WO2023116717A1 - Method for monitoring donar dna fraction - Google Patents

Method for monitoring donar dna fraction Download PDF

Info

Publication number
WO2023116717A1
WO2023116717A1 PCT/CN2022/140435 CN2022140435W WO2023116717A1 WO 2023116717 A1 WO2023116717 A1 WO 2023116717A1 CN 2022140435 W CN2022140435 W CN 2022140435W WO 2023116717 A1 WO2023116717 A1 WO 2023116717A1
Authority
WO
WIPO (PCT)
Prior art keywords
transplant
recipient
sample
cfdna
donor
Prior art date
Application number
PCT/CN2022/140435
Other languages
French (fr)
Inventor
Jianxing HE
Liping Liu
Liyan Huang
Original Assignee
The First Affiliated Hospital Of Guangzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The First Affiliated Hospital Of Guangzhou Medical University filed Critical The First Affiliated Hospital Of Guangzhou Medical University
Publication of WO2023116717A1 publication Critical patent/WO2023116717A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • Organ transplantation is now a preferred practice for patient with end-stage organ failure.
  • the clinical outcomes remain poor with median survival rate.
  • the immunological reaction of rejection is a major cause of functional failure in transplant patients.
  • Accurate monitoring of graft is essential for long-term survival of the transplant recipient.
  • the current "gold standard" for detecting or confirming graft rejection following organ transplantation requires biopsy samples (for example, transbronchial biopsy for lung transplant and endomyocardial biopsy for heart transplant) in order to detect immune cell (e.g., T-cells, macrophages, etc. ) infiltration into the graft and other pathological changes.
  • immune cell e.g., T-cells, macrophages, etc.
  • donor DNA fraction fraction of donor-derived cell-free DNA (cfDNA) in the recipient’s plasma
  • donor DNA fraction fraction of donor-derived cell-free DNA
  • previous studies mainly focused on a global estimation of donor DNA fraction conducted months post-transplant, and there is a critical need for non-invasive detection methods that can be used in early detection of allograft rejection and prognosis.
  • the present invention relates to a method for detecting donor cfDNA fraction in a sample of a recipient.
  • the present invention further relates to a method for detecting over-represented SNP (s) of donor cfDNA in an identified region.
  • the methods of the present invention may be used to establish the role of early donor DNA dynamics on post-transplantation manipulation, or provide clinical data for determining the likelihood of transplant rejection, in particular, acute rejection, or monitor immunosuppressive therapy in a subject.
  • the present invention relates to a method for detecting donor cfDNA fraction in a sample of a transplant recipient, comprising:
  • extracting DNA from the sample of the transplant recipient comprises extracting genomic DNA from the sample of the recipient pre-transplant.
  • cfDNA is extracted from the sample of the recipient post-transplant.
  • cfDNA is extracted from the sample of the recipient post-transplant, preferably, during the first four weeks post-transplant, preferably three weeks post-transplant, more two weeks post-transplant.
  • cfDNA is extracted from the sample of the recipient on day 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 post-transplant.
  • the method comprises a step of preparing a library of the extracted DNA from the sample of the transplant recipient.
  • the method comprises a step of preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant.
  • the genomic DNA is fragmented into 100bp-300bp size in length, more preferably, ⁇ 250bp size in length.
  • the method comprises a step of preparing a library of cfDNA extracted from the sample of the recipient post-transplant.
  • cfDNA is 60bp ⁇ 200bp size in length.
  • the method further comprises a step of sequencing DNA of the prepared library.
  • sequencing adaptors are ligated to the fragmented DNA or cfDNA.
  • the step of preparing the library universal amplification is performed for the extracted DNA.
  • the amplification product is sequenced by high-throughput sequencing.
  • end repair is performed for cfDNA.
  • dA-tailing process is performed for the fragmented DNA, or cfDNA. Specifically, a non-template dAMP is added onto 3’ end of the fragmented DNA, or cfDNA.
  • the method comprises a step of selecting the genome wide SNPs that have a homozygous genotype in the sample of the recipient pre-transplant, and a different genotype in the sample of the recipient post-transplant. SNP is called if the read genotype differs between the sample of the recipient pre-transplant and the sample of the recipient post-transplant.
  • the method comprises a step of calculating the minor allele frequency (MAF) for each of the selected SNPs.
  • MAF minor allele frequency
  • the donor cfDNA fraction is an average of all observed values of donor fraction (herein denoted as ⁇ ) deducted from each selected SNP i .
  • the donor cfDNA fraction is calculated utilizing the following formula 1:
  • is the average of the list of MAFs, which is a mixture of two normal distributions, one centered at 0.5 ⁇ and the other centered at ⁇ , and 0.5 ⁇ ⁇ ⁇ , which transforms into:
  • the donor genotype on a given SNP i is also homozygous (i.e., wildtype/wildtype in recipient and mutant/mutant in donor or the other way around) , ⁇ i is equal to MAF; if the donor genotype is heterozygous, ⁇ i will equal two times MAF (i.e., half of the donor fraction equals MAF) .
  • k-means clustering does not guarantee a global optimum (can be trapped into local optima)
  • All values in the sorted list before the best separating value point are considered as samples of the 0.5 ⁇ distribution, these values are then multiplied by 2.
  • the mean of the resulted new list of values is the predicted ⁇ , i.e., the predicted global donor DNA fraction.
  • the donor cfDNA fraction of greater than 1% indicates that the transplant is undergoing acute rejection, and the donor cfDNA fraction of less than 1%indicates that the transplant is undergoing borderline rejection, undergoing other injury, or stable.
  • the method further comprises a step of determining the occurrence or likely occurrence of active rejection of transplantation using the detected donor cfDNA fraction in the sample of the transplant recipient.
  • the sample is a blood sample, a urine sample, or a body fluid sample.
  • the transplant recipient is a mammal, preferably, a human.
  • the transplant recipient received a transplant selected from organ transplant, tissue transplant, and cell transplant.
  • the transplant recipient received a transplant selected from, but not limited to, lung transplant, kidney transplant, heart transplant, liver transplant, pancreas transplant, intestinal transplant, stomach transplant, testis transplant, penis transplant, thymus transplant, uterus transplant, bone transplant, bone marrow transplant, tendon transplant, cornea transplant, uterus transplant, ovary transplant, nerve transplant, pancreas islet cell transplant, blood vessel transplant, heart valve transplant, skin transplant, hand transplant, and/or leg transplant.
  • a transplant selected from, but not limited to, lung transplant, kidney transplant, heart transplant, liver transplant, pancreas transplant, intestinal transplant, stomach transplant, testis transplant, penis transplant, thymus transplant, uterus transplant, bone transplant, bone marrow transplant, tendon transplant, cornea transplant, uterus transplant, ovary transplant, nerve transplant, pancreas islet cell transplant, blood vessel transplant, heart valve transplant, skin transplant, hand transplant, and/or leg transplant.
  • the present invention relates to a method for detecting over-represented donor cfDNA in a sample of a transplant recipient, comprising:
  • genomic DNA is extracted from the sample of the recipient pre-transplant.
  • cfDNA is extracted from the sample of the recipient post-transplant.
  • cfDNA is extracted from the sample of the recipient during the first two weeks post-transplant.
  • cfDNA is extracted from the sample of the recipient on day 1, 4, 7, 10, or 13 post-transplant.
  • the method comprises a step of preparing a library of the extracted DNA from the sample of the transplant recipient.
  • the method comprises a step of preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant.
  • the genomic DNA is fragmented into 200bp-300bp size in length, more preferably, ⁇ 250bp size in length.
  • the method comprises a step of preparing a library of cfDNA extracted from the sample of the recipient post-transplant.
  • cfDNA is 60bp ⁇ 200bp size in length. More preferably, cfDNA is ⁇ 170bp size in length.
  • the method further comprises a step of sequencing DNA of the prepared library.
  • sequencing adaptors are ligated to the fragmented DNA or cfDNA.
  • the step of preparing the library universal amplification is performed for the extracted DNA.
  • the amplification product is sequenced by high-throughput sequencing.
  • end repair is performed for cfDNA.
  • dA-tailing process is performed for the fragmented DNA, or cfDNA. Specifically, a non-template dAMP is added onto 3’ end of the fragmented DNA, or cfDNA.
  • the step of calculating donor cfDNA fraction based on SNP genotyping comprises splitting chromosome into windows covering 100-1000kb, preferably, 400-600kb, more preferably, 500kb in size, and calculating donor cfDNA fraction utilizing maximum-likelihood-estimation (MLE) .
  • MLE maximum-likelihood-estimation
  • 22 autosomes are splitted into windows (regions) covering 100-1000kb seperately, preferably, 400-600kb, more preferably, 500kb in size.
  • the step of calculating donor cfDNA fraction comprises calculating p-value for each window based on assuming normal distribution of the donor cfDNA fraction values, wherein for each SNP (denoted as SNP i ) , p i -value can be calculated as follows:
  • the total probability p is the products of each p i :
  • each SNP has only three possible values of wildtype frequency: ⁇ 0, 0.5, 1 ⁇ on both the recipient and the donor;
  • the maximum log p for the given ⁇ can be calculated. Different choices of ⁇ values yield different maximum log p (i.e., log-likelihood) . By iterating through evenly spaced numbers within a specified interval of possible ⁇ values, the method can find out the closest approximation of the best ⁇ resulting in a maximum log-likelihood.
  • the step of calculating donor cfDNA fraction comprises correcting the median p-values for multiple tests.
  • the step of selecting over-represented donor cfDNA comprises selecting over-represented donor cfDNA having an FDR ⁇ 0.1 for each transplant recipient.
  • the method further comprises a step of selecting an over-represented region.
  • An over-represented region is defined as having an FDR ⁇ 0.1 for each transplant recipient.
  • the method further comprises a step of selecting over-represented SNP having an FDR ⁇ 0.1 for each transplant recipient.
  • the donor fraction ⁇ i for each selected SNP i is calculated according to formula 1 in the first place.
  • the method further comprises a step of selecting a region enrichment of significantly over-represented SNPs satisfying: 1) contain ⁇ 5 significant SNPs, and (2) each significant SNP is less than 0.5M apart from its nearest significant SNPs.
  • the over-represented regions are regions associated with graft-host immune responses and/or antimicrobial activities.
  • the over-represented regions are regions associated with HLA-A/B/C, MICA, DDR1, for example chr6: 30782303-31426881, and/or regions overlapped with the family of ⁇ defensin genes, e.g. DEFB103/104/105/106, for example, chr7: 75883092-77138957 and chr8: 7237702-7978545.
  • the sample is a blood sample, a urine sample, or a body fluid sample.
  • the transplant recipient is a mammal, preferably, a human.
  • the transplant recipient received a transplant selected from organ transplant, tissue transplant, and cell transplant.
  • the transplant recipient received a transplant selected from, but not limited to, lung transplant, kidney transplant, heart transplant, liver transplant, pancreas transplant, intestinal transplant, stomach transplant, testis transplant, penis transplant, thymus transplant, uterus transplant, bone transplant, bone marrow transplant, tendon transplant, cornea transplant, uterus transplant, ovary transplant, nerve transplant, pancreas islet cell transplant, blood vessel transplant, heart valve transplant, skin transplant, hand transplant, and/or leg transplant.
  • a transplant selected from, but not limited to, lung transplant, kidney transplant, heart transplant, liver transplant, pancreas transplant, intestinal transplant, stomach transplant, testis transplant, penis transplant, thymus transplant, uterus transplant, bone transplant, bone marrow transplant, tendon transplant, cornea transplant, uterus transplant, ovary transplant, nerve transplant, pancreas islet cell transplant, blood vessel transplant, heart valve transplant, skin transplant, hand transplant, and/or leg transplant.
  • the present invention relates to a method for determining the likelihood of transplant rejection in a transplant recipient, comprising the steps of the method in the first place, and/or the steps of the method in the second place.
  • the present invention relates to a method for predicting prognosis of transplant rejection in a transplant recipient, comprising the steps of the method in the first place, and/or the steps of the method in the second place.
  • the present invention relates to a method for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the steps of the method in the first place, and/or the steps of the method in the second place.
  • the present invention relates to an apparatus for detecting donor cfDNA fraction in a sample of a transplant recipient, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the following modules:
  • the apparatus further comprises a module for preparing a library of the extracted DNA from the sample of the transplant recipient.
  • the apparatus further comprises a module for preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant.
  • the apparatus further comprises a module for preparing a library of cfDNA extracted from the sample of the recipient post-transplant.
  • the apparatus further comprises a module for sequencing DNA of the prepared library.
  • the apparatus further comprises a module for universal amplification.
  • the apparatus further comprises a module for selecting the genome wide SNPs that have a homozygous genotype in the sample of the recipient pre-transplant, and a different genotype in the sample of the recipient post-transplant.
  • the present invention relates to an apparatus for detecting donor cfDNA fraction in a sample of a transplant recipient, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the following modules:
  • the apparatus further comprises a module for preparing a library of the extracted DNA from the sample of the transplant recipient.
  • the apparatus further comprises a module for preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant.
  • the apparatus further comprises a module for preparing a library of cfDNA extracted from the sample of the recipient post-transplant.
  • the apparatus further comprises a module for sequencing DNA of the prepared library.
  • the apparatus further comprises a module for universal amplification.
  • the present invention relates to use of an agent for detecting a region satisfying one of the following conditions: over-represented region having an FDR ⁇ 0.1 for each transplant recipient;
  • a region enrichment of significantly over-represented SNPs satisfying: 1) contain ⁇ 5 significant SNPs; and (2) each significant SNP is less than 0.5M apart from its nearest significant SNPs;
  • chr6 an over-represented region associated with HLA-A/B/C, MICA, DDR1, for example chr6: 30782303-31426881, and/or regions overlapped with the family of ⁇ defensin genes, e.g. DEFB103/104/105/106, for example, chr7: 75883092-77138957 and chr8: 7237702-7978545, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection.
  • ⁇ defensin genes e.g. DEFB103/104/105/106, for example, chr7: 75883092-77138957 and chr8: 7237702-7978545, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as
  • the present invention relates to use of an agent for detecting donor cfDNA fraction in a sample of a transplant recipient for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection.
  • Figure 1A illustrates the study design and data analysis flowchart.
  • Figure 1B shows that the global donor DNA fraction for each transplant recipient at each time point.
  • Figure 2A shows shows log p-value vs chromosomal position of genome-wide SNPs for three recipients.
  • Figure 2B shows the defined significant regions according to the number of significant SNPs.
  • Figure 3A is a plot diagram showing hits with a p-value ⁇ 0.05.
  • Figure 3B shows graphs of relative coverage of several genes.
  • Figure 4 shows a circos plot of estimated regional donor DNA fraction on 500kb windows of patient 1.
  • Figure 5 shows a circos plot of estimated regional donor DNA fraction on 500kb windows of patient 2.
  • Figure 6 shows a circos plot of estimated regional donor DNA fraction on 500kb windows of patient 3.
  • Figure 7 shows that the over-representation is not likely to be caused by copy number variations (duplications) in the Dx samples.
  • Genome-wide SNPs (excluding sex chromosomes) that have a strictly homozygous genotype in the D0 (gDNA) sample and a different genotype in the Dx (cfDNA) samples are firstly selected. To reduce the effects of rare genetic variants on reproducibility, variants with a gnomAD_ALL population frequency lower than 0.3 are filtered [5] . For each of the selected SNPs, the minor allele frequency (MAF) is calculated [6, 7] .
  • the global donor DNA fraction is considered as an average of all observed values of donor fraction (herein denoted as ⁇ ) deducted from each selected SNP i . It is assumed that each ⁇ i follows normal distribution.
  • ⁇ i is equal to MAF; if the donor genotype is heterozygous, ⁇ i will equal two times MAF (i.e., half of the donor fraction equals MAF) . Therefore, the list of MAFs is a mixture of two normal distributions, one centred at 0.5 ⁇ and the other centred at ⁇ . Then the average of the list (denoted as x) is calculated and obtained 0.5 ⁇ ⁇ x ⁇ ⁇ , which transforms into
  • k-means clustering does not guarantee a global optimum (can be trapped into local optima)
  • All values in the sorted list before the best separating value point are considered as samples of the 0.5 ⁇ distribution, these values are then multiplied by 2.
  • the mean of the resulted new list of values is the predicted ⁇ , i.e., the predicted global donor DNA fraction.
  • the above genome-wide estimation method is not suitable for calculating donor DNA fraction in a small region (e.g. 500kb) , because there could be too few SNPs that satisfy the ‘strictly homozygous genotype in D0 sample and a different genotype in the Dx samples’ condition within a given small region.
  • a method that does not require D0 to be homozygous, which allows more SNP information to be considered is utilized. This is a simplified variant of a previously published maximum likelihood-based method [8] .
  • the total probability p is the products of each p i .
  • the regional method starts with all SNPs.
  • variants with a gnomAD_ALL population frequency lower than 0.01 are filtered. 22 autosomes are splitted into 500kb windows, and the donor DNA fraction for each region at each time point is estimated. Last window of each chromosome is less than 500kb; windows with no informative SNPs (i.e., differed D0 and Dx genotypes) are removed. For each transplant recipient, a circos plot of estimated regional donor DNA fraction is drawn for all time points ( Figures 4-6) .
  • donor fraction ⁇ i for each selected SNP i is estimated . Then a p-value for each ⁇ i assuming normal distribution is calculated, and the median p-values for multiple tests are corrected using Benjamini-Hochberg adjustment. Significantly over-represented SNP is defined as having an FDR ⁇ 0.1 for each transplant recipient.
  • a Manhattan plot of median log adjusted p-value of all selected SNPs over the genome (excluding sex chromosomes) is drawn for each recipient using the qqman R package [9] ( Figure 2A) .
  • Regions with enrichment of significantly over-represented SNPs is further defined as regions satisfying: (1) contain ⁇ 5 significant SNPs, and (2) each significant SNP is less than 0.5M apart from its nearest significant SNPs.
  • the identified enriched regions that overlapped in all recipients are highlighted in grey colour on the Manhattan plots.
  • Nucleosome foot-printing of genes of interest is performed as previously described [12, 13] .
  • a nucleosome footprint for a gene is the relative coverage (position depth divided by average depth) at ⁇ 1kb of the transcription start site (TSS) .
  • TSS transcription start site
  • the mean of the three D0 samples and mean of the total 15 Dx samples are used as input for plotting, to visualize changes of nucleosome occupancy pre-and post-transplant.
  • chr6 30782303-31426881
  • chr7 75883092-77138957
  • chr8 7237702-7978545
  • Significant regions are defined as having ⁇ 5 significant SNPs, each being less than 500kb apart from its closest significant SNPs ( Figure 2A and 2B) .
  • chr6 30782303-31426881 overlapped with the human leukocyte antigen (HLA) region, which includes a series of immune-related genes such as HLA-A/B/C, MICA, DDR1; chr8: 7237702-7978545 overlapped with the family of ⁇ defensin genes, e.g. DEFB103/104/105/106.
  • HLA human leukocyte antigen
  • nucleosome footprints of genes within the significant regions pre-and post-transplant are computed. Characteristics of open chromatin are found in some of the genes post-transplant, suggesting active transcriptions. Among these likely active genes, some are known to be expressed in lung epithelial during inflammation and transplantation, e.g. DEFB103, DDR1 and MICA; some known to be expressed in both the host and the graft, e.g. HLA-B/C. Interestingly, DEFB103 and DDR1, which are expected to be expressed only in the graft, showed different nucleosome footprints pre-and post-transplant, while genes known to express in both, e.g. HLA-B/C, preserved the shape of the footprints.
  • LTx lung transplantation
  • Genomic DNA is extracted from D0 samples and cfDNA is extracted from Dx samples.
  • purified gDNA from D0 samples is extracted using QIAamp DNA Blood Mini Kit (Qiagen, Germen) ;
  • cfDNA from Dx samples is extracted using the QIAamp Circulating Nucleic Acid Kit (Qiagen, Germen) , according to the manufacturer’s instructions, separately.
  • gDNA preparation is performed with MGIEasy Universal DNA Library Prep Set and Customer self-developed kit (MGI, Shenzhen, China) .
  • MMI MGIEasy Universal DNA Library Prep Set and Customer self-developed kit
  • gDNA it is fragmented into ⁇ 250bp insert size length.
  • a non-templated dAMP is added onto the 3’ end of the fragments, which is known as dA-tailing.
  • cfDNA which is 60-200bp, for example, ⁇ 170bp, end repair and dA-tailing processes are performed.
  • Adapter ligation and Pre-PCR are performed, to obtain high-quality libraries before sequencing.
  • DNA quantification is performed with Qubit 3.0 (Thermo Fisher Scientific, USA) .
  • DNB preparation kits and Sequencing kits (MGI, Shenzhen, China) are used to pump DNBs (DNA nanoballs) and load the DNBs onto the Patterned Array chip. Pair-end, 150bp sequencing is performed using MGISEQ-2000 with an expected amount of data >150Gb per sample.
  • Raw sequencing reads are subjected to quality check and filter using Fastp [1] .
  • Read mapping to human genome hg19 is performed using BWA MEM with the command “bwa mem -t 8 -M” [2] .
  • Duplicates are removed and local realignment is performed using the GATK bundle [3] .
  • Genotypes (pileup reads) of the D0 and Dx samples on all positions are determined using the mpileup function of Samtools [4] .
  • SNPs are called if the read genotype (s) differ between D0 and Dx samples (see Figure 1A) .
  • the global donor DNA fraction for each transplant recipient at each time point is estimated based on genome-wide SNP genotyping [1, 2] (see Figure 1B) . Consistent with previous findings, donor DNA fraction peaks immediately after transplantation (day 1) and fell quickly (by day 4) .
  • FIG. 1 A) Study design and data analysis flowchart. Blood samples were collected at day 0 (pre-transplant) , day 1, 4, 7, 10, 13 (post-transplant) from recipients of lung transplantation (LTx) . Genomic DNA (gDNA) and cell-free DNA (cfDNA) was extracted from the blood samples and subjected to high coverage whole-genome sequencing. Sequencing data was analysed together with follow-up clinical information. A global donor DNA fraction is estimated for each patient at each time point. Over-representation of graft DNA was examined at SNP-level and region-level. See supplementary Methods for a full description of data processing and analysis. B) Dynamics of global donor DNA fraction during the first two weeks after LTx. Global donor DNA fraction of the three patients at days 1, 4, 7, 10, 13 (post-transplant) were predicted using the genome-wide SNP-based method. Detailed values of global donor DNA fraction for all samples can be found in table 1.
  • Figures 4-6 Circos plots of estimated regional donor DNA fraction on 500kb windows for each recipient at each time point. Time points are arranged from inside to outside -the innermost circle is day 1, and the outermost circle is day 13. The heights of the bars are proportional to the values of the estimated donor DNA fraction. Blank regions indicate lack of informative SNPs at the corresponding window.
  • the circos plot is powered by Bio-oviz circos plot tool: https: //bio. oviz. org/demo-project/analyses/Circos .
  • HLA human leukocyte antigen
  • nucleosome foot-printing of genes of interest were performed as previously described [12, 13] .
  • a nucleosome footprint for a gene is the relative coverage (position depth divided by average depth) at ⁇ 1kb of the transcription start site (TSS) .
  • TSS transcription start site
  • nucleosome footprints [6] of genes within the significant regions pre-and post-transplant are computed. Characteristics of open chromatin are found in some of the genes post-transplant, suggesting active transcriptions (Figure 3B) . Among these likely active genes, some are known to be expressed in lung epithelial during inflammation and transplantation, e.g. DEFB103, DDR1 and MICA [7–9] ; some known to be expressed in both the host and the graft, e.g. HLA-B/C.
  • DEFB103 and DDR1 which are expected to be expressed only in the graft, showed different nucleosome footprints pre-and post-transplant, while genes known to express in both, e.g. HLA-B/C, preserved the shape of the footprints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a method for detecting donor cfDNA fraction in a sample of a recipient. Also provided is a method for detecting over-represented SNP(s)of donor cfDNA in an identified region.

Description

METHOD FOR MONITORING DONAR DNA FRACTION
Introduction
Organ transplantation is now a preferred practice for patient with end-stage organ failure. However, the clinical outcomes remain poor with median survival rate. The immunological reaction of rejection is a major cause of functional failure in transplant patients. Accurate monitoring of graft is essential for long-term survival of the transplant recipient. The current "gold standard" for detecting or confirming graft rejection following organ transplantation requires biopsy samples (for example, transbronchial biopsy for lung transplant and endomyocardial biopsy for heart transplant) in order to detect immune cell (e.g., T-cells, macrophages, etc. ) infiltration into the graft and other pathological changes. These invasive techniques suffer from high cost and myriad complications.
The discovery of the positive correlation between the fraction of donor-derived cell-free DNA (cfDNA) in the recipient’s plasma (herein denoted as donor DNA fraction) and the risk of organ transplant rejection has empowered the development of non-invasive methods for the prediction and prevention of organ transplant failure. However, previous studies mainly focused on a global estimation of donor DNA fraction conducted months post-transplant, and there is a critical need for non-invasive detection methods that can be used in early detection of allograft rejection and prognosis.
Summary of the Invention
The present invention relates to a method for detecting donor cfDNA fraction in a sample of a recipient. The present invention further relates to a method for detecting over-represented SNP (s) of donor cfDNA in an identified region. The methods of the present invention may be used to establish the role of early donor DNA dynamics on post-transplantation manipulation, or provide clinical data for determining the likelihood of transplant rejection, in particular, acute rejection, or monitor immunosuppressive therapy in a subject.
In the first place, the present invention relates to a method for detecting donor cfDNA fraction in a sample of a transplant recipient, comprising:
a) extracting DNA from the sample of the transplant recipient, and
b) measuring donor cfDNA fraction based on SNP genotyping.
In some embodiments, extracting DNA from the sample of the transplant recipient comprises extracting genomic DNA from the sample of the recipient pre-transplant.
In some embodiments, cfDNA is extracted from the sample of the recipient post-transplant.
In some embodiments, cfDNA is extracted from the sample of the recipient post-transplant, preferably, during the first four weeks post-transplant, preferably three weeks post-transplant, more two weeks post-transplant. For example, cfDNA is extracted from the sample of the recipient on  day  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 post-transplant.
In some embodiments, the method comprises a step of preparing a library of the extracted DNA from the sample of the transplant recipient.
In some embodiments, the method comprises a step of preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant. Preferably, the genomic DNA is fragmented into 100bp-300bp size in length, more preferably, ~250bp size in length.
In some embodiments, the method comprises a step of preparing a library of cfDNA extracted from the sample of the recipient post-transplant. Preferably, cfDNA is 60bp~200bp size in length.
In some embodiments, the method further comprises a step of sequencing DNA of the prepared library. Preferably, sequencing adaptors are ligated to the fragmented DNA or cfDNA.
In some embodiments, in the step of preparing the library, universal amplification is performed for the extracted DNA. Preferably, the amplification product is sequenced by high-throughput sequencing.
In some embodiments, in the step of preparing the library, end repair is performed for cfDNA.
In some embodiments, in the step of preparing the library, dA-tailing process is performed for the fragmented DNA, or cfDNA. Specifically, a non-template dAMP is added onto 3’ end of the fragmented DNA, or cfDNA.
In some embodiments, the method comprises a step of selecting the genome wide SNPs that have a homozygous genotype in the sample of the recipient pre-transplant, and a different genotype in the sample of the recipient post-transplant. SNP is called if the read genotype differs between the sample of the recipient pre-transplant and the sample of the recipient post-transplant.
In some embodiments, the method comprises a step of calculating the minor allele frequency (MAF) for each of the selected SNPs.
The donor cfDNA fraction is an average of all observed values of donor fraction (herein denoted as β) deducted from each selected SNP i.
In some embodiments, the donor cfDNA fraction is calculated utilizing the following formula 1:
Figure PCTCN2022140435-appb-000001
wherein χ is the average of the list of MAFs, which is a mixture of two normal distributions, one centered at 0.5β and the other centered at β, and 0.5β <χ< β, which transforms into:
0.5x < 0.5β,
β < 2x.
The donor genotype on a given SNP i is also homozygous (i.e., wildtype/wildtype in recipient and mutant/mutant in donor or the other way around) , β i is equal to MAF; if the donor genotype is heterozygous, β i will equal two times MAF (i.e., half of the donor fraction equals MAF) .
Outliers beyond the range of (0.5χ, 2χ) is firstly filtered out. In order to separate values from the two different distributions, the list is sorted, and the best separating value point that minimizes the total intra-group variance is found, which can be described as the above objective function formula 1.
This is known as the objective function of k-means clustering when k=2. However, k-means clustering does not guarantee a global optimum (can be trapped into local optima) , while a greedy algorithm can achieve global optima when k=2, with time complexity O (n) . All values in the sorted list before the best separating value point are considered as samples of the 0.5βdistribution, these values are then multiplied by 2. The mean of the resulted new list of values is the predicted β, i.e., the predicted global donor DNA fraction.
The donor cfDNA fraction of greater than 1%indicates that the transplant is undergoing acute rejection, and the donor cfDNA fraction of less than 1%indicates that the transplant is undergoing borderline rejection, undergoing other injury, or stable.
In some embodiments, the method further comprises a step of determining the occurrence or likely occurrence of active rejection of transplantation using the detected donor cfDNA fraction in the sample of the transplant recipient.
In some embodiments, the sample is a blood sample, a urine sample, or a body fluid sample.
In some embodiments, the transplant recipient is a mammal, preferably, a human.
In some embodiments, the transplant recipient received a transplant selected from organ transplant, tissue transplant, and cell transplant.
In some embodiments, the transplant recipient received a transplant selected from, but not limited to, lung transplant, kidney transplant, heart transplant, liver transplant, pancreas transplant, intestinal transplant, stomach transplant, testis transplant, penis transplant, thymus transplant, uterus transplant, bone transplant, bone marrow transplant, tendon transplant, cornea  transplant, uterus transplant, ovary transplant, nerve transplant, pancreas islet cell transplant, blood vessel transplant, heart valve transplant, skin transplant, hand transplant, and/or leg transplant.
In the second place, the present invention relates to a method for detecting over-represented donor cfDNA in a sample of a transplant recipient, comprising:
a) extracting DNA from the sample of the transplant recipient,
b) calculating donor cfDNA fraction based on SNP genotyping, and
c) selecting over-represented donor cfDNA.
In some embodiments, genomic DNA is extracted from the sample of the recipient pre-transplant.
In some embodiments, cfDNA is extracted from the sample of the recipient post-transplant.
In some embodiments, cfDNA is extracted from the sample of the recipient during the first two weeks post-transplant. For example, cfDNA is extracted from the sample of the recipient on  day  1, 4, 7, 10, or 13 post-transplant.
In some embodiments, the method comprises a step of preparing a library of the extracted DNA from the sample of the transplant recipient.
In some embodiments, the method comprises a step of preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant. Preferably, the genomic DNA is fragmented into 200bp-300bp size in length, more preferably, ~250bp size in length.
In some embodiments, the method comprises a step of preparing a library of cfDNA extracted from the sample of the recipient post-transplant. Preferably, cfDNA is 60bp~200bp size in length. More preferably, cfDNA is ~170bp size in length.
In some embodiments, the method further comprises a step of sequencing DNA of the prepared library. Preferably, sequencing adaptors are ligated to the fragmented DNA or cfDNA.
In some embodiments, in the step of preparing the library, universal amplification is performed for the extracted DNA. Preferably, the amplification product is sequenced by high-throughput sequencing.
In some embodiments, in the step of preparing the library, end repair is performed for cfDNA.
In some embodiments, in the step of preparing the library, dA-tailing process is performed for the fragmented DNA, or cfDNA. Specifically, a non-template dAMP is added onto 3’ end of the fragmented DNA, or cfDNA.
In some embodiments, the step of calculating donor cfDNA fraction based on SNP genotyping comprises splitting chromosome into windows covering 100-1000kb, preferably, 400-600kb, more preferably, 500kb in size, and calculating donor cfDNA fraction utilizing maximum-likelihood-estimation (MLE) .
Preferably, 22 autosomes are splitted into windows (regions) covering 100-1000kb seperately, preferably, 400-600kb, more preferably, 500kb in size.
In some embodiments, the step of calculating donor cfDNA fraction comprises calculating p-value for each window based on assuming normal distribution of the donor cfDNA fraction values, wherein for each SNP (denoted as SNP i) , p i-value can be calculated as follows:
Figure PCTCN2022140435-appb-000002
for all the SNPs, the total probability p is the products of each p i:
Figure PCTCN2022140435-appb-000003
Figure PCTCN2022140435-appb-000004
Figure PCTCN2022140435-appb-000005
given that assuming (under ideal conditions) each SNP has only three possible values of wildtype frequency: {0, 0.5, 1} on both the recipient and the donor;
for each SNP (denoted as SNPi) , the number of reads supporting the wildtype genotype ki and the number of reads supporting the mutant genotype qi are known;
if given β the donor DNA fraction, then the wildtype frequency wi of SNPi in the cfDNA sample have 3 2 = 9 possible values: {0, 0.5β, β, 0.5 (1-β) , 0.5, 0.5 (1+β) , 1-β, 1-0.5β, 1} .
For a given β on a given SNPi, wi that gives the biggest pi is found out. Repeat it to all SNPs, the maximum log p for the given β can be calculated. Different choices of β values yield different maximum log p (i.e., log-likelihood) . By iterating through evenly spaced numbers within a specified interval of possible β values, the method can find out the closest approximation of the best β resulting in a maximum log-likelihood.
Preferably, the step of calculating donor cfDNA fraction comprises correcting the median p-values for multiple tests.
In some embodiments, the step of selecting over-represented donor cfDNA comprises selecting over-represented donor cfDNA having an FDR ≤ 0.1 for each transplant recipient.
In some embodiments, the method further comprises a step of selecting an over-represented region.
An over-represented region is defined as having an FDR ≤ 0.1 for each transplant recipient.
In some embodiments, the method further comprises a step of selecting over-represented SNP having an FDR≤ 0.1 for each transplant recipient.
Preferably, the donor fraction β i for each selected SNP i is calculated according to formula 1 in the first place.
p-value for each βi assuming normal distribution is calculated and the median p-values for multiple tests are corrected.
In some embodiments, the method further comprises a step of selecting a region enrichment of significantly over-represented SNPs satisfying: 1) contain ≥ 5 significant SNPs, and (2) each significant SNP is less than 0.5M apart from its nearest significant SNPs.
In some embodiments, the over-represented regions are regions associated with graft-host immune responses and/or antimicrobial activities. For example, the over-represented regions are regions associated with HLA-A/B/C, MICA, DDR1, for example chr6: 30782303-31426881, and/or regions overlapped with the family of β defensin genes, e.g. DEFB103/104/105/106, for example, chr7: 75883092-77138957 and chr8: 7237702-7978545.
In some embodiments, the sample is a blood sample, a urine sample, or a body fluid sample.
In some embodiments, the transplant recipient is a mammal, preferably, a human.
In some embodiments, the transplant recipient received a transplant selected from organ transplant, tissue transplant, and cell transplant.
In some embodiments, the transplant recipient received a transplant selected from, but not limited to, lung transplant, kidney transplant, heart transplant, liver transplant, pancreas transplant, intestinal transplant, stomach transplant, testis transplant, penis transplant, thymus transplant, uterus transplant, bone transplant, bone marrow transplant, tendon transplant, cornea transplant, uterus transplant, ovary transplant, nerve transplant, pancreas islet cell transplant, blood vessel transplant, heart valve transplant, skin transplant, hand transplant, and/or leg transplant.
In the third place, the present invention relates to a method for determining the likelihood of transplant rejection in a transplant recipient, comprising the steps of the method in the first place, and/or the steps of the method in the second place.
In the fourth place, the present invention relates to a method for predicting prognosis of transplant rejection in a transplant recipient, comprising the steps of the method in the first place, and/or the steps of the method in the second place.
In the fifth place, the present invention relates to a method for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the steps of the method in the first place, and/or the steps of the method in the second place.
In the sixth place, the present invention relates to an apparatus for detecting donor cfDNA fraction in a sample of a transplant recipient, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the following modules:
(1) a module for extracting DNA from the sample of the transplant recipient, and
(2) a module for measuring donor cfDNA fraction based on SNP genotyping.
In some embodiments, the apparatus further comprises a module for preparing a library of the extracted DNA from the sample of the transplant recipient.
In some embodiments, the apparatus further comprises a module for preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant.
In some embodiments, the apparatus further comprises a module for preparing a library of cfDNA extracted from the sample of the recipient post-transplant.
In some embodiments, the apparatus further comprises a module for sequencing DNA of the prepared library.
In some embodiments, the apparatus further comprises a module for universal amplification.
In some embodiments, the apparatus further comprises a module for selecting the genome wide SNPs that have a homozygous genotype in the sample of the recipient pre-transplant, and a different genotype in the sample of the recipient post-transplant.
In the seventh place, the present invention relates to an apparatus for detecting donor cfDNA fraction in a sample of a transplant recipient, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the following modules:
(1) a module for extracting DNA from the sample of the transplant recipient;
(2) a module for calculating donor cfDNA fraction based on SNP genotyping; and
(3) a module for selecting over-represented donor cfDNA.
In some embodiments, the apparatus further comprises a module for preparing a library of the extracted DNA from the sample of the transplant recipient.
In some embodiments, the apparatus further comprises a module for preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant.
In some embodiments, the apparatus further comprises a module for preparing a library of cfDNA extracted from the sample of the recipient post-transplant.
In some embodiments, the apparatus further comprises a module for sequencing DNA of the prepared library.
In some embodiments, the apparatus further comprises a module for universal amplification.
In the eighth place, the present invention relates to use of an agent for detecting a region satisfying one of the following conditions: over-represented region having an FDR ≤ 0.1 for each transplant recipient;
a region enrichment of significantly over-represented SNPs satisfying: 1) contain ≥ 5 significant SNPs; and (2) each significant SNP is less than 0.5M apart from its nearest significant SNPs;
an over-represented region associated with graft-host immune responses and/or antimicrobial activities;
an over-represented region associated with HLA-A/B/C, MICA, DDR1, for example chr6: 30782303-31426881, and/or regions overlapped with the family of β defensin genes, e.g. DEFB103/104/105/106, for example, chr7: 75883092-77138957 and chr8: 7237702-7978545, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection.
In the ninth place, the present invention relates to use of an agent for detecting donor cfDNA fraction in a sample of a transplant recipient for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection.
Brief Description of the Drawings
Figure 1A illustrates the study design and data analysis flowchart.
Figure 1B shows that the global donor DNA fraction for each transplant recipient at each time point.
Figure 2A shows shows log p-value vs chromosomal position of genome-wide SNPs for  three recipients.
Figure 2B shows the defined significant regions according to the number of significant SNPs.
Figure 3A is a plot diagram showing hits with a p-value ≤ 0.05.
Figure 3B shows graphs of relative coverage of several genes.
Figure 4 shows a circos plot of estimated regional donor DNA fraction on 500kb windows of patient 1.
Figure 5 shows a circos plot of estimated regional donor DNA fraction on 500kb windows of patient 2.
Figure 6 shows a circos plot of estimated regional donor DNA fraction on 500kb windows of patient 3.
Figure 7 shows that the over-representation is not likely to be caused by copy number variations (duplications) in the Dx samples.
Description of Particular Embodiments of the Invention
As for genome-wide SNP-based global donor DNA fraction estimation
Genome-wide SNPs (excluding sex chromosomes) that have a strictly homozygous genotype in the D0 (gDNA) sample and a different genotype in the Dx (cfDNA) samples are firstly selected. To reduce the effects of rare genetic variants on reproducibility, variants with a gnomAD_ALL population frequency lower than 0.3 are filtered [5] . For each of the selected SNPs, the minor allele frequency (MAF) is calculated [6, 7] . The global donor DNA fraction is considered as an average of all observed values of donor fraction (herein denoted as β) deducted from each selected SNP i. It is assumed that each β i follows normal distribution. If the donor genotype on a given SNP i is also homozygous (i.e., wildtype/wildtype in recipient and mutant/mutant in donor or the other way around) , β i is equal to MAF; if the donor genotype is heterozygous, β i will equal two times MAF (i.e., half of the donor fraction equals MAF) . Therefore, the list of MAFs is a mixture of two normal distributions, one centred at 0.5β and the other centred at β. Then the average of the list (denoted as x) is calculated and obtained 0.5β < x < β, which transforms into
0.5x < 0.5β,
β < 2x.
Using the above constraints, outliers beyond the range of (0.5x, 2x) are firstly filtered out. Next, to separate values from the two different distributions, the list is sorted, and the best separating value point that minimizes the total intra-group variance is found, which can be described as the following objective function:
Figure PCTCN2022140435-appb-000006
This is known as the objective function of k-means clustering when k=2. However, k-means clustering does not guarantee a global optimum (can be trapped into local optima) , while a greedy algorithm can achieve global optima when k=2, with time complexity O (n) . All values in the sorted list before the best separating value point are considered as samples of the 0.5βdistribution, these values are then multiplied by 2. The mean of the resulted new list of values is the predicted β, i.e., the predicted global donor DNA fraction.
As for region-level donor DNA fraction estimation and over-representation analysis
The above genome-wide estimation method is not suitable for calculating donor DNA fraction in a small region (e.g. 500kb) , because there could be too few SNPs that satisfy the ‘strictly homozygous genotype in D0 sample and a different genotype in the Dx samples’ condition within a given small region. Hence for region-level estimation, a method that does not require D0 to be homozygous, which allows more SNP information to be considered, is utilized. This is a simplified variant of a previously published maximum likelihood-based method [8] .
Maximum-likelihood-estimation (MLE) of donor DNA fraction for a small region: assuming (under ideal conditions) each SNP has only three possible values of wildtype frequency: {0, 0.5, 1} on both the recipient and the donor. For each SNP (denoted as SNP i) , the number of reads supporting the wildtype genotype k i and the number of reads supporting the mutant genotype q i are known. If given β the donor DNA fraction, then the wildtype frequency w i of SNP i in the cfDNA sample have 3 2 = 9 possible values: {0, 0.5β, β, 0.5 (1-β) , 0.5, 0.5 (1+β) , 1-β, 1-0.5β, 1} . The probability p i of observing k i and q i given wildtype frequency w i for SNP i can be calculated as followed:
Figure PCTCN2022140435-appb-000007
Then for all the SNPs, the total probability p is the products of each p i.
Figure PCTCN2022140435-appb-000008
Figure PCTCN2022140435-appb-000009
Figure PCTCN2022140435-appb-000010
For a given β on a given SNP i, it is find out the w i that gives the biggest p i. Repeat it to all SNPs, the maximum log p for the given β can be calculated. Different choices of β values yield different maximum log p (i.e., log-likelihood) . By iterating through evenly spaced numbers within a specified interval of possible β values, the method can find out the closest approximation of the best β resulting in a maximum log-likelihood.
Unlike the global method which uses only SNPs with homozygous genotypes in D0, the regional method starts with all SNPs. To reduce the effects of rare genetic variants on reproducibility while keeping as much as SNPs as possible for the calculations, variants with a gnomAD_ALL population frequency lower than 0.01 are filtered. 22 autosomes are splitted into 500kb windows, and the donor DNA fraction for each region at each time point is estimated. Last window of each chromosome is less than 500kb; windows with no informative SNPs (i.e., differed D0 and Dx genotypes) are removed. For each transplant recipient, a circos plot of estimated regional donor DNA fraction is drawn for all time points (Figures 4-6) . Assuming normal distribution of the regional donor DNA fraction values, p-values for all windows at each time point are calculated, and the median p-values for multiple tests are corrected using Benjamini-Hochberg adjustment. Over-represented regions are defined as having an FDR ≤ 0.1 for each transplant recipient.
As for SNP-level over-representation analysis
From above genome-wide method, donor fraction β i for each selected SNP i is estimated . Then a p-value for each β i assuming normal distribution is calculated, and the median p-values for multiple tests are corrected using Benjamini-Hochberg adjustment. Significantly over-represented SNP is defined as having an FDR ≤ 0.1 for each transplant recipient. A Manhattan plot of median log adjusted p-value of all selected SNPs over the genome (excluding sex chromosomes) is drawn for each recipient using the qqman R package [9] (Figure 2A) . Regions with enrichment of significantly over-represented SNPs is further defined as regions satisfying: (1) contain ≥ 5 significant SNPs, and (2) each significant SNP is less than 0.5M apart from its nearest significant SNPs. The identified enriched regions that overlapped in all recipients are highlighted in grey colour on the Manhattan plots.
As for functional enrichment analysis
Genes within the identified enriched regions that overlapped in all recipients are retrieved using the UCSC table browser [10] . Enrichment of KEGG pathways and GO terms of biological process are identified using the WebGestalt web [11] tool. Hits with a p-value ≤ 0.05 are plotted in Figure 3A.
As for nucleosome foot-printing
Nucleosome foot-printing of genes of interest is performed as previously described [12, 13] . A nucleosome footprint for a gene is the relative coverage (position depth divided by average depth) at ± 1kb of the transcription start site (TSS) . Here the mean of the three D0 samples and mean of the total 15 Dx samples are used as input for plotting, to visualize changes of nucleosome occupancy pre-and post-transplant.
In the genome-wide SNP-based global donor DNA fraction estimation, consistent with previous findings, donor DNA fraction peaked immediately after transplantation (day 1) and fell quickly (by day 4) . Interestingly, after the sharp decrease at day 4, the recipient -patient 3, shows an acute relapse during day 10-13, while patients 1&2 show flattening/slow-decreasing trends. This early dynamics is in line with patient outcome (Table 3) : patient 3 is detected positive of anti-HLA-II antibodies at 26 days post-transplant and developed pleural effusion, a sign of acute lung injury at 5 weeks post-transplant; while patients 1&2 show no signs of allograft dysfunction 18 months post-transplant.
In region-level donor DNA fraction estimation and over-representation analysis, 0.2%(13/5435) of the windows significantly (FDR ≤ 0.1) over-represneted in all three patients is found, mainly distributed at 1p36, 1q21, 9p12-13, 20q11 and 21q11 (table 2) . However, the over-representation was not likely to be caused by copy number variations (duplications) in the Dx samples, because the levels of duplication in D0 samples are higher at these significant regions compared to Dx samples, and the absence of significant regions where higher levels of duplication occur in Dx versus D0 samples.
In SNP-level over-representation analysis, 3 significant regions are identified, namely chr6: 30782303-31426881, chr7: 75883092-77138957 and chr8: 7237702-7978545, which are consistently enriched with over-represented SNPs in all three recipients. Significant regions are defined as having ≥ 5 significant SNPs, each being less than 500kb apart from its closest significant SNPs (Figure 2A and 2B) . Interestingly, chr6: 30782303-31426881 overlapped with the human leukocyte antigen (HLA) region, which includes a series of immune-related genes such as HLA-A/B/C, MICA, DDR1; chr8: 7237702-7978545 overlapped with the family of βdefensin genes, e.g. DEFB103/104/105/106.
All genes within the enriched regions are retrieved, and enrichment analysis is performed to identify significant KEGG pathways and biological processes (p ≤ 0.05; Figure 3A) . The results revealed strong associations with graft-host immune responses and antimicrobial activities.
To further investigate the causes of the “over-shedding” , nucleosome footprints of genes within the significant regions pre-and post-transplant are computed. Characteristics of open chromatin are found in some of the genes post-transplant, suggesting active transcriptions. Among these likely active genes, some are known to be expressed in lung epithelial during inflammation and transplantation, e.g. DEFB103, DDR1 and MICA; some known to be expressed in both the host and the graft, e.g. HLA-B/C. Interestingly, DEFB103 and DDR1, which are expected to be expressed only in the graft, showed different nucleosome footprints pre-and post-transplant, while genes known to express in both, e.g. HLA-B/C, preserved the shape of the footprints.
Actively transcribed regions are considered more likely to have open chromatin structures, which in turn leads to more nuclease-mediated degradation. It is believed that the major source of plasma cfDNA is dying cells resulted from apoptosis/necrosis. A great lymphocyte turnover post-transplant can be inferred from the white blood cell count , indicating the host lymphocytes as the major source of host cfDNA. Relatively high gene expression in these cells can result in the seemingly “over-shedding” phenomenon –it is in fact the “over-degradation” of host cfDNA at these regions, rather than the “over-sheeding” of graft cfDNA. However, for genes more actively or only expressed in the graft, there should be extra sources of cfDNA release, e.g. active secretion via extracellular vesicles, because otherwise they would rather appear “under-shedding” .
The descriptions of particular embodiments and examples are provided by way of illustration and not by way of limitation. Those skilled in the art will readily recognize a variety of noncritical parameters that could be changed or modified to yield essentially similar results.
Examples
Patients and Sample collection
Three patients who have received lung transplantation (LTx) at The First Affiliated Hospital of Guangzhou Medical University are included in this study. Whole blood samples were drawn from each LTx recipient at Day 0 (denoted as D0 sample; pre-transplant) , and  Day  1, 4, 7, 10, 13 (denoted as Dx samples; post-transplant) . Hence for each of the three patients we have a D0 sample for recipient genotyping and five Dx samples containing donor-derived cfDNA (see Figure 1A) .
DNA extraction, library preparation and whole-genome sequencing
Genomic DNA (gDNA) is extracted from D0 samples and cfDNA is extracted from Dx samples. In brief, purified gDNA from D0 samples is extracted using QIAamp DNA Blood Mini Kit (Qiagen, Germen) ; cfDNA from Dx samples is extracted using the QIAamp Circulating  Nucleic Acid Kit (Qiagen, Germen) , according to the manufacturer’s instructions, separately.
Library preparation is performed with MGIEasy Universal DNA Library Prep Set and Customer self-developed kit (MGI, Shenzhen, China) . For gDNA, it is fragmented into ~250bp insert size length. A non-templated dAMP is added onto the 3’ end of the fragments, which is known as dA-tailing. As for cfDNA, which is 60-200bp, for example, ~170bp, end repair and dA-tailing processes are performed. Adapter ligation and Pre-PCR are performed, to obtain high-quality libraries before sequencing. DNA quantification is performed with Qubit 3.0 (Thermo Fisher Scientific, USA) . DNB preparation kits and Sequencing kits (MGI, Shenzhen, China) are used to pump DNBs (DNA nanoballs) and load the DNBs onto the Patterned Array chip. Pair-end, 150bp sequencing is performed using MGISEQ-2000 with an expected amount of data >150Gb per sample.
Data pre-processing
Raw sequencing reads are subjected to quality check and filter using Fastp [1] . Read mapping to human genome hg19 is performed using BWA MEM with the command “bwa mem -t 8 -M” [2] . Duplicates are removed and local realignment is performed using the GATK bundle [3] . Genotypes (pileup reads) of the D0 and Dx samples on all positions are determined using the mpileup function of Samtools [4] . SNPs are called if the read genotype (s) differ between D0 and Dx samples (see Figure 1A) .
Example 1 Genome-wide SNP-based global donor DNA fraction estimation
The cfDNA of 15 plasma samples (denoted as Dx samples) from three lung transplant recipients at multiple time points (Day 1/4/7/10/13) during the first two weeks post-transplant, plus their genomic DNA obtained pre-transplant (D0 samples) , using deep (~50X) whole genome sequencing is examined in depth (see Figure 1A) . The global donor DNA fraction for each transplant recipient at each time point is estimated based on genome-wide SNP genotyping [1, 2] (see Figure 1B) . Consistent with previous findings, donor DNA fraction peaks immediately after transplantation (day 1) and fell quickly (by day 4) . Interestingly, after the sharp decrease at day 4, one of the recipient -patient 3, shows an acute relapse during day 10-13, while patients 1&2 show flattening/slow-decreasing trends. This early dynamics is in line with patient outcome (Table 3) : patient 3 is detected positive of anti-HLA-II antibodies at 26 days post-transplant and developed pleural effusion, a sign of acute lung injury at 5 weeks post-transplant; while patients 1&2 show no signs of allograft dysfunction 18 months post-transplant.
Figure 1. A) Study design and data analysis flowchart. Blood samples were collected at day 0 (pre-transplant) ,  day  1, 4, 7, 10, 13 (post-transplant) from recipients of lung transplantation (LTx) . Genomic DNA (gDNA) and cell-free DNA (cfDNA) was extracted from  the blood samples and subjected to high coverage whole-genome sequencing. Sequencing data was analysed together with follow-up clinical information. A global donor DNA fraction is estimated for each patient at each time point. Over-representation of graft DNA was examined at SNP-level and region-level. See supplementary Methods for a full description of data processing and analysis. B) Dynamics of global donor DNA fraction during the first two weeks after LTx. Global donor DNA fraction of the three patients at  days  1, 4, 7, 10, 13 (post-transplant) were predicted using the genome-wide SNP-based method. Detailed values of global donor DNA fraction for all samples can be found in table 1.
Predicted global donor DNA fraction for each patient at each time point.
Table 1
Figure PCTCN2022140435-appb-000011
Table 3
Figure PCTCN2022140435-appb-000012
Example 2 Region-level donor DNA fraction estimation and over-representation analysis
It is firstly examined at a region-level by splitting each chromosome into 500kb-windows and used a maximum-likelihood-based method [3] to estimate a donor DNA fraction for each window (Figures 4-6) . P-value for each window is calculated assuming a normal distribution. It is found 0.2% (13/5435) of the windows significantly (FDR ≤ 0.1) over-represented in all three patients, mainly distributed at 1p36, 1q21, 9p12-13, 20q11 and 21q11 (Table 2) . It is noticed some overlap of these regions with previously reported regions of structural complexity [4] . However, the over-representation is not likely to be caused by copy number variations (duplications) in the Dx samples, because the levels of duplication in D0 samples are higher at these significant regions compared to Dx samples, and the absence of significant regions where higher levels of duplication occurs in Dx versus D0 samples (Figure 7) . Figures 4-6. Circos plots of estimated regional donor DNA fraction on 500kb windows for each recipient at each time point. Time points are arranged from inside to outside -the innermost circle is day 1, and the outermost circle is day 13. The heights of the bars are proportional to the values of the estimated donor DNA fraction. Blank regions indicate lack of informative SNPs at the corresponding window. The circos plot is powered by Bio-oviz circos plot tool:  https: //bio. oviz. org/demo-project/analyses/Circos.
Table 2:
500kb-window regions with significant graft DNA over-representation
chrom start end band
chr1 17000001 17500000 1p36.13
chr1 143500001 144000000 1q21.1
chr1 144000001 144500000 1q21.1
chr1 144500001 145000000 1q21.1
chr1 145000001 145500000 1q21.1
chr1 148500001 149000000 1q21.2
chr1 149500001 150000000 1q21.2
chr9 39500001 40000000 9p13.1
chr9 42000001 42500000 9p12
chr9 42500001 43000000 9p12
chr9 43000001 43500000 9p12
chr20 29000001 29500000 20q11.1-21
chr21 14000001 14500000 21q11.1-2
Example 3 SNP-level over-representation analysis
Over-representation at individual SNP-levels is examined. The donor fraction β i for each selected SNP i is deduced and p-value for each β i is calculated. Significantly over-represented SNP is determined as being called in all three patients with FDR ≤ 0.1. Figure 2A shows log p-value (adjusted) vs chromosomal position of genome-wide SNPs for the three recipients. 3 significant regions are identified, namely chr6: 30782303-31426881, chr7: 75883092-77138957 and chr8: 7237702-7978545, which are consistently enriched with over-represented SNPs in all three recipients. Significant regions are defined as having ≥ 5 significant SNPs, each being less than 500kb apart from its closest significant SNPs (Figures 2A and 2B) . Interestingly, chr6: 30782303-31426881 overlaps with the human leukocyte antigen (HLA) region, which includes a series of immune-related genes such as HLA-A/B/C, MICA, DDR1; chr8: 7237702-7978545 overlaps with the family of β defensin genes, e.g. DEFB103/104/105/106.
Example 4 Functional enrichment analysis
Genes within the identified enriched regions that overlapped in all recipients were retrieved using the UCSC table browser [10] . Enrichment of KEGG pathways and GO terms of biological process were identified using the WebGestalt [11] web tool. Hits with a p-value ≤0.05 were plotted in Figure 3A.
All genes within the enriched regions are retrieved, and enrichment analysis is performed [5] to identify significant KEGG pathways and biological processes (p ≤ 0.05; Figure 3A) . The results revealed strong associations with graft-host immune responses and antimicrobial activities.
Example 5 Nucleosome foot-printing
Nucleosome foot-printing of genes of interest were performed as previously described [12, 13] . A nucleosome footprint for a gene is the relative coverage (position depth divided by average depth) at ± 1kb of the transcription start site (TSS) . Here we used the mean of the three D0 samples and mean of the total 15 Dx samples as input for plotting, to visualize changes of nucleosome occupancy pre-and post-transplant.
To further investigate the causes of the “over-shedding” , nucleosome footprints [6] of genes within the significant regions pre-and post-transplant are computed. Characteristics of open chromatin are found in some of the genes post-transplant, suggesting active transcriptions (Figure 3B) . Among these likely active genes, some are known to be expressed in lung epithelial during inflammation and transplantation, e.g. DEFB103, DDR1 and MICA [7–9] ; some known  to be expressed in both the host and the graft, e.g. HLA-B/C. Interestingly, DEFB103 and DDR1 which are expected to be expressed only in the graft, showed different nucleosome footprints pre-and post-transplant, while genes known to express in both, e.g. HLA-B/C, preserved the shape of the footprints.
Actively transcribed regions are considered more likely to have open chromatin structures, which in turn leads to more nuclease-mediated degradation [6] . It is believed that the major source of plasma cfDNA is dying cells resulted from apoptosis/necrosis. A great lymphocyte turnover post-transplant can be inferred from the white blood cell count (Table 3) , indicating the host lymphocytes as the major source of host cfDNA. Relatively high gene expression in these cells can result in the seemingly “over-shedding” phenomenon –it is in fact the “over-degradation” of host cfDNA at these regions, rather than the “over-sheeding” of graft cfDNA. However, for genes more actively or only expressed in the graft, there should be extra sources of cfDNA release, e.g. active secretion via extracellular vesicles [10] , because otherwise they would rather appear “under-shedding” .

Claims (27)

  1. A method for detecting donor cfDNA fraction in a sample of a transplant recipient, comprising:
    a) extracting DNA from the sample of the transplant recipient, and
    b) measuring donor cfDNA fraction based on SNP genotyping.
  2. The method of claim 1, wherein genomic DNA is extracted from the sample of the recipient pre-transplant, and cfDNA is extracted from the sample of the recipient post-transplant, preferably, cfDNA is extracted from the sample of the recipient during the four weeks, preferably three weeks, more preferably two weeks post-transplant.
  3. The method of claim 1, further comprising a step of preparing a library of the extracted DNA from the sample of the transplant recipient, preferably, further comprising a step of preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant, and a step of preparing a library of cfDNA extracted from the sample of the recipient post-transplant, more preferably, the genomic DNA is fragmented into 200bp-300bp size in length, more preferably, 250 bp size in length.
  4. The method of claim 3, further comprising a step of sequencing DNA of the prepared library, preferably, universal amplification is performed for the extracted DNA, preferably, dA-tailing process is performed for the fragmented DNA, or cfDNA.
  5. The method of claim 1, further comprising a step of selecting the genome wide SNPs that have a homozygous genotype in the sample of the recipient pre-transplant, and a different genotype in the sample of the recipient post-transplant.
  6. The method of claim 1, further comprising a step of calculating the minor allele frequency (MAF) for each of the selected SNPs.
  7. The method of claim 1, wherein the donor cfDNA fraction is an average of all observed values of donor fraction (herein denoted as β) deducted from each selected SNP i, preferably, the donor cfDNA fraction is calculated utilizing the following formula 1:
    Figure PCTCN2022140435-appb-100001
    wherein, χ is the average of the list of MAFs, which is a mixture of two normal distributions, one centered at 0.5β and the other centered at β, and 0.5β <χ< β, which transforms into:
    0.5x < 0.5β,
    β < 2x,
    if the donor genotype on a given SNP i is homozygous, β i is equal to MAF; if the donor genotype is heterozygous, β i will equal two times MAF; preferably, outliers beyond the range of (0.5χ, 2χ) are filtered out.
  8. The method of claim 7, wherein the donor cfDNA fraction of greater than 1%indicates that the transplant is undergoing acute rejection, and the donor cfDNA fraction of less than 1%indicates that the transplant is undergoing borderline rejection, undergoing other injury, or stable.
  9. A method for detecting over-represented donor cfDNA in a sample of a transplant recipient, comprising:
    a) extracting DNA from the sample of the transplant recipient,
    b) calculating donor cfDNA fraction based on SNP genotyping, and
    c) selecting over-represented donor cfDNA.
  10. The method of claim 9, wherein genomic DNA is extracted from the sample of the recipient pre-transplant, and cfDNA is extracted from the sample of the recipient post-transplant, preferably, cfDNA is extracted from the sample of the recipient during the first two weeks post-transplant.
  11. The method of claim 9, further comprising a step of preparing a library of the extracted DNA from the sample of the transplant recipient, preferably, further comprising a step of preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant, and a step of preparing a library of cfDNA extracted from the sample of the recipient post-transplant, more preferably, the genomic DNA is fragmented into 200bp-300bp size in length, more preferably, 250 bp size in length.
  12. The method of claim 9, further comprising a step of sequencing DNA of the prepared library, preferably, universal amplification is performed for the extracted DNA, preferably, dA-tailing process is performed for the fragmented DNA, or cfDNA.
  13. The method of claim 9, further comprising a step of calculating donor cfDNA fraction based on SNP genotyping, which comprises splitting chromosome into windows covering 100-1000kb, preferably, 400-600kb, more preferably, 500kb in size, and calculating donor cfDNA fraction utilizing maximum-likelihood-estimation (MLE) , preferably, 22 autosomes are splitted into windows covering 100-1000kb, preferably, 400-600kb in size, more preferably, 500kb in size.
  14. The method of claim 13, wherein the step of calculating donor cfDNA fraction comprises calculating p-value for each window based on assuming normal distribution of the donor cfDNA fraction values,
    wherein, for each SNP (denoted as SNP i) , p i-value can be calculated as follows:
    Figure PCTCN2022140435-appb-100002
    for all the SNPs, the total probability p is the products of each p i:
    Figure PCTCN2022140435-appb-100003
    Figure PCTCN2022140435-appb-100004
    Figure PCTCN2022140435-appb-100005
  15. The method of claim 14, wherein for a given β on a given SNPi, wi that gives the biggest pi is found out, repeat it to all SNPs, the maximum log p for the given β is calculated, preferably, by iterating through evenly spaced numbers within a specified interval of possible βvalues, the closest approximation of the best β resulting in a maximum log-likelihood is found out.
  16. The method of claim 14, wherein the step of calculating donor cfDNA fraction comprises correcting the median p-values for multiple tests.
  17. The method of claim 9, wherein the step of selecting over-represented donor cfDNA comprises selecting over-represented donor cfDNA having an FDR ≤ 0.1 for each transplant recipient.
  18. The method of claim 9, further comprising a step of selecting an over-represented region, which is defined as having an FDR ≤ 0.1 for each transplant recipient, and/or a step of selecting over-represented SNP having an FDR≤ 0.1 for each transplant recipient, and/or a step of selecting a region enrichment of significantly over-represented SNPs satisfying: 1) contain ≥ 5 significant SNPs, and (2) each significant SNP is less than 0.5M apart from its nearest significant SNPs, preferably, the over-represented regions are regions associated with graft-host immune responses and/or antimicrobial activities, more preferably, the over-represented regions are regions associated with HLA-A/B/C, MICA, DDR1, for example chr6: 30782303-31426881, and/or regions overlapped with the family of β  defensin genes, e.g. DEFB103/104/105/106, for example, chr7: 75883092-77138957 and chr8: 7237702-7978545.
  19. The method of any one of claims 1-18, wherein the sample is a blood sample, a urine sample, or a body fluid sample, and wherein the transplant recipient is a mammal, preferably, a human, preferably, the transplant recipient receives a transplant selected from organ transplant, tissue transplant, and cell transplant, more preferably, the transplant recipient received a transplant selected from, lung transplant, kidney transplant, heart transplant, liver transplant, pancreas transplant, intestinal transplant, stomach transplant, testis transplant, penis transplant, thymus transplant, uterus transplant, bone transplant, bone marrow transplant, tendon transplant, cornea transplant, uterus transplant, ovary transplant, nerve transplant, pancreas islet cell transplant, blood vessel transplant, heart valve transplant, skin transplant, hand transplant, and/or leg transplant.
  20. A method for determining the likelihood of transplant rejection in a transplant recipient, or a method for predicting prognosis of transplant rejection in a transplant recipient, or a method for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the steps of the method of any one of claims 1-8, and/or the steps of the method of any one of claims 9-18.
  21. An apparatus for detecting donor cfDNA fraction in a sample of a transplant recipient, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the following modules:
    (3) a module for extracting DNA from the sample of the transplant recipient, and
    (4) a module for measuring donor cfDNA fraction based on SNP genotyping.
  22. The apparatus of claim 21, further comprising a module for preparing a library of the extracted DNA from the sample of the transplant recipient, and a module for sequencing DNA of the prepared library, preferably, the module for preparing a library of the extracted DNA from the sample of the transplant recipient is a module for preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant, and a module for preparing a library of cfDNA extracted from the sample of the recipient post-transplant, more preferably, further comprising the apparatus further comprises a module for universal amplification.
  23. The apparatus of claim 21, further comprising a module for selecting the genome wide SNPs that have a homozygous genotype in the sample of the recipient pre-transplant, and a different genotype in the sample of the recipient post-transplant.
  24. An apparatus for detecting donor cfDNA fraction in a sample of a transplant recipient, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection, comprising the following modules:
    (1) a module for extracting DNA from the sample of the transplant recipient;
    (2) a module for calculating donor cfDNA fraction based on SNP genotyping; and
    (3) a module for selecting over-represented donor cfDNA, preferably, calculating donor cfDNA fraction based on SNP genotyping according to anyone of claims 6-8 and 14-18.
  25. The apparatus of claim 24, further comprising a module for preparing a library of the extracted DNA from the sample of the transplant recipient, and a module for sequencing DNA of the prepared library, preferably, the module for preparing a library of the extracted DNA from the sample of the transplant recipient is a module for preparing a library of the genomic DNA extracted from the sample of the recipient pre-transplant, and a module for preparing a library of cfDNA extracted from the sample of the recipient post-transplant, more preferably, further comprising the apparatus further comprises a module for universal amplification.
  26. Use of an agent for detecting a region satisfying one of the following conditions: over-represented region having an FDR ≤ 0.1 for each transplant recipient;
    a region enrichment of significantly over-represented SNPs satisfying: 1) contain ≥ 5 significant SNPs; and (2) each significant SNP is less than 0.5M apart from its nearest significant SNPs; an over-represented region associated with graft-host immune responses and/or antimicrobial activities; an over-represented region associated with HLA-A/B/C, MICA, DDR1, for example chr6: 30782303-31426881, and/or regions overlapped with the family of β defensin genes, e.g. DEFB103/104/105/106, for example, chr7: 75883092-77138957 and chr8: 7237702-7978545, for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection.
  27. Use of an agent for detecting donor cfDNA fraction in a sample of a transplant recipient for determining the likelihood of transplant rejection in a transplant recipient, for predicting prognosis of transplant rejection in a transplant recipient, or for diagnosing a transplant within a transplant recipient as undergoing acute rejection.
PCT/CN2022/140435 2021-12-22 2022-12-20 Method for monitoring donar dna fraction WO2023116717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021140643 2021-12-22
CNPCT/CN2021/140643 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023116717A1 true WO2023116717A1 (en) 2023-06-29

Family

ID=86901263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140435 WO2023116717A1 (en) 2021-12-22 2022-12-20 Method for monitoring donar dna fraction

Country Status (1)

Country Link
WO (1) WO2023116717A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194113A2 (en) * 2013-05-29 2014-12-04 Chronix Biomedical Detection and quantification of donor cell-free dna in the circulation of organ transplant recipients
CN106480170A (en) * 2015-08-31 2017-03-08 广州华大基因医学检验所有限公司 Determine method and the application of donor and receptor difference SNP
WO2017045654A1 (en) * 2015-09-18 2017-03-23 广州华大基因医学检验所有限公司 Method for determining proportion of donor source cfdna in receptor cfdna sample
CN107254514A (en) * 2017-05-12 2017-10-17 苏州人人基因科技有限公司 Detect heterologous cfDNA SNP marker and detection method, purposes
US20190203285A1 (en) * 2015-04-14 2019-07-04 Eone Diagnomics Genome Center Co., Ltd. Method for predicting organ transplant rejection using next-generation sequencing
CN110396560A (en) * 2019-06-20 2019-11-01 上海奥根诊断技术有限公司 For detecting purposes and method of the product of ddcfDNA in preparation detection BKVAN product
CN110452975A (en) * 2019-06-28 2019-11-15 上海奥根诊断技术有限公司 Purposes in transplanting injury of kidney and prognosis caused by product for detecting ddcfDNA detects pulmonary infection in preparation
WO2020118046A1 (en) * 2018-12-05 2020-06-11 William Marsh Rice University Quantifying foreign dna in low-volume blood samples using snp profiling
CN112458162A (en) * 2020-11-16 2021-03-09 北京迈基诺基因科技股份有限公司 Organ transplantation ddcfDNA detection reagent and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194113A2 (en) * 2013-05-29 2014-12-04 Chronix Biomedical Detection and quantification of donor cell-free dna in the circulation of organ transplant recipients
US20190203285A1 (en) * 2015-04-14 2019-07-04 Eone Diagnomics Genome Center Co., Ltd. Method for predicting organ transplant rejection using next-generation sequencing
CN106480170A (en) * 2015-08-31 2017-03-08 广州华大基因医学检验所有限公司 Determine method and the application of donor and receptor difference SNP
WO2017045654A1 (en) * 2015-09-18 2017-03-23 广州华大基因医学检验所有限公司 Method for determining proportion of donor source cfdna in receptor cfdna sample
CN107254514A (en) * 2017-05-12 2017-10-17 苏州人人基因科技有限公司 Detect heterologous cfDNA SNP marker and detection method, purposes
WO2020118046A1 (en) * 2018-12-05 2020-06-11 William Marsh Rice University Quantifying foreign dna in low-volume blood samples using snp profiling
CN110396560A (en) * 2019-06-20 2019-11-01 上海奥根诊断技术有限公司 For detecting purposes and method of the product of ddcfDNA in preparation detection BKVAN product
CN110452975A (en) * 2019-06-28 2019-11-15 上海奥根诊断技术有限公司 Purposes in transplanting injury of kidney and prognosis caused by product for detecting ddcfDNA detects pulmonary infection in preparation
CN112458162A (en) * 2020-11-16 2021-03-09 北京迈基诺基因科技股份有限公司 Organ transplantation ddcfDNA detection reagent and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUO JIAQI, LIU LIPING, CHEN LINGXI, XU XIN, WANG YANFEI, WEI BING, JU CHUNRONG, WANG XUEDONG, HUANG LIYAN, ZENG WENCHUANG, MIAO XI: "Over‐shedding of donor‐derived cell‐free DNA at immune‐related regions into plasma of lung transplant recipient", CLINICAL AND TRANSLATIONAL MEDICINE, INTERNATIONAL SOCIETY FOR TRANSLATIONAL MEDICINE, SE, vol. 12, no. 1, 1 January 2022 (2022-01-01), SE , XP093073745, ISSN: 2001-1326, DOI: 10.1002/ctm2.622 *

Similar Documents

Publication Publication Date Title
US20230203573A1 (en) Methods for detection of donor-derived cell-free dna
JP6760917B2 (en) Analysis of genomic fractions using polymorphic counts
JP6659672B2 (en) Detection of fetal chromosome partial aneuploidy and copy number variation
Lalancette et al. Identification of human sperm transcripts as candidate markers of male fertility
US11674181B2 (en) Method for identifying kidney allograft recipients at risk for chronic injury
JP2007515947A (en) Prenatal diagnosis using acellular fetal DNA in amniotic fluid
WO2010021696A1 (en) Methods and compositions for determining a graft tolerant phenotype in a subject
US9121066B2 (en) Methods for selecting competent oocytes and competent embryos with high potential for pregnancy outcome
CN106661634A (en) Methods for diagnosing risk of renal allograft fibrosis and rejection
CN116964223A (en) Method for detecting donor-derived free DNA in transplant recipients of multiple organs
JP2023516633A (en) Systems and methods for calling variants using methylation sequencing data
WO2023116717A1 (en) Method for monitoring donar dna fraction
US11821036B2 (en) Methods for identifying and monitoring pregnant women at risk of preeclampsia
US11869630B2 (en) Screening system and method for determining a presence and an assessment score of cell-free DNA fragments
US10059994B2 (en) Methods for selecting competent oocytes and competent embryos with high potential for pregnancy outcome
US20110275085A1 (en) Method for detection of autoimmune diseases
Sybouts et al. eP404: Evidence supporting the pathogenicity of the NADSYN1 c. 1717G> A (p. Ala573Thr) variant in individuals referred for clinical testing
WO2023244735A2 (en) Methods for determination and monitoring of transplant rejection by measuring rna
WO2024076469A1 (en) Non-invasive methods of assessing transplant rejection in pregnant transplant recipients
KR20190048145A (en) Method of diagnosing rejection after transplantation
Chen et al. PALM-Seq: integrated sequencing of cell-free long RNA and small RNA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910029

Country of ref document: EP

Kind code of ref document: A1