备的指示方式,可以参见上述DUD情况下的SBFD小区和legacy TDD小区共存时的资源预留的指示方式。
除上述描述的各个场景外,一种可能的示例中,在异配比场景下,一种可能的预留资源的方式可以如图23所示。
其中,异配比场景可按照如下理解:除了采用SBFD***外,还可通过增加图1中上行链路占用的资源来增加上行传输资源,降低上行链路的时延,增强上行链路的覆盖(可称为New TDD)。下行传输资源可对应一个CC上时隙格式配置为下行的时频资源,上行传输资源可对应一个CC上时隙格式配置为上行的时频资源。当一个小区采用legacy TDD的时隙配比时,一个小区采用New TDD的时隙配比时,2个小区采用的时隙配比存在差异, 此场景可称为异配比场景。
采用legacy TDD的时隙配比的小区可称为legacy TDD小区,采用New TDD的时隙配比的小区可称为New TDD小区。
此时,存在一个时隙k在legacy TDD小区为DL时隙,在new TDD小区为UL时隙的场景,即在时隙k,legacy TDD***中网络设备发送DL信号,new TDD***中的UE发送UL信号。在这种场景下,DL信号对于UL信号的干扰为同频cell-cell CLI,UL信号对于DL信号的干扰为同频UE-UE CLI。
在异配比的场景下,也可通过资源预留的方式来为提高DMRS进行信道估计的准确性。
示例性的,小区0的时隙格式配置为DSUDD(时隙0-4的格式),小区1的时隙格式配置为DSUUU,其中,时隙格式S表示该时隙中,部分符号类型为DL,部分符号类型为UL,部分符号类型为F。图23中表示在时隙k(如时隙3,4)中,legacy TDD小区(如小区0)为DL时隙(时隙所包含符号的类别均为DL),new TDD小区(如小区1)***为UL时隙(时隙所包含符号的类别均为UL)(此时不区分子带)。
在该场景中,预留资源所在RB为CC包括的全部RB。
预留资源可以通过以下方式预留:
针对legacy TDD小区的资源预留:
预留资源所在的子载波:邻New TDD小区UL DMRS所在子载波;
预留资源所在的符号:邻New TDD小区UL DMRS所在符号;
预留资源所在的时隙:时隙所包含的符号中至少一个符号在legacy TDD小区的符号类型为DL,在邻new TDD小区的符号类型为UL;
预留资源的周期:时长T或者所述时长T的整数倍。其中,所述时长T可以参见图7所示的实施例中涉及的关于T的描述,此处不再赘述。
针对New TDD小区的资源预留:
预留资源所在的子载波:邻legacy TDD小区DL DMRS所在子载波;
预留资源所在的符号:邻legacy TDD小区DL DMRS所在符号;
预留资源所在的时隙:时隙所包含的符号中至少一个符号在legacy TDD小区的符号类型为DL,在邻new TDD小区的符号类型为UL;
预留资源的周期:时长T或者所述时长T的整数倍。其中,所述时长T可以参见图7所示的实施例中涉及的关于T的描述,此处不再赘述。
预留资源的RE所在位置见下表10。
预留资源所在的子载波以及预留资源所在的符号可以参见SBFD和legacy TDD共存时的RE级资源预留。
网络设备向终端设备的指示方式可以参见上述SBFD和legacy TDD共存时的RE级资源预留所述的指示方法,可以相互参见。
具体的,异配比场景中new TDD小区和legacy TDD小区的预留资源的位置可以如下表10所示。
表10
Figure PCTCN2022140905-appb-000014
可以理解的是,若预留资源所在的子载波包含了子载波0-11,此时是RB级别资源预留。
需要说明的是,上述实施例中针对SBFD***中的资源预留方案是针对可以识别子带时隙格式配置的终端设备的,下面对不可以识别子带时隙格式配置的终端设备的资源预留进行简单说明。
其中,可以识别子带时隙格式配置的终端设备可以称之为子带全双工终端设备(SBFD UE),不可以识别子带时隙格式配置的终端设备可以称之为传统终端设备(legacy UE)。对于legacy UE,一个符号的类别频域上在整个CC上相同,可称为CC时隙格式配置。对于SBFD UE,一个符号在不同子带的时隙格式可以不同,可称为子带时隙格式配置。所述CC时隙格式配置和子带时隙格式配置为RRC时隙格式配置。对于legacy UE,预留的时频资源为RB级资源预留。
一种可能的方式中,DL子带上的时隙格式配置和CC时隙格式配置相同。UL子带上的时隙格式配置和CC时隙格式配置不同。
如前述提及的,在DUD的情况下,所述DL子带包括所述第一下行子带和所述第二下行子带,所述UL子带包括所述第一上行子带。在UDU的情况下,所述DL子带包括所述第一下行子带,所述UL子带包括所述第一上行子带和所述第二上行子带。UD和DU的情况下,所述DL子带包括所述第一下行子带,所述UL子带包括所述第一上行子带。
在UDU的情况下,一种可能的方式中,所述第一上行子带和所述第二上行子带的时隙格式配置相同。
其中,针对legacy UE,在DL子带预留的时频资源与SBFD UE的相同,具体可以参见上述实施例中涉及的SBFD***中针对DL子带预留的时频资源的描述,此处不再重复描述。
在预留资源所在的时隙中,在UL子带中预留资源的时频范围可以如下:
预留资源所在RB:UL子带中所有RB。
预留资源所在符号:对于UL子带所在的符号中的一个符号,legacy UE和SBFD UE配置的符号类别不同且满足约束条件C1时,所述符号在UL子带构成的时频资源需要预留。
其中,约束条件C1是约束条件C的子集,约束条件C可以为:
对于legacy UE,根据CC时隙格式配置,一个符号的类别为DL,对于SBFD UE,根据子带时隙格式配置,一个符号在UL子带的符号类别为UL;或者,
对于legacy UE,根据CC时隙格式配置,一个符号的类别为DL,对于SBFD UE,根据子带时隙格式配置,一个符号在UL子带的符号类别为F;或者,
对于legacy UE,根据CC时隙格式配置,一个符号的类别为F,对于SBFD UE,根据子带时隙格式配置,一个符号在UL子带的符号类别为UL。
SBFD***中的子带间在部分符号上存在保护间隔频域资源时,保护间隔频域资源所在的符号构成了保护间隔时频资源,legacy UE将保护间隔时频资源进行资源预留。
预留资源所在时隙:根据预留资源所在符号属于的时隙来确定预留资源所在的时隙。
针对legacy UE一个时隙内的预留资源的指示方式可以如下:
一种可能的预留资源所在频域范围指示方式可以为:
在DUD、DU或UD的情况下,通过一个信息1指示预留资源1的频域范围1的起始RB,RB长度和结束RB中的2个信息,所述频域范围1包括UL子带,UL子带和DL子带之间的保护间隔所在的频域范围。通过一个信息2指示预留资源2的频域范围2的起始RB,RB长度和结束RB中的2个信息,所述频域范围2的起始位置为所述DL子带的最小频率,所述频域范围2的结束位置为所述DL子带的最大频率,所述DL子带包括一个或2个DL子带。
在UDU的情况下,所述上行子带包括所述第一上行子带和所述第二上行子带,通过一个信息1指示预留资源1的频域范围1的起始RB,RB长度和结束RB中的2个信息,所述频域范围1包括所述第一上行子带,所述第一上行子带和第一下行子带之间的保护间隔所在的频域范围。通过一个信息2指示预留资源2的频域范围2的起始RB,RB长度和结束RB中的2个信息,所述频域范围2的起始位置为所述DL子带的最小频率,所述频域范围2的结束位置为所述DL子带的最大频率。通过一个信息3指示预留资源3的频域范围3的起始RB,RB长度和结束RB中的2个信息,所述频域范围3包括所述第二上行子带,所述第二上行子带和第一下行子带之间的保护间隔所在的频域范围。
预留资源所在符号的指示可以参见上述图7和图12所示的实施例中涉及的方法,可以相互参见。
第一时间范围和第二时间范围的指示可以参见上述图7和图12所示的实施例中涉及的方法,可以相互参见。
需要说明的是,SBFD小区和New TDD小区共存时的预留资源确定方法及指示方式,可以参见上述SBFD小区和legacy TDD小区共存时的实施例中涉及的方法。
下面针对SBFD***的子带间存在保护间隔的情况进行简单说明。
SBFD***的子带间存在保护间隔时,legacy TDD***在DL子带资源预留时,保护间隔对应的RB也需要进行预留,即预留资源起始位置或者结束位置需更新。
示例性的,假设子带间有5RB的保护间隔,如图24所示,子带0-1和子带0-2,子带0-2和子带0-3之间存在5RB的保护间隔。这样,图24中所示的,子带1-1的预留资源的结束位置包含了保护间隔的5RB,子带1-3的预留资源的起始位置包含了保护间隔的5RB。此时,RE级别的资源预留所在的时频位置不变。
基于上述实施例,本申请实施例还提供了另一种通信方法。参阅图25所示,该方法的具体流程可以包括:
步骤2501:终端设备在第六时频资源上向网络设备发送第一上行信号,相应地,所述网络设备在第六时频资源接收来自终端设备的第一上行信号。
其中,所述第一上行信号的发送时间为t1-(N TAT c+N TA,offsetT c),所述N TAT c为时间提前量,所述N TA大于或者等于0,所述N TA,offsetT c为时间提前量偏移值,所述N TA,offset大小为0,所述T c为时间单元,所述T c的大小为1/(48000*4096),所述T c的单位为秒;所述第六时频资源所在的频域资源在第一上行子带上;所述t1是第一下行信号到达所述终端设备的时间,所述t1=t0+N TAT c/2,第五时频资源用于所述网络设备发送所述第一下行信号,所述第一下行信号的发送时间为t0,所述第五时频资源所在的频域资源在第一下行子带和/或第二下行子带上,所述第五时频资源和所述第六时频资源的起始时刻为t0;
其中,所述第一上行子带,所述第一下行子带和所述第二下行子带为载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率。
可选的,在步骤2501之前,如步骤2500示意的,所述网络设备向所述终端设备发送配置信息,所述配置信息指示所述N TA,offset的值为0,相应地,所述终端设备接收来自所述网络设备的配置信息,所述配置信息指示所述N TA,offset的值为0。
通过上述方法,N TA,offset的值为0时,网络设备接收到的终端设备的信号和网络设备发送信号带来的邻频自干扰可以在时间上符号对齐,有利于邻频自干扰的抑制。若不考虑邻频自干扰信号和接收到的终端设备的信号在时间上符号对齐,N TA,offset的值为N TA,offset,0。在小区采用SBFD时,可认为小区的双工模式是TDD。
可选的,N TA,offset字段存在时,网络设备给终端设备配置信息时间提前量偏移值N TA, offset的值为N TA,offset,0。在小区的CC的频域范围在3GPP技术规范38.104中定义的频率范围1(Frequency range 1)内时,legacy TDD小区中,所述N TA,offset,0的值为{25600,39936}中的一个。在小区的双工模式为FDD时,所述N TA,offset,0的值为{0,25600,39936}中的一个。
可选的,N TA,offset字段不存在,此时N TA,offset,0的值可根据双工模式(TDD或者FDD)及CC的频域范围(FR1或者频率范围2(Frequency range 2,FR2)),结合3GPP技术规范38.133版本G60中的表格7.1.2-2中预定义的值来确定。
示例性的,小区的双工模式为TDD,频域范围为FR1,小区的CC所在的频段未和演进的通用陆地无线接入-新空口(Evolved Universal Terrestrial Radio Access-New Radio,E-UTRA-NR)共存,且未和窄带物联网-新空口(Narrowband Internet of Things-New Radio,NB-IoT–NR)共存,N TA,offset,0的值为25600。
示例性的,小区的双工模式为TDD,频域范围为FR1,小区的CC所在的频段和E-UTRA-NR和/或NB-IoT–NR共存,N TA,offset,0的值为39936。
示例性的,小区的CC的频域范围在3GPP技术规范38.104中定义的FR2内时,N TA, offset,0的值为13792。
SBFD小区存在UL-DL切换点(相同的频域上,符号类型UL后方紧邻符号类型DL),N TA,offset=0时,网络设备收到最后一个UL符号后接着DL第一个符号,中间无间隔。为保证网络设备接收UL符号上的信号后切换到发送状态在DL符号上发送信号,需终端设备UL-DL切换点处最后k个UL符号不发送信号。此时,网络设备收到最后一个UL符号到发送第一个DL符号的间隔为k个符号。
可选的,k有以下三种情况:
情况c1、k为1。
情况c2、k个符号的长度大于等于N TA,offset,0T c
情况c3、k为大于或者等于1的整数。
在一种可选的实施方式中,第一子带在第n个时隙上所包含符号的最后一个或多个符号为上行,所述第一子带为所述第一下行子带、所述第二下行子带或者所述第一上行子带,所述n为大于或者等于0的整数,所述第一子带在第n+1个时隙上所包含符号的起始一个或多个符号为下行,在所述第一子带的第n个时隙所包含符号的最后一个符号不发送上行信号。此情况中,k为1。
例如,一个周期T包含5个时隙,分别为时隙1,2,3,4,5。在图26中,有10个时隙,编号为时隙1,2,3,4,5,6,7,8,9,10,子带0和子带2存在UL符号切换到DL符号的切换点。在子带0的第5个时隙的最后一个或多个符号为上行,子带0的第6个时隙的起始1个或多个符号为下行,此时,在子带0的第5个时隙的最后一个符号不发送上行信号。
又例如,一个周期T包含5个时隙,分别为时隙1,2,3,4,5。在图27中,有10个时隙,编号为时隙1,2,3,4,5,6,7,8,9,10,子带0、子带1和子带2均存在UL符号切换到DL符号的切换点。在子带0的第5个时隙的最后一个或多个符号为上行,子带0的第6个时隙的起始1个或多个符号为下行,此时,在子带0的第5个时隙的最后一个符号不发送上行信号。
其中,在图26和图27中D表示DL符号,F表示F符号,U表示UL符号。一个时隙只包含D,表示所述时隙的符号类别均为DL,一个时隙只包含U,表示所述时隙的符号类别均为UL,一个时隙同时包括D,F和U,表示所述时隙包括DL符号,UL符号和F符号。
通过上述方法,N TA,offset的值为0时,网络设备发射信号与接收信号可以在时间上符号对齐,有利于自干扰抑制。
需要说明的是,图25所示的通信方法中N TA,offset的配置还可以应用于网络设备支持在相同时频资源上同时收发的场景下,也即网络设备支持同频全双工的场景。此时,网络设备接收到的终端设备的信号和网络设备发送信号带来的自干扰可以在时间上符号对齐,有利于同频自干扰的抑制。可以理解的是,网络设备支持在相同的时频资源上同时收发时,此时,在相同的频域资源上,网络设备接收UL符号上的信号后切换到发送状态在DL符号上发送信号无需切换时间,图25所示的通信方法中k的值为0。
下面,对本申请实施例中涉及的DMRS的起始符号位置配置的方法进行简单说明。
目前UL和DL类型A(type A)DMRS的起始符号位置由RRC层配置的参数DMRS类型A位置(dmrs-TypeA-Position)配置。在本实施例中,即SBFD和SBFD小区共存,SBFD和legacy TDD小区共存场景中,需UL DMRS和DL DMRS所在的符号无重叠。具体的DMRS的起始符号位置可以通过以下两种方式配置:
方式1:RRC配置的参数dmrs-TypeA-Position表征DL DMRS的起始位置,新增参数RRC配置的参数dmrs-TypeA-Position-UL指示UL DMRS的符号起始位置,或者新增RRC配置的参数dmrs-TypeA-Position-offset,指示UL DMRS起始位置相对于DL DMRS的起始位置的偏移量。
方式2:RRC配置的参数dmrs-TypeA-Position表征UL DMRS的起始位置,新增参数RRC配置的参数dmrs-TypeA-Position-DL指示DL DMRS的符号起始位置,或者新增RRC 配置的参数dmrs-TypeA-Position-offset,指示DL DMRS起始位置相对于UL DMRS的起始位置的偏移量。
此外,本申请还提供了多传输时间间隔(transmission time interval,TTI)导频共享(也称为多时隙DMRS共享)时的资源预留方式和配置。下面通过三个场景进行简单说明。在工厂等环境下,UE的移动速度较慢,上行传输需求较大,此时UE可能需要在多个连续的时隙上传输上行数据。考虑到UE的移动速度较慢,UE和网络设备之间的信道在连续n个时隙之间变化较小,可通过第1个时隙的UL DMRS估计得到的信道信息用于后续2-n个时隙,此时后续第2-n个时隙的可不使用UL DMRS,减少UL DMRS的开销。所述第1个时隙可称为第一UL DMRS共享时隙,所述第2-n个时隙可称为其他UL DMRS共享时隙。
其中,网络设备可以指示共享导频的起始时隙以及结束时隙。具体的,网络设备可以通过在DCI中新增字段来指示导频共享的时隙个数。
例如,一种预留资源的方式示例,可以如图28示出的4个时隙UL DMRS共享的示例所示。
一种示例中,时隙0有UL DMRS,时隙1,时隙2,时隙3共用时隙0的UL DMRS估计得到的信道信息。此时DCI可新增字段指示DMRS共享时长为4个时隙。
场景1,SBFD和SBFD小区共存时导频共享。
在SBFD的场景下,DL子带预留的资源可用于提高UL DMRS信道估计的准确性,同时可用于在DL子带上估计UL子带对DL子带带来的邻频的UE-UE CLI干扰,考虑到邻频的UE-UE CLI干扰相对较小,在后续2-n个时隙不需要利用UL DMRS进行信道估计时,在DL子带不需继续预留资源来估计邻频UE-UE CLI干扰;然而,邻频自干扰和邻频cell-cell CLI相对较大,DL DMRS在不同的时隙发生变化,在UL子带继续预留资源,可更新DL子带对UL子带的邻频自干扰和邻频cell-cell CLI干扰的测量结果。
示例性的,TDD配置的周期为5个时隙,分别为时隙0,1,2,3,4,时隙4不需要资源预留。UL DMRS未共享时,在时隙0,1,2,3上均需同时配置上行和下行预留资源,在时隙0,1,2,3进行UL DMRS导频共享时,时隙1,时隙2,时隙3的DL子带不需预留资源,即不需要下行资源预留。此时,预留资源的时频位置相对于UL DMRS未共享时发生变化,需通过高层信令重新配置。此时,时隙0即所述第一UL DMRS共享时隙,时隙1,2,3为其他UL DMRS共享时隙,所述第一UL DMRS共享时隙的预留资源的指示方式可以为如下方式d1,所述其他UL DMRS共享时隙的预留资源的指示方式可以为如下方式d2。
方式d1:在所述第一UL DMRS共享时隙上,同时配置上下行预留资源,网络设备向终端设备的指示方式可以参见上述图7和图12所示的实施例中涉及的方法,可以相互参见。
方式d2:在所述其他UL DMRS共享时隙上,只配置上行预留资源,网络设备向终端设备的指示方式可以参见上述图7和图12所示的实施例中涉及的方法,可以相互参见。
场景2,SBFD和legacy TDD共存时的UL DMRS导频共享。
所述第一UL DMRS共享时隙的预留资源的指示方式可以为如下方式d3,所述其他UL DMRS共享时隙的预留资源的指示方式可以为如下方式d4。
方式d3:在所述第一UL DMRS共享时隙上,在SBFD小区中,同时配置上下行预留资源,在legacy TDD小区中,配置下行预留资源。网络设备向终端设备的指示方式可以参 见上述图17所示的实施例中涉及的方法,可以相互参见。
方式d4:在所述其他UL DMRS共享时隙上,在SBFD小区中,只配置上行预留资源,在legacy TDD小区中,不配置预留资源。服务SBFD小区的网络设备向终端设备的指示方式可以参见上述图17所示的实施例中涉及的方法,可以相互参见。
一种可能的示例,图29示出了SBFD小区的UL DMRS导频共享。
场景3,异配比场景。
所述第一UL DMRS共享时隙的预留资源的指示方式可以为如下方式d5,所述其他UL DMRS共享时隙的预留资源的指示方式可以为如下方式d6。
方式d5:在所述第一UL DMRS共享时隙上,在legacy TDD小区中,配置下行预留资源,在New TDD小区中,配置上行预留资源。网络设备向终端设备的指示方式可以参见上述图23所示的实施例中涉及的方法,可以相互参见。
方式d6:在所述其他UL DMRS共享时隙上,在legacy TDD小区中,不配置预留资源,在New TDD小区中,配置上行预留资源。服务New TDD小区的网络设备向终端设备的指示方式可以参见上述图23所示的实施例中涉及的方法,可以相互参见。
例如,如图30示出了UL DMRS导频共享。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图31所示,通信装置3100可以包括收发单元3101和处理单元3102。其中,所述收发单元3101用于所述通信装置3100接收信息(消息或数据)或发送信息(消息或数据),所述处理单元3102用于对所述通信装置3100的动作进行控制管理。所述处理单元3102还可以控制所述收发单元3101执行的步骤。
示例性地,该通信装置3100具体可以是上述实施例中的终端设备、所述终端设备中的处理器,或者芯片,或者芯片***,或者是一个功能模块等;或者,该通信装置3100具体可以是上述实施例中的网络设备、所述网络设备的处理器,或者芯片,或者芯片***,或者是一个功能模块等。
在一个实施例中,所述通信装置3100用于实现上述图7和/或图12所述的实施例中终端设备的功能时,具体可以包括:
所述收发单元3101用于接收来自网络设备的第一配置信息和第二配置信息,和/或,第三配置信息和第四配置信息;所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及上行解调参考信号UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围;所述第三配置信息指示所述载波上第一上行子带的频域范围及下行解调参考信号DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围;所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率;所述处理单元3102用于根据所述第一配置信息和所述第二配置信息确定第一时间范围内的一个时隙中载波上的所述第一时频资源和所述第二时频资源,和/或,根据所述第三配置信息和所述第四配置信息确定所述第一时间范围内的所述一个时隙中载波上的所述第三时频资源和所述第四时频资源;所述收发单元3101还用于在所述第一时频资源和所述第二时频资源上 接收所述零功率下行信号;和/或,在所述第三时频资源和所述第四时频资源上发送零功率上行信号。
一种可选的方式中,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部RB;所述第二配置信息指示所述第二时频资源的频域范围为所述第二下行子带的全部RB;所述第四配置信息指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。
另一种可选的方式中,所述第二配置信息指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2;所述第四配置信息指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2;M1,M2,N1,N2为大于或者等于1的整数,其中,M1个RB为所述第一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。
示例性的,所述处理单元3102具体用于:根据所述第一配置信息和所述第二配置信息,确定所述第一时频资源和所述第二时频资源的频域资源,和/或,根据所述第三配置信息和所述第四配置信息确定所述第三时频资源和所述第四时频资源的频域资源;其中,所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;所述第二时频资源的频域资源包括:以所述第二下行子带的最小RB序号对应的资源块为起始位置的M2个RB;所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB;所述第四时频资源的频域资源B包括:以所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。
可选的,M1等于M2,N1等于N2。
在一种可选的实施方式中,所述第一时频资源和所述第二时频资源所在的时域符号位置为所述UL DMRS所在的时域符号位置,所述第三时频资源和所述第四时频资源所在的时域符号位置为所述DL DMRS所在的时域符号位置。
示例性的,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
可选的,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
在一个实施例中,所述通信装置3100用于实现上述图7和/或图12所述的实施例中网络设备的功能时,具体可以包括:
所述处理单元3102用于确定第一配置信息和第二配置信息,和/或,第三配置信息和第四配置信息;所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及上行解调参考信号UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围;所述第三配置信息指示所述载波上第一上行子带的频域范围及下行解调参考信号DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围;所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应 的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率;所述收发单元3101用于向终端设备发送所述第一配置信息和所述第二配置信息,和/或,所述第三配置信息和所述第四配置信息。
一种可选的方式中,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部RB;所述第二配置信息指示所述第二时频资源的频域范围为所述第二下行子带的全部RB;所述第四配置信息指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。
另一种可选的方式中,所述第二配置信息指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2;所述第四配置信息指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2;M1,M2,N1,N2为大于或者等于1的整数,其中,M1个RB为所述第一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。
示例性的,所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;所述第二时频资源的频域资源包括:以所述第二下行子带的最小RB序号对应的资源块为起始位置的M2个RB;所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB;所述第四时频资源的频域资源包括:以所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。
可选的,M1等于M2,N1等于N2。
在一种可选的实施方式中,所述第一时频资源和所述第二时频资源所在的时域符号位置为所述UL DMRS所在的时域符号位置,所述第三时频资源和所述第四时频资源所在的时域符号位置为所述DL DMRS所在的时域符号位置。
作为一种可能的示例,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
可选的,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
在一个实施例中,所述通信装置3100用于实现上述图25所述的实施例中终端设备的功能时,具体可以包括:
所述收发单元3101用于在第六时频资源上向网络设备发送第一上行信号,所述第一上行信号的发送时间为t1-(N TAT c+N TA,offsetT c),所述N TAT c为时间提前量,所述N TA大于或者等于0,所述N TA,offsetT c为时间提前量偏移值,所述N TA,offset大小为0,所述T c为时间单元,所述T c的大小为1/(48000*4096),所述T c的单位为秒;所述第六时频资源所在的频域资源在第一上行子带上;所述t1是第一下行信号到达所述终端设备的时间,所述t1=t0+N TAT c/2,第五时频资源用于所述网络设备发送所述第一下行信号,所述第一下行信号的发送时间为t0,所述第五时频资源所在的频域资源在第一下行子带和/或第二下行子带 上,所述第五时频资源和所述第六时频资源的起始时刻为t0;其中,所述第一上行子带,所述第一下行子带和所述第二下行子带为载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率。所述处理单元3102用于控制所述收发单元3101执行上述操作。
可选的,第一子带在第n个时隙上所包含符号的最后一个或多个符号为上行,所述第一子带为所述第一下行子带、所述第二下行子带或者所述第一上行子带,所述n为大于或者等于0的整数,所述第一子带在第n+1个时隙上所包含符号的起始一个或多个符号为下行,在所述第一子带的第n个时隙所包含符号的最后一个符号不发送上行信号。
在一种可选的实施方式中,所述收发单元3101还用于接收来自所述网络设备的配置信息,所述配置信息指示所述N TA,offset的值为0。
在一个实施例中,所述通信装置3100用于实现上述图25所述的实施例中网络设备的功能时,具体可以包括:
所述收发单元3101用于在第六时频资源接收来自终端设备的第一上行信号,所述第一上行信号的发送时间为t1-(N TAT c+N TA,offsetT c),所述N TAT c为时间提前量,所述N TA大于或者等于0,所述N TA,offsetT c为时间提前量偏移值,所述N TA,offset大小为0,所述T c为时间单元,所述T c的大小为1/(48000*4096),所述T c的单位为秒;所述第六时频资源所在的频域资源在第一上行子带上;所述t1是第一下行信号到达所述终端设备的时间,所述t1=t0+N TAT c/2,第五时频资源用于所述网络设备发送所述第一下行信号,所述第一下行信号的发送时间为t0,所述第五时频资源所在的频域资源在第一下行子带和/或第二下行子带上,所述第五时频资源和所述第六时频资源的起始时刻为t0;其中,所述第一上行子带,所述第一下行子带和所述第二下行子带为载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率。所述处理单元3102用于控制所述收发单元3101执行上述操作。
可选的,第一子带在第n个时隙上所包含符号的最后一个或多个符号为上行,所述第一子带为所述第一下行子带、所述第二下行子带或者所述第一上行子带,所述n为大于或者等于0的整数,所述第一子带在第n+1个时隙上所包含符号的起始一个或多个符号为下行,在所述第一子带的第n个时隙所包含符号的最后一个符号不接收上行信号。
在一种可选的实施方式中,所述收发单元3101还用于向所述终端设备发送配置信息,所述配置信息指示所述N TA,offset的值为0。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或 者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图32所示,通信装置3200可以包括收发器3201和处理器3202。可选的,所述通信装置3200中还可以包括存储器3203。其中,所述存储器3203可以设置于所述通信装置3200内部,还可以设置于所述通信装置3200外部。其中,所述处理器3202可以控制所述收发器3201接收和发送信息、消息或数据等。
具体地,所述处理器3202可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器3202还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器3201、所述处理器3202和所述存储器3203之间相互连接。可选的,所述收发器3201、所述处理器3202和所述存储器3203通过总线3204相互连接;所述总线3204可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图32中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器3203,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器3203可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器3202执行所述存储器3203所存放的应用程序,实现上述功能,从而实现通信装置3200的功能。
示例性地,该通信装置3200可以是上述实施例中的终端设备;还可以是上述实施例中的网络设备。
在一个实施例中,所述通信装置3200在实现图7所示的实施例中终端设备的功能时,收发器3201可以实现图7所示的实施例中的由终端设备执行的收发操作;处理器3202可以实现图7所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图7所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置3200在实现图7所示的实施例中网络设备的功能时,收发器3201可以实现图7所示的实施例中的由网络设备执行的收发操作;处理器3202可以实现图7所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图7所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置3200在实现图12所示的实施例中终端设备的功能时,收发器3201可以实现图12所示的实施例中的由终端设备执行的收发操作;处理器3202可以实现图12所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图12所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置3200在实现图12所示的实施例中网络设备的功能时,收发器3201可以实现图12所示的实施例中的由网络设备执行的收发操作;处理器3202 可以实现图12所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图12所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置3200在实现图25所示的实施例中终端设备的功能时,收发器3201可以实现图25所示的实施例中的由终端设备执行的收发操作;处理器3202可以实现图25所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图25所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置3200在实现图25所示的实施例中网络设备的功能时,收发器3201可以实现图25所示的实施例中的由网络设备执行的收发操作;处理器3202可以实现图25所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图25所示的实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信***,该通信***可以包括上述实施例涉及的终端设备和网络设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一配置信息和第二配置信息,和/或,第三配置信息和第四配置信息;
    所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及上行解调参考信号UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围;所述第三配置信息指示所述载波上第一上行子带的频域范围及下行解调参考信号DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围;
    所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率;
    根据所述第一配置信息和所述第二配置信息确定第一时间范围内的一个时隙中载波上的所述第一时频资源和所述第二时频资源,在所述第一时频资源和所述第二时频资源上接收所述零功率下行信号;和/或,根据所述第三配置信息和所述第四配置信息确定所述第一时间范围内的所述一个时隙中载波上的所述第三时频资源和所述第四时频资源,在所述第三时频资源和所述第四时频资源上发送零功率上行信号。
  2. 如权利要求1所述的方法,其特征在于,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部RB;所述第二配置信息指示所述第二时频资源的频域范围为所述第二下行子带的全部RB;
    所述第四配置信息指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。
  3. 如权利要求1所述的方法,其特征在于,所述第二配置信息指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2;所述第四配置信息指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2;M1,M2,N1,N2为大于或者等于1的整数,其中,M1个RB为所述第一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    根据所述第一配置信息和所述第二配置信息,确定所述第一时频资源和所述第二时频资源的频域资源,和/或,根据所述第三配置信息和所述第四配置信息确定所述第三时频资源和所述第四时频资源的频域资源;
    其中,所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;
    所述第二时频资源的频域资源包括:以所述第二下行子带的最小RB序号对应的资源块为起始位置的M2个RB;
    所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB;
    所述第四时频资源的频域资源B包括:以所述第一上行子带的最大RB序号对应的RB 为结束位置的N2个RB。
  5. 如权利要求3或4所述的方法,其特征在于,M1等于M2,N1等于N2。
  6. 如权利要求1-5任一项所述的方法,其特征在于,包括:所述第一时频资源和所述第二时频资源所在的时域符号位置为所述UL DMRS所在的时域符号位置,所述第三时频资源和所述第四时频资源所在的时域符号位置为所述DL DMRS所在的时域符号位置。
  7. 如权利要求1-6任一项所述的方法,其特征在于,包括:所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
  8. 如权利要求7所述的方法,其特征在于,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
  9. 一种通信方法,其特征在于,包括:
    确定第一配置信息和第二配置信息,和/或,第三配置信息和第四配置信息;
    所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及上行解调参考信号UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围;所述第三配置信息指示所述载波上第一上行子带的频域范围及下行解调参考信号DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围;
    所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率;
    向终端设备发送所述第一配置信息和所述第二配置信息,和/或,所述第三配置信息和所述第四配置信息。
  10. 如权利要求9所述的方法,其特征在于,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部RB;所述第二配置信息指示所述第二时频资源的频域范围为所述第二下行子带的全部RB;
    所述第四配置信息指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。
  11. 如权利要求9所述的方法,其特征在于,所述第二配置信息指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2;所述第四配置信息指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2;M1,M2,N1,N2为大于或者等于1的整数,其中,M1个RB为所述第一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。
  12. 如权利要求11所述的方法,其特征在于,所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;
    所述第二时频资源的频域资源包括:以所述第二下行子带的最小RB序号对应的资源块为起始位置的M2个RB;
    所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB 为起始位置的N1个RB;
    所述第四时频资源的频域资源包括:以所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。
  13. 如权利要求11或12所述的方法,其特征在于,M1等于M2,N1等于N2。
  14. 如权利要求9-13任一项所述的方法,其特征在于,包括:所述第一时频资源和所述第二时频资源所在的时域符号位置为所述UL DMRS所在的时域符号位置,所述第三时频资源和所述第四时频资源所在的时域符号位置为所述DL DMRS所在的时域符号位置。
  15. 如权利要求9-14任一项所述的方法,其特征在于,包括:所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
  16. 如权利要求15所述的方法,其特征在于,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
  17. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一配置信息和第二配置信息,和/或,第三配置信息和第四配置信息;
    所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及上行解调参考信号UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围;所述第三配置信息指示所述载波上第一上行子带的频域范围及下行解调参考信号DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围;
    所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率;
    处理单元,用于根据所述第一配置信息和所述第二配置信息确定第一时间范围内的一个时隙中载波上的所述第一时频资源和所述第二时频资源,和/或,根据所述第三配置信息和所述第四配置信息确定所述第一时间范围内的所述一个时隙中载波上的所述第三时频资源和所述第四时频资源;
    所述收发单元,还用于在所述第一时频资源和所述第二时频资源上接收所述零功率下行信号;和/或,在所述第三时频资源和所述第四时频资源上发送零功率上行信号。
  18. 如权利要求17所述的装置,其特征在于,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部RB;所述第二配置信息指示所述第二时频资源的频域范围为所述第二下行子带的全部RB;
    所述第四配置信息指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。
  19. 如权利要求17所述的装置,其特征在于,所述第二配置信息指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2;所述第四配置信息指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2;M1,M2,N1,N2为大于或者等于1的整数,其中,M1个RB为所述第 一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。
  20. 如权利要求19所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一配置信息和所述第二配置信息,确定所述第一时频资源和所述第二时频资源的频域资源,和/或,根据所述第三配置信息和所述第四配置信息确定所述第三时频资源和所述第四时频资源的频域资源;
    其中,所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;
    所述第二时频资源的频域资源包括:以所述第二下行子带的最小RB序号对应的资源块为起始位置的M2个RB;
    所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB;
    所述第四时频资源的频域资源B包括:以所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。
  21. 如权利要求19或20所述的装置,其特征在于,M1等于M2,N1等于N2。
  22. 如权利要求17-21任一项所述的装置,其特征在于,包括:所述第一时频资源和所述第二时频资源所在的时域符号位置为所述UL DMRS所在的时域符号位置,所述第三时频资源和所述第四时频资源所在的时域符号位置为所述DL DMRS所在的时域符号位置。
  23. 如权利要求17-22任一项所述的装置,其特征在于,包括:所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
  24. 如权利要求23所述的装置,其特征在于,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
  25. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一配置信息和第二配置信息,和/或,第三配置信息和第四配置信息;
    所述第一配置信息指示载波上第一下行子带和第二下行子带的频域范围及上行解调参考信号UL DMRS所在的时域符号位置;所述第二配置信息指示所述第一下行子带上的第一时频资源和所述第二下行子带上的第二时频资源的频域范围;所述第三配置信息指示所述载波上第一上行子带的频域范围及下行解调参考信号DL DMRS所在的时域符号位置;所述第四配置信息指示所述第一上行子带上的第三时频资源和第四时频资源的频域范围;
    所述第一上行子带,所述第一下行子带和所述第二下行子带为所述载波上对应的频域资源上连续的频域资源;所述第一上行子带的频率大于所述第一下行子带的频率,所述第二下行子带的频率大于所述第一上行子带的频率;
    收发单元,用于向终端设备发送所述第一配置信息和所述第二配置信息,和/或,所述第三配置信息和所述第四配置信息。
  26. 如权利要求25所述的装置,其特征在于,所述第二配置信息指示所述第一时频资源的频域范围为所述第一下行子带的全部RB;所述第二配置信息指示所述第二时频资源 的频域范围为所述第二下行子带的全部RB;
    所述第四配置信息指示所述第三时频资源的频域范围为所述第一上行子带的全部RB;所述第四配置信息指示所述第四时频资源的频域范围为所述第一上行子带的全部RB。
  27. 如权利要求25所述的装置,其特征在于,所述第二配置信息指示所述第一时频资源所占用的RB个数为M1,以及所述第二时频资源所占用的RB个数为M2;所述第四配置信息指示所述第三时频资源所占用的RB个数为N1,以及所述第四时频资源所占用的RB个数为N2;M1,M2,N1,N2为大于或者等于1的整数,其中,M1个RB为所述第一下行子带包括的RB中的部分RB,M2个RB为所述第二下行子带包括的RB中的部分RB,N1和N2个RB为所述第一上行子带包括的RB中的部分RB。
  28. 如权利要求27所述的装置,其特征在于,所述第一时频资源的频域资源包括:以所述第一下行子带的最大RB序号对应的RB为结束位置的M1个RB;
    所述第二时频资源的频域资源包括:以所述第二下行子带的最小RB序号对应的资源块为起始位置的M2个RB;
    所述第三时频资源的频域资源包括:以所述第一上行子带的最小RB序号对应的RB为起始位置的N1个RB;
    所述第四时频资源的频域资源包括:以所述第一上行子带的最大RB序号对应的RB为结束位置的N2个RB。
  29. 如权利要求27或28所述的装置,其特征在于,M1等于M2,N1等于N2。
  30. 如权利要求25-29任一项所述的装置,其特征在于,包括:所述第一时频资源和所述第二时频资源所在的时域符号位置为所述UL DMRS所在的时域符号位置,所述第三时频资源和所述第四时频资源所在的时域符号位置为所述DL DMRS所在的时域符号位置。
  31. 如权利要求25-30任一项所述的装置,其特征在于,包括:所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一下行子带的符号类型为下行,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第二下行子带的符号类型为下行,且,所述第一时间范围内的所述一个时隙的部分或者全部符号在所述第一上行子带的符号类型为上行。
  32. 如权利要求31所述的装置,其特征在于,所述第一时间范围内所述第一下行子带符号类型为下行的时间段和所述第二下行子带的符号类型为下行的时间段相同。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时以执行如权利要求1-8中任一项所述的方法,或者执行如权利要求9-16中任一项所述的方法。
PCT/CN2022/140905 2021-12-24 2022-12-22 一种通信方法及装置 WO2023116809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111596767.1A CN116346546A (zh) 2021-12-24 2021-12-24 一种通信方法及装置
CN202111596767.1 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116809A1 true WO2023116809A1 (zh) 2023-06-29

Family

ID=86877716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140905 WO2023116809A1 (zh) 2021-12-24 2022-12-22 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116346546A (zh)
WO (1) WO2023116809A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168996A (zh) * 2017-01-09 2019-08-23 摩托罗拉移动有限责任公司 用于资源块中的物理上行链路控制信道的方法和装置
CN111107555A (zh) * 2019-11-08 2020-05-05 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质
CN111867038A (zh) * 2019-04-26 2020-10-30 华为技术有限公司 一种通信方法及装置
CN112134665A (zh) * 2015-08-21 2020-12-25 华为技术有限公司 无线通信的方法、网络设备、用户设备和***
CN113727441A (zh) * 2020-05-25 2021-11-30 华为技术有限公司 一种上行传输资源指示方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134665A (zh) * 2015-08-21 2020-12-25 华为技术有限公司 无线通信的方法、网络设备、用户设备和***
CN110168996A (zh) * 2017-01-09 2019-08-23 摩托罗拉移动有限责任公司 用于资源块中的物理上行链路控制信道的方法和装置
CN111867038A (zh) * 2019-04-26 2020-10-30 华为技术有限公司 一种通信方法及装置
CN111107555A (zh) * 2019-11-08 2020-05-05 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质
CN113727441A (zh) * 2020-05-25 2021-11-30 华为技术有限公司 一种上行传输资源指示方法及装置

Also Published As

Publication number Publication date
CN116346546A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2020224306A1 (zh) 一种通信的方法和装置
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
WO2020164321A1 (zh) 基于多个下行控制信息的传输方法、设备及***、存储介质
WO2018228573A1 (zh) 信号传输方法、相关装置及***
TW202008829A (zh) 資源配置的方法和終端設備
WO2020063130A1 (zh) 一种资源确定方法及装置
TW202008828A (zh) 資源配置的方法和終端設備
WO2018202163A1 (zh) 一种资源指示方法及装置
WO2020216130A1 (zh) 一种通信方法及装置
WO2022022579A1 (zh) 一种通信方法及装置
WO2020238992A1 (zh) 一种通信方法及装置
CN113676293A (zh) 一种信息发送、接收方法、装置和***
WO2022206628A1 (zh) 一种通信方法及装置
WO2021031034A1 (zh) 一种资源的指示方法和通信设备
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2019154206A1 (zh) 信息发送方法及终端
WO2022151404A1 (zh) 基于接入回传一体化的通信方法及装置
WO2021027806A1 (zh) 信息传输的方法和装置
US20230027281A1 (en) Control messaging for multi-beam communications
WO2023066050A1 (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
CN114402563A (zh) 侧行链路中的灵活资源预留指示

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022910121

Country of ref document: EP

Effective date: 20240702