WO2023116403A1 - 一种缓存状态报告发送方法及通信装置 - Google Patents

一种缓存状态报告发送方法及通信装置 Download PDF

Info

Publication number
WO2023116403A1
WO2023116403A1 PCT/CN2022/136530 CN2022136530W WO2023116403A1 WO 2023116403 A1 WO2023116403 A1 WO 2023116403A1 CN 2022136530 W CN2022136530 W CN 2022136530W WO 2023116403 A1 WO2023116403 A1 WO 2023116403A1
Authority
WO
WIPO (PCT)
Prior art keywords
bsr
terminal
interval
access network
intervals
Prior art date
Application number
PCT/CN2022/136530
Other languages
English (en)
French (fr)
Inventor
曹佑龙
陈二凯
廖树日
徐瑞
窦圣跃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023116403A1 publication Critical patent/WO2023116403A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network

Definitions

  • the present application relates to the technical field of communications, and in particular to a buffer status report sending method and a communications device.
  • the UE when the user equipment (UE) has uplink data to transmit, the UE needs to request the base station to perform uplink resource scheduling through the uplink scheduling request (scheduling request, SR), and through the buffer state report (buffer state report, The BSR) reports the amount of uplink data to be transmitted by a logical channel group (logical channel group, LCG), so that the base station allocates sufficient uplink resources for each LCG to transmit uplink data.
  • SR uplink scheduling request
  • buffer state report buffer state report
  • the specific process for the UE to report the amount of uplink data to be transmitted by the LCG with the help of the BSR can be understood as: the terminal quantifies the amount of uplink data to be transmitted by the LCG to determine the buffer corresponding to the amount of uplink data to be transmitted by the LCG The index value of the state (buffer state, BS) interval, and the index value of the BS interval corresponding to the data volume of the uplink data to be transmitted of the LCG is reported.
  • the base station allocates uplink transmission resources to the terminal according to the maximum value of the quantization interval corresponding to the index value.
  • the BSR has a bit length limit, and the number of BS intervals that can be divided is limited.
  • XR extended reality
  • there is an active packet loss mechanism that is, packets whose waiting time exceeds a certain threshold in the user cache will be discarded.
  • the amount of data to be transmitted, and the coverage of the BS interval may far exceed the size of the data to be transmitted, resulting in inaccurate BSR reporting, and the resources allocated by the base station may be far greater than the resources actually needed by the terminal, resulting in a waste of transmission resources.
  • Embodiments of the present application provide a buffer status report sending method and a communication device.
  • the access network device can configure a BS section for the terminal that is more suitable for the actual needs of the terminal.
  • the terminal is based on the access network device
  • the configured corresponding relationship between the BS interval and the index value sends a BSR to the access network device to request transmission resources more suitable for the terminal's needs.
  • this method is beneficial for the access network device to determine the resource scheduling granularity of itself according to the resource scheduling granularity of the terminal.
  • the embodiment of the present application provides a method for sending a cache status report.
  • the method can be executed by a terminal, or by a component of the terminal (such as a processor, a chip, or a chip system, etc.), or can be implemented by all Or a logical module or software implementation of some terminal functions.
  • a first configuration message from an access network device is received, and the first configuration message configures a one-to-one correspondence between multiple buffer status BS intervals and multiple index values; based on the corresponding relationship, send The access network device sends a BSR, where the BSR includes a target index value, and the multiple index values include the target index value.
  • the terminal sends a BSR to the access network device based on the correspondence between the BS interval configured by the access network device and the index value to request transmission resources that are more suitable for the terminal, thereby avoiding the
  • the transmission resources configured by the access network equipment according to the BSR do not match the requirements of the terminals, resulting in a lot of waste of transmission resources.
  • the uplink data is sent to the access network device, the uplink data is carried by a logical channel group LCG, and the LCG is associated with the corresponding relationship.
  • the uplink data carried by the LCG is associated with the corresponding relationship between the BS interval and the index value.
  • the transmission resources requested by the terminal to send the BSR will be more suitable for the transmission requirements of the LCG, further Specifically, the terminal sends the uplink data carried by the LCG to the access network device based on the transmission resource, which reduces waste of transmission resources.
  • the first configuration message further includes identification information of the LCG.
  • identification information of the LCG different LCGs of the terminal can be associated with different correspondences between BS intervals and index values, which can improve the matching degree between the LCG transmission requirements of the terminal and the BS intervals.
  • the multiple BS intervals include a BS interval corresponding to a long BSR and/or a BS interval corresponding to a short BSR.
  • the corresponding relationship is included in the cache size table corresponding to the long BSR and/or in the cache size table corresponding to the short BSR.
  • a report message is sent to the access network device, where the report message includes a data frame size fluctuation range, and the data frame size fluctuation range is used for determining the corresponding relationship.
  • the corresponding relationship between the BS interval and the index value determined by the access network device can be changed according to the fluctuation range of the data frame size reported by the terminal, so that the corresponding relationship between the BS interval and the index value can better match the terminal demand.
  • the report message further includes a transmission index of the uplink data, and the transmission index is used for determining a corresponding relationship.
  • the transmission index includes but not limited to one or more of service quality information, transmission rate, frame rate or relative fluctuation range of data frame size.
  • the embodiment of the present application provides a method for receiving a cache status report, the method may be executed by an access network device, or may be executed by a component of the access network device (such as a processor, a chip, or a chip system, etc.), It can also be realized by logic modules or software that can realize all or part of the functions of the access network equipment.
  • a first configuration message is sent to the terminal, and the first configuration message configures a one-to-one correspondence between multiple buffer state BS intervals and multiple index values; a buffer state report BSR from the terminal is received, and the BSR includes the target index value, the plurality of index values including the target index value.
  • its beneficial effect can refer to the beneficial effect described in the first aspect above, and the repetition will not be repeated.
  • uplink data from the terminal is received, the uplink data is carried by a logical channel group LCG, and the LCG is associated with the corresponding relationship.
  • the first configuration message further includes identification information of the LCG.
  • the multiple BS intervals include a BS interval corresponding to a long BSR and/or a BS interval corresponding to a short BSR.
  • the corresponding relationship is included in the cache size table corresponding to the long BSR and/or in the cache size table corresponding to the short BSR.
  • a report message from the terminal is received, where the report message indicates a fluctuation range of the data frame size.
  • the corresponding relationship is determined based on the data frame size fluctuation range.
  • the report message further includes a transmission index of uplink data, where the transmission index includes but not limited to one or more of quality of service information, transmission rate, frame rate, or relative fluctuation range of data frame size. kind.
  • the corresponding relationship is determined based on the transmission index of the uplink data.
  • the embodiment of the present application provides another buffer status report sending method, which can be executed by the terminal, or by a component of the terminal (such as a processor, a chip, or a chip system, etc.), or can be implemented by Logical modules or software implementations of all or part of terminal functions.
  • a first configuration message from an access network device is received, the first configuration message configures a BS interval quantization parameter set, and the BS interval quantization parameter set is used to indicate the quantization granularity of at least two types of BS intervals; based on the target
  • the BS quantifies the parameter set, and sends a buffer status report BSR to the access network device, where the BSR includes index values corresponding to target BS intervals, and the at least two types of BS intervals include the target BS intervals.
  • the terminal sends a BSR to the access network device based on the BS interval quantization parameter set configured by the access network device to request transmission resources that better meet the needs of the terminal, thereby avoiding the need for the access network device to
  • the transmission resources configured by the BSR do not match the terminal requirements, resulting in a lot of waste of transmission resources.
  • the uplink data is sent to the access network device, the uplink data is carried by a logical channel group LCG, and the LCG is associated with the BS interval quantization parameter set.
  • the uplink data carried by the LCG is associated with the BS interval quantization parameter set.
  • the transmission resources requested by the BSR sent by the terminal will be more suitable for the transmission requirements of the LCG.
  • the terminal based on The transmission resource sends the uplink data carried by the LCG to the access network device, which reduces the waste of transmission resources.
  • the first configuration message further includes identification information of the LCG.
  • identification information of the LCG Through this possible implementation manner, different LCGs of the terminal can be associated with different BS interval quantization parameter sets, which can improve the matching degree between the terminal LCG transmission requirement and the BS interval.
  • the BS interval quantization parameter set includes the quantization granularity of each type of BS interval in the at least two types of BS intervals, and the proportion of each type of BS interval in the at least two types of BS intervals.
  • the at least two types of BS intervals include a first type of BS interval and a second type of BS interval, and the quantization granularity of the first type of BS interval is different from that of the second type of BS interval.
  • the BS intervals are divided unevenly, which improves the adaptability between the BS intervals and the requirements of the terminals.
  • the BS interval quantization parameter set includes a BS interval quantization parameter set corresponding to a long BSR, and/or, a BS interval quantization parameter set corresponding to a short BSR.
  • a report message is sent to the access network device, where the report message includes data frame statistical information, and the data statistical information is used for determining a BS interval quantization parameter set.
  • the data frame statistical information includes but is not limited to one or more of the mean value of the data frame size, the standard deviation of the data frame size, the maximum value of the data frame size, or the minimum value of the data frame size.
  • the embodiment of the present application provides another buffer status report receiving method, which can be executed by the access network device, or by components of the access network device (such as processors, chips, or chip systems, etc.) , may also be realized by a logic module or software capable of realizing all or part of the functions of the access network device.
  • a first configuration message is sent to the terminal, the first configuration message configures a BS interval quantization parameter set, and the BS interval quantization parameter set is used to indicate the quantization granularity of at least two types of BS intervals; receiving a cache status report from the terminal BSR, where the BSR includes an index value corresponding to the target BS interval, and the at least two types of BS intervals include the target BS interval.
  • the uplink data from the terminal is received, the uplink data is carried by a logical channel group LCG, and the LCG is associated with the BS interval quantization parameter set.
  • the first configuration message further includes identification information of the LCG.
  • the BS interval quantization parameter set includes the quantization granularity of each type of BS interval in the at least two types of BS intervals, and the proportion of each type of BS interval in the at least two types of BS intervals.
  • the at least two types of BS intervals include a first type of BS interval and a second type of BS interval, and the quantization granularity of the first type of BS interval is different from that of the second type of BS interval.
  • the BS interval quantization parameter set includes a BS interval quantization parameter set corresponding to a long BSR, and/or, a BS interval quantization parameter set corresponding to a short BSR.
  • a report message from a terminal is received, the report message includes data frame statistical information, and the data frame statistical information includes but not limited to the mean value of the data frame size, the standard deviation of the data frame size, the One or more of the maximum value or the minimum value of the data frame size.
  • the BS interval quantization parameter set is determined based on the statistical information of the data frame.
  • the present application provides a communication device, which can be a terminal, a chip, a chip system, or a processor that supports the terminal to implement the above method, or a logic module that can realize all or part of the terminal functions or software.
  • the communication device may also be a system on a chip.
  • the communication device may execute the method described in the first aspect or the third aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above functions. This unit can be software and/or hardware.
  • the present application provides a communication device, which may be an access network device, or a chip, a chip system, or a processor that supports the access network device to implement the above method, or may be a device capable of implementing all or Logical modules or software for some access network device functions.
  • the communication device may also be a system on a chip.
  • the communication device may execute the method described in the second aspect or the fourth aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above functions. This unit can be software and/or hardware.
  • the present application provides a communication device.
  • the communication device may be a terminal, or a chip, a chip system, or a processor that supports the terminal to implement the above method, or a logic that can realize all or part of the terminal functions. module or software.
  • the communication device includes a communication interface, a processor, and optionally, a memory. Wherein, the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface. When the processor executes the computer programs or instructions, the communication device executes the method performed by the terminal in the above method embodiments.
  • the present application provides a communication device.
  • the communication device may be an access network device, or a chip, a chip system, or a processor that supports the access network device to implement the above method, or may be capable of implementing all Or a logical module or software that functions as part of an access network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory. Wherein, the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface. When the processor executes the computer programs or instructions, the communication device is made to execute the method performed by the access network device in the above method embodiment. method.
  • the present application provides a computer-readable storage medium, which is used to store computer-executable instructions.
  • the computer-executable instructions are executed, the In the method, the method executed by the terminal is realized; or, the method executed by the access network device in the method described in the second aspect or the fourth aspect is realized.
  • the present application provides a computer program product including a computer program.
  • the computer program When the computer program is executed, the method executed by the terminal in the method described in the first aspect or the third aspect is realized; or, such that The method performed by the access network device in the method described in the second aspect or the fourth aspect is implemented.
  • the present application provides a communication system, which includes the communication device described in the fifth aspect and the sixth aspect above; or includes the communication device described in the seventh aspect and the eighth aspect above.
  • FIG. 1 is a schematic diagram of a system architecture provided by the present application
  • FIG. 2a is a schematic diagram of a protocol layer structure between an access network device and a terminal provided by the present application
  • Figure 2b is a schematic diagram of a mapping relationship between protocol layers provided by the present application.
  • FIG. 2c is a schematic diagram of a user plane data flow mapping relationship provided by the present application.
  • Fig. 3 a is the schematic diagram of a kind of short BSR format BSR that the present application provides;
  • Figure 3b is a schematic diagram of a long BSR format BSR provided by the present application.
  • Fig. 4 is a schematic flow chart of a BSR method provided by the present application.
  • Fig. 5 is a schematic flow chart of another BSR method provided by the present application.
  • FIG. 6 is a schematic diagram of a BS interval obtained according to a BS interval quantization parameter set provided by the present application
  • FIG. 7 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by the present application.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • 5G new radio
  • NR new radio
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • the system architecture shown in FIG. 1 it includes terminals and access network devices.
  • the terminals and access network devices involved in the system architecture in FIG. 1 will be described in detail below.
  • Terminals include devices that provide voice and/or data connectivity to users.
  • a terminal is a device with wireless transceiver capabilities that can be deployed on land, including indoors or outdoors, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control) Wireless terminals in vehicle-mounted terminals, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, wearable terminals, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal may sometimes also be referred to as a terminal device, UE, access terminal, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile device, UE terminal, wireless communication device, UE proxy or UE device, etc.
  • Terminals can also be fixed or mobile. It can be understood that all or part of the functions of the terminal in this application may also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • the (wireless) access network ((radio) access network, (R)AN) is used to connect terminal equipment to the wireless network. It should be known that (R)AN is described as RAN in the following for convenience of description.
  • the RAN may include one or more RAN devices (or access network devices), that is, an access network device may be understood as a node or device that connects a terminal to a wireless network.
  • the interface between the access network device and the terminal may be a Uu interface (or called an air interface).
  • the access network device can be any device with wireless transceiver function, including but not limited to: evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE, base station in NR (gNodeB or gNB) Or the transmission reception point (transmission reception point, TRP), the base station of the subsequent evolution of the 3rd generation partner project (3GPP), the access node in the WiFi system, the wireless relay node, the wireless backhaul node, etc.
  • NodeB or eNB or e-NodeB evolutional Node B
  • base station in NR gNodeB or gNB
  • TRP transmission reception point
  • 3GPP 3rd generation partner project
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. Multiple base stations may support the aforementioned networks of the same technology, or may support the aforementioned networks of different technologies.
  • a base station may contain one or more co-sited or non-co-sited TRPs.
  • the access network device may also be a wireless controller, a centralized unit (central unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the access network device may also be a server, a wearable device, or a vehicle-mounted device.
  • the multiple access network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal, and can also communicate with the terminal through a relay station.
  • the terminal can communicate with multiple base stations of different technologies.
  • the terminal can communicate with the base station supporting the LTE network, and can also communicate with the base station supporting the 5G network. It can also support dual connection with the base station of the LTE network and the base station of the 5G network .
  • all or part of the functions of the access network device in this application can also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • the user plane protocol layer structure between the access network device and the terminal may include a radio resource control (radio resource control, RRC) layer, a packet data convergence protocol (packet data convergence protocol, PDCP) layer , radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer, physical layer (physical layer, PHY layer) and business data adaptation (service data adaptation protocol, SDAP) layer ;
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • media access control media access control
  • MAC media access control
  • physical layer physical layer
  • SDAP business data adaptation
  • FIG. 2b is a schematic diagram of a mapping relationship between protocol layers provided by the present application.
  • the PHY layer provides the MAC layer with a transport channel (transport channel);
  • the MAC provides the RLC with a logical channel (logical channel, LC);
  • the RLC layer provides the PDCP layer with an RLC channel (RLC channel);
  • the PDCP layer provides the SDAP layer with a wireless bearer (radiobear, RB);
  • SDAP layer is responsible for the mapping between uplink (uplink, UL)/downlink (downlink, DL) quality of service flow (quality of service flow, QoSFlow) and RB.
  • FIG. 2c is a schematic diagram of a user plane data flow mapping relationship provided in this application.
  • the service data is divided into multiple Internet protocol (internet protocol, IP) packets at the network transport layer, and each UL/DL IP packet is marked with the QoS Flow ID (QoS Flow ID, QFI) corresponding to the IP packet.
  • IP Internet protocol
  • QoS Flow ID QoS Flow ID
  • the SDAP layer obtains multiple UL/DL QoSFlows according to the QFI of each IP packet. Further, the SDAP layer maps multiple UL/DL QoSFlows to at least one RB, where one RB can map one or more QoSFlows, and one QoS Flow can only be mapped to one RB at a time.
  • the PDCP layer is responsible for mapping data packets on RBs to RLC channels, and each RLC channel corresponds to one RB.
  • the RLC layer is responsible for mapping RLC channels to logical channels, and each logical channel corresponds to an RLC channel and also corresponds to an RB.
  • the MAC layer is responsible for scheduling and multiplexing of logical channels, scheduling logical channels according to priority, and multiplexing multiple logical channels to the same transport channel, and submitting it to the PHY layer for transmission.
  • XR refers to the combination of reality and virtuality through computers to create a virtual environment that can interact with humans and computers.
  • XR includes VR and AR.
  • Generally, XR services have low packet loss rate and low latency transmission requirements.
  • the video frames of the XR service need to be transmitted from the server to the terminal (or from the terminal to the server) within a certain period of time (ie delay budget).
  • delay budget a certain period of time
  • the access network device allocates uplink transmission resources for transmitting uplink data to the terminal, which will cause waste of transmission resources.
  • long term evolution long term evolution
  • NR new air interface
  • the terminal sends an SR to the base station, and the SR is used to notify the terminal that uplink transmission resources are needed for transmitting uplink data;
  • the terminal reports a BSR to the base station, and the BSR is used to indicate the amount of uplink data to be transmitted by the terminal; further Specifically, the base station configures uplink transmission resources for transmitting uplink data for the terminal according to the BSR.
  • the terminal sends the BSR to the access network device with the data to be transmitted corresponding to the LCG as the reporting granularity.
  • the division of LCGs it usually depends on the algorithm implementation of the access network equipment.
  • the access network equipment can divide logical channels with the same QoS requirements into the same LCG, or divide logical channels with the same priority into the same LCG . Since the configuration of LCGs and logical channels of the terminal is controlled by the base station, the base station knows which logical channels each LCG contains and the priorities of these logical channels.
  • the base station cannot know the buffer status of a single logical channel, since the logical channels in the same LCG have similar QoS/priority requirements, reporting the buffer status based on the LCG can also enable uplink scheduling to provide appropriate scheduling results.
  • the terminal reports the BSR to the access network device for schematic illustration.
  • the BSR is reported through the BSR MAC control element (control element, CE) of the MAC layer, and the reported BSR includes 2 formats: short BSR (also called short BSR) format and long BSR (also called long BSR) format.
  • short BSR also called short BSR
  • long BSR also called long BSR
  • short BSR can also be called truncated BSR (Truncated BSR).
  • Truncated BSR Truncated BSR
  • the short BSR format BSR consists of an LCG ID field and a buffer size (buffer size) domain composition.
  • 5 bits are used to indicate the value in the BS (that is, 5 bits are used to report the index value (index) of the BS interval, and there are 32 BS intervals in the short BSR format).
  • Table 1 shows the corresponding relationship between the buffer size field of the short BSR and the value in the BS.
  • the index value of the buffer size field in Figure 3a is 1; when the buffer size in the LCG is greater than 276Bytes and Less than or equal to 384Bytes, the index value of the buffer size field is 12.
  • the long BSR format BSR can be referred to as shown in Figure 3b.
  • the long BSR format BSR consists of 8 LCG ID fields (ie, LCG0 ⁇ LCG7 in Figure 3b) and m buffer sizes (ie, the buffer in Figure 3b size) domain composition. If LCG i is any one of the eight LCG ID fields, when LCG i is 1, it means that the BS of the i-th LCG has been reported; otherwise (when LCG i is not 1), it means that the BS of the i-th LCG has been reported; The BSs of the i LCGs have not reported. Therefore, the long BSR format can report the Buffer Sizes of 8 LCGs to the base station together.
  • the long BSR format 8 bits are used to indicate the value in the BS (that is, 8 bits are used to report the index value (index) of the BS interval, and there are 256 BS intervals in the long BSR format).
  • the corresponding relationship between the buffer size field of the long BSR and the value in the BS is shown in Table 2.
  • the terminal side will trigger to report BSR to the access network device in long BSR format:
  • the uplink data buffer of the terminal is empty and new data arrives: When all logical channels of all LCGs have no uplink data to send, if any logical channel belonging to any LCG has data at this time, it becomes possible to send , the terminal will trigger BSR reporting. For example: the terminal sends uplink data for the first time.
  • the BSR is called a conventional BSR (also known as Regular BSR).
  • Event 2 Arrival of high-priority data: If the terminal has sent a BSR and is waiting for an uplink grant (uplink grant), there is data with a higher priority at this time (that is, the logical channel to which the data belongs is higher than that of any LCG). Logical channels with high priority) need to be transmitted, and the terminal will trigger the BSR to report. This BSR is called "Regular BSR".
  • Event 3 The terminal periodically updates its buffer status to the base station: the base station configures a periodic BSR timer (also called periodicBSR-timer) for the terminal. If the periodicBSR-timer times out, the terminal will trigger a BSR report. For example: when the terminal needs to upload a large file, the time when the data reaches the terminal transmission buffer is not synchronized with the time when the terminal receives the uplink authorization. Fill data into the uplink transmission buffer, so the terminal needs to constantly update the amount of uplink data to be transmitted.
  • the BSR is called a periodic BSR (also called Periodic BSR).
  • both LTE and NR provide a mechanism for retransmitting the BSR: this is to avoid the situation that the terminal has not received the uplink authorization after sending the BSR.
  • the base station configures a retransmission BSR timer (also known as retxBSR-timer) for the terminal.
  • retxBSR-timer also known as retxBSR-timer
  • the BSR will be triggered.
  • This BSR is called "Regular BSR”.
  • the terminal receives an uplink authorization for newly transmitted data, it will restart the retxBSR-timer.
  • Event 5 Waste reuse: When the terminal has uplink resources and finds that the data to be sent is not enough to fill the resources, the extra bits will be filled with some insignificant values as padding bits. Rather than being used as a padding bit, it is better to use it to transmit useful data such as BSR. So when the number of padding bits is equal to or greater than the size of "BSR MAC CE + corresponding subheader", the terminal will use these bits to send BSR.
  • the BSR is called filling BSR (also known as Padding BSR).
  • For Padding BSR when the number of padding bits is equal to or greater than the size of "Short BSR+ corresponding subheader" but smaller than the size of "Long BSR+ corresponding subheader”, if there is data in more than one LCG in the slot If it needs to be sent, report to the base station the BSR of the LCG that has data to be sent and the logical channel with the highest priority. For Padding BSR, when the number of padding bits is equal to or greater than the size of "Long BSR+corresponding subheader", Long BSR is sent.
  • a MAC protocol data unit (protocol data unit, PDU) can only contain at most one MAC BSR CE, where the priority of Regular BSR and Periodic BSR is higher than that of Padding BSR, that is, regular BSR is transmitted first. /Periodic BSR.
  • the access network device transmits resources for the terminal according to the BSR
  • the terminal determines the index value of the BS interval corresponding to the amount of uplink data to be transmitted in the LCG according to the aforementioned Table 1 (or Table 2); the terminal reports the LCG to be transmitted to the access network device The index value of the BS interval corresponding to the amount of uplink data. Further, the access network device will determine the BS section corresponding to the LCG in the aforementioned Table 1 (or Table 2) according to the index value, and allocate uplink transmission resources for the terminal according to the maximum value of the BS section.
  • the BSR table in Table 1 includes the BS interval, the value range of the BS interval is: greater than 38 bytes (Bytes) and less than or equal to 53 Bytes, and the index value of the BS interval is 6.
  • the terminal determines the BS interval index value corresponding to the amount of uplink data to be transmitted (ie 40 Bytes) of the LCG to be 6 based on Table 1.
  • the terminal sends a BSR to the access network device, and the BSR indicates that the BS interval index value corresponding to the amount of uplink data to be transmitted in LCG1 is 6.
  • the base station determines that the value range of the index value 6 corresponding to the BS interval is greater than 38Bytes and less than or equal to 53Bytes, and allocates uplink transmission resources to the terminal according to the maximum value of 53Bytes in the BS interval, that is, allocates transmission resources capable of transmitting 53Bytes.
  • the access network equipment configures the terminal with a BS section that is more suitable for the actual needs of the terminal, so that the transmission resources requested by the terminal to send the BSR can be more suitable for the terminal's needs, thereby reducing the waste of transmission resources.
  • FIG. 4 is a schematic flowchart of a method for sending a BSR provided in an embodiment of the present application.
  • the method is illustrated by taking the access network device and the terminal as the execution subject of the interaction demonstration as an example, but the present application does not limit the execution subject of the interaction demonstration.
  • the access network device in FIG. 4 may also be a chip, a chip system, or a processor that supports the access network device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the access network device ;
  • the terminal in FIG. 4 may also be a chip, a chip system, or a processor that supports the terminal to implement the method, and may also be a logic module or software that can realize all or part of the terminal functions. in:
  • the terminal receives a first configuration message from an access network device, where the first configuration message configures a one-to-one correspondence between multiple buffer state BS intervals and multiple index values.
  • the one-to-one correspondence between multiple BS intervals and multiple index values means that the number of BS intervals is the same as the number of index values, and one index value corresponds to one BS interval (or understood as an index value and a BS interval have a one-to-one correspondence).
  • the terminal receives the first configuration message sent by the access network device, where the first configuration message is used to configure multiple BS sections, multiple index values, and a correspondence between each index value and the BS section.
  • the first configuration message may be a radio resource control (radio resource control, RRC) message.
  • the multiple BS intervals include a BS interval corresponding to a long BSR and/or a BS interval corresponding to a short BSR.
  • the BS interval corresponding to the long BSR refers to the BS interval in the buffer size (buffer size) table corresponding to the long BSR format
  • the BS interval corresponding to the short BSR refers to the buffer size (buffer size) corresponding to the short BSR format.
  • the multiple BS intervals configured by the first configuration message may be any of the following three situations.
  • Case 1 The multiple BS intervals configured in the first configuration message are all BS intervals in the buffer size (buffer size) table corresponding to the long BSR format.
  • the first configuration message only configures the one-to-one correspondence between multiple BS intervals and multiple index values when sending a BSR in the long BSR format.
  • the corresponding relationship between the BS interval and the index value remains unchanged (or understood as following the corresponding relationship between the BS interval and the index value in the default short BSR format).
  • Case 2 The multiple BS intervals configured by the first configuration message are all BS intervals in the buffer size (buffer size) table corresponding to the short BSR format.
  • the first configuration message only configures the one-to-one correspondence between multiple BS intervals and multiple index values when sending a BSR in the short BSR format.
  • the corresponding relationship between the BS interval and the index value remains unchanged (or understood as following the default correspondence between the BS interval and the index value in the long BSR format).
  • the multiple BS intervals configured by the first configuration message include the BS intervals in the buffer size (buffer size) table corresponding to the long BSR format, and also include the BS intervals in the buffer size (buffer size) table corresponding to the short BSR format interval.
  • the first configuration message not only configures the one-to-one correspondence between multiple BS intervals and multiple index values when sending a BSR in the long BSR format, but also configures how many One-to-one correspondence between a BS interval and multiple index values.
  • the aforementioned correspondence (that is, the one-to-one correspondence between multiple BS intervals and multiple index values configured in the first configuration message) is included in the buffer size table corresponding to the long BSR and/or the corresponding short BSR in the cache size table.
  • the one-to-one correspondence between the plurality of BS intervals and the plurality of index values is included in the buffer size table corresponding to the long BSR, which means that the first configuration message is used to configure the buffer size table corresponding to the long BSR, for example, the The first configuration message may carry an identifier corresponding to the cache size table corresponding to the long BSR.
  • the one-to-one correspondence between the plurality of BS intervals and the plurality of index values is included in the buffer size table corresponding to the short BSR, which means that the first configuration message is used to configure the buffer size table corresponding to the short BSR, for example, the The first configuration message may carry an identifier corresponding to the cache size table corresponding to the short BSR.
  • the one-to-one correspondence between the plurality of BS intervals and the plurality of index values is included in the buffer size table corresponding to the long BSR and the buffer size table corresponding to the short BSR, which means that the first configuration message is used to configure the buffer A size table group, the first configuration message may carry an identifier of the cache size table group, where the cache size table group includes a cache size table corresponding to a long BSR and a cache size table corresponding to a short BSR.
  • the first configuration message is determined according to transmission indicators related to different service data (for example, quality of service (quality of service, QoS) information)
  • the one-to-one correspondence between multiple BS intervals and multiple index values can further improve the adaptability between the transmission resources requested by the terminal through the BSR and the resources actually required by the terminal.
  • the transmission indicators include but are not limited to transmission rate, frame One or more of rate, relative fluctuation range of data frame size, and absolute fluctuation range of data frame size. It should be understood that the absolute fluctuation range of the data frame size can be calculated according to the relative fluctuation of the frame size and other transmission indicators (such as transmission rate, frame rate, etc.).
  • the rate of XR service data is 80Mbps
  • the frame rate is 60FPS
  • the relative fluctuation range of the data frame size is greater than 80% of the average data frame size and less than 120% of the average data frame size.
  • the average data frame size of the XR service data can be calculated from the rate and frame rate of the XR service data to be 166666.7 Bytes
  • the maximum data frame size of the XR service data is 200000 Bytes.
  • the minimum value of the data frame size is about 133333 Bytes, that is, the absolute fluctuation range of the data frame size is greater than 133333 Bytes and less than 200000 Bytes. It should be declared that unless otherwise specified in this application, the frame size fluctuation range mentioned in this application is the absolute frame size fluctuation range.
  • the terminal before the terminal receives the first configuration message from the access network device, the terminal sends a report message to the access network, where the report message indicates the fluctuation range of the data frame size, and the data frame size fluctuation range The range is used for the determination of the correspondence.
  • the report message is a type of RRC message, for example, the report message may be user assistance information (UAI) signaling.
  • UAI user assistance information
  • cache size table group 1 includes cache size table 1-1 corresponding to long BSR and cache size table 1-2 corresponding to short BSR;
  • cache size table group 2 includes cache size table 2-1 corresponding to long BSR and cache corresponding to short BSR Size form 2-2.
  • the cache size table 1-1 includes 255 BS intervals (the total value range of the 255 BS intervals is: greater than or equal to 0 Bytes and less than or equal to 100000 Bytes) and 1 reserved BS interval (the range of the reserved BS interval is: greater than 100000Bytes);
  • cache size table 1-2 includes 31 BS intervals (the total value range of the 31 BS intervals is: greater than or equal to 0Bytes and less than or equal to 100000Bytes) and 1 reserved BS interval (the range of the reserved BS interval is: greater than 100000Bytes);
  • cache size table 2-1 includes 255 BS intervals (the total value range of the 255 BS intervals is: greater than or equal to 0Bytes and less than or equal to 200000Bytes) and 1 reserved BS interval (the reserved BS interval The range is: greater than 200000Bytes);
  • cache size table 2-2 includes 31 BS intervals (the total range of values of the 31 BS intervals is: greater than or equal
  • the terminal sends UAI signaling to the access network device.
  • the UAI signaling is used to indicate that the data frame size fluctuation range of the uplink data (such as XR service data) to be transmitted in the terminal buffer is: greater than or equal to 150000 Bytes and less than Equal to 200000Bytes.
  • the access network device determines the target cache size table set from the two cache size table sets predefined in the communication protocol, and based on the combination of multiple BS intervals and multiple index values contained in the target cache size table set In one-to-one correspondence, the first configuration message is sent to the terminal.
  • the access network device will The aforementioned cache size table group 2 is determined as the target cache size table group, and based on the one-to-one correspondence between multiple BS intervals and multiple index values contained in the cache size table group 2, the first configuration message is sent to the terminal.
  • the terminal sends a BSR to the access network device based on the correspondence, the BSR includes a target index value, and the multiple index values include the target index value.
  • the terminal determines the target BS interval from the multiple BS intervals based on the one-to-one correspondence between the multiple BS intervals configured in the first configuration message and the multiple index values, and sends the target BS The index value corresponding to the interval is determined as the target index value. Further, the terminal sends a BSR to the access network device to request the access network device to configure corresponding uplink transmission resources for the uplink data to be sent, and the terminal sends uplink data to the access network device based on the uplink transmission resources.
  • the access network device can send a configuration message to the terminal to configure resources that are actually required by the terminal to configure resources that are actually required by the terminal.
  • the corresponding relationship between the BS interval and the index value is more suitable, so that the transmission resources requested by the terminal are more suitable for the resources actually required by the terminal, and the waste of transmission resources is reduced.
  • the BSR transmission method provided in Figure 4 of this application Among them, the one-to-one correspondence between multiple BS intervals and multiple index values configured through the first configuration message in S401 may be associated with the LCG. That is, it can be understood that when the specified LCG has data to be uploaded, the terminal will send the BSR to the access network device according to the one-to-one correspondence between multiple BS intervals and multiple index values configured in the first configuration message.
  • the first configuration message in S401 further includes identification information of the LCG. That is, the first configuration message is used to configure the one-to-one correspondence between multiple BS intervals and multiple index values, and specify the LCG associated with the corresponding relationship.
  • the first configuration message may include field 1 and field 2, where field 1 is used to indicate the LCG identity (or the value of field 1 is the LCG ID), and field 2 is used to indicate multiple BS intervals and multiple One-to-one correspondence of index values.
  • the access network device can configure different corresponding relationships according to different LCGs. For example, when LCG0 is used to bear the data of service 1 and LCG2 is used to bear the data of service 2, the access network device may send a first configuration message to the terminal, and the first configuration message is used to configure multiple One-to-one correspondence between BS intervals and multiple index values; or, the access network device may send a first configuration message to the terminal, and the first configuration message is used to configure one of multiple BS intervals and multiple index values associated with LCG2 One-to-one correspondence.
  • the transmission resources requested by the terminal to send the BSR are more in line with the resources actually required by the LCG, thereby reducing the waste of transmission resources.
  • the terminal sends uplink data to the access network, and the uplink data is carried by an LCG, and the LCG is associated with the above correspondence (that is, the correspondence configured by the first configuration information). That is, it can be understood that after receiving the BSR reported by the terminal, the access network device obtains the target BS interval according to the target index value in the BSR, and configures uplink transmission resources for the designated LCG according to the value of the target BS interval. Further, based on the uplink transmission resource, the terminal sends the uplink data carried by the designated LCG to the access network device.
  • FIG. 5 is a schematic flowchart of another method for sending a BSR provided in an embodiment of the present application.
  • the method is illustrated by taking the access network device and the terminal as the execution subject of the interaction demonstration as an example, but the present application does not limit the execution subject of the interaction demonstration.
  • the access network device in FIG. 5 may also be a chip, a chip system, or a processor that supports the access network device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the access network device ;
  • the terminal in FIG. 5 can also be a chip, a chip system, or a processor that supports the terminal to implement the method, and can also be a logic module or software that can realize all or part of the terminal functions. in:
  • the terminal receives a first configuration message from an access network device, where the first configuration message configures a BS interval quantization parameter set, and the BS interval quantization parameter set is used to indicate quantization granularities of at least two types of BS intervals.
  • the long BSR format uses 8 bits to indicate the index values of multiple BS intervals, so the long BSR format corresponds to 256 BS intervals; the short BSR format uses 5 bits to indicate the index values of multiple BS intervals, so The short BSR format corresponds to 32 BS intervals.
  • the BS interval quantization parameter set configured by the first configuration message, the BS interval quantization parameter set is used to indicate that the interval corresponding to the long BSR format (that is, 256 BS intervals) is divided into at least two categories; and/or, the BS interval quantization parameter The set is used to indicate that the interval corresponding to the short BSR format (that is, the 32 BS intervals) is divided into at least two categories.
  • the quantization granularity of a type of BS interval refers to the size of each BS interval in this type of BS interval.
  • the first type of BS interval and the second type of BS interval are any two types of BS intervals in the at least two types of BS intervals, wherein the quantization granularity of the first type of BS interval is different from that of the second type of BS interval quantification granularity. That is, it can be understood that the at least two types of BS intervals are divided into BS intervals in a manner of non-uniform quantization.
  • the terminal receives the first configuration message sent by the access network device, and the first configuration message is configured to configure at least two types of BS intervals and the quantization granularity of each type of BS interval (or called the quantization granularity of each type of BS interval in each type of BS interval). size).
  • the first configuration message may be an RRC message.
  • the BS interval quantization parameter set includes the quantization granularity of each type of BS interval in the at least two types of BS intervals, and the proportion of each type of BS interval in the at least two types of BS intervals.
  • the BS interval quantization parameter set is used to divide the total BS interval into at least two types of BS intervals, the quantization granularity of each type of BS interval, and the proportion of each type of BS interval in the total BS interval.
  • the total amount of BS intervals mentioned in this application is the total amount of BS intervals except the reserved BS intervals.
  • the reserved BS intervals can be one or more, and the corresponding value range of the reserved BS intervals is , an open interval that is greater than the largest value in the total amount of the aforementioned BS intervals.
  • the total number of BS intervals in the long BSR format refers to other 255 BS intervals (such as BS intervals with index values from 0 to 254) except for the reserved BS interval.
  • the total number of BS intervals in the short BSR format refers to 31 other BS intervals (such as BS intervals with index values 0-30) except the reserved BS intervals.
  • the number of reserved BS intervals is 1 for illustration, which cannot be regarded as a specific limitation on the number of reserved BS intervals in this application.
  • the number of reserved BS intervals is one, and the BS interval quantization parameter set divides 256 BS intervals corresponding to the long BSR format into at least two types of BS intervals and one reserved BS interval for an exemplary description.
  • FIG. 6 is a schematic diagram of a BS interval obtained according to a BS interval quantization parameter set.
  • the BS interval quantization parameter set in the first configuration message is used to divide the 256 BS intervals corresponding to the long BSR format into two parts (that is, two types of BS intervals) and one reserved BS interval: the first part (also can be The first type of BS interval) includes the first 100 BS intervals of the 256 BS intervals (that is, the BS intervals with index values from 0 to 99), and the second part (also called the second type of BS interval) includes the 255 In the last 155 BS intervals of the first BS intervals (ie, BS intervals with index values 100-254), the BS intervals with index values 255 are determined as reserved BS intervals.
  • the BS interval quantization parameter set indicates that the quantization granularity of the first type of BS interval is 500 Bytes, and the quantization granularity of the second type of BS interval is 2000 Bytes, which can be understood as the size of each BS interval in the first part of the BS interval (or called each BS interval).
  • the length of each BS interval) is 500 Bytes, and the size of each BS interval in the second part of the BS interval (or called the length of each BS interval) is 2000 Bytes.
  • the range of the BS interval with an index value of 254 is: greater than 358000 Bytes and less than or equal to 360000 Bytes, and the corresponding value range of the reserved BS interval is: greater than 360000 Bytes.
  • the BS interval quantization parameter set includes a BS interval quantization parameter set corresponding to a long BSR, and/or, a BS interval quantization parameter set corresponding to a short BSR.
  • the BS interval quantization parameter configured in the first configuration message may be any of the following three situations.
  • the BS interval quantization parameter set configured in the first configuration message is the BS interval quantization parameter set corresponding to the long BSR.
  • the first configuration message only configures the quantization granularity of each type of BS interval in at least two types of BS intervals and the proportion of each type of BS interval in the 256 BS intervals when the BSR is in the long BSR format. Compare.
  • the BS interval quantization parameter set configured in the first configuration message is the BS interval quantization parameter set corresponding to the short BSR.
  • the first configuration message only configures the quantization granularity of each type of BS interval in at least two types of BS intervals and the proportion of each type of BS interval in the 32 BS intervals when the BSR is in the short BSR format. Compare.
  • the BS interval quantization parameter set configured in the first configuration message includes both the BS interval quantization parameter set corresponding to the long BSR and the BS interval quantization parameter set corresponding to the short BSR.
  • the first configuration message not only configures the quantization granularity of each type of BS interval corresponding to the long BSR when the BSR is in the long BSR format, but also the proportion of each type of BS interval in the 256 BS intervals ; Also configured when the BSR is in the short BSR format, the quantization granularity of each type of BS interval corresponding to the short BSR, and the proportion of each type of BS interval in the 32 BS intervals.
  • the BS interval quantization parameter set in the first configuration message is determined according to the data frame statistical information corresponding to different service data, which can further The adaptability between the transmission resources requested by the terminal through the BSR and the resources actually required by the terminal is greatly improved.
  • the data frame statistical information includes but is not limited to one or more of the mean value of the data frame size, the standard deviation of the data frame size, the maximum value of the data frame size, or the minimum value of the data frame size.
  • the terminal before the terminal receives the first configuration message from the access network device, the terminal sends a report message to the access network device, where the report message includes data frame statistical information, and the data statistical information It is used to determine the quantization parameter set of the BS interval.
  • the report message is a kind of RRC message, for example, the report message may be UAI signaling.
  • the terminal sends UAI signaling to the access network device, and the UAI signaling is used to indicate the data frame statistics information of the uplink data (such as XR service data) to be transmitted in the terminal buffer: the size distribution of the XR data frame is subject to A truncated Gaussian distribution with a mean of 500,000 Bytes, a standard deviation of 52,500 Bytes, a maximum of 750,000 Bytes, and a minimum of 250,000 Bytes. Further, the access network device determines that the probability that the data frame in the XR service is larger than 560000 Bytes is less than 14% based on the statistical information of the data frame of the XR service data.
  • the access network device sends a first configuration message to the terminal, the first configuration message includes a BS interval quantization parameter set, and the BS interval configured by the BS interval quantization parameter set includes the BS interval corresponding to the long BSR format and the BS interval corresponding to the short BSR format. BS interval.
  • the access network device can divide the other 255 intervals except one reserved BS interval into two parts (or be understood as divided into two types of BS intervals), among which, the first type BS intervals (that is, the first part) occupy 224 BS intervals (that is, BS intervals with index values from 0 to 223), and the quantization granularity of the first type of BS interval (that is, the size of each first type of BS interval) is 2500 Bytes, and the second The BS-like interval (ie, the second part) occupies 31 BS intervals (ie, BS intervals with index values ranging from 224 to 254), and the quantization granularity of the second-type BS interval (ie, the size of each second-type BS interval) is 6000 Bytes.
  • the first type BS intervals that is, the first part
  • the quantization granularity of the first type of BS interval that is, the size of each first type of BS interval
  • the second The BS-like interval
  • the access network device can divide the other 31 intervals except one reserved BS interval into two parts (or understood as being divided into two types of BS intervals), among which, the first type BS intervals (that is, the first part) occupy 25 intervals (that is, BS intervals with index values from 0 to 24), and the quantization granularity of the first type of BS interval (that is, the size of each first type of BS interval) is 10000 Bytes, and the second type The BS interval (that is, the second part) occupies 6 BS intervals (that is, the BS interval with an index value of 25 to 30), and the quantization granularity of the second-type BS interval (that is, the size of each second-type BS interval) is 50000 Bytes.
  • the terminal sends a BSR to the access network device based on the BS quantization parameter set, where the BSR includes an index value corresponding to a target BS interval, and the at least two types of BS intervals include the target BS interval.
  • the terminal determines the target BS interval from the at least two types of BS intervals based on the at least two types of BS intervals configured in the BS quantization parameter set in the first configuration message, and based on the target BS interval corresponding to the An index value, sending a BSR to the access network device to request the access network device to configure corresponding uplink transmission resources for the uplink data to be sent, and the terminal sends uplink data to the access network device based on the uplink transmission resources.
  • the access network device can send a configuration message to the terminal to configure the corresponding relationship between the BS interval and the index value that is more suitable for the actual resources required by the terminal, so that the transmission resources requested by the terminal It is more suitable for the actual resource needs of the terminal and reduces the waste of transmission resources.
  • the service data of the terminal is carried by the LCG, considering that the service data carried by different LCGs may have different data frame statistical information, in the BSR sending method provided in Figure 5 of this application, through the first The set of BS interval quantization parameters configured by the configuration message may be associated with the LCG. That is, it can be understood that when the specified LCG has data to be uploaded, the terminal will send the BSR to the access network device according to the BS interval quantization parameter set configured in the first configuration message.
  • different LCGs of the terminal can be associated with different BS interval quantization parameter sets, which can improve the matching degree between the terminal LCG transmission requirement and the BS interval.
  • the first configuration message in S501 further includes identification information of the LCG. That is, the first configuration message is used to configure the BS interval quantization parameter set and specify the LCG associated with the BS interval quantization parameter set.
  • the first configuration information may include field 3, field 4 and field 5, wherein field 3 is used to indicate the LCG identity (or the value of field 3 is the LCG ID), and field 4 is used to indicate at least two types of The quantization granularity of each type of BS interval in the BS interval, field 5 is used to indicate the proportion of each type of BS interval in the at least two types of BS intervals.
  • the terminal sends uplink data to the access network device, the uplink data is carried by an LCG, and the LCG is associated with the BS interval quantization parameter set. That is, it can be understood that after receiving the BSR reported by the terminal, the access network device obtains the target BS interval according to the index value in the BSR, and configures uplink transmission resources for the designated LCG according to the value of the target BS interval. Further, based on the uplink transmission resource, the terminal sends the uplink data carried by the designated LCG to the access network device.
  • FIG. 7 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 7 can be used to implement some or all functions of the terminal in the embodiment corresponding to the above-mentioned BSR sending method, or the communication device shown in FIG. 7 can be used to realize the functions of the access network device in the embodiment corresponding to the above-mentioned BSR method. some or all of the features.
  • the communication device shown in FIG. 7 may be used to realize some or all functions of the terminal in the method embodiment described in FIG. 4 or FIG. 5 above.
  • the device may be a terminal, or a chip, a chip system, or a processor that supports the terminal to implement the above method, or a logic module or software that can realize all or part of the terminal functions.
  • the communication device shown in FIG. 7 may include an interface unit 701 and a processing unit 702, wherein:
  • the interface unit 701 is configured to receive a first configuration message from the access network device, where the first configuration message configures a one-to-one correspondence between multiple buffer state BS intervals and multiple index values;
  • the processing unit 702 is configured to control the communication device to send a buffer status report BSR to the access network device based on the corresponding relationship, where the BSR includes a target index value, and the multiple index values include the target index value.
  • the interface unit 701 is further configured to send uplink data to the access network device, where the uplink data is carried by a logical channel group LCG, and the LCG is associated with the corresponding relationship.
  • the first configuration message further includes identification information of the LCG.
  • the multiple BS intervals include a BS interval corresponding to a long BSR and/or a BS interval corresponding to a short BSR.
  • the corresponding relationship is included in the cache size table corresponding to the long BSR and/or in the cache size table corresponding to the short BSR.
  • the interface unit 701 is further configured to send a report message to the access network device, where the report message indicates a data frame size fluctuation range, and the data frame size fluctuation range is used for determining the aforementioned corresponding relationship.
  • the communication device shown in FIG. 7 may be used to implement some or all functions of the terminal in the method embodiment described in FIG. 4 or FIG. 5 above.
  • the device may be a terminal, or a chip, a chip system, or a processor that supports the terminal to implement the above method, or a logic module or software that can realize all or part of the terminal functions.
  • the communication device shown in FIG. 7 may include an interface unit 701 and a processing unit 702, wherein:
  • the interface unit 701 is configured to receive a first configuration message from an access network device, the first configuration message configures a BS interval quantization parameter set, and the BS interval quantization parameter set is used to indicate the quantization granularity of at least two types of BS intervals;
  • the processing unit 702 is configured to control the communication device to send a BSR to the access network device based on the target BS quantization parameter set, the BSR includes an index value corresponding to the target BS interval, and the at least two types of BS intervals include the target BS interval.
  • the interface unit 701 is further configured to send uplink data to the access network device, the uplink data is carried by a logical channel group LCG, and the LCG is associated with the BS interval quantization parameter set.
  • the first configuration message further includes identification information of the LCG.
  • the BS interval quantization parameter set includes the quantization granularity of each type of BS interval in the at least two types of BS intervals, and the proportion of each type of BS interval in the at least two types of BS intervals.
  • the BS interval quantization parameter set includes a BS interval quantization parameter set corresponding to a long BSR, and/or, a BS interval quantization parameter set corresponding to a short BSR.
  • the interface unit 701 is further configured to send a report message to the access network device, where the report message includes data frame statistical information, and the data statistical information is used for determining a BS interval quantization parameter set.
  • the data frame statistical information includes but is not limited to one or more of the mean value of the data frame size, the standard deviation of the data frame size, the maximum value of the data frame size, or the minimum value of the data frame size.
  • the communication device shown in FIG. 7 may be used to realize some or all functions of the access network device in the method embodiment described in FIG. 4 or FIG. 5 above.
  • the device may be an access network device, or a chip, a chip system, or a processor that supports the access network device to implement the above method, or a logic module or software that can realize all or part of the functions of the access network device.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 7 may include an interface unit 701 and a processing unit 702, wherein:
  • the interface unit 701 is configured to send a first configuration message to the terminal, the first configuration message configures a one-to-one correspondence between multiple cached state BS intervals and multiple index values; receive a BSR from the terminal, the BSR includes a target index value, The plurality of index values includes a target index value.
  • the interface unit 701 is further configured to receive uplink data from the terminal, the uplink data is carried by a logical channel group LCG, and the LCG is associated with the corresponding relationship.
  • the first configuration message further includes identification information of the LCG.
  • the multiple BS intervals include a BS interval corresponding to a long BSR and/or a BS interval corresponding to a short BSR.
  • the corresponding relationship is included in the cache size table corresponding to the long BSR and/or in the cache size table corresponding to the short BSR.
  • the interface unit 701 is further configured to receive a report message from the terminal, where the report message indicates the fluctuation range of the data frame size.
  • the processing unit 702 is configured to determine a corresponding relationship based on the data frame size fluctuation range.
  • the communication device shown in FIG. 7 may be used to realize some or all functions of the access network device in the method embodiment described in FIG. 4 or FIG. 5 above.
  • the device may be an access network device, or a chip, a chip system, or a processor that supports the access network device to implement the above method, or a logic module or software that can realize all or part of the functions of the access network device.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 7 may include an interface unit 701 and a processing unit 702, wherein:
  • the interface unit 701 is configured to send a first configuration message to the terminal, the first configuration message configures a BS interval quantization parameter set, and the BS interval quantization parameter set is used to indicate the quantization granularity of at least two types of BS intervals; receiving the BSR from the terminal, The BSR includes an index value corresponding to the target BS interval, and the at least two types of BS intervals include the target BS interval.
  • the interface unit 701 is further configured to receive uplink data from the terminal, the uplink data is carried by a logical channel group LCG, and the LCG is associated with the BS interval quantization parameter set.
  • the first configuration message further includes identification information of the LCG.
  • the BS interval quantization parameter set includes the quantization granularity of each type of BS interval in the at least two types of BS intervals, and the proportion of each type of BS interval in the at least two types of BS intervals.
  • the BS interval quantization parameter set includes a BS interval quantization parameter set corresponding to a long BSR, and/or, a BS interval quantization parameter set corresponding to a short BSR.
  • the interface unit 701 is also configured to receive a report message from the terminal, the report message includes data frame statistical information, the data frame statistical information includes but not limited to the average value of the data frame size, the standard of the data frame size One or more of difference, maximum data frame size, or minimum data frame size.
  • the processing unit 702 is configured to determine a BS interval quantization parameter set based on the statistical information of the data frame.
  • interface unit 701 and the processing unit 702 For a more detailed description of the interface unit 701 and the processing unit 702, reference may be made to the relevant description of the terminal or the access network device in the method embodiment above, and no further description is given here.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided in this application, where the communication device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810 or storing input data required by the processor 810 to execute the instructions or storing data generated after the processor 810 executes the instructions.
  • the processor 810 is used to perform the functions of the processing unit 702
  • the interface circuit 820 is used to perform the functions of the interface unit 701.
  • the terminal chip implements the functions of the terminal in the above-mentioned method embodiment, and the terminal chip receives information from other network elements; or, the terminal chip sends information to other network elements.
  • the access network equipment chip When the above communication device is a chip applied to access network equipment, the access network equipment chip implements the functions of the access network equipment in the above method embodiments.
  • the access network device chip receives information from other network elements; or, the access network device chip sends information to other network elements.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (random access memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (programmable ROM) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or known in the art any other form of storage medium.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in an access network device or a terminal.
  • the processor and the storage medium may also exist in the terminal or the access network device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (solid state disk, SSD).
  • a magnetic medium such as a floppy disk, a hard disk, or a magnetic tape
  • an optical medium such as a DVD
  • it may also be a semiconductor medium such as a solid state disk (solid state disk, SSD).
  • the embodiment of the present application also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed, the terminal or the access network device in the above-mentioned method embodiments executes method is implemented.
  • An embodiment of the present application further provides a computer program product, where the computer program product includes a computer program.
  • the computer program When the computer program is executed, the method performed by the terminal or the access network device in the above method embodiment is implemented.
  • An embodiment of the present application also provides a communication system, where the communication system includes a terminal or an access network device.
  • the terminal is configured to execute the method executed by the terminal in the foregoing method embodiments.
  • the access network device is configured to execute the methods performed by the access network device in the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种缓存状态报告发送方法及通信装置,该缓存状态报告发送方法包括:接收来自接入网设备的第一配置消息,该第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;基于该对应关系,向接入网设备发送缓存状态报告BSR,该BSR包括目标索引值,该多个索引值包括目标索引值。通过这样的BSR发送方法,终端可以根据接入网设备为该终端配置的BS区间与索引值之间的对应关系,向接入网设备发送BSR以请求更加贴合终端实际需求的传输资源,从而减少传输资源的浪费的情况。

Description

一种缓存状态报告发送方法及通信装置
本申请要求于2021年12月25日提交于中国专利局、申请号为202111605541.3、申请名称为“一种缓存状态报告发送方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种缓存状态报告发送方法及通信装置。
背景技术
在上行传输过程中,用户设备(user equipment,UE)有上行数据需要传输时,UE需要通过上行调度请求(scheduling request,SR)请求基站进行上行资源调度,并通过缓存状态报告(buffer state report,BSR)上报逻辑信道组(logical channel group,LCG)待传输上行数据的数据量,以便基站为每个LCG分配足够的上行资源进行上行数据的传输。
UE借助BSR进行上报LCG的待传输上行数据的数据量的具体过程可以理解为:终端将LCG的待传输上行数据的数据量进行量化,以确定该LCG的待传输上行数据的数据量对应的缓存状态(buffer state,BS)区间的索引值,并上报该LCG的待传输上行数据的数据量对应的BS区间的索引值。基站会根据该索引值对应的量化区间的最大值为终端分配上行传输资源。
通常BSR会有比特长度限制,所能划分的BS区间个数是有限的。对于扩展现实(extended reality,XR)等强交互类媒体业务,存在着主动丢包机制,即在用户缓存中等待时间超过一定阈值的包会进行丢弃,因此这类业务的缓存区中通常具有一定数量的待传数据,而BS区间的涵盖范围可能远超过待传数据量的大小,导致BSR上报不准确,基站分配的资源可能会远大于终端实际需要的资源,从而造成传输资源的浪费。
发明内容
本申请实施例提供一种缓存状态报告发送方法及通信装置,通过这样的缓存状态报告发送方法,接入网设备可以为终端配置更加贴合终端实际需求的BS区间,终端基于该接入网设备配置的BS区间与索引值之间的对应关系,向接入网设备发送BSR以请求更加贴合该终端需求的传输资源。相比于终端根据自身需求确定BS区间与索引值之间的对应关系向接入网设备发送BSR的方式,本方法有利于接入网设备根据自身的资源调度粒度确定不同信道状态下每次所能传输的数据量大小,从而可以更有效地划分BS区间,提高传输效率。
第一方面,本申请实施例提供一种缓存状态报告发送方法,该方法可以由终端执行,也可以由终端的部件(例如处理器、芯片、或芯片***等)执行,还可以由能实现全部或部分终端功能的逻辑模块或软件实现。在该缓存状态报告发送方法中,接收来自接入网设备的第一配置消息,该第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;基于该对应关系,向接入网设备发送BSR,该BSR包括目标索引值,该多个索引值包括目标索引值。
基于第一方面所描述的方法,终端基于接入网设备配置的BS区间与索引值之间的对应关系,向接入网设备发送BSR以请求更加贴合该终端需求的传输资源,从而避免了接入网设备根据BSR配置的传输资源与终端需求不匹配,造成较多传输资源浪费的情况。
在一个可能的实施方式中,向接入网设备发送上行数据,该上行数据由逻辑信道组LCG承载,该LCG与该对应关系相关联。通过该可能的实施方式,LCG承载的上行数据关联于该BS区间与索引值之间的对应关系,在这种情况下,终端发送BSR请求的传输资源将会更加贴合该LCG传输需求,进一步地,终端基于该传输资源向接入网设备发送该LCG承载的上行数据,减少了传输资源的浪费。
在一个可能的实施方式中,第一配置消息还包括LCG的标识信息。通过该可能的实施方式,终端不同的LCG可以关联不同的BS区间与索引值之间的对应关系,可以提升终端LCG传输需求与BS区间之间的匹配度。
在一个可能的实施方式中,该多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。
在一个可能的实施方式中,该对应关系包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
在一个可能的实施方式中,向接入网设备发送上报消息,该上报消息包括数据帧大小波动范围,该数据帧大小波动范围用于对应关系的确定。通过该可能的实施方式,接入网设备确定的BS区间与索引值对应关系,可以根据终端上报的数据帧大小波动范围变化,从而使得该BS区间与索引值对应关系与终端需求更加匹配。
在一个可能的实施方式中,该上报消息还包括上行数据的传输指标,该传输指标用于对应关系的确定。其中,该传输指标包括但不限于服务质量信息、传输速率、帧率或数据帧大小相对波动范围中的一种或多种。通过该可能的实施方式,接入网设备可以根据上行数据的传输指标,确定BS区间与索引值对应关系,从而使得BS区间与索引值对应关系与上行数据匹配。
第二方面,本申请实施例提供一种缓存状态报告接收方法,该方法可以由接入网设备执行,也可以由接入网设备的部件(例如处理器、芯片、或芯片***等)执行,还可以由能实现全部或部分接入网设备功能的逻辑模块或软件实现。在该方法中,向终端发送第一配置消息,该第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;接收来自终端的缓存状态报告BSR,该BSR包括目标索引值,该多个索引值包括目标索引值。
基于第二方面所描述的方法,其有益效果可参见前述第一方面所描述的有益效果,重复之处不再赘述。
在一个可能的实施方式中,接收来自终端的上行数据,该上行数据由逻辑信道组LCG承载,该LCG与该对应关系相关联。
在一个可能的实施方式中,该第一配置消息还包括LCG的标识信息。
在一个可能的实施方式中,该多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。
在一个可能的实施方式中,该对应关系包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
在一个可能的实施方式中,接收来自终端的上报消息,该上报消息指示数据帧大小波动范围。
在一个可能的实施方式中,基于该数据帧大小波动范围确定对应关系。
在一个可能的实施方式中,该上报消息还包括上行数据的传输指标,其中,该传输指标包括但不限于服务质量信息、传输速率、帧率或数据帧大小相对波动范围中的一种或多种。
在一个可能的实施方式中,基于该上行数据的传输指标确定对应关系。
第三方面,本申请实施例提供另一种缓存状态报告发送方法,该方法可以由终端执行,也可以由终端的部件(例如处理器、芯片、或芯片***等)执行,还可以由能实现全部或部分终端功能的逻辑模块或软件实现。在该方法中,接收来自接入网设备的第一配置消息,该第一配置消息配置BS区间量化参数集合,该BS区间量化参数集合用于指示至少两类BS区间的量化粒度;基于该目标BS量化参数集合,向接入网设备发送缓存状态报告BSR,该BSR包括目标BS区间对应的索引值,该至少两类BS区间包括目标BS区间。
基于第三方面所描述的方法,终端基于接入网设备配置的BS区间量化参数集合,向接入网设备发送BSR以请求更加贴合该终端需求的传输资源,从而避免了接入网设备根据BSR配置的传输资源与终端需求不匹配,造成较多传输资源浪费的情况。
在一个可能的实施方式中,向接入网设备发送上行数据,该上行数据由逻辑信道组LCG承载,该LCG与该BS区间量化参数集合相关联。通过该可能的实施方式,LCG承载的上行数据关联于该BS区间量化参数集合,在这种情况下,终端发送的BSR请求的传输资源将会更加贴合该LCG传输需求,进一步地,终端基于该传输资源向接入网设备发送该LCG承载的上行数据,减少了传输资源的浪费。
在一个可能的实施方式中,第一配置消息还包括LCG的标识信息。通过该可能的实施方式,终端不同的LCG可以关联不同的BS区间量化参数集合,可以提升终端LCG传输需求与BS区间之间的匹配度。
在一个可能的实施方式中,该BS区间量化参数集合包括该至少两类BS区间中每类BS区间的量化粒度、以及每类BS区间在该至少两类BS区间中的比例。
在一个可能的实施方式中,该至少两类BS区间包括第一类BS区间和第二类BS区间,该第一类BS区间的量化粒度与该第二类BS区间的量化粒度不同。通过实施该可能的实施方式,对BS区间进行非均匀划分,提升了BS区间与终端需求的适配性。
在一个可能的实施方式中,该BS区间量化参数集合包括长BSR对应的BS区间量化参数集合,和/或,短BSR对应的BS区间量化参数集合。
在一个可能的实施方式中,向接入网设备发送上报消息,该上报消息包括数据帧统计信息,该数据统计信息用于BS区间量化参数集合的确定。其中,该数据帧统计信息包括但不限于数据帧大小的均值、数据帧大小的标准差、数据帧大小的最大值或数据帧大小的最小值中的一种或多种。通过该可能的实施方式,接入网设备确定的BS区间量化参数集合,可以根据终端上报的数据帧统计信息而变化,从而使得该BS区间量化参数集合与终端需求更加匹配。
第四方面,本申请实施例提供另一种缓存状态报告接收方法,该方法可以由接入网设备执行,也可以由接入网设备的部件(例如处理器、芯片、或芯片***等)执行,还可以由能实现全部或部分接入网设备功能的逻辑模块或软件实现。在该方法中,向终端发送第一配置消息,该第一配置消息配置BS区间量化参数集合,该BS区间量化参数集合用于指示至少两类BS区间的量化粒度;接收来自终端的缓存状态报告BSR,该BSR包括目标BS区间对应的索引值,该至少两类BS区间包括目标BS区间。
基于第四方面所描述的方法,其有益效果可参见前述第三方面所描述的有益效果,重复之处不再赘述。
在一个可能的实施方式中,接收来自终端的上行数据,该上行数据由逻辑信道组LCG承载,该LCG与该BS区间量化参数集合相关联。
在一个可能的实施方式中,第一配置消息还包括LCG的标识信息。
在一个可能的实施方式中,该BS区间量化参数集合包括该至少两类BS区间中每类BS区间的量化粒度、以及每类BS区间在该至少两类BS区间中的比例。
在一个可能的实施方式中,该至少两类BS区间包括第一类BS区间和第二类BS区间,该第一类BS区间的量化粒度与该第二类BS区间的量化粒度不同。通过实施该可能的实施方式,对BS区间进行非均匀划分,提升BS区间与终端需求的适配性。
在一个可能的实施方式中,该BS区间量化参数集合包括长BSR对应的BS区间量化参数集合,和/或,短BSR对应的BS区间量化参数集合。
在一个可能的实施方式中,接收来自终端的上报消息,该上报消息包括数据帧统计信息,该数据帧统计信息包括但不限于数据帧大小的均值、数据帧大小的标准差、数据帧大小的最大值或数据帧大小的最小值中的一种或多种。
在一个可能的实施方式中,基于该数据帧统计信息确定BS区间量化参数集合。
第五方面,本申请提供一种通信装置,该装置可以为终端,也可以为支持终端实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分终端功能的逻辑模块或软件。其中,该通信装置还可以为芯片***。该通信装置可执行第一方面或第三方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面或第三方面所述的方法以及有益效果,重复之处不再赘述。
第六方面,本申请提供一种通信装置,该装置可以为接入网设备,也可以为支持接入网设备实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分接入网设备功能的逻辑模块或软件。其中,该通信装置还可以为芯片***。该通信装置可执行第二方面或第四方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面或第四方面所述的方法以及有益效果,重复之处不再赘述。
第七方面,本申请提供一种通信装置,该通信装置可以为终端,也可以为支持终端实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分终端功能的逻辑模块或软件。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端所执行的方法。
第八方面,本申请提供一种通信装置,该通信装置可以为接入网设备,也可以为支持接入网设备实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分接入网设备功能的逻辑模块或软件。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由接入网设备所执行的方法。
第九方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机执行指令,当该计算机执行指令被执行时,使得如第一方面或第三方面所述的方法中终端执行的方法被实现;或者,使得如第二方面或第四方面所述的方法中接入网设备执行的方法被实现。
第十方面,本申请提供一种包括计算机程序的计算机程序产品,当该计算机程序被执行时,使得如第一方面或第三方面所述的方法中终端执行的方法被实现;或者,使得如第二方 面或第四方面所述的方法中接入网设备执行的方法被实现。
第十一方面,本申请提供一种通信***,该通信***包括上述第五方面和第六方面所述的通信装置;或者包括上述第七方面和第八方面所述的通信装置。
附图说明
图1为本申请提供的一种***架构的示意图;
图2a为本申请提供的一种接入网设备和终端之间的协议层结构示意图;
图2b为本申请提供的一种各协议层之间映射关系的示意图
图2c为本申请提供的一种用户面数据流映射关系的示意图;
图3a为本申请提供的一种short BSR格式BSR的示意图;
图3b为本申请提供的一种long BSR格式BSR的示意图;
图4为本申请提供的一种BSR方法的流程示意图;
图5为本申请提供的另一种BSR方法的流程示意图;
图6为本申请提供的一种根据BS区间量化参数集合得到的BS区间的示意图;
图7为本申请提供的一种通信装置的结构示意图;
图8为本申请提供的另一种通信装置的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了更好地理解本申请实施例,下面首先对本申请实施例涉及的***架构进行介绍:
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE 频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)***或新无线(new radio,NR)以及未来的通信***等。
请参见图1,图1是本申请实施例提供的一种***架构的示意图。在图1所示的***架构中,包括终端和接入网设备。下面分别对图1中***架构所涉及的终端和接入网设备进行详细说明。
一、终端
终端包括向用户提供语音和/或数据连通性的设备,例如终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、车载终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、UE、接入终端、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。可以理解,本申请中的终端的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
二、接入网设备
(无线)接入网((radio)access network,(R)AN)用于将终端设备接入到无线网络。需要知晓的是,为了方便描述在后文中将(R)AN描述为RAN。RAN中可以包括一个或多个RAN设备(或者说接入网设备),即接入网设备可以理解为将终端接入到无线网络的节点或设备。
接入网设备与终端之间的接口可以为Uu接口(或称为空口)。当然,在未来通信中,这些接口的名称可以不变,或者也可以用其它名称代替,本申请对此不限定。接入网设备可以是任意一种具有无线收发功能的设备,包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或传输接收点(transmissionreception point,TRP),第三代合作伙伴项目(the 3rd generation partner project,3GPP)后续演进的基站,WiFi***中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。接入网设备还可以是云无线接入网(cloud radio access network,CRAN)场景下的无线控制器、集中单元(central unit,CU),和/或分布单元(distributed unit,DU)。接入网设备还可以是服务器,可穿戴设备,或车载设备等。以下以接入网设备为基站为例进行说明。所述多个接入网设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端进行通信,也可以通过中继站与终端进行通信。终端可以与不同技术的多个基站进行通信,例如,终端可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。可以理解,本申请中的接入网设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平 台)上实例化的虚拟化功能来实现。
需要知晓的是,接入网设备和终端之间的通信遵循一定的协议层结构。例如请参见图2a所示,接入网设备和终端之间遵循用户面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层、物理层(physical layer,PHY层)和业务数据适配(service data adaptation protocol,SDAP)层;控制面协议层结构可以包括PDCP层、RLC层、MAC层和物理层。
请参见图2b,图2b为本申请提供的一种各协议层之间映射关系的示意图。从图2b中可见,PHY层为MAC层提供传输信道(transportchannel);MAC为RLC提供逻辑信道(logicalchannel,LC);RLC层为PDCP层提供RLC信道(RLCchannel);PDCP层为SDAP层提供无线承载(radiobear,RB);SDAP层负责上行(uplink,UL)/下行(downlink,DL)服务质量流(quality of service flow,QoSFlow)与RB之间的映射。
示例性地,请参见图2c,图2c为本申请提供的一种用户面数据流映射关系的示意图。在图2c中业务数据在网络传输层分成多个的网际协议(internet protocol,IP)包,每个UL/DL的IP包中标记着该IP包对应QoSFlow的标识(QoS Flow ID,QFI)。SDAP层根据每个IP包的QFI,得到多个UL/DL QoSFlow,进一步地,SDAP层将多个UL/DL QoSFlow映射于至少一个RB上,其中一个RB可以映射一个或多个QoSFlow,而一个QoS Flow每次只能映射到一个RB上。PDCP层负责将RB上的数据包映射于RLC信道中,每个RLC信道对应一个RB。RLC层负责RLC信道到逻辑信道的映射,每个逻辑信道对应一个RLC信道,也对应一个RB。MAC层负责逻辑信道的调度和复用,根据优先级对逻辑信道进行调度,并且可以将多个逻辑信道复用到同一个传输信道上,递交给PHY层进行传输。
为了便于对本方案技术方案的理解,下面对本申请中所涉及到的部分术语进行解释说明。
1、扩展现实(extended reality,XR)
XR是指通过计算机将真实与虚拟相结合,打造一个可人机交互的虚拟环境。XR包括VR和AR,通常XR业务具有低丢包率和低时延的传输需求。
2、主动超时丢包机制
由于XR业务具有低时延的传输需求,则XR业务的视频帧需要在一定的时间内(即时延预算)从服务器传输到终端(或从终端传输到服务器)。以上行数据从终端传输至服务器为例,若在空口传输的过程中出现拥堵,当XR业务的视频帧在终端的缓存(buffer)中的等待时间超过时延预算的情况下,终端会将超时的XR数据包进行丢弃,从而节省出传输资源,保证后续视频帧的成功传输。
3、缓存状态报告
若终端没有待上传的上行数据,接入网设备却为终端分配了传输上行数据的上行传输资源,将会造成传输资源浪费。为了避免这种传输资源浪费的情况,长期演进(long term evolution,LTE)技术和新空口(new radio,NR)技术提供了SR机制。在SR机制中,终端向基站发送SR,该SR用于通知终端需要上行传输资源用于传输上行数据;终端向基站上报BSR,该BSR用于指示终端待传输的上行数据的数据量大小;进一步地,基站根据BSR为终端配置传输上行数据的上行传输资源。
在LTE和NR***中,通常终端以LCG对应的待传输数据为上报粒度,向接入网设备发送BSR。关于LCG的划分,通常取决于接入网设备的算法实现,例如接入网设备可以将相同QoS需求的逻辑信道划分为同一LCG,或者,将相同优先级(priority)的逻辑信道划分为同 一LCG。由于终端的LCG和逻辑信道的配置是由基站控制的,所以基站知道每个LCG包含哪些逻辑信道以及这些逻辑信道的优先级。虽然基站无法知道一个单独的逻辑信道的缓存状态,但由于同一LCG中的逻辑信道有着类似的QoS/priority需求,所以基于LCG来上报缓存状态也可以使得上行调度提供合适的调度结果。下面以NR***为例,终端向接入网设备上报BSR进行示意性说明。
在NR***中,BSR通过MAC层的BSR MAC控制单元(control element,CE)上报,上报的BSR包含2中格式:短BSR(又称short BSR)格式、长BSR(又称long BSR)格式。
3.1、short BSR
short BSR也可称为截短BSR(Truncated BSR)。在short BSR中只上报一个LCG的待传输数据量,该short BSR格式BSR的示意图可参见图3a所示,在图3a中该short BSR格式BSR由一个LCG ID域和一个缓存大小(buffer size)域组成。在short BSR格式中,用5位比特(bit)位来指示BS中的数值大小(即用5位bit来上报BS区间的索引值(index),short BSR格式中有32个BS区间)。short BSR的buffer size域与BS中的数值(value)对应关系如表1所示。
表1
Index BS value Index BS value Index BS value Index BS value
0 0 8 ≤102 16 ≤1446 24 ≤20516
1 ≤10 9 ≤142 17 ≤2014 25 ≤28581
2 ≤14 10 ≤198 18 ≤2806 26 ≤39818
3 ≤20 11 ≤276 19 ≤3909 27 ≤55474
4 ≤28 12 ≤384 20 ≤5446 28 ≤77284
5 ≤38 13 ≤535 21 ≤7587 29 ≤107669
6 ≤53 14 ≤745 22 ≤10570 30 ≤150000
7 ≤74 15 ≤1038 23 ≤14726 31 >150000
例如,基于表1中buffer size域与BS中的数值对应关系,当该LCG的缓存数量小于等于10Bytes时,图3a中buffer size域的索引值为1;当该LCG中的缓存数量大于276Bytes并且小于等于384Bytes,buffer size域的索引值为12。
3.2、long BSR
long BSR格式BSR的示意图可参见图3b所示,在图3b中该long BSR格式BSR中由8个LCG ID域(即图3b中LCG0~LCG7)和m个缓存大小(即图3b中的buffer size)域组成。若LCG i为该8个LCG ID域中的任一个,当LCG i为1时,则表示对第i个LCG的BS进行了上报;否则(当LCG i不为1时),则表示对第i个LCG的BS未进行上报。因此,该long BSR格式可以将8个LCG的Buffer Size一起上报给基站。在long BSR格式中,用8位bit位来指示BS中的数值大小(即用8位bit来上报BS区间的索引值(index),long BSR格式中有256个BS区间)。long BSR的buffer size域与BS中的数值对应关系如表2所示。
表2
Index BS value Index BS value Index BS value Index BS value
0 0 64 ≤560 128 ≤31342 192 ≤1754595
1 ≤10 65 ≤597 129 ≤33376 193 ≤1868488
2 ≤11 66 ≤635 130 ≤35543 194 ≤1989774
3 ≤12 67 ≤677 131 ≤37850 195 ≤2118933
4 ≤13 68 ≤720 132 ≤40307 196 ≤2256475
5 ≤14 69 ≤767 133 ≤42923 197 ≤2402946
6 ≤15 70 ≤817 134 ≤45709 198 ≤2558924
7 ≤16 71 ≤870 135 ≤48676 199 ≤2725027
8 ≤17 72 ≤926 136 ≤51836 200 ≤2901912
9 ≤18 73 ≤987 137 ≤55200 201 ≤3090279
10 ≤19 74 ≤1051 138 ≤58784 202 ≤3290873
11 ≤20 75 ≤1119 139 ≤62599 203 ≤3504487
12 ≤22 76 ≤1191 140 ≤66663 204 ≤3731968
13 ≤23 77 ≤1269 141 ≤70990 205 ≤3974215
14 ≤25 78 ≤1351 142 ≤75598 206 ≤4232186
15 ≤26 79 ≤1439 143 ≤80505 207 ≤4506902
16 ≤28 80 ≤1532 144 ≤85730 208 ≤4799451
17 ≤30 81 ≤1631 145 ≤91295 209 ≤5110989
18 ≤32 82 ≤1737 146 ≤97221 210 ≤5442750
19 ≤34 83 ≤1850 147 ≤103532 211 ≤5796046
20 ≤36 84 ≤1970 148 ≤110252 212 ≤6172275
21 ≤38 85 ≤2098 149 ≤117409 213 ≤6572925
22 ≤40 86 ≤2234 150 ≤125030 214 ≤6999582
23 ≤43 87 ≤2379 151 ≤133146 215 ≤7453933
24 ≤46 88 ≤2533 152 ≤141789 216 ≤7937777
25 ≤49 89 ≤2698 153 ≤150992 217 ≤8453028
26 ≤52 90 ≤2873 154 ≤160793 218 ≤9001725
27 ≤55 91 ≤3059 155 ≤171231 219 ≤9586039
28 ≤59 92 ≤3258 156 ≤182345 220 ≤10208280
29 ≤62 93 ≤3469 157 ≤194182 221 ≤10870913
30 ≤66 94 ≤3694 158 ≤206786 222 ≤11576557
31 ≤71 95 ≤3934 159 ≤220209 223 ≤12328006
32 ≤75 96 ≤4189 160 ≤234503 224 ≤13128233
33 ≤80 97 ≤4461 161 ≤249725 225 ≤13980403
34 ≤85 98 ≤4751 162 ≤265935 226 ≤14887889
35 ≤91 99 ≤5059 163 ≤283197 227 ≤15854280
36 ≤97 100 ≤5387 164 ≤301579 228 ≤16883401
37 ≤103 101 ≤5737 165 ≤321155 229 ≤17979324
38 ≤110 102 ≤6109 166 ≤342002 230 ≤19146385
39 ≤117 103 ≤6506 167 ≤364202 231 ≤20389201
40 ≤124 104 ≤6928 168 ≤387842 232 ≤21712690
41 ≤132 105 ≤7378 169 ≤413018 233 ≤23122088
42 ≤141 106 ≤7857 170 ≤439827 234 ≤24622972
43 ≤150 107 ≤8367 171 ≤468377 235 ≤26221280
44 ≤160 108 ≤8910 172 ≤498780 236 ≤27923336
45 ≤170 109 ≤9488 173 ≤531156 237 ≤29735875
46 ≤181 110 ≤10104 174 ≤565634 238 ≤31666069
47 ≤193 111 ≤10760 175 ≤602350 239 ≤33721553
48 ≤205 112 ≤11458 176 ≤641449 240 ≤35910462
49 ≤218 113 ≤12202 177 ≤683087 241 ≤38241455
50 ≤233 114 ≤12994 178 ≤727427 242 ≤40723756
51 ≤248 115 ≤13838 179 ≤774645 243 ≤43367187
52 ≤264 116 ≤14736 180 ≤824928 244 ≤46182206
53 ≤281 117 ≤15692 181 ≤878475 245 ≤49179951
54 ≤299 118 ≤16711 182 ≤935498 246 ≤52372284
55 ≤318 119 ≤17795 183 ≤996222 247 ≤55771835
56 ≤339 120 ≤18951 184 ≤1060888 248 ≤59392055
57 ≤361 121 ≤20181 185 ≤1129752 249 ≤63247269
58 ≤384 122 ≤21491 186 ≤1203085 250 ≤67352729
59 ≤409 123 ≤22885 187 ≤1281179 251 ≤71724679
60 ≤436 124 ≤24371 188 ≤1364342 252 ≤76380419
61 ≤464 125 ≤25953 189 ≤1452903 253 ≤81338368
62 ≤494 126 ≤27638 190 ≤1547213 254 >81338368
63 ≤526 127 ≤29431 191 ≤1647644 255 Reserved
当如下任一项事件发生时,终端侧将会触发以long BSR格式向接入网设备上报BSR:
事件1、终端的上行数据buffer为空且有新数据到达:当所有LCG的所有逻辑信道都没有可发送的上行数据时,如果此时属于任意一个LCG的任意一个逻辑信道有数据变得可以发送,则终端会触发BSR上报。例如:终端第一次发送上行数据。该BSR被称为常规BSR(又称Regular BSR)。
事件2、高优先级的数据到达:如果终端已经发送了一个BSR,并且正在等待上行授权(uplink grant),此时有更高优先级的数据(即该数据所属的逻辑信道比任意一个LCG的逻辑信道的优先级都要高)需要传输,则终端会触发BSR上报。该BSR被称为“Regular BSR”。
事件3、终端周期性地向基站更新自己的buffer状态:基站为终端配置了一个周期性BSR定时器(又称periodicBSR-timer),如果该periodicBSR-timer超时,终端会触发BSR上报。例如:当终端需要上传一个大文件时,数据到达终端传输buffer的时间与终端收到上行授权的时间是不同步的,也就是说终端在发送BSR和接收上行授权的同时,还在不停地往上行传输buffer里填数据,因此终端需要不停地更新需要传输的上行数据量。该BSR被称为周期性BSR(又称Periodic BSR)。
事件4、为提高BSR的健壮性,LTE和NR都提供了一个重传BSR的机制:这是为了避免终端发送了BSR却一直没有收到上行授权的情况。基站为终端配置了一个重传BSR定时器(又称retxBSR-timer),当该retxBSR-timer超时且终端的任意一个LCG的任意一个逻辑信道里有数据可以发送时,将会触发BSR。该BSR被称为“Regular BSR”。当终端收到一个新传数据的上行授权时,都会重启retxBSR-timer。
事件5、废物再利用:当终端有上行资源且发现需要发送的数据不足以填满该资源时,多余出来的比特会作为padding bit而被填充一些无关紧要的值。与其用作padding bit,还不如用来传BSR这些有用的数据。所以当padding bit的数量等于或大于“BSR MAC CE+对应的subheader”的大小时,终端会使用这些比特来发送BSR。该BSR被称为填充BSR(又称Padding BSR)。
对于Regular BSR和Periodic BSR而言,如果在该时隙(slot)内有多于1个LCG中有数据需要发送,则上报Long BSR;否则上报Short BSR。对于Padding BSR而言,当padding bit的数量等于或大于“Short BSR+对应的subheader”的大小但小于“Long BSR+对应的subheader”的大小时,如果在该slot内有多于1个LCG中有数据需要发送,则将有数据要发送且优先级最高的逻辑信道所在的LCG的BSR上报给基站,该BSR格式为Truncated BSR;如果该slot内只有1个LCG有数据需要发送,则发送Short BSR。对于Padding BSR而言,当padding bit的数量等于或大于“Long BSR+对应的subheader”的大小时,发送Long BSR。即使有多个事件触发了BSR,一个MAC协议数据单元(protocol data unit,PDU)至多也只能包含一个MAC BSR CE,其中Regular BSR和Periodic BSR的优先级要高于Padding BSR,即优先传输Regular/Periodic BSR。
4、接入网设备根据BSR为终端传输资源
当LCG具有待传输上行数据时,终端根据前述表1(或表2)确定该LCG的待传输上行数据的数据量对应的BS区间的索引值;终端向接入网设备上报该LCG的待传输上行数据的数据量对应的BS区间的索引值。进一步地接入网设备会根据该索引值,在前述表1(或表2)中确定该LCG对应的BS区间,并根据该BS区间的最大值为终端分配上行传输资源。例如,在表1中BSR表格中包括BS区间,该BS区间的数值范围为:大于38字节(Bytes)小于等于53Bytes,该BS区间的索引值为6。假设LCG1中待传输的上行数据的数据量为40Bytes,终端基于表1确定该LCG的待传输上行数据的数据量(即40Bytes)对应的BS区间索引值为6。终端向接入网设备发送BSR,该BSR中指示LCG1中待传输的上行数据的数据量对应的BS区间索引值为6。基站确定该索引值6对应BS区间的数值范围为:大于38Bytes小于等于53Bytes,并根据该BS区间中的最大值53Bytes向终端分配上行传输资源,即分配了能传输53Bytes的传输资源。
可见,通过这样的BSR发送方法请求上行传输资源时,若BS区间的涵盖范围远超过LCG中待传输数据的数据量,则接入网设备分配的资源可能会远大于终端实际需要的资源,从而造成传输资源的浪费。
本申请通过接入网设备为终端配置更加贴合终端实际需求的BS区间的方式,使得终端发送BSR请求的传输资源可以更加贴合该终端需求,从而减少传输资源的浪费。
下面结合附图对本申请提供的BSR发送方法及通信装置进行进一步介绍:
请参见图4,图4是本申请实施例提供的一种BSR发送方法的流程示意图。图4中以接入网设备和终端作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图4中的接入网设备也可以是支持该接入网设备实现该方法的芯片、芯片***、或处理器,还可以是能实现全部或部分接入网设备功能的逻辑模块或软件;图4中的终端也可以是支持该终端实现该方法的芯片、芯片***、或处理器,还可以是能实现全部或部分终端功能的逻辑模块或软件。其中:
S401、终端接收来自接入网设备的第一配置消息,该第一配置消息配置多个缓存状态BS区间和多个索引值的一一对应关系。
需要理解的是,多个BS区间和多个索引值的一一对应关系,是指BS区间的数量和索引值的数量相同,并且一个索引值对应一个BS区间(或理解为索引值和BS区间具有一一对应关系)。
终端接收接入网设备发送的第一配置消息,该第一配置消息用于配置多个BS区间、多个索引值、以及每个索引值与BS区间之间的对应关系。其中,该第一配置消息可以为无线资源控制(radio resource control,RRC)消息。
在一个可能的实现中,该多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。需要理解的是,长BSR对应的BS区间即是指long BSR格式对应的缓存大小(buffer size)表格中的BS区间,短BSR对应的BS区间即是指short BSR格式对应的缓存大小(buffer size)表格中的BS区间。换言之,第一配置消息配置的多个BS区间可以为以下三种情况的任一种。
情况一、第一配置消息配置的多个BS区间,全都为long BSR格式对应的缓存大小(buffer size)表格中的BS区间。
在这种情况下,可以认为第一配置消息只配置了发送long BSR格式的BSR时,多个BS区间与多个索引值的一一对应关系。而发送short BSR格式的BSR时,所依据的BS区间与索引值的对应关系保持不变(或理解为沿用默认的short BSR格式中BS区间与索引值的对应关系)。
情况二、第一配置消息配置的多个BS区间,全都为short BSR格式对应的缓存大小(buffer size)表格中的BS区间。
在这种情况下,可以认为第一配置消息只配置了发送short BSR格式的BSR时,多个BS区间与多个索引值的一一对应关系。而发送long BSR格式的BSR时,所依据的BS区间与索引值的对应关系保持不变(或理解为沿用默认的long BSR格式中BS区间与索引值的对应关系)。
情况三、第一配置消息配置的多个BS区间,即包括long BSR格式对应的缓存大小(buffer size)表格中的BS区间,也包括short BSR格式对应的缓存大小(buffer size)表格中的BS区间。
在这种情况下,可以认为第一配置消息不仅配置了发送long BSR格式的BSR时,多个BS区间与多个索引值的一一对应关系,也配置了发送short BSR格式的BSR时,多个BS区间与多个索引值的一一对应关系。
在另一个可能的实现中,前述对应关系(即第一配置消息配置的多个BS区间和多个索引值的一一对应关系)包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
换言之,该多个BS区间和多个索引值的一一对应关系包括于长BSR对应的缓存大小表格中,即是指该第一配置消息用于配置长BSR对应的缓存大小表格,例如,该第一配置消息可以携带该长BSR对应的缓存大小表格对应的标识。
或者,该多个BS区间和多个索引值的一一对应关系包括于短BSR对应的缓存大小表格中,即是指该第一配置消息用于配置短BSR对应的缓存大小表格,例如,该第一配置消息可以携带该短BSR对应的缓存大小表格对应的标识。
或者,该多个BS区间和多个索引值的一一对应关系,包括于长BSR对应的缓存大小表 格中和短BSR对应的缓存大小表格中,即是指该第一配置消息用于配置缓存大小表格组,该第一配置消息可以携带该缓存大小表格组的标识,其中,该缓存大小表格组包括长BSR对应的缓存大小表格和短BSR对应的缓存大小表格。
在一个场景中,由于缓存中待上传的上行数据具有与业务数据相关的传输指标,因此根据不同业务数据相关的传输指标(例如,服务质量(quality of service,QoS)信息)确定第一配置消息中多个BS区间和多个索引值的一一对应关系,可以进一步地提升终端通过BSR请求的传输资源与终端实际需求资源的适配性,其中,该传输指标包括但不限于传输速率、帧率、数据帧大小相对波动范围、数据帧大小绝对波动范围中的一种或多种。需要理解的是,根据帧大小相对波动和其他传输指标(例如传输速率、帧率等)可以计算出数据帧大小绝对波动范围。例如,XR业务数据的速率为80Mbps,帧率为60FPS,数据帧大小相对波动范围为大于数据帧大小均值的80%,且小于数据帧大小均值的120%。在这种情况下,通过XR业务数据的速率和帧率可计算出该XR业务数据的数据帧大小均值为166666.7Bytes,该XR业务数据的数据帧大小的最大值为200000Bytes,该XR业务数据的数据帧大小的最小值约为133333Bytes,即数据帧大小绝对波动范围为大于133333Bytes小于200000Bytes。需要声明的是,在本申请中除非特别说明,否则本申请中所提及的帧大小波动范围均为帧大小绝对波动范围。
在这种场景的一个可能的实现中,在终端接收来自接入网设备的第一配置消息之前,终端向接入网发送上报消息,该上报消息指示数据帧大小波动范围,该数据帧大小波动范围用于对应关系的确定。其中,该上报消息为RRC消息的一种,例如该上报消息可以为用户辅助信息(user assistance information,UAI)信令。
示例性地,终端与接入网设备之间的通信协议中预先定义了2个缓存大小表格组:缓存大小表格组1和缓存大小表格组2。缓存大小表格组1包括长BSR对应的缓存大小表格1-1和短BSR对应的缓存大小表格1-2;缓存大小表格组2包括长BSR对应的缓存大小表格2-1和短BSR对应的缓存大小表格2-2。其中,缓存大小表格1-1包括255个BS区间(该255个BS区间的数值总范围为:大于等于0Bytes且小于等于100000Bytes)和1个预留BS区间(该预留BS区间的范围为:大于100000Bytes);缓存大小表格1-2包括31个BS区间(该31个BS区间的数值总范围为:大于等于0Bytes且小于等于100000Bytes)和1个预留BS区间(该预留BS区间的范围为:大于100000Bytes);缓存大小表格2-1包括255个BS区间(该255个BS区间的数值总范围为:大于等于0Bytes且小于等于200000Bytes)和1个预留BS区间(该预留BS区间的范围为:大于200000Bytes);缓存大小表格2-2包括31个BS区间(该31个BS区间的数值总范围为:大于等于0Bytes且小于等于200000Bytes)和1个预留BS区间(该预留BS区间的范围为:大于200000Bytes)。在这种情况下,终端向接入网设备发送UAI信令,该UAI信令用于指示终端缓存中待传输的上行数据(例如XR业务数据)的数据帧大小波动范围为:大于等于150000Bytes小于等于200000Bytes。进一步地,接入网设备从通信协议中预先定义了2个缓存大小表格组中确定出目标缓存大小表格组,并基于该目标缓存大小表格组中包含的多个BS区间与多个索引值的一一对应关系,向终端发送第一配置消息。例如,接入网设备根据数据帧大小波动范围为大于等于150000Bytes小于等于200000Bytes,可知终端缓存中待传输的上行数据(例如XR业务数据)的数据帧的最大值为200000Bytes,则接入网设备将前述缓存大小表格组2确定为目标缓存大小表格组,并基于该缓存大小表格组2包含的多个BS区间与多个索引值的一一对应关系,向终端发送第一配置消息。
S402、终端基于该对应关系,向接入网设备发送BSR,该BSR包括目标索引值,该多个 索引值包括目标索引值。
在终端存在待发送的上行数据时,终端基于第一配置消息配置的多个BS区间与多个索引值的一一对应关系,从该多个BS区间中确定目标BS区间,并将该目标BS区间对应的索引值确定为目标索引值。进一步地,终端向接入网设备发送BSR以请求接入网设备为该待发送的上行数据配置相应的上行传输资源,终端基于该上行传输资源向接入网设备发送上行数据。
通过图4所描述的BSR发送方法,在通信协议中预先定义BS区间与索引值的多套对应关系的情况下,接入网设备可以通过向终端发送配置消息的方式,配置与终端实际需要资源更贴合的BS区间与索引值的对应关系,从而使得终端请求的传输资源更贴合终端实际需求资源,减少传输资源的浪费。
在一个场景中,由于终端的业务数据通过LCG承载,考虑到承载不同业务数据的LCG具有不同的传输指标(例如传输速率、数据帧大小波动不同),在本申请图4所提供的BSR发送方法中,通过前述S401中第一配置消息配置的多个BS区间与多个索引值的一一对应关系可以与LCG相关联。即可以理解为,当指定LCG具有待上传的数据时,终端才会根据第一配置消息配置的多个BS区间与多个索引值的一一对应关系,向接入网设备发送BSR。
在这种场景下的一个可能实施方式中,前述S401的第一配置消息还包括LCG的标识信息。即该第一配置消息用于配置多个BS区间与多个索引值的一一对应关系、以及指定与该对应关系关联的LCG。在这种情况下,第一配置消息可以包括字段1和字段2,其中,字段1用于指示LCG标识(或字段1的数值为LCG ID),字段2用于指示多个BS区间与多个索引值的一一对应关系。
通过实施该可能的实施方式,接入网设备可以根据不同LCG配置不同的对应关系。例如,当LCG0用于承载业务1的数据,LCG2用于承载业务2的数据的情况下,接入网设备可以向终端发送第一配置消息,第一配置消息用于配置与LCG0关联的多个BS区间与多个索引值的一一对应关系;或者,接入网设备可以向终端发送第一配置消息,第一配置消息用于配置与LCG2关联的多个BS区间与多个索引值的一一对应关系。使得终端发送BSR请求的传输资源更贴合于LCG实际需要资源,从而减少传输资源的浪费。
进一步地,在另一个可能的实现中,终端向接入网发送上行数据,该上行数据由LCG承载,该LCG与上述对应关系(即第一配置信息配置的对应关系)相关联。即可以理解为,接入网设备接收终端上报的BSR之后,根据BSR中目标索引值获得目标BS区间,并根据该目标BS区间的数值为指定LCG配置上行传输资源。进一步地,终端基于该上行传输资源,向接入网设备发送由该指定LCG承载的上行数据。
请参见图5,图5是本申请实施例提供的另一种BSR发送方法的流程示意图。图5中以接入网设备和终端作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图5中的接入网设备也可以是支持该接入网设备实现该方法的芯片、芯片***、或处理器,还可以是能实现全部或部分接入网设备功能的逻辑模块或软件;图5中的终端也可以是支持该终端实现该方法的芯片、芯片***、或处理器,还可以是能实现全部或部分终端功能的逻辑模块或软件。其中:
S501、终端接收来自接入网设备的第一配置消息,该第一配置消息配置BS区间量化参数集合,该BS区间量化参数集合用于指示至少两类BS区间的量化粒度。
需要理解的是,长BSR格式中用8位bit指示多个BS区间的索引值,因此长BSR格式对应256个BS区间;短BSR格式中用5位bit指示多个BS区间的索引值,因此短BSR格式对应32个BS区间。第一配置消息配置的BS区间量化参数集合,该BS区间量化参数集合用于指示将长BSR格式对应的区间(即256个BS区间)分为至少两类;和/或,该BS区间量化参数集合用于指示将短BSR格式对应的区间(即32个BS区间)分为至少两类。一类BS区间的量化粒度即是指该类BS区间中每个BS区间的大小。在一个可能的实现中,第一类BS区间和第二类BS区间是该至少两类BS区间中的任意两类BS区间,其中,第一类BS区间的量化粒度不同于第二类BS区间的量化粒度。即可以理解为该至少两类BS区间采用非均匀量化的方式进行BS区间划分。通过实施该可能的实施方式,可以提升BS区间的多样性,从而提升BS区间与终端需求的适配性。
终端接收接入网设备发送的第一配置消息,该第一配置消息配置用于配置至少两类BS区间、以及每类BS区间的量化粒度(或称为每类BS区间中每个BS区间的大小)。其中,该第一配置消息可以为RRC消息。
在一个可能的实现中,该BS区间量化参数集合包括该至少两类BS区间中每类BS区间的量化粒度、以及每类BS区间在该至少两类BS区间中的比例。换言之,该BS区间量化参数集合中用于将BS区间总量划分为至少两类BS区间,每类BS区间的量化粒度,以及每类BS区间在BS区间总量中的占比。
需要声明的是,本申请所提及的BS区间总量为除去预留BS区间之外的BS区间总量,该预留BS区间可以为一个或多个,预留BS区间对应的数值范围为,大于前述BS区间总量中的最大数值的开区间。例如,预留BS区间为1个,则在长BSR格式中该BS区间总量是指除预留BS区间之外的其他255个BS区间(如索引值为0~254的BS区间),在短BSR格式中该BS区间总量是指除预留BS区间之外的其他31个BS区间(如索引值为0~30的BS区间)。在本申请的示例中,以预留BS区间数量为1个进行示例性说明,并不能视为对本申请中预留BS区间数量的一个具体限定。
下面以预留BS区间数量为1个,该BS区间量化参数集合将长BSR格式对应的256个BS区间划分为至少两类BS区间和1个预留BS区间,进行示例性说明。
示例性地,请参见图6所示,图6为根据BS区间量化参数集合得到的BS区间的示意图。在图6中第一配置消息中的BS区间量化参数集合用于将长BSR格式对应的256个BS区间划分为两部分(即两类BS区间)和一个预留BS区间:第一部分(也可称为第一类BS区间)包括该256个BS区间的前100个BS区间(即索引值为0~99的BS区间),第二部分(也可称为第二类BS区间)包括该255个BS区间的后155个BS区间(即索引值为100~254的BS区间),将索引值为255的BS区间确定为预留BS区间。该BS区间量化参数集合指示了第一类BS区间的量化粒度为500Bytes,第二类BS区间的量化粒度为2000Bytes,即可以理解为第一部分BS区间中每个BS区间的大小(或称为每个BS区间的长度)为500Bytes,第二部分BS区间中每个BS区间的大小(或称为每个BS区间的长度)为2000Bytes。其中,索引值为254的BS区间的范围为:大于358000Bytes小于等于360000Bytes,该预留BS区间对应的数值范围为:大于360000Bytes。
在一个可能的实现中,该BS区间量化参数集合包括长BSR对应的BS区间量化参数集合,和/或,短BSR对应的BS区间量化参数集合。换言之,第一配置消息配置中的BS区间量化参数可以为以下三种情形的任一种。
情形一、第一配置消息配置的BS区间量化参数集合为长BSR对应的BS区间量化参数 集合。
在这种情形中,可以认为第一配置消息只配置了BSR为long BSR格式时,至少两类BS区间中每类BS区间的量化粒度,以及每类BS区间在该256个BS区间中的占比。
情形二、第一配置消息配置的BS区间量化参数集合为短BSR对应的BS区间量化参数集合。
在这种情形中,可以认为第一配置消息只配置了BSR为short BSR格式时,至少两类BS区间中每类BS区间的量化粒度,以及每类BS区间在该32个BS区间中的占比。
情形三、第一配置消息配置的BS区间量化参数集合,既包括长BSR对应的BS区间量化参数集合,也包括短BSR对应的BS区间量化参数集合。
在这种情形下,可以认为第一配置消息既配置了BSR为long BSR格式时,长BSR对应的每类BS区间的量化粒度,以及该每类BS区间在该256个BS区间中的占比;也配置了BSR为short BSR格式时,短BSR对应的每类BS区间的量化粒度,以及该每类BS区间在该32个BS区间中的占比。
在一个场景中,由于缓存中待上传的上行数据具有与业务数据对应的数据帧统计信息,因此根据不同业务数据对应的数据帧统计信息确定第一配置消息中的BS区间量化参数集合,可以进一步地提升终端通过BSR请求的传输资源与终端实际需求资源的适配性。其中,该数据帧统计信息包括但不限于数据帧大小的均值、数据帧大小的标准差、数据帧大小的最大值或数据帧大小的最小值中的一种或多种。
在这种场景的一个可能的实施方式中,在终端接收来自接入网设备的第一配置消息之前,终端向接入网设备发送上报消息,该上报消息包括数据帧统计信息,该数据统计信息用于BS区间量化参数集合的确定。其中,该上报消息为RRC消息的一种,例如该上报消息可以为UAI信令。
示例性地,终端向接入网设备发送UAI信令,该UAI信令用于指示终端缓存中待传输的上行数据(例如XR业务数据)的数据帧统计信息:该XR数据帧大小分布为服从均值为500000Bytes,标准差52500Bytes,最大值750000Bytes,最小值为250000Bytes的截断高斯分布。进一步地,接入网设备基于该XR业务数据的数据帧统计信息,确定该XR业务中数据帧大于560000Bytes的概率约小于14%。基于此,接入网设备向终端发送第一配置消息,该第一配置消息包括BS区间量化参数集合,该BS区间量化参数集合配置的BS区间包括long BSR格式对应的BS区间和short BSR格式对应的BS区间。对于long BSR格式对应的BS区间而言,接入网设备可以将除一个预留BS区间外的其他255个区间划分为两部分(或理解为划分为两类BS区间),其中,第一类BS区间(即第一部分)占224个BS区间(即索引值为0~223的BS区间),第一类BS区间的量化粒度(即每个第一类BS区间的大小)为2500Bytes,第二类BS区间(即第二部分)占31个BS区间(即索引值为224~254的BS区间),第二类BS区间的量化粒度(即每个第二类BS区间的大小)为6000Bytes。对于short BS格式对应的BS区间而言,接入网设备可以将除一个预留BS区间外的其他31个区间划分为两部分(或理解为划分为两类BS区间),其中,第一类BS区间(即第一部分)占25个区间(即索引值为0~24的BS区间),第一类BS区间的量化粒度(即每个第一类BS区间的大小)为10000Bytes,第二类BS区间(即第二部分)占6个BS区间(即索引值为25~30的BS区间),第二类BS区间的量化粒度(即每个第二类BS区间的大小)为50000Bytes。
S502、终端基于该BS量化参数集合,向接入网设备发送BSR,该BSR包括目标BS区间对应的索引值,该至少两类BS区间包括目标BS区间。
在终端存在待发送的上行数据时,终端基于第一配置消息中BS量化参数集合配置的至少两类BS区间,从该至少两类BS区间中确定目标BS区间,并基于该目标BS区间对应的索引值,向接入网设备发送BSR,以请求接入网设备为该待发送的上行数据配置相应的上行传输资源,终端基于该上行传输资源向接入网设备发送上行数据。
通过图5所描述的BSR发送方法,接入网设备可以通过向终端发送配置消息的方式,配置与终端实际需要资源更贴合的BS区间与索引值的对应关系,从而使得终端请求的传输资源更贴合终端实际需求资源,减少传输资源的浪费。
在一个场景中,由于终端的业务数据通过LCG承载,考虑到不同LCG承载的业务数据可能具有不同的数据帧统计信息,在本申请图5所提供的BSR发送方法中,通过前述S501中第一配置消息配置的BS区间量化参数集合可以与LCG相关联。即可以理解为,当指定LCG具有待上传的数据时,终端才会根据第一配置消息配置的BS区间量化参数集合,向接入网设备发送BSR。通过该可能的实施方式,终端不同的LCG可以关联不同的BS区间量化参数集合,可以提升终端LCG传输需求与BS区间之间的匹配度。
在这种场景下的一个可能的实施方式中,前述S501的第一配置消息还包括LCG的标识信息。即该第一配置消息用于配置BS区间量化参数集合、以及指定与该BS区间量化参数集合关联的LCG。在这种情况下,该第一配置信息可以包括字段3、字段4和字段5,其中,字段3用于指示LCG标识(或字段3的数值为LCG ID),字段4用于指示至少两类BS区间中每类BS区间的量化粒度,字段5用于指示每类BS区间在该至少两类BS区间中的占比。
进一步地,在另一个可能的实现中,终端向接入网设备发送上行数据,该上行数据由LCG承载,该LCG与该BS区间量化参数集合相关联。即可以理解为,接入网设备接收终端上报的BSR之后,根据BSR中索引值获的目标BS区间,并根据该目标BS区间的数值为指定LCG配置上行传输资源。进一步地,终端基于该上行传输资源,向接入网设备发送由该指定LCG承载的上行数据。
请参见图7,图7示出了本申请实施例的一种通信装置的结构示意图。图7所示的通信装置可用于实现上述BSR发送方法对应的实施例中终端的部分或全部功能,或者图7所示的通信装置可用于实现上述BSR方法对应的实施例中接入网设备的部分或全部功能。
在一个实施例中,图7所示的通信装置可以用于实现上述图4或图5所描述的方法实施例中终端的部分或全部功能。该装置可以为终端,也可以为支持终端实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分终端功能的逻辑模块或软件。图7所示的通信装置可以包括接口单元701和处理单元702,其中:
接口单元701,用于接收来自接入网设备的第一配置消息,该第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;
处理单元702,用于基于该对应关系,控制该通信装置向接入网设备发送缓存状态报告BSR,该BSR包括目标索引值,该多个索引值包括该目标索引值。
在一个可能的实现中,接口单元701,还用于向接入网设备发送上行数据,该上行数据由逻辑信道组LCG承载,该LCG与所述对应关系相关联。
在一个可能的实现中,第一配置消息还包括该LCG的标识信息。
在一个可能的实现中,该多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。
在一个可能的实现中,对应关系包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
在一个可能的实现中,接口单元701,还用于向接入网设备发送上报消息,该上报消息指示数据帧大小波动范围,该数据帧大小波动范围用于前述对应关系的确定。
在另一个实施例中,图7所示的通信装置可以用于实现上述图4或图5所描述的方法实施例中终端的部分或全部功能。该装置可以为终端,也可以为支持终端实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分终端功能的逻辑模块或软件。图7所示的通信装置可以包括接口单元701和处理单元702,其中:
接口单元701,用于接收来自接入网设备的第一配置消息,该第一配置消息配置BS区间量化参数集合,该BS区间量化参数集合用于指示至少两类BS区间的量化粒度;
处理单元702,用于基于该目标BS量化参数集合,控制该通信装置向接入网设备发送BSR,该BSR包括目标BS区间对应的索引值,该至少两类BS区间包括目标BS区间。
在一个可能的实施方式中,接口单元701还用于向接入网设备发送上行数据,该上行数据由逻辑信道组LCG承载,该LCG与该BS区间量化参数集合相关联。
在一个可能的实施方式中,第一配置消息还包括LCG的标识信息。
在一个可能的实施方式中,该BS区间量化参数集合包括该至少两类BS区间中每类BS区间的量化粒度、以及每类BS区间在该至少两类BS区间中的比例。
在一个可能的实施方式中,该BS区间量化参数集合包括长BSR对应的BS区间量化参数集合,和/或,短BSR对应的BS区间量化参数集合。
在一个可能的实施方式中,接口单元701还用于向接入网设备发送上报消息,该上报消息包括数据帧统计信息,该数据统计信息用于BS区间量化参数集合的确定。其中,该数据帧统计信息包括但不限于数据帧大小的均值、数据帧大小的标准差、数据帧大小的最大值或数据帧大小的最小值中的一种或多种。
在又一个是实施例中,图7所示的通信装置可以用于实现上述图4或图5所描述的方法实施例中接入网设备的部分或全部功能。该装置可以为接入网设备,也可以为支持接入网设备实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分接入网设备功能的逻辑模块或软件。其中,该通信装置还可以为芯片***。图7所示的通信装置可以包括接口单元701和处理单元702,其中:
接口单元701,用于向终端发送第一配置消息,该第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;接收来自终端的BSR,该BSR包括目标索引值,该多个索引值包括目标索引值。
在一个可能的实施方式中,接口单元701还用于接收来自终端的上行数据,该上行数据由逻辑信道组LCG承载,该LCG与该对应关系相关联。
在一个可能的实施方式中,该第一配置消息还包括LCG的标识信息。
在一个可能的实施方式中,该多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。
在一个可能的实施方式中,该对应关系包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
在一个可能的实施方式中,接口单元701还用于接收来自终端的上报消息,该上报消息 指示数据帧大小波动范围。
在一个可能的实施方式中,处理单元702用于基于该数据帧大小波动范围确定对应关系。
在又一个是实施例中,图7所示的通信装置可以用于实现上述图4或图5所描述的方法实施例中接入网设备的部分或全部功能。该装置可以为接入网设备,也可以为支持接入网设备实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分接入网设备功能的逻辑模块或软件。其中,该通信装置还可以为芯片***。图7所示的通信装置可以包括接口单元701和处理单元702,其中:
接口单元701,用于向终端发送第一配置消息,该第一配置消息配置BS区间量化参数集合,该BS区间量化参数集合用于指示至少两类BS区间的量化粒度;接收来自终端的BSR,该BSR包括目标BS区间对应的索引值,该至少两类BS区间包括目标BS区间。
在一个可能的实施方式中,接口单元701还用于接收来自终端的上行数据,该上行数据由逻辑信道组LCG承载,该LCG与该BS区间量化参数集合相关联。
在一个可能的实施方式中,第一配置消息还包括LCG的标识信息。
在一个可能的实施方式中,该BS区间量化参数集合包括该至少两类BS区间中每类BS区间的量化粒度、以及每类BS区间在该至少两类BS区间中的比例。
在一个可能的实施方式中,该BS区间量化参数集合包括长BSR对应的BS区间量化参数集合,和/或,短BSR对应的BS区间量化参数集合。
在一个可能的实施方式中,接口单元701还用于接收来自终端的上报消息,该上报消息包括数据帧统计信息,该数据帧统计信息包括但不限于数据帧大小的均值、数据帧大小的标准差、数据帧大小的最大值或数据帧大小的最小值中的一种或多种。
在一个可能的实施方式中,处理单元702,用于基于该数据帧统计信息确定BS区间量化参数集合。
关于上述接口单元701和处理单元702更详细的描述,可参考上述方法实施例中终端或接入网设备的相关描述,在此不再说明。
请参见图8,图8为本申请提供的一种通信装置800的结构示意图,该通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现上述方法实施例中的方法时,处理器810用于执行上述处理单元702的功能,接口电路820用于执行上述接口单元701的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能,该终端芯片从其它网元接收信息;或者,该终端芯片向其他网元发送信息。
当上述通信装置为应用于接入网设备的芯片时,该接入网设备芯片实现上述方法实施例中接入网设备的功能。该接入网设备芯片从其它网元接收信息;或者,该接入网设备芯片向其他网元发送信息。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable  gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端中。当然,处理器和存储介质也可以作为分立组件存在于终端或接入网设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机执行指令,当该计算机执行指令被执行时,使得上述方法实施例中终端或接入网设备执行的方法被实现。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当该计算机程序被执行时,使得上述方法实施例中终端或接入网设备执行的方法被实现。
本申请实施例还提供一种通信***,该通信***包括终端或接入网设备。其中,终端用于执行上述方法实施例中终端执行的方法。接入网设备用于执行上述方法实施例中接入网设备执行的方法。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于 本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (30)

  1. 一种缓存状态报告发送方法,其特征在于,所述方法包括:
    接收来自接入网设备的第一配置消息,所述第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;
    基于所述对应关系,向所述接入网设备发送缓存状态报告BSR,所述BSR包括目标索引值,所述多个索引值包括所述目标索引值。
  2. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    向所述接入网设备发送上行数据,所述上行数据由逻辑信道组LCG承载,所述LCG与所述对应关系相关联。
  3. 根据权利要求2所述方法,其特征在于,所述第一配置消息还包括所述LCG的标识信息。
  4. 根据权利要求1-3中任一项所述方法,其特征在于,
    所述多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。
  5. 根据权利要求1-4中任一项所述方法,其特征在于,
    所述对应关系包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
  6. 根据权利要求1-5中任一项所述方法,其特征在于,所述方法还包括:
    向所述接入网设备发送上报消息,所述上报消息指示数据帧大小波动范围,所述数据帧大小波动范围用于所述对应关系的确定。
  7. 一种缓存状态报告的接收方法,其特征在于,所述方法包括:
    向终端发送第一配置消息,所述第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;
    接收来自所述终端的缓存状态报告BSR,所述BSR包括目标索引值,所述多个索引值包括所述目标索引值。
  8. 根据权利要求7所述方法,其特征在于,所述方法还包括:
    接收来自所述终端的上行数据,所述上行数据由逻辑信道组LCG承载,所述LCG与所述对应关系相关联。
  9. 根据权利要求8所述方法,其特征在于,所述第一配置消息还包括所述LCG的标识信息。
  10. 根据权利要求7-9中任一项所述方法,其特征在于,
    所述多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。
  11. 根据权利要求7-10中任一项所述方法,其特征在于,
    所述对应关系包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
  12. 根据权利要求7-11中任一项所述方法,其特征在于,所述方法还包括:
    接收来自所述终端的上报消息,所述上报消息指示数据帧大小波动范围。
  13. 根据权利要求12所述方法,其特征在于,所述方法还包括:
    基于所述数据帧大小波动范围确定所述对应关系。
  14. 一种通信装置,其特征在于,所述通信装置包括:
    接口单元,用于接收来自接入网设备的第一配置消息,所述第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;
    处理单元,用于基于所述对应关系,控制所述装置向所述接入网设备发送缓存状态报告BSR,所述BSR包括目标索引值,所述多个索引值包括所述目标索引值。
  15. 根据权利要求14所述装置,其特征在于,
    所述接口单元,还用于向所述接入网设备发送上行数据,所述上行数据由逻辑信道组LCG承载,所述LCG与所述对应关系相关联。
  16. 根据权利要求15所述装置,其特征在于,所述第一配置消息还包括所述LCG的标识信息。
  17. 根据权利要求14-16中任一项所述装置,其特征在于,
    所述多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。
  18. 根据权利要求14-17中任一项所述装置,其特征在于,
    所述对应关系包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
  19. 根据权利要求14-18中任一项所述装置,其特征在于,
    所述接口单元,还用于向所述接入网设备发送上报消息,所述上报消息指示数据帧大小波动范围,所述数据帧大小波动范围用于所述对应关系的确定。
  20. 一种通信装置,其特征在于,所述通信装置包括:
    接口单元,用于向终端发送第一配置消息,所述第一配置消息配置多个缓存状态BS区间与多个索引值的一一对应关系;接收来自所述终端的缓存状态报告BSR,所述BSR包括目标索引值,所述多个索引值包括所述目标索引值。
  21. 根据权利要求20所述装置,其特征在于,
    所述接口单元,还用于接收来自所述终端的上行数据,所述上行数据由逻辑信道组LCG承载,所述LCG与所述对应关系相关联。
  22. 根据权利要求21所述装置,其特征在于,所述第一配置消息还包括所述LCG的标识 信息。
  23. 根据权利要求20-22中任一项所述装置,其特征在于,
    所述多个BS区间包括长BSR对应的BS区间和/或短BSR对应的BS区间。
  24. 根据权利要求20-23中任一项所述装置,其特征在于,
    所述对应关系包括于长BSR对应的缓存大小表格中和/或短BSR对应的缓存大小表格中。
  25. 根据权利要求20-24中任一项所述装置,其特征在于,
    所述接口单元,还用于接收来自所述终端的上报消息,所述上报消息指示数据帧大小波动范围。
  26. 根据权利要求25所述装置,其特征在于,所述通信装置还包括处理单元,
    所述处理单元,用于基于所述数据帧大小波动范围确定所述对应关系。
  27. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至6中任一项所述的方法,或者使得所述装置执行如权利要求7至13中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求1至6中任一项所述的方法,或者实现如权利要求7至13中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至6中任一项所述的方法,或者实现如权利要求7至13中任一项所述的方法。
  30. 一种通信***,其特征在于,包括如权利要求14至19中任一项所述的装置和如权利要求20至26中任一项所述的装置。
PCT/CN2022/136530 2021-12-25 2022-12-05 一种缓存状态报告发送方法及通信装置 WO2023116403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111605541.3A CN116367321A (zh) 2021-12-25 2021-12-25 一种缓存状态报告发送方法及通信装置
CN202111605541.3 2021-12-25

Publications (1)

Publication Number Publication Date
WO2023116403A1 true WO2023116403A1 (zh) 2023-06-29

Family

ID=86901205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136530 WO2023116403A1 (zh) 2021-12-25 2022-12-05 一种缓存状态报告发送方法及通信装置

Country Status (2)

Country Link
CN (1) CN116367321A (zh)
WO (1) WO2023116403A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547669A (zh) * 2012-02-10 2012-07-04 大唐移动通信设备有限公司 数据缓存状态上报及上行资源调度方法和设备
CN103889066A (zh) * 2014-03-12 2014-06-25 中国科学技术大学 一种智能电网通信中精细上行资源调度方法
CN105491619A (zh) * 2010-06-18 2016-04-13 富士通株式会社 缓存状态报告的报告方法、获取方法
CN107466104A (zh) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 一种资源请求方法、装置和终端
CN109996289A (zh) * 2019-04-03 2019-07-09 成都中科微信息技术研究院有限公司 一种智能电网中的上行链路资源分配方法
CN111295905A (zh) * 2017-11-14 2020-06-16 富士通株式会社 无线终端、无线基站、无线通信***、缓存状态报告的传输方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491619A (zh) * 2010-06-18 2016-04-13 富士通株式会社 缓存状态报告的报告方法、获取方法
CN105491618A (zh) * 2010-06-18 2016-04-13 富士通株式会社 终端、基站和通信***
CN102547669A (zh) * 2012-02-10 2012-07-04 大唐移动通信设备有限公司 数据缓存状态上报及上行资源调度方法和设备
CN103889066A (zh) * 2014-03-12 2014-06-25 中国科学技术大学 一种智能电网通信中精细上行资源调度方法
CN107466104A (zh) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 一种资源请求方法、装置和终端
CN111295905A (zh) * 2017-11-14 2020-06-16 富士通株式会社 无线终端、无线基站、无线通信***、缓存状态报告的传输方法
CN109996289A (zh) * 2019-04-03 2019-07-09 成都中科微信息技术研究院有限公司 一种智能电网中的上行链路资源分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Discussion on enhancements for XR", 3GPP DRAFT; R1-2111787, vol. RAN WG1, 5 November 2021 (2021-11-05), pages 1 - 8, XP052074322 *

Also Published As

Publication number Publication date
CN116367321A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
US11051322B2 (en) Data processing method, apparatus, and system
US10743225B2 (en) Scheduling method and base station
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
US11272392B2 (en) Buffer status report processing method and apparatus
WO2018082686A1 (zh) 数据传输方法、装置、***、终端和接入网设备
US20170019893A1 (en) Method and device for triggering buffer state reporting bsr
WO2018141244A1 (zh) 一种资源调度方法、装置及***
WO2020221246A1 (zh) 取消待处理sr的方法及装置
US11818707B2 (en) Methods and devices for performing uplink communication in industrial communication
US20200008250A1 (en) Wireless Connection Establishment Method And Apparatus
JP2011055464A (ja) Bsrの方法及び通信装置
WO2018000220A1 (zh) 数据传输方法、数据传输装置及***
WO2020034740A1 (zh) 一种调度请求资源确定及配置方法、设备及存储介质
US11470635B2 (en) Communication method and device
WO2020088400A1 (zh) 资源调度方法、装置及设备
WO2021244299A1 (zh) 通信方法及通信设备
WO2018171710A1 (zh) 信息的处理方法和设备
WO2021207975A1 (zh) 时域资源确定方法及装置
CN117561781A (zh) 无线通信方法、终端设备和网络设备
WO2020227902A1 (zh) 一种内存管理的方法和装置、终端设备
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2023116403A1 (zh) 一种缓存状态报告发送方法及通信装置
WO2021155604A1 (zh) 信息处理方法及设备
WO2017205999A1 (zh) 一种数据传输的方法、设备和***
WO2019129164A1 (zh) 一种传输时间处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022909718

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024010121

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022909718

Country of ref document: EP

Effective date: 20240522