WO2023113552A1 - High-performance hybrid composite based on graphite and two-dimensional transition metal dichalcogenide and method for preparing same - Google Patents

High-performance hybrid composite based on graphite and two-dimensional transition metal dichalcogenide and method for preparing same Download PDF

Info

Publication number
WO2023113552A1
WO2023113552A1 PCT/KR2022/020620 KR2022020620W WO2023113552A1 WO 2023113552 A1 WO2023113552 A1 WO 2023113552A1 KR 2022020620 W KR2022020620 W KR 2022020620W WO 2023113552 A1 WO2023113552 A1 WO 2023113552A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
hybrid composite
transition metal
cation
metal dichalcogenide
Prior art date
Application number
PCT/KR2022/020620
Other languages
French (fr)
Korean (ko)
Inventor
윤하나
정규남
양정훈
유정준
류명현
김태희
임강훈
김병현
이영아
장규연
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2023113552A1 publication Critical patent/WO2023113552A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a hybrid composite based on graphite and a two-dimensional transition metal dichalcogenide, a method for preparing the same, an electrode active material including the hybrid composite, and an energy storage device including the same.
  • the two-dimensional structural materials above are thin and strong in nanometers, and have various properties such as metallic, semiconductor, and non-conductive properties, so they can be used in various fields such as electronic devices, sensors, and energy.
  • a two-dimensional heterogeneous multi-layer material it is possible to modulate physical properties according to the stacked combination of a single layer and to realize synergistic coupling between physical properties of a two-dimensional material.
  • TMD transition metal dichalcogenide
  • heterogeneous multilayer two-dimensional materials are expected to have high potential to be adopted in various high-value applications such as electronics, optoelectronics, energy, sensors, and biomedicine in the future.
  • the total global market size of 2D materials is expected to increase more than 23 times to about 130 million dollars by 2030.
  • the total domestic market size is expected to be $17.8 million in 2030, and the average annual growth rate (CAGR) between 2020 and 2030 is expected to be 36.72%.
  • CAGR average annual growth rate
  • two-dimensional chalcogenide materials and heterogeneous multi-layer two-dimensional materials have very limitless possibilities not only in the market for the material itself but also in their application fields.
  • high-efficiency low-power devices and The possibility of application to material development is very high.
  • lithium ion batteries as secondary batteries for electric vehicles
  • the development of new high-capacity materials capable of rapid charging is required in order to satisfy long-distance driving and consumer convenience.
  • lithium ions and electrons from the positive electrode go into the negative electrode when the battery is charged, and vice versa, lithium ions and electrons from the negative electrode move to the positive electrode when the battery is discharged.
  • how fast the negative electrode can accept lithium ions is a key factor that determines the charging speed of the lithium ion battery, which is greatly influenced by the composition of the negative electrode material and the characteristics of the electrode structure.
  • Graphite which is most commonly used as an existing anode material, is inexpensive and has excellent structural stability.
  • the downside is that it's not enough.
  • silicon oxide (SiOx) anode materials are aiming for the position with high specific capacity, but the volume expansion of the material is severe during the cycle process, which causes the electrode structure to be rapidly destroyed, resulting in a short lifespan.
  • Two-dimensional materials known as transition metal dichalcogenide materials have attracted considerable attention in many research fields because they have unique electrical, mechanical, and optical properties, and show high capacity in terms of energy storage, so they are promising as LIB cathode materials. .
  • two-dimensional heterogeneous multilayer materials can adjust the distance between layers, so if graphite and heterogeneous multilayer materials are properly mixed, it is possible to realize materials with excellent high-capacity characteristics and structural stability, as well as to receive lithium ions smoothly during rapid charging. hopefully it can be picked up.
  • the hybrid composite when used as a negative electrode material for a secondary battery, the need for additional treatment to improve the capacity characteristics and rate characteristics considering high-speed charging compared to conventional negative electrode materials is recognized, and the present invention is derived could.
  • the present invention has been made to solve the above problems, and one embodiment of the present invention provides a method for preparing a hybrid composite.
  • Another embodiment of the present invention provides a hybrid composite.
  • a method for producing a hybrid composite comprising: preparing a mixture by mixing graphite and a transition metal dichalcogenide material; incorporating a solution containing the first cation into the mixture; intercalating the first cation into the graphite and transition metal dichalcogenide materials; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; and simultaneously exfoliating and re-stacking at least a portion of the surface of the graphite and the transition metal dichalcogenide material to obtain a hybrid composite.
  • obtaining a hybrid composite by simultaneously exfoliating and re-laminating at least a portion of the surface of the graphite and a transition metal dichalcogenide material; Afterwards, powdering the hybrid composite; may be characterized in that it further comprises.
  • powdering the hybrid composite may be characterized by further comprising; sphericalizing the hybrid composite afterward.
  • the step of spheronizing the hybrid composite may be characterized by performing first stirring at a speed of 1300 to 2400 rpm and performing second stirring at a speed of 3500 to 5000 rpm.
  • the first stirring may be performed for 1 to 7 minutes, and the second stirring may be performed for 30 to 75 minutes.
  • the average particle diameter of the silicon particles may be characterized in that 300nm or less.
  • the low crystalline carbon material may be petroleum-based pitch, coal-based pitch, mesophase pitch, low molecular weight heavy oil, or a combination thereof.
  • the content of the transition metal dichalcogenide is 1 part by weight to 250 parts by weight based on 100 parts by weight of graphite it could be
  • the transition metal dichalcogenide material may be at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , and NbSe 2 .
  • the first cation is an alkali metal cation
  • the second cation is 1 selected from the group consisting of ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn), and hydronium (H 3 O + ) It may be characterized as being a cation of the species.
  • Another aspect of the present invention is,
  • It may further include silicon particles formed by being inserted into the surface of the graphite or the layered structure, and the average particle diameter of the silicon particles may be 300 nm or less.
  • It may be characterized in that it further comprises a low crystalline carbon material layer formed on the surface of the graphite and carbonized by heat treatment.
  • An electrode active material comprising the hybrid composite is provided.
  • an anode containing the electrode active material cathode; and a separator interposed between the anode and the cathode; and an electrolyte.
  • charge/discharge capacity, coulombic efficiency and cycle characteristics of an energy storage device such as a lithium secondary battery are improved by improving intercalation and deintercalation efficiency, conductivity and structural stability. It is possible to provide a hybrid composite that can further increase.
  • anode material capable of high-speed charging by improving rate performance
  • a hybrid composite which is a raw material of such an anode material, can be mass-produced through a relatively simple process.
  • FIG. 1 is a flowchart illustrating a method for preparing a hybrid composite according to an embodiment of the present invention.
  • Figure 2 is according to one embodiment of the present invention, (a) surface SEM picture of graphite and (b, c) ex- (Graphite / MoS 2 ) surface SEM and SEM BSE pictures of the two hybrid composite material.
  • Figure 3 is (a) surface SEM, (b ) cross-sectional SEM BSE photograph, (c) cross-sectional STEM- This is a picture of BF.
  • STEM-EDS mapping pictures are STEM-EDS mapping pictures.
  • Electrochemical characteristics analysis results of two types of hybrid composite materials. (a) Charge/discharge voltage curve in the initial cycle, (b) capacity characteristics for each current density.
  • Graphite having an average particle diameter (D50) of 20 ⁇ m and molybdenum [IV] disulfide (MoS 2 ) powder having an average particle diameter of less than 2 ⁇ m are mixed in a weight ratio of 1:4, 1:2, and 4:1.
  • the powder is put into a joint Erlenmeyer flask, and external air is prevented from entering using a rubber sleeve snap septa.
  • only the inflow and outflow of external gas is possible through the injection needle, thereby creating a nitrogen environment inside the flask.
  • an n-butyl lithium solution (2.5 M n-BuLi solution in hexane, Acros Organics) was injected into the flask through a syringe, and then ultrasonicated for 3 hours to obtain graphite and molybdenum disulfide powder. It is sufficiently dispersed in the n-BuLi solution to allow lithium ions (Li + ) to be evenly inserted between graphite or molybdenum disulfide layers. At this time, 8 mL of n-BuLi was injected per 1 g of graphite and molybdenum disulfide powder.
  • ex-(Graphite/MoS 2 ) two-type hybrid composite form the material.
  • the obtained powder is dried at a temperature of about 80 degrees for 12 hours or more.
  • the agglomerated powder was ground using a pestle and classified through a 45 ⁇ m sieve to prepare ex-(Graphite/MoS 2 ) two types of hybrid composite materials.
  • a method of making a slurry for an electrode is as follows. 70 wt% of the active material, 20 wt% of SuperP as a conductive material, and 10 wt% of Polyvinylidene Fluoride (PVDF) as a binder were mixed with N-methyl-2-pyrrolidone (N-methyl-2- pyrrolidone, NMP) to prepare a slurry. The slurry was applied to a thickness of 100 ⁇ m by a doctor blade method on a copper foil having a thickness of 10 ⁇ m. Then, an electrode was prepared by vacuum drying and rolling at a temperature of 120° C. for 12 hours.
  • PVDF Polyvinylidene Fluoride
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • the lithium secondary battery using the hybrid composite negative electrode according to the embodiment has a current density of 35 mA / g (corresponding to about 0.01 C) in a constant current-constant voltage (CC-CV) method under constant temperature conditions, 0.01 - 2.5 V vs. Charging and discharging were performed in the voltage range of Li/Li + . At this time, the charge/discharge efficiency was calculated by measuring the charge capacity and discharge capacity in the first cycle. (Initial efficiency calculation)
  • life characteristics evaluation is performed by repeating charging and discharging 100 times in the same voltage range in the constant current-constant voltage (CC-CV) method at a current density of 200 mA / g (corresponding to about 0.5 C), and then measuring the capacity retention rate did
  • the charge / discharge rate characteristics were analyzed at various current densities of 200, 400, 800, 1200, and 2400 mA/g.
  • the graphite and molybdenum disulfide two-type composite material (ex-(Graphite/MoS 2 )) powder prepared according to Example 1 was mixed for about 5 minutes at a speed of 2000 rpm in a Nobilta mixer (Hosokawa Co.), and then mixed at 4000 rpm. Mixed homogeneously for a total of 1 hour at speed.
  • the prepared sample was ground using a mortar and classified using a 45 ⁇ m sieve to prepare a spherical ex-(Graphite/MoS 2 ) two-type hybrid composite material.
  • a negative electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except for the negative electrode active material, and electrochemical performance was evaluated.
  • the exfoliated graphite and molybdenum disulfide composite material (ex-(Graphite/MoS 2 )) prepared according to Example 1 is mixed with 5 to 10% by weight of silicon nanoparticles having an average particle diameter of 300 nm or less.
  • the prepared powder was mixed for about 5 minutes at a speed of 2000 rpm in a Nobilta mixer (Hosokawa Co.), and then homogeneously mixed for a total of 1 hour at a speed of 4000 rpm.
  • the prepared sample was ground using a mortar and classified using a 45 ⁇ m sieve to prepare a spherical ex-(Graphite/MoS 2 /Si) three-type hybrid composite material.
  • a negative electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except for the negative electrode active material, and electrochemical performance was evaluated.
  • the exfoliated graphite and molybdenum disulfide composite material prepared according to Example 1 (ex-(Graphite/MoS 2 )), 5 to 10% by weight of silicon nanopowder having an average particle diameter of 300 nm or less, and pitch as a carbon precursor ) at 10% by weight.
  • the prepared powder was mixed for about 5 minutes at a speed of 2000 rpm in a Nobilta mixer (Hosokawa Co.), and then homogeneously mixed for a total of 1 hour at a speed of 4000 rpm.
  • the mixture was placed in a tube furnace and heat-treated by maintaining at 500 degrees for 30 minutes and at 900 degrees for 30 minutes under a N 2 atmosphere.
  • a negative electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except for the negative electrode active material, and electrochemical performance was evaluated.
  • Figure 2 shows a SEM picture of graphite and ex- (Graphite/MoS 2 ) two hybrid composite materials according to Example 1 of the present invention.
  • Figure 2a shows a SEM picture of the surface of graphite used in the manufacture of a composite material, has a diameter of 20 to 50 ⁇ m, and has a spherical shape in which a lot of the edge surface of the graphite sheet is exposed.
  • 2b and c show SEM pictures and SEM BSE (backscattered electron) mode pictures of the ex-(Graphite/MoS 2 ) two-type hybrid composite material. Through this, a structure in which exfoliated MoS 2 nanosheets are stacked between the graphite particle surface and the edge surface of the graphite sheet can be confirmed.
  • Figure 3 is an ex- (Graphite / MoS 2 ) according to an embodiment 2 of the present invention SEM and TEM pictures after performing mechanical milling using a Nobilta mixer for the purpose of spheroidization and density improvement of the two hybrid composite material Shows .
  • Figure 3a shows surface SEM
  • Figure 3b cross-sectional SEM BSE
  • Figure 3c shows cross-sectional STEM bright field (BF) images.
  • Figure 4 shows a SEM picture of the ex- (Graphite / MoS 2 ) / Si hybrid composite material according to Example 3 of the present invention.
  • 4a and b show SEM and SEM EDS mapping pictures at low magnification, and it was confirmed that silicon nanoparticles were generally distributed on the surface of the ex-(Graphite/MoS 2 ) two-type composite material.
  • FIG. 4c-e confirms a structure in which exfoliated MoS 2 nanosheets and silicon nanoparticles are distributed on the surface of graphite particles.
  • the edge surface of the graphite sheet was hardly exposed, and the smooth surface shape could be observed.
  • 4f shows a photograph of only silicon nanoparticles, and it was confirmed that they had a size of 25 to 90 nm in diameter.
  • FIG. 5 shows the results of the ex- (Graphite / MoS 2 ) / Si / C three-type hybrid composite material according to Example 4 of the present invention STEM picture and STEM-EDS mapping picture.
  • 5a is STEM-BF (bright field)
  • FIGS. 5b and c are STEM-HAADF (high angle annular dark field-scanning) photographs
  • FIGS. 5d-h are STEM-EDS mapping photographs. is shown.
  • the exfoliated MoS 2 nanosheets were stacked on the surface of the graphite particles and between the edge surfaces of the graphite sheets, and the silicon nanoparticles were also well coated on the surface of the graphite and MoS 2 composite material.
  • FIG. 6 shows graphite, MoS 2 , ex-(Graphite/MoS 2 ) 2 types, and ex-(Graphite/MoS 2 )/Si 3 types hybrid composite material-based lithium secondary battery's initial cycle charge/discharge voltage curve and current density 200mA It shows the lifetime characteristics at /g.
  • an electrolyte containing 1 wt% of VC was used, and two types of Graphite/Si and ex-(Graphite/MoS 2 )/Si were used.
  • lithium ion battery performance was evaluated using an electrolyte containing additives such as FEC 5% and VC 2%.
  • the capacity retention rate compared to the initial capacity is high at the 50th cycle, but the capacity value of about 330 mAh/g lower than the theoretical capacity ⁇ 372 mAh/g can be confirmed.
  • the initial capacity is about 690 mAh/g, which is high, but the capacity drops rapidly with cycles, and it was confirmed that the capacity value of about 310 mAh/g was shown in the 50th cycle.
  • the GM12 two-type hybrid composite electrode manufactured with a mass ratio of ex-(Graphite/MoS 2 ) at a ratio of 1:2, it shows a high initial capacity value of about 615 mAh/g, and about 580 mAh/g at the 100th cycle It showed a capacity value of , and a high capacity retention rate of about 94% compared to the initial capacity was confirmed. It was confirmed that the electrochemical characteristics of the electrode using the graphite and MoS 2 composite material were better than when graphite or MoS 2 was used alone.
  • the spherical GM12-NB1hr composite electrode showed a capacity value of about 636 mAh/g at the 100th cycle, and the remaining capacity at the 100th cycle compared to GM12 It was confirmed that this increased by about 10%. As a result, it was confirmed that the capacity and lifespan characteristics of the ex-(Graphite/MoS 2 ) two-type hybrid composite-based lithium secondary battery were improved through mechanical milling.
  • the capacity values were 494 and 641 mAh/g, respectively, at the 100th cycle, compared to the initial capacity, respectively. It was confirmed that the capacity retention rate was about 85% and 100%.
  • the GM41 composite electrode with a mass ratio of graphite and MoS 2 of 4:1 by reducing the content ratio of MoS 2 in the ex-(Graphite/MoS 2 ) composite material it is excellent for use as a negative electrode for lithium secondary batteries.
  • the voltage profile was shown. And at the 100th cycle under the current density condition of 200 mA/g, it showed a capacity value of about 550 mAh/g, an increase of about 170% (about 1.7 times) compared to the commercial graphite electrode (about 320 mAh/g), compared to the initial capacity A high capacity retention rate of 100% was confirmed.
  • GM12 two-type hybrid composite electrode prepared at a mass ratio of ex-(Graphite/MoS 2 ) at a ratio of 1:2 and a lithium secondary battery based on a spherical GM12-NB1hr composite material electrode after mechanical milling of the material It shows the initial cycle charge/discharge voltage curve and capacity characteristics according to various current densities.
  • the rate characteristics of the GM12-NB1hr composite electrode-based lithium secondary battery spheroidized through mechanical milling were approximately 580, 560, 530, 511, and 450 at current densities of 200, 400, 800, 1200, and 2400 mA/g, respectively.
  • the capacity value in mAh/g was shown.
  • the initial cycle charge/discharge voltage curve of the secondary battery and the capacity characteristics according to various current densities are shown.
  • the rate characteristics of the GM41 composite electrode-based lithium secondary battery showed capacity values of about 490, 486, 475, 466, and 440 mAh/g at current densities of 200, 400, 800, 1200, and 2400 mA/g, respectively.
  • the rate characteristics of the lithium secondary battery based on the three composite materials (GM12/Si 5wt% ) electrodes containing silicon were about 625, 570, 507, and 461 at current densities of 200, 400, 800, 1200, and 2400 mA/g, respectively. , and a capacity value of 370 mAh/g. Through this, even at a high current density of 2400 mA/g, the capacity was maintained at about 59% compared to the capacity value measured at a low current density of 200 mA/g.
  • the rate characteristics of lithium secondary batteries based on silicon-containing composite materials (GM41/Si 10wt% ) electrodes were about 584, 520, 442, and 384 at current densities of 200, 400, 800, 1200, and 2400 mA/g, respectively. , and showed a capacity value of 330 mAh/g, and the electrode capacity value at a high current density of 2400 mA/g showed about 57% of the capacity value measured at a low current density of 200 mA/g. Through this, it was confirmed that the ex-(Graphite/MoS 2 ) composite material electrodes showed better rate performance compared to the composite material containing Si.
  • the first aspect of the present application is,
  • a method for producing a hybrid composite comprising: preparing a mixture by mixing graphite and a transition metal dichalcogenide material; incorporating a solution containing the first cation into the mixture; intercalating the first cation into the graphite and transition metal dichalcogenide materials; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; and simultaneously exfoliating and re-stacking at least a portion of the surface of the graphite and the transition metal dichalcogenide material to obtain a hybrid composite.
  • a step of preparing a mixture by mixing graphite and a transition metal dichalcogenide material (S100) may be included.
  • the content of the transition metal dichalcogenide is 1 part by weight based on 100 parts by weight of graphite. or more, 2 parts by weight or more, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, or 20 parts by weight or more, 400 parts by weight or less, 300 parts by weight or less, 275 parts by weight or less, or 250 parts by weight or less, preferably 1 to 400 parts by weight, more preferably 1 to 250 parts by weight, still more preferably 10 to 250 parts by weight part, more preferably 20 to 250 parts by weight.
  • graphite is outside the above-mentioned range, it may be difficult to utilize it as an electrode active material because it cannot satisfy the desired level of electrochemical properties such as electrical conductivity and capacity and structural stability, or the content of graphite is too small and the content of expensive transition metal dichalcogenide materials If there are too many, it can be uneconomical.
  • the transition metal dichalcogenide material may be represented by MX 2 , wherein M is a transition metal, X is a chalcogen element, and M is Mo, W, Nb, and Ti It is one selected from the group consisting of such transition metals, and the X may be one selected from the group consisting of S, Se and Te, preferably MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , may be at least one selected from NbSe 2 , more preferably MoS 2 , MoSe 2 , or WS 2 .
  • Transition metal atoms and chalcogen atoms constituting transition metal dichalcogenide exist in the form of covalent bonds and are connected by weak Van der Walls (VdW) interaction between layers, so physical and chemical exfoliation is prevented. possible.
  • VdW Van der Walls
  • exfoliation of the two-dimensional nanosheets has been performed by physically peeling them off using scotch tape, peeling them through a ball mill, or performing the peeling process in an appropriate solvent. Since the above-described methods have poor peeling efficiency or are uneconomical in terms of energy, the present invention has been reached because an improved peeling process and re-lamination process are needed.
  • a step (S200) of incorporating a solution containing the first cation into the mixture may be included.
  • forming a nitrogen atmosphere by injecting nitrogen prior to this step may be further included.
  • the first cation is not particularly limited as long as it is a cation that can be inserted into the layered structure of the three-dimensional bulk material, but may preferably be an alkali metal cation, more preferably having an ion size of It may be a lithium cation (Li + ) that may be small and easy to insert.
  • the solution containing the first cation may be a metal element or an organo-alkali compound, preferably butyllithium or sodium naphthalenide, more preferably n-butyllithium can be
  • the solution containing the first cation is 1 to 30 mL, preferably 2 to 20 mL, more preferably 3 to 15 mL, based on the weight of 1 g of the graphite and transition metal dichalcogenide material, Even more preferably, it may be incorporated in 3 to 10 mL.
  • lithium ions may be well intercalated between the layers of the graphite surface or the transition metal dichalcogenide material.
  • intercalating the first cation into the graphite and the transition metal dichalcogenide material may be intercalated (S300).
  • the mixture into which the solution containing the first cations is introduced may be treated with sound waves or ultrasonic waves to intercalate the first cations into the multi-layered graphite and transition metal dichalcogenide materials. It may be to facilitate the intercalation of the first cations into the multi-layered layered structure through the sonic wave or ultrasonic treatment.
  • 10 minutes to 600 minutes, 10 minutes to 480 minutes, 10 minutes to 300 minutes, 10 minutes to It may be characterized by sonicating or ultrasonicating for 240 minutes, or 20 to 180 minutes.
  • the sonic or ultrasonic treatment is performed for less than 10 minutes, the first cation may not be sufficiently inserted into the multi-layered layered structure, and when it is performed for more than 600 minutes, it may be uneconomical or decomposition of the material may occur.
  • a step (S400) of ion-exchanging the intercalated first cation with a second cation by mixing a solution containing the second cation may be included.
  • the interlayer bonding force is weakened. It may mean a process of ion-exchanging intercalated first cations (eg, alkali metal cations) with second cations.
  • first cations eg, alkali metal cations
  • second cations eg, NH 4 +
  • the second cation may include a cation having a larger ionic size than the first cation, and as non-limiting examples, ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn ) and hydronium (H 3 O+), and may be one type of cation selected from the group consisting of, preferably, an ammonium ion.
  • the solution containing the second cation is 10 to 200 mL, preferably 20 to 150 mL, more preferably 25 to 120 mL, based on the weight of 1 g of the graphite and transition metal dichalcogenide material, Even more preferably, it may be incorporated at 30 to 100 mL.
  • the ion-exchange between the second cation (eg, NH 4 + ) and the first cation (Li + ) formed by vigorous reaction between the aqueous solution in which the first cation and the second cation are dissolved occurs actively. It may be something that can be done.
  • At least a portion of the graphite surface and the transition metal dichalcogenide material may be simultaneously exfoliated and re-laminated to obtain a hybrid composite (S500).
  • the second cation is ion-exchanged with the first cation to be intercalated into the multi-layered layered structure, further widening the interlayer spacing, and restacking between the heterogeneous nanosheets in the subsequent separation and dispersion process. It may be to promote
  • step S500 applying an external force to the graphite-transition metal dichalcogenide mixture that has been ion-exchanged with the second cation, preferably by applying sound waves or ultrasonic treatment to exfoliate each material , dispersing and re-stacking. It may be to facilitate peeling and re-lamination through the sonic or ultrasonic treatment.
  • step S500 10 minutes to 600 minutes, 10 minutes to 480 minutes, 10 minutes to 300 minutes, 10 minutes to 240 minutes, or 20 minutes to 180 minutes characterized by sound wave or ultrasonic treatment it may be to When the sound wave or ultrasonic treatment is performed for less than 10 minutes, all processes of peeling, dispersing, and re-stacking of the bulk material may not be sufficiently performed, and when it is performed for more than 600 minutes, it may be uneconomical or decomposition of the material may occur.
  • the agitation proceeds simultaneously with the sonic or ultrasonic treatment in step S300 or step S500.
  • the stirring process By simultaneously carrying out the stirring process, intercalation of the first cation into the interlayer of the three-dimensional layered bulk material, or ion-exchange with the second cation and intercalation of the interlayer of the three-dimensional layered bulk material and subsequent exfoliation and dispersion (specifically As a result, since each of the different exfoliated nanosheets is evenly dispersed, re-stacking between heterogeneous nanosheets) can be further promoted, and the overall process time can be shortened by adding a simple process.
  • the stirring may be performed for 0.1 to 5 hours, preferably 0.2 to 4 hours, and more preferably 0.5 to 3 hours.
  • the stirring may be performed simultaneously or continuously during the sonic wave or ultrasonic treatment step in step S300 or step S500, but may be performed multiple times, and the two-dimensional nanosheet material may be peeled off. In terms of preventing decomposition after heating, it may be performed for 0.1 to 2 hours per time, preferably 0.2 to 1 hour per time.
  • Equipment required for the stirring process is not limited as long as it is used in the art.
  • At least a portion of the surface of the graphite and the transition metal dichalcogenide material are simultaneously exfoliated and re-laminated to obtain a hybrid composite; Afterwards, a step of pulverizing the hybrid composite (S600, not shown) may be further included.
  • the step of passing the solution containing the hybrid composite obtained in step S500 through a predetermined filter, and washing the hybrid composite powder with a solvent may be characterized by further comprising the step of drying the obtained powder.
  • the second cation between the layers of the 3D layered bulk material is exchanged with H + , the exfoliation of the bulk 3D layered material into a single layer or a small number of multilayered 2D nanosheet materials can be more easily promoted.
  • the solid phase may be filtered through a filter and dried to obtain a powdered hybrid composite.
  • the type of washing liquid used in this step is not limited, but distilled water, ultrapure water, ethanol, and the like may be used.
  • the drying temperature and time may be appropriately adjusted.
  • heat treatment may be performed in an oven for a predetermined time as a drying condition for recovering the material after washing, or drying may be performed in a freeze-drying method, but these are non-limiting examples, and under various conditions. drying method can be used.
  • a step of spheroidizing the hybrid composite (S700, not shown) may be further included. This step is aimed at improving the filling rate of particles for the purpose of improving battery capacity in graphite-based materials. Natural graphite particles have large and small irregularities on the surface, and by scraping these irregularities through a spheronization process, the particles can be specified and the packing density can be increased.
  • the spheronizing may be performed by a mechanical mixing method.
  • a mechanical mixing method For example, ball milling, mechanofusion milling, shaker milling, planetary milling and attritor milling, disk milling, safe milling (Shape milling), Nauta milling (nauta milling), nobilta milling (nobilta milling), high speed mixing (high speed mixing), or any one of these methods may be selected and mixed, but is not limited thereto.
  • the mechanical mixing method uses a principle in which surface energy is generated by mechanical energy and coating is performed by bonding and fusing between interfaces having high surface energy.
  • energy is transmitted through high-speed rotation so that the target product of fine powder and coarse powder is classified, the fine powder is separately classified and discharged, and an external force is applied for a certain period of time to obtain a water-shaped hybrid composite of coarse powder subjected to an impact action. It can also be made up of what you get.
  • the step of spheronizing the hybrid composite is, performing the first stirring at a speed of 1300 to 2400 rpm, the first stirring may be carried out for 1 to 7 minutes.
  • the step of spheronizing the hybrid composite; performing a second stirring at a speed of 3500 to 5000 rpm after the first stirring, the second stirring for 30 to 75 minutes can be done When the rotational speed during mixing is within the above range, graphite, transition metal dichalcogenide materials, etc. may be physically bonded, and other materials added may be uniformly coated.
  • powdering the hybrid composite may further include the step of adding silicon particles afterwards.
  • the average particle diameter of the silicon particles is 1000 nm or less, preferably 300 nm or less, more preferably 250 nm or less, still more preferably 150 nm or less, even more preferably 100 nm or less , and more preferably 70 nm or less.
  • the average particle diameter of the silicon particles is within the above range, the uniformity of the coating may be secured.
  • the content of the silicon particles may be 0.1 to 20 parts by weight, specifically 0.5 to 10 parts by weight, based on 100 parts by weight of the mixture of the hybrid composite and the low crystalline carbon material.
  • the content of the silicon particles is within the above range, it is possible to control the aggregation between the particles, and it is possible to obtain an effect of uniform coating.
  • the step of adding a low crystalline carbon material may be further included.
  • the low crystalline carbon material not only functions as a bonding layer that makes bonding between the hybrid composite powder and silicon more robust, but also allows the silicon to be uniformly coated so that the surface of the anode material maintains a uniform coating state as a whole. That is, since the presence of the binding layer prevents ceramics from aggregating on the edge surface of the hybrid composite, the coating layer becomes uniform and the electrochemical properties can be improved.
  • the low crystalline carbon material is petroleum-based pitch, coal-based pitch, mesophase pitch, low molecular weight heavy oil, polyvinyl alcohol (PVA), polyvinyl chloride (PVC), sucrose, phenol resin ( phenol resin), furan resin, furfuryl alcohol, polyacrylonitrile, cellulose, styrene, polyimide, epoxy resin, It may be glucose (glucose), or a combination thereof, and preferably, the low crystalline carbonaceous material may be characterized in that petroleum pitch, coal-based pitch, mesophase pitch, low molecular weight heavy oil, or a combination thereof.
  • the content of the low-crystalline carbon material may be 0.1 to 50 parts by weight, specifically 1 to 20 parts by weight, based on 100 parts by weight of the carbon-based active material.
  • carbonization by heat treatment of the low crystalline carbon material may further include.
  • the heat treatment step may be performed in an atmosphere of hydrogen, nitrogen, argon, or a mixed gas thereof.
  • the heat treatment step may be performed at a temperature of 250 to 1500 °C, specifically 400 to 1100 °C.
  • the heat treatment is performed in the above temperature range, there is no change in the physical properties of the silicon particles, and the coating can be performed while maintaining the inherent properties.
  • the heat treatment step may be separately performed in different temperature ranges as first and second heat treatment steps.
  • the first heat treatment step may be performed at a temperature of 250 to 700 °C, preferably 350 to 600 °C
  • the second heat treatment step may be performed at a temperature of 600 to 1500 °C, specifically 800 to 1100 °C.
  • the second heat treatment temperature is less than 600° C., impurities including heterogeneous elements cannot be effectively removed, and when it exceeds the above range, it may be inefficient in terms of energy.
  • the heat treatment step may be performed for 0.1 to 10 hours, 0.3 to 8 hours, or 0.5 to 5 hours.
  • the heat treatment step may be separately performed in a different temperature range as the first and second heat treatment steps, respectively. It can run for 2 hours. By satisfying the above-described range, it is efficient in terms of energy, and the carbon coating based on the low crystalline carbon material can be formed at an appropriate level on the surface of the hybrid composite.
  • the second aspect of the present application is,
  • the hybrid composite may be a spherical particle having an aspect ratio of 1:0.5 to 1.5 by a spheronization process.
  • the spheronization process there are largely two methods for the purpose of improving battery capacity.
  • One may be a method of obtaining spherical particles by cutting the angled part of the particle and separating it from the fine powder.
  • Another method may be a method of coating a particle surface with a low crystalline carbon material such as pitch and then graphitizing it. Since the specific content related to sphericization has been described above, the content thereof will be omitted.
  • the hybrid composite may include a two-dimensional heterogeneous stacked structure including transition metal dichalcogenide nanosheets in a layered structure on at least a portion of the surface of the graphite core particle.
  • the two-dimensional heterogeneous stacked structure may be characterized in that the graphene nanosheets and the transition metal dichalcogenide nanosheets are alternately stacked.
  • the hybrid composite may have a layer-by-layer form. Since the hybrid composite prepared based on the manufacturing method of the present application is prepared using transition metal dichalcogenide and graphite exfoliated on the surface, it can be confirmed that the particles form single crystals and sheets, and the crystallinity is You can see that it is excellent.
  • it may further include silicon particles inserted into the surface of the graphite or the layered structure, and the average particle diameter of the silicon particles may be characterized in that 300 nm or less. Since the description of the method of including silicon has been described above, it will be omitted.
  • it may be characterized by further comprising a low crystalline carbon material layer formed on the surface of the graphite and carbonized by heat treatment. Since the method of spheroidizing the surface with the low-crystalline carbon material has been described above, details thereof will be omitted.
  • An electrode active material comprising the hybrid composite is provided.
  • the electrode active material may be formed on an electrode current collector.
  • the type of the electrode current collector may not be significantly limited as long as it has conductivity without causing chemical change of the device.
  • the electrode current collector may include copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a material in which carbon, nickel, titanium, silver, or the like is surface-treated on the surface of copper or stainless steel.
  • the electrode current collector may have a thickness of about 3 ⁇ m to 500 ⁇ m, and fine irregularities may be formed on the surface of the current collector to increase adhesion of the electrode active material. That is, it may be usable in various forms such as films, sheets, foils, nets, porous bodies, foams, and non-woven fabrics.
  • the electrode active material may further include a conductive material and a binder in addition to the active material.
  • the conductive material is used to impart conductivity to the electrode, and may be any material that has electrical conductivity without causing a chemical change in the device.
  • the conductive material is graphite such as natural graphite or artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon-based materials such as carbon fiber, copper, nickel, aluminum , metal powder or metal fibers such as silver, conductive whiskey such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide or conductive polymers such as polyphenylene derivatives, and combinations thereof.
  • the conductive material may be used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
  • the binder may serve to improve adhesion between particles of the electrode active material and adhesion between the electrode active material and the current collector.
  • the binder may be, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), alcohol It may include a material selected from the group consisting of phonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof and combinations thereof. Meanwhile, the binder may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
  • the hybrid composite may improve energy density and output characteristics of energy storage devices because it has high porosity and electrical conductivity.
  • the fourth aspect of the present application is,
  • an anode containing the electrode active material cathode; and a separator interposed between the anode and the cathode; and an electrolyte.
  • the method includes preparing a negative electrode part (anode) by coating a negative electrode active material on a negative electrode current collector; It is possible to provide a method for manufacturing a lithium secondary battery including forming a positive electrode part by coating a positive electrode current collector with a positive electrode active material.
  • the electrolyte may be used by mixing a salt and an additive in an organic solvent.
  • the organic solvent is ACN (Acetonitrile), EC (Ethylene carbonate), PC (Propylene carbonate), DMC (Dimethyl carbonate), DEC (Diethyl carbonate), EMC (Ethylmethyl carbonate), DME (1,2-dimethoxyethane), It may include a material selected from the group consisting of ⁇ -butrolactone (GBL), methyl formate (MF), methyl propionate (MP), and combinations thereof.
  • the salt is used in an amount of 0.8 to 2 M, and may be a mixture of a lithium (Li) salt and a non-lithium salt.
  • the lithium (Li) salt accompanies an intercalation/desorption reaction into the structure of the anode active material, that is, the metal-organic framework, and its types include LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , lithium bis(oxalato)borate (LiBOB), and combinations thereof.
  • the non-lithium salt accompanies an adsorption/desorption reaction on the surface area of the carbon material additive, and may be used by mixing 0 to 0.5 M with the lithium salt.
  • the non-lithium salt may include a material selected from the group consisting of TEABF 4 (Tetraethylammonium tetrafluoroborate), TEMABF 4 (Triethylmethylammonium tetrafluoroborate), SBPBF 4 (spiro-(1,1'etrafluoroborate), and combinations thereof there is.
  • TEABF 4 Tetraethylammonium tetrafluoroborate
  • TEMABF 4 Triethylmethylammonium tetrafluoroborate
  • SBPBF 4 spiro-(1,1'etrafluoroborate
  • the electrolyte contains at least one additive selected from the group consisting of vinylene carbonate (VC), fluoroethylene carbonate (FEC), and 3-(trimethylsilyl)-2-oxazolidinone (TMS-ON).
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • TMS-ON 3-(trimethylsilyl)-2-oxazolidinone
  • the hybrid complex and the composition containing the same are a catalyst for water purification, an anticancer agent, a treatment for immunodeficiency virus, a treatment for fungal and bacterial infections, a treatment for malaria, and various drug delivery materials in addition to a supercapacitor or an electrode active material for a secondary battery.
  • a catalyst for water purification an anticancer agent, a treatment for immunodeficiency virus, a treatment for fungal and bacterial infections, a treatment for malaria, and various drug delivery materials in addition to a supercapacitor or an electrode active material for a secondary battery.
  • charge/discharge capacity, coulombic efficiency and cycle characteristics of an energy storage device such as a lithium secondary battery are improved by improving intercalation and deintercalation efficiency, conductivity and structural stability. It is possible to provide a hybrid composite that can further increase.
  • anode material capable of high-speed charging by improving rate performance
  • a hybrid composite which is a raw material of such an anode material, can be mass-produced through a relatively simple process.
  • the hybrid composite and the manufacturing method thereof according to an embodiment of the present invention can be considered to have industrial applicability.

Abstract

The present invention relates to a hybrid composite based on two-dimensional transition metal dichalcogenide, a preparation method therefor, an electrode active material comprising the hybrid composite, and an energy storage device comprising same. a hybrid composite can be provided that is capable of high-speed charging through improved rate characteristics and is usable as a negative electrode material.

Description

흑연 및 2차원 전이금속 디칼코게나이드 기반 고성능 하이브리드 복합체 및 이의 제조방법High-performance hybrid composite based on graphite and two-dimensional transition metal dichalcogenide and method for preparing the same
본 발명은 흑연 및 2차원 전이금속 디칼코게나이드 기반의 하이브리드 복합체, 이의 제조방법, 상기 하이브리드 복합체를 포함하는 전극 활물질 및 이를 포함하는 에너지 저장 소자에 관한 것이다.The present invention relates to a hybrid composite based on graphite and a two-dimensional transition metal dichalcogenide, a method for preparing the same, an electrode active material including the hybrid composite, and an energy storage device including the same.
최근, 미래 반도체 소재로 MoS2, MoSe2, WS2, WSe2 등 다양한 2차원 소재가 주목받고 있다. 위 2차원 구조 소재들을 나노미터의 얇은 두께로 잘 휘면서 튼튼하며, 금속성, 반도체, 부도체적 특성 등 다양한 성질을 지니고 있어 전자소자, 센서, 에너지 등 다양한 분야에 활용 가능하다. 특히, 2차원 이종 다층소재의 경우에, 단일 층의 적층 조합에 따른 물성의 변조가 가능하고, 2차원 소재 물성간 상승적 커플링 구현이 가능한 장점이 있다. 예를 들어, 그래핀/MoS2 이종 적층 소재의 경우, MoS2/MoS2 동종 적층 소재에 비하여 인터컬레이션 반응으로 전하 축적이 약 10배 이상 증가됨이 보고된 바 있다 (참고문헌, P. Kim et al., Nature 558, 425 (2018)). 또한, 1.3nm 두께의 초박막 그래핀/MoS2 이종 적층(그래핀/MoS2/그래핀) 소재가 MoS2 단일 적층 소재보다 7배 높은 광전류를 보이는 것이 관찰된 바 있다 (참고문헌, Nat. Commun. 7, 13278 (2016)). Recently, various two-dimensional materials such as MoS 2 , MoSe 2 , WS 2 , and WSe 2 are attracting attention as future semiconductor materials. The two-dimensional structural materials above are thin and strong in nanometers, and have various properties such as metallic, semiconductor, and non-conductive properties, so they can be used in various fields such as electronic devices, sensors, and energy. In particular, in the case of a two-dimensional heterogeneous multi-layer material, it is possible to modulate physical properties according to the stacked combination of a single layer and to realize synergistic coupling between physical properties of a two-dimensional material. For example, in the case of graphene/MoS 2 heterogeneous laminated materials, it has been reported that charge accumulation is increased by about 10 times or more due to intercalation reaction compared to MoS 2 /MoS 2 homogeneous laminated materials (Reference, P. Kim et al., Nature 558, 425 (2018)). In addition, it has been observed that an ultra-thin graphene/MoS 2 hetero-laminated (graphene/MoS 2 /graphene) material with a thickness of 1.3 nm exhibits a photocurrent 7 times higher than that of a single-layered MoS 2 material (Reference, Nat. Commun 7, 13278 (2016)).
2차원 전이금속 디칼코게나이드 (Transition Metal Dichalcogenide, TMD) 물질과 이종 다층 2차원 물질은 향후 전자, 광전자, 에너지, 센서, 생체의학 등 다양한 고부가가치 응용 분야에 채택될 잠재력이 매우 높을 것으로 예상되며, 2020년 5.5백만 달러규모에서 2030년 2차원 물질의 세계 총 시장규모는 약 1억 3천만 달러로 23배 이상 급증할 것으로 전망된다. 또한, 2030년 국내 총 시장 규모는 1,780만 달러로 예상되며, 2020년부터 2030년 사이 연평균성장률 (CAGR)은 36.72% 전망된다.Two-dimensional transition metal dichalcogenide (TMD) materials and heterogeneous multilayer two-dimensional materials are expected to have high potential to be adopted in various high-value applications such as electronics, optoelectronics, energy, sensors, and biomedicine in the future. From the scale of 5.5 million dollars in 2020, the total global market size of 2D materials is expected to increase more than 23 times to about 130 million dollars by 2030. In addition, the total domestic market size is expected to be $17.8 million in 2030, and the average annual growth rate (CAGR) between 2020 and 2030 is expected to be 36.72%.
이에 더하여, 2차원 칼코게나이드 물질과 이종 다층 2차원 물질은 소재 자체만의 시장뿐만 아니라 그 응용 분야에 있어서 매우 무궁무진한 가능성이 있으며, 특히나 이차전지, 열전소자 등과 같은 에너지 분야의 고효율 저전력 소자 및 소재 개발로의 응용 가능성이 매우 높다. In addition to this, two-dimensional chalcogenide materials and heterogeneous multi-layer two-dimensional materials have very limitless possibilities not only in the market for the material itself but also in their application fields. In particular, high-efficiency low-power devices and The possibility of application to material development is very high.
다양한 응용 분야 중에서, 이차전지 그 중 리튬 이온 배터리 시장은 매년 그 규모가 커지고 있다. 일상 생활과 관련한 많은 것들이 전자기기를 통해 이루어지고 일상생활에 있어 전자기기는 반드시 필요한 존재로 자리 잡고 있다. 이와 더불어 전자기기를 구성하는 필수 요소인 배터리에 대한 수요는 높아지고 더 나은 배터리의 개발에 관한 중요성은 확대되고 있다. 앞으로 산업에서 배터리는 지금보다 더 많은 곳에서 사용될 것이며 지금보다 고용량, 고효율의 배터리를 요구하게 될 것이다. 모바일 전자기기뿐만 아니라 전기차 시장에서도 배터리는 가장 중추적인 역할을 하고 있으며, 친환경차에 대한 요구가 점차 커지면서 현재 전 세계의 자동차시장은 기존의 화석연료를 사용하는 자동차에서 전기차로의 바꿈을 시도하고 있으며 그 주행거리를 늘리는데 관심을 쏟고 있다.Among various application fields, among secondary batteries, the lithium ion battery market is growing every year. Many things related to daily life are done through electronic devices, and electronic devices have become essential in daily life. In addition, the demand for batteries, which are essential components of electronic devices, is increasing and the importance of developing better batteries is expanding. In the future, batteries will be used in more places than now in the industry, and higher-capacity and higher-efficiency batteries will be required than now. Batteries play the most pivotal role in the electric vehicle market as well as mobile electronic devices. As the demand for eco-friendly vehicles grows, the global automobile market is currently attempting to change from fossil fuel-powered vehicles to electric vehicles. We are focusing on increasing the mileage.
이와 더불어, 향후 리튬 이온 배터리의 전기자동차용 이차전지로의 활용이 기대되고 있는 가운데, 장거리 운행 및 소비자의 편의성을 만족시키기 위해서는 급속충전이 가능한 새로운 고용량 소재의 개발이 필수적으로 요구되고 있다. 리튬이온 배터리의 충전 및 방전은 전지가 충전이 될 때는 양극에 있던 리튬이온과 전자가 음극으로 들어가며, 반대로 방전이 될 때는 음극에 있던 리튬이온과 전자가 양극으로 이동한다. 이때, 음극이 리튬이온을 얼마나 빠른 속도로 받아들일 수 있는지가 리튬 이온 배터리의 충전 속도를 좌우하는 핵심요소로, 이는 음극 소재의 구성 및 전극 구조의 특성에 많은 영향을 받는다. In addition, while the use of lithium ion batteries as secondary batteries for electric vehicles is expected in the future, the development of new high-capacity materials capable of rapid charging is required in order to satisfy long-distance driving and consumer convenience. When a lithium ion battery is charged and discharged, lithium ions and electrons from the positive electrode go into the negative electrode when the battery is charged, and vice versa, lithium ions and electrons from the negative electrode move to the positive electrode when the battery is discharged. At this time, how fast the negative electrode can accept lithium ions is a key factor that determines the charging speed of the lithium ion battery, which is greatly influenced by the composition of the negative electrode material and the characteristics of the electrode structure.
기존 음극 재료로는 가장 많이 사용되고 있는 흑연은 값이 싸고 구조적 안정성이 뛰어난 장점이 있지만 용량이 낮아(이론용량: 372 mAh g-1) 전기 차의 주행거리나 핸드폰, 전자 기기들의 사용시간을 늘리기에는 충분치 않다는 단점이 있다. 또한, 급속 충전 시 흑연 음극에서의 리튬 석출로 인한 열화 현상에 노출될 가능성이 매우 높다는 단점이 있다. 최근 실리콘 산화물계(SiOx) 음극재가 높은 비용량으로 그 자리를 노리고 있지만 사이클 과정에서 소재의 부피 팽창이 심하여, 이로 인해 전극 구조가 빠르게 파괴되어 수명이 오래가지 못하는 단점이 있다. 전이금속 디칼코게나이드 물질로 알려진 2차원 재료들은 독특한 전기적, 기계적, 광학적 물성을 가지고 있기 때문에 많은 연구 분야에서 상당한 관심을 끌고 있으며, 에너지 저장 측면에서도 높은 용량을 보이고 있어, LIB 음극 물질로도 유망하다. 하지만 전도성이 좋지 않아 전극 용량 확보를 위해서는 전도성 확보가 필요하며, 전해질 이온의 삽입/탈리로 인한 부피팽창 문제에 대한 해결 또한 필요하다. 2차원 이종 다층 소재는 흑연과 달리 층간 거리를 조절이 가능하기 때문에, 흑연과 이종 다층 소재를 적절하게 혼합한다면 고용량 특성 및 구조적 안정성이 뛰어난 소재 구현이 가능할 뿐만 아니라 급속충전 시 리튬이온을 원활하게 받아들일 수 있을 것으로 기대된다.Graphite, which is most commonly used as an existing anode material, is inexpensive and has excellent structural stability. The downside is that it's not enough. In addition, there is a disadvantage in that it is very likely to be exposed to degradation due to lithium precipitation in the graphite negative electrode during rapid charging. Recently, silicon oxide (SiOx) anode materials are aiming for the position with high specific capacity, but the volume expansion of the material is severe during the cycle process, which causes the electrode structure to be rapidly destroyed, resulting in a short lifespan. Two-dimensional materials known as transition metal dichalcogenide materials have attracted considerable attention in many research fields because they have unique electrical, mechanical, and optical properties, and show high capacity in terms of energy storage, so they are promising as LIB cathode materials. . However, due to poor conductivity, it is necessary to secure conductivity in order to secure electrode capacity, and it is also necessary to solve the problem of volume expansion due to intercalation/deintercalation of electrolyte ions. Unlike graphite, two-dimensional heterogeneous multilayer materials can adjust the distance between layers, so if graphite and heterogeneous multilayer materials are properly mixed, it is possible to realize materials with excellent high-capacity characteristics and structural stability, as well as to receive lithium ions smoothly during rapid charging. hopefully it can be picked up.
종래에는, 2차원 소재의 이종 적층 복합체를 형성하는 방법들이 대부분 bottom-up 방식으로 대용량으로 scale-up 하는데 어려움이 있고, 합성 방법 또한 진공 반응기를 사용하거나, 고압처리를 해주거나, 반응시간이 길다는 단점이 있다. 이에 본 발명자들은 고압이나 고온의 처리가 필요 없을 뿐만 아니라 대용량 scale-up에도 용이하며, 반응시간 또한 짧아 생산성을 높일 수 있는 우수성을 가진 하이브리드 복합체의 제조방법 및 이러한 제조방법에 의해 제조된 특징이 있는 하이브리드 복합체를 지속적으로 연구하였다.Conventionally, most of the methods for forming heterogeneous laminated composites of two-dimensional materials are bottom-up, and it is difficult to scale-up to a large capacity, and the synthesis method also uses a vacuum reactor, high-pressure treatment, or has a long reaction time. has a downside. Therefore, the inventors of the present invention not only do not require high-pressure or high-temperature treatment, but also facilitate large-capacity scale-up, and have a short reaction time to increase productivity. Hybrid complexes were continuously studied.
또한, 하이브리드 복합체를 제조함에 있어, 이차전지의 음극소재로서 사용될 때, 용량 특성 및 고속 충전을 감안한 율속 특성을 종래의 음극재 대비 개선할 수 있도록 추가적인 처리를 가할 필요성을 인식하여, 본 발명을 도출할 수 있었다.In addition, in manufacturing the hybrid composite, when used as a negative electrode material for a secondary battery, the need for additional treatment to improve the capacity characteristics and rate characteristics considering high-speed charging compared to conventional negative electrode materials is recognized, and the present invention is derived Could.
본 발명은 전술한 문제를 해결하고자 안출된 것으로서, 본 발명의 일 실시예는 하이브리드 복합체의 제조방법을 제공한다.The present invention has been made to solve the above problems, and one embodiment of the present invention provides a method for preparing a hybrid composite.
또한, 본 발명의 다른 일 실시예는 하이브리드 복합체를 제공한다.In addition, another embodiment of the present invention provides a hybrid composite.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the above-mentioned technical problem, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
전술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면은, As a technical means for achieving the above-described technical problem, one aspect of the present invention,
하이브리드 복합체를 제조하는 방법으로서, 흑연(Graphite) 및 전이금속 디칼코게나이드 물질을 혼합하여 혼합물을 제조하는 단계; 상기 혼합물에 제1 양이온을 포함하는 용액을 혼입하는 단계; 상기 제1 양이온을 상기 흑연 및 전이금속 디칼코게나이드 물질에 층간 삽입하는 단계; 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계; 및 상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계;를 포함하는, 하이브리드 복합체의 제조방법을 제공한다.A method for producing a hybrid composite comprising: preparing a mixture by mixing graphite and a transition metal dichalcogenide material; incorporating a solution containing the first cation into the mixture; intercalating the first cation into the graphite and transition metal dichalcogenide materials; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; and simultaneously exfoliating and re-stacking at least a portion of the surface of the graphite and the transition metal dichalcogenide material to obtain a hybrid composite.
상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계; 후에, 상기 하이브리드 복합체를 분말화하는 단계;를 더 포함하는 것을 특징으로 하는 것일 수 있다.obtaining a hybrid composite by simultaneously exfoliating and re-laminating at least a portion of the surface of the graphite and a transition metal dichalcogenide material; Afterwards, powdering the hybrid composite; may be characterized in that it further comprises.
상기 하이브리드 복합체를 분말화하는 단계; 후에 상기 하이브리드 복합체를 구형화하는 단계;를 더 포함하는 것을 특징으로 하는 것일 수 있다.powdering the hybrid composite; It may be characterized by further comprising; sphericalizing the hybrid composite afterward.
상기 하이브리드 복합체를 구형화하는 단계;는, 1300 내지 2400 rpm의 속도로 제1 교반을 수행하고, 3500 내지 5000 rpm의 속도로 제2 교반을 수행하는 것을 특징으로 하는 것일 수 있다.The step of spheronizing the hybrid composite; may be characterized by performing first stirring at a speed of 1300 to 2400 rpm and performing second stirring at a speed of 3500 to 5000 rpm.
상기 제1 교반은 1 내지 7분동안 수행하고, 상기 제2 교반은 30 내지 75분동안 수행하는 것을 특징으로 하는 것일 수 있다.The first stirring may be performed for 1 to 7 minutes, and the second stirring may be performed for 30 to 75 minutes.
상기 하이브리드 복합체를 분말화하는 단계; 후에 실리콘 입자를 첨가하는 단계를 더 포함하고, 상기 실리콘 입자의 평균 입경은 300nm 이하인 것을 특징으로 하는 것일 수 있다.powdering the hybrid composite; After further comprising the step of adding silicon particles, the average particle diameter of the silicon particles may be characterized in that 300nm or less.
저결정성 탄소재를 첨가하는 단계; 및 상기 저결정성 탄소재를 열처리하여 탄화하는 단계;를 더 포함하는 것을 특징으로 하는 것일 수 있다.Adding a low crystalline carbon material; and carbonizing the low-crystalline carbon material by heat treatment.
상기 저결정성 탄소재는 석유계 피치, 석탄계 피치, 메조페이스 피치, 저분자 중질유, 또는 이들의 조합인 것을 특징으로 하는 것일 수 있다.The low crystalline carbon material may be petroleum-based pitch, coal-based pitch, mesophase pitch, low molecular weight heavy oil, or a combination thereof.
상기 흑연(Graphite) 및 전이금속 디칼코게나이드 물질을 혼합하여 혼합물을 제조하는 단계;에서, 상기 전이금속 디칼코게나이드의 함량은 흑연 100 중량부에 대하여, 1 중량부 내지 250 중량부인 것을 특징으로 하는 것일 수 있다.In the step of preparing a mixture by mixing the graphite and the transition metal dichalcogenide material, the content of the transition metal dichalcogenide is 1 part by weight to 250 parts by weight based on 100 parts by weight of graphite it could be
상기 전이금속 디칼코게나이드 물질은 MoS2, MoSe2, WS2, WSe2, TiS2, TiSe2, ReS2, ZrTe2, NbSe2 중 선택되는 적어도 1종 이상인 것을 특징으로 하는 것일 수 있다.The transition metal dichalcogenide material may be at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , and NbSe 2 .
상기 제1 양이온은 알칼리 금속 양이온이고, 상기 제2 양이온은 암모늄, 탄화수소로 치환된 1급 내지 3급 암모늄, 마그네슘, 아연(Zn) 및 히드로늄(H3O+)으로 이루어지는 군으로부터 선택되는 1종의 양이온인 것을 특징으로 하는 것일 수 있다.The first cation is an alkali metal cation, and the second cation is 1 selected from the group consisting of ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn), and hydronium (H 3 O + ) It may be characterized as being a cation of the species.
상기 제1 양이온을 상기 흑연 및 전이금속 디칼코게나이드 물질에 층간 삽입하는 단계; 또는 상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계;에서, 10분 내지 240분동안 초음파 처리하는 것을 특징으로 하는 것일 수 있다.intercalating the first cation into the graphite and transition metal dichalcogenide materials; Alternatively, at least a portion of the graphite surface and the transition metal dichalcogenide material are simultaneously exfoliated and re-laminated to obtain a hybrid composite;
본 발명의 다른 일 측면은,Another aspect of the present invention is,
표면의 적어도 일부에 층상 구조를 포함하는 흑연; 및 상기 흑연의 표면 또는 상기 층상 구조에 층간 삽입되어 형성된 전이금속 디칼코게나이드 나노시트;를 포함하고, 구형화 공정에 의해, 1:0.5 내지 1.5의 종횡비를 가지는 것을 특징으로 하는, 하이브리드 복합체를 제공한다.graphite containing a layered structure on at least a part of its surface; and a transition metal dichalcogenide nanosheet formed by intercalating the surface of the graphite or the layered structure, and having an aspect ratio of 1:0.5 to 1.5 by a spheronization process. do.
상기 흑연의 표면 또는 상기 층상 구조에 삽입되어 형성된 실리콘 입자를 더 포함하고, 상기 실리콘 입자의 평균 입경은 300nm 이하인 것을 특징으로 하는 것일 수 있다.It may further include silicon particles formed by being inserted into the surface of the graphite or the layered structure, and the average particle diameter of the silicon particles may be 300 nm or less.
상기 흑연의 표면에 형성된, 열처리하여 탄화된 저결정성 탄소재 층을 더 포함하는 것을 특징으로 하는 것일 수 있다.It may be characterized in that it further comprises a low crystalline carbon material layer formed on the surface of the graphite and carbonized by heat treatment.
또한, 본 발명의 다른 일 측면은,In addition, another aspect of the present invention,
상기 하이브리드 복합체를 포함하는 전극 활물질을 제공한다.An electrode active material comprising the hybrid composite is provided.
또한, 본 발명의 다른 일 측면은,In addition, another aspect of the present invention,
상기 전극활물질을 포함하는 애노드; 캐소드; 및 상기 애노드 및 캐소드 사이에 개재되는 분리막; 및 전해질을 포함하는, 리튬-이온 배터리를 제공한다.an anode containing the electrode active material; cathode; and a separator interposed between the anode and the cathode; and an electrolyte.
본 발명의 실시예에 따르면, 전극 활물질로 활용되었을 때, 인터칼레이션 및 디인터칼레이션 효율과 전도도 및 구조적 안정성을 향상시킴으로써 리튬 이차전지 등의 에너지 저장 장치의 충방전 용량, 쿨롱 효율 및 사이클 특성을 더욱 높일 수 있는 하이브리드 복합체를 제공할 수 있다.According to an embodiment of the present invention, when used as an electrode active material, charge/discharge capacity, coulombic efficiency and cycle characteristics of an energy storage device such as a lithium secondary battery are improved by improving intercalation and deintercalation efficiency, conductivity and structural stability. It is possible to provide a hybrid composite that can further increase.
또한, 율속 특성을 향상시켜 고속 충전이 가능한 음극재를 제조할 수 있으며, 이러한 음극재의 원료인 하이브리드 복합체를 비교적 간단한 공정으로 대량 생산할 수 있다.In addition, it is possible to manufacture an anode material capable of high-speed charging by improving rate performance, and a hybrid composite, which is a raw material of such an anode material, can be mass-produced through a relatively simple process.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the description of the present invention or the configuration of the invention described in the claims.
도 1은 본 발명의 일 구현예에 따른, 하이브리드 복합체의 제조방법을 도식화한 순서도이다.1 is a flowchart illustrating a method for preparing a hybrid composite according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른, (a) 흑연의 표면 SEM 사진과 (b,c) ex-(Graphite/MoS2) 2종 하이브리드 복합소재의 표면 SEM과 SEM BSE 사진이다.Figure 2 is according to one embodiment of the present invention, (a) surface SEM picture of graphite and (b, c) ex- (Graphite / MoS 2 ) surface SEM and SEM BSE pictures of the two hybrid composite material.
도 3은 본 발명의 일 구현예에 따른, 기계적 밀링 처리 후의 ex-(Graphite/MoS2) 2종 하이브리드 복합소재의 (a) 표면 SEM, (b) 단면 SEM BSE 사진, (c) 단면 STEM-BF 사진이다.Figure 3 is (a) surface SEM, (b ) cross-sectional SEM BSE photograph, (c) cross-sectional STEM- This is a picture of BF.
도 4는 본 발명의 일 구현예에 따른, ex-(Graphite/MoS2)/Si 3종 하이브리드 복합소재의 (a) 저배율 표면 SEM 사진, (b) 저배율 표면 SEM EDS mapping 사진, (c,d) 고배율 표면 SEM 및 SEM BSE 사진, (e) 고배율 표면 SEM 사진, 그리고 (f) 실리콘 나노 입자만의 SEM 사진이다.4 is (a) low-magnification surface SEM picture, (b) low-magnification surface SEM EDS mapping picture, (c,d) of ex-(Graphite/MoS 2 )/Si three-type hybrid composite material according to an embodiment of the present invention. ) high-magnification surface SEM and SEM BSE images, (e) high-magnification surface SEM image, and (f) SEM image of only silicon nanoparticles.
도 5는 본 발명의 일 구현예에 따른, ex-(Graphite/MoS2)/Si/C 3종 하이브리드 복합소재의 단면 (a) STEM-BF 사진과 (b,c) STEM-HAADF 사진, (d-h) STEM-EDS mapping 사진들이다.5 is a cross-section (a) STEM-BF picture and (b,c) STEM-HAADF picture of ex-(Graphite/MoS 2 )/Si/C three-type hybrid composite material according to an embodiment of the present invention, ( dh) These are STEM-EDS mapping pictures.
도 6은 본 발명의 일 구현예에 따른, 흑연, MoS2, 그리고 ex-(Graphite/MoS2) 2종 그리고 ex-(Graphite/MoS2)/Si 3종 하이브리드 복합 소재의 전기화학 특성 분석 결과. (a) 초기 사이클에서의 충/방전 전압 곡선, (b) 200 mA/g (~0.54C)에서의 수명 안정성을 나타낸 것이다.6 is an electrochemical characterization result of graphite, MoS 2 , and ex-(Graphite/MoS 2 ) 2 types and ex-(Graphite/MoS 2 )/Si 3 types hybrid composite material according to an embodiment of the present invention. . (a) Charge/discharge voltage curves in the initial cycle, (b) lifetime stability at 200 mA/g (~0.54C).
도 7은, 본 발명의 일 구현예에 따른, 흑연, MoS2, 그리고 ex-(Graphite/MoS2) 2종 하이브리드 복합 소재의 전기화학 특성 분석 결과. (a) 초기 사이클에서의 충/방전 전압 곡선, (b) 전류 밀도별 용량 특성을 나타낸 것이다.7 is graphite, MoS 2 , and ex- (Graphite/MoS 2 ) according to an embodiment of the present invention. Electrochemical characteristics analysis results of two types of hybrid composite materials. (a) Charge/discharge voltage curve in the initial cycle, (b) capacity characteristics for each current density.
도 8은, 본 발명의 일 구현예에 따른 흑연, MoS2, ex-(Graphite/MoS2) 2종, 그리고 ex-(Graphite/MoS2)/Si 3종 하이브리드 복합 소재의 전기화학 특성 분석 결과. (a) 초기 사이클에서의 충/방전 전압 곡선, (b) 전류 밀도별 용량 특성을 나타낸 것이다.8 is an electrochemical characteristic analysis result of graphite, MoS 2 , ex-(Graphite/MoS 2 ) 2 types, and ex-(Graphite/MoS 2 )/Si 3 types hybrid composite material according to an embodiment of the present invention. . (a) Charge/discharge voltage curve in the initial cycle, (b) capacity characteristics for each current density.
이하, 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 의해 본 발명이 한정되지 않으며 본 발명은 후술할 청구범위에 의해 정의될 뿐이다.Hereinafter, the present invention will be described in more detail. However, the present invention can be implemented in many different forms, and the present invention is not limited by the embodiments described herein, and the present invention is only defined by the claims to be described later.
덧붙여, 본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In the entire specification of the present invention, 'include' a certain element means that other elements may be further included without excluding other elements unless otherwise stated.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this is not only "directly connected", but also "indirectly connected" with another member in between. "Including cases where In addition, when a part "includes" a certain component, it means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.
실시예 1Example 1
(리튬 이차 전지용 음극 활물질 제조)(manufacture of negative electrode active material for lithium secondary battery)
평균 입경(D50)이 20μm인 흑연과 평균 입경이 2μm이내인 이황화 몰리브덴 (Molybdenum[IV] disulfide, MoS2) 분말을 1:4, 1:2, 4:1의 중량 비율로 혼합한다. 상기 분말을 조인트 삼각 플라스크에 넣고, 러버 슬리브 스냅 셉타를 이용하여 외부 공기가 유입되지 않도록 한다. 또한, 주사 바늘을 통해 외부의 가스 유입 및 유출만을 가능하게 하여 플라스크 내부를 질소 환경으로 만들어 준다. 상온과 질소 환경 분위기 하에서 n-butyl lithium 용액(2.5 M n-BuLi solution in hexane, Acros Organics 社)을 주사기를 통해 플라스크 내부에 주입한 다음, 3시간 동안 초음파 처리를 하여 상기 흑연 및 이황화 몰리브덴 분말이 n-BuLi 용액에 충분히 분산되어 흑연 또는 이황화 몰리브덴 층 사이에 리튬 이온(Li+)이 골고루 잘 삽입되도록 해준다. 이 때, 흑연 및 이황화 몰리브덴 분말 1g 당 8 mL의 n-BuLi를 주입하였다. 3시간 동안 초음파 처리가 끝난 뒤, 상기 삼각 플라스크를 얼음 수조로 옮겨 약 5도 이하의 온도 조건 하에 흑연 및 이황화 몰리브덴 분말 1 g당 75 mL의 과포화 NH4Cl (염화 암모늄) 수용액을 주사기를 통해 넣어준다. 이 때, 흑연 및 이황화 몰리브덴 층간 삽입되어 있는 리튬 이온과 과포화 염화 암모늄이 녹여 있는 수용액간 반응이 격렬하게 일어남으로써 형성된 암모늄 이온(NH4+)과 리튬이온(Li+)간의 이온-교환을 통해 2차원 물질의 층간 결합력을 약화시켜준다. 후에 초음파 또는 교반을 해주어 층간 결합력이 약해진 2차원 물질들을 박리화 시킨다. 결과적으로 두 소재 모두 박리가 일어나게 되어, 흑연 표면의 일부가 박리되어 수 층의 그래핀을 형성하고 이황화 몰리브덴은 박리화 된다. 박리화된 상기 복합 소재를 진공 여과를 통하여 세척하는 과정에서 흑연 표면에 그래핀과 박리화된 이황화 몰리브덴 층의 재적층이 일어나게 되며, 도 2와 같이 ex-(Graphite/MoS2) 2종 하이브리드 복합소재를 형성하게 된다. 세척이 모두 끝난 후 얻은 분말은 약 80도의 온도에서 12시간 이상 건조시킨다. 건조 후, 뭉쳐 있는 분말을 막자 사발을 이용하여 갈아주고 45μm체에서 분급하여, ex-(Graphite/MoS2) 2종 하이브리드 복합소재를 제조하였다.Graphite having an average particle diameter (D50) of 20 μm and molybdenum [IV] disulfide (MoS 2 ) powder having an average particle diameter of less than 2 μm are mixed in a weight ratio of 1:4, 1:2, and 4:1. The powder is put into a joint Erlenmeyer flask, and external air is prevented from entering using a rubber sleeve snap septa. In addition, only the inflow and outflow of external gas is possible through the injection needle, thereby creating a nitrogen environment inside the flask. At room temperature and under a nitrogen atmosphere, an n-butyl lithium solution (2.5 M n-BuLi solution in hexane, Acros Organics) was injected into the flask through a syringe, and then ultrasonicated for 3 hours to obtain graphite and molybdenum disulfide powder. It is sufficiently dispersed in the n-BuLi solution to allow lithium ions (Li + ) to be evenly inserted between graphite or molybdenum disulfide layers. At this time, 8 mL of n-BuLi was injected per 1 g of graphite and molybdenum disulfide powder. After the ultrasonic treatment for 3 hours, the Erlenmeyer flask was transferred to an ice bath, and 75 mL of supersaturated NH 4 Cl (ammonium chloride) aqueous solution per 1 g of graphite and molybdenum disulfide powder was added through a syringe at a temperature of about 5 degrees or less. give. At this time, through ion-exchange between ammonium ion (NH 4+ ) and lithium ion (Li + ) formed by violent reaction between lithium ion intercalated between graphite and molybdenum disulfide layer and aqueous solution in which supersaturated ammonium chloride is dissolved, 2 It weakens the bonding force between layers of dimensional matter. Afterwards, ultrasonic waves or agitation are used to exfoliate the two-dimensional materials whose interlayer bonding strength is weakened. As a result, exfoliation occurs in both materials, and a portion of the graphite surface is exfoliated to form several layers of graphene, and molybdenum disulfide is exfoliated. In the process of washing the exfoliated composite material through vacuum filtration, re-stacking of the graphene and the exfoliated molybdenum disulfide layer occurs on the graphite surface, and as shown in FIG. 2, ex-(Graphite/MoS 2 ) two-type hybrid composite form the material. After all washing, the obtained powder is dried at a temperature of about 80 degrees for 12 hours or more. After drying, the agglomerated powder was ground using a pestle and classified through a 45 μm sieve to prepare ex-(Graphite/MoS 2 ) two types of hybrid composite materials.
(음극의 제조)(manufacture of cathode)
전극용 슬러리(slurry)를 만드는 방법은 다음과 같다. 상기 활물질 70 중량%, 도전재인 수퍼피(SuperP) 20 중량% 및 바인더인 폴리비닐리덴 플로우라이드 (Polyvinylidene Fluoride, PVDF) 10 중량%를 N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP)에 혼합하여 슬러리를 제조하였다. 상기 슬러리를 10μm 두께의 구리 호일 위에 닥터 블레이드 방법으로 100μm두께로 도포하였다. 그리고 120 ℃의 온도에서 12시간 동안 진공 건조 및 압연하는 공정으로 전극을 제조하였다.A method of making a slurry for an electrode is as follows. 70 wt% of the active material, 20 wt% of SuperP as a conductive material, and 10 wt% of Polyvinylidene Fluoride (PVDF) as a binder were mixed with N-methyl-2-pyrrolidone (N-methyl-2- pyrrolidone, NMP) to prepare a slurry. The slurry was applied to a thickness of 100 μm by a doctor blade method on a copper foil having a thickness of 10 μm. Then, an electrode was prepared by vacuum drying and rolling at a temperature of 120° C. for 12 hours.
(코인형 리튬 이차 전지의 제작)(Manufacture of coin-type lithium secondary battery)
리튬 이차 전지는 상기 하이브리드 복합체를 음극 극판으로 사용하여 코인 형 CR2032 전지를 제조하였다. 대극(counter electrode)로는 200㎛ 두께의 리튬 금속을 사용하였으며, 전해질로는 에틸렌 카보네이트(EC): 에틸 메틸 카보네이트(EMC): 디에틸 카보네이트(DEC)=3:4:3 (부피비)의 조성을 갖는 비수성 혼합 용매에 1.0M LiPF6가 용해된 리튬염을 사용하였다. 또한 첨가제로 바이닐렌 카보네이트(VC) 또는 플루오르 에틸렌 카보네이트(FEC)를 소량 넣어 전해질로 사용하였다.As for the lithium secondary battery, a coin-type CR2032 battery was manufactured using the hybrid composite as an anode electrode plate. Lithium metal with a thickness of 200 μm was used as the counter electrode, and as the electrolyte, ethylene carbonate (EC): ethyl methyl carbonate (EMC): diethyl carbonate (DEC) = 3: 4: 3 (volume ratio) having a composition A lithium salt in which 1.0M LiPF 6 was dissolved in a non-aqueous mixed solvent was used. In addition, a small amount of vinylene carbonate (VC) or fluoroethylene carbonate (FEC) was added as an additive and used as an electrolyte.
(리튬 이차 전지의 전기화학적 성능 특성 평가 조건)(Conditions for Evaluating Electrochemical Performance Characteristics of Lithium Secondary Batteries)
상기 실시 예에 따른 하이브리드 복합체 음극을 사용한 리튬 이차 전지는 일정한 온도 조건에서 정전류-정전압(CC-CV) 방식으로 35 mA/g의 전류밀도 (약 0.01 C에 해당)로 0.01 - 2.5 V vs. Li/Li+ 의 전압 범위에서 충전과 방전을 진행하였다. 이때, 첫 번째 사이클에서의 충전 용량 및 방전 용량을 측정하여, 충/방전 효율을 계산하였다. (초기 효율 계산)The lithium secondary battery using the hybrid composite negative electrode according to the embodiment has a current density of 35 mA / g (corresponding to about 0.01 C) in a constant current-constant voltage (CC-CV) method under constant temperature conditions, 0.01 - 2.5 V vs. Charging and discharging were performed in the voltage range of Li/Li + . At this time, the charge/discharge efficiency was calculated by measuring the charge capacity and discharge capacity in the first cycle. (Initial efficiency calculation)
다음으로 수명 특성 평가는 200 mA/g의 전류밀도 (약 0.5 C에 해당)로 정전류-정전압(CC-CV) 방식으로 상기 동일한 전압 범위에서 충전 및 방전을 100회 반복한 후, 용량 유지율을 측정하였다. 또한, 충/방전 속도 특성은 200, 400, 800, 1200, 2400 mA/g의 다양한 전류 밀도에서 분석을 진행하였다.Next, life characteristics evaluation is performed by repeating charging and discharging 100 times in the same voltage range in the constant current-constant voltage (CC-CV) method at a current density of 200 mA / g (corresponding to about 0.5 C), and then measuring the capacity retention rate did In addition, the charge / discharge rate characteristics were analyzed at various current densities of 200, 400, 800, 1200, and 2400 mA/g.
실시예 2Example 2
상기 실시 예1에 따른 제조된 흑연 및 이황화 몰리브덴 2종 복합소재(ex-(Graphite/MoS2)) 분말을 Nobilta mixer(Hosokawa 社)에서 2000 rpm의 속도로 약 5분 동안 혼합한 다음, 4000rpm의 속도에서 총 1시간 동안 균질하게 혼합하였다. 상기 제조된 시료는 막자사발을 이용하여 갈아주고 45μm체에서 분급하여, 구형화된 ex-(Graphite/MoS2) 2종 하이브리드 복합소재를 제조하였다.The graphite and molybdenum disulfide two-type composite material (ex-(Graphite/MoS 2 )) powder prepared according to Example 1 was mixed for about 5 minutes at a speed of 2000 rpm in a Nobilta mixer (Hosokawa Co.), and then mixed at 4000 rpm. Mixed homogeneously for a total of 1 hour at speed. The prepared sample was ground using a mortar and classified using a 45 μm sieve to prepare a spherical ex-(Graphite/MoS 2 ) two-type hybrid composite material.
상기 음극 활물질을 제외하고는, 실시예 1과 동일한 방법으로 음극 제조 및 리튬 이차 전지를 제작하였고, 전기화학적 성능 평가하였다.A negative electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except for the negative electrode active material, and electrochemical performance was evaluated.
실시예 3Example 3
상기 실시 예1에 따른 제조된 박리화된 흑연 및 이황화 몰리브덴 복합소재(ex-(Graphite/MoS2))와 평균 입경 300 nm이하의 실리콘 나노 분말 5 내지 10 중량%로 혼합한다. 상기 준비한 분말을 Nobilta mixer(Hosokawa 社)에서 2000 rpm의 속도로 약 5분 동안 혼합한 다음, 4000rpm의 속도에서 총 1시간 동안 균질하게 혼합하였다. 상기 제조된 시료는 막자사발을 이용하여 갈아주고 45μm체에서 분급하여, 구형화된 ex-(Graphite/MoS2/Si) 3종 하이브리드 복합소재를 제조하였다.The exfoliated graphite and molybdenum disulfide composite material (ex-(Graphite/MoS 2 )) prepared according to Example 1 is mixed with 5 to 10% by weight of silicon nanoparticles having an average particle diameter of 300 nm or less. The prepared powder was mixed for about 5 minutes at a speed of 2000 rpm in a Nobilta mixer (Hosokawa Co.), and then homogeneously mixed for a total of 1 hour at a speed of 4000 rpm. The prepared sample was ground using a mortar and classified using a 45 μm sieve to prepare a spherical ex-(Graphite/MoS 2 /Si) three-type hybrid composite material.
상기 음극 활물질을 제외하고는, 실시예 1과 동일한 방법으로 음극 제조 및 리튬 이차 전지를 제작하였고, 전기화학적 성능 평가하였다.A negative electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except for the negative electrode active material, and electrochemical performance was evaluated.
실시예 4Example 4
상기 실시 예1에 따른 제조된 박리화된 흑연 및 이황화 몰리브덴 복합소재(ex-(Graphite/MoS2)), 평균 입경 300 nm이하의 실리콘 나노 분말 5 내지 10 중량%, 그리고 탄소 전구체인 피치(pitch) 10 중량%로 혼합한다. 상기 준비한 분말을 Nobilta mixer(Hosokawa 社)에서 2000 rpm의 속도로 약 5분 동안 혼합한 다음, 4000rpm의 속도에서 총 1시간 동안 균질하게 혼합하였다. 상기 혼합물을 튜브 퍼니스 (tube furnace)에 넣고 N2 분위기 하에서 500도에서 30분 동안 유지하고, 900도에서 30분 동안 유지하여 열처리하였다. (승온 속도: 분당 5도) 그리고 상기 방법을 통해 얻어진 시료는 막자사발을 이용하여 갈아주고 45μm체에서 분급하였다. 상기 복합체에는 박리화된 흑연 및 이황화 몰리브덴 복합체 표면 위에 실리콘 입자가 존재하고 이들 모두를 수 nm 두께의 탄소가 코팅되어 있는 구조가 형성되었다. 상기 제조된 소재명은 ex-(Graphite/MoS2)/Si/C 3종 하이브리드 복합 소재로 명명하였다.The exfoliated graphite and molybdenum disulfide composite material prepared according to Example 1 (ex-(Graphite/MoS 2 )), 5 to 10% by weight of silicon nanopowder having an average particle diameter of 300 nm or less, and pitch as a carbon precursor ) at 10% by weight. The prepared powder was mixed for about 5 minutes at a speed of 2000 rpm in a Nobilta mixer (Hosokawa Co.), and then homogeneously mixed for a total of 1 hour at a speed of 4000 rpm. The mixture was placed in a tube furnace and heat-treated by maintaining at 500 degrees for 30 minutes and at 900 degrees for 30 minutes under a N 2 atmosphere. (Temperature increase rate: 5 degrees per minute) And the sample obtained through the above method was ground using a mortar and classified through a 45 μm sieve. In the composite, a structure was formed in which silicon particles were present on the surface of the exfoliated graphite and molybdenum disulfide composite and all of them were coated with carbon having a thickness of several nm. The prepared material name was named ex-(Graphite/MoS 2 )/Si/C three hybrid composite materials.
상기 음극 활물질을 제외하고는, 실시예 1과 동일한 방법으로 음극 제조 및 리튬 이차 전지를 제작하였고, 전기화학적 성능 평가하였다.A negative electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except for the negative electrode active material, and electrochemical performance was evaluated.
실험예 1: 주사전자현미경(SEM) 및 주사투과전자현미경 (STEM) 분석Experimental Example 1: Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM) Analysis
도 2는 흑연과 본 발명의 일 실시예 1에 따른 ex-(Graphite/MoS2) 2종 하이브리드 복합소재의 SEM 사진을 나타낸 것이다. 도 2a는 복합소재 제조 시 사용한 흑연의 표면 SEM 사진을 나타낸 것이며 직경 20 내지 50μm 크기를 가지며, 흑연 시트의 edge면이 많이 노출되어 있는 구 형태를 가지고 있다. 도 2b,c는 ex-(Graphite/MoS2) 2종 하이브리드 복합 소재의 SEM 사진과 SEM BSE(backscattered electron, 후방산란전자) 모드 사진을 나타낸 것이다. 이를 통해 흑연 입자 표면 위와 흑연 시트의 edge면 사이에 박리화된 MoS2 나노시트들이 적층되어 있는 구조를 확인할 수 있다. Figure 2 shows a SEM picture of graphite and ex- (Graphite/MoS 2 ) two hybrid composite materials according to Example 1 of the present invention. Figure 2a shows a SEM picture of the surface of graphite used in the manufacture of a composite material, has a diameter of 20 to 50 μm, and has a spherical shape in which a lot of the edge surface of the graphite sheet is exposed. 2b and c show SEM pictures and SEM BSE (backscattered electron) mode pictures of the ex-(Graphite/MoS 2 ) two-type hybrid composite material. Through this, a structure in which exfoliated MoS 2 nanosheets are stacked between the graphite particle surface and the edge surface of the graphite sheet can be confirmed.
도 3은 본 발명의 일 실시예 2에 따른 ex-(Graphite/MoS2) 2종 하이브리드 복합 소재의 구형화 및 밀도 향상을 목적으로 Nobilta mixer를 이용해 기계적 밀링을 실시한 후의 SEM 및 TEM 사진을 나타낸 것이다. 도 3a는 표면 SEM, 도 3b는 단면 SEM BSE, 그리고 도 3c는 단면 STEM BF(bright field, 명시야) 사진들을 나타낸 것이다. 이를 통해 흑연 입자 표면 위에 박리화된 MoS2 나노시트들이 적층되어 있는 구조를 확인할 수 있었으며, 흑연 시트의 edge면의 노출이 거의 없이 매끄러운 표면 형태를 관찰하였다.Figure 3 is an ex- (Graphite / MoS 2 ) according to an embodiment 2 of the present invention SEM and TEM pictures after performing mechanical milling using a Nobilta mixer for the purpose of spheroidization and density improvement of the two hybrid composite material Shows . Figure 3a shows surface SEM, Figure 3b cross-sectional SEM BSE, and Figure 3c shows cross-sectional STEM bright field (BF) images. Through this, it was confirmed that the exfoliated MoS 2 nanosheets were stacked on the graphite particle surface, and a smooth surface shape was observed with almost no exposure of the edge surface of the graphite sheet.
도 4는 본 발명의 실시예3에 따른 ex-(Graphite/MoS2)/Si 3종 하이브리드 복합소재의 SEM 사진을 나타낸 것이다. 도 4a, b는 저 배율에서의 SEM 사진과 SEM EDS mapping 사진을 나타낸 것이며, ex-(Graphite/MoS2) 2종 복합소재 표면에 실리콘 나노입자들이 전반적으로 분포되어 있는 것을 확인하였다. 도 4c-e는 고 배율에서 관찰하였을 때, 흑연 입자 표면 위에 박리화된 MoS2 나노시트와 실리콘 나노입자들이 분포되어 있는 구조를 확인하였다. 또한, 노빌타 장비를 활용한 기계적 밀링 처리로 인해 흑연 시트의 edge면의 노출이 거의 없이 매끄러운 표면 형태를 관찰할 수 있었다. 도 4f는 실리콘 나노 입자만의 사진을 나타낸 것이며, 직경 25 내지 90 nm 크기를 가지고 있는 것을 확인하였다.Figure 4 shows a SEM picture of the ex- (Graphite / MoS 2 ) / Si hybrid composite material according to Example 3 of the present invention. 4a and b show SEM and SEM EDS mapping pictures at low magnification, and it was confirmed that silicon nanoparticles were generally distributed on the surface of the ex-(Graphite/MoS 2 ) two-type composite material. When observed at high magnification, FIG. 4c-e confirms a structure in which exfoliated MoS 2 nanosheets and silicon nanoparticles are distributed on the surface of graphite particles. In addition, due to the mechanical milling process using the Novilta equipment, the edge surface of the graphite sheet was hardly exposed, and the smooth surface shape could be observed. 4f shows a photograph of only silicon nanoparticles, and it was confirmed that they had a size of 25 to 90 nm in diameter.
도 5는 본 발명의 실시 예4에 따른 ex-(Graphite/MoS2)/Si/C 3종 하이브리드 복합소재의 STEM 사진 및 STEM-EDS mapping 사진 결과를 나타낸 것이다. 도 5a는 STEM-BF (bright field, 명시야), 도 5b, c는 STEM-HAADF (High angle annular dark field-scanning, 환형 고 각도 암시야) 사진이며, 도 5d-h는 STEM-EDS mapping 사진을 나타낸 것이다. 이를 통해 흑연 입자 표면 위와 흑연 시트의 edge면 사이에 박리화된 MoS2 나노시트들이 적층되어 있고, 실리콘 나노입자들도 흑연과 MoS2 복합소재의 표면에 고르게 잘 코팅된 것을 확인할 수 있었다.Figure 5 shows the results of the ex- (Graphite / MoS 2 ) / Si / C three-type hybrid composite material according to Example 4 of the present invention STEM picture and STEM-EDS mapping picture. 5a is STEM-BF (bright field), FIGS. 5b and c are STEM-HAADF (high angle annular dark field-scanning) photographs, and FIGS. 5d-h are STEM-EDS mapping photographs. is shown. Through this, it was confirmed that the exfoliated MoS 2 nanosheets were stacked on the surface of the graphite particles and between the edge surfaces of the graphite sheets, and the silicon nanoparticles were also well coated on the surface of the graphite and MoS 2 composite material.
실험예 2: 리튬 이차 전지의 수명 특성 평가Experimental Example 2: Evaluation of Life Characteristics of Lithium Secondary Batteries
도 6은 흑연, MoS2, ex-(Graphite/MoS2) 2종 그리고 ex-(Graphite/MoS2)/Si 3종 하이브리드 복합소재 기반 리튬 이차 전지의 초기 사이클 충/방전 전압 곡선과 전류밀도 200mA/g에서의 수명 특성을 나타낸 것이다. 상기 흑연, MoS2, 그리고 ex-(Graphite/MoS2) 2종 하이브리드 복합 소재에 대해서는 VC 1wt%의 첨가제가 들어간 전해질을 사용하였으며, Graphite/Si 2종과 ex-(Graphite/MoS2)/Si 3종 하이브리드 복합 소재에 대해서는 FEC 5%와 VC 2% 등의 첨가제가 들어간 전해질을 사용하여 리튬 이온 전지 성능을 평가하였다. FIG. 6 shows graphite, MoS 2 , ex-(Graphite/MoS 2 ) 2 types, and ex-(Graphite/MoS 2 )/Si 3 types hybrid composite material-based lithium secondary battery's initial cycle charge/discharge voltage curve and current density 200mA It shows the lifetime characteristics at /g. For the graphite, MoS 2 , and ex-(Graphite/MoS 2 ) two types of hybrid composite materials, an electrolyte containing 1 wt% of VC was used, and two types of Graphite/Si and ex-(Graphite/MoS 2 )/Si were used. For the three hybrid composite materials, lithium ion battery performance was evaluated using an electrolyte containing additives such as FEC 5% and VC 2%.
도 6에서 보는 바와 같이, 전류밀도 200 mA/g의 조건 하에서 흑연의 경우에는 50 번째 사이클에서 초기 용량 대비 용량 유지율은 높지만 이론 용량 ~372 mAh/g보다 낮은 약 330 mAh/g의 용량 값을 확인할 수 있었으며, 벌크 MoS2의 경우에는 초기 용량은 약 690 mAh/g으로 높은 편이지만 사이클에 따라 용량이 급격하게 떨어지며 50번째 사이클에서 약 310 mAh/g의 용량값을 보이는 것을 확인할 수 있었다. ex-(Graphite/MoS2)의 질량비를 1:2 비율로 제조한 GM12 2종 하이브리드 복합소재 전극의 경우에는 약 615 mAh/g의 높은 초기 용량 값을 보이고, 100 번째 사이클에서 약 580 mAh/g의 용량 값을 보이며, 초기 용량 대비 약 94 %의 높은 용량 유지율을 확인하였다. 이는 흑연 또는 MoS2 단독으로 사용했을 때보다 흑연과 MoS2 복합 소재를 사용한 전극의 경우가 전기화학적 특성이 더 우수함을 확인할 수 있었다. 이에 더하여, GM12복합 소재를 기계적 밀링 처리 후, 구형화된 GM12-NB1hr 복합소재 전극의 경우에는 100번째 사이클에서 약 636 mAh/g의 용량 값을 보였으며, GM12 대비하여 100번째 사이클에서의 잔존용량이 약 10% 증가한 것을 확인할 수 있었다. 결과적으로 기계적 밀링을 통해 ex-(Graphite/MoS2) 2종 하이브리드 복합소재 기반 리튬 이차 전지의 용량 및 수명 특성이 개선됨을 확인할 수 있었다.As shown in FIG. 6, in the case of graphite under the condition of a current density of 200 mA/g, the capacity retention rate compared to the initial capacity is high at the 50th cycle, but the capacity value of about 330 mAh/g lower than the theoretical capacity ~372 mAh/g can be confirmed. In the case of bulk MoS 2 , the initial capacity is about 690 mAh/g, which is high, but the capacity drops rapidly with cycles, and it was confirmed that the capacity value of about 310 mAh/g was shown in the 50th cycle. In the case of the GM12 two-type hybrid composite electrode manufactured with a mass ratio of ex-(Graphite/MoS 2 ) at a ratio of 1:2, it shows a high initial capacity value of about 615 mAh/g, and about 580 mAh/g at the 100th cycle It showed a capacity value of , and a high capacity retention rate of about 94% compared to the initial capacity was confirmed. It was confirmed that the electrochemical characteristics of the electrode using the graphite and MoS 2 composite material were better than when graphite or MoS 2 was used alone. In addition, after mechanical milling of the GM12 composite material, the spherical GM12-NB1hr composite electrode showed a capacity value of about 636 mAh/g at the 100th cycle, and the remaining capacity at the 100th cycle compared to GM12 It was confirmed that this increased by about 10%. As a result, it was confirmed that the capacity and lifespan characteristics of the ex-(Graphite/MoS 2 ) two-type hybrid composite-based lithium secondary battery were improved through mechanical milling.
실리콘을 함유한 2종 복합소재 (Graphite/Si)와 3종 복합소재 (GM12/Si5wt%) 전극들의 경우에는 100번째 사이클에서 각각 494, 641 mAh/g의 용량 값을 보였으며, 초기 용량 대비 각각 약 85% 및 100%의 용량 유지율을 보임을 확인할 수 있었다. In the case of electrodes containing silicon-containing 2-type composite material (Graphite/Si) and 3-type composite material (GM12/Si5wt%), the capacity values were 494 and 641 mAh/g, respectively, at the 100th cycle, compared to the initial capacity, respectively. It was confirmed that the capacity retention rate was about 85% and 100%.
또한, ex-(Graphite/MoS2) 2종 복합 소재에서 MoS2의 함량 비를 줄여 흑연과 MoS2의 질량 비가 4:1인 GM41 복합소재 전극의 경우에 리튬 이차 전지의 음극으로 사용하기에 우수한 전압 양상(profile)을 보였다. 그리고 200 mA/g의 전류밀도 조건 하에서 100 번째 사이클에서 상용 흑연 전극(약 320 mAh/g) 대비 약 170 % (약 1.7배) 증가한 약 550 mAh/g의 용량 값을 보였으며, 초기 용량 대비 약 100 %의 높은 용량 유지율을 확인하였다. 따라서, 상기 graphite와 2D MoS2 나노시트의 복합소재 (GM composite)의 경우에, 적은 비율의 MoS2 나노시트를 사용하여도 기존의 상용 흑연 전극보다 더 높은 용량 특성과 안정적인 사이클 특성을 보이는 등 우수한 LIB 셀 성능을 보이는 것을 확인할 수 있었다. In addition, in the case of the GM41 composite electrode with a mass ratio of graphite and MoS 2 of 4:1 by reducing the content ratio of MoS 2 in the ex-(Graphite/MoS 2 ) composite material, it is excellent for use as a negative electrode for lithium secondary batteries. The voltage profile was shown. And at the 100th cycle under the current density condition of 200 mA/g, it showed a capacity value of about 550 mAh/g, an increase of about 170% (about 1.7 times) compared to the commercial graphite electrode (about 320 mAh/g), compared to the initial capacity A high capacity retention rate of 100% was confirmed. Therefore, in the case of the composite material (GM composite) of the graphite and 2D MoS 2 nanosheets, even with a small proportion of MoS 2 nanosheets, it exhibits higher capacity characteristics and stable cycle characteristics than conventional commercial graphite electrodes, such as excellent It was confirmed that the LIB cell performance was shown.
실험예 3: 리튬 이차 전지의 속도 특성 평가Experimental Example 3: Evaluation of speed characteristics of lithium secondary batteries
도 7은 ex-(Graphite/MoS2)의 질량비를 1:2 비율로 제조한 GM12 2종 하이브리드 복합소재 전극과 상기 소재를 기계적 밀링 처리 후, 구형화된 GM12-NB1hr 복합소재 전극 기반 리튬 이차 전지의 초기 사이클 충/방전 전압 곡선과 다양한 전류 밀도에 따른 용량 특성을 나타낸 것이다. 기계적 밀링을 통해 구형화된 GM12-NB1hr 복합소재 전극 기반 리튬 이차 전지의 속도 특성은 200, 400, 800, 1200, 그리고 2400 mA/g의 전류 밀도에서 각각 약 580, 560, 530, 511, 그리고 450 mAh/g의 용량 값을 보였다. 이를 통해 2400 mA/g의 높은 전류밀도에서도 200 mA/g의 낮은 전류밀도에서 측정한 용량 값 대비 약 78%의 용량을 유지하는 것으로 보아 우수한 율속 특성을 보임을 확인할 수 있었다. 또한, 2400 mA/g의 높 은 전류밀도에서의 충/방전 사이클 이후에 다시 초기 200 mA/g의 낮은 전류밀도 조건에서 충/방전 측정한 결과 초기 200 mA/g의 전류밀도에서의 용량 값으로 잘 복원되는 것을 확인할 수 있었다. 실험예 2에 따른 리튬 이온 전지의 용량 및 수명 특성뿐만 아니라, 속도 특성도 개선됨을 확인할 수 있었다. 본 발명을 통하여 개발한 복합소재의 경우 급속충전 리튬 이차 전지용 음극재로 적용 가능함을 확인할 수 있었다.7 is a GM12 two-type hybrid composite electrode prepared at a mass ratio of ex-(Graphite/MoS 2 ) at a ratio of 1:2 and a lithium secondary battery based on a spherical GM12-NB1hr composite material electrode after mechanical milling of the material It shows the initial cycle charge/discharge voltage curve and capacity characteristics according to various current densities. The rate characteristics of the GM12-NB1hr composite electrode-based lithium secondary battery spheroidized through mechanical milling were approximately 580, 560, 530, 511, and 450 at current densities of 200, 400, 800, 1200, and 2400 mA/g, respectively. The capacity value in mAh/g was shown. Through this, it was confirmed that even at a high current density of 2400 mA/g, the capacity was maintained at about 78% of the capacity value measured at a low current density of 200 mA/g, showing excellent rate performance. In addition, as a result of charge/discharge measurement under the initial low current density condition of 200 mA/g after the charge/discharge cycle at a high current density of 2400 mA/g, the capacity value at the initial current density of 200 mA/g I was able to confirm that it was well restored. It was confirmed that not only the capacity and life characteristics of the lithium ion battery according to Experimental Example 2, but also the speed characteristics were improved. In the case of the composite material developed through the present invention, it was confirmed that it can be applied as an anode material for a rechargeable lithium battery.
도 8은 ex-(Graphite/MoS2)의 질량비율별(1:0, 1:2, 그리고 4:1) 복합소재와 실리콘 5 내지 10 중량비%로 제조된 2종 또는 3종 복합소재 기반 리튬 이차 전지의 초기 사이클 충/방전 전압 곡선과 다양한 전류 밀도에 따른 용량 특성을 나타낸 것이다. GM41복합소재 전극 기반 리튬 이차 전지의 속도 특성은 200, 400, 800, 1200, 그리고 2400 mA/g의 전류 밀도에서 각각 약 490, 486, 475, 466, 그리고 440 mAh/g의 용량 값을 보였다. 이를 통해 2400 mA/g의 높은 전류밀도에서도 200 mA/g의 낮은 전류밀도에서 측정한 용량 값 대비 약 90%의 용량을 유지하는 것으로 보아 율속 특성이 매우 우수한 것을 확인할 수 있었다. 또한, 2400 mA/g의 높은 전류밀도에서의 충/방전 사이클 이후에 다시 초기 200 mA/g의 낮은 전류밀도 조건에서 충/방전 측정한 결과 초기 200 mA/g의 전류밀도에서의 용량 값으로 잘 복원되는 것을 확인할 수 있었다. 8 is a composite material by mass ratio (1:0, 1:2, and 4:1) of ex-(Graphite/MoS 2 ) and lithium based on two or three composite materials made of 5 to 10% by weight of silicon The initial cycle charge/discharge voltage curve of the secondary battery and the capacity characteristics according to various current densities are shown. The rate characteristics of the GM41 composite electrode-based lithium secondary battery showed capacity values of about 490, 486, 475, 466, and 440 mAh/g at current densities of 200, 400, 800, 1200, and 2400 mA/g, respectively. Through this, even at a high current density of 2400 mA/g, it was confirmed that the rate performance was very good, as the capacity was maintained at about 90% compared to the capacity value measured at a low current density of 200 mA/g. In addition, as a result of charge/discharge measurement under the initial low current density condition of 200 mA/g after the charge/discharge cycle at the high current density of 2400 mA/g, the capacity value at the initial current density of 200 mA/g was well could be confirmed to be restored.
실리콘을 함유한 3종 복합소재 (GM12/Si5wt%) 전극 기반 리튬 이차 전지의 속도 특성은 200, 400, 800, 1200, 그리고 2400 mA/g의 전류 밀도에서 각각 약 625, 570, 507, 461, 그리고 370 mAh/g의 용량 값을 보였다. 이를 통해 2400 mA/g의 높은 전류밀도에서도 200 mA/g의 낮은 전류밀도에서 측정한 용량 값 대비 약 59%의 용량을 유지하였다. 실리콘을 함유한 3종 복합소재 (GM41/Si10wt%) 전극 기반 리튬 이차 전지의 속도 특성은 200, 400, 800, 1200, 그리고 2400 mA/g의 전류 밀도에서 각각 약 584, 520, 442, 384, 그리고 330 mAh/g의 용량 값을 보였으며, 2400 mA/g의 높은 전류밀도에서의 전극 용량 값은 200 mA/g의 낮은 전류밀도에서 측정한 용량 값 대비 약 57%의 용량을 보였다. 이를 통하여, ex-(Graphite/MoS2) 복합소재 전극들이 Si이 들어간 복합소재와 비교하여 더 우수한 율속 특성을 보이는 것을 확인할 수 있었다. 특히, 적은 비율의 MoS2 나노시트를 사용하여도 현재 고용량 LIB 음극 소재로 사용되고 있는 흑연/Si복합소재(AG/Si10wt%) 대비하여 훨씬 더 우수한 율속 특성을 보이는 것을 확인할 수 있었다. The rate characteristics of the lithium secondary battery based on the three composite materials (GM12/Si 5wt% ) electrodes containing silicon were about 625, 570, 507, and 461 at current densities of 200, 400, 800, 1200, and 2400 mA/g, respectively. , and a capacity value of 370 mAh/g. Through this, even at a high current density of 2400 mA/g, the capacity was maintained at about 59% compared to the capacity value measured at a low current density of 200 mA/g. The rate characteristics of lithium secondary batteries based on silicon-containing composite materials (GM41/Si 10wt% ) electrodes were about 584, 520, 442, and 384 at current densities of 200, 400, 800, 1200, and 2400 mA/g, respectively. , and showed a capacity value of 330 mAh/g, and the electrode capacity value at a high current density of 2400 mA/g showed about 57% of the capacity value measured at a low current density of 200 mA/g. Through this, it was confirmed that the ex-(Graphite/MoS 2 ) composite material electrodes showed better rate performance compared to the composite material containing Si. In particular, even with a small proportion of MoS 2 nanosheets, it was confirmed that they showed much better rate performance compared to the graphite/Si composite material (AG/Si 10wt% ) currently used as a high-capacity LIB anode material.
본원의 제1 측면은,The first aspect of the present application is,
하이브리드 복합체를 제조하는 방법으로서, 흑연(Graphite) 및 전이금속 디칼코게나이드 물질을 혼합하여 혼합물을 제조하는 단계; 상기 혼합물에 제1 양이온을 포함하는 용액을 혼입하는 단계; 상기 제1 양이온을 상기 흑연 및 전이금속 디칼코게나이드 물질에 층간 삽입하는 단계; 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계; 및 상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계;를 포함하는, 하이브리드 복합체의 제조방법을 제공한다.A method for producing a hybrid composite comprising: preparing a mixture by mixing graphite and a transition metal dichalcogenide material; incorporating a solution containing the first cation into the mixture; intercalating the first cation into the graphite and transition metal dichalcogenide materials; ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; and simultaneously exfoliating and re-stacking at least a portion of the surface of the graphite and the transition metal dichalcogenide material to obtain a hybrid composite.
이하, 본원의 제1 측면에 따른 하이브리드 복합체의 제조방법을 도 1을 참조하여 설명한다.Hereinafter, a method for preparing a hybrid composite according to the first aspect of the present disclosure will be described with reference to FIG. 1 .
우선, 본원의 일 구현예에 있어서, 흑연(Graphite) 및 전이금속 디칼코게나이드 물질을 혼합하여 혼합물을 제조하는 단계(S100)를 포함할 수 있다.First, in one embodiment of the present application, a step of preparing a mixture by mixing graphite and a transition metal dichalcogenide material (S100) may be included.
본원의 일 구현예에 있어서, 상기 흑연(Graphite) 및 전이금속 디칼코게나이드 물질을 혼합하여 혼합물을 제조하는 단계;에서, 상기 전이금속 디칼코게나이드의 함량은 흑연 100 중량부에 대하여, 1 중량부 또는 그 이상, 2 중량부 또는 그 이상, 5 중량부 또는 그 이상, 10 중량부 또는 그 이상, 15 중량부 또는 그 이상, 또는 20 중량부 또는 그 이상일 수 있고, 400 중량부 또는 그 이하, 300 중량부 또는 그 이하, 275 중량부 또는 그 이하, 또는 250 중량부 또는 그 이하일 수 있고, 바람직하게는 1 내지 400 중량부, 더 바람직하게는 1 내지 250 중량부, 더 바람직하게는 10 내지 250 중량부, 더욱 바람직하게는 20 내지 250 중량부인 것을 특징으로 하는 것일 수 있다. 흑연이 상술한 범위 밖에 있는 경우, 원하는 수준의 전기전도도, 용량 등 전기화학적 특성 및 구조적 안정성을 만족할 수 없어 전극 활물질로서 활용되기 어려울 수 있거나 흑연 함량이 너무 적고 고가의 전이금속 디칼코게나이드 물질 함량이 많아지게 되는 경우 비경제적일 수 있다.In one embodiment of the present application, in the step of preparing a mixture by mixing the graphite and the transition metal dichalcogenide material, the content of the transition metal dichalcogenide is 1 part by weight based on 100 parts by weight of graphite. or more, 2 parts by weight or more, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, or 20 parts by weight or more, 400 parts by weight or less, 300 parts by weight or less, 275 parts by weight or less, or 250 parts by weight or less, preferably 1 to 400 parts by weight, more preferably 1 to 250 parts by weight, still more preferably 10 to 250 parts by weight part, more preferably 20 to 250 parts by weight. If graphite is outside the above-mentioned range, it may be difficult to utilize it as an electrode active material because it cannot satisfy the desired level of electrochemical properties such as electrical conductivity and capacity and structural stability, or the content of graphite is too small and the content of expensive transition metal dichalcogenide materials If there are too many, it can be uneconomical.
본원의 일 구현예에 있어서, 상기 전이금속 디칼코게나이드 물질은 MX2로 표현될 수 있고, 여기서, M은 전이금속이고, X는 칼코겐 원소이며, 상기 M은 Mo, W, Nb, 및 Ti 등 전이금속으로 이루어진 군에서 선택되는 하나이고, 상기 X는 S, Se 및 Te으로 이루어진 군에서 선택되는 하나일 수 있으며, 바람직하게는 MoS2, MoSe2, WS2, WSe2, TiS2, TiSe2, ReS2, ZrTe2, NbSe2 중 선택되는 적어도 1종일 수 있고, 더 바람직하게는 MoS2, MoSe2, 또는 WS2일 수 있다.In one embodiment of the present application, the transition metal dichalcogenide material may be represented by MX 2 , wherein M is a transition metal, X is a chalcogen element, and M is Mo, W, Nb, and Ti It is one selected from the group consisting of such transition metals, and the X may be one selected from the group consisting of S, Se and Te, preferably MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , may be at least one selected from NbSe 2 , more preferably MoS 2 , MoSe 2 , or WS 2 .
전이금속 디칼코게나이드를 이루는 전이금속 원자와 칼코겐 원자는 공유결합 형태로 존재하며 층과 층 사이에 약한 반데르발스 힘 (Van der Walls (VdW)interaction)으로 연결되어 있어 물리적 박리 및 화학적 박리가 가능하다. Transition metal atoms and chalcogen atoms constituting transition metal dichalcogenide exist in the form of covalent bonds and are connected by weak Van der Walls (VdW) interaction between layers, so physical and chemical exfoliation is prevented. possible.
종래에는 2차원 나노시트의 박리화는 스카치 테이프를 이용하여 물리적으로 떼어내거나 볼밀을 통한 박리, 또는 적절한 용매에서 박리과정을 진행시키는 방법 등이 있었다. 상술한 방법들은 박리 효율이 떨어지거나, 에너지 측면에서 비경제적이었기 때문에, 개선된 박리화 공정 및 재적층 공정이 필요하기 때문에 본 발명에 이르게 된 것이다.Conventionally, exfoliation of the two-dimensional nanosheets has been performed by physically peeling them off using scotch tape, peeling them through a ball mill, or performing the peeling process in an appropriate solvent. Since the above-described methods have poor peeling efficiency or are uneconomical in terms of energy, the present invention has been reached because an improved peeling process and re-lamination process are needed.
다음으로, 본원의 일 구현예에 있어서, 상기 혼합물에 제1 양이온을 포함하는 용액을 혼입하는 단계(S200)를 포함할 수 있다.Next, in one embodiment of the present application, a step (S200) of incorporating a solution containing the first cation into the mixture may be included.
본원의 일 구현예에 있어서, 본 단계 이전에 질소를 주입하여 질소 분위기를 형성하는 단계;가 더 포함될 수도 있다.In one embodiment of the present application, forming a nitrogen atmosphere by injecting nitrogen prior to this step; may be further included.
본원의 일 구현예에 있어서, 상기 제1 양이온은 3차원 벌크물질의 층상 구조 내에 삽입될 수 있는 양이온이라면 크게 제한되는 것은 아니지만, 바람직하게는 알칼리 금속 양이온일 수 있고, 더 바람직하게는 이온 크기가 작아 삽입하기가 용이할 수 있는 리튬 양이온(Li+)일 수 있다.In one embodiment of the present application, the first cation is not particularly limited as long as it is a cation that can be inserted into the layered structure of the three-dimensional bulk material, but may preferably be an alkali metal cation, more preferably having an ion size of It may be a lithium cation (Li + ) that may be small and easy to insert.
본원의 일 구현예에 있어서, 상기 제1 양이온을 포함하는 용액은 금속원소나 유기-알칼리 화합물일 수 있고, 바람직하게는 부틸리튬, 나트륨 나프탈레니드일 수 있고, 더 바람직하게는 n-부틸리튬일 수 있다.In one embodiment of the present application, the solution containing the first cation may be a metal element or an organo-alkali compound, preferably butyllithium or sodium naphthalenide, more preferably n-butyllithium can be
본원의 일 구현예에 있어서, 상기 제1 양이온을 포함하는 용액은 상기 흑연 및 전이금속 디칼코게나이드 물질의 중량 1g에 대해 1 내지 30mL, 바람직하게는 2 내지 20mL, 더 바람직하게는 3 내지 15mL, 보다 더 바람직하게는 3 내지 10mL로 혼입될 수 있다. 상기 범위를 만족함으로써, 리튬 이온이 흑연 표면 또는 전이금속 디칼코게나이드 물질의 층간에 잘 삽입될 수 있는 것일 수 있다. In one embodiment of the present application, the solution containing the first cation is 1 to 30 mL, preferably 2 to 20 mL, more preferably 3 to 15 mL, based on the weight of 1 g of the graphite and transition metal dichalcogenide material, Even more preferably, it may be incorporated in 3 to 10 mL. By satisfying the above range, lithium ions may be well intercalated between the layers of the graphite surface or the transition metal dichalcogenide material.
다음으로, 본원의 일 구현예에 있어서, 상기 제1 양이온을 상기 흑연 및 전이금속 디칼코게나이드 물질에 층간 삽입하는 단계(S300)를 포함할 수 있다. 상기 단계 S300에서, 제1 양이온을 포함하는 용액이 투입된 혼합물을 음파 또는 초음파 처리하여 상기 제1 양이온을 다층 구조의 흑연 및 전이금속 디칼코게나이드 물질에 층간 삽입하는 것을 포함할 수 있다. 상기 음파 또는 초음파 처리를 통해 제1 양이온이 다층의 층상 구조내에 삽입(intercalation)되는 것을 촉진하기 위한 것일 수 있다.Next, in one embodiment of the present application, intercalating the first cation into the graphite and the transition metal dichalcogenide material may be intercalated (S300). In the step S300, the mixture into which the solution containing the first cations is introduced may be treated with sound waves or ultrasonic waves to intercalate the first cations into the multi-layered graphite and transition metal dichalcogenide materials. It may be to facilitate the intercalation of the first cations into the multi-layered layered structure through the sonic wave or ultrasonic treatment.
본원의 일 구현예에 있어서, 상기 제1 양이온을 상기 흑연 및 전이금속 디칼코게나이드 물질에 층간 삽입하는 단계에서, 10분 내지 600분, 10분 내지 480분, 10분 내지 300분, 10분 내지 240분, 또는 20분 내지 180분 동안 음파 또는 초음파 처리하는 것을 특징으로 하는 것일 수 있다. 상기 음파 또는 초음파 처리가 10분 미만으로 이루어질 경우, 제1 양이온이 충분하게 다층의 층상구조 내에 삽입되지 않을 수 있고, 600분 초과로 이루어질 경우 비경제적이거나 소재의 decomposition이 일어날 수 있다.In one embodiment of the present application, in the step of intercalating the first cation into the graphite and the transition metal dichalcogenide material, 10 minutes to 600 minutes, 10 minutes to 480 minutes, 10 minutes to 300 minutes, 10 minutes to It may be characterized by sonicating or ultrasonicating for 240 minutes, or 20 to 180 minutes. When the sonic or ultrasonic treatment is performed for less than 10 minutes, the first cation may not be sufficiently inserted into the multi-layered layered structure, and when it is performed for more than 600 minutes, it may be uneconomical or decomposition of the material may occur.
다음으로, 본원의 일 구현예에 있어서, 제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계(S400)를 포함할 수 있다.Next, in one embodiment of the present application, a step (S400) of ion-exchanging the intercalated first cation with a second cation by mixing a solution containing the second cation may be included.
상기 제1 양이온이 제1 및 제2 나노시트의 3차원 벌크 물질에 인터칼레이션되고, 층간 간격이 증가하게 되면 층간 결합력이 약화된다. 인터칼레이션된 제1 양이온(예컨대, 알칼리 금속 양이온)을 제2 양이온으로 이온-교환하는 과정을 의미할 수 있다. 예를 들면 리튬 이온을 암모늄 이온(NH4 +)와 이온-교환하고, 이후 단계에서 증류수로 세척하면 층간의 제2 양이온(예컨대, NH4 +)이 H+로 교환되면서 쉽게 벌크 3차원 층상 물질이 단일층 내지 소수의 다중층 2차원 나노시트 물질로 박리화할 수 있게 된다.When the first cations are intercalated in the three-dimensional bulk material of the first and second nanosheets and the interlayer spacing increases, the interlayer bonding force is weakened. It may mean a process of ion-exchanging intercalated first cations (eg, alkali metal cations) with second cations. For example, when lithium ions are ion-exchanged with ammonium ions (NH 4 + ) and washed with distilled water in a later step, the second cation (eg, NH 4 + ) between the layers is exchanged for H + to easily form a bulk three-dimensional layered material. It can be exfoliated into a single layer or a small number of multi-layered two-dimensional nanosheet materials.
본원의 일 구현예에 있어서, 제2 양이온은 제1 양이온보다 이온 크기가 큰 양이온이 포함될 수 있으며, 비제한적인 예시로서, 암모늄, 탄화수소로 치환된 1급 내지 3급 암모늄, 마그네슘, 아연(Zn) 및 히드로늄(H3O+)으로 이루어지는 군으로부터 선택되는 1종의 양이온일 수 있고, 바람직하게는 암모늄 이온일 수 있다.In one embodiment of the present application, the second cation may include a cation having a larger ionic size than the first cation, and as non-limiting examples, ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn ) and hydronium (H 3 O+), and may be one type of cation selected from the group consisting of, preferably, an ammonium ion.
본원의 일 구현예에 있어서, 상기 제2 양이온을 포함하는 용액은 상기 흑연 및 전이금속 디칼코게나이드 물질의 중량 1g에 대해 10 내지 200mL, 바람직하게는 20 내지 150mL, 더 바람직하게는 25 내지 120mL, 보다 더 바람직하게는 30 내지 100mL로 혼입될 수 있다. 상기 범위를 만족함으로써, 제1 양이온과 제2 양이온이 녹여 있는 수용액간 반응이 격렬하게 일어남으로써 형성된 제2 양이온(예컨대, NH4 +)과 제1 양이온(Li+)간의 이온-교환이 활발하게 이루어질 수 있는 것일 수 있다.In one embodiment of the present application, the solution containing the second cation is 10 to 200 mL, preferably 20 to 150 mL, more preferably 25 to 120 mL, based on the weight of 1 g of the graphite and transition metal dichalcogenide material, Even more preferably, it may be incorporated at 30 to 100 mL. By satisfying the above range, the ion-exchange between the second cation (eg, NH 4 + ) and the first cation (Li + ) formed by vigorous reaction between the aqueous solution in which the first cation and the second cation are dissolved occurs actively. It may be something that can be done.
다음으로, 본원의 일 구현예에 있어서, 상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계(S500)를 포함할 수 있다. 상술한 단계는 제2 양이온이 제1 양이온과 이온-교환되어 다층의 층상 구조내에 삽입(intercalation)되어 층간 간격이 더 벌어지고 이후 박리 및 분산과정에서 이종의 나노시트간의 재적층(restacking)되는 것을 촉진하기 위한 것일 수 있다.Next, in one embodiment of the present application, at least a portion of the graphite surface and the transition metal dichalcogenide material may be simultaneously exfoliated and re-laminated to obtain a hybrid composite (S500). In the above-described step, the second cation is ion-exchanged with the first cation to be intercalated into the multi-layered layered structure, further widening the interlayer spacing, and restacking between the heterogeneous nanosheets in the subsequent separation and dispersion process. It may be to promote
본원의 일 구현예에 있어서, 상기 단계 S500에서, 제2 양이온으로 이온-교환이 끝난 흑연-전이금속 디칼코게나이드 혼합물을 외력을 가하는 것, 바람직하게는 음파 또는 초음파 처리를 가하여 각각의 물질을 박리, 분산 및 재적층하는 것을 포함할 수 있다. 상기 음파 또는 초음파 처리를 통해 박리 및 재적층을 촉진하기 위한 것일 수 있다. In one embodiment of the present application, in the step S500, applying an external force to the graphite-transition metal dichalcogenide mixture that has been ion-exchanged with the second cation, preferably by applying sound waves or ultrasonic treatment to exfoliate each material , dispersing and re-stacking. It may be to facilitate peeling and re-lamination through the sonic or ultrasonic treatment.
본원의 일 구현예에 있어서, 단계 S500에서는, 10분 내지 600분, 10분 내지 480분, 10분 내지 300분, 10분 내지 240분, 또는 20분 내지 180분 동안 음파 또는 초음파 처리하는 것을 특징으로 하는 것일 수 있다. 상기 음파 또는 초음파 처리가 10분 미만으로 이루어질 경우, 벌크 물질의 박리, 분산, 재적층 모든 진행과정이 충분히 이루어지지 않을 수 있고, 600분 초과로 이루어질 경우 비경제적이거나 소재의 decomposition이 일어날 수 있다.In one embodiment of the present application, in step S500, 10 minutes to 600 minutes, 10 minutes to 480 minutes, 10 minutes to 300 minutes, 10 minutes to 240 minutes, or 20 minutes to 180 minutes characterized by sound wave or ultrasonic treatment it may be to When the sound wave or ultrasonic treatment is performed for less than 10 minutes, all processes of peeling, dispersing, and re-stacking of the bulk material may not be sufficiently performed, and when it is performed for more than 600 minutes, it may be uneconomical or decomposition of the material may occur.
본원의 일 구현예에 있어서, 상기 S300 단계 또는 S500단계에서의 음파 또는 초음파 처리와 동시에 교반을 진행하는 것을 특징으로 할 수 있다. 교반 과정을 동시에 진행함으로써, 제1 양이온의 3차원 층상 벌크 물질의 층간에의 삽입, 또는 제2 양이온으로의 이온-교환 및 3차원 층상 벌크 물질의 층간에의 삽입 및 이어지는 박리화 및 분산(구체적으로, 서로 다른 각각의 박리화된 나노시트들이 고르게 잘 분산됨에 따른 이종의 나노시트간 재적층)을 더욱 촉진할 수 있으며, 간단한 공정의 추가로 전체 공정 시간을 단축시킬 수 있다. 상기 교반은 0.1 내지 5 시간, 바람직하게는 0.2 내지 4 시간, 더 바람직하게는 0.5 내지 3 시간 동안 진행되는 것일 수 있다. 또한, 본 발명의 일 구현예에 있어서, 교반은 S300 단계 또는 S500단계에서의 음파 또는 초음파 처리 단계 중 지속적으로 동시 수행될 수도 있지만, 복수 회에 걸쳐 수행될 수 있으며, 2차원 나노시트 소재의 박리화 이후 decomposition을 방지하는 측면에서 1회 당 0.1 내지 2 시간, 바람직하게는 1회 당 0.2 내지 1 시간 동안 진행될 수 있다. 상기 교반 과정에 필요한 장비는 당 업계에서 사용되는 것이라면 제한되지 않는다.In one embodiment of the present application, it may be characterized in that the agitation proceeds simultaneously with the sonic or ultrasonic treatment in step S300 or step S500. By simultaneously carrying out the stirring process, intercalation of the first cation into the interlayer of the three-dimensional layered bulk material, or ion-exchange with the second cation and intercalation of the interlayer of the three-dimensional layered bulk material and subsequent exfoliation and dispersion (specifically As a result, since each of the different exfoliated nanosheets is evenly dispersed, re-stacking between heterogeneous nanosheets) can be further promoted, and the overall process time can be shortened by adding a simple process. The stirring may be performed for 0.1 to 5 hours, preferably 0.2 to 4 hours, and more preferably 0.5 to 3 hours. In addition, in one embodiment of the present invention, the stirring may be performed simultaneously or continuously during the sonic wave or ultrasonic treatment step in step S300 or step S500, but may be performed multiple times, and the two-dimensional nanosheet material may be peeled off. In terms of preventing decomposition after heating, it may be performed for 0.1 to 2 hours per time, preferably 0.2 to 1 hour per time. Equipment required for the stirring process is not limited as long as it is used in the art.
본원의 일 구현예에 있어서, 상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계; 후에, 상기 하이브리드 복합체를 분말화하는 단계(S600, 미도시)를 더 포함할 수 있다.In one embodiment of the present application, at least a portion of the surface of the graphite and the transition metal dichalcogenide material are simultaneously exfoliated and re-laminated to obtain a hybrid composite; Afterwards, a step of pulverizing the hybrid composite (S600, not shown) may be further included.
본원의 일 구현예에 있어서, 상기 단계 S500에서 수득한 하이브리드 복합체를 포함하는 용액을 소정의 필터를 통과시키고, 용매로 하이브리드 복합체 분말을 세척하는 단계; 수득된 분말을 건조하는 단계를 더 포함하는 것을 특징으로 할 수 있다. 상술한 단계에서 3차원 층상 벌크 물질의 층간의 제2 양이온이 H+로 교환되면서 더욱 용이하게 벌크 3차원 층상 물질이 단일층 내지 소수의 다중층 2차원 나노시트 물질로 박리화를 촉진할 수 있다. 이후 필터(filtration)을 통해 고체 상을 여과하여 건조하여 분말화된 하이브리드 복합체를 수득할 수 있다. 본 단계에서 사용되는 세척액의 종류는 비제한적이나, 증류수, 초순수, 에탄올 등이 사용될 수 있다. 또한 건조 단계에서는 건조 온도 및 시간은 적절하게 조절될 수 있을 것이다. 본원의 일 구현예에 있어서, 세척 후 소재의 회수를 위한 건조 조건으로 오븐에서 열처리를 소정의 시간동안 진행할 수도 있으며, 동결 건조 방식으로 건조를 진행할 수도 있으나, 이들은 비제한적인 예시로, 다양한 조건에서의 건조 방법이 이용될 수 있다.In one embodiment of the present application, the step of passing the solution containing the hybrid composite obtained in step S500 through a predetermined filter, and washing the hybrid composite powder with a solvent; It may be characterized by further comprising the step of drying the obtained powder. In the above step, as the second cation between the layers of the 3D layered bulk material is exchanged with H + , the exfoliation of the bulk 3D layered material into a single layer or a small number of multilayered 2D nanosheet materials can be more easily promoted. . Thereafter, the solid phase may be filtered through a filter and dried to obtain a powdered hybrid composite. The type of washing liquid used in this step is not limited, but distilled water, ultrapure water, ethanol, and the like may be used. Also, in the drying step, the drying temperature and time may be appropriately adjusted. In one embodiment of the present application, heat treatment may be performed in an oven for a predetermined time as a drying condition for recovering the material after washing, or drying may be performed in a freeze-drying method, but these are non-limiting examples, and under various conditions. drying method can be used.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체를 분말화하는 단계; 후에 상기 하이브리드 복합체를 구형화하는 단계(S700, 미도시)를 더 포함할 수 있다. 본 단계는 흑연 기반의 소재에 있어, 전지 용량의 향상을 목적으로 한 입자의 충전율 향상을 목표로 하는 것이다. 천연흑연입자는 표면에 크고 작은 요철을 가지고 있고, 구형화 공정에 의해 이러한 요철을 긁어 냄으로써 입자를 구체화하고 충전 밀도를 올릴 수 있게 되는 것이다.In one embodiment of the present application, powdering the hybrid composite; Afterwards, a step of spheroidizing the hybrid composite (S700, not shown) may be further included. This step is aimed at improving the filling rate of particles for the purpose of improving battery capacity in graphite-based materials. Natural graphite particles have large and small irregularities on the surface, and by scraping these irregularities through a spheronization process, the particles can be specified and the packing density can be increased.
본원의 일 구현예에 있어서, 상기 구형화하는 단계는 기계적 혼합법으로 수행될 수 있다. 예컨대, 볼밀링(ball milling), 메카노퓨전 밀링(mechanofusion milling), 쉐이커 밀링(shaker milling), 플래너터리 밀링(planetary milling) 및 애트리터 밀링(attritor milling) 디스크 밀링(disk milling), 세이프 밀링(shape milling), 나우타 밀링 (nauta milling), 노빌타 밀링(nobilta milling), 고속혼합(high speed mixing) 또는 이들의 조합 중 어느 하나의 방법을 선택하여 혼합할 수 있으나, 이에 제한되지 않는다. 상기 기계적 혼합법은, 기계적 에너지에 의해 표면에너지가 발생하게 되고, 표면에너지가 높은 계면 간을 접착 및 융착시켜 코팅하는 원리를 이용하는 것이다. 바람직한 건식 구형화 방법은, 고속 회전을 통해 에너지를 전달하여 미분과 조분의 목적 생성물이 분급되고, 미분은 별도로 분급하여 배출되며, 일정 시간 외력을 가해 충격 작용을 한 조분의 수형화된 하이브리드 복합체를 얻는 것으로 이루어질 수도 있다.In one embodiment of the present application, the spheronizing may be performed by a mechanical mixing method. For example, ball milling, mechanofusion milling, shaker milling, planetary milling and attritor milling, disk milling, safe milling (Shape milling), Nauta milling (nauta milling), nobilta milling (nobilta milling), high speed mixing (high speed mixing), or any one of these methods may be selected and mixed, but is not limited thereto. The mechanical mixing method uses a principle in which surface energy is generated by mechanical energy and coating is performed by bonding and fusing between interfaces having high surface energy. In a preferred dry spheronization method, energy is transmitted through high-speed rotation so that the target product of fine powder and coarse powder is classified, the fine powder is separately classified and discharged, and an external force is applied for a certain period of time to obtain a water-shaped hybrid composite of coarse powder subjected to an impact action. It can also be made up of what you get.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체를 구형화하는 단계;는, 1300 내지 2400 rpm의 속도로 제1 교반을 수행하고, 상기 제1 교반은 1 내지 7분동안 수행할 수 있다. 또한, 본원의 일 구현예에 있어서, 상기 하이브리드 복합체를 구형화하는 단계;는, 상기 제1 교반 이후 3500 내지 5000 rpm의 속도로 제2 교반을 수행하고, 상기 제2 교반은 30 내지 75분동안 수행할 수 있다. 혼합 시의 회전 속도가 상기 범위 내인 경우, 흑연, 전이금속 디칼코게나이드 물질 등을 물리적으로 결합시켜 주고, 이외에 첨가되는 물질들도 균일하게 코팅시킬 수 있다.In one embodiment of the present application, the step of spheronizing the hybrid composite; is, performing the first stirring at a speed of 1300 to 2400 rpm, the first stirring may be carried out for 1 to 7 minutes. In addition, in one embodiment of the present application, the step of spheronizing the hybrid composite; performing a second stirring at a speed of 3500 to 5000 rpm after the first stirring, the second stirring for 30 to 75 minutes can be done When the rotational speed during mixing is within the above range, graphite, transition metal dichalcogenide materials, etc. may be physically bonded, and other materials added may be uniformly coated.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체를 분말화하는 단계; 후에 실리콘 입자를 첨가하는 단계를 더 포함할 수 있다. In one embodiment of the present application, powdering the hybrid composite; It may further include the step of adding silicon particles afterwards.
본원의 일 구현예에 있어서, 상기 실리콘 입자의 평균 입경은 1000 nm 이하, 바람직하게는 300 nm 이하, 더 바람직하게는 250 nm 이하, 더욱 바람직하게는 150 nm 이하, 보다 더 바람직하게는 100 nm 이하, 보다 더욱 바람직하게는 70 nm 이하일 수 있다. 상기 실리콘 입자의 평균 입경이 상기 범위 내인 경우, 코팅의 균일성을 확보할 수 있다.In one embodiment of the present application, the average particle diameter of the silicon particles is 1000 nm or less, preferably 300 nm or less, more preferably 250 nm or less, still more preferably 150 nm or less, even more preferably 100 nm or less , and more preferably 70 nm or less. When the average particle diameter of the silicon particles is within the above range, the uniformity of the coating may be secured.
본원의 일 구현예에 있어서, 상기 실리콘 입자의 함량은 하이브리드 복합체 및 저결정성 탄소재의 혼합물 100 중량부에 대하여 0.1 내지 20 중량부일 수 있고, 구체적으로는 0.5 내지 10 중량부 일 수 있다. 실리콘 입자의 함량이 상기 범위 내인 경우, 입자간 응집을 제어할 수 있으며, 균일하게 코팅되는 효과를 얻을 수 있다.In one embodiment of the present application, the content of the silicon particles may be 0.1 to 20 parts by weight, specifically 0.5 to 10 parts by weight, based on 100 parts by weight of the mixture of the hybrid composite and the low crystalline carbon material. When the content of the silicon particles is within the above range, it is possible to control the aggregation between the particles, and it is possible to obtain an effect of uniform coating.
본원의 일 구현예에 있어서, 저결정성 탄소재를 첨가하는 단계를 더 포함할 수 있다. 저결정성 탄소재는 하이브리드 복합체 분말과 실리콘의 결착을 더욱 견고하게 하는 결착층으로서 기능할 뿐만 아니라, 실리콘이 균일하게 코팅될 수 있도록 함으로써 음극재 표면이 전체적으로 균일한 코팅 상태를 유지하도록 한다. 즉, 결착층이 존재함으로써, 하이브리드 복합체의 에지(edge)면에 세라믹이 뭉치는 현상이 방지되므로, 코팅층이 균일하게 되어 전기화학적 특성이 향상될 수 있다.In one embodiment of the present application, the step of adding a low crystalline carbon material may be further included. The low crystalline carbon material not only functions as a bonding layer that makes bonding between the hybrid composite powder and silicon more robust, but also allows the silicon to be uniformly coated so that the surface of the anode material maintains a uniform coating state as a whole. That is, since the presence of the binding layer prevents ceramics from aggregating on the edge surface of the hybrid composite, the coating layer becomes uniform and the electrochemical properties can be improved.
본원의 일 구현예에 있어서, 상기 저결정성 탄소재는 석유계 피치, 석탄계 피치, 메조페이스 피치, 저분자 중질유, 폴리비닐 알코올(PVA), 폴리비닐클로라이드(PVC), 수크로오스(sucrose), 페놀수지(phenol resin), 퓨란수지(furan resin), 퍼푸릴 알코올(furfuryl alcohol), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 스티렌(styrene), 폴리이미드(polyimide), 에폭시 수지(epoxy resin), 글루코오스(glucose), 또는 이들의 조합일 수 있고, 바람직하게는 상기 저결정성 탄소재는 석유계 피치, 석탄계 피치, 메조페이스 피치, 저분자 중질유, 또는 이들의 조합인 것을 특징으로 하는 것일 수 있다.In one embodiment of the present application, the low crystalline carbon material is petroleum-based pitch, coal-based pitch, mesophase pitch, low molecular weight heavy oil, polyvinyl alcohol (PVA), polyvinyl chloride (PVC), sucrose, phenol resin ( phenol resin), furan resin, furfuryl alcohol, polyacrylonitrile, cellulose, styrene, polyimide, epoxy resin, It may be glucose (glucose), or a combination thereof, and preferably, the low crystalline carbonaceous material may be characterized in that petroleum pitch, coal-based pitch, mesophase pitch, low molecular weight heavy oil, or a combination thereof.
본원의 일 구현예에 있어서, 상기 저결정성 탄소재의 함량은 탄소계 활물질 100 중량부에 대하여 0.1 내지 50 중량부일 수 있고, 구체적으로는 1 내지 20 중량부일 수 있다.In one embodiment of the present application, the content of the low-crystalline carbon material may be 0.1 to 50 parts by weight, specifically 1 to 20 parts by weight, based on 100 parts by weight of the carbon-based active material.
본원의 일 구현예에 있어서, 상기 저결정성 탄소재를 열처리하여 탄화하는 단계;를 더 포함할 수 있다.In one embodiment of the present application, carbonization by heat treatment of the low crystalline carbon material; may further include.
본원의 일 구현예에 있어서, 상기 열처리 단계는 수소, 질소, 아르곤, 또는 이들의 혼합 가스 분위기에서 수행될 수 있다. 상기 열처리 단계는 250 내지 1500℃ 구체적으로 400 내지 1100℃의 온도에서 수행될 수 있다. 상기 온도 범위에서 열처리할 경우, 실리콘 입자의 물성 변화가 없으며, 고유의 특성을 유지한 상태에서 코팅할 수 있게 된다.In one embodiment of the present application, the heat treatment step may be performed in an atmosphere of hydrogen, nitrogen, argon, or a mixed gas thereof. The heat treatment step may be performed at a temperature of 250 to 1500 °C, specifically 400 to 1100 °C. When the heat treatment is performed in the above temperature range, there is no change in the physical properties of the silicon particles, and the coating can be performed while maintaining the inherent properties.
본원의 일 구현예에 있어서, 상기 열처리 단계는 제1 및 제2 열처리 단계로 각각 상이한 온도 범위에서 별도로 진행될 수 있다. 상기 제1 열처리 단계는 250 내지 700℃ 바람직하게는 350 내지 600℃의 온도에서 수행되고, 상기 제2 열처리 단계는 600 내지 1500℃ 구체적으로 800 내지 1100℃의 온도에서 수행될 수 있다. 상기 제2 열처리 온도가 600℃미만인 경우, 이종 원소를 포함하는 불순물이 효과적으로 제거될 수 없고, 상기 범위를 초과하는 경우, 에너지 측면에서 비효율적일 수 있다.In one embodiment of the present application, the heat treatment step may be separately performed in different temperature ranges as first and second heat treatment steps. The first heat treatment step may be performed at a temperature of 250 to 700 °C, preferably 350 to 600 °C, and the second heat treatment step may be performed at a temperature of 600 to 1500 °C, specifically 800 to 1100 °C. When the second heat treatment temperature is less than 600° C., impurities including heterogeneous elements cannot be effectively removed, and when it exceeds the above range, it may be inefficient in terms of energy.
본원의 일 구현예에 있어서, 상기 열처리 단계는 0.1 내지 10 시간, 0.3 내지 8 시간, 또는 0.5 내지 5 시간동안 진행될 수 있다. 상술한 바와 같이 상기 열처리 단계는 제1 및 제2 열처리 단계로 각각 상이한 온도 범위에서 별도로 진행될 수 있고, 이때 제1 또는 제2 열처리 단계는 각각 독립적으로 0.1 내지 5 시간, 0.2 내지 3 시간, 0.25 내지 2시간동안 진행될 수 있다. 상술한 범위를 만족함으로써, 에너지적인 측면에서 효율적이고, 하이브리드 복합체 표면에 저결정성 탄소재 기반의 탄소 코팅이 적절한 수준으로 이루어질 수 있다.In one embodiment of the present application, the heat treatment step may be performed for 0.1 to 10 hours, 0.3 to 8 hours, or 0.5 to 5 hours. As described above, the heat treatment step may be separately performed in a different temperature range as the first and second heat treatment steps, respectively. It can run for 2 hours. By satisfying the above-described range, it is efficient in terms of energy, and the carbon coating based on the low crystalline carbon material can be formed at an appropriate level on the surface of the hybrid composite.
본원의 제2 측면은,The second aspect of the present application is,
표면의 적어도 일부에 층상 구조를 포함하는 흑연; 및 상기 흑연의 표면 또는 상기 층상 구조에 층간 삽입되어 형성된 전이금속 디칼코게나이드 나노시트;를 포함하고, 구형화 공정에 의해, 1:0.5 내지 1.5의 종횡비를 가지는 것을 특징으로 하는, 하이브리드 복합체를 제공한다.graphite containing a layered structure on at least a part of its surface; and a transition metal dichalcogenide nanosheet formed by intercalating the surface of the graphite or the layered structure, and having an aspect ratio of 1:0.5 to 1.5 by a spheronization process. do.
본원의 제1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 측면에 대해 설명한 내용은 제2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed descriptions of portions overlapping with those of the first aspect of the present application have been omitted, but the contents described for the first aspect of the present application can be equally applied even if the description is omitted from the second aspect.
이하, 본원의 제2 측면에 따른 하이브리드 복합체에 대하여 상세히 설명한다.Hereinafter, the hybrid composite according to the second aspect of the present application will be described in detail.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체는 구형화 공정에 의해, 1:0.5 내지 1.5의 종횡비를 가지는 구형의 입자일 수 있다. 구형화 공정의 경우 전지 용량의 향상을 목적으로 하고 크게, 두 가지 방법이 있는데, 하나는 입자의 각진 부분을 깎아 미분과 분리하여 구형화된 입자를 얻는 방법일 수 있다. 다른 하나는 피치 등의 저결정성 탄소재를 입자 표면에 코팅하여 그 후 흑연화하는 방법일 수 있다. 구형화와 관련된 구체적인 내용에 대해서는 상술하였으므로 그 내용은 생략한다.In one embodiment of the present application, the hybrid composite may be a spherical particle having an aspect ratio of 1:0.5 to 1.5 by a spheronization process. In the case of the spheronization process, there are largely two methods for the purpose of improving battery capacity. One may be a method of obtaining spherical particles by cutting the angled part of the particle and separating it from the fine powder. Another method may be a method of coating a particle surface with a low crystalline carbon material such as pitch and then graphitizing it. Since the specific content related to sphericization has been described above, the content thereof will be omitted.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체는 흑연 코어입자 표면의 적어도 일부에 층상 구조에 전이금속 디칼코게나이드로 나노시트를 포함하는 2차원 이종 적층 구조를 포함하는 것일 수 있다. In one embodiment of the present application, the hybrid composite may include a two-dimensional heterogeneous stacked structure including transition metal dichalcogenide nanosheets in a layered structure on at least a portion of the surface of the graphite core particle.
본원의 일 구현예에 있어서, 상기 2차원 이종 적층 구조는 상기 그래핀 나노시트와 전이금속 디칼코게나이드 나노시트가 교번적으로 적층되어 있는 것을 특징으로 하는 것일 수 있다. 구체적으로, 상기 하이브리드 복합체는 layer-by-layer 형태를 띄는 것일 수 있다. 본원의 제조방법에 기초하여 제조한 하이브리드 복합체는 각각 전이금속 디칼코게나이드 및 표면 상에 층상 박리된 흑연을 사용하여 제조되기 때문에, 입자들이 단일 결정 및 시트를 형성하고 있는 것을 확인할 수 있으며 결정성이 우수한 것을 확인할 수 있다.In one embodiment of the present application, the two-dimensional heterogeneous stacked structure may be characterized in that the graphene nanosheets and the transition metal dichalcogenide nanosheets are alternately stacked. Specifically, the hybrid composite may have a layer-by-layer form. Since the hybrid composite prepared based on the manufacturing method of the present application is prepared using transition metal dichalcogenide and graphite exfoliated on the surface, it can be confirmed that the particles form single crystals and sheets, and the crystallinity is You can see that it is excellent.
본원의 일 구현예에 있어서, 상기 흑연의 표면 또는 상기 층상 구조에 삽입되어 형성된 실리콘 입자를 더 포함할 수 있고, 상기 실리콘 입자의 평균 입경은 300nm 이하인 것을 특징으로 하는 것일 수 있다. 실리콘이 포함되는 방법에 대한 설명은 상술하였으므로 생략한다.In one embodiment of the present application, it may further include silicon particles inserted into the surface of the graphite or the layered structure, and the average particle diameter of the silicon particles may be characterized in that 300 nm or less. Since the description of the method of including silicon has been described above, it will be omitted.
본원에 일 구현예에 있어서, 상기 흑연의 표면에 형성된, 열처리하여 탄화된 저결정성 탄소재 층을 더 포함하는 것을 특징으로 하는 것일 수 있다. 저결정성 탄소재로 표면을 구형화하는 방법에 대해서도 상술한 바 있으므로, 상세한 내용은 생략하도록 한다.In one embodiment of the present application, it may be characterized by further comprising a low crystalline carbon material layer formed on the surface of the graphite and carbonized by heat treatment. Since the method of spheroidizing the surface with the low-crystalline carbon material has been described above, details thereof will be omitted.
본원의 제3 측면은,The third aspect of the present application,
상기 하이브리드 복합체를 포함하는 전극 활물질을 제공한다.An electrode active material comprising the hybrid composite is provided.
본원의 제1 측면 및 제2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 및 제2 측면에 대해 설명한 내용은 제3 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed descriptions of portions overlapping with the first and second aspects of the present application have been omitted, but the contents described for the first and second aspects of the present application can be equally applied even if the description is omitted in the third aspect. .
이하, 본원의 제3 측면에 따른 전극 활물질에 대하여 상세히 설명한다.Hereinafter, the electrode active material according to the third aspect of the present application will be described in detail.
본원의 일 구현예에 있어서, 상기 전극 활물질은 전극 집전체 상에 형성되어 있는 것일 수 있다. 이때, 상기 전극 집전체는 소자의 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 종류에 크게 제한이 없는 것일 수 있다. 예를 들어, 상기 전극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 구리나 스테인리스 스틸 표면에 탄소, 니켈, 티탄, 은 등이 표면 처리된 물질을 포함하는 것일 수 있다. 한편, 상기 전극 집전체는 약 3 μm 내지 500 μm의 두께를 가지는 것일 수 있으며, 상기 집전체의 표면에 미세한 요철을 형성하여 전극 활물질의 접착력을 높이는 것일 수 있다. 즉, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용 가능한 것일 수 있다.In one embodiment of the present application, the electrode active material may be formed on an electrode current collector. In this case, the type of the electrode current collector may not be significantly limited as long as it has conductivity without causing chemical change of the device. For example, the electrode current collector may include copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a material in which carbon, nickel, titanium, silver, or the like is surface-treated on the surface of copper or stainless steel. Meanwhile, the electrode current collector may have a thickness of about 3 μm to 500 μm, and fine irregularities may be formed on the surface of the current collector to increase adhesion of the electrode active material. That is, it may be usable in various forms such as films, sheets, foils, nets, porous bodies, foams, and non-woven fabrics.
본원의 일 구현예에 있어서, 상기 전극 활물질은 활물질 이외에 도전재 및 바인더를 더 포함하는 것일 수 있다. 이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 소자의 화학적 변화를 유발하지 않고 전기 전도성을 갖는 것이라면 종류에 크게 제한이 없는 것일 수 있다. 예를 들어, 상기 도전재는 천연 흑연 또는 인조 흑연 등의 흑연, 카본블랙, 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프블랙, 서머블랙, 탄소섬유 등의 탄소계 물질, 구리, 니켈 알루미늄, 은 등의 금속 분말 또는 금속 섬유, 산화아연, 티탄산 칼륨 등의 도전성 위스키, 산화 티탄 등의 도전성 금속 산화물 또는 폴리페닐렌 유도체 등의 전도성 고분자 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 한편, 상기 도전재는 통상적으로 상기 전극 활물질 100 중량부 대비 1 중량부 내지 30 중량부의 함량으로 사용되는 것일 수 있다.In one embodiment of the present application, the electrode active material may further include a conductive material and a binder in addition to the active material. In this case, the conductive material is used to impart conductivity to the electrode, and may be any material that has electrical conductivity without causing a chemical change in the device. For example, the conductive material is graphite such as natural graphite or artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon-based materials such as carbon fiber, copper, nickel, aluminum , metal powder or metal fibers such as silver, conductive whiskey such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide or conductive polymers such as polyphenylene derivatives, and combinations thereof. it may be Meanwhile, the conductive material may be used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
또한, 상기 바인더는 전극 활물질 입자들 간의 부착 및 전극 활물질과 집전체와의 접착력을 향상시키는 역할을 하는 것일 수 있다. 구체적으로, 상기 바인더는 예를 들어, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 한편, 상기 바인더는 통상적으로 상기 전극 활물질 100 중량부 대비 1 중량부 내지 30 중량부의 함량으로 사용되는 것일 수 있다.In addition, the binder may serve to improve adhesion between particles of the electrode active material and adhesion between the electrode active material and the current collector. Specifically, the binder may be, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), alcohol It may include a material selected from the group consisting of phonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof and combinations thereof. Meanwhile, the binder may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
전극 활물질로서, 상기 하이브리드 복합체는 높은 다공도 및 전기전도도를 가지기 때문에 에너지 저장 장치들의 에너지밀도 및 출력특성 등을 향상시키는 것일 수 있다.As an electrode active material, the hybrid composite may improve energy density and output characteristics of energy storage devices because it has high porosity and electrical conductivity.
본원의 제 4 측면은,The fourth aspect of the present application is,
상기 전극활물질을 포함하는 애노드; 캐소드; 및 상기 애노드 및 캐소드 사이에 개재되는 분리막; 및 전해질을 포함하는, 리튬-이온 배터리를 제공한다. an anode containing the electrode active material; cathode; and a separator interposed between the anode and the cathode; and an electrolyte.
본원의 제 1 측면 내지 제 3 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 내지 제 3 측면에 대해 설명한 내용은 제 4 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed descriptions of portions overlapping with the first to third aspects of the present application have been omitted, but the contents described for the first to third aspects of the present application may be equally applied even if the description is omitted in the fourth aspect. .
본원의 일 구현예에 있어서, 리튬-이온 배터리의 제조방법으로, 상기 방법은 음극 집전체에 음극활물질을 코팅하여 음극부(애노드)를 준비하는 단계; 양극 집전체에 양극 활물질을 코팅하여 양극부를 형성하는 단계를 포함하는 리튬 이차전지의 제조방법을 제공할 수 있다.In one embodiment of the present application, as a method for manufacturing a lithium-ion battery, the method includes preparing a negative electrode part (anode) by coating a negative electrode active material on a negative electrode current collector; It is possible to provide a method for manufacturing a lithium secondary battery including forming a positive electrode part by coating a positive electrode current collector with a positive electrode active material.
본원의 일 구현예에 있어서, 전해질은 유기용매에 염 및 첨가제를 혼합하여 사용하는 것일 수 있다. 이때, 상기 유기용매는 ACN(Acetonitrile), EC(Ethylene carbonate), PC(Propylene carbonate), DMC(Dimethyl carbonate), DEC(Diethyl carbonate), EMC(Ethylmethyl carbonate), DME(1,2-dimethoxyethane), GBL(γ-buthrolactone), MF(Methyl formate), MP(Methyl propionate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 또한, 상기 염은 0.8 내지 2 M가 사용되며, 리튬(Li)염과 비리튬(non-lithium)염을 혼합하여 사용하는 것일 수 있다. 상기 리튬(Li)염은 상기 음극 활물질, 즉 금속-유기 골격체의 구조 내로 삽입/탈리 반응을 수반하며, 이의 종류로는 LiBF4, LiPF6, LiClO4, LiAsF6, LiAlCl4, LiCF3SO3, LiN(SO2CF3)2, LiC(SO2CF3)3, LiBOB(Lithium bis(oxalato)borate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 또한, 상기 비리튬염은 탄소재질 첨가제의 표면적에 흡/탈착 반응을 수반하며, 리튬염에 0 내지 0.5 M를 혼합하여 사용하는 것일 수 있다. 이때, 상기 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate), TEMABF4(Triethylmethylammonium tetrafluorborate), SBPBF4(spiro-(1,1'etrafluoroborate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. In one embodiment of the present application, the electrolyte may be used by mixing a salt and an additive in an organic solvent. At this time, the organic solvent is ACN (Acetonitrile), EC (Ethylene carbonate), PC (Propylene carbonate), DMC (Dimethyl carbonate), DEC (Diethyl carbonate), EMC (Ethylmethyl carbonate), DME (1,2-dimethoxyethane), It may include a material selected from the group consisting of γ-butrolactone (GBL), methyl formate (MF), methyl propionate (MP), and combinations thereof. In addition, the salt is used in an amount of 0.8 to 2 M, and may be a mixture of a lithium (Li) salt and a non-lithium salt. The lithium (Li) salt accompanies an intercalation/desorption reaction into the structure of the anode active material, that is, the metal-organic framework, and its types include LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , lithium bis(oxalato)borate (LiBOB), and combinations thereof. In addition, the non-lithium salt accompanies an adsorption/desorption reaction on the surface area of the carbon material additive, and may be used by mixing 0 to 0.5 M with the lithium salt. In this case, the non-lithium salt may include a material selected from the group consisting of TEABF 4 (Tetraethylammonium tetrafluoroborate), TEMABF 4 (Triethylmethylammonium tetrafluoroborate), SBPBF 4 (spiro-(1,1'etrafluoroborate), and combinations thereof there is.
본원의 일 구현예에 있어서, 상기 전해질은 VC(vinylene carbonate), FEC(fluoroethylene carbonate), 및 TMS-ON(3-(trimethylsilyl)-2-oxazolidinone)으로 이루어지는 군으로부터 선택되는 적어도 1종의 첨가제를 포함할 수 있다. 배터리의 반복되는 충전과 방전으로 인해 전해액에서는 리튬염이나 잔존하고 있던 수분에 의해 다양한 부반응이 발생하고 이로 인해 발생하는 부산물들은 배터리의 성능을 저하시키는 요인으로 주목받고 있다. 예를 들어 LiPF6 리튬염의 경우 전해액에서 자가 분해되어 PF5라는 부산물을 생성하게 되고 이는 다시 수분과 반응해서 HF를 생성하며 HF는 전극의 안정성을 돕는 SEI를 파괴함에 따라 전극의 cycle 특성이 나빠지게 만든다. 이를 해결하기 위해 리튬염의 자가분해 산물을 안정하게 만들어 HF의 생성을 억제하고 생성된 HF를 제거하는 화학종을 첨가함으로써 배터리의 수명향상이 가능할 수 있다.In one embodiment of the present application, the electrolyte contains at least one additive selected from the group consisting of vinylene carbonate (VC), fluoroethylene carbonate (FEC), and 3-(trimethylsilyl)-2-oxazolidinone (TMS-ON). can include Due to the repeated charging and discharging of the battery, various side reactions occur due to lithium salt or remaining moisture in the electrolyte, and the by-products generated thereby are attracting attention as a factor that deteriorates the performance of the battery. For example, in the case of LiPF 6 lithium salt, it self-decomposes in the electrolyte to produce a by-product called PF 5 , which reacts with moisture to produce HF. make In order to solve this problem, it is possible to improve the lifespan of the battery by adding a chemical species that stabilizes the self-decomposition product of the lithium salt to suppress the generation of HF and remove the generated HF.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체 및 이를 포함하는 조성물은 슈퍼커패시터 또는 이차전지의 전극 활물질 이외에도 물정화용 촉매, 항암제, 면역결핍 바이러스 치료제, 곰팡이 및 박테리아 감염 치료제, 말라리아 치료제, 각종 약물전달 물질, 광촉매, 센서, 항공우주 물질 등 다양한 분야에 있어서 적용이 가능한 바, 상업적으로 매우 유용한 물질로서 사용될 수 있다.In one embodiment of the present application, the hybrid complex and the composition containing the same are a catalyst for water purification, an anticancer agent, a treatment for immunodeficiency virus, a treatment for fungal and bacterial infections, a treatment for malaria, and various drug delivery materials in addition to a supercapacitor or an electrode active material for a secondary battery. , photocatalysts, sensors, aerospace materials, etc. Applicable in various fields, it can be used as a commercially very useful material.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention.
본 발명의 실시예에 따르면, 전극 활물질로 활용되었을 때, 인터칼레이션 및 디인터칼레이션 효율과 전도도 및 구조적 안정성을 향상시킴으로써 리튬 이차전지 등의 에너지 저장 장치의 충방전 용량, 쿨롱 효율 및 사이클 특성을 더욱 높일 수 있는 하이브리드 복합체를 제공할 수 있다.According to an embodiment of the present invention, when used as an electrode active material, charge/discharge capacity, coulombic efficiency and cycle characteristics of an energy storage device such as a lithium secondary battery are improved by improving intercalation and deintercalation efficiency, conductivity and structural stability. It is possible to provide a hybrid composite that can further increase.
또한, 율속 특성을 향상시켜 고속 충전이 가능한 음극재를 제조할 수 있으며, 이러한 음극재의 원료인 하이브리드 복합체를 비교적 간단한 공정으로 대량 생산할 수 있다.In addition, it is possible to manufacture an anode material capable of high-speed charging by improving rate performance, and a hybrid composite, which is a raw material of such an anode material, can be mass-produced through a relatively simple process.
따라서, 본 발명의 일 실시예에 따른 하이브리드 복합체 및 이의 제조방법은 산업상 이용 가능성이 있는 것으로 볼 수 있다.Therefore, the hybrid composite and the manufacturing method thereof according to an embodiment of the present invention can be considered to have industrial applicability.

Claims (15)

  1. 하이브리드 복합체를 제조하는 방법으로서,As a method for preparing a hybrid composite,
    흑연(Graphite) 및 전이금속 디칼코게나이드 물질을 혼합하여 혼합물을 제조하는 단계;preparing a mixture by mixing graphite and a transition metal dichalcogenide material;
    상기 혼합물에 제1 양이온을 포함하는 용액을 혼입하는 단계;incorporating a solution containing the first cation into the mixture;
    상기 제1 양이온을 상기 흑연 및 전이금속 디칼코게나이드 물질에 층간 삽입하는 단계;intercalating the first cation into the graphite and transition metal dichalcogenide materials;
    제2 양이온을 포함하는 용액을 혼입하여 상기 층간 삽입된 제1 양이온을 제2 양이온으로 이온 교환하는 단계; 및ion-exchanging the intercalated first cation with a second cation by incorporating a solution containing the second cation; and
    상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계;를 포함하는, 하이브리드 복합체의 제조방법. At least a portion of the surface of the graphite and the transition metal dichalcogenide material at the same time exfoliating and re-stacking to obtain a hybrid composite; method for producing a hybrid composite comprising.
  2. 제1항에 있어서,According to claim 1,
    상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계; 후에,obtaining a hybrid composite by simultaneously exfoliating and re-laminating at least a portion of the surface of the graphite and a transition metal dichalcogenide material; later,
    상기 하이브리드 복합체를 분말화하는 단계;를 더 포함하는 것을 특징으로 하는, 하이브리드 복합체의 제조방법.Powdering the hybrid composite; characterized in that it further comprises a method for producing a hybrid composite.
  3. 제2항에 있어서,According to claim 2,
    상기 하이브리드 복합체를 분말화하는 단계; 후에 powdering the hybrid composite; later
    상기 하이브리드 복합체를 구형화하는 단계;를 더 포함하는 것을 특징으로 하는, 하이브리드 복합체의 제조방법.Sphericalizing the hybrid composite; characterized in that it further comprises a method for producing a hybrid composite.
  4. 제3항에 있어서,According to claim 3,
    상기 하이브리드 복합체를 구형화하는 단계;는,Spheroidizing the hybrid composite;
    1300 내지 2400 rpm의 속도로 제1 교반을 수행하고, 3500 내지 5000 rpm의 속도로 제2 교반을 수행하는 것을 특징으로 하는, 하이브리드 복합체의 제조방법. A method for producing a hybrid composite, characterized in that performing the first stirring at a speed of 1300 to 2400 rpm, and performing the second stirring at a speed of 3500 to 5000 rpm.
  5. 제4항에 있어서,According to claim 4,
    상기 제1 교반은 1 내지 7분동안 수행하고, The first stirring is performed for 1 to 7 minutes,
    상기 제2 교반은 30 내지 75분동안 수행하는 것을 특징으로 하는, 하이브리드 복합체의 제조방법.The method of producing a hybrid composite, characterized in that the second stirring is performed for 30 to 75 minutes.
  6. 제2항에 있어서,According to claim 2,
    상기 하이브리드 복합체를 분말화하는 단계; 후에powdering the hybrid composite; later
    실리콘 입자를 첨가하는 단계를 더 포함하고, further comprising the step of adding silicon particles;
    상기 실리콘 입자의 평균 입경은 300nm 이하인 것을 특징으로 하는, 하이브리드 복합체의 제조방법.The method of producing a hybrid composite, characterized in that the average particle diameter of the silicon particles is 300 nm or less.
  7. 제6항에 있어서,According to claim 6,
    저결정성 탄소재를 첨가하는 단계; 및Adding a low crystalline carbon material; and
    상기 저결정성 탄소재를 열처리하여 탄화하는 단계;를 더 포함하는 것을 특징으로 하는, 하이브리드 복합체의 제조방법.Carbonizing the low-crystalline carbon material by heat treatment; characterized in that it further comprises a method for producing a hybrid composite.
  8. 제7항에 있어서,According to claim 7,
    상기 저결정성 탄소재는 석유계 피치, 석탄계 피치, 메조페이스 피치, 저분자 중질유, 또는 이들의 조합인 것을 특징으로 하는, 하이브리드 복합체의 제조방법.The low crystalline carbon material is a method for producing a hybrid composite, characterized in that petroleum pitch, coal-based pitch, mesophase pitch, low molecular weight heavy oil, or a combination thereof.
  9. 제1항에 있어서,According to claim 1,
    상기 흑연(Graphite) 및 전이금속 디칼코게나이드 물질을 혼합하여 혼합물을 제조하는 단계;에서Preparing a mixture by mixing the graphite and the transition metal dichalcogenide material;
    상기 전이금속 디칼코게나이드의 함량은 흑연 100 중량부에 대하여, 1 중량부 내지 250 중량부인 것을 특징으로 하는, 하이브리드 복합체의 제조방법.The method for producing a hybrid composite, characterized in that the content of the transition metal dichalcogenide is 1 part by weight to 250 parts by weight based on 100 parts by weight of graphite.
  10. 제1항에 있어서,According to claim 1,
    상기 전이금속 디칼코게나이드 물질은 MoS2, MoSe2, WS2, WSe2, TiS2, TiSe2, ReS2, ZrTe2, NbSe2 중 선택되는 적어도 1종 이상인 것을 특징으로 하는, 하이브리드 복합체의 제조방법.The transition metal dichalcogenide material is at least one selected from MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , TiSe 2 , ReS 2 , ZrTe 2 , NbSe 2 Preparation of a hybrid composite, characterized in that method.
  11. 제1항에 있어서,According to claim 1,
    상기 제1 양이온은 알칼리 금속 양이온이고,The first cation is an alkali metal cation,
    상기 제2 양이온은 암모늄, 탄화수소로 치환된 1급 내지 3급 암모늄, 마그네슘, 아연(Zn) 및 히드로늄(H3O+)으로 이루어지는 군으로부터 선택되는 1종의 양이온인 것을 특징으로 하는, 하이브리드 복합체의 제조방법.The second cation is a hybrid, characterized in that one type of cation selected from the group consisting of ammonium, hydrocarbon-substituted primary to tertiary ammonium, magnesium, zinc (Zn) and hydronium (H 3 O + ) Manufacturing method of the composite.
  12. 제1항에 있어서, According to claim 1,
    상기 제1 양이온을 상기 흑연 및 전이금속 디칼코게나이드 물질에 층간 삽입하는 단계; 또는 상기 흑연 표면의 적어도 일부 및 전이금속 디칼코게나이드 물질을 동시에 박리하고 재적층하여 하이브리드 복합체를 얻는 단계;에서, intercalating the first cation into the graphite and transition metal dichalcogenide materials; Or simultaneously exfoliating and re-stacking at least a portion of the surface of the graphite and the transition metal dichalcogenide material to obtain a hybrid composite;
    10분 내지 240분동안 초음파 처리하는 것을 특징으로 하는, 하이브리드 복합체의 제조방법.Characterized in that ultrasonic treatment for 10 minutes to 240 minutes, a method for producing a hybrid composite.
  13. 표면의 적어도 일부에 층상 구조를 포함하는 흑연; 및 graphite containing a layered structure on at least a part of its surface; and
    상기 흑연의 표면 또는 상기 층상 구조에 층간 삽입되어 형성된 전이금속 디칼코게나이드 나노시트;를 포함하고,A transition metal dichalcogenide nanosheet formed by being intercalated into the surface of the graphite or the layered structure;
    구형화 공정에 의해, 1:0.5 내지 1.5의 종횡비를 가지는 것을 특징으로 하는, 하이브리드 복합체.A hybrid composite, characterized by having an aspect ratio of 1:0.5 to 1.5 by a spheronization process.
  14. 제13항에 있어서,According to claim 13,
    상기 흑연의 표면 또는 상기 층상 구조에 삽입되어 형성된 실리콘 입자를 더 포함하고,Further comprising silicon particles formed by being inserted into the surface of the graphite or the layered structure,
    상기 실리콘 입자의 평균 입경은 300nm 이하인 것을 특징으로 하는, 하이브리드 복합체.The hybrid composite, characterized in that the average particle diameter of the silicon particles is 300 nm or less.
  15. 제13항에 있어서,According to claim 13,
    상기 흑연의 표면에 형성된, 열처리하여 탄화된 저결정성 탄소재 층을 더 포함하는 것을 특징으로 하는, 하이브리드 복합체.Characterized in that, the hybrid composite further comprises a low crystalline carbon material layer formed on the surface of the graphite and carbonized by heat treatment.
PCT/KR2022/020620 2021-12-16 2022-12-16 High-performance hybrid composite based on graphite and two-dimensional transition metal dichalcogenide and method for preparing same WO2023113552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210180254A KR20230092044A (en) 2021-12-16 2021-12-16 Graphite and two-dimensional transition metal dichalcogenide-based high-performance hybrid composite and manufacturing method thereof
KR10-2021-0180254 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023113552A1 true WO2023113552A1 (en) 2023-06-22

Family

ID=86773198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020620 WO2023113552A1 (en) 2021-12-16 2022-12-16 High-performance hybrid composite based on graphite and two-dimensional transition metal dichalcogenide and method for preparing same

Country Status (2)

Country Link
KR (1) KR20230092044A (en)
WO (1) WO2023113552A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042586A (en) * 2002-05-10 2002-06-05 이영균 A manufacturing method of globular graphite material from flaky graphite and a manufacturing method of anode active material for lithium secondary battery
KR20160089858A (en) * 2015-01-20 2016-07-28 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 Nano-silicon composite negative electrode material used for lithium ion battery, process for preparing the same and lithium ion battery
KR20170114999A (en) * 2016-04-06 2017-10-16 이화여자대학교 산학협력단 Layered inorganic nanosheet-graphene composite, and preparing method of the same
KR102106859B1 (en) * 2018-08-28 2020-05-06 한국에너지기술연구원 Aluminum secondary battery using exfoliated transition metal chalcogenide and graphene composite as cathode active material and method for manufacturing of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042586A (en) * 2002-05-10 2002-06-05 이영균 A manufacturing method of globular graphite material from flaky graphite and a manufacturing method of anode active material for lithium secondary battery
KR20160089858A (en) * 2015-01-20 2016-07-28 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 Nano-silicon composite negative electrode material used for lithium ion battery, process for preparing the same and lithium ion battery
KR20170114999A (en) * 2016-04-06 2017-10-16 이화여자대학교 산학협력단 Layered inorganic nanosheet-graphene composite, and preparing method of the same
KR102106859B1 (en) * 2018-08-28 2020-05-06 한국에너지기술연구원 Aluminum secondary battery using exfoliated transition metal chalcogenide and graphene composite as cathode active material and method for manufacturing of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTO JEFFERY A., NETHRAVATHI C., RAJAMATHI MICHAEL: "Two-Dimensional Nanosheets and Layered Hybrids of MoS 2 and WS 2 through Exfoliation of Ammoniated MS 2 (M = Mo,W)", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 118, no. 2, 16 January 2014 (2014-01-16), US , pages 1386 - 1396, XP093073577, ISSN: 1932-7447, DOI: 10.1021/jp410918c *
NGUYEN QUOC HAI; KIM HYEONGWOO; KIM IL TAE; CHOI WONCHANG; HUR JAEHYUN: "Few-layer NbSe2@graphene heterostructures as anodes in lithium-ion half- and full-cell batteries", CHEMICAL ENGENEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 382, 26 September 2019 (2019-09-26), AMSTERDAM, NL , XP085949854, ISSN: 1385-8947, DOI: 10.1016/j.cej.2019.122981 *
ZHENG XUAN, WANG SHAN, XIONG CHUANXI, HU GUOHUA: "In situ growth of 1T-MoS2 on liquid-exfoliated graphene: A unique graphene-like heterostructure for superior lithium storage", CARBON, ELSEVIER OXFORD, GB, vol. 133, 1 July 2018 (2018-07-01), GB , pages 162 - 169, XP093073579, ISSN: 0008-6223, DOI: 10.1016/j.carbon.2018.03.028 *

Also Published As

Publication number Publication date
KR20230092044A (en) 2023-06-26

Similar Documents

Publication Publication Date Title
CN110800142B (en) Negative active material for lithium secondary battery and method for preparing same
KR101591698B1 (en) Anode active material, lithium secondary battery comprising the material, and method of preparing the material
KR20180090211A (en) Positive electrode active material for secondary battery and method for preparing the same
WO2016032240A1 (en) Negative electrode active material having double coating layers, method for preparing same, and lithium secondary battery comprising same
KR101766535B1 (en) Negative electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
WO2010079964A2 (en) Positive electrode active material and lithium secondary battery comprising the same
WO2010079963A2 (en) Positive electrode active material and lithium secondary battery comprising the same
WO2014204278A1 (en) High-capacity electrode active material for lithium secondary battery and lithium secondary battery using same
WO2019103326A2 (en) Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
KR101763478B1 (en) Negative electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
WO2018117752A1 (en) Negative electrode active material and negative electrode comprising same for electrochemical device
WO2019151778A1 (en) Anode active material for lithium secondary battery, anode comprising same, and lithium ion secondary battery comprising same anode
JP2013234088A (en) Silicon composite and method of manufacturing the same, negative electrode active material, and nonaqueous secondary battery
KR20220000299A (en) Method for preparing lithium oxide and lithium oxide manufactured through the method
WO2022139452A1 (en) Method for manufacturing positive electrode for lithium secondary battery and positive electrode for lithium secondary battery manufactured thereby
WO2012141503A2 (en) Positive electrode active material, method for preparing same, and positive electrode and lithium battery using same
JP2022140593A (en) Conductive material, electrode-forming slurry containing the same, electrode, and lithium secondary battery manufactured using the same
KR20150040105A (en) Anode active material, lithium secondary battery comprising the material, and method of preparing the material
WO2019066129A2 (en) Composite anode active material, manufacturing method therefor, and lithium secondary battery having anode including same
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same
KR20140091388A (en) Anode active material, method for preparing the same, and secondary battery using the anode active material
US10297820B2 (en) Anode active material with a core-shell structure, lithium secondary battery comprising same, and method for preparing anode active material with a core-shell structure
WO2023113552A1 (en) High-performance hybrid composite based on graphite and two-dimensional transition metal dichalcogenide and method for preparing same
KR102465722B1 (en) Active material for an anode and a secondary battery comprising the same
WO2022060205A1 (en) Anode and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22908017

Country of ref document: EP

Kind code of ref document: A1