WO2023109778A1 - 激光器及投影光源 - Google Patents

激光器及投影光源 Download PDF

Info

Publication number
WO2023109778A1
WO2023109778A1 PCT/CN2022/138479 CN2022138479W WO2023109778A1 WO 2023109778 A1 WO2023109778 A1 WO 2023109778A1 CN 2022138479 W CN2022138479 W CN 2022138479W WO 2023109778 A1 WO2023109778 A1 WO 2023109778A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
chips
light
laser chips
type
Prior art date
Application number
PCT/CN2022/138479
Other languages
English (en)
French (fr)
Inventor
颜珂
田有良
李巍
周子楠
卢瑶
张昕
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123123529.7U external-priority patent/CN216794229U/zh
Priority claimed from CN202111515693.4A external-priority patent/CN114094434A/zh
Priority claimed from CN202220551575.2U external-priority patent/CN216818939U/zh
Priority claimed from CN202210246346.4A external-priority patent/CN114628987A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280078023.7A priority Critical patent/CN118251811A/zh
Publication of WO2023109778A1 publication Critical patent/WO2023109778A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0232Lead-frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements

Definitions

  • a laser in one aspect, includes a base, multiple sub-packaging parts, multiple sets of laser chips, and multiple sub-collimation lens groups.
  • the plurality of subpackages are disposed on the base.
  • the multiple sets of laser chips are arranged on the base, and the colors of laser light emitted by different sets of laser chips in the multiple sets of laser chips are different.
  • Each group of laser chips includes a plurality of laser chips, and the plurality of laser chips are arranged in a row along the first direction.
  • the multiple sub-collimation lens groups correspond to the multiple groups of laser chips one by one, each sub-collimation lens group is located on the side of the corresponding group of laser chips away from the base, and each sub-collimation lens group It includes a plurality of collimating lenses corresponding to the plurality of laser chips, and each of the collimating lenses is located on the transmission path of the laser light emitted by the corresponding laser chip.
  • the light-combining lens group is located on the light-emitting side of the laser, and the light-combining lens group is configured to mix the laser light emitted by the laser and emit it.
  • the converging lens is configured to converge the laser light emitted by the combination lens group.
  • the homogenizing component is configured to homogenize the laser light converged by the converging lens before emitting it, and the combining lens group, the converging lens and the homogenizing component are sequentially arranged along the target direction.
  • Figure 11 is a top view of the laser shown in Figure 9;
  • Fig. 13 is a structural diagram of a projection light source according to some embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • connection can be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • coupled may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed here are not necessarily limited by the content herein.
  • the number of conductive pins 005 on each of the opposite sides of the package 0012 is the same as the number of rows of laser chips 003 .
  • the plurality of conductive pins 005 includes a plurality of positive pins located on one side of the package 0012 and a plurality of negative pins located on the other side opposite to one side of the package 0012 .
  • the first row of laser chips 003 is used to emit green laser
  • the second row of laser chips 003 is used to emit blue laser
  • the third row and fourth row of laser chips 003 are used to emit red laser.
  • the package 101 is configured to package multiple sets of laser chips 103 .
  • the package 101 includes a base 1011 and an encapsulation portion 1012 disposed on the base 1011 , the encapsulation portion 1012 has a hollow cavity.
  • at least one heat sink 102 , multiple groups of laser chips 103 and at least one prism 104 are located in the inner cavity of the packaging part 1012 .
  • the collimator lens assembly 105 is covered on the package portion 1012 of the tube case 101 to seal the inner cavity of the tube case 101 .
  • Each laser chip 103 includes a first electrode, a second electrode, and a light-emitting structure between the first electrode and the second electrode; the first electrode and the second electrode are respectively coupled to the positive pole and the negative pole of the external power supply, and the first electrode
  • the second electrode and the second electrode are configured to receive the current required by the laser light of the corresponding color, and transmit the current to the light-emitting structure, so as to excite the light-emitting structure to emit light of the corresponding color.
  • the first electrode and the second electrode of the laser chip 103 are mutually opposite electrodes.
  • the first electrode of the laser chip 103 is a positive electrode
  • the second electrode is a negative electrode
  • the first electrode of the laser chip 103 is a negative electrode
  • the second electrode is a positive electrode.
  • Each heat sink 102 and each prism 104 corresponds to one or more laser chips 103 .
  • the prisms 104 are located on the light emitting side of one or more corresponding laser chips 103 .
  • the prism 104 is a reflective prism 104
  • the reflective prism 104 is configured to reflect light emitted by the corresponding one or more laser chips 103 .
  • the laser light emitted by the laser chip 103 exits in a direction away from the base 1011 (for example, the third direction Z shown in FIG. 2 ) through the corresponding reflective prism 104 .
  • the first direction Y, the second direction X and the third direction Z are perpendicular to each other.
  • the heat sink 102 is configured to assist the corresponding laser chip 103 to dissipate heat.
  • the heat sink 102 includes a heat dissipation substrate and a conductive layer on the heat dissipation substrate.
  • the laser chip 103 is located (eg, fixed) on the conductive layer of its corresponding heat sink 102 . It should be noted that the present disclosure does not limit the materials of the heat dissipation substrate and the conductive layer of the heat sink 102 .
  • the material of the heat dissipation substrate of the heat sink 102 includes ceramics or a conductive material (eg, copper), and the material of the conductive layer includes gold.
  • the laser chip 103 is fixed on the heat sink 102, the first electrode (for example, anode or cathode) of the laser chip 103 is coupled with the conductive surface of the heat sink 102, and the conductive surface of the heat sink 102 is connected with an electrode of an external power source (such as , positive pole or negative pole) coupling, in this way, it is only necessary to connect the wire connected to the electrode of the external power supply to the conductive surface of the heat sink 102, without directly contacting and connecting the wire to the first electrode of the laser chip 103 .
  • an external power source such as , positive pole or negative pole
  • the laser chip 103 is fixed on the heat sink 102, and the conductive surface of the heat sink 102 is reused as the first electrode of the laser chip 103, and is coupled with an electrode (for example, positive pole or negative pole) of an external power supply. In this way, It is not necessary to separately provide a conductive film layer used as the first electrode in the laser chip 103 .
  • the collimating lens assembly 105 is located on a side of the packaging part 1012 away from the base 1011 .
  • the collimator lens assembly 105 includes a plurality of collimator lenses 1051 , and the plurality of collimator lenses 1051 correspond to the plurality of laser chips 103 one by one.
  • Each collimating lens 1051 is located on the transmission path of the laser light emitted by the corresponding laser chip 103 .
  • Each collimator lens 1051 is configured to adjust the divergent laser beam generated by the corresponding laser chip 103 into a parallel laser beam, ie, a collimated beam.
  • the laser light emitted from the laser chip 103 is a cone-shaped light, and the cone-shaped light has a certain divergence angle. If the cone-shaped light continues to transmit at its divergence angle, larger and larger spots will be formed. The energy possessed will also diverge more and more, which is not conducive to the subsequent laser utilization operation.
  • the collimator lens assembly 105 can collimate the laser light emitted by the laser chip 103 before emitting it.
  • the process of collimating the laser light emitted by the laser chip 103 by the collimator lens assembly 105 is the The process of adjusting the divergence angle of the laser light, so that the adjusted laser light is close to parallel light.
  • the laser 10 also includes a plurality of conductive pins 109 in communication with an external power source.
  • the plurality of conductive pins 109 are configured to transmit current to connected components (eg, groups of laser chips 103 ).
  • the plurality of conductive pins 109 includes a plurality of first pole pins and at least one second pole pin. The first pole pin and the second pole pin of the plurality of conductive pins 109 are mutually opposite pins.
  • the encapsulation part 1012 has a square ring structure
  • the orthographic projection of the encapsulation part 1012 on the base 1011 is a square ring or a square-like ring.
  • Square-like rings include rounded square rings (replacing square corners of square rings with rounded corners) and chamfered square rings (replacing square corners of square rings with chamfered corners).
  • the orthographic projection of the package part 1012 on the base 1011 is a rectangular ring shape.
  • the first direction Y is the length direction of the rectangular ring
  • the second direction X is the width direction of the rectangular ring
  • the third direction Z is the height direction of the packaging part 1012 . But not limited to this.
  • the encapsulation portion 1012 has four side walls, and the four side walls are respectively a first side wall 10122 and a third side wall 10124 oppositely disposed along the first direction Y , and a second side wall 10123 and a fourth side wall 10125 oppositely disposed along the second direction X.
  • the slow axis of the laser light emitted by each group of laser chips 103 is parallel to the first direction Y (ie, the arrangement direction of each laser chip 103 in each group of laser chips 103 ).
  • the transmission speed of the laser in different light vector directions will be different.
  • the light vector direction with fast transmission speed is the fast axis
  • the light vector direction with slow transmission speed is the slow axis.
  • the fast axis of the laser is perpendicular to the slow axis.
  • the fast axis of the laser light is perpendicular to the light emitting surface of the laser chip 103
  • the slow axis of the laser light is parallel to the light emitting surface of the laser chip 103 .
  • the laser 10 includes two groups of laser chips 103 , and the two groups of laser chips 103 are respectively a first group of laser chips and a second group of laser chips.
  • the first group of laser chips 103 includes a first type of laser chip 103A
  • the second group of laser chips 103 includes a second type of laser chip 103B and a third type of laser chip 103C.
  • the first type of laser chip 103A, the second type of laser chip 103B and the third type of laser chip 103C are respectively: a red laser chip 103A, a green laser chip 103B and a blue laser chip 103C, respectively. Used to emit red laser, green laser and blue laser. It should be noted that the present disclosure does not limit the color of the laser light emitted by the laser chip 103 .
  • the laser chip 103 can also be a laser chip of yellow, purple or other colors.
  • the number of the first type laser chips 103A is less than or equal to the sum of the numbers of the second type laser chips 103B and the third type laser chips 103C.
  • the wavelength of the laser light emitted by each laser chip in the first type of laser chip 103A differs by 4nm to 10nm.
  • the number of the second type of laser chips 103B is greater than or equal to the number of the third type of laser chips 103C.
  • the number of the first type of laser chips 103A is seven, the number of the second type of laser chips 103B is four, and the number of the third type of laser chips 103C is three;
  • the number of first-type laser chips 103A is five, the number of second-type laser chips 103B is three, and the number of third-type laser chips 103C is two.
  • the number of the first type of laser chips 103A is greater than the number of the second type of laser chips 103B, greater than the number of the third type of laser chips 103C, and equal to the sum of the number of the second type of laser chips 103B and the third type of laser chips 103C,
  • the number of the second type of laser chips 103B is greater than the number of the third type of laser chips 103C.
  • the number of the first type of laser chips 103A is five, the number of the second type of laser chips 103B is four, and the number of the third type of laser chips 103C is three; or, the number of the first type of laser chips 103A is four
  • the number of laser chips 103B of the second type is three, and the number of laser chips 103C of the third type is two.
  • the number of the first type of laser chips 103A is greater than the number of the second type of laser chips 103B, greater than the number of the third type of laser chips 103C, and less than the sum of the number of the second type of laser chips 103B and the third type of laser chips 103C,
  • the number of the second type of laser chips 103B is equal to the number of the third type of laser chips 103C.
  • the present disclosure does not limit the number and quantitative relationship of various types of laser chips in the multiple groups of laser chips 103, which can be set and adjusted according to the ratio of the laser components of each color provided by the laser 10.
  • more blue laser chips can be set in the laser 10; or, when it is necessary to provide more laser light with green components, more Green laser chip.
  • each type of laser chip is used to emit laser light of the corresponding color.
  • the laser chips of the same type in the laser 10 are located in the same group (row or column), and there are at least two types of laser chips located in the same group, so that the number of groups (number of rows or columns) of the laser chip 103 is less than that of the laser chip 103
  • the number of types so as to ensure that more types of laser chips are arranged in the laser 10 with a smaller volume, which is conducive to reducing the volume of the multi-color laser and realizing the miniaturization of the multi-color laser.
  • the number of the first type of laser chips 103A is seven
  • the number of the second type of laser chips 103B is three
  • the number of the third type of laser chips 103C is two
  • the number of the fourth type of laser chips 103D The number is two.
  • the number of the first type laser chips 103A is greater than the number of the fourth type laser chips 103D, and is equal to the sum of the numbers of the second type laser chips 103B, the third type laser chips 103C and the fourth type laser chips 103D.
  • the same type of laser chips in the same group of laser chips 103 are connected in series, and the two ends of the series connected laser chips are connected to a first laser chip respectively.
  • One pole pin is connected to one second pole pin.
  • a wire bonding process is used to arrange wires between laser chips of the same type in a group of laser chips 103, so as to connect the laser chips in series.
  • the first electrode of one laser chip is connected to the second electrode of an adjacent laser chip through wires.
  • the wire can be a gold wire, and the fixing process between the gold wire and the components in the laser 10 can be called a gold wire bonding process.
  • the gold wire may have a diameter of 20 ⁇ m to 50 ⁇ m.
  • the diameter of the gold wire is 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m or 50 ⁇ m.
  • the multiple types of laser chips in the laser 10 are in one-to-one correspondence with a plurality of first pole pins, and the two ends of each type of laser chip are respectively connected to a corresponding first pole pin and a second pole pin , to receive current through the first pole pin and the second pole pin.
  • the sealing insulator 106 is made of glass. But not limited to this.
  • various types of laser chips in the laser 10 are connected to various conductive pins 109 in various ways.
  • the following two connection methods are taken as examples for illustration.
  • the number of the first pole pins and the number of the second pole pins in the plurality of conductive pins 109 are equal to the number of laser chips 103, that is, the number of conductive pins 109 is the number of laser chips 103 twice the number of classes.
  • the laser 10 when two groups of laser chips 103 include three types of laser chips, the laser 10 includes six conductive pins 109, and the six conductive pins 109 include three first pole pins and three Second pole pin.
  • the laser 10 includes eight conductive pins 109, and the eight conductive pins 109 include four first pole pins and four Second pole pin.
  • the conductive pins 109 distributed on the first sidewall 10122 or the third sidewall 10124 of the package part 1012 are aligned with the corresponding type of laser chips along the first direction Y. But not limited thereto, a plurality of conductive pins 109 may also be distributed on the four sidewalls of the package portion 1012 .
  • the arrangement positions of the plurality of conductive pins 109 are related to the arrangement positions of various types of laser chips in the multiple groups of laser chips 103 , and the present disclosure does not limit the specific arrangement positions of the plurality of conductive pins 109 .
  • the second group of laser chips 103 includes two types of laser chips 103B and 103C
  • one end of each type of laser chip 103B or 103C is arranged close to the side wall 10122 or 10124 of the package part 1012, and six
  • the conductive pins 109 are distributed on the first sidewall 10122 , the second sidewall 10123 and the third sidewall 10124 of the package part 1012 .
  • one end of the first type laser chip 103A is connected to a conductive pin 109 distributed on the first side wall 10122, and the other end is connected to a conductive pin 109 distributed on the third side wall 10124.
  • the second group of laser chips 103 includes at least three types (such as three types) of laser chips, at least one type of laser chips (such as the fourth type of laser chips 103D) in the group of laser chips 103 Neither end is positioned adjacent to sidewall 10122 or 10124.
  • the second group of laser chips 103 includes three types of laser chips 103B, 103C and 103D, two of the eight conductive pins 109 are distributed on the first side wall 10122 of the package part 1012, and four are distributed on the second side wall 10123, and two are distributed on the third side wall 10124. Both ends of the fourth type laser chip 103D are respectively connected to two conductive pins 109 distributed on the second sidewall 10123 .
  • Fig. 6 is a top view of another laser according to some embodiments
  • Fig. 7 is a top view of another laser according to some embodiments
  • Fig. 4 may also be the laser shown in Fig. 6 and Fig. 7 along the dotted line A-A' Sectional view.
  • a plurality of conductive pins 109 are distributed on two opposite sidewalls of the package portion 1012 .
  • a plurality of conductive pins 109 are distributed on the first sidewall 10122 and the third sidewall 10124 respectively, and are aligned with a corresponding type of laser chip along the first direction Y. But not limited to this.
  • the number of first pole pins among the plurality of conductive pins 109 is equal to the number of types of laser chips 103 and greater than the number of second pole pins, That is, the number of conductive pins 109 is less than twice the number of types of laser chips 103 .
  • At least two types of laser chips in the same group of laser chips 103 share the same second pole pin.
  • the laser 10 includes five conductive pins 109, the five conductive pins 109 include three first pole pins and two second pole pins, the three first pole pins Two of them are distributed on the first side wall 10122 , one is distributed on the third side wall 10124 , and the two second pole pins are distributed on the third side wall 10124 .
  • One end of the first group of laser chips 103 (that is, the first type of laser chip 103A) is connected to a first pole pin distributed on the first side wall 10122, and the other end is connected to a second pole pin distributed on the third side wall 10124.
  • Pole pin connection, the first end of the second group of laser chips 103 i.e.
  • one end of the second type of laser chip 103B is connected to another first pole pin distributed on the first side wall 10122, the second end (i.e. One end of the third type laser chip 103C) is connected to the first pole pins distributed on the third side wall 10124, and the third end (that is, the other end of the second type laser chip 103B and the third type laser chip 103C) The other end connected to the other end) is connected to another second pole pin distributed on the third side wall 10124 .
  • all types of laser chips in the multiple groups of laser chips 103 share the same second pole pin, and at this time, the multiple conductive pins 109 only include one second pole pin.
  • the second group of laser chips The first end of 103 is connected to another first pole pin distributed on the first side wall 10122, the second end is connected to the first pole pin distributed on the third side wall 10124, and the third end is connected to the distribution pin The same second pole pin on the third side wall 10124 is connected.
  • the number of conductive pins 109 is twice the number of groups of laser chips 103, and a plurality of conductive pins 109 are evenly distributed on the opposite side walls 10122 and 10124 on. But not limited to this.
  • the volume of the laser 10 provided by some embodiments of the present disclosure is relatively small.
  • the length of the bottom surface of the tube shell 101 of the laser 10 ranges from 20 mm to 30 mm, and the width ranges from 20 mm to 30 mm.
  • the size of the bottom surface of the tube case 001 may be 25mm ⁇ 25mm.
  • the laser 10 further includes a plurality of transfer stations 107 disposed on the base 1011 , and the plurality of transfer stations 107 are configured to transfer wires.
  • the surface of each adapter 107 away from the base 1011 is conductive.
  • at least two types of laser chips that share the second pole pin are connected to the same second pole pin through multiple transfer stations 107 .
  • the plurality of transfer stations 107 are connected by wires, and the plurality of transfer stations 107 are located between the at least two types of laser chips and the second pole pin.
  • a plurality of transfer stations 107 are located between two groups of laser chips 103 .
  • the present disclosure does not limit the number and position of the adapters 107 , which can be determined according to the distance between the two components and the arrangement of the wires.
  • the number of switching stations 107 is less than the number threshold thereof.
  • the threshold number of switching stations 107 may be eight, nine, ten or other values.
  • the transfer station 107 includes a transfer station body and a conductive part, and the conductive part of the transfer station 107 is located on a side of the transfer station body away from the base 1011 .
  • the adapter body is made of insulating material, such as ceramics, aluminum nitride or aluminum oxide, and the conductive part is made of gold or other metals.
  • the present disclosure does not limit the size of the surface of the adapter 107 away from the base 1011 , which can be designed accordingly based on the arrangement requirements of the wires.
  • printing Wire process for connection is used to arrange wires between two components to be connected, so that both ends of the wires are respectively connected to the two components.
  • wire bonding is used to arrange wires between two components to be connected, so that both ends of the wires are respectively connected to the two components.
  • use a cutter to press the wire onto the surface metal layer (for example, a gold layer) of the object to be connected, and heat the pad while applying pressure, so that the contact area between the wire and the gold layer becomes soft, thereby Make sure the material of the wire fuses with the material it contacts for soldering purposes.
  • the strength of a wire is negatively correlated with its length, and the longer the length of the wire, the weaker its strength, the distance between two parts connected by the same wire needs to be less than or equal to the distance threshold to ensure that the wire connecting the two parts The strength is higher, thereby ensuring the connection reliability of the two components.
  • the distance between any two components connected by the same wire is less than or equal to 3 mm, that is, the distance threshold is 3 mm.
  • the distance between the two parts ranges from 2mm to 3mm.
  • the distance between adjacent laser chips in the same group of laser chips 103 ranges from 1 mm to 3.5 mm.
  • Figure 8 is a cross-sectional view of another laser according to some embodiments.
  • the laser 10 further includes an upper cover assembly 108 covering the tube shell 101 .
  • the upper cover assembly 108 is configured to seal the inner cavity of the package 101 . But in some embodiments, the upper cover assembly 108 can be omitted.
  • the upper cover assembly 108 includes a frame 1081 and a cover 1082 .
  • the frame 1081 covers the tube case 101
  • the cover plate 1082 covers the frame 1081 .
  • the laser 10 includes the collimating lens assembly 105
  • the collimating lens assembly 105 is covered on the cover plate 1082 .
  • the frame 1081 , the cover plate 1082 and the collimating lens assembly 105 are sequentially arranged along a direction away from the tube case 101 .
  • the upper cover assembly 108 only includes the frame 1081 but does not include the cover plate 1082
  • the upper cover assembly 108 only includes the cover plate 1082 but does not include the frame 1081 .
  • the frame 1081 has a second opening 10811 , when the frame 1081 covers the package 101 , at least one heat sink 102 , multiple groups of laser chips 103 and at least one prism 104 are exposed from the second opening 10811 . After covering the frame 1081 , the cover plate 1082 can close the second opening 10811 , thereby closing the inner cavity of the tube case 101 .
  • the frame 1081 also has a first stepped surface 10812 and a second stepped surface 10813 , the second stepped surface 10813 protrudes from the first stepped surface 10812 along the third direction Z, and the first stepped surface 10812 is flush with the second opening 10811 .
  • the frame 1081 further includes a vertical surface 10814 , the vertical surface 10814 is perpendicular to the first stepped surface 10812 and the second stepped surface 10813 , and the vertical surface 10814 is configured to connect the first stepped surface 10812 and the second stepped surface 10813 .
  • the second stepped surface 10813 of the frame 1081 covers the side of the package portion 1012 away from the base 1011 , and the cover plate 1082 covers the side of the first stepped surface 10812 away from the base 1011 to seal the second opening 10811 of the frame 1081 .
  • the frame 1081 is made of stainless steel, or kovar alloy (eg, iron-cobalt-nickel alloy).
  • each sealing insulator 106 is sleeved on each conductive pin 109, and the conductive pin 109 covered with the sealing insulator 106 is inserted into the first part of the package part 1012. opening 10121, and the sealing insulator 106 is located in the first opening 10121; then, the package part 1012 is placed on the base 1011, and solder (for example, a ring-shaped silver-copper solder), and put the structure of the base 1011, the packaging part 1012 and the conductive pin 109 into a high-temperature furnace for sealing and sintering. After sealing, sintering and curing, not only the tube shell 101 can be formed, but also the first opening 10121 can be realized.
  • solder for example, a ring-shaped silver-copper solder
  • the frame 1081 and the cover plate 1082 are fixed with a sealing material to obtain the upper cover assembly 108; then, at least one heat sink 102, multiple groups of laser chips 103 and at least one prism 104 are welded on the base 1011 At the corresponding position of the collimator lens assembly 105, the upper cover assembly 108 is welded on the surface of the package part 1012 away from the base 1011 using parallel sealing welding technology; finally, after the position of the collimator lens assembly 105 is aligned using an alignment process, the alignment The straight lens assembly 105 is fixed on the side of the upper cover assembly 108 away from the tube housing 101 by epoxy glue, and the assembly of the laser 10 is completed so far.
  • multiple groups of laser chips 103 are arranged in the closed inner cavity formed by the tube shell 101 and the upper cover assembly 108, which can prevent external water and oxygen from corroding each laser chip 103, Therefore, the service life of each laser chip 103 is prolonged, and the light emitting effect of each laser chip 103 is ensured. Moreover, in some embodiments of the present disclosure, since there are fewer first openings 10121 on the packaging portion 1012 of the package 101, the possibility of poor sealing effect of the first openings 10121 is reduced, thereby ensuring the sealing of the laser 10 The inner cavity has better sealing effect.
  • each collimating lens 1051 in each sub-collimating lens group 1052 can be integrally formed.
  • the sub-collimation lens group 1052 is roughly plate-shaped, the side of the sub-collimation lens group 1052 close to the base 1011 is a plane, and the side away from the base 1011 has a plurality of convex arc surfaces, among the plurality of convex arc surfaces The part where each convex arc is located is a collimating lens 1051 .
  • each collimating lens 1051 in the sub-collimating lens group 1052 can be formed according to the size and spacing specified in the design rules.
  • Each laser chip 103 in the laser 10 may also be mounted at a mounting position that matches the design rule of the collimating lens 1051 .
  • mounting errors may occur, that is, there is a slight deviation between the actual mounting position and the designed mounting position. Therefore, when assembling the sub-collimator lens groups 1052, each collimator lens 1051 in each sub-collimator lens group 1052 needs to be aligned with the corresponding laser chip 103, so that the laser light emitted by each laser chip 103 can be as large as possible. All of them enter the corresponding collimator lens 1051 .
  • the multiple subpackages 10126 in the laser 10 and the base 1011 may be fixed by time-sharing welding. For example, one subpackage part 10126 is welded on the base 1011 first, then the welded subpackage part 10126 and the base 1011 are cooled, and then another subpackage part 10126 is welded on the base 1011, and then Cooling is performed again, and the cycle is repeated until the fixing between the package part 1012 and the base 1011 is completed.
  • each subpackage part 10126 due to the small volume of each subpackage part 10126 , the contact area between each subpackage part 10126 and the base 1011 is small. Since the thermal stress when two objects are soldered is positively related to the contact area of the two objects, when each sub-package part 10126 is time-sharedly soldered on the base 1011 , the thermal stress generated by each soldering is relatively small. And when the previous sub-package part 10126 is welded and the next sub-package part 10126 is welded, the stress generated between the previous sub-package part 10126 and the base 1011 can be basically released, thereby reducing the distance between the package part 1012 and the base 1011. Risk of damage due to thermal stress during soldering.
  • each subpackage 10126 in the laser 10 has a square ring structure, and the orthographic projection of each subpackage 1012 on the base 1011 is a square ring or a square-like ring.
  • At least one group of light emitting chips 103 in the plurality of groups of laser chips 103 includes at least two types of laser chips.
  • FIG. 11 is a top view of the laser shown in FIG. 9 .
  • the laser 10 includes two groups of laser chips 103 , and the two groups of laser chips 103 are respectively a first group of laser chips and a second group of laser chips.
  • the only difference is that two groups (that is, three types) of laser chips 103 in FIG.
  • the packaging part 1012 includes two sub-packaging parts 10126
  • the collimating lens assembly 105 includes two sub-collimating lens groups 1052 .
  • the first group of laser chips 103 i.e., the first type of laser chip 103A
  • the second group of laser chips 103 i.e., the second type of laser chip 103B and the third type of laser chip 103C
  • Both the first group of laser chips 103 and the second group of laser chips 103 include five laser chips 103
  • the two sub-collimation lens groups 1052 also include five collimation lenses 1051 .
  • the package part 1012 includes three sub-package parts 10126
  • the collimator lens assembly 105 includes three sub-collimator lens groups 1052 .
  • the first group of laser chips 103 (that is, the first type of laser chip 103A) is arranged in the inner cavity of the first subpackage part 10126
  • the second group of laser chips 103 (that is, the second type of laser chip 103B) is arranged in the second subpackage
  • the third group of laser chips 103 that is, the third type of laser chip 103C
  • the third subpackage part 10126 is arranged in the inner cavity of the third subpackage part 10126 .
  • the number of laser chips 103 in the first group of laser chips 103, the second group of laser chips 103 and the third group of laser chips 103 is five, four and three respectively, and the collimation in the three sub-collimation lens groups 1052 corresponding to it
  • the numbers of lenses 1051 are also five, four and three, respectively.
  • the number of the first type of laser chips 103A is greater than the number of the second type of laser chips 103B, greater than the number of the third type of laser chips 103C, and less than the sum of the number of the second type of laser chips 103B and the third type of laser chips 103C
  • the number of the second type of laser chips 103B is greater than the number of the third type of laser chips 103C.
  • a plurality of conductive pins 109 are disposed on the base 1011 and located outside the package part 1012 (ie, each subpackage part 10126 ).
  • the laser 10 includes four conductive pins 109, the four conductive pins 109 are arranged in sequence along the first direction X, and located in the first direction Y in a plurality of subpackages 10126 on the same side.
  • the four conductive pins 109 include three first pole pins and one second pole pin.
  • Three first pole pins are respectively connected with one end of the first group of laser chips 103, one end of the second group of laser chips 103 and one end of the third group of laser chips 103, the other end of the first group of laser chips 103, the second group of laser chips
  • the other end of the laser chip 103 and the other end of the third group of laser chips 103 are both connected to the same second pole pin, so as to respectively transmit current to the corresponding group of laser chips 103 .
  • the laser 10 further includes a plurality of power supply terminals 1010, and the plurality of power supply terminals 1010 are in one-to-one correspondence with the plurality of first openings 10121 of the packaging part 1012, that is, one-to-one with the plurality of conductive pins 109 of the package 101 correspond.
  • the plurality of power supply terminals 1010 are configured to communicate components inside the package 1012 (eg, laser chip 103 ) with components outside the package 1012 (eg, conductive pins 109 ).
  • Each subpackage part 10126 includes at least two first openings 10121 , and each power supply terminal 1010 penetrates into the subpackage part 10126 through a corresponding one of the first openings 10121 .
  • Each power supply terminal 1010 includes three parts, the three parts are respectively the first part, the second part and the third part connected in sequence, the first part is the part located outside the subpackage part 10126, and the second part is located in the corresponding The part inside the first opening 10121 of the first opening 10121 , and the third part is a part protruding into the inner side of the subpackage part 10126 through the corresponding first opening 10121 .
  • each power supply terminal 1010 is connected with the corresponding conductive pin 109, and then connected with an electrode (for example, positive pole or negative pole) of the external power supply, and the third part is connected with an electrode (for example, positive pole or negative pole) of the corresponding laser chip 103 by wire. first electrode or second electrode) connection.
  • the external power supply can transmit current to multiple groups of laser chips 103 through multiple power supply terminals 1010 and multiple conductive pins 109 .
  • the multiple types of laser chips in a group of laser chips 103 can also share a power supply terminal 1010, and the power supply terminal 1010 is connected to the shared conductive pin 109 connections.
  • each subpackage 10126 is fixed with two power supply terminals 1010 .
  • One of the two power supply terminals 1010 fixed on each subpackage 10126 is connected to the corresponding first pole pin of the group of laser chips 103 , and the other is connected to the common second pole pin of each group of laser chips 103 .
  • different types of laser chips sharing the same conductive pin 109 in the same group of laser chips 103 may also correspond to two different power supply terminals 1010 .
  • the ends close to each other of the second type laser chip 103B and the third type laser chip 103C in FIG. 12 may also be connected to two different power supply terminals 1010 respectively. It should be noted that, the present disclosure does not separately illustrate the setting manner.
  • the package 101 further includes a transmission circuit embedded in the base 1011 of the transmission circuit.
  • the transmission circuit is configured to connect the power supply terminal 1010 and its corresponding conductive pin 109 .
  • Fig. 13 is a structural diagram of a projection light source according to some embodiments.
  • the projection light source 1 includes a laser 10 , a combination lens group 20 , a converging lens 30 and a uniform light component 40 .
  • the light-combining lens group 20 , the converging lens 30 and the uniform light component 40 are sequentially arranged along the target direction (for example, the second direction X).
  • the laser light emitted from the combining lens group 20 enters the condensing lens 30 .
  • the converging lens 30 is configured to receive the mixed laser light, condense the mixed laser light and emit it along the target direction.
  • the laser light emitted from the combining lens group 20 enters the homogenizing member 40 .
  • the homogenization component 40 is configured to receive the condensed laser light, homogenize the condensed laser light and emit it along the target direction.
  • the light-combining lens group 20 includes at least one light-combining lens arranged along the target direction. In some embodiments, at least one light-combining lens is located on the side of the collimator lens assembly 105 in the laser 10 away from the base 1011 , and each light-combining lens is inclined.
  • At least one light-combining lens includes a plurality of light-combining lenses, and when the collimating lens assembly 105 includes a plurality of sub-collimation lens groups 1052, the plurality of light-combining lenses and the plurality of sub-collimation lens groups 1052 can be combined.
  • the orthographic projection of each light-combining lens on the base 1011 may cover the orthographic projection of the corresponding sub-collimation lens group 1052 on the base 1011 .
  • the present disclosure does not limit the type of each light-combining lens in the light-combining lens group 20 .
  • the light combining lens farthest from the converging lens 30 among the plurality of light combining lenses is a full-spectrum reflector, and the rest of the light combining lenses are dichroic light combining mirrors.
  • the dichroic mirror is used to reflect the laser beam emitted from the laser 10 to the dichroic mirror, and to transmit the laser beam emitted from the dichroic lens far away from the converging lens 30 .
  • the plurality of light-combining lenses are dichroic light-combining lenses.
  • the first two-way light combining mirror 202 is configured to transmit at least one color of laser light and reflect multiple colors. Lasers of the remaining colors in the laser.
  • the first reflector 201 reflects the laser light emitted from the laser 10 to the first reflector 201 and then enters the first dichroic mirror 202 .
  • the first two-way light combining mirror 202 reflects the laser light emitted by the laser 10 to the first two-way light combining mirror 202 and then enters the converging lens 30, and sends the first reflecting mirror 201 to the laser beam of the first two-way light combining mirror 202.
  • the laser light is transmitted and enters the converging lens 30 .
  • the first reflector 201 is set corresponding to the laser chip group of one of the subpackages, and the laser chip of the subpackage can emit two colors of light, such as blue laser and green laser, and the first two-way
  • the light combining mirror 202 is provided corresponding to the laser chip group of another sub-package, and the laser chip of the sub-package can emit light of one color, such as red laser.
  • the first dichroic light-combining mirror 202 performs light-combining based on the principle of wavelength-combining light, for example, it can transmit light with blue and green wavelengths and reflect light with red wavelengths.
  • the first dichroic light combining mirror 202 can combine light through the principle of polarization, for example, the blue laser and the green laser have the same polarization direction, and the polarization direction of the red laser is different, usually 90 degrees apart, Therefore, the first dichroic mirror 202 can reflect light of one polarization direction (blue laser and green laser in this example) and reflect light of another polarization direction (red laser in this example).
  • FIG. 14 is a schematic diagram of an optical path of a projection light source according to some embodiments.
  • different types of dotted arrows represent lasers of different colors.
  • the light-combining mirror group 20 includes a light-combining prism 203, a second reflector 204, a third reflector 205, and a second dichroic light-combining mirror 206, which are used for combining the two lasers.
  • the laser chip groups in the subpackage 10126 perform light combination.
  • the two subpackages 10126 can emit three-color laser light. For the arrangement of the laser chipset of the two subpackages 10126, reference may be made to the foregoing embodiments.
  • the light-combining prism 203 is set relative to the laser chipset of one of the subpackages 10126, and includes a first mirror 2031 and a second mirror 2032 that are oppositely arranged.
  • the first mirror surface 2031 is configured to reflect the laser light of the first color and transmit the laser light of the third color.
  • the laser light of the third color is refracted on the first mirror surface 2031 so as to be transmitted into the light-combining prism 203 .
  • the second mirror surface 2032 is configured to reflect the laser light of the third color, and the reflected laser light of the third color is refracted on the first mirror surface 2031 and emitted from the light-combining prism 203 .
  • the light-combining prism 203 has a certain thickness, and by adjusting the lens thickness of the light-combining prism 203 , the axis-symmetric light combination of the light spots of the laser light of the first color and the laser light of the third color can be realized.
  • the axis-symmetric combination of light spots of the laser beams of the third color improves the overlap of the light spots of the combined light beams of the two color lasers, and the combined light spot size of the laser beams of the first color and the laser beams of the third color will also be smaller.
  • the laser light of the second color emitted by the laser chip group in the other subpackage part 10126 enters the third mirror 205 .
  • the third mirror 205 is configured to reflect only the laser light of the second color.
  • a converging lens is provided at the light exit of the projection light source 1 for compressing the angle of the combined light beams.
  • the projection light source further includes a diffusion wheel 50 .
  • the diffusion wheel 50 is disposed between the converging lens 30 and the homogenizing component 40 , and the diffusion wheel 50 is configured to receive the mixed laser light, perform angular diffusion and shaping on the mixed laser light, and emit it along a target direction.
  • a light homogenizing or light diffusing component can also be arranged between the converging lens and the diffusing wheel, for example, a diffusing sheet or a fly-eye lens group can be fixedly arranged. Through the cooperation of the fixed diffusion sheet and the moving diffusion wheel, it can have a better effect of dissipating speckles.
  • projection light source 1 may include multiple lasers 10 , and each laser 10 may include multiple subpackages 10126 .
  • the projection light source 1 includes two combining lens groups 20a and 20b.
  • the light combining mirror group 20a includes a first reflector 201a and a first dichroic light combining mirror 202a
  • the light combining mirror group 20b includes a first reflecting mirror 201b and a first dichroic light combining mirror 202b.
  • the laser 10a and the laser 10b combine light through the first reflecting mirror 201a, the first dichroic light combining mirror 202a, the first reflecting mirror 201b, and the first dichroic light combining mirror 202b respectively, and the combined light output of the two lasers 10a and 10b
  • the light paths do not overlap, but the two combined light paths are close to reduce the gap between the two combined light spots.
  • the projection light source 1 also includes a diffusion member 60 .
  • the combined light spot output by the laser 10a and the laser 10b enters the diffusion member 60.
  • the diffusing member 60 may be a vibrating diffusing sheet, or may be a rotating diffusing sheet.
  • the diffusion component 60 can diffuse the three-color combined light spot to increase the etendue and reduce the speckle effect of the laser light.
  • the light beam diffused and outputted by the diffusing member 60 enters the homogenizing member 40 .
  • the homogenizing component 40 is a fly-eye lens 40, which can homogenize the incident light spot and improve the uniformity of the illumination beam.
  • the combined light spots of the three-color lasers are all incident on the diffuser 60 at the original combined light size. Since the diffusion effect is positively correlated with the spot size, the diffuser 60 directly receives the original combined light size. The diffusion effect is better. And, since the spot size after being diffused by the diffusion member 60 will be larger, compared with the light source structure shown in FIG.
  • the catheter is suitable for receiving light spots with large angles and small sizes.
  • the two lasers 10 a and 10 b can also undergo beam shrinkage before entering the diffusion component 60 to reduce the size of the spot, and the light receiving area of the diffusion component 60 can be reduced to reduce the size of the diffusion component 60 .
  • a lens can also be arranged between the diffusion member 60 and the fly-eye lens 40 to compress the angle of the diffused light beam, and then try to enter the fly-eye lens 40 with a parallel light beam, so as to obtain a better homogenized illumination light beam.
  • the projection light source 1 since the laser light emitted from the laser 10 has better collimation, when the projection light source 1 performs beam shaping based on the laser light with better collimation, it can have better Good beam shaping effect. Furthermore, when the projection device performs screen projection based on the laser light emitted by the projection light source 1 , it can also obtain a projection screen with better display effect, thereby improving the screen projection effect of the projection device where the projection light source 1 is located.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器(10)及投影光源(1),激光器(10)包括基座(1011)、多个子封装部(10126)、多组激光芯片(103)和多个子准直透镜组(1052);多个子封装部(10126)和多组激光芯片(103)设置于基座(1011)上。多组激光芯片(103)中不同组激光芯片发光的激光颜色不同,每个子封装部(10126)内对应设置有至少一组激光芯片(103),多组激光芯片(103)中每组激光芯片包括多个激光芯片(103),多个激光芯片(103)沿第一方向排成一排。多个子准直透镜组(1052)与多组激光芯片(103)一一对应,每个子准直透镜组(1052)位于对应的一组激光芯片(103)远离基座(1011)的一侧,每个子准直透镜组(1052)包括多个准直透镜(1051),多个准直透镜(1051)与多个激光芯片(103)一一对应,每个准直透镜(1051)位于对应的激光芯片(103)发出的激光的传输路径上。

Description

激光器及投影光源
本申请要求于2021年12月13日提交的、申请号为202111515693.4的中国专利申请、2021年12月13日提交的、申请号为202123123529.7的中国专利申请、2022年3月14日提交的、申请号为202210246346.4的中国专利申请和2022年3月14日提交的、申请号为202220551575.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光电技术领域,尤其涉及一种激光器及投影光源。
背景技术
随着光电技术的发展,激光器的应用越来越广泛,例如激光器可以作为激光投影设备或激光电视的光源。
发明内容
一方面,提供一种激光器,所述激光器包括基座、多个子封装部、多组激光芯片和多个子准直透镜组。所述多个子封装部设置于所述基座上。所述多组激光芯片设置于所述基座上,所述多组激光芯片中不同组激光芯片发出的激光颜色不同,每个子封装部内对应设置有至少一组激光芯片,所述多组激光芯片中每组激光芯片包括多个激光芯片,所述多个激光芯片沿第一方向排成一排。所述多个子准直透镜组与所述多组激光芯片一一对应,每个子准直透镜组位于对应的一组激光芯片远离所述基座的一侧,每个所述子准直透镜组包括多个准直透镜,所述多个准直透镜与所述多个激光芯片一一对应,每个所述准直透镜位于对应的激光芯片发出的激光的传输路径上。
另一方面,提供一种投影光源,所述投影光源包括激光器、合光镜组、会聚透镜和匀光部件。所述激光器包括基座、多个子封装部、多组激光芯片和多个子准直透镜组。所述多个子封装部设置于所述基座上。所述多组激光芯片设置于所述基座上,所述多组激光芯片中不同组激光芯片发出的激光颜色不同,每个子封装部内对应设置有至少一组激光芯片,所述多组激光芯片中每组激光芯片包括多个激光芯片,所述多个激光芯片沿第一方向排成一排。所述多个子准直透镜组与所述多组激光芯片一一对应,每个子准直透镜组位于对应的一组激光芯片远离所述基座的一侧,每个所述子准直透镜组包括多个准直透镜,所述多个准直透镜与所述多个激光芯片一一对应,每个所述准直透镜位于对应的激光芯片发出的激光的传输路径上。所述合光镜组位于所述激光器的出光侧,所述合光镜组被配置为将所述激光器发出的激光混合后射出。所述会聚透镜被配置为将所述合光镜组射出的激光会聚。所述匀光部件被配置为将所述会聚透镜会聚后的激光匀化后射出,所述合光镜组、所述会聚透镜和所述匀光部件沿目标方向依次排布。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为一种激光器的俯视图;
图2为根据一些实施例的一种激光器的***图;
图3为根据一些实施例的一种激光器的俯视图;
图4为图3所示的激光器沿虚线A-A′处的剖面图;
图5为根据一些实施例的另一种激光器的俯视图;
图6为根据一些实施例的又一种激光器的俯视图;
图7为根据一些实施例的又一种激光器的俯视图;
图8为根据一些实施例的另一种激光器的剖面图;
图9为根据一些实施例的一种激光器的结构图;
图10为图9所示的激光器沿虚线B-B′处的剖面图;
图11为图9所示的激光器的俯视图;
图12为根据一些实施例的又一种激光器的俯视图;
图13为根据一些实施例的一种投影光源的结构图;
图14为根据一些实施例的一种投影光源的光路原理图;
图15为根据一些实施例的又一种投影光源的光路原理图。
在附图中:
00-多色激光器;001-管壳;0011-基座;0012-封装部;002-热沉;003-激光芯片;004-棱镜;005-导电引脚;
10、10a、10b-激光器;101-管壳;1011-基座;1012-封装部;10121-第一开口10122-第一侧壁;10123-第二侧壁;10124-第三侧壁;10125-第四侧壁;10126-子封装部;102-热沉;103-激光芯片;103A-第一类激光芯片;103B-第二类激光芯片;103C-第三类激光芯片;103D-第四类激光芯片;104-棱镜;105-准直透镜组件;1051-准直透镜;1052-子准直透镜组;106-密封绝缘子;107-转接台;108-上盖组件;1081-框架;10811-第二开口;10812-第一台阶面;10813-第二台阶面;10814-竖直面;1082-盖板;10821-子盖板;109-导电引脚;1010-供电端子;
20、20a、20b-合光镜组;201、201a、201b-第一反射镜;202、202a、202b-第一二向合光镜;203-合光棱镜;204-第二反射镜;205-第三反射镜;206-第二二向合光镜;
30-会聚透镜;
40-匀光部件;
50-扩散轮;
60-扩散部件;
1-投影光源;
Y-第一方向;X-第二方向;Z-第三方向。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文 内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
图1为一种激光器的俯视图。如图1所示,一般情况下,多色激光器00包括管壳001、多个热沉002、多个激光芯片003、多个棱镜004、以及多个导电引脚005。管壳001包括基座0011、以及设置于基座0011上的封装部0012。多个激光芯片003排成多行(例如,四行),且同行的激光芯片003用于发出相同颜色的激光。多个导电引脚005设置在封装部0012上,且均匀分布于封装部0012的相对两侧。该封装部0012的相对两侧中的每侧上的导电引脚005的数量与激光芯片003的行数相同。多个导电引脚005包括多个正极引脚和多个负极引脚,多个正极引脚位于封装部0012的一侧,多个负极引脚位于与封装部0012的一侧相对的另一侧。例如,第一行激光芯片003用于发出绿色激光,第二行激光芯片003用于发出蓝色激光,第三行和第四行激光芯片003用于发出红色激光。在相关技术中,由于每类激光芯片排布成至少一行,每行激光芯片均与一个正极引脚和一个负极引脚连接,且不同行激光芯片连接的正极引脚和负极引脚均不同,使得多色激光器00的体积较大,从而不利于多色激光器00的小型化的实现。
本公开一些实施例提供一种激光器10。图2为根据一些实施例的一种激光器的***图。如图2所示,激光器10包括管壳101、至少一个热沉102、多组激光芯片103、至少一个棱镜104以及准直透镜组件105。
管壳101被配置为封装多组激光芯片103。管壳101包括基座1011以及设置于基座1011上的封装部1012,封装部1012具有中空的内腔。在一些实施例中,至少一个热沉102、多组激光芯片103以及至少一个棱镜104均位于封装部1012的内腔中。准直透镜组件105盖设在管壳101的封装部1012上,以封闭管壳101的内腔。
需要说明的是,本公开对管壳101的材质不做限定。在一些实施例中,管壳101的材质为铜,例如,无氧铜。由于铜的导热系数较大,选用铜作为管壳101的材质,可以使得管壳101的基座1011上设置的多组激光芯片103在工作时产生的热量能够通过管壳101进行快速地传导后散发,从而避免热量聚集对多组激光芯片103所造成的损伤。在一些实施例中,管壳101的材质为铝、氮化铝和碳化硅中的一种或多种。
管壳101的基座1011与封装部1012可以为分体件,也可以为一体件。在一些实施例中,当基座1011与封装部1012为分体件时,采用平行封焊技术将基座1011与封装部1012高温焊接在一起。在一些实施例中,当基座1011与封装部1012为一体件时,可以保证基座1011的平坦度、以及多组激光芯片103在基座1011上的设置可靠性,进而保证多组激 光芯片103发出的光线均按照预定的发光角度出射,以提高激光器10的发光效果。
多组激光芯片103中不同组激光芯片103被配置为发出不同颜色的激光。每组激光芯片103包括多个激光芯片103,每个激光芯片103被配置为发出一种颜色的激光。
在一些实施例中,每组激光芯片103中的发出相同颜色的激光的多个激光芯片103相邻排列。
在一些实施例中,每组激光芯片103中的激光芯片103与发出不同颜色的激光的激光芯片103相邻排列。
每个激光芯片103包括第一电极、第二电极、以及位于第一电极和第二电极之间的发光结构;第一电极和第二电极分别与外部电源的正极和负极耦接,第一电极和第二电极被配置为接收对应颜色的激光所需的电流,并将该电流传输至发光结构,以激发发光结构发出对应颜色的光。激光芯片103的第一电极与第二电极互为相反电极。例如,激光芯片103的第一电极为正极,第二电极为负极;或者,激光芯片103的第一电极为负极,第二电极为正极。
每个激光芯片103具有相同的出光方向。如图2所示,第一方向Y为与激光芯片103的出光方向相垂直的方向,第二方向X为与激光芯片103的出光方向相平行的方向。每组激光芯片103中的各个激光芯片103沿第一方向Y依次排布,且多组激光芯片103沿第二方向X依次排布。
需要说明的是,本公开对激光芯片103的组数不做限定,其可以是两组、三组、四组或五组;对每组激光芯片103中激光芯片103的数量不做限定,其可以是两个、三个、四个、五个、六个或七个。
每个热沉102和每个棱镜104均与一个或多个激光芯片103对应。
热沉102设置在管壳101的基座1011上,激光芯片103位于其对应的热沉102远离基座1011的一侧。在一些实施例中,热沉102与基座1011固定连接,激光芯片103与热沉102固定连接。但不局限于此。
棱镜104位于其对应的一个或多个激光芯片103的出光侧。在一些实施例中,棱镜104为反射棱镜104,且反射棱镜104被配置为反射对应的一个或多个激光芯片103射出的光线。例如,由激光芯片103发出的激光通过对应的反射棱镜104朝远离基座1011的方向(例如,图2所示的第三方向Z)出射。需要说明的是,第一方向Y、第二方向X与第三方向Z相互垂直。
热沉102与棱镜104具有两种数量上的对应关系。
在第一种对应关系中,多个棱镜104与多个热沉102一一对应,每个热沉102上设置一个或多个激光芯片103,且每个棱镜104与位于对应的每个热沉102上的一个或多个激光芯片103对应。在一些实施例中,热沉102的底面积的尺寸为1.3mm×1.7mm,棱镜104的底面积的尺寸为1mm×2mm。在此基础上,也可以将热沉102与棱镜104的尺寸均进行适当地缩小,以便于激光器10的小型化。
在第二种对应关系中,每个棱镜104与多个热沉102对应,每个热沉102上设置一个激光芯片103,且每个棱镜104与位于对应的多个热沉102上的多个激光芯片103对应。
热沉102被配置为辅助对应的激光芯片103散热。在一些实施例中,热沉102包括散热基板和位于散热基板上的导电层。激光芯片103位于(例如,固定于)其对应的热沉102的导电层上。需要说明的是,本公开对热沉102的散热基板和导电层的材质不做限定。在一些实施例中,热沉102的散热基板的材质包括陶瓷或导电材质(例如,铜),导电层的材质包括金。
在一些实施例中,当热沉102的散热基板的材质为导电材质时,该热沉102还包括设置在散热基板与导电层之间的绝缘层。通过设置该绝缘层,可以确保来自外部电源的电流能够正常传输至激光芯片103。
在一些实施例中,热沉102还包括设置在导电层上的焊料层,该焊料层被配置为在熔化时焊接激光芯片103。
在一些实施例中,热沉102具有导电表面,该导电表面为热沉102远离基座1011的 表面。激光芯片103位于热沉102的导电表面上,且通过该导电表面与外部电源的电极耦接。例如,激光芯片103固定在热沉102上,激光芯片103的第一电极(例如,正极或负极)与热沉102的导电表面耦接,且热沉102的导电表面与外部电源的电极(例如,正极或负极)耦接,这样一来,只需要将与外部电源的电极连接的导线连接至热沉102的导电表面即可,而无需将该导线与激光芯片103的第一电极直接接触连接。例如,激光芯片103固定在热沉102上,热沉102的导电表面被复用作激光芯片103的第一电极,且与外部电源的电极(例如,正极或负极)耦接,这样一来,无需在激光芯片103中单独设置被用作第一电极的导电膜层。
准直透镜组件105位于封装部1012远离基座1011的一侧。准直透镜组件105包括多个准直透镜1051,多个准直透镜1051与多个激光芯片103一一对应。每个准直透镜1051位于对应的激光芯片103发出的激光的传输路径上。每个准直透镜1051被配置为将对应的激光芯片103产生的、发散的激光光束调整为平行的激光光束,即,准直光束。
需要说明的是,从激光芯片103发出的激光为锥形光,锥形光具有一定的发散角度,若该锥形光以其发散角度持续传输,则会形成越来越大的光斑,光斑所具有的能量也会越来越发散,而不利于后续的激光利用操作的进行。而本公开一些实施例中,准直透镜组件105可以对激光芯片103发出的激光进行准直后再出射,准直透镜组件105对激光芯片103发出的激光进行准直的过程,即为对该激光的发散角度进行调整的过程,从而使得调整后的激光接***行光。例如,每个激光芯片103向对应的反射棱镜104发出激光,该激光在反射棱镜104上反射后射向对应的准直透镜1051,该准直透镜1051将射入的激光进行准直后射出,以实现激光器10的出光。但在一些实施例中,准直透镜组件105是可以省略的。
如图2所示,激光器10还包括与外部电源连通的多个导电引脚109。该多个导电引脚109被配置为向所连接的部件(例如,多组激光芯片103)传输电流。多个导电引脚109包括多个第一极引脚和至少一个第二极引脚。多个导电引脚109中的第一极引脚和第二极引脚互为相反引脚。
在一些实施例中,第一极引脚为正极引脚,第二极引脚为负极引脚;或者,第一极引脚为负极引脚,第二极引脚为正极引脚。第一极引脚(例如,正极引脚)与外部电源的一个电极(例如,正极)耦接,第二极引脚(例如,负极引脚)与外部电源的另一个电极(例如,负极)耦接,且每个激光芯片103均与一个第一极引脚和一个第二极引脚耦接,这样一来,外部电源通过多个导电引脚109与多组激光芯片103耦接,以实现对多组激光芯片103的电流传输。需要说明的是,两个部件之间的耦接可以指该两个部件之间的电连接。
图3为根据一些实施例的一种激光器的俯视图,图4为图3所示的激光器沿虚线A-A′处的剖面图。如图3和图4所示,在一些实施例中,多组(例如,两组)激光芯片103均位于封装部1012的内腔中。
在一些实施例中,封装部1012呈方环体结构,该封装部1012在基座1011上的正投影为方环形或者类方环形。类方环形包括圆角方环形(即由方环形的方形角替换为圆角所得)和倒角方环形(即由方环形的方形角替换为倒角所得)。例如,如图3、图5、图6和图7所示,封装部1012在基座1011上的正投影为长方环形。第一方向Y即为该长方环形的长度方向,第二方向X即为该长方环形的宽度方向,第三方向Z即为封装部1012的高度方向。但不局限于此。
如图3、图5、图6和图7所示,封装部1012具有四个侧壁,该四个侧壁分别为沿第一方向Y相对设置的第一侧壁10122和第三侧壁10124、以及沿第二方向X相对设置的第二侧壁10123和第四侧壁10125。
在一些实施例中,每组激光芯片103发出的激光的慢轴均平行于第一方向Y(即每组激光芯片103中的各个激光芯片103的排布方向)。需要说明的是,激光在不同的光矢量方向上的传输速度会存在差异,传输速度快的光矢量方向为快轴,传播速度慢的光矢量方向为慢轴,激光的快轴与慢轴垂直。在一些实施例中,激光的快轴垂直于激光芯片103的出光面,激光的慢轴平行于激光芯片103的出光面。激光在快轴上的发散角度大于其在慢 轴上的发散角度。例如,激光在快轴上的发散角度为其在慢轴上的发散角度的3倍以上。
如此,每组激光芯片103中的各个激光芯片103以发出的激光的慢轴作为排布方向进行排布。由于激光在该慢轴方向上的发散角度较小,因此在避免相邻激光芯片103发出的激光干扰重叠的基础上,可以使得各个激光芯片103之间的距离小,从而使得封装部1012内的激光芯片103的设置密度大。进而,封装部1012的体积小,激光器10的体积相应地小,从而有利于激光器10的小型化。
在一些实施例中,多组激光芯片103中的至少一组激光芯片103包括至少两类激光芯片,该至少两类激光芯片分别位于封装部1012内的至少两个区域,该至少两个区域沿第一方向Y依次排布。每类激光芯片被配置为发出一种颜色的激光,且不同类激光芯片发出的激光颜色不同。如此,激光芯片103的组数小于激光芯片103的类数。
如图3、图6、图7和图11所示,激光器10包括两组激光芯片103,两组激光芯片103分别为第一组激光芯片和第二组激光芯片。第一组激光芯片103包括第一类激光芯片103A,第二组激光芯片103包括第二类激光芯片103B和第三类激光芯片103C。第一类激光芯片103A中的各个激光芯片沿第一方向Y依次排布,第二类激光芯片103B和第三类激光芯片103C所在的两个区域沿第一方向Y依次排布,即任意一个第二类激光芯片103B与任意一个第三类激光芯片103C均沿第一方向Y排布。该第一类激光芯片103A发出的激光的波长大于第二类激光芯片103B发出的激光波长,第二类激光芯片103B发出的激光的波长大于第三类激光芯片103C发出的激光的波长,该三类激光芯片被配置为分别发出不同颜色的光。
例如,该第一类激光芯片103A、第二类激光芯片103B和第三类激光芯片103C依次分别为:红色激光芯片103A,绿色激光芯片103B和蓝色激光芯片103C,该三类激光芯片依次分别用于发出红色激光、绿色激光和蓝色激光。需要说明的是,本公开对激光芯片103所发出的激光颜色不做限定。激光芯片103还可以为黄色、紫色或其他颜色的激光芯片。
在一些实施例中,第一类激光芯片103A的数量大于第二类激光芯片103B的数量,且大于第三类激光芯片103C的数量。
在一些实施例中,第一类激光芯片103A的数量小于或等于第二类激光芯片103B与第三类激光芯片103C的数量和。
在一些实施例中,第一类激光芯片103A的数量小于第二类激光芯片103B与第三类激光芯片103C的数量和,且第二类激光芯片103B的数量大于所述第三类激光芯片103C的数量。
在一些实施例中,第一类激光芯片103A中各个激光芯片发出的激光的波长相差4nm至10nm。
在一些实施例中,第二类激光芯片103B的数量大于或等于第三类激光芯片103C的数量。
例如,如图3、图6和图7所示,第一类激光芯片103A的数量为七个,第二类激光芯片103B的数量为四个,第三类激光芯片103C的数量为三个;或者,如图11所示,第一类激光芯片103A的数量为五个,第二类激光芯片103B的数量为三个,第三类激光芯片103C的数量为两个。此时,第一类激光芯片103A的数量大于第二类激光芯片103B的数量,大于第三类激光芯片103C的数量,且等于第二类激光芯片103B与第三类激光芯片103C的数量和,第二类激光芯片103B的数量大于第三类激光芯片103C的数量。
例如,第一类激光芯片103A的数量为五个,第二类激光芯片103B的数量为四个,第三类激光芯片103C的数量为三个;或者,第一类激光芯片103A的数量为四个,第二类激光芯片103B的数量为三个,第三类激光芯片103C的数量为两个。此时,第一类激光芯片103A的数量大于第二类激光芯片103B的数量,大于第三类激光芯片103C的数量,且小于第二类激光芯片103B与第三类激光芯片103C的数量和,第二类激光芯片103B的数量等于第三类激光芯片103C的数量。
需要说明的是,本公开对多组激光芯片103中各类激光芯片的数量以及数量关系不做 限定,其可以依据需要激光器10提供的各色激光分量的配比来进行相应的设置和调整。当需要提供较多的蓝色分量的激光时,可以在激光器10中设置更多的蓝色激光芯片;或者,当需要提供较多的绿色分量的激光时,可以在激光器10中设置更多的绿色激光芯片。
在本公开的一些实施例提供的激光器10中,多组激光芯片103中存在至少一组激光芯片103包括至少两类激光芯片,多组激光芯片103中的多类激发光芯片与多种颜色一一对应,每类激光芯片用于发出对应颜色的激光。这样,激光器10中的同一类激光芯片位于同一组(行或列)中,且存在至少两类激光芯片位于同一组中,使得激光芯片103的组数(行数或列数)小于激光芯片103的类数,从而保证在较小体积的激光器10中设置较多类的激光芯片,进而有利于减小多色激光器的体积,实现多色激光器的小型化。
在一些实施例中,多组激光芯片103中的至少一组激光芯片103包括至少三类激光芯片,该至少三类激光芯片分别位于封装部1012内的至少三个区域,该至少三个区域沿第一方向Y依次排布。
图5为根据一些实施例的另一种激光器的俯视图,图4也可以为图5所示的激光器沿虚线A-A′处的剖面图。如图5所示,激光器10包括两组激光芯片103,第一组激光芯片103包括第一类激光芯片103A,第二组激光芯片103包括第二类激光芯片103B、第三类激光芯片103C和第四类激光芯片103D。第一类激光芯片103A中的各个激光芯片沿第一方向Y依次排布,第二类激光芯片103B、第四类激光芯片103D和第三类激光芯片103C所在的三个区域沿第一方向Y依次排布,即第四类激光芯片103D位于第二类激光芯片103B和第三类激光芯片103C之间。
在一些实施例中,第一类激光芯片103A的数量大于第二类激光芯片103B的数量,大于第三类激光芯片103C的数量,且大于第四类激光芯片103D的数量。
在一些实施例中,第一类激光芯片103A的数量小于或等于第二类激光芯片103B、第三类激光芯片103C与第四类激光芯片103D的数量和。
例如,如图5所示,第一类激光芯片103A的数量为七个,第二类激光芯片103B的数量为三个,第三类激光芯片103C的数量为两个,第四类激光芯片103D的数量为两个。此时,第一类激光芯片103A的数量还大于第四类激光芯片103D的数量,且等于第二类激光芯片103B、第三类激光芯片103C与第四类激光芯片103D的数量和。
在一些实施例中,如图3、图5、图6和图7所示,同一组激光芯片103中的同一类激光芯片之间串联,且串联的该类激光芯片的两端分别与一个第一极引脚和一个第二极引脚连接。示例地,采用打线(wire boding)工艺在一组激光芯片103中的同一类激光芯片的各个激光芯片之间设置导线,以对各个激光芯片进行串联。例如,在串联的同一类激光芯片中,一个激光芯片的第一电极与相邻的一个激光芯片的第二电极之间通过导线连接。该导线可以为金线,该金线与激光器10中的部件之间的固定工艺可被称为金线键合工艺。该金线的直径可以为20μm至50μm。例如,金线的直径为20μm、25μm、30μm、35μm、40μm、45μm或50μm。
需要说明的是,同一组激光芯片103中的每类激光芯片的两端指的是串联的各个激光芯片的两个连接端。由于同一组激光芯片103中的每类激光芯片的各个激光芯片串联,如此仅需一个电源开关便可以控制该各个激光芯片的通断。而且,在同一组激光芯片103中的每类激光芯片的串联电路中各处的电流相等,故对输入电流的要求较低,较容易达到各个激光芯片的阈值电流,便于激光芯片的发光。
在一些实施例中,激光器10中的多类激光芯片与多个第一极引脚一一对应,每类激光芯片的两端均分别连接对应的第一极引脚和一个第二极引脚,以通过该第一极引脚和第二极引脚接收电流。
在一些实施例中,如图3、图5、图6、图7、图11和图12所示,封装部1012具有多个第一开口10121,该多个第一开口10121分别设置在封装部1012的侧壁上,且与多个导电引脚109一一对应。
在一些实施例中,如图3、图5、图6和图7所示,每个导电引脚109穿过对应的一个第一开口10121与封装部1012的侧壁固定连接。每个导电引脚109包括三部分,该三 个部分分别为依次连接的第一部分、第二部分和第三部分,该第一部分为位于封装部1012的外侧的部分,该第二部分为位于对应的第一开口10121内的部分,该第三部分为穿过对应的第一开口10121伸入封装部1012的内侧的部分。每个导电引脚109的第一部分与外部电源的一个电极(例如,正极或负极)连接,第三部分通过导线与相应的激光芯片103的一个电极(例如,第一电极或第二电极)连接。如此,实现外部电源通过多个导电引脚109向多组激光芯片103传输电流。
在一些实施例中,如图3、图4、图5、图6、图7和图8所示,激光器10还包括多个密封绝缘子106,多个密封绝缘子106与多个第一开口10121一一对应,即与多个导电引脚109一一对应。该多个密封绝缘子106被配置为将多个导电引脚109分别固定在封装部1012的侧壁上对应的第一开口10121所在位置。
在一些实施例中,每个密封绝缘子106均为环状密封绝缘子106。在装配过程中,首先将每个环状密封绝缘子106套设在对应的一个导电引脚109上;再将套设后的导电引脚109穿入对应的一个第一开口10121,此时,每个环状密封绝缘子106均位于封装部1012的侧壁上对应的第一开口10121内;然后对每个环状密封绝缘子106进行加热,例如加热到800℃至900℃,使环状密封绝缘子106熔融,以填充导电引脚109与第一开口10121所在侧壁之间的缝隙;接下来将熔融后的环状密封绝缘子106用作密封粘合剂,以粘合导电引脚109与第一开口10121所在侧壁,从而实现导电引脚109与封装部1012之间的固定;最后将粘合后的环状密封绝缘子106进行冷却固化。
在一些实施例中,密封绝缘子106的材质包括玻璃。但不局限于此。
在一些实施例中,激光器10中的各类激光芯片与各个导电引脚109之间具有多种连接方式。以下以其中的两种连接方式为例进行说明。
在第一种激光芯片与导电引脚的连接方式中,如图3和图5所示,至少一个第二极引脚包括多个第二极引脚。激光器10中的多个第二极引脚和多个第一极引脚均与多类激光芯片一一对应。如此,任意两类激光芯片连接不同的第一极引脚,且连接不同的第二极引脚,即各类激光芯片均不共用导电引脚。
在一些实施例中,多个导电引脚109中的第一极引脚的数量和第二极引脚的数量均等于激光芯片103的类数,即导电引脚109的个数为激光芯片103的类数的二倍。例如,如图3所示,当两组激光芯片103共包括三类激光芯片时,激光器10包括六个导电引脚109,该六个导电引脚109包括三个第一极引脚和三个第二极引脚。例如,如图5所示,当两组激光芯片103共包括四类激光芯片时,激光器10包括八个导电引脚109,该八个导电引脚109包括四个第一极引脚和四个第二极引脚。
在一些实施例中,多个导电引脚109分布在封装部1012的三个侧壁上。如图3和图5所示,两组激光芯片103中,仅包括第一类激光芯片103A的第一组激光芯片103靠近封装部1012的第四侧壁10125设置,包括至少两类激光芯片103的第二组激光芯片103靠近封装部1012的第二侧壁10123设置。此时,多个导电引脚109分别分布在封装部1012的第一侧壁10122、第二侧壁10123和第三侧壁10124上。例如,分布于封装部1012的第一侧壁10122或第三侧壁10124上的导电引脚109沿第一方向Y与对应的一类激光芯片对齐。但不局限于此,多个导电引脚109还可以分布在封装部1012的四个侧壁上。
需要说明的是,多个导电引脚109的设置位置与多组激光芯片103中各类激光芯片的设置位置有关,本公开对多个导电引脚109的具体设置位置不做限定。
如图3所示,在第二组激光芯片103包括两类激光芯片103B和103C的情况下,每类激光芯片103B或103C的一端均靠近封装部1012的侧壁10122或10124设置,且六个导电引脚109分布于封装部1012的第一侧壁10122、第二侧壁10123和第三侧壁10124上。例如,第一类激光芯片103A的一端与分布于第一侧壁10122上的一个导电引脚109连接、另一端与分布于第三侧壁10124上的一个导电引脚109连接,第二类激光芯片103B的一端与分布于第一侧壁10122上的另一个导电引脚109连接、另一端与分布于第二侧壁10123上的一个导电引脚109连接,第三类激光芯片103C的一端与分布于第三侧壁10124上的另一个导电引脚109连接、另一端与分布于第二侧壁10123上的另一个导电引脚109连接。
如图5所示,在第二组激光芯片103包括至少三类(例如三类)激光芯片的情况下,该组激光芯片103中的至少一类激光芯片(例如第四类激光芯片103D)的两端均未靠近侧壁10122或10124设置。例如,第二组激光芯片103包括三类激光芯片103B、103C和103D,八个导电引脚109中的两个分布于封装部1012的第一侧壁10122上、四个分布于第二侧壁10123上、以及两个分布于第三侧壁10124上。第四类激光芯片103D的两端分别与分布于第二侧壁10123上的两个导电引脚109连接。
在第二种激光芯片与导电引脚的连接方式中,如图6、图7、图11和图12所示,激光器10中的多个第一极引脚与多类激光芯片一一对应,至少两类激光芯片连接同一个第二极引脚,且连接不同的第一极引脚,即该至少两类激光芯片共用导电引脚109(例如第二极引脚)。需要说明的是,由于不同类激光芯片发出相应颜色的激光所需的电流大小不同,故需要向不同类激光芯片施加不同的电流,不同类激光芯片所连接的第一极引脚(例如,正极引脚)和第二极引脚(例如,负极引脚)中需要有至少一个引脚不同。例如,当各类激光芯片均共用负极引脚时,便不能再共用正极引脚。
图6为根据一些实施例的又一种激光器的俯视图,图7为根据一些实施例的又一种激光器的俯视图,图4也可以为图6和图7所示的激光器沿虚线A-A′处的剖面图。如图6和图7所示,在一些实施例中,多个导电引脚109分布在封装部1012相对设置的两个侧壁上。例如,多个导电引脚109分别分布在第一侧壁10122和第三侧壁10124上,且沿第一方向Y与对应的一类激光芯片对齐。但不局限于此。
在一些实施例中,如图6和图7所示,多个导电引脚109中的第一极引脚的个数等于激光芯片103的类数,且大于第二极引脚的个数,即导电引脚109的个数小于激光芯片103的类数的二倍。
在一些实施例中,多组激光芯片103中,同一组激光芯片103中的至少两类激光芯片共用同一个第二极引脚。
例如,如图6所示,激光器10包括五个导电引脚109,该五个导电引脚109包括三个第一极引脚和两个第二极引脚,该三个第一极引脚中的两个分布于第一侧壁10122上、一个分布于第三侧壁10124上,该两个第二极引脚分布于第三侧壁10124上。第一组激光芯片103(即第一类激光芯片103A)的一端与分布于第一侧壁10122上的一个第一极引脚连接、另一端与分布于第三侧壁10124上的一个第二极引脚连接,第二组激光芯片103的第一端(即第二类激光芯片103B的一端)与分布于第一侧壁10122上的另一个第一极引脚连接、第二端(即第三类激光芯片103C的一端)与分布于第三侧壁10124上的第一极引脚连接、以及第三端(即与第二类激光芯片103B的另一端和第三类激光芯片103C的另一端均连接的一端)与分布于第三侧壁10124上的另一个第二极引脚连接。
在一些实施例中,多组激光芯片103中的各类激光芯片均共用同一个第二极引脚,此时多个导电引脚109仅包括一个第二极引脚。
例如,如图7所示,激光器10包括四个导电引脚109,该四个导电引脚109包括三个第一极引脚和一个第二极引脚,该三个第一极引脚中的两个分布于第一侧壁10122上、一个第一极引脚分布于第三侧壁10124上,该第二极引脚分布于第三侧壁10124上。第一组激光芯片103的一端与分布于第一侧壁10122上的一个第一极引脚连接、另一端与分布于第三侧壁10124上的第二极引脚连接,第二组激光芯片103的第一端与分布于第一侧壁10122上的另一个第一极引脚连接、第二端与分布于第三侧壁10124上的第一极引脚连接、以及第三端与分布于第三侧壁10124上的同一个第二极引脚连接。
在一些实施例中,如图7所示,导电引脚109的数量为激光芯片103的组数的二倍,且多个导电引脚109平均分布于封装部1012相对设置的两侧壁10122和10124上。但不局限于此。
相关技术中,由于每个导电引脚005均需通过一个开口固定于激光器00的封装部0012上,如此封装部0012的开口数量至少为激光芯片003的类数的两倍,从而使得激光器00的体积较大。相关技术的激光器00中,管壳001的底面的尺寸达到50mm×50mm。
而在本公开的一些实施例中,由于至少一组激光芯片103中的至少两类激光芯片连接 至同一导电引脚109(例如,第二极引脚),这样,激光器10仅通过较少的导电引脚109即可实现多类激光芯片的正常发光。由于封装部1012的第一开口10121数量较少,使得第一开口10121处出现密封绝缘子106脱落的可能性降低,从而降低激光器10中出现第一开口10121的密封效果较差的可能性,以提高激光器10的可靠性。通过共用导电引脚109,可以在激光器10的管壳101中设置更多类型的激光芯片,提高了管壳101的通用性和激光器10的发光效果。并且,由于导电引脚109的数量较少,使得管壳101的体积也较小,如此还可以在实现激光器10发出多种颜色的激光的基础上,实现激光器10的小型化。
本公开一些实施例提供的激光器10的体积较小。例如,激光器10的管壳101的底面的长度范围为20mm至30mm,宽度范围也为20mm至30mm。如此,该管壳001的底面的尺寸可以为25mm×25mm。
在一些实施例中,如图6和图7所示,激光器10还包括设置在基座1011上的多个转接台107,该多个转接台107被配置为对导线进行转接。每个转接台107远离基座1011的表面均具有导电性。多组激光芯片103中,共用第二极引脚的至少两类激光芯片通过多个转接台107与同一个第二极引脚连接。多个转接台107之间通过导线连接,该多个转接台107位于该至少两类激光芯片与该第二极引脚之间。
在一些实施例中,如图6所示,第二组激光芯片103中的第二类激光芯片103B与第三类激光芯片103C通过多个(例如六个)转接台107连接至同一个第二极引脚。例如,第二类激光芯片103B与第三类激光芯片103C分别与一个转接台107连接后,再连接至同一个转接台107,然后通过该转接台107串联剩余三个转接台107,以连接至同一个第二极引脚。
在一些实施例中,如图7所示,第一组激光芯片103(即第一类激光芯片103A)与第二组激光芯片103中的两类激光芯片103B和103C通过多个转接台107连接至同一个第二极引脚。
在一些实施例中,如图6和图7所示,在第二方向X上,多个转接台107均位于两组激光芯片103之间。
需要说明的是,当需要耦接的两个部件之间无法通过导线直接连接时,可以在该两个部件之间设置转接台107,以使导线通过连接转接台107进而连接该两个部件。
本公开对转接台107的数量及其位置均不做限定,其可以依据该两个部件之间的距离、以及导线的布置方式来确定。在一些实施例中,转接台107的数量小于其数量阈值。转接台107的数量阈值可以为八个、九个、十个或其他数值。
在一些实施例中,转接台107包括转接台本体和导电部,转接台107的导电部位于转接台本体远离基座1011的一侧。在一些实施例中,转接台本体的材质为绝缘材质,例如陶瓷、氮化铝或氧化铝等,导电部的材质为金或者其他金属。
在一些实施例中,转接台107呈柱状结构。例如,转接台107呈长方体状结构,且转接台107远离基座1011的表面呈矩形。该矩形的长度范围为0.5mm至1.5mm,例如,该矩形的长度为0.7mm、0.9mm、1.0mm、1.1mm、1.3mm或1.5mm。该矩形的宽度范围也为0.5mm至1.5mm,例如,该矩形的宽度为0.5mm、0.7mm、0.8mm、0.9mm、1.1mm或1.3mm。但不局限于此,转接台107也可以呈正方体状、圆柱状、椭圆柱状、棱柱状或者其他柱形结构。
需要说明的是,本公开对转接台107远离基座1011的表面的尺寸不做限定,其可以基于导线的设置需求进行相应设计。
在一些实施例中,转接台107与激光芯片103之间、转接台107与导电引脚109之间、各个激光芯片103之间、激光芯片103与导电引脚109之间均可以采用打线工艺进行连接。示例地,采用打线工艺在需连接的两个部件之间设置导线,使导线的两端分别连接该两个部件。例如,使用切刀将导线压到该待连接物的表面金属层(例如,金层)上,并在对其施加压力的同时加热焊盘,使得导线与该金层的接触区***,从而确保导线的材料能够与其接触的材料融合在一起,以实现焊接的目的。
由于导线的强度与其长度呈负相关,且导线的长度越长其强度越弱,因此通过同一导线连接的两个部件之间的距离需小于或等于距离阈值,以保证连接该两个部件的导线的强度较高,进而保证该两个部件的连接可靠性。
在一些实施例中,通过同一导线连接的任意两个部件之间的距离小于或等于3mm,即该距离阈值为3mm。例如,该两个部件之间的距离范围为2mm至3mm。例如,同组激光芯片103中相邻的激光芯片之间的间距范围为1mm至3.5mm。
图8为根据一些实施例的另一种激光器的剖面图。如图8所示,在一些实施例中,激光器10还包括盖设在管壳101上的上盖组件108。上盖组件108被配置为密封管壳101的内腔。但在一些实施例中,上盖组件108是可以省略的。
上盖组件108包括框架1081和盖板1082。框架1081覆盖在管壳101上,盖板1082覆盖在框架1081上。且当激光器10包括准直透镜组件105时,该准直透镜组件105则覆盖在盖板1082上。如此,框架1081、盖板1082以及准直透镜组件105沿远离管壳101的方向依次设置。但不局限于此。在一些实施例中,上盖组件108仅包括框架1081但不包括盖板1082,或者,上盖组件108仅包括盖板1082但不包括框架1081。
框架1081具有第二开口10811,当框架1081覆盖在管壳101上时,至少一个热沉102、多组激光芯片103和至少一个棱镜104从第二开口10811中露出。盖板1082覆盖在框架1081上后能够封闭第二开口10811,从而封闭管壳101的内腔。
框架1081还具有第一台阶面10812和第二台阶面10813,第二台阶面10813沿第三方向Z凸出于第一台阶面10812,第一台阶面10812与第二开口10811平齐。框架1081还包括竖直面10814,竖直面10814与第一台阶面10812和第二台阶面10813垂直设置,竖直面10814被配置为连接将第一台阶面10812与第二台阶面10813。框架1081的第二台阶面10813覆盖封装部1012远离基座1011的一侧,盖板1082覆盖第一台阶面10812远离基座1011的一侧,以密封框架1081的第二开口10811。
在一些实施例中,框架1081的材质为不锈钢,或者为可伐合金(kovar alloy,例如,铁钴镍合金)。
在一些实施例中,盖板1082的材质为玻璃,或者为其他透光且可靠性较强的材质(例如,树脂材料)。
在一些实施例中,在进行激光器10的装配时,首先,将各个密封绝缘子106套在各个导电引脚109上,并将套有密封绝缘子106的导电引脚109穿入封装部1012的第一开口10121,且使密封绝缘子106位于该第一开口10121中;接着,将封装部1012放置在基座1011上,且在封装部1012和基座1011之间放置焊料(例如,环状的银铜焊料),并将该基座1011、封装部1012和导电引脚109的结构放入高温炉中进行密封烧结,待密封烧结并固化后不仅可以形成管壳101,还实现了第一开口10121处的气密;然后,采用密封材料将框架1081和盖板1082进行固定,以得到上盖组件108;接着,将至少一个热沉102、多组激光芯片103以及至少一个棱镜104焊接在基座1011的对应位置上,继而采用平行封焊技术将上盖组件108焊接在封装部1012远离基座1011的表面上;最后,采用对准工艺对准直透镜组件105的位置进行对准后,将准直透镜组件105通过环氧胶固定在上盖组件108远离管壳101的一侧,至此完成激光器10的装配。
需要说明的是,上述装配过程仅为本公开一些实施例提供的一种示例性的过程,其中的各个步骤中采用的焊接工艺也可以采用其他工艺代替,各个步骤的先后顺序也可以适应调整,本公开对此不做限定。
在本公开一些实施例提供的激光器10中,将多组激光芯片103设置在管壳101与上盖组件108所形成的封闭内腔中,可以防止外部的水氧对各个激光芯片103的侵蚀,从而延长各个激光芯片103的使用寿命,进而保证各个激光芯片103的发光效果。而且,在本公开的一些实施例中,由于管壳101的封装部1012上的第一开口10121较少,使得该第一开口10121出现密封效果较差的可能性降低,从而保证激光器10的封闭内腔具有较好的密封效果。
图9为根据一些实施例的一种激光器的结构图,图10为图9所示的激光器沿虚线B-B′ 处的剖面图。如图9和图10所示,在一些实施例中,封装部1012包括多个子封装部10126,每个子封装部10126内的对应设置有至少一组激光芯片103。
准直透镜组件105包括多个子准直透镜组1052,多个子准直透镜组1052与多组激光芯片103一一对应。每个子准直透镜组1052位于对应的一组激光芯片103远离基座1011的一侧。每个子准直透镜组1052包括多个准直透镜1051,该多个准直透镜1051与对应的子封装部10126内的多个激光芯片103一一对应。在一些实施例中,每个准直透镜1051在基座1011上的正投影覆盖对应的激光芯片103在基座1011上的正投影。
需要说明的是,本公开对子封装部10126的数量、以及子准直透镜组1052的数量均不做限定,其可以为两个、三个、四个或五个。例如,如图9和图10所示,当激光芯片103的组数为两组时,子封装部10126的数量为两个,子准直透镜组1052的数量为两个。或者,如图12所示,当激光芯片103的组数为三组时,子封装部10126的数量为三个,子准直透镜组1052的数量为三个。
在一些实施例中,每个子准直透镜组1052中的各个准直透镜1051可以一体成型。示例地,子准直透镜组1052大致呈板状,该子准直透镜组1052靠近基座1011的一面为平面,远离基座1011的一面具有多个凸弧面,该多个凸弧面中每个凸弧面所在的部分均为一个准直透镜1051。
需要说明的是,子准直透镜组1052中的各个准直透镜1051可以依据设计规则中规定好的尺寸以及间距形成。激光器10中的各个激光芯片103也可以贴装于与准直透镜1051的设计规则相匹配的装贴位置。由于在激光芯片103的贴装过程中有较大可能出现贴装误差,即实际贴装位置与设计好的贴装位置之间存在些许偏差。因此,在组装子准直透镜组1052时,需将每个子准直透镜组1052中的各个准直透镜1051与对应的激光芯片103进行对准,以使每个激光芯片103发出的激光尽可能全部射入对应的准直透镜1051。
在本公开一些实施例提供的激光器10中,先将多组激光芯片103分别设置在多个子封装部10126的内腔中,然后再对每组激发光芯片103采用对应的子准直透镜组1052进行准直。如此仅需针对每组激光芯片103分别进行该组激光芯片103对应的子准直透镜组1052的对准即可。这样,即使某一组激光芯片103的贴装位置存在误差,也不会对其他组激光芯片103的准直效果造成影响。而且,由于多组激光芯片103分别设置在多个子封装部10126的内腔中,因此每个子封装部10126内激光芯片103的数量较少。这样,每个子准直透镜组1052均对应较少数量的激光芯片103,使得子准直透镜组1052中各个准直透镜1051与对应的激光芯片103之间的对准效果较好,从而保证各个激光芯片103发出的激光可以较多地射向对应的准直透镜1051,进而保证准直透镜组件105对各个激光芯片103发出的激光进行较好地准直,以提高激光器10发出的激光的准直度。
在一些实施例中,封装部1012与基座1011之间可以采用钎焊工艺进行固定。
需要说明的是,如果将多个子封装部10126同时进行钎焊,则在钎焊的过程中会产生较高的热量,进而导致封装部1012与基座1011产生热应力。若该热应力较大,则封装部1012与基座1011可能会发生损伤。
因此,在一些实施例中,激光器10中的多个子封装部10126与基座1011之间可以采用分时焊接的方式进行固定。例如,先将一个子封装部10126焊接在基座1011上,接着将该焊接后的子封装部10126与基座1011均进行冷却,然后再在基座1011上焊接另一个子封装部10126,接着再进行冷却,如此循环直至完成封装部1012与基座1011之间的固定。
如此,由于每个子封装部10126的体积较小,每个子封装部10126与基座1011的接触面积较小。由于两物体焊接时的热应力与该两物体的接触面积正相关,因此,在基座1011上分时焊接各个子封装部10126时,每次焊接产生的热应力较小。且在前一个子封装部10126焊接完毕焊接后一个子封装部10126时,前一个子封装部10126与基座1011之间产生的应力可以基本得以释放,进而可以降低封装部1012与基座1011在焊接时由于热应力而损伤的风险。
而且,在公开一些实施例的激光器10中设置独立的多个子封装部10126,且在各个子 封装部10126中进行激光芯片103的设置。如此相当于将激光器10模块化,每个子封装部10126所在部分相当于一个小激光器。进而可以灵活地进行激光器10的结构更改,在不同的应用场景中灵活地调整激光器10的结构,提高激光器10的使用灵活性。
在一些实施例中,如图10所示,盖板1082包括多个子盖板10821。多个子盖板10821与多个子封装部10126一一对应。每个子盖板10821位于对应的一个子封装部10126远离基座1011的一侧,每个子盖板10821被配置为密封对应的一个子封装部10126的内腔。
在一些实施例中,激光器10中的各个子封装部10126均呈方环体结构,每个子封装部1012在基座1011上的正投影为方环形或者类方环形。
在一些实施例中,如图9所示,激光器10中的多个子封装部10126可以沿第二方向X依次排布。由于该第二方向X为子封装部10126的宽度方向,各个子封装部10126沿第二方向X依次排布可以保证激光器10整体的形状较为方正,便于存放、运输及使用。在一些实施例中,该多个子封装部10126也可以沿第一方向Y依次排布,本公开对此不做限定。例如,在子封装部10126的宽度方向为第一方向Y,长度方向为第二方向X时,该多个子封装部10126沿第一方向Y依次排布。
在一些实施例中,多组激光芯片103中的至少一组发光芯片103包括至少两类激光芯片。
图11为图9所示的激光器的俯视图。如图11所示,激光器10包括两组激光芯片103,两组激光芯片103分别为第一组激光芯片和第二组激光芯片。与图3、图6和图7相比,区别之处仅在于:图11中的两组(即三类)激光芯片103分别设置在不同的子封装部10126的内腔中,且分别对应不同的子准直透镜组1052。
例如,如图11所示,封装部1012包括两个子封装部10126,准直透镜组件105包括两个子准直透镜组1052。第一组激光芯片103(即第一类激光芯片103A)设置在一个子封装部10126的内腔中,第二组激光芯片103(即第二类激光芯片103B和第三类激光芯片103C)均设置在另一个子封装部10126的内腔中。第一组激光芯片103和第二组激光芯片103均包括五个激光芯片103,相应地,两个子准直透镜组1052也均包括五个准直透镜1051。
在一些实施例中,多组激光芯片103中,每组激光芯片103中各个激光芯片103均发出同一颜色的激光,即每组激光芯片103仅包括一类激光芯片。
图12为根据一些实施例的又一种激光器的俯视图。如图12所示,激光器10包括三组激光芯片103,三组激光芯片103分别为第一组激光芯片、第二组激光芯片和第三组激光芯片。第一组激光芯片103仅包括第一类激光芯片103A,第二组激光芯片103仅包括第二类激光芯片103B,第三组激光芯片103仅包括第三类激光芯片103C。与图3、图6和图7相比,区别之处仅在于:图12中的三组(即三类)激光芯片103分别设置在不同的子封装部10126的内腔中,且分别对应不同的子准直透镜组1052。
例如,如图12所示,封装部1012包括三个子封装部10126,准直透镜组件105包括三个子准直透镜组1052。第一组激光芯片103(即第一类激光芯片103A)设置在第一个子封装部10126的内腔中,第二组激光芯片103(即第二类激光芯片103B)设置在第二个子封装部10126的内腔中,第三组激光芯片103(即第三类激光芯片103C)设置在第三个子封装部10126的内腔中。第一组激光芯片103、第二组激光芯片103和第三组激光芯片103中激光芯片103的数量分别为五个、四个和三个,与其对应的三个子准直透镜组1052中准直透镜1051的数量也分别为五个、四个和三个。此时,第一类激光芯片103A的数量大于第二类激光芯片103B的数量,大于第三类激光芯片103C的数量,且小于第二类激光芯片103B与第三类激光芯片103C的数量和,第二类激光芯片103B的数量大于第三类激光芯片103C的数量。
在一些实施例中,如图9、图11和图12所示,多个导电引脚109设置在基座1011上,且位于封装部1012(即各个子封装部10126)以外的区域。
在一些实施例中,多个导电引脚109位于管壳101中多个子封装部10126的同一侧。如此可以便于各个子封装部10126内的激光芯片103进行统一的电流供应,便于各个子封 装部10126及对应组的激光芯片103的设置。
在一些实施例中,如图11和图12所示,激光器10中的至少两组激光芯片103连接同一个第二极引脚,且连接不同的第一极引脚,即该至少两组激光芯片103共用第二极引脚。
例如,如图11和图12所示,激光器10包括四个导电引脚109,该四个导电引脚109沿第一方向X依次排布,且在第一方向Y上位于多个子封装部10126的同一侧。四个导电引脚109包括三个第一极引脚和一个第二极引脚。三个第一极引脚分别与第一组激光芯片103的一端、第二组激光芯片103的一端和第三组激光芯片103的一端连接,第一组激光芯片103的另一端、第二组激光芯片103的另一端和第三组激光芯片103的另一端均与同一个第二极引脚连接,以分别向对应组的激光芯片103传输电流。
在一些实施例中,激光器10还包括多个供电端子1010,多个供电端子1010与封装部1012的多个第一开口10121一一对应,即与管壳101的多个导电引脚109一一对应。该多个供电端子1010被配置为将封装部1012内侧的部件(例如,激光芯片103)与封装部1012外侧的部件(例如,导电引脚109)连通。
每个子封装部10126均包括至少两个第一开口10121,每个供电端子1010通过对应的一个第一开口10121穿入子封装部10126中。每个供电端子1010包括三部分,该三个部分分别为依次连接的第一部分、第二部分和第三部分,该第一部分为位于子封装部10126的外侧的部分,该第二部分为位于对应的第一开口10121内的部分,该第三部分为穿过对应的第一开口10121伸入子封装部10126的内侧的部分。每个供电端子1010的第一部分与对应的导电引脚109连接,进而与外部电源的一个电极(例如,正极或负极)连接,第三部分通过导线与相应的激光芯片103的一个电极(例如,第一电极或第二电极)连接。如此,实现外部电源通过多个供电端子1010和多个导电引脚109向多组激光芯片103传输电流。
每组激光芯片103中每类激光芯片可以对应两个供电端子1010,一个供电端子1010与第一引脚连接,另一个供电端子1010与第二极引脚连接。该类激光芯片的两端分别连接该两个供电端子1010。
在一些实施例中,若一组激光芯片103中的多类激光芯片共用一个第二极引脚,则该多类激光芯片也可以共用一个供电端子1010,该供电端子1010与共用的导电引脚109连接。
例如,如图11所示,第一组激光芯片103仅包括第一类激光芯片103A,与第一组激光芯片103对应的子封装部10126上固定有两个供电端子1010,两个供电端子1010中一个与第一组激光芯片103对应的第一极引脚连接,另一个与各组激光芯片103共用的第二极引脚连接。第二组激光芯片103包括两类激光芯片103B和103C,与第二组激光芯片103对应的子封装部10126上固定有三个供电端子1010,两类激光芯片103B和103C共用一个供电端子1010,该共用的供电端子1010与与各组激光芯片103共用的第二极引脚连接。
例如,如图12所示,当每组激光芯片103仅包括一类激光芯片,且该类激光芯片均串联时,每个子封装部10126上均固定有两个供电端子1010。每个子封装部10126上固定的两个供电端子1010中一个与该组激光芯片103对应的第一极引脚连接,另一个与各组激光芯片103共用的第二极引脚连接。
在一些实施例中,同一组激光芯片103中共用同一导电引脚109的不同类激光芯片,也可以对应不同的两个供电端子1010。例如,图12中的第二类激光芯片103B和第三类激光芯片103C相互靠近的一端,也可以分别连接至两个不同的供电端子1010。需要说明的是,对于该设置方式,本公开未单独进行示意。
在一些实施例中,管壳101还包括传输电路,该传输电路嵌入在的基座1011中嵌入传输电路。该传输电路被配置为连接供电端子1010及其对应的导电引脚109。
图13根据一些实施例的一种投影光源的结构图。如图13所示,在一些实施例中,该投影光源1包括激光器10、合光镜组20、会聚透镜30和匀光部件40。合光镜组20、会聚透镜30和匀光部件40沿目标方向(例如,第二方向X)依次排布。
从激光器10射出的激光射入合光镜组20。合光镜组20位于激光器10的出光侧。合光镜组20被配置为接收激光器10发出的各种颜色的激光,将该各色激光进行混合,并将混合后的激光沿目标方向射出。
从合光镜组20射出的激光射入会聚透镜30。会聚透镜30被配置为接收混合后的激光,并对该混合后的激光进行会聚后沿目标方向射出。
从合光镜组20射出的激光射入匀光部件40。匀光部件40被配置为接收会聚后的激光,并对该会聚后的激光进行匀化后沿目标方向射出。
从匀光部件40射出的激光可以用于后续投影设备的画面投射,以形成投影画面。
在一些实施例中,匀光部件40为光导管,或者为其他用于匀光的部件(例如,复眼透镜)。例如,如图13所示,匀光部件40为光导管。或者,如图15所示,匀光部件40为复眼透镜。
在一些实施例中,合光镜组20包括沿目标方向排布的至少一个合光镜片。在一些实施例中,至少一个合光镜片位于激光器10中准直透镜组件105远离基座1011的一侧,且各个合光镜片均倾斜设置。
在一些实施例中,至少一个合光镜片包括多个合光镜片,且在准直透镜组件105包括多个子准直透镜组1052时,多个合光镜片与多个子准直透镜组1052可以一一对应。每个合光镜片在基座1011上的正投影可以覆盖对应的子准直透镜组1052在基座1011上的正投影。
需要说明的是,本公开对合光镜组20中各个合光镜片的类型不做限定。在一些实施例中,多个合光镜片中最远离会聚透镜30的一个合光镜片为针对全光谱的反射镜,其余合光镜片均为二向合光镜。二向合光镜用于反射从激光器10射向该二向合光镜的激光,且透射相对其远离会聚透镜30的合光镜片射出的激光。在一些实施例中,多个合光镜片均为二向合光镜。
例如,如图13所示,合光镜组20包括第一反射镜201和第一二向合光镜202,用于对激光器10的两个子封装部10126内的激光芯片进行合光,该两个子封装部10126可以发出三色激光。该两个子封装部10126的激光芯片组的设置可参见前述实施例。其中,第一反射镜201被配置为反射多种颜色的激光中的至少一种颜色的激光。第一二向合光镜202位于第一反射镜201的出光路径中,并靠近会聚透镜30设置,第一二向合光镜202被配置为透射至少一种颜色的激光,并反射多种颜色的激光中剩余颜色的激光。如此,第一反射镜201将激光器10射向第一反射镜201的激光进行反射后射入第一二向合光镜202。第一二向合光镜202将激光器10射向第一二向合光镜202的激光进行反射后射入会聚透镜30,并将第一反射镜201射向第一二向合光镜202的激光进行透射后射入会聚透镜30。
在一些实施例中,第一反射镜201对应其中一个子封装部的激光芯片组设置,该子封装部的激光芯片可以发出两种颜色的光,比如蓝色激光和绿色激光,第一二向合光镜202对应另一个子封装部的激光芯片组设置,该子封装部的激光芯片可以发出一种颜色的光,比如红色激光。
在一些实施例中,第一二向合光镜202通过波长合光原理进行合光,比如能够透射蓝色和绿色波长的光,反射红色波长的光。
以及,在一些实施例中,第一二向合光镜202可以通过偏振原理合光,比如蓝色激光和绿色激光具有相同的偏振方向,且与红色激光的偏振方向不同,通常相差90度,从而第一二向合光镜202可以一种偏振方向的光(本示例中为蓝色激光和绿色激光),反射另一种偏振方向的光(本示例中为红色激光)。
以及,图14为根据一些实施例的一种投影光源的光路原理图,图14中,不同类型的虚线箭头表示不同颜色的激光。如图14所示,在一些实施例中,合光镜组20包括合光棱镜203、第二反射镜204、第三反射镜205和第二二向合光镜206,用于对激光器的两个子封装部10126内的激光芯片组进行合光。该两个子封装部10126可以发出三色激光。该两个子封装部10126的激光芯片组的设置可参见前述实施例。
其中,合光棱镜203相对于其中一个子封装部10126的激光芯片组设置,包括相对设 置的第一镜面2031和第二镜面2032。第一镜面2031被配置为反射第一颜色的激光,且透射第三颜色的激光,第三颜色的激光在第一镜面2031上折射,从而透射进入合光棱镜203内部。第二镜面2032被配置为反射第三颜色的激光,反射后的第三颜色的激光在第一镜面2031上再次折射,从合光棱镜203射出。合光棱镜203具有一定的厚度,通过调控合光棱镜203的镜片厚度,可以实现对第一颜色的激光和第三颜色的激光的光斑的轴对称合光。
例如,如图14所示,第三颜色的激光在第一镜面2031处发生折射后进入合光棱镜203的内部。在合光棱镜203的内部,折射后的第三颜色的激光在第二镜面2032处发生反射,反射后的第三颜色的激光在第一镜面2031处再次发生折射后从合光棱镜203的内部射出。如此,由于合光棱镜203具有一定的厚度,第三颜色的激光发生折射在内部传输一段距离后所入射至第二镜面2032的光斑位置,相比于首次入射至第一镜面2031的光斑位置的法线与第二镜面2032的交点位置相比发生了偏移,以及第三颜色的激光还被第二镜面2032反射后再次入射至第一镜面2031,此时第三激光在第一镜面2031上的光斑位置相比于其在第二镜面2032的光斑位置因为反射的原因也存在偏移。这样,第三颜色的激光在经合光棱镜203的二次透射和一次反射后,可以与第一颜色的激光入射至第一镜面2031上的光斑位置产生叠加,从而实现第一颜色的激光和第三颜色的激光的光斑的轴对称合光,提高两种颜色激光合光的光斑重合度,而且,第一颜色的激光和第三颜色的激光的合光光斑尺寸也会较小。
从合光棱镜203射出的第一颜色的激光和第三颜色的激光射入第二反射镜204。第二反射镜204位于合光棱镜203的反射光路上,第二反射镜204被配置为反射第一颜色的激光和第三颜色的激光。
另一个子封装部10126内的激光芯片组发出的第二颜色的激光射入第三反射镜205。第三反射镜205被配置为仅反射第二颜色的激光。
第二二向合光镜206位于第二反射镜204的反射光路和第三反射镜205的反射光路的交汇处,第二二向合光镜206被配置为透射第一颜色的激光和第三颜色的激光,且反射第二颜色的激光。
如此,第一颜色的激光和第三颜色的激光在经第二反射镜204的反射和第二二向合光镜的206的透射后,以及第二颜色的激光在经第三反射镜205和第二二向合光镜206的反射后,可以实现在合光镜组20出口处的合光。
在一些实施例中,如图14所示,投影光源1的光出口处设置有会聚透镜,用于对合光光束的角度进行压缩。以及,为了提高消散斑的效果,投影光源还包括扩散轮50。扩散轮50设置在会聚透镜30和匀光部件40之间,扩散轮50被配置为接收混合后的激光,并对该混合后的激光进行角度扩散整形后沿目标方向射出。
在一些实施例中,还可以在会聚透镜和扩散轮之间再设置光匀化或光扩散部件,比如可以再固定设置扩散片或者复眼透镜组。通过固定扩散片和运动的扩散轮的配合,能够具有更好的消散斑的效果。
在一些实施例中,投影光源1可以包括多个激光器10,每个激光器10可以包括多个子封装部10126。
图15为根据一些实施例的又一种投影光源的光路原理图。如图15所示,投影光源1包括两个激光器10a和10b,其中激光器10a和激光器10b均可以包括两个子封装部10126,两个子封装部10126分别发出不同颜色的激光,每个激光器10a或10b输出的光为三色激光。
投影光源1包括两个合光镜组20a和20b。参见图13中的光路设计,合光镜组20a包括第一反射镜201a和第一二向合光镜202a,合光镜组20b包括第一反射镜201b和第一二向合光镜202b。激光器10a和激光器10b分别通过第一反射镜201a、第一二向合光镜202a以及第一反射镜201b、第一二向合光镜202b进行合光,两个激光器10a和10b的合光输出光路不重叠,但两个合光光路靠近,以减小两个合光光斑之间的间隙。
投影光源1还包括扩散部件60。激光器10a和激光器10b输出的合光光斑入射至扩散 部件60。该扩散部件60可以为振动的扩散片,也可以为转动的扩散片。扩散部件60能够对三色合光光斑进行扩散增加光学扩展量进而减轻激光的散斑效应。
经过扩散部件60扩散输出的光束入射匀光部件40。匀光部件40为复眼透镜40,能够对入射的光斑进行匀化,提高照明光束的均匀性。在图15所示的光源架构中,三色激光的合光光斑均以原始的合光尺寸入射至扩散部件60,由于扩散效果与光斑尺寸正相关,因此扩散部件60直接接收原始合光尺寸时的扩散效果较佳。以及,由于经过扩散部件60的扩散后的光斑尺寸会较大,相比于图13所示的光源架构中通过光导管进行收光,复眼透镜更适合接收大尺寸的光斑进行匀化,而光导管适合接收大角度小尺寸的光斑。
在一些实施例中,两个激光器10a和10b在入射扩散部件60之前还可以经过缩束处理以减小光斑的尺寸,可以减小扩散部件60的受光面积而减小扩散部件60的尺寸。
以及,在扩散部件60和复眼透镜40之间还可以设置透镜对扩散光束进行角度压缩后,尽量以平行光束入射复眼透镜40,可获得更佳的匀化照明光束。
在本公开一些实施例提供的投影光源1中,由于从激光器10发出的激光具有较好的准直度,因此投影光源1在基于该准直度较好的激光进行光束整形时,可以具有较好的光束整形效果。进而,投影设备在基于投影光源1发出的激光进行画面投射时,也可以得到显示效果较好的投影画面,从而提高投影光源1所在的投影设备的画面投射效果。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (22)

  1. 一种激光器,包括:
    基座;
    多个子封装部,设置于所述基座上;
    多组激光芯片,设置于所述基座上,所述多组激光芯片中不同组激光芯片发出的激光颜色不同;每个子封装部内对应设置有至少一组激光芯片;所述多组激光芯片中每组激光芯片包括多个激光芯片,所述多个激光芯片沿第一方向排成一排;和
    多个子准直透镜组,所述多个子准直透镜组与所述多组激光芯片一一对应,每个子准直透镜组位于对应的一组激光芯片远离所述基座的一侧,每个所述子准直透镜组包括多个准直透镜,所述多个准直透镜与所述多个激光芯片一一对应,每个所述准直透镜位于对应的激光芯片发出的激光的传输路径上。
  2. 根据权利要求1所述的激光器,其中,每个所述激光芯片发出的激光的慢轴平行所述第一方向。
  3. 根据权利要求1所述的激光器,其中,所述多个子封装部沿第二方向依次排布,所述第二方向垂直所述第一方向。
  4. 根据权利要求3所述的激光器,其中,所述子封装部在所述第一方向上的长度大于在所述第二方向上的长度。
  5. 根据权利要求1至4任一项所述的激光器,还包括:
    多个导电引脚,设置于所述基座上,所述多个导电引脚被配置为向所述多组激光芯片传输电流。
  6. 根据权利要求5所述的激光器,其中,所述多个导电引脚位于所述多个子封装部的同一侧。
  7. 根据权利要求5所述的激光器,其中,所述多个导电引脚包括:
    多个第一极引脚,所述多组激光芯片中发出同一颜色激光的激光芯片串联,且与同一个所述第一极引脚耦接;所述多组激光芯片中发出不同颜色激光的激光芯片与不同的所述第一极引脚耦接;和
    至少一个第二极引脚,所述多组激光芯片与所述至少一个第二极引脚耦接。
  8. 根据权利要求7所述的激光器,还包括:
    多个供电端子,所述多个供电端子穿入所述子封装部与所述激光芯片耦接,一组激光芯片中的发出不同颜色激光的激光芯片共用一个供电端子,所述供电端子与一个第二极引脚耦接。
  9. 根据权利要求7所述的激光器,其中,至少两种发出不同颜色激光的发光芯片连接一个第二极引脚。
  10. 根据权利要求1至4任一项所述的激光器,其中,所述多组激光芯片包括两组激光芯片,所述两组激光芯片中一组激光芯片包括第一类激光芯片,另一组激光芯片包括第二类激光芯片和第三类激光芯片,所述第一类激光芯片发出的激光的波长大于所述第二类激光芯片发出的激光的波长,所述第二类激光芯片发出的激光的波长大于所述第三类激光芯片发出的激光的波长;
    所述第一类激光芯片的数量大于所述第二类激光芯片的数量,且大于所述第三类激光芯片的数量。
  11. 根据权利要求10所述的激光器,其中,所述第一类激光芯片的数量等于或小于所述第二类激光芯片与所述第三类激光芯片的数量和。
  12. 根据权利要求11所述的激光器,其中,所述第一类激光芯片的数量小于所述第二类激光芯片与所述第三类激光芯片的数量和,且所述第二类激光芯片的数量大于所述第三类激光芯片的数量。
  13. 根据权利要求11所述的激光器,其中,第一类激光芯片中各个激光芯片发出的激光的波长相差4nm至10nm。
  14. 根据权利要求1至4任一所述的激光器,其中,所述多组激光芯片中每组激光芯片包括发出同一颜色的激光的多个激光芯片。
  15. 根据权利要求1至4任一所述的激光器,其中,所述多组激光芯片中每组激光芯片包括发出不同颜色的激光的多个激光芯片。
  16. 根据权利要求15所述的激光器,其中,所述每组激光芯片中的发出相同颜色的激光的多个激光芯片相邻排列。
  17. 根据权利要求15所述的激光器,其中,所述每组激光芯片中的激光芯片与发出不同颜色的激光的激光芯片相邻排列。
  18. 根据权利要求1至4任一所述的激光器,还包括:
    多个热沉,设置于所述基座上,所述激光芯片位于对应的热沉远离所述基座的一侧;和
    多个棱镜,设置于对应的一个或多个激光芯片的出光侧,由所述激光芯片发出的激光通过对应的棱镜朝远离所述基座的方向出射。
  19. 根据权利要求1至4任一所述的激光器,还包括:
    多个子盖板,所述多个子盖板与所述多个子封装部一一对应,所述子盖板位于对应的子封装部远离所述基座的一侧,所述多个子盖板被配置为密封所述多个子封装部远离所述基座一侧的开口。
  20. 一种投影光源,包括:
    激光器,包括:
    基座;
    多个子封装部,设置于所述基座上;
    多组激光芯片,设置于所述基座上,所述多组激光芯片中不同组激光芯片发出的激光颜色不同;每个子封装部内对应设置有至少一组激光芯片,所述多组激光芯片中每组激光芯片包括多个激光芯片,所述多个激光芯片沿第一方向排成一排;和
    多个子准直透镜组,所述多个子准直透镜组与所述多组激光芯片一一对应,每个子准直透镜组位于对应的一组激光芯片远离所述基座的一侧,每个所述子准直透镜组包括多个准直透镜,所述多个准直透镜与所述多个激光芯片一一对应,每个所述准直透镜位于对应的激光芯片发出的激光的传输路径上;
    合光镜组,位于所述激光器的出光侧,所述合光镜组被配置为将所述激光器发出的激光混合后射出;
    会聚透镜,被配置为将所述合光镜组射出的激光会聚;和
    匀光部件,被配置为将所述会聚透镜会聚后的激光匀化后射出,所述合光镜组、所述会聚透镜和所述匀光部件沿目标方向依次排布。
  21. 根据权利要求20所述的投影光源,其中,所述合光镜组包括:
    第一反射镜,被配置为反射多种颜色的激光中的至少一种颜色的激光;和
    第一二向合光镜,位于所述第一反射镜靠近所述会聚透镜的一侧,所述第一二向合光镜被配置为透射所述至少一种颜色的激光,并反射所述多种颜色的激光中剩余颜色的激光。
  22. 根据权利要求20所述的投影光源,其中,所述合光镜组包括:
    合光棱镜,包括:
    第一镜面,被配置为反射第一颜色的激光,且透射第二颜色的激光,第三颜色的激光在所述第一镜面上折射;和
    第二镜面,被配置为反射所述第三颜色的激光,反射后的所述第三颜色的激光在所述第一镜面上再次折射;
    第二反射镜,位于所述合光棱镜的反射光路上,被配置为反射所述第一颜色的激光和所述第三颜色的激光;
    第三反射镜,被配置为反射所述第二颜色的激光;和
    第二二向合光镜,位于所述第二反射镜的反射光路和所述第三反射镜的反射光路的交汇处,被配置为透射所述第一颜色的激光和所述第三颜色的激光,且反射所述第二颜色的激光。
PCT/CN2022/138479 2021-12-13 2022-12-12 激光器及投影光源 WO2023109778A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280078023.7A CN118251811A (zh) 2021-12-13 2022-12-12 激光器及投影光源

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111515693.4 2021-12-13
CN202123123529.7U CN216794229U (zh) 2021-12-13 2021-12-13 激光器
CN202111515693.4A CN114094434A (zh) 2021-12-13 2021-12-13 激光器
CN202123123529.7 2021-12-13
CN202210246346.4 2022-03-14
CN202220551575.2U CN216818939U (zh) 2022-03-14 2022-03-14 激光器及投影光源
CN202220551575.2 2022-03-14
CN202210246346.4A CN114628987A (zh) 2022-03-14 2022-03-14 激光器及投影光源

Publications (1)

Publication Number Publication Date
WO2023109778A1 true WO2023109778A1 (zh) 2023-06-22

Family

ID=86774816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138479 WO2023109778A1 (zh) 2021-12-13 2022-12-12 激光器及投影光源

Country Status (1)

Country Link
WO (1) WO2023109778A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130194552A1 (en) * 2010-10-19 2013-08-01 Masateru Matsubara Lighting device and projection-type display device using same
CN205122993U (zh) * 2015-11-17 2016-03-30 山东圣达激光科技有限公司 一种双端光纤耦合输出的半导体激光器
CN112103764A (zh) * 2020-09-14 2020-12-18 青岛海信激光显示股份有限公司 多芯片激光器封装组件
CN112987472A (zh) * 2021-02-22 2021-06-18 青岛海信激光显示股份有限公司 多色光源及投影设备
CN113394654A (zh) * 2021-06-09 2021-09-14 青岛海信激光显示股份有限公司 激光器
CN114094434A (zh) * 2021-12-13 2022-02-25 青岛海信激光显示股份有限公司 激光器
CN114628987A (zh) * 2022-03-14 2022-06-14 青岛海信激光显示股份有限公司 激光器及投影光源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130194552A1 (en) * 2010-10-19 2013-08-01 Masateru Matsubara Lighting device and projection-type display device using same
CN205122993U (zh) * 2015-11-17 2016-03-30 山东圣达激光科技有限公司 一种双端光纤耦合输出的半导体激光器
CN112103764A (zh) * 2020-09-14 2020-12-18 青岛海信激光显示股份有限公司 多芯片激光器封装组件
CN112987472A (zh) * 2021-02-22 2021-06-18 青岛海信激光显示股份有限公司 多色光源及投影设备
CN113394654A (zh) * 2021-06-09 2021-09-14 青岛海信激光显示股份有限公司 激光器
CN114094434A (zh) * 2021-12-13 2022-02-25 青岛海信激光显示股份有限公司 激光器
CN114628987A (zh) * 2022-03-14 2022-06-14 青岛海信激光显示股份有限公司 激光器及投影光源

Similar Documents

Publication Publication Date Title
CN218887796U (zh) 激光器及投影光源
JP2017103271A (ja) 半導体レーザー光源モジュール、レーザー光源装置、半導体レーザー光源モジュールの製造方法、及びレーザー光源装置の製造方法
WO2022257548A1 (zh) 激光器
CN216773795U (zh) 激光器及投影光源
CN113703272A (zh) 激光器及投影设备
CN116300283A (zh) 激光器、投影光源和投影设备
CN113594847A (zh) 激光器
CN116073228A (zh) 激光器及激光器模组
US20200081334A1 (en) Light source device and projector
CN114094434A (zh) 激光器
CN218770544U (zh) 激光器
WO2023109778A1 (zh) 激光器及投影光源
CN219696912U (zh) 激光器
CN218242550U (zh) 激光器及光源组件
CN217087134U (zh) 一种多波长半导体激光光源模组
CN216773797U (zh) 激光器
CN217507922U (zh) 激光器
CN217692089U (zh) 光源组件和显示设备
CN216872474U (zh) 一种激光器和激光投影设备
CN114637161A (zh) 一种激光器和激光投影设备
CN118251811A (zh) 激光器及投影光源
CN114336265A (zh) 激光器
CN114583546A (zh) 一种激光器和激光投影设备
CN114253061A (zh) 激光器及投影设备
CN216818939U (zh) 激光器及投影光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906523

Country of ref document: EP

Kind code of ref document: A1