WO2023116789A1 - 一种血压测量设备及电子设备 - Google Patents

一种血压测量设备及电子设备 Download PDF

Info

Publication number
WO2023116789A1
WO2023116789A1 PCT/CN2022/140802 CN2022140802W WO2023116789A1 WO 2023116789 A1 WO2023116789 A1 WO 2023116789A1 CN 2022140802 W CN2022140802 W CN 2022140802W WO 2023116789 A1 WO2023116789 A1 WO 2023116789A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air pressure
cavity
value
blood pressure
Prior art date
Application number
PCT/CN2022/140802
Other languages
English (en)
French (fr)
Inventor
靳俊叶
杨素林
曾朝
张雷
林忠维
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22910101.9A priority Critical patent/EP4393384A1/en
Publication of WO2023116789A1 publication Critical patent/WO2023116789A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to a blood pressure measuring equipment and electronic equipment.
  • blood pressure measurement is also particularly important.
  • blood pressure measurement equipment for home use has appeared, but also blood pressure measurement functions have been integrated in some wearable devices (such as smart watches or smart bracelets, etc.), which provide users with blood pressure measurement anytime, anywhere. possibility.
  • the micropump and the pressure sensor are directly placed inside the main body of the blood pressure measuring equipment.
  • the pressure sensor can obtain the blood pressure value of the user by measuring the air pressure of the blood pressure measuring device.
  • the micropump since the micropump will inflate the gas inside the main body into the air bag, an air flow will be generated during the inflation process, and the air flow will cause air pressure fluctuations, thus causing the air pressure detected by the pressure sensor to be inconsistent. Stability affects the accuracy of the blood pressure value measured by the blood pressure measuring device.
  • the present application provides a blood pressure measurement device and an electronic device to reduce the influence of the internal air pressure of the blood pressure measurement device on its blood pressure measurement, thereby improving the accuracy of blood pressure measurement.
  • the present application provides a blood pressure measurement device, which may include a main body, a processor, an air bag, an air supply and exhaust device, a driving device, an air pressure sensor and a flow meter.
  • the main body includes a cavity, and various functional modules or components of the blood pressure measuring device can be arranged in the cavity, for example, the above-mentioned driving device, processor, air supply and exhaust device, and air pressure sensor can be arranged in the cavity.
  • the air bag is fixed on one end of the main body, and the air bag has an air cavity.
  • the air supply and exhaust device includes an intake air path and an air discharge air path, and the air supply and exhaust device communicates with the air cavity of the air bag through the first air path.
  • the air pressure sensor can communicate with the air cavity of the air bag through the second air path, so as to detect the air pressure value in the air cavity.
  • the flow meter is used for detecting the gas flow value of the gas communicating with the air bag through the supply and exhaust device, or for detecting the gas flow value of the gas communicating with the air pressure sensor and the air bag.
  • the corresponding relationship between the gas flow value and the air pressure compensation value is stored in the blood pressure measuring device, for example, stored in a processor.
  • the processor is electrically connected with the air pressure sensor, the flow meter and the driving device.
  • the processor can obtain the air pressure compensation value according to the gas flow value detected by the flow meter and the corresponding relationship between the stored gas flow value and the air pressure compensation value, so that the air pressure compensation value can be obtained according to the obtained air pressure compensation value.
  • the air pressure value detected by the air pressure sensor is compensated, and then the driving device can be controlled according to the compensated air pressure value.
  • the driving device is electrically connected with the air supply and exhaust device, and is used to drive the air supply and exhaust device to inflate or deflate under the control of the processor.
  • the gas detected by the flowmeter can be used to represent the inflation and discharge volume of the air supply and exhaust device, so that the processor obtains the air pressure compensation value according to the gas flow value detected by the flow meter and the corresponding relationship between the stored gas flow value and the air pressure compensation value.
  • the compensation value compensates the air pressure value detected by the air pressure sensor to obtain a relatively accurate air pressure value in the air bag. Furthermore, the influence of the blood pressure measuring device on the blood pressure measurement during the inflation and deflation process can be reduced, and the precision of the blood pressure measurement can be improved.
  • the flow meter in order to facilitate the flow meter to detect the gas flow value of the gas communicating with the air bag through the supply and exhaust device, the flow meter may be arranged on the first gas path for detecting the gas flow value in the first gas path.
  • the flow meter in order to facilitate the flow meter to detect the gas flow value of the gas flowing through the air supply device and the pressure sensor, the flow meter can be arranged on the second gas path for detecting the gas flow value in the second gas path.
  • the air supply and exhaust device and the pressure sensor may be directly connected to the air bag through corresponding air passages, or indirectly connected.
  • the blood pressure measurement device may further include an air circuit cavity, and the air circuit cavity is disposed in the cavity of the main body.
  • the air supply and exhaust device can be connected with the air path cavity through the first air path
  • the air pressure sensor can be connected with the air path cavity through the second air path
  • the air path cavity can be connected with the air bag of the air bag through the third air path. cavities connected.
  • the air passages of the air supply and exhaust device and the air pressure sensor used to communicate with the air bag can be combined through the air passage cavity first, and then communicated with the air bag through an air passage. At this time, it is only necessary to open a through hole for connecting with the airbag on the side wall of the main body, thereby reducing the number of holes on the main body and improving the waterproof performance and structural stability of the blood pressure measuring device.
  • the flow meter when the blood pressure measuring device further includes a gas path cavity, the flow meter may also be arranged on the third gas path to detect the gas flow value in the third gas path.
  • the gas flow value detected by the flow meter can be the gas flow value of the gas communicating with the air bag for the exhaust device, or the gas flow value of the gas communicating between the exhaust device and the air pressure sensor.
  • a connection hole may be provided at the end of the main body.
  • the airbag has an air nozzle, and the air nozzle protrudes out of the airbag from one side surface of the airbag in a direction toward the main body.
  • the connection between the air bag and the cavity of the air path can be achieved by inserting the air nozzle into the connection hole and connecting the third air path to the air nozzle.
  • the air nozzle can also be arranged at the end of the main body, and a connecting hole can be provided on the airbag, so that the airbag and the main body can also be realized by plugging the air nozzle and the connecting hole. Connection.
  • the airbag and the main body may be detachably connected, so that the airbag can be disassembled or replaced as required.
  • the blood pressure measurement device may further include a photoplethysmograph PPG module and an ECG detection module, and the PPG module and the ECG detection module may be arranged on the bottom surface of the main body.
  • the airbag can also be fixedly connected to one end of the bottom surface of the main body, so that the blood pressure measurement device has a relatively compact structure while integrating multiple measurement functions.
  • the corresponding relationship between the gas flow value and the air pressure compensation value can be obtained in advance by analyzing pre-tested data, and can be pre-stored in the processor or memory of the blood pressure measurement device before the blood pressure measurement device leaves the factory.
  • the processor can obtain the corresponding relationship between the gas flow value and the air pressure compensation value in the following manner: first, control the blood pressure measurement device to inflate with the air bag removed, so that the gas detected by the flow meter The flow value changes; and obtain multiple air pressure values detected by the air pressure sensor when the flowmeter detects multiple different gas flow values, and use the obtained multiple air pressure values as corresponding to the multiple different gas flow values The air pressure compensation value; finally, according to a plurality of different gas flow values and their respective corresponding air pressure compensation values, the corresponding relationship between the gas flow value and the air pressure compensation value is established.
  • the processor may establish a corresponding relationship between the gas flow value and the air pressure compensation value through an interpolation method according to a plurality of different gas flow values and their respective corresponding air pressure compensation values.
  • the corresponding relationship between the pre-established gas flow value and the pressure compensation value is stored, so that when blood pressure detection is performed, the gas flow value detected by the flow meter and the stored gas flow value and pressure compensation value can be
  • the air pressure compensation value is obtained according to the corresponding relationship, and the air pressure value detected by the air pressure sensor is compensated according to the obtained air pressure compensation value to obtain a more accurate air pressure value in the air bag.
  • the blood pressure measurement process of the blood pressure measurement device may include: controlling the driving device to drive the air supply and exhaust device to inflate the air bag, then reading the air pressure value detected by the air pressure sensor and the gas flow value detected by the flow meter, and then according to the gas flow detected by the flow meter
  • the air pressure compensation value is obtained from the flow value and the corresponding relationship between the stored gas flow value and the air pressure compensation value, and the air pressure value detected by the air pressure sensor is compensated according to the obtained air pressure compensation value.
  • the air pressure compensation value obtains the air pressure value after compensation, and then controls the working parameters (such as voltage, current, frequency, etc.) of the driving circuit according to the compensated air pressure value to drive the air supply and exhaust device to inflate the airbag. Perform the above process at least once, such as 1 time, 2 times, 3 times or 4 times, so that the compensated air pressure value meets the requirements of the boost curve required for blood pressure measurement, thereby completing the blood pressure measurement.
  • the present application also provides another blood pressure measurement device, which may include a main body, a processor, an air bag, an air supply and exhaust device, a driving device, a first air pressure sensor, and a second air pressure sensor.
  • the main body includes a cavity, and various functional modules or devices of the blood pressure measuring equipment can be arranged in the cavity, for example, the above-mentioned driving device, processor, air supply and exhaust device, the first air pressure sensor, and the second air pressure sensor can be arranged in the cavity. inside the cavity.
  • the air bag is fixed on one end of the main body, and the air bag has an air cavity.
  • the air supply and exhaust device includes an intake air path and an air discharge air path, and the air supply and exhaust device communicates with the air cavity of the air bag through the first air path.
  • the first air pressure sensor can communicate with the air cavity of the air bag through the second air path, so as to detect the air pressure value in the air cavity.
  • the second air pressure sensor is used to detect the air pressure value in the cavity.
  • the blood pressure measurement device stores the corresponding relationship between the air pressure value of the cavity and the air pressure compensation value, for example, it may be stored in a processor or a memory.
  • the processor is electrically connected to the first air pressure sensor, the second air pressure sensor, and the driving device, and the processor can obtain the air pressure compensation value according to the air pressure value detected by the second air pressure sensor and the stored corresponding relationship between the cavity air pressure value and the air pressure compensation value, thereby
  • the air pressure value detected by the first air pressure sensor can be compensated according to the obtained air pressure compensation value, and the driving device can be controlled according to the compensated air pressure value.
  • the driving device is electrically connected with the air supply and exhaust device, and is used to drive the air supply and exhaust device to charge and deflate under the control of the processor.
  • the air pressure value in the cavity is detected by the second air pressure sensor, so that the processor uses the air pressure value detected by the second air pressure sensor and the stored cavity
  • the corresponding relationship between the air pressure value and the air pressure compensation value is used to obtain the air pressure compensation value, and then the air pressure value detected by the first air pressure sensor is compensated according to the obtained air pressure compensation value, so as to obtain a relatively accurate air pressure value in the air bag.
  • the influence of the blood pressure measuring device on the blood pressure measurement during the inflation and deflation process can be reduced, thereby improving the accuracy of the blood pressure measurement.
  • the second air pressure sensor can be close to the air supply and exhaust Device setting, the closer the second air pressure sensor is to the air supply and exhaust device, the more accurate the measurement result will be.
  • the air supply and exhaust device and the pressure sensor may be directly connected to the air bag through corresponding air passages, or indirectly connected.
  • the blood pressure measurement device may further include an air circuit cavity, and the air circuit cavity is disposed in the cavity of the main body.
  • the air supply and exhaust device can be connected with the air path cavity through the first air path
  • the first air pressure sensor can be connected with the air path cavity through the second air path
  • the air path cavity can be connected with the air bag through the third air path.
  • the air cavity is connected.
  • the air passages of the supply and exhaust device and the first air pressure sensor used to communicate with the air bag can be combined through the air passage cavity first, and then communicated with the air bag through an air passage. At this time, it is only necessary to open a through hole for connecting with the airbag on the side wall of the main body, thereby reducing the number of holes on the main body and improving the waterproof performance and structural stability of the blood pressure measuring device.
  • the corresponding relationship between the cavity air pressure value and the air pressure compensation value can also be obtained through data analysis in advance, and stored in the processor of the blood pressure measurement device in advance, and the corresponding relationship between the cavity air pressure value and the air pressure compensation value can be obtained in the blood pressure
  • the measurement equipment is pre-established at the factory.
  • the processor can obtain the corresponding relationship between the air pressure value of the cavity and the air pressure compensation value in the following manner: first, control the blood pressure measurement device to inflate when the air bag is removed, so that the second air pressure sensor can detect The first pressure value received changes. And, acquire multiple second air pressure values detected by the first air pressure sensor when the second air pressure sensor is at multiple different first air pressure values, and use the acquired multiple second air pressure values as multiple different first air pressure values The values correspond to the barometric compensation values respectively. Finally, according to a plurality of different first air pressure values and their respective corresponding air pressure compensation values, a corresponding relationship between cavity air pressure values and air pressure compensation values is established.
  • the processor may establish a corresponding relationship between the chamber air pressure value and the air pressure compensation value through an interpolation method according to a plurality of different first air pressure values and their respective corresponding air pressure compensation values.
  • the air pressure compensation value is obtained according to the corresponding relationship of the compensation value, and the air pressure value detected by the first air pressure sensor is compensated according to the obtained air pressure compensation value to obtain a more accurate air pressure value in the air bag.
  • the blood pressure measurement process of the blood pressure measurement device may include: controlling the driving device to drive the air supply and exhaust device to inflate the airbag, then reading the air pressure value detected by the first air pressure sensor and the air pressure value detected by the second air pressure sensor, and then according to the second
  • the air pressure value detected by the air pressure sensor and the corresponding relationship between the stored cavity air pressure value and the air pressure compensation value are used to obtain the air pressure compensation value, and the air pressure value detected by the first air pressure sensor is compensated according to the obtained air pressure compensation value.
  • the first air pressure can be The air pressure value detected by the sensor is subtracted from the obtained air pressure compensation value to obtain the compensated air pressure value, and then the operating parameters of the drive circuit (such as voltage, current, frequency, etc.) are controlled according to the compensated air pressure value to drive the air supply and exhaust device to inflate the airbag .
  • the above process at least once, such as 1 time, 2 times, 3 times or 4 times, so that the compensated air pressure value meets the requirements of the boost curve required for blood pressure measurement, thereby completing the blood pressure measurement.
  • the present application also provides another blood pressure measurement device, which may include a main body, a processor, an air bag, an air supply and exhaust device, a driving device, and an air pressure sensor.
  • the main body includes a cavity, and various functional modules or devices of the blood pressure measuring equipment can be arranged in the cavity, for example, the above-mentioned driving device, processor, air supply and exhaust device, the first air pressure sensor, and the second air pressure sensor can be arranged in the cavity. inside the cavity.
  • the air bag is fixed on one end of the main body, and the air bag has an air cavity.
  • the air supply and exhaust device includes an intake air path and an air discharge air path, and the air supply and exhaust device communicates with the air cavity of the air bag through the first air path.
  • the air pressure sensor can communicate with the air cavity of the air bag through the second air path, so as to detect the air pressure value in the air cavity.
  • the corresponding relationship between the driving state and the air pressure compensation value is stored in the blood pressure measuring device, for example, stored in a processor.
  • the processor is electrically connected to the air pressure sensor and the driving device.
  • the processor can obtain the air pressure compensation value according to the driving state of the driving device and the corresponding relationship between the stored driving state and the air pressure compensation value, and compare the air pressure value detected by the air pressure sensor according to the obtained air pressure compensation value. Compensation is performed and the drive is controlled according to the compensated air pressure value.
  • the driving device is electrically connected with the air supply and exhaust device, and is used to drive the air supply and exhaust device to charge and deflate under the control of the processor.
  • this blood pressure measuring device when the air bag is inflated and deflated by the air supply and exhaust device, since the processor can obtain the air pressure compensation value according to the driving state of the driving device and the corresponding relationship between the stored driving state and the air pressure compensation value, and then according to the obtained The air pressure compensation value compensates the air pressure value detected by the air pressure sensor to obtain a more accurate air pressure value in the air bag. Furthermore, the influence of the blood pressure measuring device on the blood pressure measurement during the inflation and deflation process can be reduced, thereby improving the accuracy of the blood pressure measurement.
  • the driving state may include at least one parameter related to the power supply, such as a driving voltage, a driving current, and a duty cycle.
  • an air path cavity can be provided in the blood pressure measuring device, so that the supply and exhaust device can communicate with the air path cavity through the first air path, so that the first air pressure sensor can communicate with the gas path cavity through the second air path.
  • the air path cavity is communicated with the air path cavity, and the air path cavity is communicated with the air bag through the third air path, so as to realize the connection of the single air nozzle between the main body and the air bag.
  • the corresponding relationship between the driving state and the air pressure compensation value can be obtained through analysis of test data in advance, and stored in the processor of the blood pressure measurement device in advance.
  • the processor can obtain the corresponding relationship between the driving state and the air pressure compensation value in the following manner: control the blood pressure measurement device to inflate in multiple different driving states when the air bag is removed; and then obtain the blood pressure The multiple air pressure values detected by the air pressure sensor when the device is driven in multiple different driving states are measured, and the obtained multiple air pressure values are used as air pressure compensation values corresponding to the multiple different driving states. Finally, according to a plurality of different driving states and their respective corresponding air pressure compensation values, a corresponding relationship between the driving states and the air pressure compensation values is established.
  • the processor may establish a corresponding relationship between the driving state and the air pressure compensation value through an interpolation method according to a plurality of different driving states and their respective corresponding air pressure compensation values.
  • the relationship between the pre-established driving state and the air pressure compensation value is stored, so that when the blood pressure is detected, the air pressure compensation value can be obtained according to the driving state and the stored corresponding relationship between the driving state and the air pressure compensation value , and compensate the air pressure value detected by the air pressure sensor according to the obtained air pressure compensation value, so as to obtain a more accurate air pressure value in the air bag.
  • the blood pressure measurement process of the blood pressure measurement device may include: controlling the driving device to drive the air supply and exhaust device to inflate the air bag, and reading the air pressure value detected by the air pressure sensor, and then according to the driving state of the driving device and the stored driving state and air pressure.
  • the corresponding relationship of the compensation value obtains the air pressure compensation value, and compensates the air pressure value detected by the air pressure sensor according to the obtained air pressure compensation value.
  • the air pressure value detected by the air pressure sensor can be subtracted from the obtained air pressure compensation value to obtain the compensated air pressure value.
  • Perform the above process at least once, such as 1 time, 2 times, 3 times or 4 times, so that the compensated air pressure value meets the requirements of the boost curve required for blood pressure measurement, thereby completing the blood pressure measurement.
  • the present application further provides an electronic device, which may include the blood pressure measurement device provided in any one of the implementation manners of the first aspect to the third aspect above.
  • FIG. 1 is a schematic structural diagram of a blood pressure measuring device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the frame structure of an existing blood pressure measuring device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a frame structure of a blood pressure measurement device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a frame structure of a blood pressure measurement device provided in another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a frame structure of a blood pressure measuring device provided in another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame structure of a blood pressure measuring device provided in another embodiment of the present application.
  • Fig. 7 is a schematic diagram of a frame structure of a blood pressure measuring device provided in another embodiment of the present application.
  • Fig. 8 is a schematic flowchart of a method for measuring blood pressure provided by an embodiment of the present application.
  • Fig. 9 is a schematic flow chart for establishing the corresponding relationship between the gas flow value and the air pressure compensation value provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram showing the corresponding relationship between the volume flow value and the air pressure compensation value provided by an embodiment of the present application;
  • Fig. 11 is a schematic diagram of the frame structure of a blood pressure measurement device provided by another embodiment of the present application.
  • Fig. 12 is a schematic diagram of the frame structure of a blood pressure measurement device provided by another embodiment of the present application.
  • Fig. 13 is a schematic flowchart of a blood pressure measurement method provided by another embodiment of the present application.
  • Fig. 14 is a schematic flow chart for establishing the corresponding relationship between cavity air pressure value and air pressure compensation value provided by an embodiment of the present application;
  • Fig. 15 is a schematic diagram of the corresponding relationship between the chamber air pressure value and the air pressure compensation value provided by an embodiment of the present application;
  • Fig. 16 is a schematic diagram of the frame structure of a blood pressure measurement device provided by another embodiment of the present application.
  • Fig. 17 is a schematic diagram of the frame structure of a blood pressure measurement device provided by another embodiment of the present application.
  • Fig. 18 is a schematic flowchart of a blood pressure measurement method provided by another embodiment of the present application.
  • Fig. 19 is a schematic flow chart of establishing the corresponding relationship between the driving state and the air pressure compensation value provided by an embodiment of the present application;
  • FIG. 20 is a schematic diagram of a curve showing the corresponding relationship between driving power and air pressure compensation value provided by an embodiment of the present application.
  • the blood pressure measurement device may be, but not limited to, a large-sized device for blood pressure measurement such as medical or household use, or a portable electronic device with a blood pressure measurement function such as a smart watch or a smart bracelet. Taking a smart watch as an example, it can be worn on the user's wrist to detect the user's blood pressure and other physical signs at any time, so as to realize the prediction of the physical state, so as to effectively avoid dangerous secondary diseases such as stroke caused by high blood pressure.
  • FIG. 1 is a schematic structural diagram of a smart watch with a blood pressure measurement function provided by an embodiment of the present application.
  • a blood pressure measuring device with a blood pressure detection function may generally include a main body 1 and an air bag 2 , and the air bag 2 may be fixed at one end of the main body 1 .
  • the airbag 2 can be fixed on one end surface of the bottom surface of the main body 1 .
  • the bottom surface of the main body 1 refers to the surface of the main body 1 that directly contacts the wrist when the smart watch is worn on the wrist.
  • the blood pressure measuring device may also include a wristband 3, and as shown in FIG. 1 , the airbag 2 may be located on the side of the wristband 3 facing the user's wrist.
  • the airbag 2 can be pressed to the wrist and be attached to the wrist, thereby facilitating the measurement of the user's blood pressure.
  • the airbag 2 and the wristband 3 can be fixed by but not limited to clamping, bonding or riveting, so as to reduce the friction force generated by the mutual movement between the airbag 2 and the wristband 3, thereby reducing the wear and tear of the airbag. risk to increase the lifespan of blood pressure measuring equipment.
  • a smart watch with a blood pressure measurement function may generally be provided with a photoplethysmograph (photoplethysmograph, PPG) module in addition to the above structure.
  • PPG photoplethysmograph
  • the PPG module 102 can also be arranged on the bottom surface of the main body 1.
  • the PPG module 102 can also be arranged on the middle area of the bottom surface of the main body 1 (see the middle circular area of the bottom surface of the main body 1 shown in FIG. 1 ), so as to improve The detection accuracy of the PPG module 102 .
  • the PPG module 102 can realize continuous measurement of the heart rate value of the human body, by setting the airbag 2 and the PPG module 102 on the smart watch at the same time, the function of using the airbag 2 for single blood pressure measurement and the continuous heart rate measurement of the PPG module 102 can be combined. Functions are integrated, and the problem of continuous blood pressure measurement is solved through precise algorithm operation.
  • the smart watch of the embodiment of the present application can also be provided with an electrocardiogram (electrocardiogram, ECG) detection module 103 at the same time, and the ECG detection module 103 can also be arranged on the bottom surface of the main body 1.
  • ECG detection module can also be 103 is set in the middle area of the main body 1, which can be set on the peripheral side of the PPG module 102 for example (see the two arc-shaped areas in the middle of the bottom surface of the main body 1 shown in FIG. 1 ), so as to realize the ECG detection function of the smart watch.
  • FIG. 2 shows a schematic diagram of a frame structure of a traditional blood pressure measurement device.
  • the main body 1 has a cavity 101, and the main functional modules and devices (such as circuit components such as processors and sensors) of the blood pressure measurement equipment can be arranged in the cavity 101 of the main body 1, for example, the air supply and exhaust device 4, the air pressure sensor 5.
  • One end of the airbag 2 can communicate with the supply and exhaust device 4 and the air pressure sensor 5 through the air nozzle, and the airbag 2 can be wound around the user's wrist.
  • the processor 7 controls the drive device 6 to drive the air supply and exhaust device 4 to inflate and deflate the air bag 2, and the air pressure sensor 5 can detect the air pressure in the air bag 2 during the above inflation and deflation process. In this way, the user's blood pressure value can be obtained by calculating the detected barometric pressure value through an algorithm.
  • an embodiment of the present application provides a blood pressure measurement device to reduce the influence of the air pressure in the cavity 101 of the main body 1 of the blood pressure measurement device on its blood pressure measurement, thereby improving the accuracy of blood pressure measurement.
  • a blood pressure measurement device to reduce the influence of the air pressure in the cavity 101 of the main body 1 of the blood pressure measurement device on its blood pressure measurement, thereby improving the accuracy of blood pressure measurement.
  • the specific structure of the blood pressure measurement device is described in detail by taking a smart watch as an example.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • FIG. 3 is a schematic diagram of a frame structure of a blood pressure measurement device provided in one embodiment of the present application
  • FIG. 4 is a schematic diagram of a frame structure of a blood pressure measurement device provided in another embodiment of the present application.
  • the blood pressure measurement device may include a main body 1 and an air bag 2 .
  • the main body 1 has a plurality of side walls, and the multiple side walls are connected to enclose a cavity 101 forming the main body 1, and the main functional modules and devices of the blood pressure measuring device can be arranged in the cavity 101 of the main body 1 .
  • the airbag 2 can be fixed on a side wall of the main body 1, and the airbag 2 has an air cavity.
  • the blood pressure measurement device may also include an air supply and exhaust device 4 and an air pressure sensor 5 , both of which are disposed in the cavity of the main body 1 body 101.
  • the air supply and exhaust device 4 includes an air intake passage 401 and an air discharge passage 402 , both of which are in communication with the cavity 101 of the main body 1 .
  • the air supply and exhaust device 4 communicates with the air chamber of the airbag 2 through the first air passage 81 .
  • the gas in the cavity 101 of the main body 1 can enter the air supply and exhaust device 4 through the intake air passage 401 , and enter the airbag 2 through the first air passage 81 , so that the air supply and exhaust device 4 can inflate the airbag 2 .
  • the air supply and exhaust device 4 draws out the gas in the airbag 2 through the first gas passage 81 , and discharges the gas into the cavity 101 of the main body 1 through the deflation gas passage 402 .
  • the intake air passage 401 and the exhaust air passage 402 of the supply and exhaust device 4 do not work at the same time, in a possible embodiment of the present application, the intake air passage 401 and the exhaust air passage 402 can be combined. That is, only one air path is provided on the air supply and exhaust device 4, and the air supply and exhaust device 4 can inflate the air bag 2 through this air path, and the gas in the air bag 2 can be drawn out through this air path, thereby simplifying the blood pressure measurement equipment Structure.
  • the specific structure of the air supply and exhaust device 4 is not limited.
  • the air supply and exhaust device 4 can be an air pump.
  • the size of the cavity 101 of 1 is set. Considering that the current smart watch with blood pressure measurement function has a small volume of the main body 1 , the space of the cavity 101 is also small, therefore, the volume of the air pump installed in the smart watch is also small.
  • the air pump can be fixed on a structural member (not shown in the figure), and then the air pump can be installed on the main body 1 by fixing the structural member to the main body 1 .
  • the material of the structural member can be, but not limited to, metal or strong non-metal, so that it can reliably support the air pump, thereby improving the structural reliability of the air pump.
  • the fixing method between the air pump and the structural member is not limited, for example, the fixed connection may be performed by means of dispensing or threaded connection.
  • glue can also be dispensed around the air pump to seal the air pump, thereby improving the structural stability of the air pump.
  • the blood pressure measurement device may further include a driving device 6 and a processor 7 , and the processor 7 is electrically connected to the driving device 6 and the air pressure sensor 5 respectively.
  • the positions of the driving device 6 and the processor 7 are not limited.
  • the driving device 6 and the processor 7 can be arranged in the cavity 101 of the main body 1 .
  • the processor 7 is used to control the air pressure sensor 5 and the driving device 6, and the driving device 6 is used to provide driving force for the inflation and deflation process of the air supply and exhaust device 4 under the control of the processor 7.
  • the driving device 6 is specifically defined, for example, it may be a motor or the like.
  • the air pressure sensor 5 is used to detect the air pressure under the control of the processor 7 , and in this application, the air pressure sensor 5 is not specifically limited. In this application, since the air supply and exhaust device 4 is installed in the cavity 101 of the main body 1, the air pressure in the cavity 101 of the main body 1 will be caused when the air supply and exhaust device 4 inflates and deflates the airbag 2. The fluctuation of the air pressure is related to the amount of inflation and deflation of the air supply and exhaust device 4.
  • the air pressure value detected by the air pressure sensor 5 can be Error compensation is performed, thereby reducing the influence of the air pressure in the cavity 101 of the main body 1 of the blood pressure measuring device on its blood pressure measurement, and improving the accuracy of blood pressure measurement.
  • the blood pressure measurement device may further include a flow meter 9 .
  • the flow meter 9 is used to detect the gas flow value of the gas that the air supply and exhaust device 4 communicates with the air bag 2 , or to detect the gas flow value of the gas that the air pressure sensor 5 communicates with the air bag 2 .
  • the blood pressure measurement device stores the corresponding relationship between the gas flow value and the air pressure compensation value.
  • the corresponding relationship can be stored in the processor 7 or in the memory, and the processor 7 can detect the gas flow value according to the flow meter 9 and store The corresponding relationship between the gas flow value and the air pressure compensation value is obtained to obtain the corresponding air pressure compensation value, so that the air pressure value detected by the air pressure sensor 5 is compensated according to the obtained air pressure compensation value, and the driving device 6 can be controlled according to the compensated air pressure value.
  • the driving device 6 drives the air supply and exhaust device 4 to inflate or deflate under the control of the processor 7 , that is, the driving device 6 can be used to provide a driving force for the inflation and deflation process of the air supply and exhaust device 4 .
  • the flow rate The gas flow value detected by the meter 9 can represent the inflation and discharge volume of the air supply and exhaust device 4, so the processor 7 obtains the air pressure compensation according to the gas flow value detected by the flow meter 9 and the corresponding relationship between the stored gas flow value and the air pressure compensation value
  • the air pressure value detected by the air pressure sensor 5 is compensated according to the obtained air pressure compensation value to obtain a relatively accurate air pressure value in the air bag 2 . Furthermore, the influence of the blood pressure measuring device on the blood pressure measurement during the inflation and deflation process can be reduced, thereby improving the accuracy of the blood pressure measurement.
  • the flow meter 9 in order to facilitate the flow meter 9 to detect the gas flow value of the gas that the supply and exhaust device 4 communicates with the airbag 2, for example, referring to FIG. It is used to detect the gas flow value in the first gas path 81 .
  • the flow meter 9 in order to facilitate the flow meter 9 to detect the gas flow value of the gas that the supply and exhaust device 4 communicates with the air pressure sensor 5, for example, referring to FIG. 4, the flow meter 9 can be arranged in the second gas path 82 to detect the gas flow value in the second gas path 82 .
  • the flow meter 9 is set at a distance Compared with the second gas path 82 , the first gas path 81 closer to the supply and exhaust device 4 can improve the measurement accuracy.
  • each air circuit is not limited, it can be arranged in a straight line or in a curved device, and it can be adjusted adaptively according to the components in the inner space of the blood pressure measurement device. It can be understood that, in order to make the diagrams clear, each gas path is shown as a straight line in each schematic diagram of the present application.
  • FIG. 5 is a schematic diagram of a frame structure of a blood pressure measurement device provided in another possible embodiment of the present application
  • FIG. 6 is a schematic diagram of a frame structure of a blood pressure measurement device provided in another possible embodiment of the present application.
  • the difference between the blood pressure measuring device of the embodiment shown in Fig. 5 and Fig. 6 and the embodiment shown in Fig. 3 and Fig. 4 above mainly lies in that: in the embodiment shown in Fig. 5 and Fig. 6 , the blood pressure measuring device also It includes an air path cavity 10 which is arranged in the cavity 101 of the main body 1 .
  • the gas channel cavity 10 can be fixed to the side wall of the main body 1 facing the cavity 101 by bonding or screwing, but not limited to, so as to improve the structural stability of the gas channel cavity 10 .
  • the air pressure sensor 5 and the connection mode between the air supply and exhaust device 4 and the airbag 2 are also changed adaptively.
  • the air supply and exhaust device 4 communicates with the air passage cavity 10 through the first air passage 81
  • the air pressure sensor 5 communicates with the air passage cavity 10 through the second air passage 82 .
  • the first gas path 81 and the second gas path 82 can communicate through the gas path cavity 10
  • the air passage cavity 10 can communicate with the air chamber of the airbag 2 through the third air passage 83 .
  • Other structures of the blood pressure measuring device of the embodiments shown in Fig. 5 and Fig. 6 can be set with reference to any of the above-mentioned embodiments, and will not be repeated here.
  • the air intake air path 401 and the deflation air path 402 of the supply and exhaust device 4 can be connected with the air bag 2 through the air path cavity 10.
  • the air cavity is connected.
  • the air supply and exhaust device 4 can suck gas from the cavity 101 of the main body 1 into the air path cavity 10 , and then enter the air cavity of the airbag 2 .
  • the air supply and exhaust device 4 can also discharge the gas in the airbag 2 by discharging the gas in the gas path cavity 10 through the leak gas path 402 .
  • a connection hole may be provided at the end of the main body.
  • the airbag has an air nozzle, and the air nozzle protrudes out of the airbag from one side surface of the airbag in a direction toward the main body. In this way, the airbag can be plugged into the connection hole through the air nozzle, and the third air passage can be connected with the air nozzle, so as to realize the communication between the air bag and the cavity of the air passage.
  • the air nozzle can also be arranged at the end of the main body, and a connecting hole can be provided on the airbag, so that the airbag and the main body can also be realized by plugging the air nozzle and the connecting hole. Connection.
  • the airbag and the main body may be detachably connected, so that the airbag can be disassembled or replaced as required.
  • the blood pressure measurement device may further include a photoplethysmograph PPG module and an ECG detection module, and the PPG module and the ECG detection module may be arranged on the bottom surface of the main body.
  • the airbag can also be fixedly connected to one end of the bottom surface of the main body, so that the blood pressure measurement device has a relatively compact structure while integrating multiple measurement functions.
  • FIG. 7 is a schematic diagram of a frame structure of a blood pressure measurement device provided in another possible embodiment of the present application.
  • the flow meter 9 can also be arranged on the third gas path 83 for detecting the gas flow value in the third gas path 83 .
  • the gas flow value detected by the flowmeter 9 can be the gas flow value of the gas that the supply and exhaust device 4 communicates with the air bag 2, or the gas flow of the gas that the supply and exhaust device 4 communicates with the air pressure sensor 5 value.
  • the gas flow value detected by the flowmeter 9 can be the gas flow value of the gas that the supply and exhaust device 4 communicates with the air bag 2, or the gas flow of the gas that the supply and exhaust device 4 communicates with the air pressure sensor 5 value.
  • FIG. 7 compared with the blood pressure measuring device of the embodiment shown in FIG. 7 and the embodiment shown in FIG. 5 and FIG. 6, only the position of the flow meter 9 is different, and the working principle is the same .
  • FIG. 8 is a blood pressure measurement method of a blood pressure measurement device according to an embodiment of the present application.
  • the blood pressure measurement device mainly includes a main body, an air bag, an air pressure sensor and a flow meter; wherein, the main body includes a cavity, and the air pressure sensor is located at In the cavity, the air bag has an air cavity, and the air cavity is connected to the cavity.
  • the flow meter is used to detect the gas flow value when the blood pressure measurement device is inflated and deflated, and the air pressure sensor is used to detect the air pressure value in the air cavity; the blood pressure measurement device
  • the blood pressure measurement method of the blood pressure measurement device may include the following steps:
  • the air pressure compensation value can be obtained according to the gas flow value detected by the flow meter and the corresponding relationship between the stored gas flow value and the air pressure compensation value, and the air pressure detected by the air pressure sensor can be adjusted according to the obtained air pressure compensation value.
  • the value is compensated to obtain a more accurate air pressure value in the airbag. Furthermore, the influence of the air pressure in the cavity on the blood pressure measurement can be reduced, thereby improving the accuracy of the blood pressure measurement.
  • the corresponding relationship between the gas flow value and the air pressure compensation value can be obtained in advance through pre-test data analysis, and can be pre-stored in the processor or memory of the blood pressure measurement device before the blood pressure measurement device leaves the factory.
  • the processor can obtain the corresponding relationship between the gas flow value and the air pressure compensation value in the following manner: Step S201, control the blood pressure measurement device to inflate when the air bag is removed, so that the flow detected by the flow meter The gas flow value changes.
  • Removing the air bag in the blood pressure measuring device can make the cavity of the main body communicate with the outside atmosphere, so as to ensure that the air pressure value detected by the air pressure sensor is not affected by the air pressure in the air cavity of the air bag, which is mainly caused by the fluctuation of the air flow in the cavity.
  • the driving device can be controlled so that the gas flow value detected by the flow meter changes from a minimum value to a maximum value.
  • Step S202 Obtain multiple air pressure values detected by the air pressure sensor when the flowmeter detects multiple different gas flow values, and use the acquired multiple air pressure values as the air pressure compensation corresponding to the multiple different gas flow values value.
  • the multiple different gas flow values can be selected from zero to the maximum gas flow value, for example, the maximum gas flow value detected by the flow meter is 100ml/min, then it can be between 0 and 100ml/min , select multiple gas flow values.
  • the selected gas flow values can be distributed in an equal differential, such as 0ml/min, 10ml/min, 20ml/min, 30ml/min, 40ml/min, 50ml/min, 60ml/min, 70ml/min, 80ml/min, 90ml/min, 100ml/min. It can be understood that, the more gas flow values are selected, the more accurate the corresponding relationship between the gas flow value and the air pressure compensation value obtained subsequently will be.
  • the air pressure value ⁇ p1 detected by the air pressure sensor can be obtained, and ⁇ p1 can be used as the air pressure compensation value corresponding to q1.
  • ⁇ p1 may be recorded and stored in a memory for subsequent use.
  • increase the gas flow until the gas flow value detected by the flowmeter is q2 (for example, 10ml/min), obtain the air pressure value ⁇ p2 detected by the air pressure sensor, and use ⁇ p2 as the air pressure compensation value corresponding to q2.
  • ⁇ p2 may be recorded and stored in a memory for subsequent use.
  • ⁇ p3 may be recorded and stored in a memory for subsequent use.
  • qN may take the maximum gas flow value.
  • Step S203 according to a plurality of different gas flow values and their respective corresponding air pressure compensation values, establishing a corresponding relationship between the gas flow values and the air pressure compensation values.
  • the processor may establish a corresponding relationship between the gas flow value and the air pressure compensation value through an interpolation method according to a plurality of different gas flow values and their respective corresponding air pressure compensation values.
  • the corresponding relationship between the pre-established gas flow value and the pressure compensation value is stored, so that when blood pressure detection is performed, the gas flow value detected by the flow meter and the stored gas flow value and pressure compensation value can be
  • the air pressure compensation value is obtained according to the corresponding relationship, and the air pressure value detected by the air pressure sensor is compensated according to the obtained air pressure compensation value to obtain a more accurate air pressure value in the air bag.
  • the blood pressure measurement process of the blood pressure measurement device may include: controlling the driving device to drive the air supply and exhaust device to inflate the airbag, then reading the air pressure value detected by the air pressure sensor and the gas flow value detected by the flow meter, and then according to the gas flow detected by the flow meter
  • the air pressure compensation value is obtained from the flow value and the corresponding relationship between the stored gas flow value and the air pressure compensation value, and the air pressure value detected by the air pressure sensor is compensated according to the obtained air pressure compensation value.
  • the air pressure compensation value obtains the air pressure value after compensation, and then controls the working parameters (such as voltage, current, frequency, etc.) of the driving circuit according to the compensated air pressure value to drive the air supply and exhaust device to inflate the airbag. Perform the above process at least once, such as 1 time, 2 times, 3 times or 4 times, so that the compensated air pressure value meets the requirements of the boost curve required for blood pressure measurement, thereby completing the blood pressure measurement.
  • the flow meter is not limited to directly detecting the gas flow rate when the blood pressure measurement device is inflated, and other sensors that can indirectly reflect the gas flow rate can also be used instead of the flow meter, such as using a pressure sensor to accomplish.
  • sensors that can indirectly reflect the gas flow rate can also be used instead of the flow meter, such as using a pressure sensor to accomplish.
  • a pressure sensor to accomplish.
  • FIG. 11 is a schematic structural diagram of a blood pressure measurement device provided by another embodiment of the present application.
  • the structure of the blood pressure measuring device of this embodiment is different from that of any of the above-mentioned embodiments.
  • the main difference is that the blood pressure measuring device does not include a flow meter, but includes two air pressure sensors, that is, the first air pressure sensor 5a and the first air pressure sensor 5a.
  • the second air pressure sensor 5b is a flow meter, but includes two air pressure sensors, that is, the first air pressure sensor 5a and the first air pressure sensor 5a.
  • the second air pressure sensor 5b is a schematic structural diagram of a blood pressure measurement device provided by another embodiment of the present application.
  • the structure of the blood pressure measuring device of this embodiment is different from that of any of the above-mentioned embodiments.
  • the main difference is that the blood pressure measuring device does not include a flow meter, but includes two air pressure sensors, that is, the first air pressure sensor 5a and the first air pressure sensor 5a.
  • both the first air pressure sensor 5a and the second air pressure sensor 5b are arranged in the cavity 101;
  • the second air pressure sensor 5b is used to detect the air pressure value in the cavity 101 of the main body 1;
  • the corresponding relationship between the cavity air pressure value and the air pressure compensation value is stored in the blood pressure measuring device, for example, it can be stored in processor or memory.
  • the processor 7 is electrically connected to the first air pressure sensor 5a, the second air pressure sensor 5b, and the driving device 6, and is used for calculating the air pressure value and the air pressure compensation value of the chamber according to the air pressure value detected by the second air pressure sensor 5b and the stored blood pressure measurement equipment.
  • the corresponding relationship obtains the corresponding air pressure compensation value, and then compensates the air pressure value detected by the first air pressure sensor 5a according to the obtained air pressure compensation value, and controls the driving device 6 according to the compensated air pressure value; the driving device 6 and the air supply and exhaust device 4
  • the electric connection is used to drive the air supply and exhaust device 4 to inflate or deflate under the control of the processor 7 .
  • the air pressure value in the cavity 101 is detected by the second air pressure sensor 5b, so that the processor 7 detects the air pressure according to the second air pressure sensor 5b.
  • the air pressure value and the corresponding relationship between the stored cavity air pressure value and the air pressure compensation value are obtained to obtain the air pressure compensation value, and then the air pressure value detected by the first air pressure sensor 5a is compensated according to the obtained air pressure compensation value to obtain a more accurate air pressure in the air bag 2 value.
  • the influence of the blood pressure measuring device on the blood pressure measurement during the inflation and deflation process can be reduced, thereby improving the accuracy of the blood pressure measurement.
  • the second air pressure sensor 5b can be close to The air supply and exhaust device 4 is provided, and the closer the second air pressure sensor 5b is to the air supply and exhaust device 4, the more accurate the measurement result will be.
  • an air path cavity 10 may be provided in the blood pressure measuring device, so that the air supply and exhaust device 4 communicates with the air path cavity 10 through the first air path 81, so that the first air pressure sensor 5a can
  • the air path cavity 10 is communicated with the air path cavity 10 through the second air path 82
  • the air path cavity 10 is communicated with the air bag 2 through the third air path 83 , so as to realize the connection of the single air nozzle between the main body 1 and the air bag 2 .
  • the specific arrangement of other structures of the blood pressure measuring device shown in FIG. 11 and FIG. 12 will not be repeated here.
  • Fig. 13 is a blood pressure measurement method of a blood pressure measurement device according to an embodiment of the present application.
  • the blood pressure measurement device mainly includes a main body, an air bag, a first air pressure sensor, and a second air pressure sensor; wherein, the main body includes a cavity , the air pressure sensor is located in the cavity, the airbag has an air cavity, the air cavity communicates with the cavity, the first air pressure sensor is used to detect the air pressure value in the air cavity, and the second air pressure sensor is used to detect the air pressure value in the cavity.
  • the blood pressure measurement method of the blood pressure measurement device may include the following steps:
  • Step S301 acquiring the air pressure value detected by the first air pressure sensor and the air pressure value detected by the second air pressure sensor when the blood pressure measuring device is inflated and deflated.
  • Step S302 obtaining the corresponding air pressure compensation value according to the air pressure value detected by the second air pressure sensor and the stored correspondence between the cavity air pressure value and the air pressure compensation value.
  • Step S303 Compensate the air pressure value detected by the first air pressure sensor according to the obtained air pressure compensation value.
  • the air pressure compensation value can be obtained according to the air pressure value detected by the second air pressure sensor and the stored corresponding relationship between the cavity air pressure value and the air pressure compensation value, and the first air pressure compensation value can be adjusted according to the obtained air pressure compensation value.
  • the air pressure value detected by the sensor is compensated to obtain a relatively accurate air pressure value in the air bag. Furthermore, the influence of the air pressure in the cavity on the blood pressure measurement can be reduced, thereby improving the accuracy of the blood pressure measurement.
  • the corresponding relationship between the cavity air pressure value and the air pressure compensation value can also be obtained through data analysis in advance, and stored in the processor or memory of the blood pressure measurement device in advance, and the corresponding relationship between the cavity air pressure value and the air pressure compensation value can be The blood pressure measuring device is pre-established through a processor before leaving the factory.
  • the processor can obtain the corresponding relationship between the cavity air pressure value and the air pressure compensation value in the following manner:
  • Step S401 controlling the blood pressure measuring device to inflate when the airbag is removed, so that the first air pressure value detected by the second air pressure sensor changes.
  • Removing the air bag in the blood pressure measuring device can make the cavity of the main body communicate with the outside atmosphere, so as to ensure that the air pressure value detected by the air pressure sensor is not affected by the air pressure in the air cavity of the air bag, which is mainly caused by the fluctuation of the air flow in the cavity.
  • the driving device can be controlled to gradually increase the driving power from a small driving power to a maximum driving power to drive the air supply and exhaust device.
  • Step S402. Obtain multiple second air pressure values detected by the first air pressure sensor when the second air pressure sensor is at multiple different first air pressure values, and use the acquired multiple second air pressure values as multiple different first air pressure values.
  • the air pressure compensation value corresponding to the gas flow value respectively.
  • the second air pressure value q21 detected by the first air pressure sensor can be acquired, and q21 can be used as the air pressure compensation value ⁇ p1 corresponding to q11. Then increase the driving state until the first air pressure value detected by the second air pressure sensor is q12, acquire the second air pressure value q22 detected by the first air pressure sensor, and use q22 as the air pressure compensation value ⁇ p2 corresponding to q12.
  • Step S403 according to a plurality of different first air pressure values and their corresponding air pressure compensation values, establish a corresponding relationship between cavity air pressure values and air pressure compensation values.
  • the processor may establish a corresponding relationship between the cavity air pressure value and the air pressure compensation value through an interpolation method according to a plurality of different first air pressure values and their respective corresponding air pressure compensation values.
  • q1(x) for the first air pressure value q1(x) between q11 to q12, q12 to q13, ..., q1N-1 to q1N, for example, q1(x) is located between q1i to q1j, then q1(x) corresponds to
  • the corresponding air pressure compensation value ⁇ p (x) can also be confirmed by other means, which is not limited here.
  • the air pressure compensation value is obtained according to the corresponding relationship of the compensation value, and the air pressure value detected by the first air pressure sensor is compensated according to the obtained air pressure compensation value to obtain a more accurate air pressure value in the air bag.
  • the blood pressure measurement process of the blood pressure measurement device may include: controlling the driving device to drive the air supply and exhaust device to inflate the air bag, then reading the air pressure value detected by the first air pressure sensor and the air pressure value detected by the second air pressure sensor, and then according to the second
  • the air pressure value detected by the air pressure sensor and the corresponding relationship between the stored cavity air pressure value and the air pressure compensation value are used to obtain the air pressure compensation value, and the air pressure value detected by the first air pressure sensor is compensated according to the obtained air pressure compensation value.
  • the first air pressure can be The air pressure value detected by the sensor is subtracted from the obtained air pressure compensation value to obtain the compensated air pressure value, and then the operating parameters of the drive circuit (such as voltage, current, frequency, etc.) are controlled according to the compensated air pressure value to drive the air supply and exhaust device to inflate the airbag .
  • the above process at least once, such as 1 time, 2 times, 3 times or 4 times, so that the compensated air pressure value meets the requirements of the boost curve required for blood pressure measurement, thereby completing the blood pressure measurement.
  • FIG. 16 is a schematic structural diagram of a blood pressure measuring device provided in another embodiment of the present application.
  • the structure of the blood pressure measuring device in this embodiment is also different from any of the above embodiments, the main difference being that the blood pressure measuring device only includes an air pressure sensor and does not include a flow meter.
  • the air pressure sensor 5 communicates with the air chamber of the air bag 2 through the second air circuit 82, and is used to detect the air pressure value in the air chamber;
  • the processor 7 is electrically connected with the air pressure sensor 5 and the driving device 6, and is used
  • the air pressure compensation value is obtained according to the driving state of the driving device 6 and the corresponding relationship between the driving state and the air pressure compensation value stored in the blood pressure measuring device, and the air pressure value detected by the air pressure sensor 5 is compensated according to the obtained air pressure compensation value, and according to the compensated
  • the air pressure value controls the driving device 6;
  • the driving device 6 is electrically connected to the air supply and exhaust device 4, and is used to drive the air supply and exhaust device 4 to inflate or deflate under the control of the processor 7.
  • the processor 7 can obtain the air pressure compensation value according to the driving state of the driving device 6 and the corresponding relationship between the stored driving state and the air pressure compensation value , and then compensate the air pressure value detected by the air pressure sensor according to the obtained air pressure compensation value to obtain a relatively accurate air pressure value in the airbag 2 . Furthermore, the influence of the blood pressure measuring device on the blood pressure measurement during the inflation and deflation process can be reduced, thereby improving the accuracy of the blood pressure measurement.
  • the driving state may include at least one parameter related to the power supply, such as a driving voltage, a driving current, and a duty cycle.
  • an air path cavity 10 may be provided in the blood pressure measuring device, so that the air supply and exhaust device 4 communicates with the air path cavity 10 through the first air path 81, so that the first air pressure sensor 5a can
  • the air path cavity 10 is communicated with the air path cavity 10 through the second air path 82
  • the air path cavity 10 is communicated with the air bag 2 through the third air path 83 , so as to realize the connection of the single air nozzle between the main body 1 and the air bag 2 .
  • the specific arrangement of other structures of the blood pressure measuring device shown in FIG. 16 and FIG. 17 will not be repeated here.
  • Fig. 18 is a blood pressure measuring method of a blood pressure measuring device according to an embodiment of the present application.
  • the blood pressure measuring device mainly includes a main body, an air bag and an air pressure sensor flowmeter; wherein, the main body includes a cavity, and the air pressure sensor is located in the cavity.
  • the air bag has an air cavity, the air cavity communicates with the cavity, and the air pressure sensor is used to detect the air pressure value in the air cavity;
  • the specific implementation of the blood pressure measurement device can refer to the blood pressure measurement of the embodiment shown in the above-mentioned Figures 16 to 17 equipment, which will not be described here.
  • the blood pressure measurement method of the blood pressure measurement device may include the following steps:
  • the air pressure compensation value can be obtained according to the driving state of the blood pressure measuring device and the stored correspondence between the driving state and the air pressure compensation value, and the air pressure value detected by the air pressure sensor can be calculated according to the obtained air pressure compensation value. Compensation to obtain a more accurate air pressure value in the airbag. Furthermore, the influence of the air pressure in the cavity on the blood pressure measurement can be reduced, thereby improving the accuracy of the blood pressure measurement.
  • the corresponding relationship between the driving state and the air pressure compensation value can be obtained through analysis of test data in advance, and stored in the processor or memory of the blood pressure measurement device.
  • the processor can obtain the corresponding relationship between the driving state and the air pressure compensation value in the following manner:
  • Step S601 controlling the blood pressure measuring device to inflate in multiple different driving states when the airbag is removed.
  • Removing the air bag in the blood pressure measuring device can make the cavity of the main body communicate with the outside atmosphere, so as to ensure that the air pressure value detected by the air pressure sensor is not affected by the air pressure in the air cavity of the air bag, which is mainly caused by the fluctuation of the air flow in the cavity.
  • the driving device can be controlled to gradually increase the driving power from a small driving power to a maximum driving power to drive the supply and exhaust device 4 .
  • Step S602. Acquire multiple air pressure values detected by the air pressure sensor when the blood pressure measurement device is driven in multiple different driving states, and use the obtained multiple air pressure values as air pressure compensation values corresponding to the multiple different driving states.
  • the air pressure value q1 detected by the air pressure sensor can be acquired, and q1 can be used as the air pressure compensation value ⁇ p1 corresponding to S1. Then, when the driving power is increased to S2, the air pressure value q2 detected by the air pressure sensor is obtained, and q2 is used as the air pressure compensation value ⁇ p2 corresponding to S2.
  • the air pressure value qN detected by the air pressure sensor is obtained, and qN is used as the air pressure compensation value ⁇ pN corresponding to SN.
  • Step S603 according to a plurality of different driving states and corresponding air pressure compensation values, establish a corresponding relationship between the driving state and the air pressure compensation value.
  • the processor may establish a corresponding relationship between the driving state and the air pressure compensation value through an interpolation method according to a plurality of different driving states and their respective corresponding air pressure compensation values.
  • the driving state as the driving power as an example, for example, for the driving power S(x) between S1 to S2, S2 to S3, ..., SN-1 to SN, for example, S(x) is between Si and Sj
  • the driving state and ⁇ pN can also be established in other ways
  • the corresponding relationship of the air pressure compensation value is not limited here.
  • the blood pressure measurement process of the blood pressure measurement device may include: controlling the driving device to drive the air supply and exhaust device to inflate the air bag, and reading the air pressure value detected by the air pressure sensor, and then according to the driving state of the driving device and the stored driving state and air pressure.
  • the corresponding relationship of the compensation value obtains the air pressure compensation value, and compensates the air pressure value detected by the air pressure sensor according to the obtained air pressure compensation value. Specifically, the air pressure value detected by the air pressure sensor can be subtracted from the obtained air pressure compensation value to obtain the compensated air pressure value. Then control the operating parameters (such as voltage, current, frequency, etc.) of the driving circuit according to the compensated air pressure value to drive the air supply and exhaust device to inflate the airbag. Perform the above process at least once, such as 1 time, 2 times, 3 times or 4 times, so that the compensated air pressure value meets the requirements of the boost curve required for blood pressure measurement, thereby completing the blood pressure measurement.
  • the operating parameters such as voltage, current, frequency, etc.
  • the air pressure value detected by the air pressure sensor can be compensated according to the obtained air pressure compensation value, thereby effectively reducing the impact of the air pressure in the cavity of the main body of the blood pressure measurement device.
  • the influence of the measured value of the air pressure sensor, so that the blood pressure measurement result is more accurate.
  • an embodiment of the present application further provides an electronic device, and the electronic device may include any blood pressure measurement device provided in the foregoing embodiments. Since the problem-solving principle of the electronic device is similar to that of the aforementioned blood pressure measurement device, the implementation of the electronic device can refer to the implementation of the aforementioned blood pressure measurement device, and the repetition will not be repeated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种血压测量设备及电子设备包括主体(1)、处理器(7)、气囊(2)、供排气装置(4)、驱动装置(6)、气压传感器(5)和流量计(9)。主体(1)包括腔体(101),气囊(2)具有气腔,气囊(2)固定于主体(1)的一个端部;供排气装置(4)通过第一气路(81)与气囊(2)的气腔相连通;气压传感器(5)通过第二气路(82)与气囊(2)的气腔相连通;流量计(9)用于检测供排气装置(4)与气囊(2)之间的气体流量值,或用于检测气压传感器(5)与气囊(2)之间的气体流量值;处理器(7)可以根据流量计(9)检测的气体流量值以及气体流量值与气压补偿值的对应关系对气压传感器(5)检测的气压值进行补偿,从而可以有效的减小血压测量设备在充放气过程中对气压传感器(5)的测量值的影响,使血压测量结果较为准确。

Description

一种血压测量设备及电子设备
相关申请的交叉引用
本申请要求在2021年12月23日提交中国专利局、申请号为202111591753.0、申请名称为“一种血压测量设备及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到电子设备技术领域,尤其涉及到一种血压测量设备及电子设备。
背景技术
当今人们越来越重视自身及家人的健康情况,血压测量在其中也显得尤为重要。随着科技的进步与发展,不仅出现了家庭用的血压测量设备,在一些可穿戴设备(例如智能手表或者智能手环等)中也开始集成血压测量功能,其为用户随时随地进行血压测量提供了可能性。
目前的血压测量设备,均是直接将微泵和压力传感器置于血压测量设备的主体内部。压力传感器可通过对血压测量设备的气压进行测量,来获得用户的血压值。但是,在应用该血压测量设备进行血压测量的过程中,由于微泵会将主体内部的气体充入气囊,充气过程中会产生气流,气流会造成气压波动,从而造成压力传感器检测到的气压不稳定,影响血压测量设备测量得到的血压值的准确度。
因此,如何提供一种能够满足血压测量精度的血压测量设备已成为本领域技术人员亟待解决的难题。
发明内容
本申请提供了一种血压测量设备及电子设备,以减小血压测量设备的内部气压对于其血压测量的影响,从而提高血压测量的精度。
第一方面,本申请提供了一种血压测量设备,该血压测量设备可以包括主体、处理器、气囊、供排气装置、驱动装置、气压传感器和流量计。其中,主体包括一个腔体,血压测量设备的各功能模块或者器件可以设置于该腔体内,例如上述的驱动装置、处理器、供排气装置、气压传感器可设置于腔体内。气囊固定于主体的一个端部,且气囊具有气腔。供排气装置包括进气气路和泄气气路,且供排气装置通过第一气路与气囊的气腔相连通。气压传感器可以通过第二气路与气囊的气腔相连通,从而可以检测气腔内的气压值。流量计用于检测供排气装置与气囊相流通的气体的气体流量值,或用于检测气压传感器与气囊相流通的气体的气体流量值。血压测量设备中存储有气体流量值与气压补偿值的对应关系,例如存储于处理器中。处理器与气压传感器、流量计以及驱动装置电连接,处理器可以根据流量计检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系获得气压补偿值,从而可以根据获得的气压补偿值对气压传感器检测的气压值进行补偿,进而可以根据补偿后的气压值控制驱动装置。而驱动装置与供排气装置电连接,用于在处理器的控制 下驱动供排气装置进行充气或放气。
采用该血压测量设备进行血压测量时,在供排气装置对气囊进行充放气时,由于供排气装置与气囊以及气压传感器三者之间的气体是流通的,因此通过流量计检测到的气体流量值可以用来表征供排气装置的充放气量,从而处理器根据流量计检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。进而可以减小血压测量设备在充放气过程中对血压测量的影响,提高血压测量的精度。
在本申请中,为了方便流量计检测供排气装置与气囊相流通的气体的气体流量值,流量计可以设置于第一气路上,以用于检测第一气路中的气体流量值。或者,为了方便流量计检测供排气装置与气压传感器相流通的气体的气体流量值,流量计可以设置于第二气路上,以用于检测第二气路中的气体流量值。
在本申请中,供排气装置和压力传感器可通过对应的气路与气囊直接连接,或者间接连接。示例性的,在本申请一个可能的实现方式中,血压测量设备还可以包括气路腔体,该气路腔体设置于主体的腔体内。另外,供排气装置可通过第一气路与气路腔体相连通,气压传感器可通过第二气路与气路腔体相连通,而气路腔体通过第三气路与气囊的气腔相连通。这样,供排气装置和气压传感器的用于与气囊相连通的气路可先通过气路腔体进行合并,然后再通过一条气路与气囊进行连通。则此时只需要在主体的侧壁上开设一个用于与气囊进行连接的通孔,从而可以减少主体上开孔的数量,以提高血压测量设备的防水性能以及结构稳定性。
需要说明的是,在本申请中,当血压测量设备还包括气路腔体时,流量计也可以设置在第三气路上,以用于检测第三气路中的气体流量值。这样,流量计检测到的气体流量值既可以是供排气装置与气囊相流通的气体的气体流量值,也可以是供排气装置与气压传感器相流通的气体的气体流量值。
在本申请一个可能的实现方式中,为了将气囊与主体进行连接,可以在主体的端部设置有一个连接孔。另外,气囊具有一个气嘴,气嘴自气囊的一侧表面沿朝向主体的方向凸出于气囊。这样,即可通过气嘴插接于连接孔,且将第三气路与气嘴连接,来实现气囊与气路腔体的连通。相类似的,在另外一些可能的实现方式中,还可以将气嘴设置于主体的端部,而在气囊上设置连接孔,这样也可以通过气嘴与连接孔的插接来实现气囊与主体的连接。
值得一提的是,在本申请中,气囊与主体之间可为可拆卸连接,这样,可根据需要对气囊进行拆卸或者更换等。另外,在本申请一个可能的实现方式中,血压测量设备还可以包括光电容积描记器PPG模块和ECG检测模块,该PPG模块与ECG检测模块可以设置于主体的底面。而气囊也可以与主体的底面的一个端部固定连接,从而在使血压测量设备集成多项测量功能的同时,使该血压测量设备的结构较为紧凑。
在本申请中,气体流量值与气压补偿值的对应关系可以预先通过对预先测试的数据分析得到,并可以在血压测量设备出厂前预先存储在血压测量设备中的处理器或存储器中。
示例性的,在本申请中,处理器可以通过如下方式获取气体流量值与气压补偿值的对应关系:首先控制血压测量设备在卸除气囊的情况下进行充气,以使流量计检测到的气体流量值发生变化;并且获取流量计在检测到多个不同的气体流量值时气压传感器检测到的多个气压值,并将获取到的多个气压值作为该多个不同的气体流量值分别对应的气压补偿 值;最后根据多个不同的气体流量值和其分别对应的气压补偿值,建立气体流量值与气压补偿值的对应关系。
示例性的,处理器可以根据多个不同的气体流量值和其分别对应的气压补偿值,通过插值法建立气体流量值与气压补偿值的对应关系。
由上述可知,正是存储了预先建立的气体流量值与气压补偿值的对应关系,这样在进行血压检测时,就可以根据流量计检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。
其中,血压测量设备进行血压测量的流程可以包括:控制驱动装置驱动供排气装置向气囊充气,然后读取气压传感器检测的气压值和流量计检测的气体流量值,然后根据流量计检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,具体可以将气压传感器检测的气压值减去获得的气压补偿值从而得到补偿后的气压值,然后根据补偿后的气压值控制驱动电路的工作参数(例如电压,电流,频率等)驱动供排气装置向气囊充气。执行上述流程至少一次,例如1次、2次、3次或4次等,使补偿后的气压值满足血压测量所需的升压曲线要求,从而完成血压测量。
第二方面,本申请还提供了另一种血压测量设备,该血压测量设备可以包括主体、处理器、气囊、供排气装置、驱动装置、第一气压传感器和第二气压传感器。其中,主体包括一个腔体,血压测量设备的各功能模块或者器件可以设置于该腔体内,例如上述的驱动装置、处理器、供排气装置、第一气压传感器、第二气压传感器可设置于腔体内。气囊固定于主体的一个端部,且气囊具有气腔。供排气装置包括进气气路和泄气气路,且供排气装置通过第一气路与气囊的气腔相连通。第一气压传感器可以通过第二气路与气囊的气腔相连通,从而可以检测气腔内的气压值。第二气压传感器用于检测腔体内的气压值。血压测量设备中存储有腔体气压值与气压补偿值的对应关系,例如可以存储于处理器或存储器中。处理器与第一气压传感器、第二气压传感器以及驱动装置电连接,处理器可以根据第二气压传感器检测的气压值以及存储的腔体气压值与气压补偿值的对应关系获得气压补偿值,从而可以根据获得的气压补偿值对第一气压传感器检测的气压值进行补偿,并根据补偿后的气压值控制驱动装置。而驱动装置与供排气装置电连接,用于在处理器的控制下驱动供排气装置进行充放气。
在该血压测量设备中,在供排气装置对气囊进行充放气时,通过第二气压传感器来检测腔体内的气压值,从而处理器根据第二气压传感器检测的气压值以及存储的腔体气压值与气压补偿值的对应关系获得气压补偿值,再根据获得的气压补偿值对第一气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。进而可以减小血压测量设备在充放气过程中对血压测量的影响,从而提高血压测量的精度。
本申请中,由于气腔内气体波动是由供排气装置充放气产生的,距离供排气装置越近的区域,产生的气压波动越大,因此,第二气压传感器可以靠近供排气装置设置,第二气压传感器距离供排气装置越近,测量结果越准确。
在本申请中,供排气装置和压力传感器可通过对应的气路与气囊直接连接,或者间接连接。示例性的,在本申请一个可能的实现方式中,血压测量设备还可以包括气路腔体,该气路腔体设置于主体的腔体内。另外,供排气装置可通过第一气路与气路腔体相连通, 第一气压传感器可通过第二气路与气路腔体相连通,而气路腔体通过第三气路与气囊的气腔相连通。这样,供排气装置和第一气压传感器的用于与气囊相连通的气路可先通过气路腔体进行合并,然后再通过一条气路与气囊进行连通。则此时只需要在主体的侧壁上开设一个用于与气囊进行连接的通孔,从而可以减少主体上开孔的数量,以提高血压测量设备的防水性能以及结构稳定性。
示例性的,腔体气压值与气压补偿值的对应关系也可以预先通过数据分析得到,并预先存储在血压测量设备中的处理器中,腔体气压值与气压补偿值的对应关系可以在血压测量设备出厂前预先建立。
在一种可行的实现方式中,处理器可以通过如下方式获取腔体气压值与气压补偿值的对应关系:首先控制血压测量设备在卸除气囊的情况下进行充气,以使第二气压传感器检测到的第一气压值发生变化。并且,获取第二气压传感器在多个不同的第一气压值时第一气压传感器检测到的多个第二气压值,并将获取到的多个第二气压值作为多个不同的第一气压值分别对应的气压补偿值。最后根据多个不同的第一气压值和其分别对应的气压补偿值,建立腔体气压值与气压补偿值的对应关系。
示例性的,处理器可以根据多个不同的第一气压值和其分别对应的气压补偿值,通过插值法建立腔体气压值与气压补偿值的对应关系。
由上述可知,正是存储了预先建立的腔体气压值与气压补偿值的对应关系,这样在进行血压检测时,就可以根据第二气压传感器检测的气压值以及存储的腔体气压值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对第一气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。其中,血压测量设备进行血压测量的流程可以包括:控制驱动装置驱动供排气装置向气囊充气,然后读取第一气压传感器检测的气压值和第二气压传感器检测的气压值,然后根据第二气压传感器检测的气压值以及存储的腔体气压值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对第一气压传感器检测的气压值进行补偿,具体可以将第一气压传感器检测的气压值减去获得的气压补偿值从而得到补偿后的气压值,然后根据补偿后的气压值控制驱动电路的工作参数(例如电压,电流,频率等)驱动供排气装置向气囊充气。执行上述流程至少一次,例如1次、2次、3次或4次等,使补偿后的气压值满足血压测量所需的升压曲线要求,从而完成血压测量。
第三方面,本申请还提供了另一种血压测量设备,该血压测量设备可以包括主体、处理器、气囊、供排气装置、驱动装置和气压传感器。其中,主体包括一个腔体,血压测量设备的各功能模块或者器件可以设置于该腔体内,例如上述的驱动装置、处理器、供排气装置、第一气压传感器、第二气压传感器可设置于腔体内。气囊固定于主体的一个端部,且气囊具有气腔。供排气装置包括进气气路和泄气气路,且供排气装置通过第一气路与气囊的气腔相连通。气压传感器可以通过第二气路与气囊的气腔相连通,从而可以检测气腔内的气压值。血压测量设备中存储有驱动状态与气压补偿值的对应关系,例如存储于处理器中。处理器与气压传感器和驱动装置电连接,处理器可以根据驱动装置的驱动状态以及存储的驱动状态与气压补偿值的对应关系获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,并根据补偿后的气压值控制驱动装置。而驱动装置与供排气装置电连接,用于在处理器的控制下驱动供排气装置进行充放气。
在该血压测量设备中,在供排气装置对气囊进行充放气时,由于处理器可以根据驱动 装置的驱动状态以及存储的驱动状态与气压补偿值的对应关系获得气压补偿值,再根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。进而可以减小血压测量设备在充放气过程中对血压测量的影响,从而提高血压测量的精度。
需要说明的是,驱动状态可以包括驱动电压、驱动电流、占空比等涉及供电功率的至少一个参数。
值得一提的是,可以在血压测量设备中设置有气路腔体,以使供排气装置通过第一气路与气路腔体连通,使第一气压传感器可通过第二气路与气路腔体连通,并使气路腔体通过第三气路与气囊相连通,以实现主体和气囊之间的单气嘴的连接。
在本申请中,驱动状态与气压补偿值的对应关系可以预先通过测试数据分析得到,并预先存储在血压测量设备的处理器中。
示例性的,在本申请中,处理器可以通过如下方式获得驱动状态与气压补偿值的对应关系:控制血压测量设备在卸除气囊的情况下以多个不同的驱动状态进行充气;然后获取血压测量设备以多个不同的驱动状态进行驱动时气压传感器检测到的多个气压值,并将获取到的多个气压值作为多个不同的驱动状态分别对应的气压补偿值。最后根据多个不同的驱动状态和其分别对应的气压补偿值,建立驱动状态与气压补偿值的对应关系。
示例性的,处理器可以根据多个不同的驱动状态和其分别对应的气压补偿值,通过插值法建立驱动状态与气压补偿值的对应关系。
由上述可知,正是存储了预先建立的驱动状态与气压补偿值的对应关系,这样在进行血压检测时,就可以根据驱动状态以及存储的驱动状态与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。
其中,血压测量设备进行血压测量的流程可以包括:控制驱动装置驱动供排气装置向气囊充气,并读取气压传感器检测的气压值,然后再根据驱动装置的驱动状态以及存储的驱动状态与气压补偿值的对应关系获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,具体可以将气压传感器检测的气压值减去获得的气压补偿值从而得到补偿后的气压值,然后根据补偿后的气压值控制驱动电路的工作参数(例如电压,电流,频率等)驱动供排气装置向气囊充气。执行上述流程至少一次,例如1次、2次、3次或4次等,使补偿后的气压值满足血压测量所需的升压曲线要求,从而完成血压测量。
第四方面,本申请还提供了一种电子设备,该电子设备可以包括如上述第一方面至第三方面中任意一种实施方式所提供的血压测量设备。
上述第四方面可以达到的技术效果可以参照上述第一方面至第三方面中任一可能设计可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请一种实施例提供的血压测量设备的结构示意图;
图2为本申请一种实施例提供的现有的血压测量设备的框架结构示意图;
图3为本申请一种实施例提供的血压测量设备的框架结构示意图;
图4为本申请另一种实施例提供的血压测量设备的框架结构示意图;
图5为本申请另一种实施例提供的血压测量设备的框架结构示意图;
图6为本申请另一种实施例提供的血压测量设备的框架结构示意图;
图7为本申请另一种实施例提供的血压测量设备的框架结构示意图;
图8为本申请一种实施例提供的血压测量方法的流程示意图;
图9为本申请一种实施例提供的建立气体流量值与气压补偿值的对应关系的流程示意图;
图10为本申请一种实施例提供的体流量值与气压补偿值的对应关系的曲线示意图;
图11为本申请另一种实施例提供的血压测量设备的框架结构示意图;
图12为本申请另一种实施例提供的血压测量设备的框架结构示意图;
图13为本申请另一种实施例提供的血压测量方法的流程示意图;
图14为本申请一种实施例提供的建立腔体气压值与气压补偿值的对应关系的流程示意图;
图15为本申请一种实施例提供的腔体气压值与气压补偿值的对应关系的曲线示意图;
图16为本申请另一种实施例提供的血压测量设备的框架结构示意图;
图17为本申请另一种实施例提供的血压测量设备的框架结构示意图;
图18为本申请另一种实施例提供的血压测量方法的流程示意图;
图19为本申请一种实施例提供的建立驱动状态与气压补偿值的对应关系的流程示意图;
图20为本申请一种实施例提供的驱动功率与气压补偿值的对应关系的曲线示意图。
附图标记:
1           主体;                 101             腔体;
102         PPG模块;              103             ECG检测模块;
2           气囊;                 3               腕带;
4           供排气装置;           401             进气气路;
402         泄气气路;             5               气压传感器;
5a          第一气压传感器;       5b              第二气压传感器;
6           驱动装置;             7               处理器;
81          第一气路;             82              第二气路;
83          第三气路;             9               流量计;
10          气路腔体。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的血压测量设备,下面首先说明一下其应用场景。该血压测量设备可以但不限于为医用、家用等体积较大的用于血压测量的设备,也可以为智能手表、智能手环等便携性的带有血压测量功能的电子设备。以智能手表为例,其可以佩戴于用户的腕部,以能够随时检测用户的血压等身体体征,以实现对身体状态的预知,从而可有效的避免高血压引起的中风等危险继发症。
参照图1,图1为本申请一种实施例提供的带有血压测量功能的智能手表的结构示意图。带有血压检测功能的血压测量设备,一般可以包括主体1和气囊2,气囊2可固定于主体1的一个端部。示例性的,气囊2可以固定于主体1的底面的一个端面。在本申请中, 主体1的底面是指智能手表在佩戴于腕部时,主体1直接与腕部接触的表面。另外,血压测量设备还可以包括腕带3,如图1所示,气囊2可位于腕带3的朝向用户的腕部的一侧。这样,在腕带3绕于用户的腕部时,可以将气囊2压向腕部,并使其与腕部相贴合,从而便于实现对用户的血压的测量。可以理解的是,气囊2与腕带3可以但不限于通过卡接、粘接或者铆接等方式相固定,以减少气囊2与腕带3之间相互移动产生的摩擦力,从而降低气囊磨损的风险,以提高血压测量设备的使用寿命。
带有血压测量功能的智能手表,除了包括上述结构外,通常还可以设置有光电容积描记器(photoplethysmograph,PPG)模块。其中,PPG模块102也可以设置于主体1的底面,另外,还可将PPG模块102设置于主体1的底面的中间区域(参见图1所示主体1的底面中间圆形区域),以便于提高PPG模块102的检测准确性。由于PPG模块102可实现对人体的心率值进行连续的测量,通过在智能手表上同时设置气囊2和PPG模块102,可将利用气囊2进行单次血压测量的功能与PPG模块102的连续心率测量功能进行集成,并通过精确的算法运算解决连续血压测量的难题。
可继续参照图1,本申请实施例的智能手表还可以同时设置有心电图(electrocardiogram,ECG)检测模块103,该ECG检测模块103也可以设置于主体1的底面,另外,还可将ECG检测模块103设置于主体1的中间区域,其示例性的可以设置于PPG模块102的周侧(参见图1所示主体1的底面中间两个弧形区域),从而实现智能手表的心电图检测功能。
可一并参照图2,图2展示了一种传统的血压测量设备的框架结构示意图。其中,主体1具有腔体101,血压测量设备的主要功能模块以及器件(例如处理器和传感器等电路元器件)可设置于主体1的腔体101内,例如,供排气装置4、气压传感器5、驱动装置6和处理器7等。气囊2的一端可通过气嘴与供排气装置4和气压传感器5连通,气囊2可绕于用户的腕部。在使用该血压测量设备进行血压测量时,处理器7控制驱动装置6驱动供排气装置4对气囊2进行充放气,而气压传感器5可检测气囊2中的气压在上述充放气过程中的变化,这样,可通过算法对检测到的气压值进行运算得到用户的血压值。
由上述对血压测量设备进行血压测量的过程的介绍可以理解,由于供排气装置4设置于主体1的腔体101内,在供排气装置4对气囊2进行充放气的过程中,会造成主体1的腔体101内的气压的波动,该气压的波动会造成气压传感器5检测到的气压值与气囊2内部的实际气压值不同,且一般气压传感器5检测到的气压值大于气囊2内部的实际气压值。
基于此,本申请实施例提供了一种血压测量设备,以减小血压测量设备的主体1的腔体101内的气压对于其血压测量的影响,从而提高血压测量的精度。为了便于理解,在本申请以下实施例中,以智能手表为例对该血压测量设备的具体结构进行详细的说明。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多 个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参照图3和图4,图3为本申请的一个实施例提供的血压测量设备的框架结构示意图,图4为本申请的另一个实施例提供的血压测量设备的框架结构示意图。在本申请该实施例中,血压测量设备可以包括主体1和气囊2。其中,主体1具有多个侧壁,该多个侧壁相连接,以围设形成主体1的腔体101,在主体1的腔体101内可设置有该血压测量设备的主要功能模块和器件。气囊2可固定于主体1的一个侧壁,且气囊2具有气腔。
可继续参照图3和图4,在本申请该实施例中,血压测量设备还可以包括供排气装置4和气压传感器5,该供排气装置4和气压传感器5均设置于主体1的腔体101内。其中,供排气装置4包括进气气路401和泄气气路402,该进气气路401和泄气气路402均与主体1的腔体101相连通。另外,供排气装置4还通过第一气路81与气囊2的气腔相连通。这样,主体1的腔体101内的气体可通过进气气路401进入供排气装置4,并通过第一气路81进入气囊2,从而实现供排气装置4对气囊2的充气。相反的,当气囊2中的气体需要排出时,供排气装置4通过第一气路81将气囊2中的气体抽出,并经泄气气路402排放到主体1的腔体101。
另外,由于供排气装置4的进气气路401和泄气气路402不同时工作,因此,在本申请一个可能的实施例中,可以将进气气路401和泄气气路402合并设置,即只在供排气装置4上设置一条气路,供排气装置4可通过该气路对气囊2进行充气,并可使气囊2内的气体经过该气路抽出,从而可简化血压测量设备的结构。
在本申请中,不对供排气装置4的具体结构进行限定,示例性的,该供排气装置4可以为气泵,气泵的体积可根据血压测量装置的气囊2对于供排气的需求以及主体1的腔体101的大小进行设置。又考虑到目前带有血压测量功能的智能手表,其主体1的体积较小,则其腔体101的空间也较小,因此,设置于智能手表中的气泵的体积也较小。在本申请一些可能的实施例中,可将气泵固定于一个结构件(图中未示出)上,然后通过该结构件与主体1的固定来实现气泵在主体1上的安装。该结构件的材质可以但不限于为金属或者强度较大的非金属,以使其能够对气泵起到可靠的支撑,从而提高气泵的结构可靠性。在本申请中,不对气泵与结构件之间的固定方式进行限定,示例性的,可通过点胶或者螺纹联接等方式进行固定连接。另外,在本申请一些实施例中,还可以在气泵的周围进行点胶,以对气泵进行胶封,以此来提高气泵的结构稳定性。
可继续参照图3和图4,血压测量设备还可以包括驱动装置6和处理器7,且处理器7分别与驱动装置6和气压传感器5电连接。在本申请中,对驱动装置6和处理器7的位置不作限定。示例性的,可以将驱动装置6和处理器7设置在主体1的腔体101内。处理器7用于对气压传感器5和驱动装置6进行控制,驱动装置6用于在处理器7的控制下为供排气装置4的充放气过程提供驱动力,在本申请中,也不对驱动装置6进行具体的限定,示例性的,可为电机等。气压传感器5用于在处理器7的控制下进行气压检测,在本申请中,也不对气压传感器5进行具体的限定。在本申请中,由于供排气装置4是设置于主体1的腔体101内,在供排气装置4对气囊2进行充放气的过程中,会造成主体1的腔体101 内的气压的波动,该气压的波动与供排气装置4的充放气量相关,如果能够获取由该充放气量造成的气压传感器5的气压值的改变,那么就可以对气压传感器5检测到的气压值进行误差补偿,从而减小血压测量设备的主体1的腔体101内的气压对于其血压测量的影响,提高血压测量的精度。
因此,可继续参照图3和图4,血压测量设备还可以包括流量计9。流量计9用于检测供排气装置4与气囊2相流通的气体的气体流量值,或用于检测气压传感器5与气囊2相流通的气体的气体流量值。血压测量设备中存储有气体流量值与气压补偿值的对应关系,示例性的,该对应关系可以存储于处理器7中或存储器中,处理器7可以根据流量计9检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系获得对应的气压补偿值,从而根据获得的气压补偿值对气压传感器5检测的气压值进行补偿,进而可以根据补偿后的气压值控制驱动装置6。驱动装置6在处理器7的控制下驱动供排气装置4充气或放气,即驱动装置6可用于为供排气装置4的充放气过程提供驱动力。
由此可知,在本申请中,在供排气装置4对气囊2进行充放气时,由于供排气装置4与气囊2以及气压传感器5三者之间的气体是流通的,因此通过流量计9检测到的气体流量值可以表征供排气装置4的充放气量,从而处理器7根据流量计9检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器5检测的气压值进行补偿,得到较为准确的气囊2内的气压值。进而可以减小血压测量设备在充放气过程中对血压测量的影响,从而提高血压测量的精度。
在本申请中,为了方便流量计9检测供排气装置4与气囊2相流通的气体的气体流量值,示例性的,参见图3,流量计9可以设置于第一气路81上,以用于检测第一气路81中的气体流量值。或者,在本申请中,为了方便流量计9检测供排气装置4与气压传感器5相流通的气体的气体流量值,示例性的,参加图4,流量计9可以设置于第二气路82上,以用于检测第二气路82中的气体流量值。
本申请中,由于气腔内气体波动是由供排气装置4充放气产生的,距离供排气装置4越近的区域,产生的气压波动越大,因此,将流量计9设置在距离供排气装置4较近的第一气路81上相比设置在第二气路82上可以提高测量的准确性。
在本申请各实施例中,不对各气路的具体设置形态进行限定,其可以呈直线设置,也可以呈曲线设备,具体可以根据血压测量设备的内部空间的部件进行适应性的调整。可以理解的是,为了使图示清楚,在本申请各示意图中,均将各气路示意为直线。
参照图5和图6,图5为本申请另一个可能的实施例提供的血压测量设备的框架结构示意图,图6为本申请另一个可能的实施例提供的血压测量设备的框架结构示意图。图5和图6所示的实施例的血压测量设备与上述图3和图4所示的实施例的不同之处主要在于:在图5和图6所示的实施例中,血压测量设备还包括气路腔体10,该气路腔体10设置于主体1的腔体101内。另外,该气路腔体10可以但不限于通过粘接或者螺纹联接的方式固定于主体1的侧壁朝向腔体101的一侧,以提高气路腔体10的结构稳定性。
基于血压测量设备的结构的上述变化,在本申请该实施例中,气压传感器5和供排气装置4与气囊2之间的连接方式也做了适应性的变化。具体实施时,可继续参照图5和图6,供排气装置4通过第一气路81与气路腔体10连通,气压传感器5通过第二气路82与气路腔体10连通。这样,第一气路81和第二气路82可通过气路腔体10进行连通。另外,气路腔体10可通过第三气路83与气囊2的气腔连通。图5和图6所示的实施例的血压测 量设备的其它结构均可参照上述任一实施例进行设置,在此不进行赘述。
采用本申请该实施例提供的血压测量设备,通过增加气路腔体10的设计,可通过气路腔体10将供排气装置4的进气气路401和泄气气路402与气囊2的气腔连通。当供排气装置4工作时,该供排气装置4可把气体从主体1的腔体101吸入到气路腔体10,随后进入气囊2的气腔。另外,供排气装置4还可通过将气路腔体10内的气体由泄气气路402排出,来实现气囊2内的气体的排出。
在本申请一个可能的实现方式中,为了将气囊与主体进行连接,可以在主体的端部设置有一个连接孔。另外,气囊具有一个气嘴,气嘴自气囊的一侧表面沿朝向主体的方向凸出于气囊。这样,气囊即可通过气嘴插接于连接孔,且将第三气路与气嘴连接,来实现气囊与气路腔体的连通。相类似的,在另外一些可能的实现方式中,还可以将气嘴设置于主体的端部,而在气囊上设置连接孔,这样也可以通过气嘴与连接孔的插接来实现气囊与主体的连接。
值得一提的是,在本申请中,气囊与主体之间可为可拆卸连接,这样,可根据需要对气囊进行拆卸或者更换等。另外,在本申请一个可能的实现方式中,血压测量设备还可以包括光电容积描记器PPG模块和ECG检测模块,该PPG模块与ECG检测模块可以设置于主体的底面。而气囊也可以与主体的底面的一个端部固定连接,从而在使血压测量设备集成多项测量功能的同时,使该血压测量设备的结构较为紧凑。
参见图7,图7为本申请另一个可能的实施例提供的血压测量设备的框架结构示意图。当血压测量设备还包括气路腔体10时,流量计9也可以设置在第三气路83上,用于检测第三气路83中的气体流量值。这样,流量计9检测到的气体流量值既可以是供排气装置4与气囊2相流通的气体的气体流量值,也可以是供排气装置4与气压传感器5相流通的气体的气体流量值。值得一提的是,图7所示的实施例的血压测量设备与上述图5和图6所示的实施例的血压测量设备相比,仅是流量计9的位置不同,工作原理是相同的。图7所示的实施例的血压测量设备的其它结构均可参照上述任一实施例进行设置。
参见图8,图8为本申请实施例的一种血压测量设备的血压测量方法,在该血压测量设备中主要包括主体、气囊、气压传感器和流量计;其中,主体包括腔体,气压传感器位于腔体内,气囊具有气腔,气腔与腔体相连通,流量计用于检测血压测量设备进行充放气时的气体流量值,气压传感器用于检测气腔内的气压值;该血压测量设备的具体实施可以参见上述图3至图7所示的实施例的血压测量设备,在此不作赘述。如图8所示,该血压测量设备的血压测量方法可以包括以下步骤:
S101、获取血压测量设备进行充放气时流量计检测的气体流量值和气压传感器检测的气压值。
S102、根据气体流量值以及存储的气体流量值与气压补偿值的对应关系获得对应的气压补偿值。
S103、根据获得的气压补偿值对气压值进行补偿。
由此可知,在进行血压测量时,可以根据流量计检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。进而可以减小腔体内的气压对于血压测量的影响,从而提高血压测量的精度。
在本申请中,气体流量值与气压补偿值的对应关系可以预先通过对预先测试的数据分 析得到,并可以在血压测量设备出厂前预先存储在血压测量设备中的处理器或存储器中。
示例性的,如图9所示,处理器可以通过如下方式获得气体流量值与气压补偿值的对应关系:步骤S201、控制血压测量设备在卸除气囊时进行充气,以使流量计检测到的气体流量值发生变化。
将血压测量设备中的气囊卸除,可以使主体的腔体与外界大气连通,从而保证气压传感器检测的气压值不受气囊内气腔气压的影响,主要是由腔体内气流波动产生的。
在具体实施时,可以控制驱动装置使流量计检测到的气体流量值由最小值变为最大值。
步骤S202、获取流量计在检测到多个不同的气体流量值时气压传感器检测到的多个气压值,并将获取到的多个气压值作为该多个不同的气体流量值分别对应的气压补偿值。
其中,该多个不同的气体流量值可以从零至最大气体流量值之间进行选择,例如流量计检测到的气体流量值的最大值为100ml/min,则可以在0~100ml/min之间,选择多个气体流量值,示例性的,选择的气体流程值可以是呈等差分布的,例如0ml/min、10ml/min、20ml/min、30ml/min、40ml/min、50ml/min、60ml/min、70ml/min、80ml/min、90ml/min、100ml/min。可以理解的是,选择的气体流量值越多,后续得到的气体流量值与气压补偿值的对应关系越准确。
在具体实施时,可以在流量计检测到的气体流量值为q1时(例如0ml/min),获取气压传感器检测到的气压值Δp1,将Δp1作为q1对应的气压补偿值。示例性的,可以将Δp1记录并存放在存储器中,供后续使用。然后增大气体流行,至流量计检测到的气体流量值为q2时(例如10ml/min),获取气压传感器检测到的气压值Δp2,将Δp2作为q2对应的气压补偿值。示例性的,可以将Δp2记录并存放在存储器中,供后续使用。然后增大气体流行,至流量计检测到的气体流量值为q3时(例如20ml/min),获取气压传感器检测到的气压值Δp3,将Δp3作为q3对应的气压补偿值。示例性的,可以将Δp3记录并存放在存储器中,供后续使用。以此类推,从0至最大气体流量选择N个不同的气体流量值:q1、q2、q3、q4、……、qN,获取对应的气压补偿值Δp1、Δp2、Δp3、Δp4、……、Δp N。其中,qN可以取最大气体流量值。
步骤S203、根据多个不同的气体流量值和其分别对应的气压补偿值,建立气体流量值与气压补偿值的对应关系。
示例性的,处理器可以根据多个不同的气体流量值和其分别对应的气压补偿值,通过插值法建立气体流量值与气压补偿值的对应关系。
参见图10,对于位于q1至q2、q2至q3、……、qN-1至qN之间的气体流量值q(x),例如q(x)位于qi至qj之间,那么q(x)对应的气压补偿值Δp(x)可以根据公式Δp(x)=Δpi+[q(x)-qi](Δpj-Δpi)/(qj-qi)确定,其中,i可以取遍1至N-1中的任意数,j=1+1。
在具体实施时,对于位于0至q1、q1至q2、q2至q3、……、qN-1至qN之间的气体流量值q(x)所对应的气压补偿值Δp(x)也可以通过其它方式确认,例如q(x)位于qi至qj之间,那么q(x)对应的气压补偿值Δp(x)=(Δpj-Δpi)/2。其中,i可以取遍1至N-1中的任意数,j=1+1。
由上述可知,正是存储了预先建立的气体流量值与气压补偿值的对应关系,这样在进行血压检测时,就可以根据流量计检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。其中,血压测量设备进行血压测量的流程可以包括: 控制驱动装置驱动供排气装置向气囊充气,然后读取气压传感器检测的气压值和流量计检测的气体流量值,然后根据流量计检测的气体流量值以及存储的气体流量值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,具体可以将气压传感器检测的气压值减去获得的气压补偿值从而得到补偿后的气压值,然后根据补偿后的气压值控制驱动电路的工作参数(例如电压,电流,频率等)驱动供排气装置向气囊充气。执行上述流程至少一次,例如1次、2次、3次或4次等,使补偿后的气压值满足血压测量所需的升压曲线要求,从而完成血压测量。
需要说明的是,在本申请中,不限于利用流量计直接来检测血压测量设备进行充气时的气体流量,还可以采用间接能反应气体流量的其它传感器来代替流量计,例如利用气压传感来实现。具体可以参见下面实施例。
参照图11,图11为本申请另一种实施例提供的血压测量设备的结构示意图。该实施例的血压测量设备的结构与上述任意实施例均有不同,其不同之处主要在于:在该血压测量设备中不包括流量计,而是包括两个气压传感器即第一气压传感器5a和第二气压传感器5b。在该血压测量设备中,第一气压传感器5a和第二气压传感器5b均设置于腔体101内;第一气压传感器5a可以通过第二气路82与气囊2的气腔相连通,用于检测气囊的气腔内的气压值;第二气压传感器5b用于检测主体1的腔体101内的气压值;血压测量设备中存储有腔体气压值与气压补偿值的对应关系,例如可以存储于处理器或存储器中。处理器7与第一气压传感器5a、第二气压传感器5b以及驱动装置6电连接,用于根据第二气压传感器5b检测的气压值以及血压测量设备中存储的腔体气压值与气压补偿值的对应关系获得对应的气压补偿值,再根据获得的气压补偿值对第一气压传感器5a检测的气压值进行补偿,并根据补偿后的气压值控制驱动装置6;驱动装置6与供排气装置4电连接,用于在处理器7的控制下驱动供排气装置4充气或放气。
在该血压测量设备中,在供排气装置4对气囊2进行充放气时,通过第二气压传感器5b来检测腔体101内的气压值,从而处理器7根据第二气压传感器5b检测的气压值以及存储的腔体气压值与气压补偿值的对应关系获得气压补偿值,再根据获得的气压补偿值对第一气压传感器5a检测的气压值进行补偿,得到较为准确的气囊2内的气压值。进而可以减小血压测量设备在充放气过程中对血压测量的影响,从而提高血压测量的精度。
本申请中,由于气腔内气体波动是由供排气装置4充放气产生的,距离供排气装置4越近的区域,产生的气压波动越大,因此,第二气压传感器5b可以靠近供排气装置4设置,第二气压传感器5b距离供排气装置4越近,测量结果越准确。
值得一提的是,图11所示的实施例的血压测量设备的其它结构均可参照上述任一实施例进行设置。例如,如图12所示,可以在血压测量设备中设置有气路腔体10,以使供排气装置4通过第一气路81与气路腔体10连通,使第一气压传感器5a可通过第二气路82与气路腔体10连通,并使气路腔体10通过第三气路83与气囊2相连通,以实现主体1和气囊2之间的单气嘴的连接。对于图11和图12所示的血压测量设备的其它结构的具体设置方式在此不进行一一赘述。
参见图13,图13为本申请实施例的一种血压测量设备的血压测量方法,在该血压测量设备中主要包括主体、气囊、第一气压传感器和第二气压传感器;其中,主体包括腔体,气压传感器位于腔体内,气囊具有气腔,气腔与腔体相连通,第一气压传感器用于检测气腔内的气压值,第二气压传感器用于检测腔体内的气压值。该血压测量设备的具体实施可 以参见上述图11和图12所示的实施例的血压测量设备,在此不作赘述。如图13所示,该血压测量设备的血压测量方法可以包括以下步骤:
步骤S301、获取血压测量设备进行充放气时第一气压传感器检测的气压值和第二气压传感器检测的气压值。
步骤S302、根据第二气压传感器检测的气压值以及存储的腔体气压值与气压补偿值的对应关系获得对应的气压补偿值。
步骤S303、根据获得的气压补偿值对第一气压传感器检测的气压值进行补偿。
由此可知,在进行血压测量时,可以根据第二气压传感器检测的气压值以及存储的腔体气压值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对第一气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。进而可以减小腔体内的气压对于血压测量的影响,从而提高血压测量的精度。
示例性的,腔体气压值与气压补偿值的对应关系也可以预先通过数据分析得到,并预先存储在血压测量设备中的处理器或存储器中,腔体气压值与气压补偿值的对应关系可以在血压测量设备出厂前通过处理器预先建立。
示例性的,如图14所示,处理器可以通过如下方式获得腔体气压值与气压补偿值的对应关系:
步骤S401、控制血压测量设备在卸除气囊时进行充气,以使第二气压传感器检测到的第一气压值发生变化。
将血压测量设备中的气囊卸除,可以使主体的腔体与外界大气连通,从而保证气压传感器检测的气压值不受气囊内气腔气压的影响,主要是由腔体内气流波动产生的。
在具体实施时,可以控制驱动装置由较小驱动功率逐渐增大至最大驱动功率来驱动供排气装置。
步骤S402、获取第二气压传感器在多个不同的第一气压值时第一气压传感器检测到的多个第二气压值,并将获取到的多个第二气压值作为多个不同的第一气体流量值分别对应的气压补偿值。
在具体实施时,可以在第二气压传感器检测到的第一气压值为q11时,获取第一气压传感器检测到的第二气压值q21,将q21作为q11对应的气压补偿值Δp1。然后增大驱动状态,至第二气压传感器检测到的第一气压值为q12时,获取第一气压传感器检测到的第二气压值q22,将q22作为q12对应的气压补偿值Δp2。以此类推,直到驱动装置达到最大的驱动状态,获取第二气压传感器检测到的第一气压值q1N,获取第一气压传感器检测到的第二气压值q2N,将q2N作为q1N对应的气压补偿值ΔpN。从而可以建立q11、q12、q13、q14、……、q1N与Δp1、Δp2、Δp3、Δp4、……、Δp N的对应关系。
步骤S403、根据多个不同的第一气压值和其分别对应的气压补偿值,建立腔体气压值与气压补偿值的对应关系。
示例性的,如图15所示,处理器可以根据多个不同的第一气压值和其分别对应的气压补偿值,通过插值法建立腔体气压值与气压补偿值的对应关系。例如,对于q11至q12、q12至q13、……、q1N-1至q1N之间的第一气压值q1(x),例如q1(x)位于q1i至q1j之间,那么q1(x)对应的气压补偿值Δp(x)可以根据公式Δp(x)=Δpi+[q1(x)-q1i](Δpj-Δpi)/(q1j-q1i)确定,其中,i可以取遍1至N-1中的任意数,j=1+1。
在具体实施时,在本申请中,对于位于0至q11、q11至q12、q12至q13、……、q1N-1 至q1N之间的第一气压值q1(x)所对应的气压补偿值Δp(x)也可以通过其它方式确认,在此不作限定。
由上述可知,正是存储了预先建立的腔体气压值与气压补偿值的对应关系,这样在进行血压检测时,就可以根据第二气压传感器检测的气压值以及存储的腔体气压值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对第一气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。其中,血压测量设备进行血压测量的流程可以包括:控制驱动装置驱动供排气装置向气囊充气,然后读取第一气压传感器检测的气压值和第二气压传感器检测的气压值,然后根据第二气压传感器检测的气压值以及存储的腔体气压值与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对第一气压传感器检测的气压值进行补偿,具体可以将第一气压传感器检测的气压值减去获得的气压补偿值从而得到补偿后的气压值,然后根据补偿后的气压值控制驱动电路的工作参数(例如电压,电流,频率等)驱动供排气装置向气囊充气。执行上述流程至少一次,例如1次、2次、3次或4次等,使补偿后的气压值满足血压测量所需的升压曲线要求,从而完成血压测量。
参照图16,图16为本申请又一种实施例提供的血压测量设备的结构示意图。该实施例的血压测量设备的结构与上述任意实施例也均有不同,其不同之处主要在于:在该血压测量设备中仅包括一个气压传感器,且不包括流量计。在该血压测量设备中,气压传感器5通过第二气路82与气囊2的气腔相连通,用于检测气腔内的气压值;处理器7与气压传感器5以及驱动装置6电连接,用于根据驱动装置6的驱动状态以及血压测量设备中存储的驱动状态与气压补偿值的对应关系获得气压补偿值,根据获得的气压补偿值对气压传感器5检测的气压值进行补偿,并根据补偿后的气压值控制驱动装置6;驱动装置6与供排气装置4电连接,用于在处理器7的控制下驱动供排气装置4充气或放气。
在该血压测量设备中,在供排气装置4对气囊2进行充放气时,由于处理器7可以根据驱动装置6的驱动状态以及存储的驱动状态与气压补偿值的对应关系获得气压补偿值,再根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊2内的气压值。进而可以减小血压测量设备在充放气过程中对血压测量的影响,从而提高血压测量的精度。
需要说明的是,驱动状态可以包括驱动电压、驱动电流、占空比等涉及供电功率的至少一个参数。
值得一提的是,图16所示的实施例的血压测量设备的其它结构均可参照上述任一实施例进行设置。例如,如图17所示,可以在血压测量设备中设置有气路腔体10,以使供排气装置4通过第一气路81与气路腔体10连通,使第一气压传感器5a可通过第二气路82与气路腔体10连通,并使气路腔体10通过第三气路83与气囊2相连通,以实现主体1和气囊2之间的单气嘴的连接。对于图16和图17所示的血压测量设备的其它结构的具体设置方式在此不进行一一赘述。
参见图18,图18为本申请实施例的一种血压测量设备的血压测量方法,在该血压测量设备中主要包括主体、气囊和气压传感器流量计;其中,主体包括腔体,气压传感器位于腔体内,气囊具有气腔,气腔与腔体相连通,气压传感器用于检测气腔内的气压值;该血压测量设备的具体实施可以参见上述图16至图17所示的实施例的血压测量设备,在此不作赘述。如图18所示,该血压测量设备的血压测量方法可以包括以下步骤:
S501、获取血压测量设备进行充放气时气压传感器检测的气压值以及血压测量设备的驱动状态。
S502、根据血压测量设备的驱动状态以及存储的驱动状态与气压补偿值的对应关系获得对应的气压补偿值。
S503、根据获得的气压补偿值对气压传感器检测的气压值进行补偿。
由此可知,在进行血压测量时,可以根据血压测量设备的驱动状态以及存储的驱动状态与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。进而可以减小腔体内的气压对于血压测量的影响,从而提高血压测量的精度。
在本申请中,驱动状态与气压补偿值的对应关系可以预先通过测试数据分析得到,并预先存储在血压测量设备的处理器或存储器中。
示例性的,在本申请中,如图19所示,处理器可以通过如下方式获得驱动状态与气压补偿值的对应关系:
步骤S601、控制血压测量设备在卸除气囊时以多个不同的驱动状态进行充气。
将血压测量设备中的气囊卸除,可以使主体的腔体与外界大气连通,从而保证气压传感器检测的气压值不受气囊内气腔气压的影响,主要是由腔体内气流波动产生的。
在具体实施时,可以控制驱动装置由较小驱动功率逐渐增大至最大驱动功率来驱动供排气装置4。
步骤S602、获取血压测量设备以多个不同的驱动状态进行驱动时气压传感器检测到的多个气压值,并将获取到的多个气压值作为多个不同的驱动状态分别对应的气压补偿值。
在具体实施时,可以在驱动功率为S1时,获取气压传感器检测到的气压值q1,将q1作为S1对应的气压补偿值Δp1。然后增大驱动功率至S2时,获取气压传感器检测到的气压值q2,将q2作为S2对应的气压补偿值Δp2。以此类推,直到驱动装置达到最大的驱动功率SN,获取气压传感器检测到的气压值qN,将qN作为SN对应的气压补偿值ΔpN。从而可以建立S1、S2、S3、S4、……、SN与Δp1、Δp2、Δp3、Δp4、……、Δp N的对应关系。
步骤S603、根据多个不同的驱动状态和其分别对应的气压补偿值,建立驱动状态与气压补偿值的对应关系。
示例性的,参见图20,处理器可以根据多个不同的驱动状态和其分别对应的气压补偿值,通过插值法建立驱动状态与气压补偿值的对应关系。以驱动状态为驱动功率为例,例如,对于S1至S2、S2至S3、……、SN-1至SN之间的驱动功率S(x),例如S(x)位于Si至Sj之间,那么S(x)对应的气压补偿值Δp(x)可以根据公式Δp(x)=Δpi+[S(x)-Si](Δpj-Δpi)/(Sj-Si)确定。其中,i可以取遍1至N-1中的任意数,j=1+1。
在具体实施时,在本申请中,根据S1、S2、S3、S4、……、SN与Δp1、Δp2、Δp3、Δp4、……、Δp N的对应关系,也可以通过其它方式建立驱动状态与气压补偿值的对应关系,在此不作限定。
由上述可知,正是存储了预先建立的驱动状态与气压补偿值的对应关系,这样在进行血压检测时,就可以根据驱动状态以及存储的驱动状态与气压补偿值的对应关系来获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,得到较为准确的气囊内的气压值。其中,血压测量设备进行血压测量的流程可以包括:控制驱动装置驱动 供排气装置向气囊充气,并读取气压传感器检测的气压值,然后再根据驱动装置的驱动状态以及存储的驱动状态与气压补偿值的对应关系获得气压补偿值,根据获得的气压补偿值对气压传感器检测的气压值进行补偿,具体可以将气压传感器检测的气压值减去获得的气压补偿值从而得到补偿后的气压值,然后根据补偿后的气压值控制驱动电路的工作参数(例如电压,电流,频率等)驱动供排气装置向气囊充气。执行上述流程至少一次,例如1次、2次、3次或4次等,使补偿后的气压值满足血压测量所需的升压曲线要求,从而完成血压测量。
综上,采用本申请提供的血压测量设备进行血压测量时,可以根据获得的气压补偿值对气压传感器检测的气压值进行补偿,从而可以有效的减小血压测量设备的主体的腔体内的气压对气压传感器的测量值的影响,从而使血压测量结果较为准确。
相应地,本申请实施例还提供了一种电子设备,该电子设备可以包括上述实施例提供的任一种血压测量设备。由于该电子设备解决问题的原理与前述一种血压测量设备相似,因此该电子设备的实施可以参见前述血压测量设备的实施,重复之处不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种血压测量设备,其特征在于,包括:主体、处理器、气囊、供排气装置、驱动装置、气压传感器和流量计,其中:
    所述主体包括腔体,所述腔体由多个侧壁围设形成;所述供排气装置和所述气压传感器均设置于所述腔体内;
    所述气囊具有气腔,所述气囊固定于所述主体的一个端部;
    所述供排气装置通过第一气路与所述气囊的所述气腔相连通;
    所述气压传感器通过第二气路与所述气囊的所述气腔相连通,用于检测所述气腔内的气压值;
    所述流量计,用于检测所述供排气装置与所述气囊之间的气体流量值,或用于检测所述气压传感器与所述气囊之间的气体流量值;
    所述处理器与所述气压传感器、所述流量计以及所述驱动装置电连接,用于根据所述流量计检测的气体流量值以及所述血压测量设备中存储的气体流量值与气压补偿值的对应关系获得对应的气压补偿值,根据获得的所述气压补偿值对所述气压传感器检测的气压值进行补偿,并根据补偿后的气压值控制所述驱动装置;
    所述驱动装置与所述供排气装置电连接,用于在所述处理器的控制下驱动所述供排气装置充气或放气。
  2. 如权利要求1所述的血压测量设备,其特征在于,所述流量计检测所述供排气装置与所述气囊之间的气体流量值,具体为:
    所述流量计位于所述第一气路上,用于检测所述第一气路中的气体流量值;
    所述流量计检测所述气压传感器与所述气囊之间的气体流量值,具体为:
    所述流量计位于所述第二气路上,用于检测所述第二气路中的气体流量值。
  3. 如权利要求1所述的血压测量设备,其特征在于,所述血压测量设备还包括气路腔体,所述气路腔体设置于所述主体的所述腔体内;
    所述供排气装置通过所述第一气路与所述气路腔体相连通,所述气压传感器通过所述第二气路与所述气路腔体相连通,所述气路腔体通过第三气路与所述气囊的所述气腔相连通。
  4. 如权利要求3所述的血压测量设备,其特征在于,所述流量计位于所述第三气路上,用于检测所述第三气路中的气体流量值。
  5. 如权利要求1-4任一所述的血压测量设备,其特征在于,所述处理器,还用于:
    控制所述血压测量设备在卸除所述气囊时进行充气,以使所述流量计检测到的气体流量值发生变化;
    获取所述流量计在检测到多个不同的气体流量值时所述气压传感器检测到的多个气压值,并将获取到的所述多个气压值作为所述多个不同的气体流量值分别对应的气压补偿值;
    根据所述多个不同的气体流量值和其分别对应的气压补偿值,建立气体流量值与气压补偿值的对应关系。
  6. 如权利要求5所述的血压测量设备,其特征在于,所述处理器根据所述多个不同的气体流量值和其分别对应的气压补偿值,建立气体流量值与气压补偿值的对应关系,具体用于:
    根据所述多个不同的气体流量值和其分别对应的气压补偿值,通过插值法建立所述气体流量值与气压补偿值的对应关系。
  7. 一种血压测量设备,其特征在于,包括:主体、处理器、气囊、供排气装置、驱动装置、第一气压传感器和第二气压传感器,其中:
    所述主体包括腔体,所述腔体由多个侧壁围设形成;所述供排气装置、所述第一气压传感器以及所述第二气压传感器均设置于所述腔体内;
    所述气囊具有气腔,所述气囊固定于所述主体的一个端部;
    所述供排气装置通过第一气路与所述气囊的所述气腔相连通;
    所述第一气压传感器通过第二气路与所述气囊的所述气腔相连通,用于检测所述气腔内的气压值;
    所述第二气压传感器用于检测所述腔体内的气压值;
    所述处理器与所述第一气压传感器、所述第二气压传感器以及所述驱动装置电连接,用于根据所述第二气压传感器检测的气压值以及所述血压测量设备中存储的腔体气压值与气压补偿值的对应关系获得对应的气压补偿值,根据获得的所述气压补偿值对所述第一气压传感器检测的气压值进行补偿,并根据补偿后的气压值控制所述驱动装置;
    所述驱动装置与所述供排气装置电连接,用于在所述处理器的控制下驱动所述供排气装置充气或放气。
  8. 如权利要求7所述的血压测量设备,其特征在于,所述第二气压传感器靠近所述供排气装置设置。
  9. 如权利要求7或8所述的血压测量设备,其特征在于,所述血压测量设备还包括气路腔体,所述气路腔体设置于所述主体的所述腔体内;
    所述供排气装置通过所述第一气路与所述气路腔体相连通,所述第一气压传感器通过所述第二气路与所述气路腔体相连通,所述气路腔体通过第三气路与所述气囊的所述气腔相连通。
  10. 如权利要求7-9任一所述的血压测量设备,其特征在于,所述处理器,还用于:
    控制所述血压测量设备在卸除所述气囊时进行充气,以使所述第二气压传感器检测到的第一气压值发生变化;
    获取所述第二气压传感器在多个不同的第一气压值时所述第一气压传感器检测到的多个第二气压值,并将获取到的所述多个第二气压值作为所述多个不同的第一气压值分别对应的气压补偿值;
    根据所述多个不同的第一气压值和其分别对应的气压补偿值,建立腔体气压值与气压补偿值的对应关系。
  11. 如权利要求10所述的血压测量设备,其特征在于,所述处理器根据所述多个不同的第一气压值和其分别对应的气压补偿值,建立腔体气压值与气压补偿值的对应关系时,具体用于:
    根据所述多个不同的第一气压值和其分别对应的气压补偿值,通过插值法建立所述腔体气压值与气压补偿值的对应关系。
  12. 一种血压测量设备,其特征在于,包括:主体、处理器、气囊、供排气装置、驱动装置和气压传感器,其中:
    所述主体包括腔体,所述腔体由多个侧壁围设形成;所述供排气装置和所述气压传感器均设置于所述腔体内;
    所述气囊具有气腔,所述气囊固定于所述主体的一个端部;
    所述供排气装置通过第一气路与所述气囊的所述气腔相连通;
    所述气压传感器通过第二气路与所述气囊的所述气腔相连通,用于检测所述气腔内的气压值;
    所述处理器与所述气压传感器以及所述驱动装置电连接,用于根据所述驱动装置的驱动状态以及所述血压测量设备中存储的驱动状态与气压补偿值的对应关系获得对应的气压补偿值,根据获得的所述气压补偿值对所述气压传感器检测的气压值进行补偿,并根据补偿后的气压值控制所述驱动装置;
    所述驱动装置与所述供排气装置电连接,用于在所述处理器的控制下驱动所述供排气装置充气或放气。
  13. 如权利要求12所述的血压测量设备,其特征在于,所述血压测量设备还包括气路腔体,所述气路腔体设置于所述主体的所述腔体内;
    所述供排气装置通过所述第一气路与所述气路腔体相连通,所述气压传感器通过所述第二气路与所述气路腔体相连通,所述气路腔体通过第三气路与所述气囊的所述气腔相连通。
  14. 如权利要求12或13所述的血压测量设备,其特征在于,所述处理器,还用于:
    控制所述血压测量设备在卸除所述气囊时以多个不同的驱动状态进行充气;
    获取所述血压测量设备以所述多个不同的驱动状态进行充气时所述气压传感器检测到的多个气压值,并将获取到的所述多个气压值作为所述多个不同的驱动状态分别对应的气压补偿值;
    根据所述多个不同的驱动状态和其分别对应的气压补偿值,建立驱动状态与气压补偿值的对应关系。
  15. 如权利要求14所述的血压测量设备,其特征在于,所述处理器根据所述多个不同的驱动状态和其分别对应的气压补偿值,建立驱动状态与气压补偿值的对应关系,具体用 于:
    根据所述多个不同的驱动状态和其分别对应的气压补偿值,通过插值法建立所述驱动状态与气压补偿值的对应关系。
  16. 一种电子设备,其特征在于,包括如权利要求1-15任一项所述的血压测量设备。
PCT/CN2022/140802 2021-12-23 2022-12-21 一种血压测量设备及电子设备 WO2023116789A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22910101.9A EP4393384A1 (en) 2021-12-23 2022-12-21 Blood pressure measuring device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111591753.0 2021-12-23
CN202111591753.0A CN116327148A (zh) 2021-12-23 2021-12-23 一种血压测量设备及电子设备

Publications (1)

Publication Number Publication Date
WO2023116789A1 true WO2023116789A1 (zh) 2023-06-29

Family

ID=86877581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140802 WO2023116789A1 (zh) 2021-12-23 2022-12-21 一种血压测量设备及电子设备

Country Status (3)

Country Link
EP (1) EP4393384A1 (zh)
CN (1) CN116327148A (zh)
WO (1) WO2023116789A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153843A (ja) * 2007-12-27 2009-07-16 Omron Healthcare Co Ltd 血圧測定装置
JP2010131247A (ja) * 2008-12-05 2010-06-17 Omron Healthcare Co Ltd 血圧測定装置
JP2012205719A (ja) * 2011-03-29 2012-10-25 Fukuda Denshi Co Ltd 血圧計
CN103025231A (zh) * 2010-07-21 2013-04-03 欧姆龙健康医疗事业株式会社 电子血压计
GB2541368A (en) * 2015-07-16 2017-02-22 Diasolve Ltd Fluid delivery apparatus
CN106793963A (zh) * 2014-08-28 2017-05-31 皇家飞利浦有限公司 用于振荡法无创血压(nibp)测量的方法和用于nibp装置的控制单元

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153843A (ja) * 2007-12-27 2009-07-16 Omron Healthcare Co Ltd 血圧測定装置
JP2010131247A (ja) * 2008-12-05 2010-06-17 Omron Healthcare Co Ltd 血圧測定装置
CN103025231A (zh) * 2010-07-21 2013-04-03 欧姆龙健康医疗事业株式会社 电子血压计
JP2012205719A (ja) * 2011-03-29 2012-10-25 Fukuda Denshi Co Ltd 血圧計
CN106793963A (zh) * 2014-08-28 2017-05-31 皇家飞利浦有限公司 用于振荡法无创血压(nibp)测量的方法和用于nibp装置的控制单元
GB2541368A (en) * 2015-07-16 2017-02-22 Diasolve Ltd Fluid delivery apparatus

Also Published As

Publication number Publication date
EP4393384A1 (en) 2024-07-03
CN116327148A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US8905940B2 (en) Flow rate control valve and blood pressure information measurement device including the same
CN109642564B (zh) 单臂式微型气压泵装置
US20200367770A1 (en) Blood pressure measurement device with a mems pump and control method for the same
US20150025400A1 (en) Blood pressure meter
US20140309541A1 (en) Blood pressure measurement device and control method for blood pressure measurement device
WO2010052970A1 (ja) 血圧計および血圧計用充電ユニット
CN203597946U (zh) 血压计气体缓冲装置及血压计
KR20140125193A (ko) 박막형 압력 센서를 이용한 손목형 혈압측정장치
JP2021510561A (ja) キャニスタ、吸引器およびこれを含む組織拡張装置
JP2017209434A (ja) センサアセンブリ
WO2023116789A1 (zh) 一种血压测量设备及电子设备
CN115096575A (zh) 一种智能的电子血压计配件检测设备及检测方法
CN110051342B (zh) 一种电子血压计自动检测装置及方法
WO2016109925A1 (zh) 血压测量仪及其气路结构以及气路盒
US20210127996A1 (en) Blood pressure measurement device and cuff unit
US7699787B2 (en) Modular blood pressure measurement apparatus
CN210644016U (zh) 一种电子血压计自动检测装置
US20210204881A1 (en) Wearable device used for detection of cardiovascular system of user
KR101059528B1 (ko) 혈압 측정 장치와 혈압 측정 장치용 펌핑장치
CN213721952U (zh) 血压计及可穿戴血压检测装置
CN109730664B (zh) 基于热变形的预设形状的测血压软体机器人
WO2023005847A1 (zh) 一种血压测量设备
US20200163559A1 (en) Health monitoring device
KR102051394B1 (ko) 조직 확장 장치 및 이를 이용한 가슴 체적 측정 방법
KR102051395B1 (ko) 착탈식 체적 측정 장치 및 이를 포함하는 조직 확장 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910101

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022910101

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022910101

Country of ref document: EP

Effective date: 20240328