WO2023115462A1 - 一种聚酰胺56树脂、纤维及其制备方法与应用 - Google Patents

一种聚酰胺56树脂、纤维及其制备方法与应用 Download PDF

Info

Publication number
WO2023115462A1
WO2023115462A1 PCT/CN2021/140881 CN2021140881W WO2023115462A1 WO 2023115462 A1 WO2023115462 A1 WO 2023115462A1 CN 2021140881 W CN2021140881 W CN 2021140881W WO 2023115462 A1 WO2023115462 A1 WO 2023115462A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
resin
fiber
titanium dioxide
spinning
Prior art date
Application number
PCT/CN2021/140881
Other languages
English (en)
French (fr)
Inventor
孙朝续
陈万钟
高祥
刘修才
Original Assignee
上海凯赛生物技术股份有限公司
Cibt美国公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯赛生物技术股份有限公司, Cibt美国公司 filed Critical 上海凯赛生物技术股份有限公司
Priority to KR1020247020894A priority Critical patent/KR20240107366A/ko
Priority to PCT/CN2021/140881 priority patent/WO2023115462A1/zh
Publication of WO2023115462A1 publication Critical patent/WO2023115462A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides

Definitions

  • the invention relates to polyamide, in particular to a polyamide 56 resin, fiber and its preparation method and application.
  • Polyamide fiber is one of the earliest synthetic fibers put into industrial production in the world, and plays a pivotal role in the field of synthetic fibers.
  • the main applications involve: socks, lace underwear, corsets, sports underwear, wedding dresses, casual jackets, sportswear, raincoats, jackets, quick-drying clothes, cold clothes, outdoor tents, sleeping bags, mountaineering bags, etc.; and industrial silk quilts Widely used in fields such as cords, transmission belts, hoses, ropes, fishing nets, tires, parachutes, etc.
  • Polyamide fiber is divided into two types according to whether it contains a matting agent: bright and dull.
  • the fabric made of bright fiber has a relatively obvious surface gloss and a strong waxy surface, which is difficult to apply to casual clothing and high-end clothing with high requirements.
  • the fabric made of matting fiber has soft luster, close to natural effect, soft hand feeling, bright color, good drape feeling, strong shielding performance and other advantages, which are more and more sought after by consumers.
  • Titanium dioxide (TiO 2 ) as a matting material is widely used in the field of chemical fiber matting fiber.
  • the main production method of matting fiber is mainly to use online matting masterbatch adding technology.
  • adding matting masterbatches during the spinning process requires the spinning mill to be equipped with a masterbatch adding device, and the production investment is large; secondly, the masterbatch addition ratio needs to be strictly controlled during the masterbatch addition process.
  • Proper or uneven mixing will easily cause poor compatibility between matting masterbatch and matrix resin, and problems such as broken monofilaments, wool, low strength and poor dyeing will easily occur during the spinning process.
  • the invention patent application discloses a polyamide 56 fiber and its manufacturing method.
  • the spinning step includes: providing a plurality of polyamide 6 matting resin particles and polyamide 56 resin particles that have undergone a viscosity and moisture adjustment step Melt kneading and spinning at 275°C to 285°C to obtain matte 56 fibers.
  • the above-mentioned patent application selects the matting masterbatch as the polyamide 6 matrix material. In this material, firstly, the melting point of polyamide 6 is about 220°C, while the melting point of polyamide 56 is about 256°C.
  • the melting point difference between the two is so large that the spinning processing conditions Improper control will lead to phase separation, resulting in a decrease in melt viscosity and a decrease in fiber strength;
  • the invention patent application discloses a kind of matt polyamide 56 masterbatch, matt fiber and preparation method, which needs to prepare matt polyamide 56 masterbatch first, and then blend spinning with polyamide 56 to prepare matt Fiber, production investment is relatively large. And the method of blending and adding matte masterbatch spinning requires the masterbatch to be added evenly, otherwise it is easy to cause compatibility between matte masterbatch and substrate spinning materials, resulting in problems such as broken monofilaments, poor dyeing, and low M rate.
  • a main purpose of the present invention is to provide a polyamide 56 resin, which contains titanium dioxide, the content of the titanium dioxide is 0.2-5.0wt%, and the dispersed particle diameter of more than 98% of the titanium dioxide is 0.2-0.6 ⁇ m.
  • One embodiment of the present invention further provides a preparation method of polyamide 56 resin, which includes preparing polyamide 56 resin through polymerization reaction of monomers, and the polyamide 56 resin contains titanium dioxide, wherein the titanium dioxide is used during the polymerization reaction join in.
  • An embodiment of the present invention further provides a polyamide 56 fiber, which is prepared by melt spinning the above polyamide 56 resin, or directly spun from the melt produced during the preparation of the polyamide 56 resin.
  • One embodiment of the present invention further provides a kind of preparation method of above-mentioned polyamide 56 fiber, comprises the following steps:
  • An embodiment of the present invention further provides an application of the above-mentioned polyamide 56 fiber in knitted or woven fabrics.
  • the preparation method of polyamide 56 resin according to one embodiment of the present invention can effectively avoid problems such as broken filaments and poor dyeability in the subsequent spinning process; at the same time, the preparation method is simple and easy to operate, and the production cost is low.
  • One embodiment of the present invention provides a method for preparing a polyamide 56 resin, which includes preparing a polyamide 56 resin by polymerizing monomers, wherein the polyamide 56 resin contains titanium dioxide, and the titanium dioxide is added during the polymerization reaction.
  • titanium dioxide is added in the polyamide 56 polymerization process for in-situ polymerization, so that titanium dioxide can be evenly distributed in the polyamide 56 resin, which can effectively avoid problems such as broken filaments and poor dyeability in the subsequent spinning process ; Simultaneously, the preparation method is simple and easy to operate, and the production cost is low.
  • TiO2 is directly added during the polymerization process for in-situ polymerization.
  • This method is relatively simple to operate, easy to control, and does not need to be equipped with additional masterbatch adding devices, which can reduce production investment, and in the polymerization process Adding TiO 2 can make the mixing time of TIO 2 and resin longer, making the dispersion of TiO 2 in the matrix resin more uniform, and the subsequent spinning process has less interrupted monofilaments and wool, and the fiber strength is high and the dyeability is good.
  • the particle size of the titanium dioxide powder added during the polymerization of polyamide 56 can be 0.15-0.5 ⁇ m, further can be 0.15-0.4 ⁇ m, and can be further 0.15-0.3 ⁇ m, such as 0.18 ⁇ m, 0.20 ⁇ m , 0.22 ⁇ m, 0.23 ⁇ m, 0.25 ⁇ m, 0.27 ⁇ m, 0.28 ⁇ m.
  • titanium dioxide can be added to the polyamide 56 polymerization system in the form of particles, or can be added to the polyamide 56 polymerization system in the form of titanium dioxide slurry.
  • the addition amount of titanium dioxide is 0.2-5.0 wt%, further 0.2-3.0 wt%, based on the total weight of the polyamide 56 resin.
  • the raw materials for the production of polyamide 56 resin include at least 1,5-pentanediamine and adipic acid; or, polyamide 56 is obtained by polymerizing 1,5-pentanediamine and adipic acid as monomers.
  • 1,5-pentanediamine is prepared from bio-based materials through fermentation or enzymatic conversion.
  • the production raw materials use non-petroleum-based materials, such as bio-based sources, which will not cause large pollution and are conducive to environmental protection.
  • the preparation method of polyamide 56 resin comprises:
  • Polyamide 56 salt solution is used as a raw material to polymerize to obtain a polyamide 56 melt
  • the polyamide 56 melt is filtered through a melt filter, finally pelletized and dried to obtain a polyamide 56 resin.
  • titanium dioxide can be added in any one or more stages of step (1) and step (2).
  • step (1) includes: uniformly mixing 1,5-pentanediamine, adipic acid and water under nitrogen gas to prepare polyamide 56 salt solution.
  • the molar ratio of 1,5-pentanediamine to adipic acid may be (1 ⁇ 1.08):1, such as 1.02:1, 1.04:1, 1.05:1, 1.06:1, etc.
  • step (2) includes: heating the polyamide 56 salt solution, increasing the pressure in the reaction system to 0.3-2.4 MPa (gauge pressure), exhausting and maintaining the pressure for 0.2-2.5 hours, and then reducing the pressure to allow the reaction
  • the pressure in the system is reduced to 0-0.3 MPa (gauge pressure), and then vacuumed to a degree of vacuum of -0.001-0.08 MPa (gauge pressure) to obtain a polyamide 56 melt.
  • the temperature of the reaction system at the end of the pressure holding in step (2) is 230-265°C, such as 235°C, 240°C, 245°C, 250°C, 255°C, etc.
  • the holding time of step (2) is 0.5-2 hours, further 0.5-1.5 hours, such as 0.8 hours, 1 hour, 1.2 hours.
  • the temperature of the reaction system after the depressurization in step (2) is 240-275°C, such as 245°C, 250°C, 255°C, 260°C, 265°C, 270°C, etc.
  • the temperature after vacuuming in step (2) is 250-285°C, such as 255°C, 260°C, 265°C, 270°C, 275°C, 280°C, etc.
  • the time for maintaining the vacuum degree after vacuuming in step (2) is 10-50 minutes; further, 15-45 minutes.
  • the second additive can be added to the reaction system, and can be added at any one or more stages of step (1) and step (2).
  • the second additive may or may not be added simultaneously with titanium dioxide.
  • the second additive may include one or more of flame retardants, antioxidants, end-capping agents, ultraviolet absorbers, infrared absorbers, crystallization nucleating agents, fluorescent whitening agents and antistatic agents .
  • the amount of the second additive is 0-1% of the total weight of the raw materials for polyamide 56 resin production, such as 0.05%, 0.1%, 0.2%, 0.4%, 0.5%, 0.6%, 0.8%, etc.
  • the moisture content of the resin is 300-1000 ppm, further may be 300-800 ppm, and further may be 600-800 ppm.
  • the temperature of the drying treatment in step (3) can be 80-130°C, further can be 100-110°C, such as 90°C, 95°C, 98°C, 102°C, 104°C, 105°C, 106°C °C, 108°C, 115°C, 120°C, 125°C, etc.
  • the drying time of step (3) may be 10-30 hours, further may be 15-25 hours, such as 12 hours, 16 hours, 18 hours, 20 hours, 22 hours, 24 hours, 28 hours, etc.
  • step (3) uses a melt filter to filter before pelletizing, to remove TiO in the polymerization process
  • the large-sized particles produced by agglomeration can make the particle size of titanium dioxide in polyamide 56 resin small and The narrow distribution can further improve the uniformity of the polyamide 56 melt, thereby avoiding the phenomenon of broken monofilaments and more hairs during the stretching process due to excessive particle size, and the resulting damage to the mechanical properties and dyeing of the fibers Due to the influence of performance, the subsequent spinning process has less interrupted single filaments and increased dyeing performance.
  • the dispersed particle size of titanium dioxide in the matte polyamide 56 resin is 0.2-1.0 ⁇ m, further, the dispersed particle size of more than 98% of the titanium dioxide particles is 0.2-0.6 ⁇ m, Furthermore, more than 95% of the titanium dioxide particles have a dispersed particle size of 0.2 to 0.35 ⁇ m.
  • the filter mesh of the melt filter is 5-15um.
  • the preparation method of polyamide 56 resin according to one embodiment of the present invention uses TiO2 to carry out in-situ polymerization to prepare matte polyamide 56 resin.
  • TiO2 By strictly controlling the particle size and distribution of TiO2 particles, TiO2 agglomerated particles can be avoided or removed, Reduce particle size distribution range and improve spinning performance.
  • One embodiment of the present invention provides a polyamide 56 resin, which can be prepared by the above method.
  • One embodiment of the present invention provides a polyamide 56 resin, the relative viscosity can be 2.3-3.0, further can be 2.5-2.8; the oligomer content is less than 1.5wt%, further less than 1wt%, further 0.8wt% Below, for example 0.3 ⁇ 1.0wt%, 0.3 ⁇ 0.8wt% etc.; moisture content can be 300 ⁇ 1000ppm, further can be 300 ⁇ 800ppm, further can be 600 ⁇ 800ppm; number average molecular weight is 15000 ⁇ 42000, can be further 18000-35000; the molecular weight distribution is 1.2-2.0, and may further be 1.4-1.8.
  • the degree of polymerization of the oligomer according to the present invention is 5 or less.
  • the polyamide 56 resin according to one embodiment of the present invention has low oligomer content, narrow molecular weight distribution and moderate viscosity of the polyamide resin.
  • the relative viscosity of the polyamide 56 resin may be 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.
  • the moisture content of the polyamide 56 resin can be 350ppm, 550ppm, 650ppm, 700ppm, 750ppm, 850ppm, 900ppm, etc.
  • the number average molecular weight of the polyamide 56 resin can be 16000, 20000, 22000, 25000, 28000, 30000, 32000, 34000, 38000, 40000, etc.
  • the molecular weight distribution of the polyamide 56 resin may be 1.3, 1.5, 1.6, 1.7, 1.9, etc.
  • the oligomer content of the polyamide 56 resin may be 0.3%, 0.6%, or 1.0%.
  • the degree of polymerization of the oligomers described in the present invention is below 10. If the content of oligomers in the resin is too high, during the spinning process, there will be oligomers precipitated and coagulated under the spinneret, and too much precipitated will affect the spinning process. , resulting in broken monofilaments during spinning. And reduce the use time of spinning components.
  • the polyamide 56 resin includes a titanium dioxide matting agent.
  • the polyamide 56 resin may be a semi-dull polyamide 56 resin, a dull polyamide 56 resin or a full-dull polyamide 56 resin.
  • the polyamide 56 resin is a semi-dull polyamide 56 resin, and its titanium dioxide content is 0.2-0.4 wt%, further may be 0.25-0.35 wt%, such as 0.3 wt%.
  • the polyamide 56 resin is a full-dull polyamide 56 resin, and its titanium dioxide content is 1.2-2.0wt%, further can be 1.4-1.8wt%, such as 1.5wt%, 1.6wt%, 1.7wt%.
  • the polyamide 56 resin is a super-dull polyamide 56 resin, and its titanium dioxide content is 2.5 to 5.0 wt%, and further can be 3.0 to 4.5 wt%, such as 2.8 wt%, 3.2 wt%, 3.5 wt%, 4.0wt%, 4.2wt%, 4.4wt%, 4.8wt%.
  • the dispersed particle size of titanium dioxide in polyamide 56 resin is 0.2-1.0 ⁇ m, further, the particle distribution ratio of titanium dioxide dispersed particle size is 0.2-0.6 ⁇ m is above 98%, further, the titanium dioxide particle
  • the proportion of dispersed particle diameters of 0.2 to 0.6 ⁇ m is more than 98.5%; further, the proportion of titanium dioxide particles with a dispersed particle diameter of 0.2 to 0.35 ⁇ m is more than 95%, and further, the dispersed particle diameter of titanium dioxide particles is 0.2 to 0.35 ⁇ m
  • the proportion is more than 96%; wherein, the above description about the percentage content of titanium dioxide refers to the percentage content of the number of titanium dioxide particles.
  • One embodiment of the present invention provides a polyamide 56 fiber, which can be prepared from the above polyamide 56 resin by melt spinning.
  • the polyamide 56 fiber can be a semi-dull polyamide 56 fiber, a dull polyamide 56 fiber, or a full-dull polyamide 56 fiber;
  • Amide 56 fiber can be prepared by melt spinning by using semi-dull polyamide 56 resin, matte polyamide 56 resin, and full-dull polyamide 56 resin respectively.
  • polyamide 56 fibers include undrawn yarns (UDY), fully drawn yarns (FDY), pre-oriented yarns (POY), highly oriented yarns (HOY), fully oriented yarns (FOY), and stretched yarns.
  • the polyamide 56 fiber according to one embodiment of the present invention has the advantages of high strength, low-temperature dyeability, hygroscopicity, softness, abrasion resistance, high elasticity, etc., and has broad development prospects in the fields of civilian yarn and industrial yarn.
  • the monofilament fineness of polyamide 56 fiber can be 0.5-5.0dtex, further can be 0.8-4.0dtex, can be further can be 1.2-3.0dtex, can be further can be 1.2-2.0dtex, such as 1.0, 1.5 , 1.8, 2.5, 3.5, 4.5dtex, etc.
  • the breaking strength of the polyamide 56 fiber can be 3.3-5.5 cN/dtex, further can be 3.5-4.8 cN/dtex, can be further 3.7-4.5 cN/dtex, and can be further 3.9-4.2 cN/dtex.
  • the coefficient of variation of the breaking strength of the polyamide 56 fiber is 5.0% or less, further 3.0% or less, further 2.5% or less, further 2.0% or less.
  • the initial modulus of the polyamide 56 fiber may be 15-35 cN/dtex, further may be 22-33 cN/dtex, further may be 24-30 cN/dtex, and further may be 26-28 cN/dtex .
  • the boiling water shrinkage of the polyamide 56 fiber may be ⁇ 7%, further may be ⁇ 6.8%, further may be ⁇ 6.5%, and further may be ⁇ 6.0%.
  • the moisture regain of the polyamide 56 fiber may be ⁇ 4.0%, further may be ⁇ 4.5%, further may be ⁇ 5.0%, and further may be ⁇ 5.5%.
  • the crimp shrinkage of the polyamide 56 fiber may be 35-60%, further may be 40-58%, and may further be 45-55%.
  • the crimp stability of the polyamide 56 fiber may be 38-58%, further may be 40-56%, further may be 48-54%, such as 45%, 50%, 52%.
  • the dyeing uniformity (gray scale) of the polyamide 56 fiber is ⁇ 3.5, further can be ⁇ 4.0, can be further ⁇ 4.5, and can be ⁇ 5.0.
  • the M ratio of the polyamide 56 fiber is ⁇ 92%, further may be ⁇ 94%, further may be ⁇ 96%, and further may be ⁇ 98%.
  • the soaping fastness of polyamide 56 fiber can be ⁇ 3.5 grades, further can be ⁇ 4.0 grades, can be further ⁇ 4.5 grades, and can be further ⁇ 5.0 grades; staining The fastness can be ⁇ 3.5 grade, further can be ⁇ 4.0 grade, further can be ⁇ 4.5 grade, further can be ⁇ 5.0 grade.
  • One embodiment of the present invention provides a kind of preparation method of above-mentioned polyamide 56 fiber, comprises the following steps:
  • the polyamide 56 pre-oriented yarn is passed through the yarn guide to the first roller, passed through the twist stopper, thermally stretched in the first hot box, then cooled and shaped by a cooling plate, passed through the false twister, the second roller , webbing, oiling and winding to obtain polyamide 56 stretched yarn.
  • the heating in step (a) is carried out with a screw, wherein the temperature in the first zone can be 245-265°C, further can be 250-260°C; the temperature in the second zone can be 260-280°C, further can be 265-260°C 275°C; the temperature in the third zone can be 275-285°C, and further can be 278-283°C; the temperature in the fourth zone can be 280-290°C.
  • the temperature of the spinning box in step (b) may be 278-290°C, further may be 282-285°C; the pressure of the spinning assembly may be 13-22MPa, further may be 15-18MPa.
  • the cooling in step (c) includes side blowing cooling and surrounding blowing cooling, preferably surrounding blowing cooling;
  • the wind speed can be 0.3 ⁇ 0.8m/s, further can be 0.45 ⁇ 0.6m/s;
  • the wind temperature can be 18-23°C;
  • wind and humidity can be 50-85%, and further can be 55-70%.
  • the oiling in step (c) is the oiling of the nozzle; the oiling rate can be 0.4-0.6wt%, and further can be 0.45-0.55wt%; the oiling height can be 80-150cm, and can be further 90 to 130 cm, and further, 95 to 110 cm.
  • the winding speed of step (c) during winding molding can be 4000-5000m/min, further can be 4200-4800m/min, and can be further 4300-4500m/min; the overfeeding speed can be 10 to 100 m/min, and further may be 20 to 80 m/min.
  • the thermal stretching ratio in step (d) can be 1.1-1.4, further can be 1.15-1.35; the thermal stretching temperature can be 160-210°C, further can be 170-205°C, and then Furthermore, it may be 180-195 degreeC.
  • the speed ratio D/Y of the false twister in step (d) can be 1.3 to 2.2, and further can be 1.5 to 2.0; the compressed air pressure in the network device can be 0.3 to 1.5 MPa, and further can be 0.4 to 2.0. 1.2MPa, and further can be 0.5-1.0MPa.
  • the oiling in step (d) is the oiling of the nozzle; the oiling rate may be 2.2-2.8 wt%, and further may be 2.3-2.6 wt%.
  • the winding speed during the winding of step (d) can be 300-800m/min, further can be 400-700m/min; the winding overfeed speed during winding is 1-8%, Further, it may be 1.5 to 6%, and further may be 2 to 5%.
  • the production raw material of polyamide 56 fiber can be made by biological method, which is a green material, does not depend on petroleum resources and does not cause serious pollution to the environment, and can reduce carbon dioxide emissions and greenhouse effect at the same time.
  • the polyamide 56 fiber of one embodiment of the present invention can be produced by using conventional polyamide 6 and polyamide 66 spinning equipment, without modifying the spinning equipment, by optimizing the quality of the polyamide 56 fiber resin and the spinning process , the production rate can be increased.
  • the polyamide 56 fiber according to one embodiment of the present invention has good mechanical properties, dimensional stability, hygroscopicity and dyeing performance, and has good matting effect when applied in knitted or woven fabrics.
  • One embodiment of the present invention provides an application of the above-mentioned polyamide 56 fiber in knitted or woven fabrics.
  • the light transmittance of the polyamide 56 fabric can be ⁇ 50%, further can be ⁇ 48%, further can be ⁇ 35%, further can be ⁇ 30%.
  • the polyamide 56 fiber has high strength, softness, moisture absorption, bulkiness (curl stability), easy dyeing and matting properties, and is more suitable for knitting fields and civilian clothing.
  • Applications for knitted and woven fabrics include non-limiting applications in underwear, shirts, suits, yoga clothes, down jackets, jackets, socks, bags, curtains, shoe materials, embroidery threads, trademarks, sofa releases, tooling, sportswear , elastic bands and other fields.
  • the matting performance of the fabric prepared by the polyamide 56 fiber of one embodiment of the present invention is better, and the matting effect of the same TiO2 content is better than that of amide 6 fiber and polyamide 66 fiber, and the polyamide 56 fabric of the same matting effect is prepared, and the added TiO 2 content is lower, can reduce production cost.
  • the light transmittance of the semi-dull polyamide 56 fabric in one embodiment of the present invention can be ⁇ 48%, the light transmittance of the full-dull polyamide 56 fabric can be ⁇ 33%, and the light transmittance of the super-dull polyamide 56 fabric can be ⁇ 25%. %.
  • the polyamide 56 resin, polyamide 56 fiber and their preparation according to one embodiment of the present invention will be further described in conjunction with specific examples.
  • the raw materials used can be obtained commercially, and the details of the relevant tests involved are as follows; in addition, the parameters involved in the present invention are all measured according to the following methods.
  • the method of measuring the moisture regain is: put the washed fiber in a loose state in an oven for drying, and then place the dried fiber sample in the standard atmosphere specified in GB/T6529 to adjust the humidity to balance; carry out moisture regain Moisture regain measurement method is carried out according to GB/T6503, in which the drying temperature of the oven is 105 °C, and the drying is done.
  • the pre-tension is 0.05 ⁇ 0.005cN/dtex.
  • Crimp shrinkage rate, crimp stability GB/T 6506-2001 Test method for crimp performance of synthetic fiber textured yarn.
  • Relative viscosity of resin by Ubbelohde viscometer concentrated sulfuric acid method: accurately weigh 0.25 ⁇ 0.0002g of polyamide resin chips after drying, add 50mL concentrated sulfuric acid (96wt%) to dissolve; measure in 25 °C constant temperature water bath and Record the concentrated sulfuric acid flow time t0 and the polyamide sample solution flow time t;
  • Dispersed particle size of titanium dioxide measure and count the dispersed particle size of titanium dioxide from the transmission electron micrographs of polyamide resin slices.
  • M rate ((weight of fibers with dyeing uniformity ⁇ grade 4.5)/total weight of all dyed fibers) ⁇ 100%.
  • Delustering property the fibers prepared in Examples and Comparative Examples are woven by the same air-jet weft-feeding loom, rinsed by an open-width soaping machine, and dyed by a liquid-flow dyeing machine to prepare fabrics of uniform specifications.
  • Light transmittance Measured by an ultraviolet-visible spectrophotometer, the scanning wavelength is 300-800nm, and the light transmittance of the fabric refers to the light transmittance at a wavelength of 550nm.
  • Titanium dioxide content test in resin Calcination method, put 10g sample into a crucible, calcinate in a muffle furnace at 480°C for 10h, and weigh the weight of the residue in the crucible.
  • Coefficient of variation (CV) test of breaking strength refer to GB/T 14344-2008 Test method for tensile properties of chemical fibers. If titanium dioxide is evenly distributed in the fiber, different numbers of fibers will be broken at the same time during the stretching process, and the corresponding breaking strength at the time of breaking will be the same, which is reflected in the small coefficient of variation.
  • the polyamide 56 melt is transported into the spinning box body through the melt pipeline, and after being accurately metered by the metering pump, it is injected into the spinning assembly and extruded from the spinneret hole under high pressure; wherein, the spinning box body The temperature is 285° C., and the spinning pack pressure is 16.2 MPa.
  • the wind humidity is 80%; the oiling is oiling on the nozzle, the oiling rate is 0.5wt%, and the oiling height is 110cm; the winding speed during winding forming is 4300m/min, and the overfeeding speed is 60m/min.
  • the polyamide 56 pre-oriented yarn is passed through the yarn guide to the first roller, passed through the twist stopper, thermally stretched in the first hot box, then cooled and shaped by a cooling plate, passed through the false twister, the second roller , network device, oil nozzle oiling, winding, to obtain polyamide 56 stretched yarn;
  • the thermal stretching multiple is 1.3, and the thermal stretching temperature is 185°C; the speed ratio D/Y of the false twister is 1.8; the compressed air pressure in the network device is 0.8MPa; It is 2.5wt%; the winding speed during winding is 600m/min, and the winding overfeed speed during winding is 2.5%.
  • the polyamide 56 resin was prepared using substantially the same raw materials and processes as in Example 1, the only difference being that the addition of titanium dioxide in step (2) was 0.34 wt%.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • step (2) Using substantially the same raw materials as in Example 1, the only difference is that the degree of vacuum in step (2) is -0.07MPa, the maintenance time is 10min, and the addition of titanium dioxide in step (2) is 0.35wt%.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin is prepared using substantially the same raw material and process as in Example 1, the difference is only that the addition of titanium dioxide in step (2) is 1.23wt%, and the mesh number of the filter mesh in the melt filter in step (3) is 5 ⁇ m.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin is prepared using substantially the same raw material and process as in Example 1, the difference is only that the addition of titanium dioxide in step (2) is 1.56wt%, and the mesh number of the filter mesh in the melt filter in step (3) is 15 ⁇ m.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using substantially the same raw materials and process as in Example 1, the only difference being that the addition of titanium dioxide in step (2) was 1.84 wt%.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using substantially the same raw materials and processes as in Example 1, the only difference being that the addition of titanium dioxide in step (2) was 2.56 wt%.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using substantially the same raw materials and process as in Example 1, the only difference being that the addition of titanium dioxide in step (2) was 3.05 wt%.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using substantially the same raw materials and process as in Example 1, the only difference being that the addition of titanium dioxide in step (2) was 4.05 wt%.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using substantially the same raw materials and processes as in Example 1, the only difference being that the addition of titanium dioxide in step (2) was 0.34wt%, and the vacuum was evacuated to a degree of -0.06MPa. After the vacuum, the reaction system The temperature is 285°C.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using substantially the same raw materials and processes as in Example 10, the only difference being that the addition of titanium dioxide in step (2) was 1.54 wt%.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using substantially the same raw materials and processes as in Example 10, the only difference being that the addition of titanium dioxide in step (2) was 2.53 wt%.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • Example 10 The polyamide 56 resin obtained in Example 10 was used as the raw material for spinning, and the specific spinning process was basically the same as that of Example 1: the only difference was that the spinning assembly contained a 10 ⁇ m non-woven fabric filter.
  • the polyamide 56 resin obtained in Example 11 is used as raw material for spinning, and the specific spinning process is basically the same as in Example 1: the only difference is that the spinning assembly contains a 15 ⁇ m non-woven filter screen.
  • Example 11 The polyamide 56 resin obtained in Example 11 was used as a raw material for spinning, and the specific spinning process was basically the same as that of Example 1: the only difference was that the spinning assembly contained a 20 ⁇ m non-woven fabric filter.
  • the polyamide 56 resin was prepared using basically the same raw materials and processes as in Example 2, the only difference being that in step (3), the polyamide 56 resin was obtained by directly pelletizing without using a melt filter to filter.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using substantially the same raw materials and process as in Example 5, the only difference being that in step (3), the polyamide 56 resin was obtained by direct pelletizing without using a melt filter for filtration.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • the polyamide 56 resin was prepared using basically the same raw materials and process as in Example 7, the only difference being that in step (3), the polyamide 56 resin was obtained by directly pelletizing without using a melt filter for filtration.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.
  • Polyamide 6 resin (viscosity 2.7, molecular weight distribution 1.59, oligomer content 0.61%, water content 612ppm) is mixed with 0.33wt% titanium dioxide (particle diameter 0.2um), as spinning material, by the same method as in Example 1 Spinning is carried out in the spinning process to obtain polyamide 6 fibers; wherein, the content of titanium dioxide is based on the quality of polyamide 6 resin.
  • Polyamide 66 resin (viscosity 2.68, molecular weight distribution 1.61, oligomer content 0.62%, water content 605ppm) is mixed with 0.32wt% titanium dioxide (particle diameter 0.2um), as spinning material, by the same method as in Example 1 Spinning is carried out in the spinning process to obtain polyamide 66 fibers; wherein, the content of titanium dioxide is based on the quality of polyamide 66 resin.
  • Polyamide 56 resin (viscosity 2.68, molecular weight distribution 1.61, oligomer content 0.61%, water content 607ppm) is mixed with 0.26wt% titanium dioxide (particle diameter 0.2um), as spinning material, by the same method as in Example 1 Spinning is carried out in the spinning process to obtain polyamide 56 fibers; wherein, the content of titanium dioxide is based on the quality of polyamide 56 resin.
  • the polyamide 56 resin was prepared using substantially the same raw materials and process as in Example 5, the only difference being that the filter mesh in the melt filter in step (3) was 20 ⁇ m.
  • the polyamide 56 resin obtained above was used as a raw material for spinning, and the specific spinning process was the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

一种聚酰胺56树脂、纤维及其制备方法与应用,该聚酰胺56树脂的制备方法包括将单体通过聚合反应制得聚酰胺56树脂,所述聚酰胺56树脂包含二氧化钛,其中,所述二氧化钛于聚合反应过程中加入。一实施方式的聚酰胺56树脂的制备方法,可有效避免后续纺丝过程中的断单丝、染色性差等问题;同时,该制备方法简单易操作,生产成本低。

Description

一种聚酰胺56树脂、纤维及其制备方法与应用 技术领域
本发明涉及聚酰胺,具体为一种聚酰胺56树脂、纤维及其制备方法与应用。
背景技术
聚酰胺纤维是世界上最早投入工业化生产的合成纤维之一,在合成纤维领域具有举足轻重的作用。聚酰胺纤维种类繁多,目前工业化生产及应用最广泛的是聚酰胺6和聚酰胺66。主要应用涉及:袜子、蕾丝内衣、束身衣、运动内衣、婚纱礼服、休闲夹克、运动服、风雨衣、冲锋衣、速干衣、防寒服、户外帐篷、睡袋、登山包等领域;而工业丝被广泛应用于如帘子线、传动带、软管、绳索、渔网、轮胎、降落伞等领域。
聚酰胺纤维按照是否含有消光剂分为大有光与消光两种,采用大有光纤维制备的面料有表面光泽比较明显,表面蜡质感强,难以应用到要求较高的休闲服饰及高档服装上,采用消光纤维制备的面料光泽柔和,接近天然效果,手感柔软,色彩鲜艳,悬垂感好,遮蔽性能强等优点,越来越受到消费者追求。
二氧化钛(TiO 2)作为一种消光材料被广泛用于化纤消光纤维领域。目前,消光纤维主要的生产方法主要为采用在线消光母粒添加技术。在该方法中,首先,在纺丝过程中添加消光母粒,需要纺丝厂配备母粒添加装置,生产投资大;其次,母粒添加过程中需要严格控制母粒添加比例,如果混合比例不恰当或混合不均匀,容易造成消光母粒与基体树脂相容性不好,纺丝过程中易产生断单丝、毛丝、强度低与染色差等问题。
发明专利申请(公开号为CN105986327A)公开了一种聚酰胺56纤维及其制造方法,纺丝步骤包含:提供多个聚酰胺6消光树脂颗粒与进行过粘度与水分调整步骤的聚酰胺56树脂颗粒熔融混炼,并以275℃至285℃进行纺丝,以获得消光56纤维。上述专利申请选用消光母粒为聚酰胺6基体材料,在该材料中,首先,聚酰胺6熔点约220℃,而聚酰胺56熔点约为256℃, 两者的熔点差异大使得纺丝加工条件控制不当会导致相分离,造成熔体粘度降低与纤维强度降低的情况;其次,制备高比例二氧化钛含量的聚酰胺56纤维,需要在聚酰胺56树脂颗粒中添加含量大于10重量百分比聚酰胺6消光树脂颗粒,这会造成相容性变差,并导致纺丝过程中毛丝与断头增加、纤维强度降低、染色不匀和M率降低等问题。
发明专利申请(公开号为CN 110054891 A)公开了一种消光聚酰胺56母粒、消光纤维及制备方法,其需要先制备消光聚酰胺56母粒,然后再与聚酰胺56共混纺丝制备消光纤维,生产投资比较大。且采用共混添加消光母粒纺丝方法,要求母粒添加均匀,否则容易产生消光母粒与基体纺丝材料相容性,造成断单丝与染色差、M率偏低等问题。
发明内容
本发明的一个主要目的在于提供一种聚酰胺56树脂,包含二氧化钛,所述二氧化钛的含量为0.2~5.0wt%,98%以上的所述二氧化钛的分散粒径为0.2~0.6μm。
本发明一实施方式进一步提供了一种聚酰胺56树脂的制备方法,包括将单体通过聚合反应制得聚酰胺56树脂,所述聚酰胺56树脂包含二氧化钛,其中,所述二氧化钛于聚合反应过程中加入。
本发明一实施方式进一步提供了一种聚酰胺56纤维,由上述聚酰胺56树脂通过熔融纺丝制得,或者由聚酰胺56树脂制备过程中产生的熔体直接纺丝制得。
本发明一实施方式进一步提供了一种上述聚酰胺56纤维的制备方法,包括如下步骤:
(a)将所述聚酰胺56树脂加热至熔融状态,得到聚酰胺56熔体;
(b)将所述聚酰胺56熔体送入纺丝箱体中,注入到纺丝组件中,从喷丝孔挤出初生纤维;
(c)对所述初生纤维进行冷却处理、上油处理、拉伸处理、卷绕处理,得到聚酰胺56预取向丝;
(d)将所述聚酰胺56预取向丝经第一罗拉进行热拉伸处理、然后冷却定型,再通过假捻器、第二罗拉、网络器、上油处理、卷绕处理,得到聚酰胺 56纤维。
本发明一实施方式进一步提供了一种上述聚酰胺56纤维在针织或梭织面料中的应用。
本发明一实施方式的聚酰胺56树脂的制备方法,可有效避免后续纺丝过程中的断丝、染色性差等问题;同时,该制备方法简单易操作,生产成本低。
具体实施方式
体现发明特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施例上具有各种的变化,其皆不脱离本发明的范围,且其中的描述在本质上是当作说明之用,而非用以限制本发明。
本发明一实施方式提供了一种聚酰胺56树脂的制备方法,包括将单体通过聚合反应制得聚酰胺56树脂,其中,聚酰胺56树脂包含二氧化钛,二氧化钛于聚合反应过程中加入。
本发明一实施方式的方法,在聚酰胺56聚合过程中添加二氧化钛进行原位聚合,使得二氧化钛在聚酰胺56树脂中能够均匀分布,可有效避免后续纺丝过程中的断丝、染色性差等问题;同时,该制备方法简单易操作,生产成本低。
本发明一实施方式的方法,直接在聚合过程中添加TiO 2进行原位聚合,该方法操作相对较简单、便于控制,不需额外配备母粒添加装置,能够降低生产投资,且在聚合过程中添加TiO 2,可使TIO 2与树脂的混合时间更长,使得TiO 2在基体树脂中分散性更均匀,后续纺丝过程中断单丝与毛丝少,且纤维强度高、染色性好。
于一实施方式中,在聚酰胺56聚合过程中添加的二氧化钛粉体的粒径可以为0.15~0.5μm,进一步可以为0.15~0.4μm,进一步可以为0.15~0.3μm,例如0.18μm,0.20μm,0.22μm,0.23μm,0.25μm,0.27μm,0.28μm。
其中,二氧化钛可以以颗粒形式加入聚酰胺56的聚合体系,也可以以二氧化钛的浆液形式加入聚酰胺56的聚合体系。
于一实施方式中,二氧化钛的添加量为聚酰胺56树脂总重量的0.2~5.0wt%,进一步为0.2~3.0wt%。
于一实施方式中,聚酰胺56树脂的生产原料至少包括1,5-戊二胺和己二 酸;或者,以1,5-戊二胺和己二酸为单体聚合得到聚酰胺56。
于一实施方式中,1,5-戊二胺由生物基原料通过发酵法或酶转化法制备而成。
本发明一实施方式的聚酰胺56树脂的制备方法中,生产原料采用非石油基来源的材料,例如生物基来源,生物基来源的材料不会产生较大的污染,有利于环保。
于一实施方式中,聚酰胺56树脂的制备方法包括:
(1)制备聚酰胺56盐溶液;
(2)以聚酰胺56盐溶液为原料进行聚合,制得聚酰胺56熔体;
(3)将聚酰胺56熔体通过熔体过滤器过滤,最后切粒、干燥得到聚酰胺56树脂。
于一实施方式中,可以在步骤(1)、步骤(2)的任意一个或多个阶段加入二氧化钛。
于一实施方式中,步骤(1)包括:在氮气条件下,将1,5-戊二胺、己二酸和水混合均匀,制得聚酰胺56盐溶液。
于一实施方式中,1,5-戊二胺和己二酸的摩尔比可以为(1~1.08):1,例如1.02:1、1.04:1、1.05:1、1.06:1等。
于一实施方式中,步骤(2)包括:将聚酰胺56盐溶液加热,使反应体系内压力升至0.3~2.4MPa(表压),排气保压0.2~2.5h,再降压使反应体系内压力降至0~0.3MPa(表压),然后抽真空至真空度为-0.001~-0.08MPa(表压),得到聚酰胺56熔体。
于一实施方式中,步骤(2)的保压结束时反应体系的温度为230~265℃,例如235℃、240℃、245℃、250℃、255℃等。
于一实施方式中,步骤(2)的保压时间为0.5~2h,进一步为0.5~1.5h,如0.8h、1h、1.2h。
于一实施方式中,步骤(2)的降压结束后反应体系的温度为240~275℃,例如245℃、250℃、255℃、260℃、265℃、270℃等。
于一实施方式中,步骤(2)的抽真空后的温度为250~285℃,例如255℃、260℃、265℃、270℃、275℃、280℃等。
于一实施方式中,步骤(2)抽真空后维持所述真空度的时间为10~50min; 进一步为15~45min。
于一实施方式中,可向反应体系中加入第二添加剂,可以在步骤(1)、步骤(2)的任意一个或多个阶段加入。第二添加剂可与二氧化钛同时加入,也可以不同时加入。
于一实施方式中,第二添加剂可包括阻燃剂、抗氧化剂、封端剂、紫外线吸收剂、红外线吸收剂、结晶成核剂、荧光增白剂和抗静电剂中的一种或多种。
于一实施方式中,第二添加剂的添加量占聚酰胺56树脂生产原料总重量的0~1%,例如0.05%、0.1%、0.2%、0.4%、0.5%、0.6%、0.8%等。
于一实施方式中,经步骤(3)的干燥处理后,树脂的含水率为300~1000ppm,进一步可以为300~800ppm,更进一步可以为600~800ppm。
于一实施方式中,步骤(3)的干燥处理的温度可以为80~130℃,进一步可以为100~110℃,例如90℃、95℃、98℃、102℃、104℃、105℃、106℃、108℃、115℃、120℃、125℃等。
于一实施方式中,步骤(3)的干燥处理的时间可以为10~30h,进一步可以为15~25h,例如12h、16h、18h、20h、22h、24h、28h等。
于一实施方式中,步骤(3)在切粒前采用熔体过滤器进行过滤,以去除聚合过程中TiO 2团聚产生的大尺寸粒子,可使二氧化钛在聚酰胺56树脂中的粒径小且分布窄,能够进一步提高聚酰胺56熔体的均匀性,进而避免了因颗粒尺寸过大在拉伸过程中产生的断单丝与较多毛丝的现象以及由此导致的对纤维力学性能与染色性能的影响,使得后续纺丝过程中断单丝少、染色性能增加。
于一实施方式中,经过熔体过滤器过滤,二氧化钛在消光聚酰胺56树脂中的分散粒径为0.2~1.0μm,进一步地,98%以上的二氧化钛粒子的分散粒径为0.2~0.6μm,更进一步地,95%以上的二氧化钛粒子的分散粒径为0.2~0.35μm。
于一实施方式中,所述熔体过滤器的过滤网目数为5-15um。
本发明一实施方式的聚酰胺56树脂的制备方法,采用TiO 2进行原位聚合制备消光聚酰胺56树脂,通过严格控制TiO 2粒子的粒径大小与分布,可避免或去除TiO 2团聚粒子,降低粒径分布范围,提高纺丝性能。
本发明一实施方式提供了一种聚酰胺56树脂,可由上述方法制得。
本发明一实施方式提供了一种聚酰胺56树脂,相对粘度可以为2.3~3.0,进一步可以为2.5~2.8;低聚物含量为1.5wt%以下,进一步为1wt%以下,进一步为0.8wt%以下,例如0.3~1.0wt%,0.3~0.8wt%等;含水率可以为300~1000ppm,进一步可以为300~800ppm,更进一步可以为600~800ppm;数均分子量为15000~42000,进一步可以为18000~35000;分子量分布为1.2~2.0,进一步可以为1.4~1.8。本发明所述的低聚物的聚合度为5以下。
本发明一实施方式的聚酰胺56树脂,低聚物含量低,聚酰胺树脂的分子量分布窄、粘度适中。
于一实施方式中,聚酰胺56树脂的相对粘度可以为2.4、2.5、2.6、2.7、2.8、2.9等。
于一实施方式中,聚酰胺56树脂的含水率可以为350ppm、550ppm、650ppm、700ppm、750ppm、850ppm、900ppm等。
于一实施方式中,聚酰胺56树脂的数均分子量可以为16000、20000、22000、25000、28000、30000、32000、34000、38000、40000等。
于一实施方式中,聚酰胺56树脂的分子量分布可以为1.3、1.5、1.6、1.7、1.9等。
于一实施方式中,聚酰胺56树脂低聚物含量可以为0.3%、0.6%,1.0%。本发明所述的低聚物的聚合度为10以下,如果树脂中低聚物含量过高,则纺丝过程中,喷丝板下面会有低聚物析出凝结,析出过多会影响纺丝,导致纺丝时产生断单丝。且降低纺丝组件使用时间。
于一实施方式中,聚酰胺56树脂包含二氧化钛消光剂。
于一实施方式中,聚酰胺56树脂可以是半消光聚酰胺56树脂、消光聚酰胺56树脂或全消光聚酰胺56树脂。
于一实施方式中,聚酰胺56树脂为半消光聚酰胺56树脂,其二氧化钛含量为0.2~0.4wt%,进一步可以为0.25~0.35wt%,例如0.3wt%。
于一实施方式中,聚酰胺56树脂为全消光聚酰胺56树脂,其二氧化钛含量为1.2~2.0wt%,进一步可以为1.4~1.8wt%,例如1.5wt%、1.6wt%、1.7wt%。
于一实施方式中,聚酰胺56树脂为超消光聚酰胺56树脂,其二氧化钛 含量为2.5~5.0wt%,进一步可以为3.0~4.5wt%,例如2.8wt%、3.2wt%、3.5wt%、4.0wt%、4.2wt%、4.4wt%、4.8wt%。
于一实施方式中,二氧化钛在聚酰胺56树脂中的分散粒径为0.2~1.0μm,进一步地,二氧化钛分散粒径为0.2~0.6μm的粒子分布比例在98%以上,进一步地,二氧化钛粒子的分散粒径为0.2~0.6μm的比例为98.5%以上;进一步地,二氧化钛分散粒径为0.2~0.35μm的粒子分布比例在95%以上,进一步地,二氧化钛粒子的分散粒径为0.2~0.35μm的比例为96%以上;其中,上述关于二氧化钛百分含量的描述指的是二氧化钛粒子数目的百分含量。
本发明一实施方式提供了一种聚酰胺56纤维,可由上述聚酰胺56树脂通过熔融纺丝制得。
于一实施方式中,聚酰胺56纤维可以是半消光聚酰胺56纤维、消光聚酰胺56纤维、全消光聚酰胺56纤维;其中,半消光聚酰胺56纤维、消光聚酰胺56纤维、全消光聚酰胺56纤维可分别采用半消光聚酰胺56树脂、消光聚酰胺56树脂、全消光聚酰胺56树脂通过熔融纺丝制得。
于一实施方式中,聚酰胺56纤维包括未牵伸丝(UDY)、全牵伸丝(FDY)、预取向丝(POY)、高取向丝(HOY)、全取向丝(FOY)、加弹丝(DTY)、连续膨体变形长丝(BCF)、单丝、短纤维、工业丝,优选为预取向丝(POY)与加弹丝(DTY)。加弹丝又称作牵伸假捻丝或拉伸变形丝。
本发明一实施方式的聚酰胺56纤维,具有强度高、低温染色性、吸湿性、柔软性、耐磨性、高弹性等优点,在民用丝及工业用丝领域具有广泛的发展前景。
于一实施方式中,聚酰胺56纤维单丝纤度可以为0.5~5.0dtex,进一步可以为0.8~4.0dtex,再进一步可以为1.2~3.0dtex,更进一步可以为1.2~2.0dtex,例如1.0、1.5、1.8、2.5、3.5、4.5dtex等。
于一实施方式中,聚酰胺56纤维的断裂强度可以为3.3~5.5cN/dtex,进一步可以为3.5~4.8cN/dtex,再进一步可以为3.7~4.5cN/dtex,更进一步可以为3.9~4.2cN/dtex。
于一实施方式中,聚酰胺56纤维的断裂强度的变异系数为5.0%以下,进一步为3.0%以下,进一步为2.5%以下,进一步为2.0%以下。
于一实施方式中,聚酰胺56纤维的初始模量可以为15~35cN/dtex,进一步可以为22~33cN/dtex,再进一步可以为24~30cN/dtex,更进一步可以为26~28cN/dtex。
于一实施方式中,聚酰胺56纤维的沸水收缩率可以为≤7%,进一步可以为≤6.8%,再进一步可以为≤6.5%,更进一步可以为≤6.0%。
于一实施方式中,聚酰胺56纤维的回潮率可以为≥4.0%,进一步可以为≥4.5%,再进一步可以为≥5.0%,更进一步可以为≥5.5%。
于一实施方式中,聚酰胺56纤维的卷曲收缩率可以为35~60%,进一步可以为40~58%,更进一步可以为45~55%。
于一实施方式中,聚酰胺56纤维的卷曲稳定度可以为38~58%,进一步可以为40~56%,更进一步可以为48~54%,例如45%、50%、52%。
于一实施方式中,聚酰胺56纤维的染色均匀度(灰卡)为≥3.5级,进一步可以为≥4.0级,再进一步可以为≥4.5级,更进一步可以为≥5.0级。
于一实施方式中,聚酰胺56纤维的M率为≥92%,进一步可以为≥94%,再进一步可以为≥96%,更进一步可以为≥98%。
于一实施方式中,聚酰胺56纤维的皂洗牢度:褪色牢度可以为≥3.5级,进一步可以为≥4.0级,再进一步可以为≥4.5级,更进一步可以为≥5.0级;沾色牢度可以为≥3.5级,进一步可以为≥4.0级,再进一步可以为≥4.5级,更进一步可以为≥5.0级。
本发明一实施方式提供了一种上述聚酰胺56纤维的制备方法,包括如下步骤:
(a)将聚酰胺56树脂加热至熔融状态,形成聚酰胺56熔体;
(b)将聚酰胺56熔体通过熔体管道输送到纺丝箱体中,经计量泵准确计量后,注入到纺丝组件中,从喷丝孔高压挤出,得到初生纤维;
(c)对挤出的初生纤维进行冷却、上油、拉伸、卷绕,得到聚酰胺56预取向丝。
(d)将聚酰胺56预取向丝经导丝器到第一罗拉,通过止捻器,在第一热箱中进行热拉伸,然后采用冷却板冷却定型,通过假捻器、第二罗拉、网络器、上油、卷绕,得到聚酰胺56加弹丝。
于一实施方式中,步骤(a)的加热采用螺杆进行,其中一区温度可以为 245~265℃,进一步可以为250~260℃;二区温度可以为260~280℃,进一步可以为265~275℃;三区温度可以为275~285℃,进一步可以为278~283℃;四区温度可以为280~290℃。
于一实施方式中,步骤(b)的纺丝箱体温度可以为278~290℃,进一步可以为282~285℃;纺丝组件压力可以为13~22MPa,进一步可以为15~18MPa。
于一实施方式中,步骤(c)的冷却包括侧吹风冷却与环吹风冷却,优选环吹风冷却;风速可以为0.3~0.8m/s,进一步可以为0.45~0.6m/s;风温可以为18~23℃;风湿度可以为50~85%,进一步可以为55~70%。
于一实施方式中,步骤(c)的上油为油嘴上油;上油率可以为0.4~0.6wt%,进一步可以为0.45~0.55wt%;上油高度可以为80~150cm,进一步可以为90~130cm,再进一步可以为95~110cm。
于一实施方式中,步骤(c)的卷绕成型时的卷绕速度可以为4000~5000m/min,进一步可以为4200~4800m/min,再进一步可以为4300~4500m/min;超喂速度可以为10~100m/min,进一步可以为20~80m/min。
于一实施方式中,步骤(d)的热拉伸的倍数可以为1.1~1.4,进一步可以为1.15~1.35;热拉伸的温度可以为160~210℃,进一步可以为170~205℃,再进一步可以为180~195℃。
于一实施方式中,步骤(d)的假捻器速比D/Y可以为1.3~2.2,进一步可以为1.5~2.0;网络器内压缩空气压力可以为0.3~1.5MPa,进一步可以为0.4~1.2MPa,再进一步可以为0.5~1.0MPa。
于一实施方式中,步骤(d)的上油为油嘴上油;上油率可以为2.2~2.8wt%,进一步可以为2.3~2.6wt%。
于一实施方式中,步骤(d)的卷绕时的卷绕速度可以为300~800m/min,进一步可以为400~700m/min;卷绕时的卷绕超喂速度为1~8%,进一步可以为1.5~6%,再进一步可以为2~5%。
本发明一实施方式中,聚酰胺56纤维的生产原料可由生物法制成,为绿色材料,不依赖于石油资源并且不对环境造成严重的污染,同时能够降低二氧化碳的排放,减少温室效应的产生。
本发明一实施方式的聚酰胺56纤维,采用常规聚酰胺6与聚酰胺66的 纺丝设备即可制得,无需对纺丝设备进行改造,通过对聚酰胺56纤维树脂质量与纺丝工艺优化,即可提高制成率。
本发明一实施方式的聚酰胺56纤维,具有较好的力学性能、尺寸稳定性、吸湿性与染色性能,且在针织或梭织面料中的应用具有较好的消光效果。
本发明一实施方式提供了一种上述聚酰胺56纤维在针织或梭织面料中的应用。其中,聚酰胺56面料的透光率可以为≤50%,进一步可以为≤48%,再进一步可以为≤35%,更进一步可以为≤30%。
于一实施方式中,聚酰胺56纤维,具有高强、柔软、吸湿、蓬松(卷曲稳定度)、易染与消光性能,更适合应用于针织领域和民用服饰。用于针织与梭织面料的应用非限制性的包括应用在内衣、衬衫、西装、瑜伽服、羽绒服、冲锋衣、袜子、箱包、窗帘、鞋材、绣花线、商标、沙发布、工装、运动服、弹力带等领域。
本发明一实施方式的聚酰胺56纤维制备的面料消光性能较好,相同TiO 2含量消光效果优于酰胺6纤维与聚酰胺66纤维,且制备相同消光效果的聚酰胺56面料,要求添加的TiO 2含量更低,能够降低生产成本。
本发明一实施方式的半消光聚酰胺56面料的透光率可以为≤48%,全消光聚酰胺56面料透光率可以为≤33%,超消光聚酰胺56面料透光率可以为≤25%。
以下,结合具体实施例对本发明一实施方式的聚酰胺56树脂、聚酰胺56纤维及其制备做进一步说明。其中,如无特别说明,所用原料均可通过市售获得,所涉及的相关测试的详情如下;另外,本发明所涉及的参数均按照如下方法测得。
1)纤度:
按照GB/T 14343测定。
2)断裂强度、模量:断裂强度的测定可以参考GB/T 14344-2008化学纤维纤维拉伸性能试验方法;施加0.05±0.005cN/dtex预张力,加持距离500mm,拉伸速度500mm/min;模量=断裂伸长率为1%时对应的断裂强度×100。
3)回潮率的测定方法为:将洗涤后的纤维在松散状态下放入烘箱中烘干,再将烘干后的纤维样品放置在GB/T6529规定的标准大气中调湿至平衡; 进行回潮率测定,回潮率测定方法按照GB/T6503执行,其中烘箱的烘干温度为105℃,烘干。
4)沸水收缩率:
按照GB/6505测定,预加张力为0.05±0.005cN/dtex。
5)染色均匀度(灰卡)/级:
参照FZ/T 50008锦纶长丝染色均匀度试验方法,在98℃保持30min,判断染色均匀度。
6)树脂含水率:
卡尔费休水份滴定仪测定。
7)卷曲收缩率、卷曲稳定度:GB/T 6506-2001合成纤维变形丝卷缩性能试验方法。
8)皂洗牢度:
按照GB/T 3921.1-1997测定。
9)树脂的相对粘度:通过乌氏粘度计浓硫酸法:准确称量干燥后的聚酰胺树脂切片0.25±0.0002g,加入50mL浓硫酸(96wt%)溶解;在25℃恒温水浴槽中测量并记录浓硫酸流经时间t0和聚酰胺样品溶液流经时间t;
粘数计算公式:相对粘度=t/t 0
t—溶液流经时间;
t 0—溶剂流经时间。
10)树脂的数均分子量、分子量分布:凝胶渗透色谱(GPC)测定。
11)二氧化钛分散粒径:从聚酰胺树脂切片的透射电镜照片中测量并统计二氧化钛的分散粒径。
12)M率:M率=((染色均匀度≥4.5级的纤维重量)/所有染色纤维总重量)×100%。
13)消光性:将实施例和对比例制备获得的纤维利用同一喷气投纬织机织制、平幅皂洗机漂洗、液流染色机染色制备成统一规格的织物,通过设定特定的检测小组(10人)对织物进行目测评价消光性等级并取平均值,即通过在模拟太阳光的卤素灯和25℃温度条件下比较织物的表面消光性,消光性评价等级分为1、2、3、4、5级,表明消光性分别从低到非常高。
14)透光率:紫外可见分光光度计测定,扫描波长为300-800nm,面料 透光率指550nm波长处的透光率。
15)纤维制成率:制成率=(制备的成品纤维重量/总共投入树脂重量)×100%。
16)树脂中低聚物含量测试:
将聚酰胺样品在鼓风烘箱中130℃干燥7小时,然后放入铝塑袋封口后放入干燥器中冷却,然后准确称量聚酰胺样品2g,将聚酰胺样品置于250mL圆底烧瓶中,加入100mL水,用加热套于100℃加热回流24小时,取出聚酰胺样品用纯水清洗三遍,聚酰胺样品在130℃鼓风烘箱中干燥7小时,然后转移至事先称重的铝塑袋中,封口后放入干燥器中冷却,称铝塑袋与聚酰胺样品总重与铝塑袋重量相减,得到水煮后聚酰胺样品重量,通过对比聚酰胺样品水煮前、后重量差计算出低聚物含量。各样品均取平行样检测。
17)树脂中二氧化钛含量测试:煅烧法,将10g样品放入坩埚,在马弗炉中于480℃煅烧10h,称量坩埚内剩余物重量。
18)断裂强度的变异系数(CV)测试:参考GB/T 14344-2008化学纤维纤维拉伸性能试验方法。二氧化钛在纤维中分布均匀,则在拉伸过程中不同根数纤维同时断裂,断裂时对应的断裂强度一致,体现为变异系数小。
19)断丝次数:在初生纤维制备聚酰胺纤维过程中,进行人工统计断丝次数。
实施例1
聚酰胺56树脂的制备
(1)氮气条件下,将1,5-戊二胺、己二元酸和水混合均匀,制得聚酰胺56盐溶液;其中,1,5-戊二胺和己二元酸的摩尔比为1.05:1。
(2)向聚酰胺56盐溶液中加入粒径为0.2μm的二氧化钛,将盐溶液体系加热,使反应体系内压力升至2.4MPa,排气保压1.2h、再降压使反应体系内压力降至表压0MPa,再抽真空至真空度为-0.04MPa,维持上述真空度的时间为35min,得到聚酰胺56熔体;其中,二氧化钛的添加量为相同条件下不添加二氧化钛时制备的树脂质量的0.27wt%,保压结束时反应体系的温度为260℃,降压结束后反应体系的温度为275℃,抽真空后反应体系的温度为280℃。
(3)将聚酰胺56熔体通过熔体过滤器进行过滤,熔体过滤器中过滤网目数为10μm,之后切粒、干燥得到聚酰胺56树脂;其中,干燥处理的温度为110℃,干燥处理的时间为20h。
聚酰胺56纤维的制备
(a)将上述制得的聚酰胺56树脂加热至熔融状态,形成聚酰胺56熔体;加热采用螺杆进行,其中一区温度为253℃,二区温度为266℃,三区温度为278℃,四区温度为288℃。
(b)将聚酰胺56熔体通过熔体管道输送到纺丝箱体中,经计量泵准确计量后,注入到纺丝组件中,从喷丝孔高压挤出;其中,纺丝箱体的温度为285℃,纺丝组件压力为16.2MPa。
(c)对挤出的初生纤维进行冷却、上油、拉伸、卷绕,得到聚酰胺56预取向丝;其中,冷却采用环吹风冷却,风速为0.48m/s,风温为20℃,风湿度为80%;上油为油嘴上油,上油率为0.5wt%,上油高度为110cm;卷绕成型时的卷绕速度为4300m/min,超喂速度60m/min。
(d)将聚酰胺56预取向丝经导丝器到第一罗拉,通过止捻器,在第一热箱中进行热拉伸,然后采用冷却板冷却定型,通过假捻器、第二罗拉、网络器、油嘴上油、卷绕,得到聚酰胺56加弹丝;
其中,热拉伸的倍数为1.3,热拉伸的温度为185℃;假捻器速比D/Y为1.8;网络器内压缩空气压力为0.8MPa;上油为油嘴上油,上油率为2.5wt%;卷绕时的卷绕速度为600m/min,卷绕时的卷绕超喂速度为2.5%。
实施例2
聚酰胺56树脂的制备
采用与实施例1基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为0.34wt%。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例3
聚酰胺56树脂的制备
采用与实施例1基本相同的原料,区别仅仅在于:步骤(2)真空度为-0.07MPa,维持时间为10min,步骤(2)中二氧化钛的添加量为0.35wt%。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例4
聚酰胺56树脂的制备
采用与实施例1基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为1.23wt%,步骤(3)中熔体过滤器中过滤网目数为5μm。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例5
聚酰胺56树脂的制备
采用与实施例1基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为1.56wt%,步骤(3)中熔体过滤器中过滤网目数为15μm。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例6
聚酰胺56树脂的制备
采用与实施例1基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为1.84wt%。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例7
聚酰胺56树脂的制备
采用与实施例1基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为2.56wt%。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例8
聚酰胺56树脂的制备
采用与实施例1基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为3.05wt%。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例9
聚酰胺56树脂的制备
采用与实施例1基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为4.05wt%。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例10
聚酰胺56树脂的制备
采用与实施例1基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于: 步骤(2)中二氧化钛的添加量为0.34wt%,抽真空至真空度为-0.06MPa,抽真空后反应体系的温度为285℃。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例11
聚酰胺56树脂的制备
采用与实施例10基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为1.54wt%。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例12
聚酰胺56树脂的制备
采用与实施例10基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(2)中二氧化钛的添加量为2.53wt%。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
实施例13
聚酰胺56纤维的制备
采用实施例10制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1基本相同:区别仅仅在于:纺丝组件中含有10μm无纺布过滤网。
实施例14
聚酰胺56纤维的制备
采用实施例11制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与 实施例1基本相同:区别仅仅在于:纺丝组件中含有15μm无纺布过滤网。
实施例15
聚酰胺56纤维的制备
采用实施例11制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1基本相同:区别仅仅在于:纺丝组件中含有20μm无纺布过滤网。
对比例1
聚酰胺56树脂的制备
采用与实施例2基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(3)中未采用熔体过滤器过滤,直接切粒得到聚酰胺56树脂。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
对比例2
聚酰胺56树脂的制备
采用与实施例5基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(3)中未采用熔体过滤器过滤,直接切粒得到聚酰胺56树脂。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
对比例3
聚酰胺56树脂的制备
采用与实施例7基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(3)中未采用熔体过滤器过滤,直接切粒得到聚酰胺56树脂。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
对比例4
聚酰胺6纤维的制备
将聚酰胺6树脂(粘度2.7,分子量分布1.59,低聚物含量0.61%,含水率612ppm)与0.33wt%的二氧化钛(粒径0.2um)混合,作为纺丝材料,通过与实施例1相同的纺丝过程进行纺丝,制得聚酰胺6纤维;其中,二氧化钛的含量以聚酰胺6树脂的质量为基准。
对比例5
聚酰胺66纤维的制备
将聚酰胺66树脂(粘度2.68,分子量分布1.61,低聚物含量0.62%,含水率605ppm)与0.32wt%的二氧化钛(粒径0.2um)混合,作为纺丝材料,通过与实施例1相同的纺丝过程进行纺丝,制得聚酰胺66纤维;其中,二氧化钛的含量以聚酰胺66树脂的质量为基准。
对比例6
聚酰胺56纤维的制备
将聚酰胺56树脂(粘度2.68,分子量分布1.61,低聚物含量0.61%,含水率607ppm)与0.26wt%的二氧化钛(粒径0.2um)混合,作为纺丝材料,通过与实施例1相同的纺丝过程进行纺丝,制得聚酰胺56纤维;其中,二氧化钛的含量以聚酰胺56树脂的质量为基准。
对比例7
聚酰胺56树脂的制备
采用与实施例5基本相同的原料、工艺制备聚酰胺56树脂,区别仅在于:步骤(3)中熔体过滤器中过滤网目数为20μm。
聚酰胺56纤维的制备
采用上述制得的聚酰胺56树脂为原料进行纺丝,具体纺丝过程与实施例1相同。
对实施例1-12与对比例1-3中制备的聚酰胺56树脂进行相关性能测试,结果如表1所示。
表1实施例与对比例的聚酰胺56树脂性能
Figure PCTCN2021140881-appb-000001
对实施例1-15、对比例1-7中制备的聚酰胺纤维进行相关性能测试,结果如表2、表3所示。
表2实施例与对比例的聚酰胺纤维性能
Figure PCTCN2021140881-appb-000002
Figure PCTCN2021140881-appb-000003
表3实施例与对比例的聚酰胺纤维性能
Figure PCTCN2021140881-appb-000004
除非特别限定,本发明所用术语均为本领域技术人员通常理解的含义。
本发明所描述的实施方式仅出于示例性目的,并非用以限制本发明的保护范围,本领域技术人员可在本发明的范围内作出各种其他替换、改变和改进,因而,本发明不限于上述实施方式,而仅由权利要求限定。

Claims (17)

  1. 一种聚酰胺56树脂,包含二氧化钛,所述二氧化钛的含量为0.2~5.0wt%,98%以上的所述二氧化钛的分散粒径为0.2~0.6μm。
  2. 根据权利要求1所述的聚酰胺56树脂,95%以上的所述二氧化钛的分散粒径为0.2~0.35μm。
  3. 根据权利要求1所述的聚酰胺56树脂,所述二氧化钛的含量为0.2~0.4wt%、1.2~2.0wt%或者2.5~5.0wt%。
  4. 根据权利要求1所述的聚酰胺56树脂,所述聚酰胺56树脂的相对粘度为2.3~3.0;和/或,所述聚酰胺56树脂的含水率为300~1000ppm;和/或,所述聚酰胺56树脂的分子量分布为1.2~2.0;和/或,所述聚酰胺56树脂的低聚物含量为1.5wt%以下。
  5. 一种聚酰胺56树脂的制备方法,包括将单体通过聚合反应制得聚酰胺56树脂,所述聚酰胺56树脂包含二氧化钛,其中,所述二氧化钛于聚合反应过程中加入。
  6. 根据权利要求5所述的方法,其中,所述单体包括1,5-戊二胺和己二酸,所述聚合反应过程包括如下步骤:
    (1)制备聚酰胺56盐溶液;
    (2)以所述聚酰胺56盐溶液为原料进行聚合,制得聚酰胺56熔体;
    在所述步骤(1)和/或所述步骤(2)中加入所述二氧化钛。
  7. 根据权利要求6所述的方法,其中,所述步骤(2)包括:将所述聚酰胺56盐溶液加热使所述聚酰胺56盐溶液反应体系的压力升至0.3~2.4MPa,排气保压0.2~2.5h,再降压使所述反应体系内的压力降至0~0.3MPa,之后抽真空使所述反应体系内的真空度为-0.001~-0.08MPa。
  8. 根据权利要求7所述的方法,其中,保压过程结束时所述反应体系的温度为230~265℃;和/或,
    降压过程结束后所述反应体系的温度为240~275℃;和/或,
    抽真空后所述反应体系的温度为250~285℃;
    和/或,抽真空后维持所述真空度的时间为10~50min。
  9. 根据权利要求6所述的方法,包括将所述聚酰胺56熔体通过过滤、切粒、干燥后得到所述聚酰胺56树脂。
  10. 一种聚酰胺56纤维,由权利要求5至9中任一项所述的方法制得的聚酰胺56树脂或者权利要求1至4中任一项所述的聚酰胺56树脂通过熔融纺丝制得,或者由权利要求5至8中任一项所述的方法制得的聚酰胺56熔体直接纺丝制得。
  11. 根据权利要求10所述的聚酰胺56纤维,其单丝纤度为0.5~5.0dtex;和/或,断裂强度为3.3~5.5cN/dtex;和/或,初始模量为15~35cN/dtex;和/或,沸水收缩率≤7%;和/或,回潮率为≥4.0%;和/或,卷曲收缩率为35~60%,卷曲稳定度为38~58%;和/或,染色均匀度为≥3.5级;和/或,M率为≥92%,褪色牢度为≥3.5级;和/或,沾色牢度为≥3.5级。
  12. 根据权利要求11所述的聚酰胺56纤维,其包括未牵伸丝、全牵伸丝、预取向丝、高取向丝、全取向丝、加弹丝、连续膨体变形长丝、短纤维、单丝及工业丝中的一种或多种,进一步优选为预取向丝和加弹丝。
  13. 一种权利要求10至12中任一项所述的聚酰胺56纤维的制备方法,包括如下步骤:
    (a)将所述聚酰胺56树脂加热至熔融状态,得到聚酰胺56熔体;
    (b)将所述聚酰胺56熔体送入纺丝箱体中,注入到纺丝组件中,从喷丝孔挤出初生纤维;
    (c)对所述初生纤维进行冷却处理、上油处理、拉伸处理、卷绕处理,得到聚酰胺56预取向丝;
    (d)将所述聚酰胺56预取向丝经第一罗拉进行热拉伸处理、然后冷却定型,再通过假捻器、第二罗拉、网络器、上油处理、卷绕处理,得到聚酰胺56纤维。
  14. 根据权利要求13所述的方法,其中,在所述步骤(a)中,所述加热采用螺杆进行,一区温度为245~265℃;二区温度为260~280℃;三区温度为275~285℃;四区温度为280~290℃;和/或,
    在所述步骤(b)中,所述纺丝箱体的温度为278~290℃,所述纺丝组件的压力为13~22MPa。
  15. 根据权利要求13所述的方法,其中,在所述步骤(c)中,所述冷却处理采用侧吹风冷却或环吹风冷却,风温为18~23℃,风湿度为50~85%;和/或,所述上油处理为油嘴上油,上油率为0.4~0.6wt%;和/或,所述卷绕处理 的卷绕速度为4200~5000m/min,超喂速度为10~100m/min。
  16. 根据权利要求13所述的方法,其中,在所述步骤(d)中,所述热拉伸处理的倍数为1.1~1.4,所述热拉伸处理的温度为160~210℃;所述假捻器速比D/Y为1.3~2.2;所述网络器内压缩空气的压力为0.3~1.5MPa;所述上油处理为油嘴上油,上油率为2.2~2.8wt%;所述卷绕处理的卷绕速度为300~800m/min,卷绕时的卷绕超喂速度为1~8%。
  17. 一种权利要求10至12中任一项所述的聚酰胺56纤维或者权利要求13至16中任一项所述的方法制得的聚酰胺56纤维在针织或梭织面料中的应用。
PCT/CN2021/140881 2021-12-23 2021-12-23 一种聚酰胺56树脂、纤维及其制备方法与应用 WO2023115462A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247020894A KR20240107366A (ko) 2021-12-23 2021-12-23 폴리아미드 56 수지 및 섬유, 이의 제조 방법, 및 이의 용도
PCT/CN2021/140881 WO2023115462A1 (zh) 2021-12-23 2021-12-23 一种聚酰胺56树脂、纤维及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140881 WO2023115462A1 (zh) 2021-12-23 2021-12-23 一种聚酰胺56树脂、纤维及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023115462A1 true WO2023115462A1 (zh) 2023-06-29

Family

ID=86901145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140881 WO2023115462A1 (zh) 2021-12-23 2021-12-23 一种聚酰胺56树脂、纤维及其制备方法与应用

Country Status (2)

Country Link
KR (1) KR20240107366A (zh)
WO (1) WO2023115462A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752125A (zh) * 2005-10-25 2006-03-29 辽宁银珠化纺集团有限公司 全消光聚酰胺66树脂及纤维的制造方法
TW201502337A (zh) * 2013-07-05 2015-01-16 Chain Yarn Co Ltd 尼龍6的改質方法
CN105504266A (zh) * 2016-01-05 2016-04-20 北京服装学院 一种消光聚酰胺-6及其制备方法
CN105986327A (zh) 2014-12-19 2016-10-05 展颂股份有限公司 消光聚酰胺56纤维及其制造方法
CN106884217A (zh) * 2013-10-28 2017-06-23 上海凯赛生物技术研发中心有限公司 尼龙纤维及其制备方法
CN107653507A (zh) * 2017-09-06 2018-02-02 广东大红马纺织新材料有限公司 一种二氧化钛改性聚酰胺纤维制备方法
CN110054891A (zh) 2018-01-19 2019-07-26 上海凯赛生物技术研发中心有限公司 一种消光聚酰胺56母粒、消光纤维及制备方法
CN112410916A (zh) * 2019-08-22 2021-02-26 上海凯赛生物技术股份有限公司 一种低沸水收缩率的聚酰胺56纤维及其制备方法和应用
CN112680816A (zh) * 2019-10-18 2021-04-20 上海凯赛生物技术股份有限公司 聚酰胺56纤维及其制备方法和应用
CN113737307A (zh) * 2020-05-28 2021-12-03 上海凯赛生物技术股份有限公司 聚酰胺5x消光纤维、聚酰胺5x树脂及其制备方法与应用
CN113736249A (zh) * 2020-05-28 2021-12-03 上海凯赛生物技术股份有限公司 一种聚酰胺56树脂、纤维及其制备方法与应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752125A (zh) * 2005-10-25 2006-03-29 辽宁银珠化纺集团有限公司 全消光聚酰胺66树脂及纤维的制造方法
TW201502337A (zh) * 2013-07-05 2015-01-16 Chain Yarn Co Ltd 尼龍6的改質方法
CN106884217A (zh) * 2013-10-28 2017-06-23 上海凯赛生物技术研发中心有限公司 尼龙纤维及其制备方法
CN105986327A (zh) 2014-12-19 2016-10-05 展颂股份有限公司 消光聚酰胺56纤维及其制造方法
CN105504266A (zh) * 2016-01-05 2016-04-20 北京服装学院 一种消光聚酰胺-6及其制备方法
CN107653507A (zh) * 2017-09-06 2018-02-02 广东大红马纺织新材料有限公司 一种二氧化钛改性聚酰胺纤维制备方法
CN110054891A (zh) 2018-01-19 2019-07-26 上海凯赛生物技术研发中心有限公司 一种消光聚酰胺56母粒、消光纤维及制备方法
CN112410916A (zh) * 2019-08-22 2021-02-26 上海凯赛生物技术股份有限公司 一种低沸水收缩率的聚酰胺56纤维及其制备方法和应用
CN112680816A (zh) * 2019-10-18 2021-04-20 上海凯赛生物技术股份有限公司 聚酰胺56纤维及其制备方法和应用
CN113737307A (zh) * 2020-05-28 2021-12-03 上海凯赛生物技术股份有限公司 聚酰胺5x消光纤维、聚酰胺5x树脂及其制备方法与应用
CN113736249A (zh) * 2020-05-28 2021-12-03 上海凯赛生物技术股份有限公司 一种聚酰胺56树脂、纤维及其制备方法与应用

Also Published As

Publication number Publication date
KR20240107366A (ko) 2024-07-09

Similar Documents

Publication Publication Date Title
WO2021088250A1 (zh) 一种聚酰胺5x工业丝及其制备方法与应用
CN110054891A (zh) 一种消光聚酰胺56母粒、消光纤维及制备方法
CN106835329B (zh) 一种聚酰胺5x中强丝及其制备方法
CN107313126A (zh) 一种通过高速纺丝生产石墨烯改性锦纶6纤维的方法
RU2514757C2 (ru) Найлоновое штапельное волокно с высокой несущей способностью и изготовленные из него смешанные найлоновые пряжи и материалы
CN111411405B (zh) 一种高强聚酰胺56工业丝及其制备方法与应用
CN102864507B (zh) 熔体直纺超细旦多孔差别化聚酯纤维的制造方法及其产品
WO2022048664A1 (zh) 一种生物基聚酰胺短纤维聚纺牵定一体化成型制备方法及设备
WO2021031529A1 (zh) 一种低沸水收缩率的聚酰胺56纤维及其制备方法和应用
CN112680816B (zh) 聚酰胺56纤维及其制备方法和应用
CN109943913A (zh) 一种柔软吸湿易染卷曲纤维及其制备方法
WO2024139041A1 (zh) 一种粗旦无卷曲哑铃形全消光聚酯短纤维的制备方法
CN109930240A (zh) 一种长丝及其制备方法
CN112458583B (zh) 一种对位芳纶纤维及其制备方法和在制备熔融金属飞溅防护服装方面的应用
CN111519276A (zh) 一种高收缩聚酰胺纤维及其制备方法和应用
CN102877154A (zh) 一种有机颜料微胶囊涤纶色丝的制备方法
WO2023115462A1 (zh) 一种聚酰胺56树脂、纤维及其制备方法与应用
CN113736249A (zh) 一种聚酰胺56树脂、纤维及其制备方法与应用
CN113737307A (zh) 聚酰胺5x消光纤维、聚酰胺5x树脂及其制备方法与应用
CN114232127B (zh) 一种超低热收缩率聚酯短纤维及其制备方法
CN114250527B (zh) 一种聚酰胺5x全牵伸丝及其制备方法与应用
CN114981491B (zh) 一种聚酰胺5x纤维及其制备方法与应用
CN103305928A (zh) 一种超细旦仿真丝的热处理加工工艺
CN104294385B (zh) 直纺环吹风20d系列涤纶全牵伸丝的制作工艺
CN104294394B (zh) Poy复合长丝多道预网络长丝的加工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247020894

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247020894

Country of ref document: KR