WO2023116743A1 - 一种管路组件 - Google Patents

一种管路组件 Download PDF

Info

Publication number
WO2023116743A1
WO2023116743A1 PCT/CN2022/140570 CN2022140570W WO2023116743A1 WO 2023116743 A1 WO2023116743 A1 WO 2023116743A1 CN 2022140570 W CN2022140570 W CN 2022140570W WO 2023116743 A1 WO2023116743 A1 WO 2023116743A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
output
fluid
subport
port
Prior art date
Application number
PCT/CN2022/140570
Other languages
English (en)
French (fr)
Inventor
张昊
王林
石高峰
钱红
Original Assignee
南京金斯瑞生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京金斯瑞生物科技有限公司 filed Critical 南京金斯瑞生物科技有限公司
Priority to CN202280070432.2A priority Critical patent/CN118119696A/zh
Publication of WO2023116743A1 publication Critical patent/WO2023116743A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves

Definitions

  • This specification relates to the technical field of cell sorting, in particular to a pipeline assembly.
  • cell sorting as a key technology, can be used for cell therapy, cell transformation or cell culture, etc. Specifically, some cells with specific functions in the sample can be sorted out by cell sorting technology for cell therapy or transformation, culture and so on.
  • a cell sorter is an important device for cell sorting.
  • a cell sorter is usually provided with tubing components for cell sorting.
  • the pipeline assembly is complex. When installing the pipeline assembly, technicians usually need to install multiple pipelines on the cell sorter in sequence and connect them to form a pipeline assembly. The process is time-consuming and laborious, and there are human errors and installation errors. risk.
  • An embodiment of the present specification provides a pipeline assembly, which is characterized in that the pipeline assembly includes a fluid pipeline and at least a mounting plate for installing the fluid pipeline; the fluid pipeline includes at least a first pipeline, The second pipeline, the third pipeline; the first pipeline includes a first pipeline input port and a first pipeline output port; the first pipeline input port includes at least a first pipeline first input subport and the second input subport of the first pipeline, the output port of the first pipeline includes at least the first output subport of the first pipeline and the second output subport of the first pipeline; the second pipeline includes the second A pipeline input port and a second pipeline output port; the third pipeline includes a third pipeline input port and a third pipeline output port; the third pipeline output port includes a first output sub-port of the third pipeline port, the second output subport of the third pipeline, the third output subport of the third pipeline, and the fourth output subport of the third pipeline.
  • the fluid pipeline further includes a fourth pipeline, and the two ends of the fourth pipeline are respectively connected to the first output subport of the first pipeline and the second output of the third pipeline.
  • the subport is connected.
  • the pipeline assembly further includes a sorting container, the first open end and the second open end of the sorting container are connected to the second pipeline output port and the third pipeline input port respectively.
  • the port is connected.
  • the pipeline assembly further includes a peristaltic hose, and two ends of the peristaltic hose communicate with the second output subport of the first pipeline and the input port of the second pipeline respectively.
  • the tubing assembly includes at least one fluid supply component in communication with the first tubing input port of the first tubing.
  • the at least one fluid supply part includes a first fluid supply part and a second fluid supply part;
  • the fluid pipeline also includes a fifth pipeline and a sixth pipeline;
  • the fifth pipeline Both ends communicate with the first fluid supply part and the first input sub-port of the first pipeline respectively;
  • the two ends of the sixth pipeline are respectively connected with the second fluid supply part and the first pipeline The second input subport is connected.
  • the tubing assembly includes at least one fluid receiving component in communication with a third tubing output port of the third tubing.
  • the at least one fluid receiving part comprises a first fluid receiving part, a second fluid receiving part and a third fluid receiving part;
  • Nine pipelines both ends of the seventh pipeline communicate with the first fluid receiving component and the fourth output subport of the third pipeline; both ends of the eighth pipeline communicate with the first
  • the second fluid receiving component communicates with the third output subport of the third pipeline; the two ends of the ninth pipeline communicate with the third fluid receiving component and the first output subport of the third pipeline respectively.
  • the tubing assembly further includes a filter container in communication with the second tubing output port.
  • the output port of the second pipeline includes a first output subport of the second pipeline, a second output subport of the second pipeline, and a third output subport of the second pipeline;
  • the fluid pipeline It also includes a tenth pipeline and an eleventh pipeline; both ends of the tenth pipeline communicate with the first output subport of the second pipeline and the first open end of the filter container respectively; the first The two ends of the eleventh pipeline communicate with the second open end of the filter container and the second output subport of the second pipeline respectively; The first open end communicates.
  • the second pipeline output port further includes a second pipeline fourth output subport and a second pipeline fifth output subport;
  • the first pipeline output port further includes a first pipeline output port The third output sub-port;
  • the third pipeline output port also includes the fifth output sub-port of the third pipeline;
  • the fluid pipeline also includes the twelfth pipeline and the thirteenth pipeline; the twelfth pipeline The two ends of the pipeline are respectively communicated with the fourth output subport of the second pipeline and the third output subport of the first pipeline; the two ends of the thirteenth pipeline are respectively connected with the second pipeline
  • the fifth output subport communicates with the fifth output subport of the third pipeline.
  • the pipeline assembly further includes a fourth fluid receiving part; the eleventh pipeline is provided with an eleventh pipeline output port; the fluid pipeline further includes a fourteenth pipeline; Two ends of the fourteenth pipeline communicate with the fourth fluid receiving component and the eleventh pipeline output port respectively.
  • one side of the installation plate is provided with a plurality of installation grooves, and the plurality of installation grooves are used for fixed installation and/or guiding of the fluid pipeline.
  • At least one of the plurality of installation slots can be used for fixed installation of the filter container and/or the sorting container.
  • a side of the mounting plate opposite to the mounting groove is provided with several reinforcing ribs.
  • the installation plate is provided with several valve holes, and the several valve holes are arranged in the plurality of installation grooves.
  • the pipeline assembly further includes an on-off valve disposed in the valve hole, and the end of the on-off valve facing the opening of the installation groove is provided with a notch, and the notch is used for Install the tubing in the fluid line.
  • multiple fluid paths can be formed between the fluid pipeline and the sorting container and/or the filter container, and the peristaltic hose, and the multiple fluid paths all pass through the sorting container. Select the column and the peristaltic hose.
  • Fig. 1 is a schematic structural diagram of a pipeline assembly according to some embodiments of the present specification
  • Fig. 2 is a schematic structural view of the first pipeline shown in Fig. 1;
  • Fig. 3 is a schematic structural view of the second pipeline shown in Fig. 1;
  • Fig. 4 is a schematic structural view of the third pipeline shown in Fig. 1;
  • Fig. 5 is a schematic structural view of a sorting container according to some embodiments of the present specification.
  • Fig. 6 is a schematic structural diagram of a pipeline assembly including a filter container according to some embodiments of the present specification
  • Fig. 7 is a schematic structural view of a second pipeline in the pipeline assembly shown in Fig. 6;
  • Fig. 8 is a schematic structural view of a first pipeline of the pipeline assembly shown in Fig. 6;
  • Fig. 9 is a schematic structural view of a third pipeline of the pipeline assembly shown in Fig. 6;
  • Fig. 10 is a schematic structural diagram of a pipeline assembly according to some embodiments of the present specification.
  • Fig. 11 is a schematic view of the front structure of the mounting plate of the pipeline assembly shown in Fig. 10;
  • Fig. 12 is a schematic diagram of the back structure of the mounting plate of the pipeline assembly shown in Fig. 10 .
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • the cell sorting process can include multiple steps, such as sorting out target cells using a sorting vessel, releasing target cells from the sorting instrument, target cell collection, and cell sorting Pipeline flushing before the start and/or after the completion of the corresponding steps (for example, using the sorting vessel to sort out the target cells).
  • target cells refer to cells with certain specific functions that need to be sorted out in the sample.
  • target cells may include, but are not limited to, tumor stem cells, peripheral blood cells, hematopoietic stem cells, nerve cells, and the like.
  • the tubing components on the cell sorter are one of the important components for cell sorting.
  • the tubing assembly on the cell sorter can form multiple fluid paths for each step in the cell sorting process.
  • the cell sorter and the pipeline assembly on it are of separate design, that is, the pipeline assembly needs to be installed on the cell sorter before cell sorting can be performed when in use.
  • the pipeline assembly is composed of at least a plurality of pipelines.
  • the installation process it is necessary to manually install multiple pipelines on the cell sorter in sequence, and it is necessary to connect multiple pipelines and multiple pipelines with the sorting container and/or for receiving and/or buffering fluid (For example, sample solution for cell sorting, buffer solution for flushing the pipeline, waste fluid after pipeline flushing, solution including only target cells, solution not including target cells, etc.) stand up.
  • the entire installation process is cumbersome and complicated, time-consuming and labor-intensive, and is prone to risks of human error and installation errors.
  • the embodiment of this specification provides a pipeline assembly.
  • the pipeline assembly includes a fluid pipeline and at least a mounting plate for mounting the fluid pipeline.
  • the fluid pipeline may include a plurality of pipelines, and the multiple pipelines may be installed on the mounting plate and connected to each other on the mounting plate, and are connected with other components used for cell sorting (for example, sorting containers, for receiving and/or components for buffering fluid, etc.) are interconnected to have conditions for forming a fluid path corresponding to each step in the cell sorting process.
  • the sorting container, the components for storing and/or buffering fluid, etc. can be installed on the mounting plate and connected to the fluid pipeline, or can be connected to the fluid pipeline independently of the mounting plate.
  • fluid pipelines, sorting containers, and components for storing and/or buffering fluids are all installed on the mounting plate and connected to each other to form an integrated assembly.
  • the pipeline assembly can be installed on the cell sorter by cooperating with the positioning mechanism of the cell sorter through the positioning holes on the mounting plate.
  • the pipeline assembly has a compact structure and is easy and quick to install, which can reduce the time of manual installation and eliminate the risks caused by manual installation, for example, the installation of the pipeline assembly is not in place, and the pipeline in the pipeline assembly is on the cell sorter. The installation position is wrong, resulting in failure to engage with the corresponding pump and valve.
  • Fig. 1 is a schematic structural diagram of a pipeline assembly according to some embodiments of the present specification.
  • Fig. 2 is a schematic structural diagram of the first pipeline shown in Fig. 1 .
  • Fig. 3 is a schematic structural diagram of the second pipeline shown in Fig. 1 .
  • Fig. 4 is a schematic structural diagram of the third pipeline shown in Fig. 1 .
  • the pipeline assembly 100 may include a fluid pipeline 110 and at least a mounting plate 120 for installing the fluid pipeline 110 .
  • the fluid pipeline 110 may at least include a first pipeline 111 , a second pipeline 112 and a third pipeline 113 .
  • the first pipeline 111 can be used as the main pipeline for fluid input during the cell sorting process, that is, during the cell sorting process, the fluid supply part (for example, the first fluid supply part 161 in FIG. 1 and the second fluid supply part 162 ) (for example, sample fluid, buffer fluid) mainly flow to each pipeline in the pipeline assembly 100 through the first pipeline 111 .
  • the third pipeline 113 can be used as the main pipeline for the output of the fluid in the cell sorting process, that is, the fluid in the cell sorting process (for example, fluid including only target cells, fluid not including target cells) and the buffer fluid after pipeline flushing) mainly flow out through the third pipeline, and flow to corresponding fluid receiving parts (for example, the first fluid receiving part 171, the second fluid receiving part 172 and the third fluid receiving part in Fig. 1 Component 173, etc.).
  • the second pipeline 112 can be used to realize the communication between the first pipeline 111 and the third pipeline 113, and form multiple fluid paths with the first pipeline 111 and the third pipeline 113 to For cell sorting.
  • the second pipeline 112 and the first pipeline 111 can be communicated through a peristaltic hose (for example, a peristaltic hose 140 ), and the peristaltic hose can be connected with a peristaltic pump, so that the fluid flow during the cell sorting process The flow on the fluid path provides the power.
  • a peristaltic hose for example, a peristaltic hose 140
  • the peristaltic hose can be connected with a peristaltic pump
  • the first pipeline 111 may include a first pipeline input port 1111 and a first pipeline output port 1112 .
  • the first pipeline input port 1111 may at least include the first pipeline first input subport 11111 and the first pipeline second input subport 11112;
  • the first pipeline output port 1112 may at least include the first pipeline first The output subport 11121 and the second output subport 11122 of the first pipeline.
  • the second pipeline 112 may include a second pipeline input port 1121 and a second pipeline output port 1122 .
  • the third pipeline 113 may include a third pipeline input port 1131 and a third pipeline output port 1132 .
  • the third pipeline output port 1132 may include a third pipeline first output subport 11321, a third pipeline second output subport 11322, a third pipeline third output subport 11323 and a third pipeline fourth output subport. port 11324.
  • the multiple input sub-ports and/or multiple output sub-ports can be installed on the main body of the pipeline Fittings are formed on the input and/or output ends of the
  • a "T"-shaped three-way pipe joint can be installed at one end of the pipeline body of the first pipeline 111 (for example, the end near the first pipeline input port 1111).
  • the pipe joint includes three pipe interfaces, one of which communicates with one end of the pipeline main body of the first pipeline 111, and the other two pipe interfaces can be used as the first input sub-port 11111 of the first pipeline and the first input sub-port 11111 of the first pipeline.
  • a three-way pipe joint can also be installed at the other end of the pipeline body of the first pipeline 111 (for example, the end near the output port 1112 of the first pipeline), and one of the pipe joints is connected to the first pipeline 111.
  • the other end of the pipeline body is connected, and the other two pipe interfaces can be used as the first output sub-port 11121 of the first pipeline and the second output sub-port 11122 of the first pipeline.
  • three "T" type tee pipe joints connected in sequence can be installed at the output end of the pipeline main body of the third pipeline 113, wherein, from the pipeline of the third pipeline 113 One end of the main body (for example, the end near the third pipeline output port 1132) is respectively the first "T” type tee pipe joint, the second "T” type tee pipe joint and the third "T” type tee pipe joint from near to far. type tee fittings.
  • the two pipe joints that form a straight channel are respectively connected with the output end of the pipeline body of the third pipeline 113 and the two pipe joints that form a straight line channel with the second "T" type three-way pipe joint.
  • One of the pipe joints is connected, and the other of the two pipe joints forming a straight channel with the second "T" type tee joint is connected with the third "T" type tee joint. a connection of .
  • the pipe joints in the first "T"-shaped three-way pipe joint that do not participate in the formation of the straight channel can be used as the first output sub-port 11321 of the third pipeline, and the pipe joints that do not participate in the formation of the second "T"-shaped three-way pipe joint
  • the pipe interface forming the straight channel can be used as the second output sub-port 11322 of the third pipeline
  • the pipe interface not participating in the formation of the straight channel in the third "T" type tee pipe joint can be used as the third output sub-port of the third pipeline 11323
  • the other of the two pipe connections forming a straight passage in the third "T" type tee pipe joint serves as the fourth output sub-port 11324 of the third pipeline.
  • the first "T" type tee joint, the second "T” type tee joint and the third "T” type three-way Pipelines are added between the pipe joints, so that the two pipe interfaces that are originally directly connected can be indirectly connected through pipelines to adjust the first output subport 11321 of the third pipeline and the second output subport 11322 of the third pipeline , the distance between the third output sub-ports 11323 of the third pipeline, so as to meet the actual installation requirements.
  • a five-way pipe joint may be used instead of three "T"-shaped three-way pipe joints connected in sequence to be installed at the output end of the pipeline main body of the third pipeline 113 .
  • the five-way pipe joint includes five pipe joints, and a straight passage is formed between two of the five pipe joints, and one of the two pipe joints forming the straight passage is connected to the output of the pipeline main body of the third pipeline 113
  • the other end of the two pipe interfaces forming a straight channel is used as the fourth output subport 11324 of the third pipeline, while the first output subport 11321 of the third pipeline and the second output subport 11322 of the third pipeline , the third output subport 11323 of the third pipeline, and the other three pipe interfaces that do not participate in the formation of the straight channel are respectively used as the first output subport 11321 of the third pipeline, the second output subport 11322 of the third pipeline, and the third pipe interface The third output sub-port 11323.
  • the main body of the pipeline in the first pipeline 111 or the third pipeline 113 can be understood as a part of the first pipeline 111 or the third pipeline 113 that does not include the input port and the output port, or the part from the first pipeline 111 or the third pipeline 113 The part between the input port (or a certain output sub-port) and the output port (or a certain output sub-port).
  • the pipeline main body of the first pipeline 111 can be from the intersection position A of the first input subport 11111 of the first pipeline and the second input subport 11112 of the first pipeline in the first pipeline 111 to the first pipeline The part between the intersection position B of the first output subport 11121 and the second output subport 11122 of the first pipeline.
  • the pipeline body of the third pipeline 113 may be the part of the third pipeline 113 from the position C of the third pipeline input port 1131 to the corresponding position D of the first output sub-port 11121 of the third pipeline.
  • the first pipeline 111 , the second pipeline 112 and the third pipeline 113 may be one pipeline (for example, an integral multi-way tube).
  • the pipeline itself has multiple pipeline interfaces, and the multiple pipeline interfaces can serve as input sub-ports and/or output sub-ports on the first pipeline 111 and/or the third pipeline.
  • the pipeline has a shape in which the first pipeline 111 , the second pipeline 112 and the third pipeline 113 are connected.
  • the pipeline includes an input port and an output port, wherein a pipeline interface is provided on the pipeline near the input port, and the pipeline interface and the input port can serve as the first input sub-port 11111 and the first sub-port of the first pipeline respectively.
  • the second input sub-port 11112 of the first pipeline is
  • the middle part of the pipeline (that is, the position corresponding to the first output subport 11121 of the first pipeline) is provided with a pipeline interface, and the pipeline interface can serve as the first channel of the first pipeline.
  • Output subport 11121 In some embodiments, three pipeline interfaces are sequentially opened on the tube close to the output port of the pipeline, and the three pipeline interfaces and the output port can serve as the first output sub-port 11321 of the third pipeline and the first output subport 11321 of the third pipeline, respectively.
  • the fluid pipeline 110 also includes a fourth pipeline 114, and the two ends of the fourth pipeline 114 can be respectively connected to the first output subport 11121 of the first pipeline and the second output subport of the third pipeline. 11322, so as to realize the communication between the first pipeline 111 and the third pipeline 113.
  • the pipeline assembly 100 further includes a sorting container 130, the first open end and the second open end of the sorting container 130 can be connected to the second pipeline output port 1122 and the third open end respectively.
  • the pipeline input port 1131 is connected to realize the communication between the second pipeline 112 and the third pipeline 113 .
  • the sorting container 130 may not be included in the pipeline assembly 100, that is, the sorting container 130 may be connected to the pipeline assembly 100 independently of the pipeline assembly 100 and installed on the cell sorter. In some embodiments, the sorting container 130 can be connected to the pipeline assembly 100 and/or installed on the cell sorter before or after the pipeline assembly 100 is installed in the cell sorter. In some embodiments, the pipeline assembly 100 can reserve two additional ports (for example, the second pipeline output port 1122 and the third pipeline input port 1131) for connecting the first open end of the sorting container 130 respectively. 133 and the second open end 134.
  • the sorting container 130 can be used to adsorb target cells to achieve the purpose of cell sorting.
  • Fig. 5 is a schematic structural diagram of a sorting container according to some embodiments of the present specification.
  • the shell of the sorting container 130 consists of an upper shell 131 and a lower shell 132 , and the upper shell 131 and the lower shell 132 are respectively provided with a first open end 133 and a second open end 134 .
  • the upper shell 131 and the lower shell 132 can form a cavity filled with several ferromagnetic balls 135 .
  • a magnetic field needs to be applied to the sorting container 130 , so that a high magnetic gradient is formed in the sorting container 130 , thereby helping to adsorb target cells in the sample in the sorting container 130 .
  • the target cells may be cells labeled with magnetic particles.
  • the high magnetic gradient in the sorting container 130 disappears, which helps to release the target cells adsorbed in the sorting container 130 .
  • the upper and lower ends of the cavity of the sorting container 130 are respectively provided with a first sieve plate 136 and a second sieve plate 137, and several ferromagnetic pellets 135 are positioned on the first sieve plate 136 and the second sieve plate 137.
  • micropores are opened on the first sieve plate 136 and the second sieve plate 137 to facilitate the flow of fluid in the sorting container 130 .
  • the pipeline assembly 100 also includes a peristaltic hose 140, and the two ends of the peristaltic hose 140 can communicate with the second output subport 11122 of the first pipeline and the input port 1121 of the second pipeline respectively, thereby realizing The communication between the first pipeline 111 and the second pipeline 112 .
  • the peristaltic hose 140 may not be included in the pipeline assembly 100, that is, the peristaltic hose 140 may be connected to the pipeline assembly 100 independently of the pipeline assembly 100 and installed on the cell sorter. In some embodiments, the peristaltic hose can be connected to the tubing assembly 100 and/or installed on the cell sorter before or after the tubing assembly 100 is installed in the cell sorter. In some embodiments, the pipeline assembly 100 can reserve two additional ports (for example, the second output subport 11122 of the first pipeline and the input subport 1121 of the second pipeline) for connecting the two ports of the peristaltic hose 140 respectively. end.
  • peristaltic hose 140 may be used to engage a peristaltic pump to power fluid flow on the fluid path formed by tubing assembly 100 for cell sorting.
  • the peristaltic pump can be set on the cell sorter.
  • the peristaltic hose 140 can be operatively engaged with the peristaltic pump.
  • the peristaltic pump The generated power can make the fluid flow along the corresponding fluid path through the peristaltic hose 140 .
  • the tubing assembly 100 may also include at least one fluid supply component. At least one fluid supply part can communicate with the first pipeline input port 1111 of the first pipeline, so as to provide sample fluid (for example, blood sample solution or culture solution including target cells) that needs to be sorted in the cell sorting process And/or a buffer fluid (eg, saline, etc.) for flushing the line.
  • sample fluid for example, blood sample solution or culture solution including target cells
  • buffer fluid eg, saline, etc.
  • At least one fluid supply component may not be included in the pipeline assembly 100, that is, at least one fluid supply component may be connected to the pipeline assembly 100 independently of the pipeline assembly 100 and installed on the cell sorter. In some embodiments, at least one fluid supply component may be connected to the tubing assembly 100 and/or installed on the cell sorter before or after the tubing assembly 100 is installed in the cell sorter. In some embodiments, the pipeline assembly 100 can additionally leave at least one port (for example, the first pipeline first input subport 11111 and the first pipeline second input subport 11112) for connecting at least one fluid supply part.
  • At least one fluid supply component may include a first fluid supply component 161 and a second fluid supply component 162 .
  • the first fluid supply part 161 can be used to store and/or provide sample fluid (for example, blood sample solution or culture solution including target cells) that needs to be sorted.
  • the second fluid supply component 162 may be used to store and/or provide buffer fluid (eg, physiological saline, etc.) for flushing the circuit.
  • the fluid line 110 may also include a fifth line 115 and a sixth line 116 .
  • Both ends of the fifth pipeline 115 communicate with the first fluid supply part 161 and the first input subport 11111 of the first pipeline respectively, so that the sample fluid in the first fluid supply part 161 can pass through the fifth pipeline 115 and the first The pipeline first input subport 11111 flows into the first pipeline 111 .
  • Both ends of the sixth pipeline 116 communicate with the second fluid supply part 162 and the second input subport 11112 of the first pipeline respectively, so that the buffer fluid in the second fluid supply part 162 can pass through the sixth pipeline 116 and the first The pipeline second input subport 11112 flows into the first pipeline 111 .
  • tubing assembly 100 also includes at least one fluid receiving component. At least one fluid receiving component can be in communication with the third line output port 1132 of the third line 113 (e.g., third line first output subport 11321, third line third output subport 11323, third line The fourth output sub-port 11324) is used to receive the sample fluid (for example, the sample fluid excluding target cells) that flows out of the sorting container 130 from which the target cells have been sorted, the buffer fluid after the pipeline is flushed, and the sample fluid after the cell sorting is completed. of the target cells or only the target cells in the fluid.
  • the sample fluid for example, the sample fluid excluding target cells
  • At least one fluid receiving component may not be included in the tubing assembly 100, that is, the at least one fluid receiving component may be connected to the tubing assembly 100 independently of the tubing assembly 100 and installed on the cell sorter. In some embodiments, at least one fluid receiving component may be connected to the tubing assembly 100 and/or installed on the cell sorter before or after the tubing assembly 100 is installed in the cell sorter.
  • the pipeline assembly 100 can reserve at least one additional port (for example, the first output subport 11321 of the third pipeline, the third output subport 11323 of the third pipeline, or the fourth output subport of the third pipeline port 11324) for connecting at least one fluid receiving component.
  • the at least one fluid receiving component may include a first fluid receiving component 171 , a second fluid receiving component 172 and a third fluid receiving component 173 .
  • the first fluid receiving part 171 can be used to receive the sample fluid from which the target cells have been sorted out from the sorting container 130 (for example, the sample fluid excluding the target cells).
  • the second fluid receiving part 172 can be used to receive the buffer fluid after the pipeline is flushed (or become waste fluid).
  • the third fluid receiving part 173 can be used to receive (or collect) the target cells after cell sorting or the fluid including only the target cells.
  • the fluid line 110 also includes a seventh line 117 , an eighth line 118 and a ninth line 119 .
  • Both ends of the seventh pipeline 117 can communicate with the first fluid receiving part 171 and the fourth output subport 11324 of the third pipeline, respectively, so that the sample fluid flowing out of the sorting container 130 that does not include target cells can pass through the third tube.
  • the fourth output subport 11324 and the seventh pipeline 117 flow into the first fluid receiving part 171 .
  • Both ends of the eighth pipeline 118 can communicate with the second fluid receiving part 172 and the third output subport 11323 of the third pipeline respectively, so that the buffer fluid after pipeline flushing can pass through the third output subport 11323 of the third pipeline
  • the eighth pipeline 118 flows into the second fluid receiving part 172 .
  • Both ends of the ninth pipeline 119 can communicate with the third fluid receiving part 173 and the first output subport 11321 of the third pipeline respectively, so that the target cells after cell sorting or the fluid including only the target cells can pass through the third fluid receiving part 173 and the first output subport 11321 of the third pipeline.
  • the pipeline first output subport 11321 and the ninth pipeline 119 flow into the third fluid receiving part 173 to be collected.
  • tubing assembly 100 may include only two fluid receiving components.
  • One of the fluid receiving parts (for example, the third fluid receiving part 173) is used to receive the first output subport 11321 of the third pipeline, and the other fluid receiving part (for example, the first fluid receiving part 171 or the second fluid receiving part 172 ) is used to receive the sample fluid excluding the target cells flowing out from the sorting container 130 and the buffer fluid after the pipeline is flushed.
  • the third pipeline output port 1132 can be reduced by one output subport (for example, the third pipeline third output subport 11323 or the third pipeline fourth output subport port 11324), correspondingly, the seventh pipeline 117 or the eighth pipeline 118 can also be canceled.
  • multiple fluid paths for cell sorting can be formed between the fluid pipeline 110, the sorting container 130, and the peristaltic hose 140, and multiple fluid paths pass through the The separation column and the peristaltic hose are used to realize various steps in the cell separation process.
  • each step in the cell sorting process is implemented by fluid (eg, sample fluid and/or buffer fluid) flowing along a corresponding fluid path.
  • fluid eg, sample fluid and/or buffer fluid
  • the cell sorting process based on the pipeline assembly 100 may include the following steps:
  • Step 1 the pipeline is pre-flushed.
  • the pipeline pre-flush mainly uses the buffer fluid in the second fluid supply part 162 to drain the fluid in the pipeline (for example, the first pipeline 111, the second pipeline 112 and the third pipeline 113) and/or the sorting container 130. The air is expelled, and the flushed buffer fluid flows into the second fluid receiving member 172 .
  • the fluid path corresponding to pipeline preflushing includes in sequence: the second fluid supply part 162, the sixth pipeline 116, the second input subport 11112 of the first pipeline, the first pipeline 111, the first pipeline Road second output subport 11122, peristaltic hose 140, second pipeline input port 1121, second pipeline 112, second pipeline output port 1122, first open end 133 of sorting container 130, sorting container 130 , the second open end 134 of the sorting container 130 , the third pipeline input port 1131 , the third pipeline 113 , the third pipeline third output subport 11323 , the eighth pipeline 118 , and the second fluid receiving part 172 .
  • the pipeline preflush is realized by the buffer fluid filling the pipeline and flowing in the pipeline, so that the pipeline (for example, the first pipeline 111, the second pipeline 112 and the third pipeline 113) and/or Or the air in the sorting container 130 is discharged.
  • the pipeline for example, the first pipeline 111, the second pipeline 112 and the third pipeline 113
  • the air in the sorting container 130 is discharged.
  • Step two the first cell sorting.
  • the first cell sorting is mainly to let the sample fluid in the first fluid supply part 161 flow into the sorting container 130, and at the same time apply a magnetic field to the sorting container 130, the target cells in the sample fluid (for example, cells labeled with magnetic particles)
  • the sample fluid can be adsorbed in the sorting container 130 under the action of the magnetic field, and the sample fluid excluding the target cells flows out from the sorting container 130 , and the sample fluid excluding the target cells flows into the first fluid receiving part 171 .
  • the fluid path corresponding to the first cell sorting sequentially includes: the first fluid supply part 161, the first input subport 11111 of the first pipeline, the first pipeline 111, the second output subport 11122 of the first pipeline, The peristaltic hose 140, the second pipeline input port 1121, the second pipeline 112, the second pipeline output port 1122, the first open end 133 of the sorting container 130, the sorting container 130, the second end of the sorting container 130 Open end 134 , third pipeline input port 1131 , third pipeline 113 , third pipeline fourth output subport 11324 , seventh pipeline 117 , first fluid receiving part 171 . That is, the first cell sorting is achieved by allowing the sample fluid to flow along the fluid path. Wherein, when the sample fluid passes through the sorting container 130, the target cells in the sample fluid are adsorbed by the sorting container 130, and the sample fluid that finally flows into the first fluid receiving part 171 is other components of the sample fluid except the target cells. .
  • Step 3 washing the sorting container 130 after the first cell sorting is completed.
  • the purpose of flushing the sorting container 130 after the first cell sorting is to remove non-target cells (for example, cells without magnetic particle labels) remaining in the pipeline and the sorting container 130 after the first cell sorting is completed.
  • the fluid path corresponding to flushing the sorting container 130 is the same as the fluid path corresponding to pipeline preflushing. Therefore, as for how to flush the sorting container 130, reference may be made to relevant descriptions of pipeline pre-flushing.
  • Step 4 releasing the target cells in the sorting container 130 .
  • the target cells adsorbed in the sorting container 130 flow out of the sorting container 130 and circulate along the corresponding fluid path.
  • the fluid path corresponding to releasing the sorting container 130 includes in sequence: the sorting container 130, the second open end 134 of the sorting container 130, the third pipeline input port 1131, the third pipeline 113, the third Pipeline second output subport 11322, fourth pipeline 114, first pipeline first output subport 11121, first pipeline second output subport 11122, peristaltic hose 140, second pipeline input port 1121, The second pipeline 112 , the output port 1122 of the second pipeline, the first open end 133 of the sorting container 130 , and the sorting container 130 . That is, the release of the target cells in the sorting container 130 is achieved by circulating the target cells in the sorting container 130 along the fluid path.
  • Step five the second cell sorting.
  • the magnetic field is applied to the sorting container 130 again, and the target cells flow into the sorting container 130 from the second open end 134 of the sorting container 130, and the sorting container 130 is under the action of the magnetic field. Adsorb the target cells inside it again.
  • the fluid path corresponding to the second cell sorting includes: the first open end 133 of the sorting container 130, the second pipeline output port 1122, the second pipeline 112, the second pipeline input port 1121, and the peristaltic hose 140 , the first pipeline second output subport 11122, the first pipeline first output subport 11121, the fourth pipeline 114, the third pipeline second output subport 11322, the third pipeline 113, the third pipeline
  • the input port 1131 , the second open end 134 of the sorting container 130 , and the sorting container 130 is achieved by allowing the target cells to follow the fluid path, so that the sorting container 130 can absorb the target cells in the sorting container 130 again under the action of the magnetic field.
  • step six the sorting container 130 is rinsed after the second cell sorting is completed.
  • the sorting container 130 is rinsed in order to remove non-target cells (for example, cells not labeled with magnetic particles) remaining in the pipeline and the sorting container 130 after the second cell sorting is completed.
  • the fluid path corresponding to flushing the sorting container 130 after the second cell sorting is completed is the same as the fluid path corresponding to the pipeline pre-flushing and/or flushing the sorting container 130 after the first cell sorting is completed. Therefore, regarding how to flush the sorting container 130 again, reference may be made to the related descriptions of pipeline pre-flushing and/or flushing the sorting container 130 after the first cell sorting is completed.
  • Step seven collecting target cells. After the second cell sorting is completed and the sorting container 130 is rinsed, the magnetic field acting on the sorting container 130 is removed, so that the target cells adsorbed in the sorting container 130 flow to the third fluid receiving part 173 to be collected.
  • the fluid path corresponding to collecting the target cells includes: the second fluid supply part 162, the sixth pipeline 116, the second input subport 11112 of the first pipeline, the first pipeline 111, and the second output subport 11122 of the first pipeline , the peristaltic hose 140, the second pipeline input port 1121, the second pipeline 112, the second pipeline output port 1122, the first open end 133 of the sorting container 130, the sorting container 130, the first opening end of the sorting container 130 Two open ends 134 , the third pipeline input port 1131 , the third pipeline 113 , the first output subport 11321 of the third pipeline, the ninth pipeline 119 , and the third fluid receiving part 173 .
  • to collect the target cells is to let the buffer fluid in the second fluid supply part 162 flow along the fluid path, so that the target cells in the sorting container 130 are flushed out from the second open end 134 of the sorting container 130 and flow into the third fluid into the receiving part 173 to be collected by it.
  • the entire cell sorting process is complete.
  • the pipeline assembly 100 may further include a filter container, and two ends of the filter container communicate with the second pipeline input port and the second pipeline output port respectively.
  • the filter container can capture non-target cell components in the sample fluid that may be adsorbed by the sorting container 130 before the sample fluid flows into the sorting container 130 during the first cell sorting, ensuring that the samples flowing into the sorting container 130 The fluid does not include or includes less non-target cell components that can be adsorbed by the sorting container 130, so as to ensure that the sorted target cells have high purity, thereby improving the efficiency and purity of cell sorting.
  • the filter container and the sorting container may have the same or similar structure.
  • the filter container When the sample fluid flows into the filter container, the filter container can absorb the particles in the sample fluid that can be adsorbed by the sorting container 130 without the action of a magnetic field. Non-target cellular components are captured.
  • the filtering container 130 For the relevant description about the filtering container, reference may be made to the description of the sorting container 130 in FIG. 5 .
  • FIG. 6 is a schematic structural diagram of a pipeline assembly including a filter container according to some embodiments of the present specification. It should be noted that the pipeline assembly 200 shown in FIG. 6 is improved on the basis of the pipeline assembly 100 shown in FIG.
  • the first pipeline 111, the second pipeline 112, the third pipeline 113, etc. have adopted the same reference numerals, and for the description of the same parts of the pipeline assembly 200 and the pipeline assembly 100, reference can be made to the relevant parts of the pipeline assembly 100 description and will not be repeated here.
  • the pipeline assembly 200 includes all components of the pipeline assembly 100 and further includes a filter container 180 , and the filter container 180 can communicate with the second pipeline output port 1122 .
  • the filter container 180 may not be included in the pipeline assembly 100, that is, the filter container 180 may be connected to the pipeline assembly 100 independently of the pipeline assembly 100 and installed on the cell sorter. In some embodiments, the filter container 180 may be connected to the tubing assembly 100 and/or installed on the cell sorter before or after the tubing assembly 100 is installed in the cell sorter. In some embodiments, the pipeline assembly 100 can reserve at least two additional ports (for example, the first output subport 11221 of the second pipeline and the second output subport 11222 of the second pipeline shown in FIG. 7 ) for use in Connect the two ends of the filter container 180.
  • FIG. 7 is a schematic structural diagram of a second pipeline in the pipeline assembly shown in Fig. 6 .
  • FIG. 8 is a schematic structural view of the first pipeline of the pipeline assembly shown in FIG. 6 .
  • FIG. 9 is a schematic structural view of a third pipeline of the pipeline assembly shown in FIG. 6 .
  • the second pipeline output port 1122 may include a second pipeline first output subport 11221, a second pipeline second output subport 11222, a second pipeline third output subport Subport 11223.
  • the fluid pipeline 110 may further include a tenth pipeline 210 and an eleventh pipeline 211 . Wherein, both ends of the tenth pipeline 210 communicate with the first output sub-port 11221 of the second pipeline and the first open end 181 of the filter container 180 respectively. Both ends of the eleventh pipeline 211 communicate with the second open end 182 of the filter container 180 and the second output sub-port 11222 of the second pipeline respectively.
  • the third output subport 11223 of the second pipeline communicates with the first open end 133 of the sorting container 130 .
  • the second pipeline output port 1122 may further include a second pipeline fourth output subport 11224 and a second pipeline fifth output subport 11225 .
  • the output port 1112 of the first pipeline may further include a third output sub-port 11123 of the first pipeline.
  • the output port of the third pipeline may further include a fifth output sub-port 11325 of the third pipeline.
  • the fluid pipeline 110 further includes a twelfth pipeline 212 and a thirteenth pipeline 213 .
  • both ends of the twelfth pipeline 212 communicate with the fourth output subport 11224 of the second pipeline and the third output subport 11123 of the first pipeline respectively;
  • the fifth output subport 11225 of the third pipeline communicates with the fifth output subport 11325 of the third pipeline.
  • the tubing assembly 200 may further include a fourth fluid receiving component 174 .
  • the eleventh pipeline 211 is provided with an eleventh pipeline output port 2112 .
  • the fluid line 110 also includes a fourteenth line 214 . Wherein, both ends of the fourteenth pipeline 214 communicate with the fourth fluid receiving part 174 and the eleventh pipeline output port 2112 respectively.
  • the fourth fluid receiving part 174 can shorten the length of the fluid path corresponding to the corresponding step (for example, pipeline pre-flushing) in the cell sorting process, thereby improving the reduction in The timing of fluid flow during this step increases the efficiency of cell sorting.
  • multiple fluid paths for cell sorting can be formed between the fluid pipeline 110 and the sorting container 130, the filter container 180, and the peristaltic hose 140.
  • the multiple fluid paths All pass through the sorting column and the peristaltic hose to realize each step in the cell sorting process.
  • the cell sorting process will be described in detail below in conjunction with the pipeline assembly 200 shown in FIG. 6 .
  • the cell sorting process based on the pipeline assembly 200 may include the following steps:
  • Step 1 the pipeline is pre-flushed.
  • the pipeline pre-flush includes the pre-flush of the filter container 180 and the pre-flush of the sorting container 130 .
  • the fluid path corresponding to the pre-flushing of the filter container 180 includes in turn: the second fluid supply part 162, the second input subport 11112 of the first pipeline, the first pipeline 111, the second output subport 11122 of the first pipeline, and the peristaltic Hose 140, second pipeline input port 1121, second pipeline 112, second pipeline first output subport 11221, tenth pipeline 210, first open end 181 of filter container 180, filter container 180, filter The second open end 182 of the container 180 , the eleventh pipeline 211 , the eleventh pipeline output port 2112 , and the fourth fluid receiving part 174 .
  • the fluid path corresponding to the preflushing of the sorting container 130 includes in turn: the second fluid supply part 162, the second input subport 11112 of the first pipeline, the first pipeline 111, the third output subport 11123 of the first pipeline, the tenth Second pipeline 212, second pipeline fourth output subport 11224, second pipeline 112, second pipeline input port 1121, peristaltic hose 140, first pipeline second output subport 11122, first pipeline The first output subport 11121, the fourth pipeline 114, the second output subport 11322 of the third pipeline, the third pipeline input port 1131, the second open end 134 of the sorting container 130, the sorting container 130, the sorting The first open end 133 of the container 130, the third output subport 11223 of the second pipeline, the second output subport 11222 of the second pipeline, the eleventh pipeline 211, the output port 2112 of the eleventh pipeline, the fourth fluid Receiving part 174. That is, the buffer
  • Step two the first cell sorting.
  • the fluid path corresponding to the first cell sorting includes in turn: the first fluid supply part 161, the first input subport 11111 of the first pipeline, the first pipeline 111, the second output subport 11122 of the first pipeline, the peristaltic soft Tube 140, second pipeline input port 1121, second pipeline 112, second pipeline first output subport 11221, tenth pipeline 210, first open end 181 of filter vessel 180, filter vessel 180, filter vessel The second open end 182 of 180, the eleventh pipeline 211, the second output subport 11222 of the second pipeline, the third output subport 11223 of the second pipeline, the first open end 133 of the sorting container 130, the sorting The container 130 , the second open end 134 of the sorting container 130 , the third pipeline input port 1131 , the third pipeline fourth output subport 11324 , the seventh pipeline 117 , and the first fluid receiving part 171 . That is, the first cell sorting is achieved by allowing the sample fluid to flow along the fluid path.
  • Step 3 washing the sorting container 130 after the first cell sorting.
  • the fluid path corresponding to the flushing sorting container 130 includes: the second fluid supply part 162, the first pipeline second input subport 11112, the first pipeline 111, the first pipeline second output Subport 11122, peristaltic hose 140, second pipeline input port 1121, second pipeline 112, second pipeline first output subport 11221, tenth pipeline 210, first open end 181 of filter container 180, The filter container 180, the second open end 182 of the filter container 180, the eleventh pipeline 211, the second output subport 11222 of the second pipeline, the third output subport 11223 of the second pipeline, the first output subport 11223 of the sorting container 130 Open end 133, sorting container 130, second open end 134 of sorting container 130, third pipeline input port 1131, third pipeline third output subport 11323, eighth pipeline 118, second fluid receiving part 172. That is, washing the sorting container 130 after the first cell sorting is realized by letting the buffer fluid flow along the
  • Step 4 releasing the target cells in the sorting container 130 .
  • the fluid path corresponding to releasing the target cells in the sorting container 130 sequentially includes: the sorting container 130, the second open end 134 of the sorting container 130, the third pipeline input port 1131, and the third pipeline second output subport 11322 , the fourth pipeline 114, the first output subport 11121 of the first pipeline, the second output subport 11122 of the first pipeline, the peristaltic hose 140, the input port 1121 of the second pipeline, the second pipeline 112, the second The first output subport 11221 of the pipeline, the third output subport 11223 of the second pipeline, the first open end 133 of the sorting container 130 , and the sorting container 130 . That is, the release of the target cells in the sorting container 130 is achieved by circulating the target cells in the sorting container 130 along the fluid path.
  • Step five the second cell sorting.
  • the fluid path corresponding to the second cell sorting includes in sequence: the first open end 133 of the sorting container 130, the third output subport 11223 of the second pipeline, the second pipeline 112, the input port 1121 of the second pipeline, the peristaltic Hose 140, first pipeline second output subport 11122, first pipeline first output subport 11121, fourth pipeline 114, third pipeline second output subport 11322, third pipeline input port 1131 , the second open end 134 of the sorting container 130 , and the sorting container 130 . That is, the second cell sorting is achieved by letting the target cells flow into the sorting container 130 along the fluid path, so that the sorting container 130 absorbs the target cells therein under the action of the magnetic field.
  • Step six washing the sorting container 130 after the second cell sorting.
  • the fluid path corresponding to the flushing of the sorting container 130 after the second cell sorting is the same as the fluid path corresponding to the flushing of the sorting container 130 after the first cell sorting, and will not be repeated here.
  • Step seven target cells are collected.
  • the fluid path corresponding to the target cell collection includes: the second fluid supply part 162, the second input subport 11112 of the first pipeline, the first pipeline 111, the third output subport 11123 of the first pipeline, and the twelfth pipeline 212, the fourth output subport 11224 of the second pipeline, the second pipeline 112, the input port 1121 of the second pipeline, the peristaltic hose 140, the second output subport 11122 of the first pipeline, the first output of the first pipeline Subport 11121, fourth pipeline 114, third pipeline second output subport 11322, third pipeline 113, third pipeline fifth output subport 11325, thirteenth pipeline 213, second pipeline first Five output sub-ports 11225, the third output sub-port 11223 of the second pipeline, the first open end 133 of the sorting container 130, the sorting container 130, the second open end 134 of the sorting container 130, the third pipeline input port 1131 , the first output subport 11321 of the third pipeline, the ninth pipeline 119 , and the
  • one side of the installation plate of the pipeline assembly 100 or 200 provided in the embodiment of this specification may be provided with multiple installation grooves, and the multiple installation grooves may be used for fixed installation and/or guiding of the fluid pipeline 110, so that The fluid pipeline 110 is simple and tidy.
  • one side of the mounting plate 120 can be provided with 9 installation grooves, and the 9 installation grooves can be used to respectively install the first pipeline 111, the second pipeline 112, the The third pipeline 113 , the fourth pipeline 114 , the fifth pipeline 115 , the sixth pipeline 116 , the seventh pipeline 117 , the eighth pipeline 118 and the ninth pipeline 119 .
  • one side of the installation plate 120 may be provided with 14 installation grooves, and the 14 installation grooves may be used to respectively install the first pipeline 111 and the second pipeline 112 in the pipeline assembly 200 , the third pipeline 113, the fourth pipeline 114, the fifth pipeline 115, the sixth pipeline 116, the seventh pipeline 117, the eighth pipeline 118, the ninth pipeline 119, the tenth pipeline 210, the The eleventh pipeline 211 , the twelfth pipeline 212 , the thirteenth pipeline 213 and the fourteenth pipeline 214 .
  • the multiple installation grooves may communicate with each other, so as to facilitate the interconnection of the pipelines after the pipelines are installed in the installation grooves.
  • the shape of the installation groove is adapted to the shape of the corresponding pipeline, so that the pipeline can be quickly and accurately installed into the corresponding installation groove.
  • the fluid pipeline 110 may be composed of a plurality of hoses, which may be installed into corresponding installation grooves and guided (or constrained) by the installation grooves to form the shape of the corresponding pipeline.
  • At least one of the plurality of mounting slots can be used to mount the filter vessel 180 and/or the sorting vessel 130 such that the filter vessel 180 and/or the sorting vessel 130 can be installed together with the fluid line 110 to the installation. board 120.
  • an installation groove for installing the sorting container 130 may be provided on the installation plate 120 .
  • installation grooves for installing the sorting container 130 and the filtering container 180 may be provided on the installation plate 120 .
  • Fig. 10 is a schematic structural diagram of a pipeline assembly according to some embodiments of the present specification.
  • Fig. 11 is a schematic front view of the mounting plate of the pipeline assembly shown in Fig. 10 .
  • FIG. 12 is a schematic diagram of the back structure of the mounting plate of the pipeline assembly shown in Fig. 10 .
  • the pipeline assembly 300 shown in FIG. 10 has the same fluid pipeline structure as the pipeline assembly 200 shown in FIG. 6 , so FIG. 10 and FIG. 6 use the same reference numerals.
  • FIG. 10 and FIG. 6 use the same reference numerals.
  • FIG. 10 and FIG. 6 use the same reference numerals.
  • FIG. 10 and FIG. 6 use the same reference numerals.
  • the sorting container 130 , the filtering container 180 and the fluid pipeline 110 are all installed on the mounting plate 120 .
  • the installation plate 120 is also provided with a separation container installation groove 122 and a filter container installation groove 123 for respectively installing the separation container 130 and the filter container 180 .
  • the installation groove 123 to install the filter container 180, without adding additional mechanisms, it can ensure that the filter container 180 remains vertical during the cell sorting process, so that when the sample fluid flows through the filter container 180, it can be as fast as possible. It is possible to trap non-target cell components in the sample fluid that can be adsorbed by the sorting container 130 .
  • the peristaltic hose 140 can be installed on the mounting plate 120 through a snap ring 141, and correspondingly, the mounting plate 120 is provided with a mounting groove for installing the snap ring 141 (not shown in the figure). Out), by installing the snap ring 141 into the corresponding installation groove, the installation of the peristaltic hose 140 can be completed quickly and accurately.
  • the other side of the mounting plate 120 ie, the back of the mounting plate 120
  • At least two asymmetric positioning holes are further provided on the mounting plate 120 .
  • At least two asymmetric positioning holes can be installed in cooperation with the positioning mechanism on the cell sorter, so as to avoid mistakes when the pipeline assembly (eg, pipeline assembly 100, 200 or 300) is installed on the cell sorter.
  • valve holes may be provided on the mounting plate 120 , and the several valve holes may be disposed in multiple mounting grooves.
  • several valve assemblies for example, on-off valves
  • the valve assemblies can be installed on the corresponding The pipelines in the installation groove where the valve hole is located are joined to control the on-off of the corresponding pipelines to form a fluid path corresponding to each step of the cell sorting process.
  • the pipeline assembly (for example, pipeline assembly 100, 200 or 300) further includes an on-off valve (not shown in the figure) disposed in the valve hole 126, and the on-off valve faces the opening of the installation groove.
  • One end is provided with a notch, and when each pipeline in the fluid pipeline 110 is installed in the installation groove, each pipeline is installed in the notch of the on-off valve in the valve hole in the corresponding installation groove, so that the on-off valve can The on-off of the corresponding pipelines is controlled to form a fluid path corresponding to each step of the cell sorting process.
  • the number of valve holes of the installation plate 120 may correspond to the number of installation grooves (or pipelines).
  • the mounting plate 120 may include nine valve holes, so that the first pipeline 111, the second pipeline 112, the third pipeline 113, the fourth pipeline 114, the fifth pipeline
  • the pipeline 115, the sixth pipeline 116, the seventh pipeline 117, the eighth pipeline 118, and the ninth pipeline 119 have corresponding valve components (or on-off valves) to control their on-off, so as to form corresponding fluid paths .
  • the mounting plate 120 may include 14 valve holes, so that the first pipeline 111, the second pipeline 112, the third pipeline 113, the fourth pipeline 114, the fifth pipeline Pipeline 115, sixth pipeline 116, seventh pipeline 117, eighth pipeline 118, ninth pipeline 119, tenth pipeline 210, eleventh pipeline 211, twelfth pipeline 212, tenth pipeline
  • the third pipeline 213 and the fourteenth pipeline 214 have corresponding valve components (or on-off valves) to control their on-off, so as to form corresponding fluid paths.
  • part of the pipeline in the pipeline assembly may not need an on-off valve to control its on-off, and it can also ensure that the pipeline assembly can form a fluid path corresponding to each step of the cell sorting process. Therefore, the installation The number of valve holes of the plate 120 may be smaller than the number of installation grooves.
  • the mounting plate 120 shown in FIG. 1 may include 7 valve holes, and the number of mounting grooves is 9, wherein no valve holes may be provided in the mounting grooves corresponding to the first pipeline 111 and the third pipeline 113 .
  • the installation plate 120 shown in FIG. 6 may include 13 valve holes, and the number of installation grooves is 14, wherein, the installation groove corresponding to the tenth pipeline 210 may not be provided with a valve hole.
  • the possible beneficial effects of the embodiment of this specification include but are not limited to: (1)
  • the pipeline assembly in the embodiment of this specification is formed by installing the fluid pipeline and/or the sorting container and/or the filter container on the mounting plate. Installed on the cell sorter as a whole, the operator can quickly and accurately install the pipeline assembly on the cell sorter, saving time and effort, and reducing the possibility of manual installation errors or installation errors; (2 ) There are reinforcing ribs on the mounting plate, which can increase the strength and rigidity of the mounting plate; (3) There are several mounting grooves on the mounting plate, which are convenient for installing and/or guiding fluid pipelines and/or sorting containers and/or filter containers , so that the entire pipeline assembly is compact, simple and beautiful; (4) There are multiple valve holes on the mounting plate, which is convenient for assembling the valve assembly (or on-off valve) to control the on-off of the corresponding pipeline, thus forming a Multiple fluid paths for sorting; (5) Mounting grooves are set on the mounting plate to install the filter container, which can
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters shall take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of the present application to confirm the breadth of the scope are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本说明书实施例提供了一种管路组件,该管路组件包括流体管路以及至少用于安装流体管路的安装板;流体管路至少包括第一管路、第二管路、第三管路;第一管路包括第一管路输入端口和第一管路输出端口;第一管路输入端口至少包括第一管路第一输入子端口和第一管路第二输入子端口,第一管路输出端口至少包括第一管路第一输出子端口和第一管路第二输出子端口;第二管路包括第二管路输入端口和第二管路输出端口;第三管路包括第三管路输入端口和第三管路输出端口;第三管路输出端口包括第三管路第一输出子端口、第三管路第二输出子端口、第三管路第三输出子端口以及第三管路第四输出子端口。该管路组件结构紧凑,安装方便快捷。

Description

一种管路组件
优先权声明
本申请要求2021年12月21日提交的申请号为“202111572888.2”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及细胞分选技术领域,特别涉及一种管路组件。
背景技术
在临床医学或生命科学中,细胞分选作为一项关键技术,可以用于细胞治疗、细胞改造或细胞培养等。具体地,通过细胞分选技术可以将样本中的某些特定功能的细胞分选出来以用于细胞治疗或进行改造、培养等。
细胞分选仪是实现细胞分选的重要设备。细胞分选仪上通常设置有管路组件以用于细胞分选。然而,管路组件复杂,技术人员在安装管路组件时通常需要将多条管路依次安装在细胞分选仪上并相互连接形成管路组件,其过程费时费力并且存在人为失误和安装错误的风险。
因此,如何将管路组件快速、准确地安装到细胞分选仪上成为目前亟需解决的问题。
发明内容
本说明书实施例提供一种管路组件,其特征在于,所述管路组件包括流体管路以及至少用于安装所述流体管路的安装板;所述流体管路至少包括第一管路、第二管路、第三管路;所述第一管路包括第一管路输入端口和第一管路输出端口;所述第一管路输入端口至少包括第一管路第一输入子端口和第一管路第二输入子端口,所述第一管路输出端口至少包括第一管路第一输出子端口和第一管路第二输出子端口;所述第二管路包括第二管路输入端口和第二管路输出端口;所述第三管路包括第三管路输入端口和第三管路输出端口;所述第三管路输出端口包括第三管路第一输出子端口、第三管路第二输出子端口、第三管路第三输出子端口以及第三管路第四输出子端口。
在一些实施例中,所述流体管路还包括第四管路,所述第四管路的两端分别与所述第一管路第一输出子端口和所述第三管路第二输出子端口连通。
在一些实施例中,所述管路组件还包括分选容器,所述分选容器的第一开口端和第二开口端分别与所述第二管路输出端口和所述第三管路输入端口连通。
在一些实施例中,所述管路组件还包括蠕动软管,所述蠕动软管的两端分别与所述第一管路第二输出子端口和所述第二管路输入端口连通。
在一些实施例中,所述管路组件包括至少一个流体供应部件,所述至少一个流体供应部件与所述第一管路的第一管路输入端口连通。
在一些实施例中,所述至少一个流体供应部件包括第一流体供应部件和第二流体供应部件;所述流体管路还包括第五管路和第六管路;所述第五管路的两端分别与所述第一流体供应部件和所述第一管路第一输入子端口连通;所述第六管路的两端分别于所述第二流体供应部件和所述第一管路第二输入子端口连通。
在一些实施例中,所述管路组件包括至少一个流体接收部件,所述至少一个流体接收部件与所述第三管路的第三管路输出端口连通。
在一些实施例中,所述至少一个流体接收部件包括第一流体接收部件、第二流体接收部件和第三流体接收部件;所述流体管路还包括第七管路、第八管路和第九管路;所述第七管路的两端分别与所述第一流体接收部件和所述第三管路第四输出子端口连通;所述第八管路的两端分别与所述第二流体接收部件和所述第三管路第三输出子端口连通;所述第九管路的两端分别与所述第三流体接收部件和所述第三管路第一输出子端口连通。
在一些实施例中,所述管路组件还包括过滤容器,所述过滤容器与所述第二管路输出端口连通。
在一些实施例中,所述第二管路输出端口包括第二管路第一输出子端口、第二管路第二输出子端口、第二管路第三输出子端口;所述流体管路还包括第十管路、第十一管路;所述第十管路的两端分别与所述第二管路第一输出子端口和所述过滤容器的第一开口端连通;所述第十一管路的两端分别与所述过滤容器的第二开口端和所述第二管路第二输出子端口连通;所述第二管路第三输出子端口和所述分选容器的第一开口端连通。
在一些实施例中,所述第二管路输出端口还包括第二管路第四输出子端口和第二管路第五输出子端口;所述第一管路输出端口还包括第一管路第三输出子端口;所述第三管路输出端口还包括第三管路第五输出子端口;所述流体管路还包括第十二管路和第十三管路;所述第十二管路的两端分别与所述第二管路第四输出子端口和所述第一管路第三输出子端口连通;所述第十三管路的两端分别与所述第二管路第五输出子端口和所述第三管路第五输出子端口连通。
在一些实施例中,所述管路组件还包括第四流体接收部件;所述第十一管路上设置有第十一管路输出端口;所述流体管路还包括第十四管路;所述第十四管路的两端分别与所述第四流体接收部件和所述第十一管路输出端口连通。
在一些实施例中,所述安装板的一侧设有多个安装槽,所述多个安装槽用于固定安装和/或引导所述流体管路。
在一些实施例中,所述多个安装槽中的至少一个能够用于固定安装所述过滤容器和/或所述分选容器。
在一些实施例中,所述安装板相对于所述安装槽的一侧设有若干加强筋。
在一些实施例中,所述安装板设有若干阀孔,所述若干阀孔设置所述多个安装槽内。
在一些实施例中,所述管路组件还包括设置在所述阀孔内的通断阀,所述通断阀朝向所述安装槽的开口的一端设有槽口,所述槽口用于安装所述流体管路中的管路。
在一些实施例中,所述流体管路与所述分选容器和/或所述过滤容器、所述蠕动软管之间能够形成多条流体路径,所述多条流体路径均经过所述分选柱和所述蠕动软管。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的管路组件的结构示意图;
图2是图1所示的第一管路的结构示意图;
图3是图1所示的第二管路的结构示意图;
图4是图1所示的第三管路的结构示意图;
图5是根据本说明书一些实施例所示的分选容器的结构示意图;
图6是根据本说明书一些实施例所示的管路组件包括过滤容器的结构示意图;
图7是图6所示的管路组件中的第二管路的结构示意图;
图8是图6所示的管路组件的第一管路的结构示意图;
图9是图6所示的管路组件的第三管路的结构示意图;
图10是根据本说明书一些实施例所示的管路组件的结构示意图;
图11是图10所示的管路组件的安装板的正面结构示意图;
图12是图10所示的管路组件的安装板的背面结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“***”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
近年来随着生命科学与医学的快速发展,细胞分选技术在细胞治疗、细胞改造或细胞培养等医疗或实验场景中被广泛应用。细胞分选通常需要由细胞分选仪来实现。
在使用细胞分选仪进行细胞分选时,细胞分选流程可以包括多个步骤,例如,利用分选容器分选出目标细胞、释放分选仪器中的目标细胞、目标细胞收集以及细胞分选开始前和/或在相应步骤(例如,利用分选容器分选出目标细胞)完成后的管路冲洗等。其中,目标细胞是指样本中需要分选出的某些特定功能的细胞。例如,目标细胞可以包括但不限于肿瘤干细胞、外周血细胞、造血干细胞、神经细胞等。
细胞分选仪上的管路组件是实现细胞分选的重要组件之一。细胞分选仪上的管路组件能够形成多条流体路径,以分别用于实现细胞分选流程中的各个步骤。
在一些实施例中,细胞分选仪与其上的管路组件为分体式设计,即在使用时,需要先将管路组件安装到细胞分选仪上才能进行细胞分选。其中,管路组件至少由多条管路组成。在安装过程中,需要人为将多条管路依次安装到细胞分选仪上,并且需要将多条管路之间以及多条管路与分选容器和/或用于收纳和/或缓存流体(例如,用于细胞分选的样本液、用于冲洗管路的缓冲液、管路冲洗后的废液、仅包括目标细胞的溶液、不包括目标细胞的溶液等)的部件之间相互连接起来。整个安装过程繁琐复杂,费时费力,且容易存在人为失误和安装错误的风险。
本说明书实施例提供了一种管路组件。该管路组件包括流体管路以及至少用于安装流体管路的安装板。其中,流体管路可以包括多条管路,多条管路可以安装到安装板上并在安装板上相互连接,并且与用于细胞分选的其他部件(例如,分选容器、用于收纳和/或缓存流体的部件等)相互连接,以具有形成对应于细胞分选流程中各个步骤的流体路径的条件。在一些实施例中,分选容器、用于收纳和/或缓存流体的部件等可以安装到安装板上与流体管路连接,也可以独立于安装板与流体管路连接。通过将流体管路安装在安装板上组成为一体化组件再将用于细胞分选的其他部件(例如,分选容器、用于收纳和/或缓存流体的部件等)与流体管路连接,或者将流体管路、分选容器以及用于收纳和/或缓存流体的部件等均安装在安装板上并相互连接以组成为一体化组件,在进行细胞分选时,仅需通过安装板与细胞分选仪的定位安装。例如,通过安装板上的定位孔与细胞分选仪的定位机构配合安装,便能将管路组件安装到细胞分选仪上。该管路组件的结构紧凑、安装简便快捷,能够减少人工安装的时间,消除人工安装时造成的风险,例如,管路组件安装不到位、管路组件中的管路在细胞分选仪上的安装位置错误而导致无法与相应的泵、阀接合。
下面将结合附图对本说明书实施例提供的管路组件进行详细描述。
图1是根据本说明书一些实施例所示的管路组件的结构示意图。图2是图1所示的第一管路的结构示意图。图3是图1所示的第二管路的结构示意图。图4是图1所示的第三管路的结构示意图。
如图1所示,管路组件100可以包括流体管路110以及至少用于安装流体管路110的安装板120。流体管路110至少可以包括第一管路111、第二管路112、第三管路113。在一些实施例中,第一管路111可以作为细胞分选过程中的流体输入的主要管路,即在细胞分选过程中,流体供应部件(例如,图1中的第一流体供应部件161和第二流体供应部件162)中的流体(例如,样本流体、缓冲流体)主要是通过第一管路111流向管路组件100中的各个管路。在一些实施例中,第三管路113可以作为细胞分选过程中的流体输出的主要管路,即细胞分选过程中的流体(例如,仅包括目标细胞的流体、不包括目标细胞的流体以及管路冲洗后的缓冲流体)主要是通过第三管路流出,并流向相应的流体接收部件(例如,图1中的第一流体接收部件171、第二流体接收部件172以及第三流体接收部件173等)内。在一些实施例中,第二管路112可以用于实现第一管路111和第三管路113之间的连通,并与第一管路111和第三管路113形成多条流体路径以用于细胞分选。除此之外,第二管路112和第一管路111之间可以通过蠕动软管(例如,蠕动软管140)连通,蠕动软管可以与蠕动泵接合,以为细胞分选过程中流体在流体路径上的流动提供动力。
结合图1和图2所示,第一管路111可以包括第一管路输入端口1111和第一管路输出端口1112。其中,第一管路输入端口1111至少可以包括第一管路第一输入子端口11111和第一管路第二输入子端口11112;第一管路输出端口1112至少可以包括第一管路第一输出子端口11121和第一管路第二输出子端口11122。
结合图1和图3所示,第二管路112可以包括第二管路输入端口1121和第二管路输出端口1122。
结合图1和图4所示,第三管路113可以包括第三管路输入端口1131和第三管路输出端口1132。第三管路输出端口1132可以包括第三管路第一输出子端口11321、第三管路第二输出子端口11322、第三管路第三输出子端口11323以及第三管路第四输出子端口11324。
在一些实施例中,当流体管路中的管路存在多个输入子端口和/或多个输出子端口时,多个输入子端口和/或多个输出子端口可以由安装到管路主体的输入端和/或输出端上的管接头形成。
以第一管路111为例,可以在第一管路111的管路主体的一端(例如,靠近第一管路输入端口1111的一端)安装一个“T”型的三通管接头,三通管接头包括三个管接口,其中一个管接口与第一管路111的管路主体的一端连通,另外两个管接口则可以作为第一管路第一输入子端口11111和第一管路第二输入子端口11112。同理,也可以在第一管路111的管路主体的另一端(例如,靠近第一管路输出端口1112的一端)安装一个三通管接头,其中一个管接口与第一管路111的管路主体的另一端连通,另外两个管接口则可以作为第一管路第一输出子端口11121和第一管路第二输出子端口11122。
又以第三管路113为例,可以在第三管路113的管路主体的输出端安装三个依次连通的“T”型三通管接头,其中,从第三管路113的管路主体的一端(例如,靠近第三管路输出端口1132的一端)由近 到远分别为第一“T”型三通管接头、第二“T”型三通管接头和第三“T”型三通管接头。第一“T”型三通管接头中形成直线通道的两个管接口分别与第三管路113的管路主体的输出端和第二“T”型三通管接头形成直线通道的两个管接口中的一个连通,第二“T”型三通管接头形成直线通道的两个管接口中的另一个则与第三“T”型三通管接头形成直线通道的两个管接口中的一个连通。这样一来,第一“T”型三通管接头中未参与形成直线通道的管接口便可以作为第三管路第一输出子端口11321,第二“T”型三通管接头中未参与形成直线通道的管接口便可以作为第三管路第二输出子端口11322,第三“T”型三通管接头中未参与形成直线通道的管接口则作为第三管路第三输出子端口11323,第三“T”型三通管接头中形成直线通道的两个管接口中的另一个则作为第三管路第四输出子端口11324。在一些实施例中,可以在第三管路113的管路主体的输出端、第一“T”型三通管接头、第二“T”型三通管接头和第三“T”型三通管接头之间增加管路,使原本直接连通的两个管接口之间通过管路来间接连通,以调整第三管路第一输出子端口11321、第三管路第二输出子端口11322、第三管路第三输出子端口11323之间的距离,以满足实际的安装需求。在一些实施例中,可以采用一个五通管接头来代替三个依次连通的“T”型三通管接头安装在第三管路113的管路主体的输出端。其中,该五通管接头包括五个管接口,五个管接口中的两个之间形成直线通道,形成直线通道的两个管接口中的一个与第三管路113的管路主体的输出端连通,形成直线通道的两个管接口中的另一个则作为第三管路第四输出子端口11324,而第三管路第一输出子端口11321、第三管路第二输出子端口11322、第三管路第三输出子端口11323未参与形成直线通道的其他三个管接口则分别作为第三管路第一输出子端口11321、第三管路第二输出子端口11322、第三管路第三输出子端口11323。
在一些实施例中,第一管路111或第三管路113中的管路主体可以理解为第一管路111或第三管路113中不包括输入端口和输出端口的部分,或者是从输入端口(或者某一个输出子端口)到输出端口(或者某一个输出子端口)之间的部分。例如,第一管路111的管路主体可以是第一管路111中从第一管路第一输入子端口11111和第一管路第二输入子端口11112的交叉位置A到第一管路第一输出子端口11121和第一管路第二输出子端口11122的交叉位置B之间的部分。又例如,第三管路113的管路主体可以是第三管路113中从第三管路输入端口1131的位置C到第三管路第一输出子端口11121对应位置D的部分。
在一些实施例中,第一管路111、第二管路112以及第三管路113可以是一个管路(例如,一体成型的多通管)。该管路本身就具有多个管路接口,多个管路接口可以充当第一管路111和/或第三管路上的输入子端口和/或输出子端口。在一些实施例中,该管路具有第一管路111、第二管路112以及第三管路113连通后的形状。该管路包括一个输入端口和一个输出端口,其中该管路靠近输入端口的管身上开设有一个管路接口,该管路接口和输入端口可以分别充当第一管路第一输入子端口11111和第一管路第二输入子端口11112。在一些实施例中,该管路的中间部分(即对应于第一管路第一输出子端口11121的位置)开设有一个管路接口,该管路接口可以作为可以充当第一管路第一输出子端口11121。在一些实施例中,该管路靠近输出端口的管身上依次开设有三个管路接口,三个管路接口和输出端口可以分别充当第三管路第一输出子端口11321、第三管路第二输出子端口11322、第三管路第三输出子端口11323以及第三管路第四输出子端口11324。
继续参见图1所示,流体管路110还包括第四管路114,第四管路114的两端能够分别与第一管路第一输出子端口11121和第三管路第二输出子端口11322连通,从而实现第一管路111和第三管路113的连通。
在一些实施例中,如图1所示,管路组件100还包括分选容器130,分选容器130的第一开口端和第二开口端能够分别与第二管路输出端口1122和第三管路输入端口1131连通,从而实现第二管路112和第三管路113的连通。
在一些实施例中,分选容器130可以不包括在管路组件100中,即分选容器130可以独立于管路组件100与管路组件100连接并安装到细胞分选仪上。在一些实施例中,可以在将管路组件100安装到细胞分选仪之前或之后将分选容器130与管路组件100进行连接和/或安装到细胞分选仪上。在一些实施例中,管路组件100可以额外留出两个端口(例如,第二管路输出端口1122和第三管路输入端口1131)以用于分别连接分选容器130的第一开口端133和第二开口端134。
在一些实施例中,分选容器130可以用于吸附目标细胞,达到细胞分选的目的。图5是根据本说明书一些实施例所示的分选容器的结构示意图。如图5所示,分选容器130的外壳由上壳131和下壳132,上壳131和下壳132上分别设置有第一开口端133和第二开口端134。上壳131和下壳132可以形成一个腔体内,该腔体内填充有若干个铁磁小球135。当样本进入分选容器130前,需要对分选容器130施加磁场,使分选容器130内形成高磁性梯度,从而有助于将样本中的目标细胞吸附在分选容器130内。其中,目标细胞可以是磁性颗粒标记的细胞。当磁场移除后,分选容器130内的高磁性梯度消失,有助于释放吸附在分选容器130内的目标细胞。在一些实施例中,分选容器130的腔体的上下两端分别设置有第一筛板136和第二筛板137,若干铁磁小球135位于第一筛板136和第二筛板137所限制的腔体空间内,以防止 铁磁小球135掉出分选容器130。在一些实施例中,第一筛板136和第二筛板137上开设有微孔,以便于流体在分选容器130内的流动。
继续参见图1所示,管路组件100还包括蠕动软管140,蠕动软管140的两端能够分别与第一管路第二输出子端口11122和第二管路输入端口1121连通,从而实现第一管路111和第二管路112的连通。
在一些实施例中,蠕动软管140可以不包括在管路组件100中,即蠕动软管140可以独立于管路组件100与管路组件100连接并安装到细胞分选仪上。在一些实施例中,可以在将管路组件100安装到细胞分选仪之前或之后将蠕动软管与管路组件100进行连接和/或安装到细胞分选仪上。在一些实施例中,管路组件100可以额外留出两个端口(例如,第一管路第二输出子端口11122和第二管路输入端口1121)以用于分别连接蠕动软管140的两端。
在一些实施例中,蠕动软管140可以用于接合蠕动泵,以为管路组件100所形成的用于细胞分选的流体路径上的流体流动提供动力。在一些实施例中,蠕动泵可以设置在细胞分选仪上,当管路组件100通过安装板120安装到细胞分选仪上时,蠕动软管140能够与蠕动泵可操作地接合,蠕动泵产生的动力便可以通过蠕动软管140使得流体沿相应的流体路径流动。
在一些实施例中,管路组件100还可以包括至少一个流体供应部件。至少一个流体供应部件可以与第一管路的第一管路输入端口1111连通,以在细胞分选流程中提供需要进行细胞分选的样本流体(例如,包括目标细胞的血样溶液或培养液)和/或用于冲洗管路的缓冲流体(例如,生理盐水等)。
在一些实施例中,至少一个流体供应部件可以不包括在管路组件100中,即至少一个流体供应部件可以独立于管路组件100与管路组件100连接并安装到细胞分选仪上。在一些实施例中,可以在将管路组件100安装到细胞分选仪之前或之后将至少一个流体供应部件与管路组件100进行连接和/或安装到细胞分选仪上。在一些实施例中,管路组件100可以额外留出至少一个端口(例如,第一管路第一输入子端口11111和第一管路第二输入子端口11112)以用于连接至少一个流体供应部件。
在一些实施例中,继续参见图1所示,至少一个流体供应部件可以包括第一流体供应部件161和第二流体供应部件162。其中,第一流体供应部件161可以用于存储和/或提供需要进行细胞分选的样本流体(例如,包括目标细胞的血样溶液或培养液)。第二流体供应部件162可以用于存储和/或提供冲洗管路的缓冲流体(例如,生理盐水等)。
在一些实施例中,流体管路110还可以包括第五管路115和第六管路116。第五管路115的两端分别与第一流体供应部件161和第一管路第一输入子端口11111连通,使得第一流体供应部件161内的样本流体可以通过第五管路115以及第一管路第一输入子端口11111流入到第一管路111中。第六管路116的两端分别与第二流体供应部件162和第一管路第二输入子端口11112连通,使得第二流体供应部件162中的缓冲流体可以通过第六管路116以及第一管路第二输入子端口11112流入到第一管路111中。
在一些实施例中,管路组件100还包括至少一个流体接收部件。至少一个流体接收部件可以与第三管路113的第三管路输出端口1132连通(例如,第三管路第一输出子端口11321、第三管路第三输出子端口11323、第三管路第四输出子端口11324),以接收分选容器130中流出目标细胞被分选出的样本流体(例如,不包括目标细胞的样本流体)、管路冲洗后的缓冲流体以及细胞分选完成后的目标细胞或仅包括目标细胞的流体。
在一些实施例中,至少一个流体接收部件可以不包括在管路组件100中,即至少一个流体接收部件可以独立于管路组件100与管路组件100连接并安装到细胞分选仪上。在一些实施例中,可以在将管路组件100安装到细胞分选仪之前或之后将至少一个流体接收部件与管路组件100进行连接和/或安装到细胞分选仪上。在一些实施例中,管路组件100可以额外留出至少一个端口(例如,第三管路第一输出子端口11321、第三管路第三输出子端口11323或第三管路第四输出子端口11324)以用于连接至少一个流体接收部件。
在一些实施例中,继续参见图1所示,至少一个流体接收部件可以包括第一流体接收部件171、第二流体接收部件172以及第三流体接收部件173。其中,第一流体接收部件171可以用于接收从分选容器130中流出目标细胞被分选出的样本流体(例如,不包括目标细胞的样本流体)。第二流体接收部件172可以用于接收管路冲洗后的缓冲流体(或成为废液)。第三流体接收部件173可以用于接收(或收集)细胞分选完成后的目标细胞或仅包括目标细胞的流体。
在一些实施例中,流体管路110还包括第七管路117、第八管路118和第九管路119。第七管路117的两端能够分别与第一流体接收部件171和第三管路第四输出子端口11324连通,使得从分选容器130中流出不包括目标细胞的样本流体能够通过第三管路第四输出子端口11324以及第七管路117流入第一流体接收部件171内。第八管路118的两端能够分别与第二流体接收部件172和第三管路第三输出子端口11323连通,使得管路冲洗后的缓冲流体能够通过第三管路第三输出子端口11323以及第八管路118流入第二流体接收部件172内。第九管路119的两端能够分别于第三流体接收部件173和第三管路第一输出子 端口11321连通,使得细胞分选完成后的目标细胞或仅包括目标细胞的流体能够通过第三管路第一输出子端口11321以及第九管路119流入第三流体接收部件173内以被收集。
在一些实施例中,管路组件100可以仅包括两个流体接收部件。其中一个流体接收部件(例如,第三流体接收部件173)用于接收第三管路第一输出子端口11321,另外一个流体接收部件(例如,第一流体接收部件171或第二流体接收部件172)用于接收从分选容器130中流出不包括目标细胞的样本流体以及管路冲洗后的缓冲流体。当管路组件100仅包括两个流体接收部件时,第三管路输出端口1132就可以减少一个输出子端口(例如,第三管路第三输出子端口11323或第三管路第四输出子端口11324),对应地,第七管路117或第八管路118也可以被取消。
需要说明的是,本说明书中所涉及的“输入端口”、“输出端口”、“输入子端口”以及“输出子端口”仅是作为端口名称来描述,并不旨在对流体的流入或流出的方向进行限制。在一些实施例中,“输入端口”或“输入子端口”也可以用作流体流出的端口,而“输出端口”或“输出子端口”也可以用作流体流入的端口。
在一些实施例中,在管路组件100中,流体管路110与分选容器130、蠕动软管140之间能够形成用于细胞分选的多条流体路径,多条流体路径均经过所述分选柱和所述蠕动软管,以用于实现细胞分选流程中的各个步骤。在一些实施例中,细胞分选流程中的各个步骤是由流体(例如,样本流体和/或缓冲流体)沿对应的流体路径流动来实现的。下面将结合图1所示的管路组件100对细胞分选流程进行详细的说明。
在一些实施例中,基于管路组件100的细胞分选流程可以包括以下步骤:
步骤一,管路预冲洗。管路预冲洗主要是通过第二流体供应部件162中的缓冲流体将管路(例如,第一管路111、第二管路112和第三管路113)和/或分选容器130中的空气排出,而冲洗后的缓冲流体则流入第二流体接收部件172内。在一些实施例中,管路预冲洗对应的流体路径依次包括:第二流体供应部件162、第六管路116、第一管路第二输入子端口11112、第一管路111、第一管路第二输出子端口11122、蠕动软管140、第二管路输入端口1121、第二管路112、第二管路输出端口1122、分选容器130的第一开口端133、分选容器130、分选容器130的第二开口端134、第三管路输入端口1131、第三管路113、第三管路第三输出子端口11323、第八管路118、第二流体接收部件172。即管路预冲洗是由缓冲流体充满管路并在管路中流动所实现的,从而能够将管路(例如,第一管路111、第二管路112和第三管路113)和/或分选容器130中的空气排出。
步骤二,第一次细胞分选。第一次细胞分选主要是让第一流体供应部件161中的样本流体流入分选容器130内,同时向分选容器130施加磁场,样本流体中的目标细胞(例如,磁性颗粒标记的细胞)便可以在磁场的作用被吸附在分选容器130内,而从分选容器130流出的便为不包括目标细胞的样本流体,不包括目标细胞的样本流体则流入第一流体接收部件171内。其中,第一次细胞分选对应的流体路径依次包括:第一流体供应部件161、第一管路第一输入子端口11111、第一管路111、第一管路第二输出子端口11122、蠕动软管140、第二管路输入端口1121、第二管路112、第二管路输出端口1122、分选容器130的第一开口端133、分选容器130、分选容器130的第二开口端134、第三管路输入端口1131、第三管路113、第三管路第四输出子端口11324、第七管路117、第一流体接收部件171。即第一次细胞分选是让样本流体沿该流体路径流动所实现的。其中,样本流体在经过分选容器130时,样本流体中的目标细胞被分选容器130所吸附,而最后流入第一流体接收部件171内的样本流体为样本流体除目标细胞以外的其他组分。
步骤三,第一次细胞分选完成后冲洗分选容器130。第一次细胞分选完成后冲洗分选容器130是为了在第一次细胞分选完成后去除残留在管路和分选容器130中的非目标细胞(例如,没有磁性颗粒标记的细胞)。冲洗分选容器130对应的流体路径与管路预冲洗对应的流体路径相同。因此,关于如何冲洗分选容器130可以参考管路预冲洗的相关描述。
步骤四,释放分选容器130内的目标细胞。在冲洗分选容器130完成后,通过移除作用在分选容器130上的磁场,使得吸附在分选容器130内的目标细胞流出分选容器130,并且沿相应的流体路径循环流动。在一些实施例中,释放分选容器130对应的流体路径依次包括:分选容器130、分选容器130的第二开口端134、第三管路输入端口1131、第三管路113、第三管路第二输出子端口11322、第四管路114、第一管路第一输出子端口11121、第一管路第二输出子端口11122、蠕动软管140、第二管路输入端口1121、第二管路112、第二管路输出端口1122、分选容器130的第一开口端133、分选容器130。即释放分选容器130内的目标细胞是让分选容器130内的目标细胞沿该流体路径循环流动来实现的。
步骤五,第二次细胞分选。分选容器130内的目标细胞释放完成后,再次将磁场作用于分选容器130,目标细胞从分选容器130的第二开口端134流入分选容器130,分选容器130在磁场的作用下再次将目标细胞吸附在其内。第二次细胞分选对应的流体路径依次包括:分选容器130的第一开口端133、第二管路输出端口1122、第二管路112、第二管路输入端口1121、蠕动软管140、第一管路第二输出子端口 11122、第一管路第一输出子端口11121、第四管路114、第三管路第二输出子端口11322、第三管路113、第三管路输入端口1131、分选容器130的第二开口端134、分选容器130。即第二次细胞分选是让目标细胞沿该流体路径来实现的,以使分选容器130在磁场的作用下将目标细胞再次吸附在其内。
步骤六,第二次细胞分选完成后冲洗分选容器130。第二次细胞分选完成后冲洗分选容器130为了在第二次细胞分选完成后去除残留在管路和分选容器130中的非目标细胞(例如,没有磁性颗粒标记的细胞)。第二次细胞分选完成后冲洗分选容器130对应的流体路径与管路预冲洗和/或第一次细胞分选完成后冲洗分选容器130对应的流体路径相同。因此,关于如何再次冲洗分选容器130可以参考管路预冲洗和/或第一次细胞分选完成后冲洗分选容器130的相关描述。
步骤七,收集目标细胞。当第二次细胞分选完成后冲洗分选容器130完成后,去除作用于分选容器130的磁场,使得吸附在分选容器130内的目标细胞流向第三流体接收部件173,以被收集。收集目标细胞对应的流体路径依次包括:第二流体供应部件162、第六管路116、第一管路第二输入子端口11112、第一管路111、第一管路第二输出子端口11122、蠕动软管140、第二管路输入端口1121、第二管路112、第二管路输出端口1122、分选容器130的第一开口端133、分选容器130、分选容器130的第二开口端134、第三管路输入端口1131、第三管路113、第三管路第一输出子端口11321、第九管路119、第三流体接收部件173。即收集目标细胞是让第二流体供应部件162内的缓冲流体沿该流体路径流动,以将分选容器130内的目标细胞从分选容器130的第二开口端134冲出而流入第三流体接收部件173内,以被其收集。当目标细胞收集完成后,整个细胞分选流程也即完成。
在一些实施例中,管路组件100还可以包括过滤容器,过滤容器的两端分别与第二管路输入端口和所述第二管路输出端口连通。过滤容器可以在第一次细胞分选时,样本流体流入分选容器130之前,将样本流体中可能会被分选容器130吸附的非目标细胞组分捕获,保证流入分选容器130内的样本流体不包括或包括较少的能被分选容器130吸附的非目标细胞组分,从而保证分选出的目标细胞纯度较高,从而提高细胞分选的效率和纯度。在一些实施例中,过滤容器与分选容器可以具有相同或相似结构,当样本流体流入过滤容器内时,过滤容器可以在没有磁场的作用下将样本流体中的能被分选容器130吸附的非目标细胞组分给捕获。关于过滤容器的相关描述可以参考图5对与分选容器130的描述。
下面将结合附图对包括过滤容器的管路组件进行详细说明。图6是根据本说明书一些实施例所示的管路组件包括过滤容器的结构示意图。需要说明的是,图6所示的管路组件200是在图1所示的管路组件100的基础上进行了改进,因此,管路组件200中与管路组件100相同的部件(例如,第一管路111、第二管路112、第三管路113等)采用了相同的标号,关于管路组件200与管路组件100相同的部件的描述,可以参考对于管路组件100的相关描述,在此不再赘述。
如图6所示,管路组件200在包括管路组件100所有部件的基础上还包括过滤容器180,过滤容器180能够与第二管路输出端口1122连通。
在一些实施例中,过滤容器180可以不包括在管路组件100中,即过滤容器180可以独立于管路组件100与管路组件100连接并安装到细胞分选仪上。在一些实施例中,可以在将管路组件100安装到细胞分选仪之前或之后将过滤容器180与管路组件100进行连接和/或安装到细胞分选仪上。在一些实施例中,管路组件100可以额外留出至少两个端口(例如,图7所示的第二管路第一输出子端口11221和第二管路第二输出子端口11222)以用于连接过滤容器180的两端。
图7是图6所示的管路组件中的第二管路的结构示意图。图8是图6所示的管路组件的第一管路的结构示意图。图9是图6所示的管路组件的第三管路的结构示意图。
在一些实施例中,如图7所示,第二管路输出端口1122可以包括第二管路第一输出子端口11221、第二管路第二输出子端口11222、第二管路第三输出子端口11223。结合图6所示,流体管路110还可以包括第十管路210和第十一管路211。其中,第十管路210的两端分别与第二管路第一输出子端口11221和过滤容器180的第一开口端181连通。第十一管路211的两端分别与过滤容器180的第二开口端182和第二管路第二输出子端口11222连通。第二管路第三输出子端口11223和分选容器130的第一开口端133连通。
在一些实施例中,继续参见图7所示,第二管路输出端口1122还可以包括第二管路第四输出子端口11224和第二管路第五输出子端口11225。如图8所示,第一管路输出端口1112还可以包括第一管路第三输出子端口11123。如图9所示,第三管路输出端口还可以包括第三管路第五输出子端口11325。结合图6所示,流体管路110还包括第十二管路212和第十三管路213。其中,第十二管路212的两端分别与第二管路第四输出子端口11224和第一管路第三输出子端口11123连通;第十三管路213的两端分别与第二管路第五输出子端口11225和第三管路第五输出子端口11325连通。
在一些实施例中,如图6所示,管路组件200还可以包括第四流体接收部件174。第十一管路211上设置有第十一管路输出端口2112。流体管路110还包括第十四管路214。其中,第十四管路214的两端 分别与第四流体接收部件174和第十一管路输出端口2112连通。
通过增加第二管路第四输出子端口11224和第二管路第五输出子端口11225、第一管路第三输出子端口11123、第十二管路212、第十三管路213、第十四管路214、第十一管路输出端口2112以及第四流体接收部件174,可以缩短细胞分选流程中相应步骤(例如,管路预冲洗)对应的流体路径的长度,从而提高减少在该步骤中流体流动的时间,提高细胞分选的效率。
在一些实施例中,在管路组件200中,流体管路110与分选容器130、过滤容器180、蠕动软管140之间能够形成用于细胞分选的多条流体路径,多条流体路径均经过所述分选柱和所述蠕动软管,以用于实现细胞分选流程中的各个步骤。下面将结合图6所示的管路组件200对细胞分选流程进行详细的说明。
在一些实施例中,基于管路组件200的细胞分选流程可以包括以下步骤:
步骤一,管路预冲洗。其中,管路预冲洗包括过滤容器180预冲洗和分选容器130预冲洗。其中,过滤容器180预冲洗对应的流体路径依次包括:第二流体供应部件162、第一管路第二输入子端口11112、第一管路111、第一管路第二输出子端口11122、蠕动软管140、第二管路输入端口1121、第二管路112、第二管路第一输出子端口11221、第十管路210、过滤容器180的第一开口端181、过滤容器180、过滤容器180的第二开口端182、第十一管路211、第十一管路输出端口2112、第四流体接收部件174。即缓冲流体沿该流体路径流动实现过滤容器180预冲洗。分选容器130预冲洗对应的流体路径依次包括:第二流体供应部件162、第一管路第二输入子端口11112、第一管路111、第一管路第三输出子端口11123、第十二管路212、第二管路第四输出子端口11224、第二管路112、第二管路输入端口1121、蠕动软管140、第一管路第二输出子端口11122、第一管路第一输出子端口11121、第四管路114、第三管路第二输出子端口11322、第三管路输入端口1131、分选容器130的第二开口端134、分选容器130、分选容器130的第一开口端133、第二管路第三输出子端口11223、第二管路第二输出子端口11222、第十一管路211、第十一管路输出端口2112、第四流体接收部件174。即缓冲流体沿该流体路径流动实现分选容器130预冲洗。
步骤二,第一次细胞分选。第一次细胞分选对应的流体路径依次包括:第一流体供应部件161、第一管路第一输入子端口11111、第一管路111、第一管路第二输出子端口11122、蠕动软管140、第二管路输入端口1121、第二管路112、第二管路第一输出子端口11221、第十管路210、过滤容器180的第一开口端181、过滤容器180、过滤容器180的第二开口端182、第十一管路211、第二管路第二输出子端口11222、第二管路第三输出子端口11223、分选容器130的第一开口端133、分选容器130、分选容器130的第二开口端134、第三管路输入端口1131、第三管路第四输出子端口11324、第七管路117、第一流体接收部件171。即第一次细胞分选是让样本流体沿该流体路径流动所实现的。关于第一次细胞分选的更多描述可以参考基于管路组件100的细胞分选流程中的第一次细胞分选的相关描述。
步骤三,第一次细胞分选后冲洗分选容器130。第一次细胞分选后冲洗分选容器130对应的流体路径依次包括:第二流体供应部件162、第一管路第二输入子端口11112、第一管路111、第一管路第二输出子端口11122、蠕动软管140、第二管路输入端口1121、第二管路112、第二管路第一输出子端口11221、第十管路210、过滤容器180的第一开口端181、过滤容器180、过滤容器180的第二开口端182、第十一管路211、第二管路第二输出子端口11222、第二管路第三输出子端口11223、分选容器130的第一开口端133、分选容器130、分选容器130的第二开口端134、第三管路输入端口1131、第三管路第三输出子端口11323、第八管路118、第二流体接收部件172。即第一次细胞分选后冲洗分选容器130是让缓冲流体沿流体路径流动所实现的。
步骤四,释放分选容器130内的目标细胞。释放分选容器130内的目标细胞对应的流体路径依次包括:分选容器130、分选容器130的第二开口端134、第三管路输入端口1131、第三管路第二输出子端口11322、第四管路114、第一管路第一输出子端口11121、第一管路第二输出子端口11122、蠕动软管140、第二管路输入端口1121、第二管路112、第二管路第一输出子端口11221、第二管路第三输出子端口11223、分选容器130的第一开口端133、分选容器130。即释放分选容器130内的目标细胞是让分选容器130内的目标细胞沿该流体路径循环流动所实现的。
步骤五,第二次细胞分选。第二次细胞分选对应的流体路径依次包括:分选容器130的第一开口端133、第二管路第三输出子端口11223、第二管路112、第二管路输入端口1121、蠕动软管140、第一管路第二输出子端口11122、第一管路第一输出子端口11121、第四管路114、第三管路第二输出子端口11322、第三管路输入端口1131、分选容器130的第二开口端134、分选容器130。即第二次细胞分选是让目标细胞沿流体路径流动进入分选容器130,使得分选容器130在磁场的作用下将目标细胞吸附在其内所实现的。
步骤六,第二次细胞分选后冲洗分选容器130。第二次细胞分选后冲洗分选容器130对应的流体路径与第一次细胞分选后冲洗分选容器130对应的流体路径相同,在此不再赘述。
步骤七,目标细胞收集。目标细胞收集对应的流体路径依次包括:第二流体供应部件162、第一 管路第二输入子端口11112、第一管路111、第一管路第三输出子端口11123、第十二管路212、第二管路第四输出子端口11224、第二管路112、第二管路输入端口1121、蠕动软管140、第一管路第二输出子端口11122、第一管路第一输出子端口11121、第四管路114、第三管路第二输出子端口11322、第三管路113、第三管路第五输出子端口11325、第十三管路213、第二管路第五输出子端口11225、第二管路第三输出子端口11223、分选容器130的第一开口端133、分选容器130、分选容器130的第二开口端134、第三管路输入端口1131、第三管路第一输出子端口11321、第九管路119、第三流体接收部件173。即目标细胞收集是去除作用在分选容器130的磁场的情况下,让缓冲流体沿该流体路径流动将目标细胞冲出分选容器130以进入第三流体接收部件173内以被收集。
在一些实施例中,本说明书实施例提供的管路组件100或200的安装板一侧可以设有多个安装槽,多个安装槽可以用于固定安装和/或引导流体管路110,使得流体管路110简洁整齐。例如,在管路组件100中,安装板120的一侧可以设有9个安装槽,9个安装槽可以分别用于安装管路组件100中的第一管路111、第二管路112、第三管路113、第四管路114、第五管路115、第六管路116、第七管路117、第八管路118以及第九管路119。又例如,在管路组件200中,安装板120的一侧可以设有14个安装槽,14个安装槽可以分别用于安装管路组件200中的第一管路111、第二管路112、第三管路113、第四管路114、第五管路115、第六管路116、第七管路117、第八管路118、第九管路119、第十管路210、第十一管路211、第十二管路212、第十三管路213以及第十四管路214。在一些实施例中,多个安装槽之间可以相互连通,以便于管路安装到安装槽后管路之间的相互连通。在一些实施例中,安装槽的形状与其对应的管路形状相适配,以便于管路能够快速准确地安装到对应安装槽内。在一些实施例中,流体管路110可以由多个软管构成,多个软管可以被安装到相应的安装槽内,并且由安装槽引导(或约束)形成为相应的管路的形状。
在一些实施例中,多个安装槽中的至少一个能够用于安装过滤容器180和/或分选容器130,使得过滤容器180和/或分选容器130能够和流体管路110一起安装到安装板120上。例如,在管路组件100中,安装板120上可以设置用于安装分选容器130的安装槽。又例如,在管路组件200中,安装板120上可以设置用于安装分选容器130和过滤容器180的安装槽。图10是根据本说明书一些实施例所示的管路组件的结构示意图。图11是图10所示的管路组件的安装板的正面结构示意图。图12是图10所示的管路组件的安装板的背面结构示意图。需要说明的是,图10所示的管路组件300与图6所示的管路组件200具有相同的流体管路结构,因此图10与图6采用了相同的附图标记。关于管路组件300如何实现细胞分选可以参考管路组件200的相关描述。
结合图10和图11所示,分选容器130和过滤容器180与流体管路110均安装在了安装板120上。其中,安装板120上除了有用于安装流体管路的安装槽121外,还设置有分别用于安装分选容器130和过滤容器180的分选容器安装槽122和过滤容器安装槽123。通过这样设置,可以在进行细胞分选时,分选容器130和过滤容器180可以与安装板120形成一个整体安装到细胞分选仪上,从而减少安装分选容器130和过滤容器180的安装步骤,节省安装时间。除此之外,通过设置安装槽123来安装过滤容器180,无需增加额外的机构,便可以保证过滤容器180在细胞分选过程中保持竖直,以便样本流体流过过滤容器180时,能够尽可能地将样本流体中能够被分选容器130吸附的非目标细胞组分捕获。
在一些实施例中,如图10所示,蠕动软管140可以通过卡环141安装到安装板120上,对应地,安装板120上设置有用于安装卡环141的安装槽(图中未示出),通过将卡环141安装到相应的安装槽内,可以快速准确地完成蠕动软管140的安装。
在一些实施例中,针对本说明书实施例提供的管路组件100、200、300,其安装板120的另一侧(即安装板120的背面)可以设置有若干加强筋(例如,图12所示的加强筋124),以增强安装板120的强度和刚度。
在一些实施例中,安装板120上还设置有至少两个不对称的定位孔(例如,图11所示的定位孔125)。至少两个不对称的定位孔可以与细胞分选仪上的定位机构配合安装,以避免管路组件(例如,管路组件100、200或300)安装到细胞分选仪上时出错。
在一些实施例中,安装板120上可以设有若干阀孔(例如,图11所示的阀孔126),若干阀孔可以设置在多个安装槽内。在一些实施例中,当管路组件安装到细胞分选仪上时,细胞分选仪上的若干阀组件(例如,通断阀)可以与若干阀孔装配,使得阀组件可以与安装在对应阀孔所在的安装槽内的管路接合,从而控制相应管路的通断,以形成对应于细胞分选流程的各个步骤的流体路径。
在一些实施例中,管路组件(例如,管路组件100、200或300)还包括设置在阀孔126内的通断阀(图中未示出),通断阀朝向安装槽的开口的一端设置有槽口,当流体管路110中的各个管路安装到安装槽内时,各个管路安装在对应安装槽内的阀孔内的通断阀的槽口内,从而使得通断阀可以控制相应管路的通断,形成对应于细胞分选流程的各个步骤的流体路径。
在一些实施例中,安装板120的阀孔的数量可以与安装槽(或管路)的数量对应。
在一些实施例中,在管路组件100中,安装板120可以包括9个阀孔,使得第一管路111、第二管路112、第三管路113、第四管路114、第五管路115、第六管路116、第七管路117、第八管路118以及第九管路119分别有对应的阀组件(或通断阀)控制其通断,以形成相应的流体路径。以基于管路组件100的细胞分选流程中的管路预冲洗步骤所对应的流体路径的形成为例,通过打开第六管路116、第一管路111、第二管路112、第三管路113、第八管路118所对应的阀组件(或通断阀),而将其他管路(例如,第四管路114、第五管路115、第六管路116、第七管路117、第九管路119)关闭,则可以形成管路预冲洗步骤对应的流体路径。
在一些实施例中,在管路组件200中,安装板120可以包括14个阀孔,使得第一管路111、第二管路112、第三管路113、第四管路114、第五管路115、第六管路116、第七管路117、第八管路118、第九管路119、第十管路210、第十一管路211、第十二管路212、第十三管路213以及第十四管路214分别有对应的阀组件(或通断阀)控制其通断,以形成相应的流体路径。关于基于管路组件200的细胞分选流程中的各个步骤所对应的流体路径是如何形成的可以参考基于管路组件100的细胞分选流程中的管路预冲洗步骤所对应的流体路径的形成。
在一些实施例中,管路组件中的部分管路可以不需要通断阀来控制其通断,也能保证管路组件能够形成对应于细胞分选流程的各个步骤的流体路径,因此,安装板120的阀孔的数量可以小于安装槽的数量。例如,图1所示的安装板120可以包括7个阀孔,而安装槽的数量为9个,其中,第一管路111和第三管路113对应的安装槽内可以不设置阀孔。又例如,图6所示的安装板120可以包括13个阀孔,而安装槽的数量为14个,其中,第十管路210对应的安装槽内可以不设置阀孔。
本说明书实施例可能带来的有益效果包括但不限于:(1)本说明书实施例中的管路组件通过将流体管路和/或分选容器和/或过滤容器安装到安装板上,形成一个整体再安装到细胞分选仪上,操作者可以快速准确地将管路组件安装到细胞分选仪上,省时省力,并且减小了人工安装出现失误或安装错误的可能性;(2)安装板上设置有加强筋,可以增加安装板的强度和刚度;(3)安装板上设置有若干安装槽,便于安装和/或引导流体管路和/或分选容器和/或过滤容器,使得整个管路组件结构紧凑、简洁美观;(4)安装板上设置有多个阀孔,便于装配阀组件(或通断阀),以控制相应管路的通断,从而形成用于细胞分选的多条流体路径;(5)安装板上设置安装槽来安装过滤容器,无需增加额外的机构便可保证过滤容器保持竖直,从而使得过滤容器具有的过滤效果;(6)安装板上设置有安装槽来安装蠕动软管的卡环,便于蠕动软管的安装。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的***组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的***。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数 位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (19)

  1. 一种管路组件,其特征在于,所述管路组件包括流体管路以及至少用于安装所述流体管路的安装板;
    所述流体管路至少包括第一管路、第二管路、第三管路;
    所述第一管路包括第一管路输入端口和第一管路输出端口;所述第一管路输入端口至少包括第一管路第一输入子端口和第一管路第二输入子端口,所述第一管路输出端口至少包括第一管路第一输出子端口和第一管路第二输出子端口;
    所述第二管路包括第二管路输入端口和第二管路输出端口;
    所述第三管路包括第三管路输入端口和第三管路输出端口;所述第三管路输出端口包括第三管路第一输出子端口、第三管路第二输出子端口、第三管路第三输出子端口以及第三管路第四输出子端口。
  2. 根据权利要求1所述的管路组件,其特征在于,所述流体管路还包括第四管路,所述第四管路的两端分别与所述第一管路第一输出子端口和所述第三管路第二输出子端口连通。
  3. 根据权利要求1所述的管路组件,其特征在于,所述管路组件还包括分选容器,所述分选容器的第一开口端和第二开口端分别与所述第二管路输出端口和所述第三管路输入端口连通。
  4. 根据权利要求1所述的管路组件,其特征在于,所述管路组件还包括蠕动软管,所述蠕动软管的两端分别与所述第一管路第二输出子端口和所述第二管路输入端口连通。
  5. 根据权利要求1所述的管路组件,其特征在于,所述管路组件包括至少一个流体供应部件,所述至少一个流体供应部件与所述第一管路的第一管路输入端口连通。
  6. 根据权利要求5所述的管路组件,其特征在于,所述至少一个流体供应部件包括第一流体供应部件和第二流体供应部件;所述流体管路还包括第五管路和第六管路;
    所述第五管路的两端分别与所述第一流体供应部件和所述第一管路第一输入子端口连通;
    所述第六管路的两端分别于所述第二流体供应部件和所述第一管路第二输入子端口连通。
  7. 根据权利要求1所述的管路组件,其特征在于,所述管路组件包括至少一个流体接收部件,所述至少一个流体接收部件与所述第三管路的第三管路输出端口连通。
  8. 根据权利要求7所述的管路组件,其特征在于,所述至少一个流体接收部件包括第一流体接收部件、第二流体接收部件和第三流体接收部件;所述流体管路还包括第七管路、第八管路和第九管路;
    所述第七管路的两端分别与所述第一流体接收部件和所述第三管路第四输出子端口连通;
    所述第八管路的两端分别与所述第二流体接收部件和所述第三管路第三输出子端口连通;
    所述第九管路的两端分别与所述第三流体接收部件和所述第三管路第一输出子端口连通。
  9. 根据权利要求1~8任一项所述的管路组件,其特征在于,所述管路组件还包括过滤容器,所述过滤容器与所述第二管路输出端口连通。
  10. 根据权利要求9所述的管路组件,其特征在于,所述第二管路输出端口包括第二管路第一输出子端口、第二管路第二输出子端口、第二管路第三输出子端口;所述流体管路还包括第十管路、第十一管路;
    所述第十管路的两端分别与所述第二管路第一输出子端口和所述过滤容器的第一开口端连通;
    所述第十一管路的两端分别与所述过滤容器的第二开口端和所述第二管路第二输出子端口连通;
    所述第二管路第三输出子端口和所述分选容器的第一开口端连通。
  11. 根据权利要求10所述的管路组件,其特征在于,所述第二管路输出端口还包括第二管路第四输出子端口和第二管路第五输出子端口;所述第一管路输出端口还包括第一管路第三输出子端口;所述第三管路输出端口还包括第三管路第五输出子端口;所述流体管路还包括第十二管路和第十三管路;
    所述第十二管路的两端分别与所述第二管路第四输出子端口和所述第一管路第三输出子端口连通;
    所述第十三管路的两端分别与所述第二管路第五输出子端口和所述第三管路第五输出子端口连通。
  12. 根据权利要求10所述的管路组件,其特征在于,所述管路组件还包括第四流体接收部件;所述第十一管路上设置有第十一管路输出端口;所述流体管路还包括第十四管路;
    所述第十四管路的两端分别与所述第四流体接收部件和所述第十一管路输出端口连通。
  13. 根据权利要求12所述的管路组件,其特征在于,所述安装板的一侧设有多个安装槽,所述多个安装槽用于固定安装和/或引导所述流体管路。
  14. 根据权利要求13所述的管路组件,其特征在于,所述多个安装槽中的至少一个能够用于固定安装所述过滤容器和/或所述分选容器。
  15. 根据权利要求13所述的管路组件,其特征在于,所述安装板相对于所述安装槽的一侧设有若干加强筋。
  16. 根据权利要求13所述的管路组件,其特征在于,所述安装板设有至少两个不对称的定位孔。
  17. 根据权利要求13所述的管路组件,其特征在于,所述安装板设有若干阀孔,所述若干阀孔设置所述多个安装槽内。
  18. 根据权利要求17所述的管路组件,其特征在于,所述管路组件还包括设置在所述阀孔内的通断阀,所述通断阀朝向所述安装槽的开口的一端设有槽口,所述槽口用于安装所述流体管路中的管路。
  19. 根据权利要求12所述的管路组件,其特征在于,所述流体管路与所述分选容器和/或所述过滤容器、所述蠕动软管之间能够形成多条流体路径,所述多条流体路径均经过所述分选柱和所述蠕动软管。
PCT/CN2022/140570 2021-12-21 2022-12-21 一种管路组件 WO2023116743A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280070432.2A CN118119696A (zh) 2021-12-21 2022-12-21 一种管路组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111572888.2 2021-12-21
CN202111572888 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023116743A1 true WO2023116743A1 (zh) 2023-06-29

Family

ID=86901270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140570 WO2023116743A1 (zh) 2021-12-21 2022-12-21 一种管路组件

Country Status (2)

Country Link
CN (1) CN118119696A (zh)
WO (1) WO2023116743A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2923718Y (zh) * 2005-07-21 2007-07-18 高春平 自动血细胞分离***
CN105606795A (zh) * 2015-12-31 2016-05-25 上海白泽医疗器械有限公司 一种细胞免疫磁珠分选***
CN107287120A (zh) * 2017-08-23 2017-10-24 湖南开启时代生物科技有限责任公司 一种细胞制备给料***
CN210151104U (zh) * 2018-06-07 2020-03-17 洛阳华清天木生物科技有限公司 一种微流控芯片及包括其的***
CN110951579A (zh) * 2019-08-09 2020-04-03 上海乘黄纳米抗体科技有限公司 免疫磁珠分选容器、分选装置及分选***
US20200339933A1 (en) * 2019-04-29 2020-10-29 HYDRA S.r.l. Device and process for treatment of biological material
CN213203076U (zh) * 2020-09-14 2021-05-14 福建省妇幼保健院 一种多通道单细胞磁珠捕获试验装置
CN214974923U (zh) * 2021-05-31 2021-12-03 湖南开启时代电子信息技术有限公司 一种用于血液分离的管路***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2923718Y (zh) * 2005-07-21 2007-07-18 高春平 自动血细胞分离***
CN105606795A (zh) * 2015-12-31 2016-05-25 上海白泽医疗器械有限公司 一种细胞免疫磁珠分选***
CN107287120A (zh) * 2017-08-23 2017-10-24 湖南开启时代生物科技有限责任公司 一种细胞制备给料***
CN210151104U (zh) * 2018-06-07 2020-03-17 洛阳华清天木生物科技有限公司 一种微流控芯片及包括其的***
US20200339933A1 (en) * 2019-04-29 2020-10-29 HYDRA S.r.l. Device and process for treatment of biological material
CN110951579A (zh) * 2019-08-09 2020-04-03 上海乘黄纳米抗体科技有限公司 免疫磁珠分选容器、分选装置及分选***
CN213203076U (zh) * 2020-09-14 2021-05-14 福建省妇幼保健院 一种多通道单细胞磁珠捕获试验装置
CN214974923U (zh) * 2021-05-31 2021-12-03 湖南开启时代电子信息技术有限公司 一种用于血液分离的管路***

Also Published As

Publication number Publication date
CN118119696A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
CN112226361B (zh) 一种基于磁珠转移和阀控移液的核酸检测卡盒及检测方法
CN105879936A (zh) 全血过滤及定量移取微流控芯片
US20020179544A1 (en) Cell processing and fluid transfer apparatus and method of use
WO2023116743A1 (zh) 一种管路组件
CN108841713A (zh) 理化处理单个细胞的微流控芯片、微流控装置及使用其理化处理单个细胞的方法
CN110653012A (zh) 循环肿瘤细胞分选、富集及检测用多级微流控芯片装置
WO2022001370A1 (zh) 一种鞘流液路***及控制方法
US20220333048A1 (en) Nucleic acid extraction microfluidic chip, and nucleic acid extraction device and extraction method
CN209214972U (zh) 一种血透机取样器
CN204500728U (zh) 一种可留置自动采血装置
CN112844504A (zh) 一种全血预处理微流控装置及全血预处理方法
CN211871932U (zh) 体外诊断分析装置及试剂卡
CN210903047U (zh) 采血冲洗装置及全自动血气监测***
CN219375649U (zh) 一种dpmas冲洗一体化管路
CN208013157U (zh) 一种用于气质联用仪器的进样装置
CN202314622U (zh) 神经外科手术冲洗装置
CN206232701U (zh) 具有吸液功能的磁力架
CN220837048U (zh) 一种放射反应靶室冲洗装置
CN201071950Y (zh) 一种气体多向流动控制阀门
CN109157248A (zh) 用于泌尿科的男性尿检取样器
CN200994947Y (zh) 一种吸痰管
CN203874196U (zh) 膀胱冲洗器
CN209548009U (zh) 用于泌尿科的男性尿检取样器
CN2635126Y (zh) 多功能加压三通器
CN110964716B (zh) 体外诊断分析装置及试剂卡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022910055

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022910055

Country of ref document: EP

Effective date: 20240527