WO2023109431A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2023109431A1
WO2023109431A1 PCT/CN2022/132971 CN2022132971W WO2023109431A1 WO 2023109431 A1 WO2023109431 A1 WO 2023109431A1 CN 2022132971 W CN2022132971 W CN 2022132971W WO 2023109431 A1 WO2023109431 A1 WO 2023109431A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmission opportunities
transmission
terminal
indication information
Prior art date
Application number
PCT/CN2022/132971
Other languages
English (en)
French (fr)
Inventor
陈二凯
米翔
廖树日
曹佑龙
窦圣跃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023109431A1 publication Critical patent/WO2023109431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the technical field of communications, and in particular to a data transmission method and device.
  • extended reality (XR) technology In wireless communication networks, extended reality (XR) technology has the advantages of multi-view, strong interactivity, etc., and can provide users with a brand-new visual experience, which has great application value and commercial potential.
  • XR includes virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), and mixed reality (mix reality, MR) technologies, which can be widely used in entertainment, games, medical care, advertising, industry, online education, and Engineering and many other fields.
  • XR data is generally transmitted in the form of picture frames. Different data packets corresponding to the same picture frame usually have a dependency relationship. When some data packets are transmitted incorrectly or the transmission exceeds the delay budget, the transmission of the picture frame will fail. Therefore, how to efficiently utilize limited wireless resources to improve the transmission efficiency of XR data is an urgent problem to be solved.
  • the embodiment of the present application provides a communication method, which can be executed by a terminal, or by a component of the terminal (such as a processor, a chip, or a chip system, etc.), or can be implemented by all or part of the terminal A logical module or software implementation of a function.
  • the method includes: obtaining configuration authorization (configured grant, CG) information from a network device, where the CG information configures one or more CG transmission opportunities, and the one or more CG transmission opportunities are used for uplink data transmission.
  • Sending indication information to the network device where the indication information indicates that uplink data transmission is not to be performed on N CG transmission opportunities among the one or more CG transmission opportunities, where N is a positive integer.
  • the transmission of uplink data is skipped on the N CG transmission opportunities.
  • the CG information is carried by a radio resource control (radio resource control, RRC) message.
  • RRC radio resource control
  • the CG information may be the ConfiguredGrantConfig information element in the RRC message.
  • the reason why the uplink data transmission on the above N CG transmission opportunities is skipped is that even if the uplink data to be transmitted on the N CG transmission opportunities is sent and correctly received by the network device, the network device cannot The XR data (such as picture frames) corresponding to these uplink data are successfully restored.
  • the network device can be informed of the usage of resources in a timely manner, so that the network device can allocate these skipped CGs according to business and scheduling requirements.
  • the resource corresponding to the transmission opportunity is allocated to other services or other terminals for use, thereby improving the overall resource utilization rate of the system.
  • the indication information includes information on the number of CG transmission opportunities, and the information on the number of CG transmission opportunities indicates the above N.
  • the information on the number of CG transmission opportunities may be understood as indicating to the network device the number of CG transmission opportunities skipped by the terminal. Through this information, the network device can accurately know the number of CG transmission opportunities skipped by the terminal, and can more accurately control the number of resources when releasing and reallocating the resources corresponding to the CG transmission opportunities, thereby further improving resource utilization.
  • the information about the number of CG transmission opportunities may be optional information.
  • the indication information includes the CG transmission opportunity number information
  • the CG transmission opportunity number information indicates the number of skipped CG transmission opportunities.
  • a predefined number of CG transmission opportunities is skipped by default, and the predefined number may be 1, for example.
  • the indication information includes CG index information, where the CG index information indicates the one or more CG transmission opportunities.
  • the above one or more CG transmission opportunities can be indexed.
  • the network device can configure multiple sets of CG transmission opportunities with different indexes for the terminal.
  • the above CG index information can be used to indicate to the network device the index corresponding to the CG transmission opportunity to be skipped, so that the network device can accurately identify The resources corresponding to the skipped CG transmission opportunities are released and allocated, so as to improve resource utilization efficiency.
  • the above indication information is included in uplink control information (uplink control information, UCI), or, the above indication information is controlled by media access control (media access control, MAC) Control element (control element, CE) bearer.
  • uplink control information uplink control information, UCI
  • media access control media access control, MAC
  • Control element control element, CE
  • the UCI may be carried by a physical uplink shared channel (PUSCH), or may be carried by a physical uplink control channel (PUCCH).
  • the UCI is a configuration authorization UCI (CG-UCI), and the CG-UCI is used to send control information related to the CG to the network device.
  • the CG-UCI may only include the above indication information, or may include the above indication information and other information, and the other information includes, for example, one or more of the following information: hybrid automatic repeat request (HARQ) information , redundancy version (redundancy version, RV) information, new data indicator (new data indicator, NDI) information or channel occupancy time (channel occupancy time, COT) shared information.
  • HARQ hybrid automatic repeat request
  • RV redundancy version
  • RV new data indicator
  • NDI new data indicator
  • COT channel occupancy time
  • the HARQ information indicates the HARQ process number corresponding to the uplink data transmission
  • the RV information indicates the RV corresponding to the uplink data transmission
  • the NDI information indicates whether the uplink data transmission is new data
  • the COT shared information indicates the channel occupancy time information in the unlicensed frequency band communication scenario .
  • the indication information in the UCI may include the aforementioned CG transmission opportunity number information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities, for example, the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and at most 8 different numbers of skipped CG transmission opportunities may be indicated.
  • the indication information includes CG index information, for example, the field occupied by the CG index information may contain 4 bits.
  • BWP bandwidth part
  • the above indication information can be sent to the network device through the PUCCH resource in time, so that the network device can adjust the resource allocation in time .
  • the indication information may include the above-mentioned CG transmission opportunity number information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities, for example, the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and at most 8 different numbers of skipped CG transmission opportunities may be indicated.
  • the indication information includes CG index information, for example, the field occupied by the CG index information may contain 5 bits.
  • the CG index information is at most 32 sets of CG transmission occasions with different indices can be indicated. At this time, the CG index indicated by the CG index information can be understood as the CG index of the MAC layer.
  • the interaction between the MAC layer and the physical layer can be simplified, thereby reducing the processing delay.
  • MAC protocol data units (protocol data unit, PDU) on the N CG transmission opportunities may not be generated.
  • cached data corresponding to the N CG transmission opportunities may be cleared or released.
  • the above-mentioned uplink data includes image data, and the value of the above-mentioned N is determined by the number of remaining data frames in the image group (group of picture, GOP), the number of inserted data frames delay, or the remaining transmission delay budget of the data frame.
  • the number of remaining I frames and/or P frames in the GOP may be determined as N.
  • N the number of remaining I frames and/or P frames in the GOP
  • the terminal side can estimate the time delay, and determine N according to the time delay.
  • the CG transmission opportunity within the remaining transmission time budget of the data frame may be determined as N.
  • the number N of CG transmission opportunities that need to be skipped can be more accurately determined according to different information source coding configurations or scenarios, and it is possible to avoid data transmission failure caused by too large N, and to avoid resource failure caused by too small N. waste.
  • the method further includes: obtaining logical channel configuration information from the network device, the logical channel configuration information is used for logical channel configuration, and the logical channel configuration information configures It is allowed to skip the above one or more CG transmission opportunities corresponding to the configured logical channel.
  • the terminal side can determine to skip the CG transmission opportunity corresponding to the logical channel, and send the above indication information to the network device to indicate that no uplink data transmission is performed on the above N CG transmission opportunities.
  • the logical channel configuration information also includes the maximum number Y (Y is an integer greater than 0) that allows the terminal to transmit errors and/or skip CG transmission opportunities, and the terminal side can determine the CG transmission opportunities that need to be skipped according to this information .
  • the terminal can be informed that the network device will release/deactivate/disable the remaining CG corresponding to the logical channel when the number of terminal transmission errors and/or skipped CG transmission opportunities is greater than Y
  • the resource corresponding to the transmission opportunity can prompt or encourage the terminal to send the above indication information to the network device in a timely manner.
  • the above logical channel configuration information may be a LogicalChannelConfig information element in the RRC message, and the information element includes information elements for logical channel configuration.
  • the LogicalChannelConfig information element may also include a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity corresponding to the logical channel.
  • the LogicalChannelConfig information element may also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Y of CG transmission opportunities that the terminal is allowed to transmit incorrectly and/or skip.
  • the above CG information is further used to configure skipping of the above one or more CG transmission opportunities.
  • the terminal side may determine to skip the CG transmission opportunities configured by the CG information, and send the above indication information to the network device to indicate that no uplink data transmission is performed on the above N CG transmission opportunities.
  • the CG information also includes the maximum number Z (Z is an integer greater than 0) that allows the terminal to transmit errors and/or skip CG transmission opportunities, and the terminal can determine the CG transmission opportunities that need to be skipped according to this information.
  • the terminal can be informed that the network device will release/deactivate/disable resources corresponding to the remaining CG transmission opportunities when the number of terminal transmission errors and/or skipped CG transmission opportunities is greater than Z, Therefore, it is possible to urge or encourage the terminal to send the above indication information to the network device in a timely manner.
  • the above CG information may be a ConfiguredGrantConfig information element in the RRC message, and the information element includes information elements for configuring the CG.
  • the ConfiguredGrantConfig information element may also include a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity configured by the CG information.
  • the ConfiguredGrantConfig information element may also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Z of CG transmission opportunities that the terminal is allowed to transmit incorrectly and/or skip.
  • the embodiment of the present application provides a communication method, which can be executed by a network device, or by a component of the network device (such as a processor, a chip, or a chip system, etc.), or can be implemented by all or Logical modules or software implementations of some network device functions.
  • the method includes: sending CG information to the terminal, the CG information configuring one or more CG transmission opportunities, and the one or more CG transmission opportunities are used for uplink data transmission.
  • Receive indication information from the terminal where the indication information instructs the terminal not to perform uplink data transmission on N CG transmission opportunities among the one or more CG transmission opportunities, where N is a positive integer.
  • the CG information is carried by an RRC message.
  • the CG information may be the ConfiguredGrantConfig information element in the RRC message.
  • the indication information includes information on the number of CG transmission opportunities, and the information on the number of CG transmission opportunities indicates the above N.
  • the information on the number of CG transmission opportunities may be understood as indicating to the network device the number of CG transmission opportunities skipped by the terminal.
  • the information about the number of CG transmission opportunities may be optional information.
  • the indication information includes the CG transmission opportunity number information
  • the CG transmission opportunity number information indicates the number of skipped CG transmission opportunities.
  • a predefined number of CG transmission opportunities is skipped by default, and the predefined number may be 1, for example.
  • the indication information includes CG index information, where the CG index information indicates the one or more CG transmission opportunities.
  • the CG index information indicates the one or more CG transmission opportunities.
  • the above indication information is included in the UCI, or the above indication information is provided by the MAC CE.
  • the UCI may be carried by PUSCH or PUCCH.
  • the UCI is a CG-UCI, and the CG-UCI is used to send control information related to the CG to the network device.
  • the CG-UCI may only include the above indication information, or may include the above indication information and other information, and the other information includes, for example, one or more of the following information: HARQ information, RV information, NDI information or COT shared information.
  • the HARQ information indicates the HARQ process number corresponding to the uplink data transmission
  • the RV information indicates the RV corresponding to the uplink data transmission
  • the NDI information indicates whether the uplink data transmission is new data
  • the COT shared information indicates the channel occupancy time information in the unlicensed frequency band communication scenario .
  • the indication information in the UCI may include the aforementioned CG transmission opportunity number information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities, for example, the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and at most 8 different numbers of skipped CG transmission opportunities may be indicated.
  • the indication information includes CG index information, for example, the field occupied by the CG index information can contain 4 bits.
  • the CG index information can be at most Indicates 12 sets of CG transmission occasions with different indices. At this time, what is indicated by the CG index information can be understood as a CG index of the physical layer.
  • the indication information may include the above-mentioned CG transmission opportunity number information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities, for example, the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and at most 8 different numbers of skipped CG transmission opportunities may be indicated.
  • the indication information includes CG index information, for example, the field occupied by the CG index information may contain 5 bits.
  • the CG index information is at most 32 sets of CG transmission occasions with different indices can be indicated. At this time, the CG index indicated by the CG index information can be understood as the CG index of the MAC layer.
  • the method further includes: allocating all or part of the resources corresponding to the above N CG transmission opportunities to terminals other than the aforementioned terminals, or to other Business use.
  • the network device learns that the terminal will skip uplink data transmission on N CG transmission opportunities through the above indication information, and can release some or all resources corresponding to the N CG transmission opportunities, so that these resources can be further allocated to other than the terminal.
  • the terminal use can also be allocated to other dynamically scheduled business use, so as to achieve the effect of improving resource utilization.
  • the method further includes: sending logical channel configuration information to the terminal, where the logical channel configuration information is used to configure the logical channel, and the logical channel configuration information configures the hop The one or more CG transmission opportunities corresponding to the configured logical channels are passed.
  • the logical channel configuration information further includes a maximum number Y (Y is an integer greater than 0) of CG transmission opportunities that allow the terminal to transmit errors and/or skip.
  • the network device can maintain a counter, and update the counter according to the transmission status of the terminal on the CG transmission opportunity. When the count value of the counter reaches the above-mentioned maximum number Y, the network device will release the resources corresponding to the remaining CG transmission opportunities and allocate them to other terminals use, thereby improving resource utilization. Releasing the resources corresponding to the remaining CG transmission opportunities may also be understood as deactivating the CG configuration corresponding to the remaining CG transmission opportunities.
  • the network device may update the counter according to the following mechanism.
  • the network device When the terminal fails to transmit data on L (L is an integer greater than 0) CG transmission opportunities (it may be because the terminal has performed data transmission on these CG transmission opportunities but failed to transmit data, or it may be because the terminal skipped these CG transmission timing), but the terminal does not send the above indication information, the network device will update the counter by adding L. When the terminal skips data transmission at L CG transmission opportunities and sends the above indication information to indicate skipping data transmission at these CG transmission opportunities, the network device will not update the counter.
  • the terminal can be encouraged to report the skipped CG transmission opportunity to the network device through the indication information, because the report of the terminal can reduce the possibility of deactivating the CG configuration corresponding to the CG transmission opportunity of the terminal, and the terminal You can expect that you can occupy more of these CG transmission opportunities for data transmission.
  • the above logical channel configuration information may be a LogicalChannelConfig information element in the RRC message, and the information element includes information elements for logical channel configuration.
  • the LogicalChannelConfig information element may also include a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity corresponding to the logical channel.
  • the LogicalChannelConfig information element may also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Y of CG transmission opportunities that the terminal is allowed to transmit incorrectly and/or skip.
  • the above CG information is further used to configure skipping of the above one or more CG transmission opportunities.
  • the CG information further includes a maximum number Z (Z is an integer greater than 0) that allows the terminal to transmit errors and/or skip CG transmission opportunities.
  • the network device can maintain a counter, and update the counter according to the transmission status of the terminal on the CG transmission opportunity. When the count value of the counter reaches the above-mentioned maximum number Z, the network device will release the resources corresponding to the remaining CG transmission opportunities and allocate them to other terminals use, thereby improving resource utilization.
  • the updating manner of the counter in this optional manner and the beneficial effects of this optional manner reference may be made to the description in the foregoing implementation manners, and details are not repeated here.
  • the above CG information may be a ConfiguredGrantConfig information element in the RRC message, and the information element includes information elements for configuring the CG.
  • the ConfiguredGrantConfig information element may also include a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity configured by the CG information.
  • the ConfiguredGrantConfig information element may also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Z of CG transmission opportunities that the terminal is allowed to transmit incorrectly and/or skip.
  • the embodiments of the present application provide a device that can implement the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device can be, for example, a terminal, or a chip, a chip system, or a processor that supports the terminal to implement the above method, or a logic module or software that can realize all or part of the terminal functions.
  • the embodiments of the present application provide a device that can implement the method in the above-mentioned second aspect or any possible implementation manner of the second aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device can be, for example, a network device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a logic module or software that can realize all or part of the functions of the network device.
  • the embodiment of the present application provides a device, including: a processor, the processor is coupled with a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the device implements the first aspect above, or The method in any possible implementation manner of the first aspect.
  • the embodiment of the present application provides a device, including: a processor, the processor is coupled with a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the device implements the second aspect above, or The method in any possible implementation manner of the second aspect.
  • the embodiments of the present application provide a computer-readable storage medium on which instructions are stored, and when the instructions are executed, the computer executes the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the embodiments of the present application provide a computer-readable storage medium on which instructions are stored, and when the instructions are executed, the computer executes the method in the above-mentioned second aspect or any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a computer program product, which includes computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the above-mentioned first aspect or any possible implementation manner of the first aspect. Methods.
  • the embodiment of the present application provides a computer program product, which includes computer program code.
  • the computer program code When the computer program code is run on the computer, the computer executes the above-mentioned second aspect, or any possible implementation manner of the second aspect. Methods.
  • the embodiment of the present application provides a chip, including: a processor, the processor is coupled to a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the chip implements the above-mentioned first aspect, The method in the second aspect, any possible implementation manner of the first aspect, or any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a communication system, including: the device in the third aspect above and the device in the fourth aspect above.
  • the embodiment of the present application provides a communication system, including: the device of the fifth aspect and the device of the sixth aspect.
  • FIG. 1 is a schematic diagram of a communication system applied in an embodiment provided by the present application
  • FIGS. 2 to 5 show schematic diagrams of several system frameworks applicable to embodiments of the present application
  • Fig. 6 shows a schematic diagram of periodic data
  • Fig. 7 shows the schematic diagram of the impact of Internet protocol (Internet protocol, IP) packet transmission on the picture frame
  • Fig. 8 shows a schematic diagram of the impact of base layer data packet transmission on enhancement layer data packets
  • FIG. 9 shows a schematic diagram of the influence of P frame transmission on other P frames
  • FIG. 10 shows a schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of skipping a configuration authorization (configured grant, CG) transmission opportunity
  • FIG. 12 shows a media access control (media access control, MAC) control element (control element, CE) carrying CG transmission opportunity quantity information and CG index information;
  • media access control media access control, MAC
  • control element control element, CE
  • FIG. 13 shows another schematic diagram of skipping a CG transmission opportunity
  • FIG. 14 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of another device provided by the embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 130 , and optionally, the communication system 1000 may also include the Internet 140 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same equipment, or it can be integrated on one equipment. Functions of some core network devices and functions of some radio access network devices. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as relay devices and backhaul devices, which are not shown in FIG. 1 .
  • the method and device provided by the embodiments of the present application can be used in various communication systems, such as the fourth generation (4th generation, 4G) communication system, 4.5G communication system, 5G communication system, 5.5G communication system, 6G communication system, various communication systems A system of system integration, or a communication system that will evolve in the future.
  • 4G fourth generation
  • 4G fourth generation
  • 5G communication system 5G communication system
  • 5.5G communication system 6G communication system
  • various communication systems A system of system integration, or a communication system that will evolve in the future.
  • long term evolution long term evolution, LTE
  • new air interface new radio, NR
  • wireless fidelity wireless-fidelity
  • WiFi third generation partnership project
  • 3GPP third generation partnership project
  • Wireless access network equipment may be base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (transmission reception point, TRP), 5G mobile communication system
  • base station evolved base station
  • eNodeB evolved base station
  • transmission reception point transmission reception point
  • the next generation base station (next generation NodeB, gNB), the next generation base station in the 6G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module that completes some functions of the base station or
  • a unit for example, can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node. It can be understood that all or part of the functions of the radio access network device in this application can also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform). The embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment. For ease of description, a base station is used as a radio access network device as an example for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( Internet of things, IoT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • the terminal in this application may also be a VR terminal, an AR terminal, or an MR terminal.
  • VR terminals, AR terminals, and MR terminals can all be referred to as XR terminals.
  • an XR terminal can be a head-mounted device (such as a helmet or glasses), an all-in-one machine, a TV, a monitor, a car, a vehicle-mounted device, a tablet or a smart screen, etc.
  • XR terminals can present XR data to users, and users can experience diversified XR services by wearing or using XR terminals.
  • XR terminals can access the network through wireless or wired means, such as accessing the network through WiFi, 5G or other systems.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the roles of the base station and the terminal can be relative.
  • the aircraft or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the application scenarios of the above-mentioned terminals such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel;
  • the terminal sends a sidelink (sidelink ) signal or side link information, and the side link information is carried on the side link channel.
  • XR technology has the advantages of multi-view, strong interactivity, etc., and can provide users with a brand-new experience, which has great application value and commercial potential.
  • XR includes technologies such as VR, AR, and MR, and can be widely used in many fields such as entertainment, games, medical care, advertising, industry, online education, and engineering.
  • VR technology mainly refers to the rendering of visual and audio scenes to simulate the sensory stimulation of the visual and audio in the real world as much as possible.
  • users usually wear XR terminals (such as head-mounted devices) to simulate visual and/or auditory.
  • VR technology can also track the user's actions, so as to update the simulated visual and/or auditory content in time.
  • AR technology mainly refers to providing additional visual and/or auditory information or artificially generated content in the real environment perceived by the user, where the user's acquisition of the real environment can be direct (for example, without sensing, processing and rendering), It can also be indirect (for example, transmitted through sensors, etc.), and further enhanced processing is performed.
  • MR technology is to insert some virtual elements into the physical scene, the purpose is to provide users with an immersive experience that these elements are part of the real scene.
  • FIG. 2 shows a schematic diagram of a scenario where this embodiment of the present application is applicable.
  • FIG. 2 illustrates a system 200, including a server 210, a core network and an access network 220 (which may be referred to as a transport network 220 for short, such as an LTE, 5G or 6G network), and a terminal 230.
  • the server 210 can be used to encode, decode and render the XR source data
  • the transmission network 220 can be used to transmit the XR data
  • the terminal 230 can provide users with a variety of XR experiences by processing the XR data.
  • the terminal 230 obtains XR data from the transmission network 220 by means of other terminals and/or network devices.
  • other terminals such as mobile phones, notebook computers, or vehicle terminals, etc.
  • network equipment such as relay equipment, integrated access backhaul (integrated access backhaul, IAB) equipment, WiFi router, or WiFi access point, etc.
  • the terminal 230 obtains XR data from the transmission network 220 by means of other terminals and/or network devices.
  • FIG. 3 shows another schematic diagram of a scene where this embodiment of the present application is applicable.
  • FIG. 3 illustrates a system 300 including a terminal 320 and other terminals 310 .
  • Other terminals 310 are terminals other than terminal 320 .
  • Other terminals 310 may transmit XR data to terminal 320 .
  • other terminals 310 can project the XR data to the terminal 320 .
  • the other terminals 310 and 320 are vehicle-mounted terminals, and XR data can be exchanged between the vehicle-mounted terminals.
  • other terminals 310 may also be connected to a transmission network (such as LTE, 5G or 6G network), so as to obtain XR data from the transmission network, or send data to the transmission network.
  • a transmission network such as LTE, 5G or 6G network
  • FIG. 4 shows a schematic diagram of another applicable scenario of this embodiment of the present application.
  • FIG. 4 illustrates a system 400 , including a terminal 430 , a WiFi router or a WiFi access point 420 (which may be referred to as a WiFi device 420 for short), and other terminals 410 .
  • Other terminals 410 are terminals other than terminal 430 .
  • Other terminals 410 can transmit XR data to the terminal 430 by means of the WiFi device 420 .
  • the other terminal 410 is a mobile phone device
  • the WiFi device 420 is a WiFi router, a WiFi access point or a set-top box
  • the terminal 430 is a TV device, a smart screen device or an electronic tablet device. Project XR data to TV devices, smart screen devices or electronic tablet devices to present to users.
  • FIG. 5 shows another schematic diagram of a scene where this embodiment of the present application is applicable.
  • FIG. 5 illustrates a system 500 , including a server 510 , a fixed network 520 , a WiFi router or a WiFi access point 530 (which may be referred to as a WiFi device 530 for short), and a terminal 540 .
  • the server 510 can be used to encode, decode and render the XR source data, and transmit the XR data to the terminal 540 via the fixed network 520 and the WiFi device 530 .
  • the fixed network 520 is an operator network
  • the WiFi device 530 is a WiFi router, WiFi access point or set-top box
  • the server 510 transmits or projects XR data to the terminal 540 by means of the operator network 520 and the WiFi device 530 .
  • FIG. 2 to FIG. 5 only provide schematic illustrations of several applicable scenarios of the embodiment of the present application, and do not limit the applicable scenarios of the embodiment of the present application.
  • XR or video service data it usually has a certain frame rate and periodicity.
  • Figure 6 shows a schematic diagram of the time distribution of picture frames of the XR service in the case of a frame rate of 60 frames per second (frame per second, FPS). It can be seen from Figure 6 that in the case of 60FPS, a picture frame will appear or arrive every 1000/60 ⁇ 16.67ms.
  • Radio access network equipment can obtain the frame rate of XR or video service data in many different ways.
  • the radio access network device can obtain the frame rate of the XR or video service data through the configuration information of the quality of service (quality of service, QoS) flow corresponding to the data, such as a QoS profile (QoS profile).
  • QoS quality of service
  • the radio access network device may obtain the frame rate of the XR or video service data by detecting the arrival time interval of the data packets in the QoS flow.
  • the terminal may report the frame rate of uplink data or information related to the frame rate to the radio access network device through auxiliary information, such as the information element UEAssistanceInformation.
  • the terminal can also obtain the frame rate of XR or video service data in various ways.
  • the terminal can obtain the frame rate of the XR or video service data through the configuration information of the QoS flow corresponding to the data, such as the QoS rule (QoS rule).
  • the terminal can obtain the frame rate of the XR or video service data by detecting the arrival time interval of the data packets in the QoS flow.
  • the terminal may notify the protocol layer below the application layer (such as the RRC layer) of the terminal of the frame rate of the application layer data or the information related to the frame rate through the interaction between the protocol layers.
  • a configured grant (CG) mechanism is a data transmission mechanism suitable for uplink periodic service transmission.
  • resources for uplink data transmission also called CG resources
  • DCI downlink control information
  • the allocated resources are repeatedly used for uplink data transmission.
  • the CG resource may also be referred to as a CG transmission opportunity in the time domain.
  • the CG mechanism may sometimes be called a configured scheduling (CS) mechanism or a grant free (GF) mechanism.
  • the CG mechanism includes two types: CG Type 1 and CG Type 2.
  • CG Type 1 The workflows of these two CG types are introduced respectively below.
  • radio access network equipment provides relevant CG configurations, such as CG period and CG resources, for the terminal through RRC messages.
  • the RRC message is also used to activate CG configuration.
  • the terminal can send uplink data to the radio access network device based on the CG period and CG resources configured in the RRC message.
  • the radio access network device instructs the terminal to deactivate the CG configuration by sending DCI to the terminal. After receiving the DCI, the terminal may release the CG resource, or it may also be understood as stopping/suspending uplink data transmission on the CG resource.
  • the radio access network device provides the terminal with relevant CG configuration, such as CG period, etc. through RRC messages.
  • the radio access network device further indicates the CG resource to the terminal through the DCI.
  • the terminal can send uplink data to the radio access network device based on the CG period configured in the RRC message and the CG resource indicated by the DCI.
  • the above DCI can also be understood as indicating and activating the CG resource.
  • the radio access network device instructs the terminal to deactivate the CG configuration by sending another DCI to the terminal. After receiving the DCI, the terminal may release the CG resource, or it may also be understood as stopping/suspending uplink data transmission on the CG resource.
  • one CG resource is configured in one CG period for transmitting one transport block (transport block, TB).
  • transport block transport block
  • multiple CG resources can be configured in one CG cycle to transmit a TB of different redundant Redundancy version (RV), thereby improving the reliability of data transmission.
  • RV is designed to realize incremental redundancy (incremental redundancy, IR) hybrid automatic repeat request (hybrid automatic repeat request, HARQ) transmission.
  • the bits generated by encoding are divided into several bit groups, each RV corresponds to a bit group, and the initial transmission and retransmission use the bit groups corresponding to different RVs respectively, so as to realize the gradual accumulation of redundant bits, complete the IR HARQ operation, and achieve the improvement The effect of data transmission reliability.
  • the foregoing transmission of different RVs of a TB may also be referred to as repeated transmission of the TB, or referred to as CG repeated transmission, or physical uplink shared channel (physical uplink shared channel, PUSCH) repeated transmission.
  • the radio access network device can configure the repeated transmission times in the CG period for the terminal through the repeated transmission times information in the RRC message.
  • PUSCH repetition type A There are two types of PUSCH repetition transmission in the CG mechanism: PUSCH repetition type A and PUSCH repetition type B.
  • the two PUSCH repetition types are introduced respectively below.
  • PUSCH repetition type A can be understood as slot-level repeated transmission, that is, different RVs of one TB are transmitted in multiple consecutive or discontinuous slots, and the CG resource configuration in each slot is the same.
  • PUSCH repetition type B can be understood as repeated transmission at the mini-slot level, that is, different RVs of one TB are transmitted in multiple consecutive or discontinuous mini-slots, and the CG resource configuration in each mini-slot Are the same. For example, when one slot contains 14 symbols, one mini-slot contains 2 symbols or 7 symbols. In addition, repeated transmission at the mini-slot level can be within one slot or across multiple slots.
  • XR or video service data usually has a certain frame rate and periodicity, so the CG mechanism is also suitable for transmitting such periodic XR or video service data.
  • XR data is generally transmitted in the form of picture frames, and the same picture frame can usually be processed into multiple data packets.
  • the same picture frame can be divided into multiple Internet protocol (Internet protocol, IP) packets, which are transmitted from the terminal to the base station side of the radio access network (RAN), and then transmitted to the server through the core network for rendering.
  • IP Internet protocol
  • RAN radio access network
  • picture frames usually use source coding for data compression, there is generally a certain dependency between multiple IP packets in one picture frame. As shown in FIG. 7, during the transmission process, if an IP packet transmission error occurs, the entire picture frame cannot be recovered. Only when all IP packets corresponding to the picture frame are successfully transmitted, the picture frame can be correctly restored at the receiving end.
  • XR data can be divided into base layer packets and enhancement layer packets for transmission.
  • Base layer data packets enable the decoder at the receiving end to decode the base video content.
  • the enhancement layer data packet includes more detailed information of the video, which is used to improve the video quality.
  • basic layer data packets and enhancement layer data packets are usually transmitted separately and provide different QoS guarantees. There is usually a certain correlation between the data packets of the basic layer and the data packets of the enhancement layer.
  • Base layer packets can be decoded independently to ensure a basic user experience, while enhancement layer packets rely on base layer packets for proper decoding. As shown in FIG. 8, if the transmission of the base layer data packet fails, the enhancement layer data packet cannot be decoded correctly. Only when the base layer packet is successfully transmitted can the enhancement layer packet be correctly decoded at the receiving end.
  • XR data can be divided into I frame and P frame for transmission, and I frame and P frame can be included in the picture group (group of picture, GOP).
  • the first frame in a GOP is generally an I frame, and the coding and decoding of the I frame do not need to refer to other frames, and can be coded and decoded independently.
  • the other frames in the GOP are generally P frames.
  • the encoding and decoding of P frames need to refer to the previous frames for encoding and decoding. If there is content transmission failure in the previous frames, the subsequent P frames will not be decoded correctly. As a result, stalling occurs. The stall needs to be eliminated until the I frame of the next GOP is correctly received or an instantaneous decoder refresh (IDR) frame is inserted.
  • IDR instantaneous decoder refresh
  • This application provides a data transmission method, which can reasonably discard some data to be transmitted by the terminal and notify the base station, so as to improve the resource utilization rate in the process of XR data transmission. It can be understood that the method provided in this application does not limit the type of data service it is applied to, and data service types other than XR and/or video service data are also applicable.
  • FIG. 10 is an interactive schematic diagram of a data transmission method 1000 provided by an embodiment of the present application.
  • the method is illustrated by taking the wireless access network device and the terminal as the execution subject of the interaction demonstration as an example, but the present application does not limit the execution subject of the interaction demonstration.
  • the wireless access network device in FIG. 10 may also be a chip, a chip system, or a processor that supports the wireless access network device to implement the method, and may also be a logic that can realize all or part of the functions of the wireless access network device.
  • Module or software; the terminal in FIG. 10 may also be a chip, a chip system, or a processor that supports the terminal to implement the method, and may also be a logic module or software that can realize all or part of the terminal functions.
  • the method 1000 of this embodiment may include part 1010 , part 1020 and part 1030 .
  • the wireless access network device sends CG information to the terminal, and accordingly, the terminal obtains the CG information.
  • the CG information is used to configure one or more CG transmission opportunities for uplink data transmission. It can be understood that these CG transmission opportunities may be identified by indexes.
  • the CG information is carried by an RRC message.
  • the CG information may be the ConfiguredGrantConfig information element in the RRC message. It can be understood that ConfiguredGrantConfig is only one possible name of CG information, and this application does not limit the name of CG information.
  • the radio access network device may configure the four CG transmission opportunities shown in the figure for the terminal. These 4 CG transmission opportunities may be identified by index 0, for example.
  • the time interval between the four CG transmission opportunities may be the arrival period of the picture frame of the XR data, for example, in the case of 60FPS, the arrival period is 16.67ms.
  • Part 1020 the terminal sends indication information to the radio access network device, and the radio access network device receives the indication information accordingly.
  • the indication information indicates to the radio access network device that the terminal does not perform uplink data transmission on N CG transmission opportunities among the one or more CG transmission opportunities, where N is a positive integer. Not performing uplink data transmission on N CG transmission opportunities can also be understood as skipping uplink data transmission on N CG transmission opportunities.
  • Part 1030 the terminal skips the transmission of uplink data at the above N CG transmission opportunities.
  • the radio access network device skips receiving uplink data of the terminal at the above N CG transmission opportunities.
  • the reason why the terminal skips the uplink data transmission on the above N CG transmission opportunities is because the uplink data to be transmitted on the N CG transmission opportunities is correctly received by the wireless access network device even if it is sent, and the wireless access network device
  • the XR data (such as picture frames) corresponding to these uplink data cannot be recovered successfully. For example, when the uplink data corresponding to a picture frame transmitted at the CG transmission opportunity before the above N CG transmission opportunities fails to be transmitted, no matter whether the uplink data corresponding to the picture frame at the N CG transmission opportunities If the transmission is successful, the radio access network equipment cannot restore the picture frame.
  • the terminal informs the wireless access network device that the transmission of uplink data on N CG transmission opportunities has been skipped through the indication information, so that the wireless access network device can know the resource usage in time, so that the wireless access network device can According to scheduling requirements, the resources corresponding to these skipped CG transmission opportunities are allocated to other services or other terminals for use, thereby improving the overall resource utilization of the system.
  • the data of a picture frame sent by the terminal at the first CG transmission opportunity is not successfully transmitted.
  • the terminal may send the above indication information to the radio access network device between the first CG transmission opportunity and the second CG transmission opportunity, and instruct the radio access network device that the terminal does not perform the CG transmission at the next two CG transmission opportunities. Transmission of the remaining data of the picture frame. Subsequently, the terminal skips the transmission of uplink data at the second and third CG transmission opportunities among the four CG transmission opportunities, and the radio access network device skips the transmission of uplink data at the second and third CG transmission opportunities. Receive uplink data from the terminal.
  • the indication information includes information indicating the number of CG transmission opportunities of N.
  • the information on the number of CG transmission opportunities may be understood as indicating to the radio access network device the number of CG transmission opportunities skipped by the terminal. Through this information, the radio access network device can accurately know the number of CG transmission opportunities skipped by the terminal, and can more accurately control the amount of resources when releasing and reallocating resources, thereby further improving resource utilization.
  • the data of a picture frame sent by the terminal at the first CG transmission opportunity is not successfully transmitted.
  • the terminal may send indication information including information on the number of CG transmission opportunities to the radio access network device between the first CG transmission opportunity and the second CG transmission opportunity, where the information on the number of CG transmission opportunities indicates the number N of skipped CG transmission opportunities for 2.
  • the radio access network device obtains the information on the number of CG transmission opportunities, and can learn that the terminal will skip the next two CG transmission opportunities (the second and third CG transmission opportunities).
  • the above information on the number of CG transmission opportunities may be optional information.
  • the indication information includes the CG transmission opportunity number information
  • the CG transmission opportunity number information indicates the number of skipped CG transmission opportunities.
  • a predefined number of CG transmission opportunities is skipped by default, and the predefined number may be 1, for example.
  • the indication information includes CG index information indicating the above one or more CG transmission opportunities.
  • the above one or more CG transmission opportunities can be indexed.
  • the radio access network device can configure multiple sets of CG transmission opportunities with different indexes for the terminal.
  • the terminal may indicate to the radio access network device the index corresponding to the CG transmission opportunity to be skipped through the above CG index information, so that The radio access network device can be enabled to accurately release and allocate resources corresponding to skipped CG transmission opportunities, so as to improve resource utilization efficiency.
  • the 4 CG transmission occasions are indexed by index 0 . If the data of a picture frame sent by the terminal at the first CG transmission opportunity is unsuccessfully transmitted, the terminal may send indication information including CG index information to the wireless access network device, and the CG index information indicates index 0, so that the The radio access network device learns that the CG transmission opportunity to be skipped by the terminal is included in the CG transmission opportunity indexed by index 0.
  • the indication information is included in uplink control information (uplink control information, UCI).
  • the UCI may be carried by a physical uplink shared channel (PUSCH), or may be carried by a physical uplink control channel (PUCCH).
  • the UCI is configuration authorization UCI (CG-UCI), and the CG-UCI is used for the terminal to send control information related to the CG to the radio access network device.
  • the CG-UCI may only include the above indication information, or may include the above indication information and other information.
  • other information includes one or more of the following information: HARQ information, RV information, new data indicator (new data indicator) , NDI) information or channel occupancy time (channel occupancy time, COT) sharing information.
  • the HARQ information indicates the HARQ process number corresponding to the uplink data transmission
  • the RV information indicates the RV corresponding to the uplink data transmission
  • the NDI information indicates whether the uplink data transmission is new data
  • the COT shared information indicates the channel occupancy time information in the unlicensed frequency band communication scenario .
  • the indication information in the UCI may include the above-mentioned CG transmission opportunity quantity information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities
  • the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and may indicate at most 8 different numbers of skipped CG transmission opportunities.
  • the indication information includes CG index information
  • the field occupied by the CG index information can contain 4 bits.
  • the CG index information can indicate at most 12 groups of CG transmission opportunities with different indexes. At this time, what is indicated by the CG index information can be understood as a CG index of the physical layer.
  • the above indication information can be sent to the network device through the PUCCH resource in time, so that the network device can adjust the resource allocation in time , to improve the utilization of wireless resources.
  • the indication information is carried by the MAC CE, and the indication information may include the above-mentioned CG transmission opportunity quantity information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities
  • the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and may indicate at most 8 different numbers of skipped CG transmission opportunities.
  • the indication information includes CG index information
  • the field occupied by the CG index information can contain 5 bits.
  • the CG index information can indicate at most 32 groups of CG transmission opportunities with different indexes.
  • the CG index indicated by the CG index information can be understood as the CG index of the MAC layer.
  • Fig. 12 illustrates a MAC CE that carries information about the number of CG transmission opportunities and CG index information, wherein the information about the number of CG transmission opportunities occupies the lower 3 bits, and the CG index information occupies the upper 5 bits. It can be understood that this application does not limit the specific position and order of bits occupied by the indication information in the MAC CE. For example, the information on the number of CG transmission opportunities can also occupy the upper 3 bits, and the CG index information can also occupy the lower 5 bits.
  • the interaction between the MAC layer and the physical layer can be simplified, thereby reducing the processing delay
  • FIG. 11 four CG transmission opportunities indexed by index 0 are shown.
  • the terminal transmits an I frame at the first CG transmission opportunity, but the transmission fails. It is assumed that the application layer of the terminal will reinsert a new I frame for transmission at the fourth CG transmission opportunity.
  • the P frames originally planned to be transmitted at the second and third CG transmission opportunities cannot be transmitted at the first CG transmission opportunity even if they are successfully transmitted.
  • the I frame is decoded, so no further transmission is necessary.
  • the terminal can skip the transmission of P frames on the second and third CG transmission opportunities, and send indication information to the radio access network device between the first and second CG transmission opportunities, Instructing the radio access network device that the terminal will skip data transmission on the second and third CG transmission opportunities.
  • the wireless access network device can know that the terminal will skip the data transmission on the second and third CG transmission opportunities, so that the resources corresponding to the second and third CG transmission opportunities can be allocated
  • the terminal is used by other dynamically scheduled services, or allocated to other terminals, thereby improving resource utilization efficiency.
  • the terminal in a possible implementation manner in which the terminal skips uplink data transmission on N CG transmission opportunities, the terminal does not generate a MAC protocol data unit (protocol data unit, PDU) on the N CG transmission opportunities, or the terminal Clear or release the cached data corresponding to the N CG transmission opportunities.
  • PDU protocol data unit
  • the radio access network device allocates all or part of the resources corresponding to the above N CG transmission opportunities to terminals other than the terminal, or allocates them to Other dynamically scheduled business uses.
  • the radio access network device learns that the terminal will skip uplink data transmission on N CG transmission opportunities through the above indication information, and can release some or all resources corresponding to the N CG transmission opportunities, so that these resources can be further allocated to
  • the use of terminals other than the terminal can also be allocated to other dynamically scheduled services, so as to achieve the effect of improving resource utilization.
  • the terminal skips the transmission of uplink data at the second and third CG transmission opportunities among the four CG transmission opportunities.
  • the wireless access network device learns that the terminal will skip the uplink data transmission on the second and third CG transmission opportunities through the above indication information, it can allocate part or all of the resources corresponding to these two CG transmission opportunities to other terminals It can also be used by other dynamically scheduled services assigned to the terminal.
  • XR data such as image data, video data or other multimedia data
  • XR data such as image data, video data or other multimedia data
  • the number of remaining I frames and/or P frames in the GOP may be determined as N. For example, there are M I frames and/or P frames to be transmitted in the GOP, the number of successfully transmitted I frames and/or P frames is K, and the number of unsuccessfully transmitted I frames and/or P frames is M-K, then M-K can be Determined as N.
  • N when transmitting an I frame/P frame, if the I frame is transmitted incorrectly, the physical layer will feed back the error to the application layer, and the application layer will reinsert the I frame. This process needs to go through A certain delay.
  • the remaining transmission time budget of the data frame can be The timing of CG transmission is determined to be N.
  • the number N of CG transmission opportunities that need to be skipped can be more accurately determined according to different information source coding configurations or scenarios, and it is possible to avoid data transmission failure caused by too large N, and to avoid resource failure caused by too small N. waste.
  • the radio access network device sends logical channel configuration information to the terminal, and the terminal obtains the logical channel configuration information accordingly, and the logical channel configuration information is used for logical channel configuration,
  • the logical channel configuration information is also used to configure and allow the terminal to skip the one or more CG transmission opportunities corresponding to the logical channel.
  • the terminal can determine to skip the CG transmission opportunity corresponding to the logical channel, and send indication information to the radio access network device according to part 1020 to indicate that no uplink data transmission is performed on the above N CG transmission opportunities .
  • the logical channel configuration information also includes the maximum number Y (Y is an integer greater than 0) that allows the terminal to transmit errors and/or skip CG transmission opportunities, and the terminal can determine the CG transmission opportunities that need to be skipped according to this information.
  • the wireless access network device can maintain a counter, and update the counter according to the transmission status of the terminal at the CG transmission opportunity. When the count value of the counter reaches the above-mentioned maximum number Y, the wireless access network device will release the remaining CG transmission opportunities corresponding to Resources are allocated to other terminals to improve resource utilization. Releasing the resources corresponding to the remaining CG transmission opportunities may also be understood as deactivating or disabling the CG configuration corresponding to the remaining CG transmission opportunities.
  • the terminal can be informed that the network device will release/deactivate/disable the remaining CG corresponding to the logical channel when the number of terminal transmission errors and/or skipped CG transmission opportunities is greater than Y
  • the resource corresponding to the transmission opportunity can prompt or encourage the terminal to send the above indication information to the network device in a timely manner.
  • the radio access network device may update the counter according to the following mechanism.
  • the radio access network device When the terminal fails to transmit data on L (L is an integer greater than 0) CG transmission opportunities (it may be because the terminal has performed data transmission on these CG transmission opportunities but failed to transmit data, or it may be because the terminal skipped these CG transmission timing), but the terminal does not send the above indication information to the radio access network device, the radio access network device will update the counter by adding L. When the terminal skips data transmission on L CG transmission opportunities and sends the above indication information to the radio access network device to indicate skipping the data transmission of these CG transmission opportunities, the radio access network device will not update the counter.
  • the terminal can be encouraged to report the skipped CG transmission opportunity to the radio access network device through the indication information, because the report of the terminal can make the CG configuration corresponding to the CG transmission opportunity of the terminal deactivated. decrease, the terminal can hope that it can occupy more of these CG transmission opportunities for data transmission.
  • FIG. 13 shows 7 CG transmission opportunities, and the terminal skips the data transmission of the second, third, fifth and sixth CG transmission opportunities.
  • the terminal does not send the aforementioned indication information to the radio access network device when skipping the second and third CG transmission opportunities, and sends the above indication information to the radio access network device when skipping the fifth and sixth CG transmission opportunities
  • the aforementioned instruction information is sent.
  • the maximum number of CG transmission opportunities that allow the terminal to transmit errors and/or skip is Y, and the aforementioned counter maintained by the radio access network device is initialized to 0.
  • the radio access network device did not successfully receive the data from the terminal at the second and third CG transmission opportunities, and did not receive the aforementioned indication information indicating to skip these two CG transmission opportunities, so the radio access network device The counter is updated by adding 2. If the radio access network device fails to receive data from the terminal at the fifth and sixth CG transmission opportunities, but receives the aforementioned indication information indicating that the terminal skipped these two CG transmission opportunities, then the radio access network device The counter will not be updated and will still count at 2. When Y ⁇ 2, the radio access network device will decide to release the resources corresponding to the remaining CG transmission opportunities, and can allocate these released resources to other terminals for use.
  • the above logical channel configuration information may be a LogicalChannelConfig information element in the RRC message, and the information element includes information elements for logical channel configuration.
  • the LogicalChannelConfig information element also includes a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity corresponding to the logical channel.
  • the LogicalChannelConfig and SkipUplinkTxConfigured cells can be shown in the following table:
  • the value represented by the SkipUplinkTxConfigured IE is the enumerated value enabled or disabled as an example.
  • the SkipUplinkTxConfigured IE is configured as enabled, it means that the terminal is allowed to skip the CG transmission opportunity corresponding to the logical channel; when the SkipUplinkTxConfigured IE is configured as disabled, it means that the terminal is not allowed to skip the CG corresponding to the logical channel Transmission timing.
  • the LogicalChannelConfig information element can also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Y of CG transmission opportunities that allow the terminal to transmit errors and/or skip.
  • the maxAllowedSkipSize information element can indicate 16 different allowable terminal transmissions Maximum number of erroneous and/or skipped CG transmission opportunities.
  • the maxAllowedSkipSize information element contained in the LogicalChannelConfig information element can be shown in the following table, where INTEGER (1..16) indicates that the maxAllowedSkipSize information element is used to configure the maximum number Y of CG transmission opportunities that allow the terminal to transmit errors and/or skip
  • the value range is 1,2,...,16.
  • the above CG information is also used to configure allowing the terminal to skip the above one or more CG transmission opportunities.
  • the terminal may determine to skip the CG transmission opportunities configured by the CG information, and send indication information to the radio access network device according to part 1020 to indicate not to perform uplink data transmission on the above N CG transmission opportunities.
  • the CG information also includes the maximum number Z (Z is an integer greater than 0) that allows the terminal to transmit errors and/or skip CG transmission opportunities, and the terminal can determine the CG transmission opportunities that need to be skipped according to this information.
  • the wireless access network device can maintain a counter, and update the counter according to the transmission status of the terminal at the CG transmission opportunity. When the count value of the counter reaches the above-mentioned maximum number Z, the wireless access network device will release the remaining CG transmission opportunities corresponding to Resources are allocated to other terminals to improve resource utilization.
  • the terminal can be informed that the network device will release/deactivate/disable resources corresponding to the remaining CG transmission opportunities when the terminal transmits errors and/or the number of skipped CG transmission opportunities is greater than Z, Therefore, it is possible to urge or encourage the terminal to send the above indication information to the network device in a timely manner.
  • the above CG information may be a ConfiguredGrantConfig information element in the RRC message, and the information element includes information elements for configuring the CG.
  • the ConfiguredGrantConfig information element also includes a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity configured by the CG information.
  • the ConfiguredGrantConfig and SkipUplinkTxConfigured cells can be shown in the following table:
  • the value represented by the SkipUplinkTxConfigured IE is the enumerated value enabled or disabled as an example.
  • the SkipUplinkTxConfigured IE is configured as enabled, it means that the terminal is allowed to skip the CG transmission opportunity configured by the CG information; when the SkipUplinkTxConfigured IE is configured as disabled, it means that the terminal is not allowed to skip the CG configured by the CG information Transmission timing.
  • the ConfiguredGrantConfig information element can also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Z of CG transmission opportunities that allow the terminal to transmit errors and/or skip.
  • the maxAllowedSkipSize information element can indicate 16 different allowable terminal transmissions Maximum number of erroneous and/or skipped CG transmission opportunities.
  • the maxAllowedSkipSize information element included in the ConfiguredGrantConfig information element can be shown in the following table, where INTEGER (1..16) indicates that the maxAllowedSkipSize information element is used to configure the maximum number Z of CG transmission opportunities that allow the terminal to transmit errors and/or skip
  • the value range is 1,2,...,16.
  • the embodiments of the present application further provide corresponding apparatuses, including corresponding modules for executing the foregoing embodiments.
  • the modules may be software, or hardware, or a combination of software and hardware.
  • FIG. 14 provides a schematic structural diagram of a terminal.
  • the terminal may be applicable to the scenarios shown in FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 or FIG. 5 .
  • the terminal or components in the terminal may execute the foregoing method 1000 and various possible implementation manners.
  • FIG. 14 only shows main components of the terminal.
  • a terminal 1400 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, analyze and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 14 For ease of illustration, only one memory and processor are shown in FIG. 14 . In an actual terminal, there may be multiple processors and memories.
  • the memory may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device, execute A software program that processes data for a software program.
  • the processor in FIG. 14 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capability, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • a terminal 1400 includes a transceiver unit 1411 and a processing unit 1412 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1411 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 1411 for realizing the sending function can be regarded as a sending unit
  • the transceiver unit 1411 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the above-mentioned receiving unit and sending unit may be one integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and sending unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the device may be a terminal, or a component of a terminal (for example, an integrated circuit, a chip, etc.).
  • the device may be a radio access network device, or a component of a network device (such as an integrated circuit, a chip, etc.), or a logic module or software capable of realizing all or part of the functions of the radio access network device.
  • the device can also be other communication modules.
  • the apparatus 1500 may implement the function of the radio access network device in the method 1000, or, the apparatus 1500 may implement the function of the terminal in the method 1000.
  • the apparatus 1500 may include: an interface module 1501 (or called an interface unit).
  • a processing module 1502 or called a processing unit
  • a storage module 1503 or called a storage unit
  • one or more modules in Figure 15 may be implemented by one or more processors, or by one or more processors and memory; or by one or more processors and a transceiver; or by one or more processors, memories, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • the device has the function of implementing the terminal described in the embodiment of this application.
  • the device includes a module or unit or means (means) corresponding to the terminal performing the steps related to the terminal described in the embodiment of this application.
  • the function or unit or The means (means) can be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware. For details, further reference may be made to the corresponding descriptions in the aforementioned corresponding method embodiments.
  • the apparatus has the function of realizing the radio access network equipment described in the embodiment of the present application, for example, the apparatus includes a module corresponding to the radio access network equipment performing the steps involved in the radio access network equipment described in the embodiment of the present application
  • Or unit or means (means) can be realized by software, or by hardware, can also be realized by executing corresponding software by hardware, and can also be realized by a combination of software and hardware.
  • the apparatus 1500 includes: a processing module 1502 and an interface module 1501 .
  • the interface module 1501 is used to obtain CG information from the network device, the CG information configures one or more CG transmission opportunities, and the one or more CG transmission opportunities are used for uplink data transmission.
  • the interface module 1501 is further configured to send indication information to the network device, where the indication information indicates that uplink data transmission is not to be performed on N CG transmission opportunities among the above one or more CG transmission opportunities, where N is a positive integer.
  • the processing module 1502 is used to control the device to skip the transmission of uplink data at the above N CG transmission opportunities.
  • the CG information is carried by an RRC message.
  • the CG information may be the ConfiguredGrantConfig information element in the RRC message.
  • the indication information includes information about the number of CG transmission opportunities, and the information about the number of CG transmission opportunities indicates the aforementioned N.
  • the information on the number of CG transmission opportunities may be understood as indicating to the network device the number of CG transmission opportunities skipped by the terminal.
  • the information about the number of CG transmission opportunities may be optional information.
  • the indication information includes the CG transmission opportunity number information
  • the CG transmission opportunity number information indicates the number of skipped CG transmission opportunities.
  • a predefined number of CG transmission opportunities is skipped by default, and the predefined number may be 1, for example.
  • the indication information includes CG index information, where the CG index information indicates the one or more CG transmission opportunities.
  • the CG index information indicates the one or more CG transmission opportunities.
  • the above indication information is included in the UCI, or the above indication information is carried by the MAC CE.
  • the UCI may be carried by PUSCH or PUCCH.
  • the UCI is a CG-UCI, and the CG-UCI is used to send control information related to the CG to the network device.
  • the CG-UCI may only include the above indication information, or may include the above indication information and other information, and the other information includes, for example, one or more of the following information: HARQ information, RV information, NDI information or COT shared information.
  • the HARQ information indicates the HARQ process number corresponding to the uplink data transmission
  • the RV information indicates the RV corresponding to the uplink data transmission
  • the NDI information indicates whether the uplink data transmission is new data
  • the COT shared information indicates the channel occupancy time information in the unlicensed frequency band communication scenario .
  • the indication information in the UCI may include the aforementioned CG transmission opportunity number information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities, for example, the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and at most 8 different numbers of skipped CG transmission opportunities may be indicated.
  • the indication information includes CG index information, for example, the field occupied by the CG index information can contain 4 bits.
  • the CG index information can be at most Indicates 12 groups of CG transmission occasions with different indices. At this time, what is indicated by the CG index information can be understood as a CG index of the physical layer.
  • the indication information may include the above-mentioned CG transmission opportunity number information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities, for example, the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and at most 8 different numbers of skipped CG transmission opportunities may be indicated.
  • the indication information includes CG index information, for example, the field occupied by the CG index information may contain 5 bits.
  • the CG index information is at most 32 sets of CG transmission occasions with different indices can be indicated. At this time, the CG index indicated by the CG index information can be understood as the CG index of the MAC layer.
  • MAC PDUs on the N CG transmission opportunities may not be generated.
  • cached data corresponding to the N CG transmission opportunities may be cleared or released.
  • the uplink data includes image data
  • the value of N is determined by the number of remaining data frames in the GOP, the delay of inserting data frames, or the remaining transmission delay budget of data frames.
  • the number of remaining I frames and/or P frames in the GOP may be determined as N.
  • the terminal side can estimate the time delay, and determine N according to the time delay.
  • the CG transmission opportunity within the remaining transmission time budget of the data frame may be determined as N.
  • the interface module 1501 is also used to obtain logical channel configuration information from the network device, the logical channel configuration information is used for logical channel configuration, and the logical channel configuration information configuration allows skipping and The one or more CG transmission opportunities corresponding to the logical channel.
  • the terminal side can determine to skip the CG transmission opportunity corresponding to the logical channel, and send the above indication information to the network device to indicate that no uplink data transmission is performed on the above N CG transmission opportunities.
  • the logical channel configuration information also includes the maximum number Y (Y is an integer greater than 0) that allows the terminal to transmit errors and/or skip CG transmission opportunities, and the terminal side can determine the CG transmission opportunities that need to be skipped according to this information .
  • the above logical channel configuration information may be a LogicalChannelConfig information element in the RRC message, and the information element includes information elements for logical channel configuration.
  • the LogicalChannelConfig information element may also include a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity corresponding to the logical channel.
  • the LogicalChannelConfig information element may also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Y of CG transmission opportunities that the terminal is allowed to transmit incorrectly and/or skip.
  • the above CG information is also used for configuration allowing skipping of the above one or more CG transmission opportunities.
  • the terminal side may determine to skip the CG transmission opportunities configured by the CG information, and send the above indication information to the network device to indicate that no uplink data transmission is performed on the above N CG transmission opportunities.
  • the CG information also includes the maximum number Z (Z is an integer greater than 0) that allows the terminal to transmit errors and/or skip CG transmission opportunities, and the terminal can determine the CG transmission opportunities that need to be skipped according to this information.
  • the above CG information may be a ConfiguredGrantConfig information element in the RRC message, and the information element includes information elements for configuring the CG.
  • the ConfiguredGrantConfig information element may also include a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity configured by the CG information.
  • the ConfiguredGrantConfig information element may also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Z of CG transmission opportunities that the terminal is allowed to transmit incorrectly and/or skip.
  • the apparatus 1500 includes: a processing module 1502 and an interface module 1501 .
  • the interface module 1501 is configured to send CG information to the terminal, the CG information configures one or more CG transmission opportunities, and the one or more CG transmission opportunities are used for uplink data transmission.
  • the interface module 1501 is also used to receive indication information from the terminal, the indication information instructs the terminal not to perform uplink data transmission on N CG transmission opportunities among the above one or more CG transmission opportunities, where N is a positive integer.
  • the processing module 1502 is configured to control the apparatus to skip receiving the uplink data of the terminal at the aforementioned N CG transmission opportunities.
  • the CG information is carried by an RRC message.
  • the CG information may be the ConfiguredGrantConfig information element in the RRC message.
  • the indication information includes information about the number of CG transmission opportunities, and the information about the number of CG transmission opportunities indicates the aforementioned N.
  • the information on the number of CG transmission opportunities may be understood as indicating to the network device the number of CG transmission opportunities skipped by the terminal.
  • the information about the number of CG transmission opportunities may be optional information.
  • the indication information includes the CG transmission opportunity number information
  • the CG transmission opportunity number information indicates the number of skipped CG transmission opportunities.
  • a predefined number of CG transmission opportunities is skipped by default, and the predefined number may be 1, for example.
  • the indication information includes CG index information, where the CG index information indicates the one or more CG transmission opportunities.
  • the CG index information indicates the one or more CG transmission opportunities.
  • the above indication information is included in the UCI, or the above indication information is provided by the MAC CE.
  • the UCI may be carried by PUSCH or PUCCH.
  • the UCI is a CG-UCI, and the CG-UCI is used to send control information related to the CG to the network device.
  • the CG-UCI may only include the above indication information, or may include the above indication information and other information, and the other information includes, for example, one or more of the following information: HARQ information, RV information, NDI information or COT shared information.
  • the HARQ information indicates the HARQ process number corresponding to the uplink data transmission
  • the RV information indicates the RV corresponding to the uplink data transmission
  • the NDI information indicates whether the uplink data transmission is new data
  • the COT shared information indicates the channel occupancy time information in the unlicensed frequency band communication scenario .
  • the indication information in the UCI may include the aforementioned CG transmission opportunity number information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities, for example, the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and at most 8 different numbers of skipped CG transmission opportunities may be indicated.
  • the indication information includes CG index information, for example, the field occupied by the CG index information can contain 4 bits.
  • the CG index information can be at most Indicates 12 groups of CG transmission occasions with different indices. At this time, what is indicated by the CG index information can be understood as a CG index of the physical layer.
  • the indication information may include the above-mentioned CG transmission opportunity number information and/or CG index information.
  • the indication information includes information on the number of CG transmission opportunities, for example, the field occupied by the information on the number of CG transmission opportunities may contain 3 bits, and at most 8 different numbers of skipped CG transmission opportunities may be indicated.
  • the indication information includes CG index information, for example, the field occupied by the CG index information may contain 5 bits.
  • the CG index information is at most 32 sets of CG transmission occasions with different indices can be indicated. At this time, the CG index indicated by the CG index information can be understood as the CG index of the MAC layer.
  • the processing module 1502 is further configured to allocate all or part of the resources corresponding to the above N CG transmission opportunities to terminals other than the above terminals, or to other services.
  • the interface module 1501 is also configured to send logical channel configuration information to the terminal, the logical channel configuration information is used for logical channel configuration, and the logical channel configuration information configuration allows skipping the configured The above one or more CG transmission opportunities corresponding to the logical channel.
  • the logical channel configuration information further includes a maximum number Y (Y is an integer greater than 0) of CG transmission opportunities that allow the terminal to transmit errors and/or skip.
  • the network device can maintain a counter, and update the counter according to the transmission status of the terminal on the CG transmission opportunity. When the count value of the counter reaches the above-mentioned maximum number Y, the network device will release the resources corresponding to the remaining CG transmission opportunities and allocate them to other terminals use. Releasing the resources corresponding to the remaining CG transmission opportunities may also be understood as deactivating the CG configuration corresponding to the remaining CG transmission opportunities.
  • the network device may update the counter according to the following mechanism.
  • L is an integer greater than 0
  • CG transmission opportunities it may be because the terminal has performed data transmission on these CG transmission opportunities but failed to transmit data, or it may be because the terminal skipped these CG transmission timing
  • the network device will update the counter by adding L.
  • the network device will not update the counter.
  • the above logical channel configuration information may be a LogicalChannelConfig information element in the RRC message, and the information element includes information elements for logical channel configuration.
  • the LogicalChannelConfig information element may also include a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity corresponding to the logical channel.
  • the LogicalChannelConfig information element may also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Y of CG transmission opportunities that the terminal is allowed to transmit incorrectly and/or skip.
  • the above CG information is also used for configuration allowing skipping of the above one or more CG transmission opportunities.
  • the CG information further includes a maximum number Z (Z is an integer greater than 0) that allows the terminal to transmit errors and/or skip CG transmission opportunities.
  • the network device can maintain a counter, and update the counter according to the transmission status of the terminal on the CG transmission opportunity. When the count value of the counter reaches the above-mentioned maximum number Z, the network device will release the resources corresponding to the remaining CG transmission opportunities and allocate them to other terminals use,
  • the above CG information may be a ConfiguredGrantConfig information element in the RRC message, and the information element includes information elements for configuring the CG.
  • the ConfiguredGrantConfig information element may also include a SkipUplinkTxConfigured information element, and the SkipUplinkTxConfigured information element is used to configure and allow the terminal to skip the CG transmission opportunity configured by the CG information.
  • the ConfiguredGrantConfig information element may also optionally include a maxAllowedSkipSize information element, which is used to configure the maximum number Z of CG transmission opportunities that the terminal is allowed to transmit incorrectly and/or skip.
  • the above apparatus 1500 may further include a storage module 1503 for storing data or instructions (also referred to as codes or programs), and the above other modules may interact or be coupled with the storage module to implement corresponding methods or functions.
  • the processing module 1502 may read data or instructions in the storage module 1503, so that the apparatus 1500 implements the methods in the foregoing embodiments.
  • the modules in the above device may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (application specific integrated circuit, ASIC), or, one or more A microprocessor (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the modules in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the device includes: a processor 1610 and an interface 1630 , and the processor 1610 is coupled to the interface 1630 .
  • the interface 1630 is used to communicate with other modules or devices.
  • Interface 1630 may be a transceiver or an input-output interface.
  • Interface 1630 may be, for example, an interface circuit.
  • the device further includes a memory 1620 for storing instructions executed by the processor 1610 or storing input data required by the processor 1610 to execute the instructions or storing data generated after the processor 1610 executes the instructions.
  • the above-mentioned method 1000 and various possible implementation manners may be implemented by the processor 1610 calling programs or instructions stored in the memory 1620 .
  • the memory 1620 may be inside the device or outside the device, which is not limited in the present application.
  • the functions/implementation process of the interface module 1501 and the processing module 1502 in FIG. 15 may be implemented by the processor 1610 in the device shown in FIG. 16 .
  • the function/implementation process of the processing module 1502 in FIG. 15 can be realized by the processor 1610 in the device shown in FIG. 16
  • the interface 1630 in the device is implemented.
  • the function/implementation process of the interface module 1501 can be implemented by the processor calling the program instructions in the memory to drive the interface 1630.
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is from other terminals or wireless access network equipment; or, the chip sends information to other modules in the terminal (such as radio frequency modules or antennas) Information, the information is sent by the terminal to other terminals or wireless access network equipment.
  • the chip When the foregoing apparatus is a chip applied to radio access network equipment, the chip implements the functions of the radio access network equipment in the foregoing method embodiments.
  • the chip receives information from other modules in the radio access network equipment (such as radio frequency modules or antennas), and the information is from other radio access network equipment or terminals; or, the chip sends information to other modules in the radio access network equipment (such as a radio frequency module or an antenna) to send information, and the information is sent by the radio access network device to other radio access network devices or terminals.
  • At least one item (one, species) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or Multiple. "Multiple" refers to two or more than two, and other quantifiers are similar.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the steps of the method described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), registers, hard disk, removable disk or any other storage medium in this field.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium, and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and storage medium can be provided in an ASIC.
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置。在提供的方法和装置中,可以通过终端合理地丢弃部分待传输数据并通知基站,以提升XR数据传输过程中的资源利用率。

Description

数据传输方法及装置
本申请要求于2021年12月13日提交中国专利局、申请号为202111523030.7发明名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输的方法及装置。
背景技术
在无线通信网络中,扩展现实(extended reality,XR)技术具有多视角、交互性强等优点,能够为用户提供了一种全新的视觉体验,具有极大的应用价值和商业潜力。XR包含虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、和混合现实(mix reality,MR)等技术,能够广泛应用于娱乐、游戏、医疗、广告、工业、在线教育、以及工程等诸多领域。
XR数据一般以画面帧的形式进行传输,同一画面帧对应的不同数据包之间通常具有依赖关系,当部分数据包传输出错或者传输超过时延预算时,会导致画面帧的传输失败。因此如何能够高效利用有限的无线资源提高XR数据的传输效率是一个亟待解决的问题。
发明内容
第一方面,本申请实施例提供一种通信方法,该方法可以由终端执行,也可以由终端的部件(例如处理器、芯片、或芯片***等)执行,还可以由能实现全部或部分终端功能的逻辑模块或软件实现。该方法包括:获得来自网络设备的配置授权(configured grant,CG)信息,该CG信息配置一个或多个CG传输时机,该一个或多个CG传输时机用于上行数据的传输。向网络设备发送指示信息,该指示信息指示在上述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数。在这N个CG传输时机上跳过上行数据的传输。可选地,该CG信息由无线资源控制(radio resource control,RRC)消息承载。例如,该CG信息可以是RRC消息中的ConfiguredGrantConfig信元。
在该方法中,之所以跳过上述N个CG传输时机上的上行数据传输,是因为这N个CG传输时机上待传输的上行数据即便被发送,且被网络设备正确接收,网络设备也无法成功恢复与这些上行数据所对应的XR数据(例如画面帧)。此外,通过指示信息告知网络设备跳过了N个CG传输时机上上行数据的传输,能够让网络设备及时获知资源的使用情况,从而可以使得网络设备依据业务和调度需求将这些被跳过的CG传输时机对应的资源分配给其他业务或者其他终端使用,从而提高了***整体的资源利用率。
结合第一方面,在第一方面的某些实施方式中,上述指示信息包括CG传输时机数量信息,该CG传输时机数量信息指示上述N。该CG传输时机数量信息可以理解为用于向网络设备指示终端跳过的CG传输时机的数量。通过该信息,网络设备可以准确获知终端跳过的CG传输时机的数量,在释放和重新分配CG传输时机对应的资源时能够更加精确地控制资源的数量,从而进一步提高资源利用率。
可选地,该CG传输时机数量信息可以是可选的信息。当上述指示信息包括该CG传输时机数量信息时,该CG传输时机数量信息指示跳过的CG传输时机的数量。当上述指示信息不包括该CG传输时机数量信息时,则默认跳过预定义数量的CG传输时机,预定义的数量例如可以为1。
结合第一方面,在第一方面的某些实施方式中,上述指示信息包括CG索引信息,该CG索引信息指示上述的一个或多个CG传输时机。通过该CG索引信息,可以索引到上述的一个或多个CG传输时机。在CG机制中,网络设备可以为终端配置多组具有不同索引的CG传输时机。为了让网络设备获知终端跳过的是哪组CG传输时机中的CG传输时机,可以通过上述CG索引信息向网络设备指示待跳过CG传输时机所对应的索引,从而能够让网络设备准确地对跳过的CG传输时机所对应的资源进行释放和分配,以提高资源的利用效率。
结合第一方面,在第一方面的某些实施方式中,上述指示信息包含在上行控制信息(uplink control information,UCI)中,或者,上述指示信息由媒体接入控制(media access control,MAC)控制单元(control element,CE)承载。
当该指示信息包含在UCI中时,可选地,该UCI可以由物理上行共享信道(physical uplink shared channel,PUSCH)承载,也可以由物理上行控制信道(physical uplink control channel,PUCCH)承载。可选地,该UCI为配置授权UCI(CG-UCI),CG-UCI用于向网络设备发送与CG有关的控制信息。该CG-UCI可以只包含上述指示信息,也可以包含上述指示信息和其他信息,其他信息例如包括下述信息中的一种或多种:混合自动重传请求(hybrid automatic repeat request,HARQ)信息、冗余版本(redundancy version,RV)信息、新数据指示符(new data inficator,NDI)信息或信道占用时间(channel occupancy time,COT)共享信息。其中,HARQ信息指示上行数据传输对应的HARQ进程号,RV信息指示上行数据传输对应的RV,NDI信息指示上行数据传输是否为新数据,COT共享信息指示非授权频段通信场景下的信道占用时间信息。
UCI中的指示信息可以包括前述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,例如,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,例如,CG索引信息占用的字段可包含4比特,考虑一个终端在一个带宽部分(bandwidth part,BWP)上最多会被配置12组具有不同索引的CG传输时机,故该CG索引信息最多可以指示12组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为物理层的CG索引。
通过在UCI中包含上述指示信息,即使当终端没有上行数据发送或者没有PUSCH资源时,也可以及时地通过PUCCH资源将上述指示信息发送给网络设备,从而可以使得网络设备及时的对资源分配进行调整。
当该指示信息由MAC CE承载时,可选地,该指示信息可以包括上述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,例如,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,例如,CG索引信息占用的字段可包含5比特,考虑一个终端在一个MAC实体上最多会被配置32组具有不同索引的CG传输时机,故该CG索引信息最多可以指示32组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为MAC层的CG索引。
通过由MAC CE承载上述指示信息,可以简化MAC层和物理层的交互,从而降低了处理时延。
结合第一方面,在第一方面的某些实施方式中,在N个CG传输时机上跳过上行数据传输有多种不同的实现方式。
在一种可能的实现方式中,可以不产生这N个CG传输时机上的MAC协议数据单元(protocol data unit,PDU)。
在另一种可能的实现方式中,可以清空或释放这N个CG传输时机对应的缓存数据。
结合第一方面,在第一方面的某些实施方式中,上述上行数据包括图像数据,上述N的取值由图像组(group of picture,GOP)内剩余数据帧的个数、***数据帧的时延、或者数据帧的剩余传输时延预算来确定。
例如,在传输I帧/P帧时,可以将GOP内剩余I帧和/或P帧的个数确定为N。通过这一确定N的方式,
又例如,在传输I帧/P帧时,若I帧传输错误,物理层会将错误反馈到应用层,应用层会重新***I帧,这一过程需要经历一定的时延。终端侧可以预估该时延,并根据该时延确定N。通过这一确定N的方式,
再例如,在传输基本层数据包和增强层数据包时,若某一数据帧的基本层数据包传输错误,可以将该数据帧的剩余传输时间预算内的CG传输时机确定为N。通过这一确定N的方式,
通过上述实施方式,可以根据不同信源编码配置或场景更加准确地确定需要跳过的CG传输时机的数量N,能够尽量避免N过大导致数据传输失败,也能够尽量避免N过小,导致资源浪费。
结合第一方面,在第一方面的某些实施方式中,该方法还包括:获得来自网络设备的逻辑信道配置信息,该逻辑信道配置信息用于逻辑信道的配置,并且该逻辑信道配置信息配置允许跳过与所配置的逻辑信道对应的上述一个或多个CG传输时机。根据该逻辑信道配置信息,终端侧可以确定跳过与该逻辑信道对应的CG传输时机,并向网络设备发送上述指示信息来指示在上述N个CG传输时机上不进行上行数据传输。可选地,逻辑信道配置信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Y(Y为大于0的整数),终端侧根据该信息可以确定需要跳过的CG传输时机。通过该实施方式,能够让终端获知网络设备会在终端传输错误和/或跳过的CG传输时机的数量大于Y时,释放/去激活/去使能(disable)与该逻辑信道对应的剩余CG传输时机对应的资源,从而能够促使或鼓励终端及时地向网络设备发送上述指示信息。
上述逻辑信道配置信息可以是RRC消息中的LogicalChannelConfig信元,该信元中包含有用于逻辑信道配置的信元。LogicalChannelConfig信元中还可以包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许终端跳过与该逻辑信道对应的CG传输时机。此外,LogicalChannelConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Y。
结合第一方面,在第一方面的某些实施方式中,上述CG信息还用于配置允许跳过上述一个或多个CG传输时机。根据该CG信息,终端侧可以确定跳过由该CG信息配置的CG传输时机,并向网络设备发送上述指示信息来指示在上述N个CG传输时机上不进行上行数据传输。可选地,CG信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Z(Z为大于0的整数),终端可以根据该信息确定需要跳过的CG传输时机。通过该实施方式,能够让终端获知网络设备会在终端传输错误和/或跳过的CG传输时机的数量大于Z时,释放/ 去激活/去使能(disable)剩余CG传输时机对应的资源,从而能够促使或鼓励终端及时地向网络设备发送上述指示信息。
上述CG信息可以是RRC消息中的ConfiguredGrantConfig信元,该信元中包含有用于配置CG的信元。ConfiguredGrantConfig信元中还可以包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许该终端跳过由该CG信息配置的CG传输时机。此外,ConfiguredGrantConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Z。
第二方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片***等)执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:向终端发送CG信息,该CG信息配置一个或多个CG传输时机,该一个或多个CG传输时机用于上行数据的传输。接收来自终端的指示信息,该指示信息指示终端在上述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数。在该N个CG传输时机上跳过对前述终端上行数据的接收。可选地,该CG信息由RRC消息承载。例如,该CG信息可以是RRC消息中的ConfiguredGrantConfig信元。
结合第二方面,在第二方面的某些实施方式中,上述指示信息包括CG传输时机数量信息,该CG传输时机数量信息指示上述N。该CG传输时机数量信息可以理解为用于向网络设备指示终端跳过的CG传输时机的数量。
可选地,该CG传输时机数量信息可以是可选的信息。当上述指示信息包括该CG传输时机数量信息时,该CG传输时机数量信息指示跳过的CG传输时机的数量。当上述指示信息不包括该CG传输时机数量信息时,则默认跳过预定义数量的CG传输时机,预定义的数量例如可以为1。
结合第二方面,在第二方面的某些实施方式中,上述指示信息包括CG索引信息,该CG索引信息指示上述的一个或多个CG传输时机。通过该CG索引信息,可以索引到上述的一个或多个CG传输时机。
结合第二方面,在第二方面的某些实施方式中,上述指示信息包含在UCI中,或者,上述指示信息由MAC CE。
当该指示信息包含在UCI中时,可选地,该UCI可以由PUSCH承载,也可以由PUCCH承载。可选地,该UCI为CG-UCI,CG-UCI用于向网络设备发送与CG有关的控制信息。该CG-UCI可以只包含上述指示信息,也可以包含上述指示信息和其他信息,其他信息例如包括下述信息中的一种或多种:HARQ信息、RV信息、NDI信息或COT共享信息。其中,HARQ信息指示上行数据传输对应的HARQ进程号,RV信息指示上行数据传输对应的RV,NDI信息指示上行数据传输是否为新数据,COT共享信息指示非授权频段通信场景下的信道占用时间信息。
UCI中的指示信息可以包括前述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,例如,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,例如,CG索引信息占用的字段可包含4比特,考虑一个终端在一个BWP上最多会被配置12组具有不同索引的CG传输时机,故该CG索引信息最多可以指示12组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为物理层的CG索引。
当该指示信息由MAC CE承载时,可选地,该指示信息可以包括上述的CG传输时机数 量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,例如,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,例如,CG索引信息占用的字段可包含5比特,考虑一个终端在一个MAC实体上最多会被配置32组具有不同索引的CG传输时机,故该CG索引信息最多可以指示32组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为MAC层的CG索引。
结合第二方面,在第二方面的某些实施方式中,该方法还包括:将上述N个CG传输时机对应的全部或部分资源分配给除前述终端以外的终端使用,或者是分配给其他的业务使用。网络设备通过上述指示信息获知终端将跳过N个CG传输时机上的上行数据传输,可以将这N个CG传输时机对应的部分或全部资源释放出来,从而可以进一步将这些资源分配给该终端以外的终端使用,也可以分配给其他动态调度的业务使用,从而达到提高资源利用率的效果。
结合第二方面,在第二方面的某些实施方式中,该方法还包括:向终端发送逻辑信道配置信息,该逻辑信道配置信息用于逻辑信道的配置,并且该逻辑信道配置信息配置允许跳过与所配置的逻辑信道对应的上述一个或多个CG传输时机。
可选地,逻辑信道配置信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Y(Y为大于0的整数)。网络设备可以维护一个计数器,依据终端在CG传输时机上的传输情况对计数器进行更新,当计数器的计数值达到上述最大数量Y时,网络设备将释放剩余CG传输时机对应的资源,分配给其他终端使用,从而提高资源利用率。释放剩余CG传输时机对应的资源,也可以理解为去激活与剩余CG传输时机对应的CG配置。
可选地,为了提升终端向网络设备上报上述指示信息的动力,网络设备可以依据下述机制进行计数器的更新。
当终端在L(L为大于0的整数)个CG传输时机上的数据传输失败(可能是由于终端在这些CG传输时机上进行了数据传输但没有传输成功,也可能是由于终端跳过了这些CG传输时机上的传输),但是终端并没有发送上述指示信息时,网络设备将对计数器进行加L的更新。当终端在L个CG传输时机上跳过数据的传输,并且发送了上述指示信息以指示跳过这些CG传输时机的数据传输时,网络设备将不会更新计数器。通过这一计数器的更新方式,可以鼓励终端通过指示信息向网络设备上报跳过的CG传输时机,因为终端的上报能够使得该终端与CG传输时机对应的CG配置被去激活的可能性降低,终端可以期望自己能够更多地占用这些CG传输时机进行数据传输。
上述逻辑信道配置信息可以是RRC消息中的LogicalChannelConfig信元,该信元中包含有用于逻辑信道配置的信元。LogicalChannelConfig信元中还可以包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许终端跳过与该逻辑信道对应的CG传输时机。此外,LogicalChannelConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Y。
结合第二方面,在第二方面的某些实施方式中,上述CG信息还用于配置允许跳过上述一个或多个CG传输时机。
可选地,CG信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Z(Z为大于0的整数)。网络设备可以维护一个计数器,依据终端在CG传输时机上的传输情况对计数器进行更新,当计数器的计数值达到上述最大数量Z时,网络设备将释放剩余CG传输时 机对应的资源,分配给其他终端使用,从而提高资源利用率。关于该可选方式中计数器的更新方式以及该可选方式的有益效果,可以参照前述实施方式中的描述,此处不再赘述。
上述CG信息可以是RRC消息中的ConfiguredGrantConfig信元,该信元中包含有用于配置CG的信元。ConfiguredGrantConfig信元中还可以包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许该终端跳过由该CG信息配置的CG传输时机。此外,ConfiguredGrantConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Z。
第三方面,本申请实施例提供一种装置,可以实现上述第一方面、或第一方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。该装置例如可以为终端,也可以为支持终端实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分终端功能的逻辑模块或软件。
第四方面,本申请实施例提供一种装置,可以实现上述第二方面、或第二方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。该装置例如可以为网络设备,也可以为支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以为能实现全部或部分网络设备功能的逻辑模块或软件。
第五方面,本申请实施例提供一种装置,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该装置实现上述第一方面、或第一方面任一种可能的实施方式中的方法。
第六方面,本申请实施例提供一种装置,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该装置实现上述第二方面、或第二方面任一种可能的实施方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,其上存储有指令,指令被执行时使得计算机执行上述第一方面、或第一方面任一种可能的实施方式中的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,其上存储有指令,指令被执行时使得计算机执行上述第二方面、或第二方面任一种可能的实施方式中的方法。
第九方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、或第一方面任一种可能的实施方式中的方法。
第十方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,计算机程序代码在计算机上运行时,使得计算机执行上述第二方面、或第二方面任一种可能的实施方式中的方法。
第十一方面,本申请实施例提供一种芯片,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该芯片实现上述第一方面、第二方面、第一方面任一种可能的实施方式、或第二方面任一种可能的实施方式中的方法。
第十二方面,本申请实施例提供一种通信***,包括:上述第三方面的装置和上述第四方面的装置。
第十三方面,本申请实施例提供一种通信***,包括:上述第五方面的装置和上述第六方面的装置。
可以理解,第二方面至第八方面中与第一方面对应特征的有益效果,请参见第一方面中 的有关描述,不重复赘述。
附图说明
图1为本申请提供的实施例应用的通信***的示意图;
图2-图5示出了本申请实施例适用的几种***框架示意图;
图6示出了一种周期性数据的示意图;
图7示出了网际协议(Internet protocol,IP)包传输对画面帧的影响示意图;
图8示出了基本层数据包传输对增强层数据包的影响示意图;
图9示出了P帧传输对其他P帧的影响示意图;
图10示出了本申请实施例提供的一种数据传输方法的示意图;
图11示出了一种跳过配置授权(configured grant,CG)传输时机的示意图;
图12示出了一种承载CG传输时机数量信息和CG索引信息的媒体接入控制(media access control,MAC)控制单元(control element,CE);
图13示出了另一种跳过CG传输时机的示意图;
图14为本申请实施例提供的一种终端的结构示意图;
图15为本申请实施例提供的一种装置的结构示意图;
图16为本申请实施例提供的另一种装置的示意图。
具体实施方式
图1是本申请的实施例应用的通信***的架构示意图。如图1所示,该通信***包括无线接入网100和核心网130,可选的,通信***1000还可以包括互联网140。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个设备上,还可以是一个设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信***中还可以包括其它网络设备,如还可以包括中继设备和回传设备,在图1中未画出。
本申请实施例提供的方法及装置可用于各种通信***,例如***(4th generation,4G)通信***,4.5G通信***,5G通信***,5.5G通信***,6G通信***,多种通信***融合的***,或者未来演进的通信***。例如长期演进(long term evolution,LTE)***,新空口(new radio,NR)***,无线保真(wireless-fidelity,WiFi)***,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的通信***等,以及其他此类通信***。
无线接入网设备(本申请中有时也被称为网络设备)可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信***中的下一代基站(next generation NodeB,gNB)、6G移动通信***中的下一代基站、未来移动通信***中的基站或WiFi***中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。可以理解,本申请中的无线接入网设备的全 部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备为例进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IoT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
本申请中的终端还可以是VR终端、AR终端、或MR终端。VR终端、AR终端、和MR终端都可称为XR终端。XR终端例如可以是头戴式设备(例如头盔或眼镜),也可以是一体机,还可以是电视、显示器、汽车、车载设备、平板或智慧屏等。XR终端能够将XR数据呈现给用户,用户通过佩戴或使用XR终端能够体验多样化的XR业务。XR终端可以通过无线或有线的方式接入网络,例如通过WiFi、5G或其他***接入网络。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的飞机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子***来执行。这里的包含有基站功能的控制子***可以是智能电网、工业控制、智能交通、智慧城市等上述终端的应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上;终端向终端发送边链路(sidelink)信号或边链路信息,边链路信息承载在边链路信道上。
XR技术具有多视角、交互性强等优点,能够为用户提供一种全新的体验,具有极大的应用价值和商业潜力。XR包含VR、AR和MR等技术,能够广泛应用于娱乐、游戏、医疗、广告、工业、在线教育、以及工程等诸多领域。VR技术主要是指对视觉和音频场景的渲染以尽可能地模拟现实世界中的视觉和音频对用户的感官刺激,VR技术中通常用户会佩戴XR终端(例如头戴式设备)进而向用户模拟视觉和/或听觉。VR技术还可以对用户进行动作跟踪, 从而及时更新模拟的视觉和/或听觉内容。AR技术主要是指在用户感知的现实环境中提供视觉和/或听觉的附加信息或人工生成内容,其中,用户对现实环境的获取可以是直接的(例如不进行感测、处理和渲染),也可以是间接的(例如通过传感器等方式进行传递),并进行进一步的增强处理。MR技术是将一些虚拟元素***到物理场景中,目的是为用户提供一种这些元素是真实场景一部分的沉浸体验。
本申请提供的实施例适用于多种不同的场景。图2-图5示出了本申请实施例适用的几种***框架示意图。
图2示出了一种本申请实施例适用的场景示意图。图2示意了一个***200,包含服务器210、核心网和接入网220(可简称为传输网络220,例如LTE、5G或6G网络)、以及终端230。其中,服务器210可用于对XR的源数据进行编解码和渲染,传输网络220可用于对XR数据的传输,终端230通过对XR数据的处理为用户提供多样化的XR体验。可以理解,传输网络220与终端230之间还可以包含其他的装置,例如还可以包含其他的终端(例如手机、笔记本电脑、或车载终端等)和/或网络设备(例如中继设备、一体化接入回传(integrated access backhaul,IAB)设备、WiFi路由器、或WiFi接入点等),终端230借助其他的终端和/或网络设备从传输网络220获得XR数据。
图3示出了另一种本申请实施例适用的场景示意图。图3示意了一个***300,包含终端320和其他终端310。其他终端310是终端320之外的终端。其他终端310可以向终端320传输XR数据。例如,其他终端310可将XR数据投屏至终端320。又例如,其他终端310和终端320为车载终端,车载终端之间可进行XR数据的交互。可以理解,其他终端310还可以与传输网络(例如LTE、5G或6G网络)相连,以获得来自传输网络的XR数据,或者向传输网络发送数据。
图4示出了另一种本申请实施例适用的场景示意图。图4示意了一个***400,包含终端430、WiFi路由器或WiFi接入点420(可简称为WiFi装置420)、和其他终端410。其他终端410是终端430以外的终端。其他终端410可借助WiFi装置420向终端430传输XR数据。例如,其他终端410是手机设备,WiFi装置420是WiFi路由器、WiFi接入点或机顶盒,终端430是电视设备、智慧屏设备或电子平板设备,手机设备可通过WiFi路由器、WiFi接入点或机顶盒将XR数据投屏至电视设备、智慧屏设备或电子平板设备上呈现给用户。
图5示出了另一种本申请实施例适用的场景示意图。图5示意了一个***500,包含服务器510、固网520、WiFi路由器或WiFi接入点530(可简称为WiFi装置530)、和终端540。服务器510可用于对XR的源数据进行编解码和渲染,并借助固网520和WiFi装置530向终端540传输XR数据。例如,固网520为运营商网络,WiFi装置530是WiFi路由器、WiFi接入点或机顶盒,服务器510借助运营商网络520和WiFi装置530将XR数据传输或投屏到终端540。
可以理解,图2-图5仅给出了本申请实施例可以适用的几种场景示意,并没有对本申请实施例的适用场景产生限定。
下面结合附图对本申请的技术方案进行说明。
另外为便于理解本申请的技术方案,首先对XR或者视频业务的特点以及CG机制进行简要介绍。
对于XR或者视频业务数据,其通常具有一定的帧率和周期性。以图6为例,给出了帧率为60帧每秒(frame per second,FPS)的情况下,XR业务的画面帧在时间上的分布示意图。从图6中可以看出,在60FPS的情况下,每隔1000/60≈16.67ms会出现或到达一个画面 帧。
其他可能的帧率还包括30FPS、90FPS以及120FPS。无线接入网设备可以通过多种不同的方式获得XR或视频业务数据的帧率。
例如,无线接入网设备可以通过与数据对应的服务质量(quality of service,QoS)流的配置信息,例如QoS模板(QoS profile),获得XR或视频业务数据的帧率。又例如,无线接入网设备可以通过检测QoS流中数据包的到达时间间隔来获得XR或视频业务数据的帧率。又例如,终端可以通过辅助信息,例如信元UEAssistanceInformation,将上行数据的帧率或者是与帧率有关的信息上报给无线接入网设备。
终端也可以通过多种不同的方式获得XR或视频业务数据的帧率。
例如,终端可以通过与数据对应的QoS流的配置信息,例如QoS规则(QoS rule),获得XR或视频业务数据的帧率。又例如,终端可以通过检测QoS流中数据包的到达时间间隔来获得XR或视频业务数据的帧率。又例如,终端可以通过协议层间的交互,将应用层数据的帧率或者是与帧率有关的信息通知给终端的应用层以下的协议层(例如RRC层)。
配置授权(configured grant,CG)机制是一种适合于进行上行周期性业务传输的数据传输机制。通过CG机制,可以在上传数据传输过程中,借助RRC消息或下行控制信息(downlink control information,DCI)为终端分配用于上行数据传输的资源(也可以称为CG资源),使得终端可以周期性地重复使用该分配的资源进行上行数据传输。其中,CG资源在时域上也可以被称为CG传输时机。CG机制有时也可以被称为配置调度(configured scheduling,CS)机制或免授权(grant free,GF)机制。
CG机制包括两种类型:CG类型1和CG类型2。下面分别介绍这两种CG类型的工作流程。
●CG类型1:
在CG类型1中,无线接入网设备通过RRC消息为终端提供相关的CG配置,例如CG周期、CG资源等。该RRC消息还用于激活CG配置,终端在收到该RRC消息后,可以基于该RRC消息配置的CG周期和CG资源向无线接入网设备发送上行数据。
在CG类型1中,无线接入网设备通过向终端发送DCI,指示终端去激活CG配置。终端在接收到该DCI后,可以释放CG资源,或者也可以理解为停止/暂停在该CG资源上的上行数据发送。
●CG类型2:
在CG类型2中,无线接入网设备通过RRC消息为终端提供相关的CG配置,例如CG周期等。无线接入网设备进一步通过DCI向终端指示CG资源。终端在收到该DCI后,可以基于RRC消息配置的CG周期和DCI指示的CG资源向无线接入网设备发送上行数据。上述DCI也可以理解为在指示并激活了CG资源。
在CG类型2中,无线接入网设备通过向终端发送另一个DCI,指示终端去激活CG配置。终端在接收到该DCI后,可以释放CG资源,或者也可以理解为停止/暂停在该CG资源上的上行数据发送。
在上述CG机制(包括CG类型1和CG类型2)中,一般在一个CG周期中会配置一个CG资源,用于传输一个传输块(transport block,TB)。对于可靠性要求较高的业务,比如超可靠低时延通信(ultra-reliable low-latency communication,URLLC)的业务,可以在一个CG周期中配置多个CG资源,用于传输一个TB的不同冗余版本(redundancy version,RV),从而提升数据传输的可靠性。其中,RV的设计用于实现增量冗余(incremental redundancy,IR) 混合自动重传请求(hybrid automatic repeat request,HARQ)传输。比如,将编码生成的比特分成若干比特组,每个RV对应一个比特组,初传和重传分别使用不同RV对应的比特组,以实现冗余比特的逐步积累,完成IR HARQ操作,达到提升数据传输可靠性的效果。
上述传输一个TB的不同RV,也可以被称为对该TB的重复传输,或者是被称为CG重复传输、物理上行共享信道(physical uplink shared channel,PUSCH)重复传输。无线接入网设备可以通过RRC消息中的重复传输次数信息为终端配置CG周期中的重复传输次数。
CG机制中的PUSCH重复传输有两种类型:PUSCH重复类型A和PUSCH重复类型B。下面分别介绍这两种PUSCH重复类型。
●PUSCH重复类型A:
PUSCH重复类型A可以理解为时隙(slot)级别的重复传输,即在多个连续或不连续的时隙中传输一个TB的不同RV,每个时隙中的CG资源配置是相同的。
●PUSCH重复类型B:
PUSCH重复类型B可以理解为微时隙(mini-slot)级别的重复传输,即在多个连续或不连续的微时隙中传输一个TB的不同RV,每个微时隙中的CG资源配置是相同的。例如,当一个时隙包含14个符号时,一个微时隙包含2个符号或7个符号。此外,微时隙级别的重复传输可以在一个时隙内,也可以跨越多个时隙。
如前所述,对于XR或者视频业务数据,其通常具有一定的帧率和周期性,因此CG机制也适合于传输这种具有周期性的XR或者视频业务数据。
XR数据一般以画面帧的形式进行传输,同一画面帧通常可以被处理为多个数据包。例如,同一画面帧可以被分成多个网际协议(Internet protocol,IP)包,由终端传输到无线接入网(radio access network,RAN)的基站侧,再经过核心网,传输到服务器进行渲染。由于画面帧通常会采用信源编码进行数据压缩,一个画面帧的多个IP包之间一般具有一定的依赖关系。如图7所示,在传输过程中,如果一个IP包传输出错,会导致整个画面帧无法恢复。只有当该画面帧对应的所有IP包都传输成功时,该画面帧才能在接收端被正确恢复。
在分层编码中,XR数据可以被分成基本层数据包和增强层数据包进行传输。基本层数据包可以使接收端的解码器解码出基本视频内容。增强层数据包则包括视频的更多细节信息,用于提升视频质量。在网络传输过程中,基本层数据包和增强层数据包通常被分开传输,并提供不同的QoS保障。基本层数据包和增强层的数据包之间通常具有一定的关联关系。基本层数据包可以独立解码,以保证基本的用户体验,而增强层数据包则依赖基本层数据包才能正确译码。如图8所示,如果基本层数据包传输失败,则也无法正确译码增强层数据包。只有当基本层数据包传输成功时,增强层数据包才能在接收端被正确译码。
在帧间参考编码中,XR数据可以被分成I帧和P帧进行传输,I帧和P帧可以包含在图像组(group of picture,GOP)。如图9所示,GOP中第一个帧一般是I帧,I帧的编码和译码不需要参考其他帧,可以独立地进行编码和译码。GOP中其他的帧一般是P帧,P帧的编码和译码需要参考之前的帧进行编码和译码,如果之前的帧中有内容传输失败,那么后续的P帧将无法被正确译码,从而出现卡顿(stalling)的情况。该卡顿需要到下一个GOP的I帧被正确接收或者***瞬时译码刷新(instantaneous decoder refresh,IDR)帧才可以得到消除。
可见,在XR数据的传输过程中,一部分数据传输出错或者传输超过时延预算时,会导致XR数据的传输失败。此时,如果继续传输与这些数据存在关联关系或依赖关系的其他数据,也无法使得XR数据被成功接收,从而造成传输资源的浪费。因此如何能够高效利用有限的无线资源提高XR数据的传输效率是一个亟待解决的问题。
本申请中提供了一种数据传输方法,可以通过终端合理地丢弃部分待传输数据并通知基站,以提升XR数据传输过程中的资源利用率。可以理解,本申请提供的方法并不限制其应用的数据业务类型,XR和或者视频业务数据之外的数据业务类型也同样适用。
图10为本申请实施例提供的一种数据传输方法1000的交互示意图。图10中以无线接入网设备和终端作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图10中的无线接入网设备也可以是支持该无线接入网设备实现该方法的芯片、芯片***、或处理器,还可以是能实现全部或部分无线接入网设备功能的逻辑模块或软件;图10中的终端也可以是支持该终端实现该方法的芯片、芯片***、或处理器,还可以是能实现全部或部分终端功能的逻辑模块或软件。如图10所示,该实施例的方法1000可包括1010部分、1020部分和1030部分。
1010部分:无线接入网设备向终端发送CG信息,相应地,终端获得该CG信息。该CG信息用于配置一个或多个用于上行数据传输的CG传输时机。可以理解,这些CG传输时机可以通过索引进行标识。
可选地,该CG信息由RRC消息承载。例如,该CG信息可以是RRC消息中的ConfiguredGrantConfig信元。可以理解,ConfiguredGrantConfig仅是CG信息的一种可能性名称,本申请对CG信息的名称不作限定。
例如如图11所示,通过上述CG信息,无线接入网设备可以为终端配置图中示意的4个CG传输时机。这4个CG传输时机例如可以由索引0来进行标识。4个CG传输时机之间的时间间隔可以是XR数据的画面帧的到达周期,例如在60FPS的情况下到达周期为16.67ms。
1020部分:终端向无线接入网设备发送指示信息,相应地,无线接入网设备接收该指示信息。该指示信息向无线接入网设备指示终端在上述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数。在N个CG传输时机上不进行上行数据传输,也可以理解为跳过N个CG传输时机上的上行数据传输。
1030部分:终端在上述N个CG传输时机上跳过上行数据的传输。相应地,无线接入网设备在上述N个CG传输时机上跳过对终端上行数据的接收。
终端之所以跳过上述N个CG传输时机上的上行数据传输,是因为这N个CG传输时机上待传输的上行数据即便被发送,且被无线接入网设备正确接收,无线接入网设备也无法成功恢复与这些上行数据所对应的XR数据(例如画面帧)。例如,当在上述N个CG传输时机之前的CG传输时机上传输的与某一画面帧对应的上行数据出现传输失败时,无论这N个CG传输时机上的与该画面帧对应的上行数据是否传输成功,无线接入网设备都无法恢复该画面帧。
此外,终端通过指示信息告知无线接入网设备跳过了N个CG传输时机上上行数据的传输,能够让无线接入网设备及时获知资源的使用情况,从而可以使得无线接入网设备依据业务和调度需求将这些被跳过的CG传输时机对应的资源分配给其他业务或者其他终端使用,从而提高了***整体的资源利用率。
例如在图11所示的4个CG传输时机中,终端在第一个CG传输时机上发送的某画面帧的数据未成功传输。终端可以在第一个CG传输时机和第二个CG传输时机之间向无线接入网设备发送上述指示信息,向无线接入网设备指示终端在接下来的两个CG传输时机上不进行该画面帧剩余数据的传输。随后,终端在这4个CG传输时机中的第二个和第三个CG传输时机上跳过上行数据的传输,而无线接入网设备在第二个和第三个CG传输时机上跳过对终端上行数据的接收。
在1020部分中,可选地,该指示信息包括指示N的CG传输时机数量信息。该CG传输时机数量信息可以理解为用于向无线接入网设备指示终端跳过的CG传输时机的数量。通过该信息,无线接入网设备可以准确地获知终端跳过的CG传输时机的数量,在释放和重新分配资源的时候能够更加精确地把控资源的数量,从而进一步提高资源利用率。
例如在图11所示的4个CG传输时机中,终端在第一个CG传输时机上发送的某画面帧的数据未成功传输。终端可以在第一个CG传输时机和第二个CG传输时机之间向无线接入网设备发送包含CG传输时机数量信息的指示信息,CG传输时机数量信息指示跳过的CG传输时机的数量N为2。无线接入网设备获得该CG传输时机数量信息,可以获知终端将跳过接下来的两个CG传输时机(第二个和第三个CG传输时机)。
上述CG传输时机数量信息可以是可选的信息。当上述指示信息包括该CG传输时机数量信息时,该CG传输时机数量信息指示跳过的CG传输时机的数量。当上述指示信息不包括该CG传输时机数量信息时,则默认跳过预定义数量的CG传输时机,预定义的数量例如可以为1。
在1020部分中,可选地,该指示信息包括指示上述一个或多个CG传输时机的CG索引信息。通过该CG索引信息,可以索引到上述的一个或多个CG传输时机。在CG机制中,无线接入网设备可以为终端配置多组具有不同索引的CG传输时机。为了让无线接入网设备获知终端跳过的是哪组CG传输时机中的CG传输时机,终端可以通过上述CG索引信息向无线接入网设备指示待跳过CG传输时机所对应的索引,从而能够让无线接入网设备准确地对跳过的CG传输时机所对应的资源进行释放和分配,以提高资源的利用效率。
例如在图11,4个CG传输时机由索引0索引。终端在第一个CG传输时机上发送的某画面帧的数据未成功传输,则终端可以向无线接入网设备发送包含有CG索引信息的指示信息,该CG索引信息指示索引0,从而能够让无线接入网设备获知终端将要跳过的CG传输时机包含在由索引0索引的CG传输时机中。
在1020部分的一种可能的实施方式中,该指示信息包含在上行控制信息(uplink control information,UCI)中。可选地,该UCI可以由物理上行共享信道(physical uplink shared channel,PUSCH)承载,也可以由物理上行控制信道(physical uplink control channel,PUCCH)承载。可选地,该UCI为配置授权UCI(CG-UCI),CG-UCI用于终端向无线接入网设备发送与CG有关的控制信息。该CG-UCI可以只包含上述指示信息,也可以包含上述指示信息和其他信息,其他信息例如包括下述信息中的一种或多种:HARQ信息、RV信息、新数据指示符(new data inficator,NDI)信息或信道占用时间(channel occupancy time,COT)共享信息。其中,HARQ信息指示上行数据传输对应的HARQ进程号,RV信息指示上行数据传输对应的RV,NDI信息指示上行数据传输是否为新数据,COT共享信息指示非授权频段通信场景下的信道占用时间信息。
UCI中的指示信息可以包括上述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,CG索引信息占用的字段可包含4比特,考虑一个终端在一个带宽部分上最多会被配置12组具有不同索引的CG传输时机,故该CG索引信息最多可以指示12组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为物理层的CG索引。
通过在UCI中包含上述指示信息,即使当终端没有上行数据发送或者没有PUSCH资源时,也可以及时地通过PUCCH资源将上述指示信息发送给网络设备,从而可以使得网络设 备及时的对资源分配进行调整,以提升无线资源的利用率。
在1020部分的另一种可能的实施方式中,该指示信息由MAC CE承载,指示信息可以包括上述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,CG索引信息占用的字段可包含5比特,考虑一个终端在一个MAC实体上最多会被配置32组具有不同索引的CG传输时机,故该CG索引信息最多可以指示32组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为MAC层的CG索引。以图12为例,图12示意了一种承载了CG传输时机数量信息和CG索引信息的MAC CE,其中CG传输时机数量信息占用低位的3比特,CG索引信息占用高位的5比特。可以理解,本申请并不限定指示信息在MAC CE中占用比特的具***置和顺序,例如CG传输时机数量信息也可占用高位的3比特,CG索引信息也可占用低位的5比特。
通过由MAC CE承载上述指示信息,可以简化MAC层和物理层的交互,从而降低了处理时延
下面结合图11举例介绍本申请的一种具体实现。
在图11中示意了4个由索引0索引的CG传输时机,终端在第一个CG传输时机上进行I帧的传输,但是传输失败。假设终端的应用层会重新在第四个CG传输时机重新***新的I帧进行传输。此时,因为第一个CG传输时机上的I帧传输失败,原先准备在第二个和第三个CG传输时机进行传输的P帧即便成功传输,也无法参考第一个CG传输时机上传输的I帧完成译码,因此没有必要再进行传输。为了提高资源利用率,终端可以跳过第二个和第三个CG传输时机上P帧的传输,并在第一个和第二个CG传输时机之间向无线接入网设备发送指示信息,向无线接入网设备指示终端将跳过第二个和第三个CG传输时机上的数据传输。无线接入网设备通接收该指示信息后,可以获知终端会跳过第二个和第三个CG传输时机上的数据传输,从而可以将第二个和第三个CG传输时机对应的资源分配给该终端的其他动态调度的业务使用,或者是分配给其他终端使用,从而提高了资源的利用效率。
在1030部分中,终端在N个CG传输时机上跳过上行数据传输的可能实施方式中,终端不产生这N个CG传输时机上的MAC协议数据单元(protocol data unit,PDU),或者,终端清空或释放这N个CG传输时机对应的缓存数据。
方法1000中,可选地,无线接入网设备在收到1020部分中的指示信息后,将上述N个CG传输时机对应的全部或部分资源分配给除该终端以外的终端使用,或者分配给其他动态调度的业务使用。无线接入网设备通过上述指示信息获知终端将跳过N个CG传输时机上的上行数据传输,可以将这N个CG传输时机对应的部分或全部资源释放出来,从而可以进一步将这些资源分配给该终端以外的终端使用,也可以分配给其他动态调度的业务使用,从而达到提高资源利用率的效果。
例如如图11所示,终端在4个CG传输时机中的第二个和第三个CG传输时机上跳过上行数据的传输。无线接入网设备在通过上述指示信息获知终端将跳过第二个和第三个CG传输时机上的上行数据传输后,可以将这两个CG传输时机对应的部分或全部资源分配给其他终端使用,也可以分配给该终端的其他动态调度的业务使用。
在终端发送XR数据(例如图像数据、视频数据或其他多媒体数据)时,可以有多种不同的确定跳过CG传输时机的数量N的方法。
在一种确定N的可能实施方式中,在传输I帧/P帧时,可以将GOP内剩余I帧和/或P帧的个数确定为N。例如GOP中有M个待传输的I帧和/或P帧,成功传输的I帧和/或P帧 数量为K,未成功传输的I帧和/或P帧数量为M-K,则可以将M-K确定为N。
在另一种确定N的可能实施方式中,在传输I帧/P帧时,若I帧传输错误,物理层会将错误反馈到应用层,应用层会重新***I帧,这一过程需要经历一定的时延。终端可以预估该时延,并根据该时延确定N。例如N可以满足N=floor(delay/T),delay为上述时延,T为数据帧的到达周期,floor(x)表示对x进行下取整。以该时延为40ms、数据帧的到达周期为16.67ms为例,N可以满足N=floor(40/16.67)=2。
在另一种确定N的可能实施方式中,在传输基本层数据包和增强层数据包时,若某一数据帧的基本层数据包传输错误,可以将该数据帧的剩余传输时间预算内的CG传输时机确定为N。例如N可以满足N=floor(DB/T),DB为上述剩余传输时间预算,T为数据帧的到达周期。以该剩余传输时间预算为40ms、数据帧的到达周期为16.67ms为例,N可以满足N=floor(40/16.67)=2。
通过上述实施方式,可以根据不同信源编码配置或场景更加准确地确定需要跳过的CG传输时机的数量N,能够尽量避免N过大导致数据传输失败,也能够尽量避免N过小,导致资源浪费。
在方法1000的一种可选的实施方式A1中,无线接入网设备向终端发送逻辑信道配置信息,相应地,终端获得该逻辑信道配置信息,该逻辑信道配置信息用于逻辑信道的配置,该逻辑信道配置信息还用于配置允许该终端跳过与该逻辑信道对应的上述一个或多个CG传输时机。终端根据该逻辑信道配置信息,可以确定跳过与该逻辑信道对应的CG传输时机,并按照1020部分向无线接入网设备发送指示信息来指示在上述N个CG传输时机上不进行上行数据传输。
可选地,逻辑信道配置信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Y(Y为大于0的整数),终端根据该信息可以确定需要跳过的CG传输时机。无线接入网设备可以维护一个计数器,依据终端在CG传输时机上的传输情况对计数器进行更新,当计数器的计数值达到上述最大数量Y时,无线接入网设备将释放剩余CG传输时机对应的资源,分配给其他终端使用,从而提高资源利用率。释放剩余CG传输时机对应的资源,也可以理解为去激活或去使能(disable)与剩余CG传输时机对应的CG配置。
通过上述实施方式,能够让终端获知网络设备会在终端传输错误和/或跳过的CG传输时机的数量大于Y时,释放/去激活/去使能(disable)与该逻辑信道对应的剩余CG传输时机对应的资源,从而能够促使或鼓励终端及时地向网络设备发送上述指示信息。
为了提升终端向无线接入网设备上报上述指示信息的动力,无线接入网设备可以依据下述机制进行计数器的更新。
当终端在L(L为大于0的整数)个CG传输时机上的数据传输失败(可能是由于终端在这些CG传输时机上进行了数据传输但没有传输成功,也可能是由于终端跳过了这些CG传输时机上的传输),但是终端并没有向无线接入网设备发送上述指示信息时,无线接入网设备将对计数器进行加L的更新。当终端在L个CG传输时机上跳过数据的传输,并且向无线接入网设备发送上述指示信息以指示跳过这些CG传输时机的数据传输时,无线接入网设备将不会更新计数器。通过这一计数器的更新方式,可以鼓励终端通过指示信息向无线接入网设备上报跳过的CG传输时机,因为终端的上报能够使得该终端与CG传输时机对应的CG配置被去激活的可能性降低,终端可以期望自己能够更多地占用这些CG传输时机进行数据传输。
下面以图13为例来描述上述计数器的更新机制。图13示意了7个CG传输时机,终端 跳过了其中第二个、第三个、第五个和第六个CG传输时机的数据传输。其中,终端在跳过第二个和第三个CG传输时机时没有向无线接入网设备发送前述的指示信息,在跳过第五个和第六个CG传输时机时向无线接入网设备发送了前述的指示信息。允许终端传输错误和/或跳过的CG传输时机的最大数量为Y,无线接入网设备维护的前述计数器初始化为0。无线接入网设备在第二个和第三个CG传输时机上并未成功接收来自终端的数据,并且也没有收到前述指示信息指示跳过这两个CG传输时机,因此无线接入网设备对计数器进行加2的更新。无线接入网设备在第五个和第六个CG传输时机上也未成功接收来自终端的数据,但是收到了前述指示信息指示终端跳过了这两个CG传输时机,那么无线接入网设备将不会更新计数器,此时计数器的计数值仍为2。当Y≤2时,无线接入网设备将决定释放剩余CG传输时机对应的资源,并可以将这些释放的资源分配给其他终端使用。
上述逻辑信道配置信息可以是RRC消息中的LogicalChannelConfig信元,该信元中包含有用于逻辑信道配置的信元。此外,LogicalChannelConfig信元中还包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许该终端跳过与该逻辑信道对应的CG传输时机。例如,LogicalChannelConfig和SkipUplinkTxConfigured信元可以如下表所示:
表1
Figure PCTCN2022132971-appb-000001
上表中以SkipUplinkTxConfigured信元表示的取值为枚举值enabled或disabled为例。当SkipUplinkTxConfigured信元被配置为enabled时,表示允许该终端跳过与该逻辑信道对应的CG传输时机;当SkipUplinkTxConfigured信元被配置为disabled时,表示不允许该终端跳过与该逻辑信道对应的CG传输时机。
此外,LogicalChannelConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Y,例如maxAllowedSkipSize信元可以表示16种不同的允许终端传输错误和/或跳过的CG传输时机的最大数量。比如包含在LogicalChannelConfig信元中的maxAllowedSkipSize信元可以如下表所示,其中INTEGER(1..16)表示maxAllowedSkipSize信元用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Y的取值范围是1,2,…,16。
表2
Figure PCTCN2022132971-appb-000002
在方法1000的另一种可选的实施方式A2中,上述CG信息还用于配置允许终端跳过上述一个或多个CG传输时机。终端根据该CG信息,可以确定跳过由该CG信息配置的CG传输时机,并按照1020部分向无线接入网设备发送指示信息来指示在上述N个CG传输时机上不进行上行数据传输。
可选地,CG信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Z(Z为 大于0的整数),终端根据该信息可以确定需要跳过的CG传输时机。无线接入网设备可以维护一个计数器,依据终端在CG传输时机上的传输情况对计数器进行更新,当计数器的计数值达到上述最大数量Z时,无线接入网设备将释放剩余CG传输时机对应的资源,分配给其他终端使用,从而提高资源利用率。
通过该实施方式,能够让终端获知网络设备会在终端传输错误和/或跳过的CG传输时机的数量大于Z时,释放/去激活/去使能(disable)剩余CG传输时机对应的资源,从而能够促使或鼓励终端及时地向网络设备发送上述指示信息。
上述CG信息可以是RRC消息中的ConfiguredGrantConfig信元,该信元中包含有用于配置CG的信元。此外,ConfiguredGrantConfig信元中还包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许该终端跳过由该CG信息配置的CG传输时机。例如,ConfiguredGrantConfig和SkipUplinkTxConfigured信元可以如下表所示:
表3
Figure PCTCN2022132971-appb-000003
上表中以SkipUplinkTxConfigured信元表示的取值为枚举值enabled或disabled为例。当SkipUplinkTxConfigured信元被配置为enabled时,表示允许该终端跳过由该CG信息配置的CG传输时机;当SkipUplinkTxConfigured信元被配置为disabled时,表示不允许该终端跳过由该CG信息配置的CG传输时机。
此外,ConfiguredGrantConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Z,例如maxAllowedSkipSize信元可以表示16种不同的允许终端传输错误和/或跳过的CG传输时机的最大数量。比如包含在ConfiguredGrantConfig信元中的maxAllowedSkipSize信元可以如下表所示,其中INTEGER(1..16)表示maxAllowedSkipSize信元用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Z的取值范围是1,2,…,16。
表4
Figure PCTCN2022132971-appb-000004
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图14提供了一种终端的结构示意图。该终端可适用于图1、图2、图3、图4或图5所示出的场景中。该终端或该终端中的部件可以执行前述的方法1000以及各种可能的实施方式。为了便于说明,图14仅示出了终端的主要部件。如图14所示,终端1400包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图14仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不作限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端1400的收发单元1411,将具有处理功能的处理器视为终端1400的处理单元1412。如图14所示,终端1400包括收发单元1411和处理单元1412。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1411中用于实现接收功能的器件视为接收单元,将收发单元1411中用于实现发送功能的器件视为发送单元,即收发单元1411包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图15所示,本申请又一实施例提供了一种装置1500。该装置可以是终端,也可以是终端的部件(例如,集成电路,芯片等等)。或者,该装置可以是无线接入网设备,也可以是网络设备的部件(例如,集成电路,芯片等等),还可以是能实现全部或部分无线接入网设备功能的逻辑模块或软件。该装置也可以是其他通信模块。例如,该装置1500可以实现方法1000中无线接入网设备的功能,或者,该装置1500可以实现方法1000中终端的功能。该装置1500可以包括:接口模块1501(或称为接口单元)。可选的,还可以包括处理模块1502(或称为处理单元)和存储模块1503(或称为存储单元)。
在一种可能的设计中,如图15中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述装置具备实现本申请实施例描述的终端的功能,比如,所述装置包括终端执行本申请实施例描述的终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还 可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。或者,所述装置具备实现本申请实施例描述的无线接入网设备的功能,比如,所述装置包括无线接入网设备执行本申请实施例描述的无线接入网设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
在一种可能的设计中,装置1500包括:处理模块1502和接口模块1501。接口模块1501用于获得来自网络设备的CG信息,该CG信息配置一个或多个CG传输时机,该一个或多个CG传输时机用于上行数据的传输。接口模块1501还用于向网络设备发送指示信息,该指示信息指示在上述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数。处理模块1502用于控制装置在上述N个CG传输时机上跳过上行数据的传输。可选地,该CG信息由RRC消息承载。例如,该CG信息可以是RRC消息中的ConfiguredGrantConfig信元。
在装置1500某些可能的实施方式中,上述指示信息包括CG传输时机数量信息,该CG传输时机数量信息指示上述N。该CG传输时机数量信息可以理解为用于向网络设备指示终端跳过的CG传输时机的数量。可选地,该CG传输时机数量信息可以是可选的信息。当上述指示信息包括该CG传输时机数量信息时,该CG传输时机数量信息指示跳过的CG传输时机的数量。当上述指示信息不包括该CG传输时机数量信息时,则默认跳过预定义数量的CG传输时机,预定义的数量例如可以为1。
在装置1500某些可能的实施方式中,上述指示信息包括CG索引信息,该CG索引信息指示上述的一个或多个CG传输时机。通过该CG索引信息,可以索引到上述的一个或多个CG传输时机。
在装置1500某些可能的实施方式中,上述指示信息包含在UCI中,或者,上述指示信息由MAC CE承载。
当该指示信息包含在UCI中时,可选地,该UCI可以由PUSCH承载,也可以由PUCCH承载。可选地,该UCI为CG-UCI,CG-UCI用于向网络设备发送与CG有关的控制信息。该CG-UCI可以只包含上述指示信息,也可以包含上述指示信息和其他信息,其他信息例如包括下述信息中的一种或多种:HARQ信息、RV信息、NDI信息或COT共享信息。其中,HARQ信息指示上行数据传输对应的HARQ进程号,RV信息指示上行数据传输对应的RV,NDI信息指示上行数据传输是否为新数据,COT共享信息指示非授权频段通信场景下的信道占用时间信息。
UCI中的指示信息可以包括前述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,例如,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,例如,CG索引信息占用的字段可包含4比特,考虑一个终端在一个BWP上最多会被配置12组具有不同索引的CG传输时机,故该CG索引信息最多可以指示12组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为物理层的CG索引。
当该指示信息由MAC CE承载时,可选地,该指示信息可以包括上述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,例如,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,例如,CG索引信息占用的字段可包含5比特,考虑一个终端 在一个MAC实体上最多会被配置32组具有不同索引的CG传输时机,故该CG索引信息最多可以指示32组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为MAC层的CG索引。
在装置1500某些可能的实施方式中,在N个CG传输时机上跳过上行数据传输有多种不同的实现方式。
在一种可能的实现方式中,可以不产生这N个CG传输时机上的MAC PDU。
在另一种可能的实现方式中,可以清空或释放这N个CG传输时机对应的缓存数据。
在装置1500某些可能的实施方式中,上述上行数据包括图像数据,上述N的取值由GOP内剩余数据帧的个数、***数据帧的时延、或者数据帧的剩余传输时延预算来确定。
例如,在传输I帧/P帧时,可以将GOP内剩余I帧和/或P帧的个数确定为N。
又例如,在传输I帧/P帧时,若I帧传输错误,物理层会将错误反馈到应用层,应用层会重新***I帧,这一过程需要经历一定的时延。终端侧可以预估该时延,并根据该时延确定N。
再例如,在传输基本层数据包和增强层数据包时,若某一数据帧的基本层数据包传输错误,可以将该数据帧的剩余传输时间预算内的CG传输时机确定为N。
在装置1500某些可能的实施方式中,接口模块1501还用于获得来自网络设备的逻辑信道配置信息,该逻辑信道配置信息用于逻辑信道的配置,并且该逻辑信道配置信息配置允许跳过与该逻辑信道对应的所述一个或多个CG传输时机。根据该逻辑信道配置信息,终端侧可以确定跳过与该逻辑信道对应的CG传输时机,并向网络设备发送上述指示信息来指示在上述N个CG传输时机上不进行上行数据传输。可选地,逻辑信道配置信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Y(Y为大于0的整数),终端侧根据该信息可以确定需要跳过的CG传输时机。
上述逻辑信道配置信息可以是RRC消息中的LogicalChannelConfig信元,该信元中包含有用于逻辑信道配置的信元。LogicalChannelConfig信元中还可以包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许终端跳过与该逻辑信道对应的CG传输时机。此外,LogicalChannelConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Y。
在装置1500某些可能的实施方式中,上述CG信息还用于配置允许跳过上述一个或多个CG传输时机。根据该CG信息,终端侧可以确定跳过由该CG信息配置的CG传输时机,并向网络设备发送上述指示信息来指示在上述N个CG传输时机上不进行上行数据传输。可选地,CG信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Z(Z为大于0的整数),终端可以根据该信息确定需要跳过的CG传输时机。
上述CG信息可以是RRC消息中的ConfiguredGrantConfig信元,该信元中包含有用于配置CG的信元。ConfiguredGrantConfig信元中还可以包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许该终端跳过由该CG信息配置的CG传输时机。此外,ConfiguredGrantConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Z。
在另一种可能的设计中,装置1500包括:处理模块1502和接口模块1501。接口模块1501用于向终端发送CG信息,该CG信息配置一个或多个CG传输时机,该一个或多个CG传输时机用于上行数据的传输。接口模块1501还用于接收来自终端的指示信息,该指示 信息指示终端在上述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数。处理模块1502用于控制该装置在上述N个CG传输时机上跳过对该终端上行数据的接收。可选地,该CG信息由RRC消息承载。例如,该CG信息可以是RRC消息中的ConfiguredGrantConfig信元。
在装置1500某些可能的实施方式中,上述指示信息包括CG传输时机数量信息,该CG传输时机数量信息指示上述N。该CG传输时机数量信息可以理解为用于向网络设备指示终端跳过的CG传输时机的数量。
可选地,该CG传输时机数量信息可以是可选的信息。当上述指示信息包括该CG传输时机数量信息时,该CG传输时机数量信息指示跳过的CG传输时机的数量。当上述指示信息不包括该CG传输时机数量信息时,则默认跳过预定义数量的CG传输时机,预定义的数量例如可以为1。
在装置1500某些可能的实施方式中,上述指示信息包括CG索引信息,该CG索引信息指示上述的一个或多个CG传输时机。通过该CG索引信息,可以索引到上述的一个或多个CG传输时机。
在装置1500某些可能的实施方式中,上述指示信息包含在UCI中,或者,上述指示信息由MAC CE。
当该指示信息包含在UCI中时,可选地,该UCI可以由PUSCH承载,也可以由PUCCH承载。可选地,该UCI为CG-UCI,CG-UCI用于向网络设备发送与CG有关的控制信息。该CG-UCI可以只包含上述指示信息,也可以包含上述指示信息和其他信息,其他信息例如包括下述信息中的一种或多种:HARQ信息、RV信息、NDI信息或COT共享信息。其中,HARQ信息指示上行数据传输对应的HARQ进程号,RV信息指示上行数据传输对应的RV,NDI信息指示上行数据传输是否为新数据,COT共享信息指示非授权频段通信场景下的信道占用时间信息。
UCI中的指示信息可以包括前述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,例如,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,例如,CG索引信息占用的字段可包含4比特,考虑一个终端在一个BWP上最多会被配置12组具有不同索引的CG传输时机,故该CG索引信息最多可以指示12组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为物理层的CG索引。
当该指示信息由MAC CE承载时,可选地,该指示信息可以包括上述的CG传输时机数量信息和/或CG索引信息。当指示信息包括CG传输时机数量信息时,例如,CG传输时机数量信息占用的字段可包含3比特,最多可以指示8种不同的跳过CG传输时机的数量。当指示信息包括CG索引信息时,例如,CG索引信息占用的字段可包含5比特,考虑一个终端在一个MAC实体上最多会被配置32组具有不同索引的CG传输时机,故该CG索引信息最多可以指示32组具有不同索引的CG传输时机。此时CG索引信息所指示的可以理解为MAC层的CG索引。
在装置1500某些可能的实施方式中,处理模块1502还用于将上述N个CG传输时机对应的全部或部分资源分配给除上述终端以外的终端使用,或者是分配给其他的业务使用。
在装置1500某些可能的实施方式中,接口模块1501还用于向终端发送逻辑信道配置信息,该逻辑信道配置信息用于逻辑信道的配置,并且该逻辑信道配置信息配置允许跳过与所配置的逻辑信道对应的上述一个或多个CG传输时机。
可选地,逻辑信道配置信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Y(Y为大于0的整数)。网络设备可以维护一个计数器,依据终端在CG传输时机上的传输情况对计数器进行更新,当计数器的计数值达到上述最大数量Y时,网络设备将释放剩余CG传输时机对应的资源,分配给其他终端使用。释放剩余CG传输时机对应的资源,也可以理解为去激活与剩余CG传输时机对应的CG配置。
可选地,网络设备可以依据下述机制进行计数器的更新。当终端在L(L为大于0的整数)个CG传输时机上的数据传输失败(可能是由于终端在这些CG传输时机上进行了数据传输但没有传输成功,也可能是由于终端跳过了这些CG传输时机上的传输),但是终端并没有发送上述指示信息时,网络设备将对计数器进行加L的更新。当终端在L个CG传输时机上跳过数据的传输,并且发送了上述指示信息以指示跳过这些CG传输时机的数据传输时,网络设备将不会更新计数器。
上述逻辑信道配置信息可以是RRC消息中的LogicalChannelConfig信元,该信元中包含有用于逻辑信道配置的信元。LogicalChannelConfig信元中还可以包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许终端跳过与该逻辑信道对应的CG传输时机。此外,LogicalChannelConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Y。
在装置1500某些可能的实施方式中,上述CG信息还用于配置允许跳过上述一个或多个CG传输时机。可选地,CG信息还包括允许终端传输错误和/或跳过的CG传输时机的最大数量Z(Z为大于0的整数)。网络设备可以维护一个计数器,依据终端在CG传输时机上的传输情况对计数器进行更新,当计数器的计数值达到上述最大数量Z时,网络设备将释放剩余CG传输时机对应的资源,分配给其他终端使用,
上述CG信息可以是RRC消息中的ConfiguredGrantConfig信元,该信元中包含有用于配置CG的信元。ConfiguredGrantConfig信元中还可以包括SkipUplinkTxConfigured信元,该SkipUplinkTxConfigured信元用于配置允许该终端跳过由该CG信息配置的CG传输时机。此外,ConfiguredGrantConfig信元中还可以可选地包括maxAllowedSkipSize信元,用来配置允许终端传输错误和/或跳过的CG传输时机的最大数量Z。
可以理解的是,上述装置1500以及各种可能的实施方式所对应的有益效果,可参考前述方法实施例或发明内容中的描述,此处不再赘述。
可选地,上述装置1500还可以包括存储模块1503,用于存储数据或者指令(也可以称为代码或者程序),上述其他模块可以和存储模块交互或者耦合,以实现对应的方法或者功能。例如,处理模块1502可以读取存储模块1503中的数据或者指令,使得装置1500实现上述实施例中的方法。
在一个例子中,上述装置中的模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的模块可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
参考图16,为本申请实施例提供的一种装置示意图,可用于实现上述方法1000以及各 种可能的实施方式。如图16所示,该装置包括:处理器1610和接口1630,处理器1610与接口1630耦合。接口1630用于实现与其他模块或设备进行通信。接口1630可以为收发器或输入输出接口。接口1630例如可以是接口电路。可选地,该装置还包括存储器1620,用于存储处理器1610执行的指令或存储处理器1610运行指令所需要的输入数据或存储处理器1610运行指令后产生的数据。
上述方法1000以及各种可能的实施方式可以通过处理器1610调用存储器1620中存储的程序或指令来实现。存储器1620可以在该装置的内部,也可以在该装置的外部,本申请对此不做限定。
可选地,图15中的接口模块1501和处理模块1502的功能/实现过程可以通过图16所示的装置中的处理器1610来实现。或者,图15中的处理模块1502的功能/实现过程可以通过图16所示的装置中的处理器1610来实现,图15中的接口模块1501的功能/实现过程可以通过图16中所示的装置中的接口1630来实现,示例性的,接口模块1501的功能/实现过程可以通过处理器调用存储器中的程序指令以驱动接口1630来实现。
当上述装置为应用于终端的芯片时,该终端的芯片实现上述方法实施例中终端的功能。该芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是来自其他终端或无线接入网设备的;或者,该芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给其他终端或无线接入网设备的。
当上述装置为应用于无线接入网设备的芯片时,该芯片实现上述方法实施例中无线接入网设备的功能。该芯片从无线接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是来自其他无线接入网设备或终端的;或者,该芯片向无线接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是无线接入网设备发送给其他无线接入网设备或终端的。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或 多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的方法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、寄存器、硬盘、可移动磁盘或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (34)

  1. 一种通信方法,其特征在于,包括:
    获得来自网络设备的配置授权CG信息,所述CG信息配置一个或多个CG传输时机,所述一个或多个CG传输时机用于上行数据的传输;
    向所述网络设备发送指示信息,所述指示信息指示在所述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数;以及
    在所述N个CG传输时机上跳过上行数据的传输。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息包括CG传输时机数量信息,所述CG传输时机数量信息指示所述N。
  3. 根据权利要求1所述的方法,其特征在于,所述指示信息包括CG索引信息,所述CG索引信息指示所述一个或多个CG传输时机。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述指示信息包含在上行控制信息UCI中,或者,所述指示信息由媒体接入控制MAC控制单元CE承载。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述上行数据包括图像数据,所述N的取值由下述的一项确定:
    图像组GOP内剩余数据帧的个数;或者
    ***数据帧的时延;或者
    数据帧的剩余传输时延预算。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    获得来自所述网络设备的逻辑信道配置信息,所述逻辑信道配置信息用于逻辑信道的配置,并且所述逻辑信道配置信息配置允许跳过与所述逻辑信道对应的所述一个或多个CG传输时机。
  7. 根据权利要求1-5中任一项所述的方法,其特征在于,所述CG信息还配置允许跳过所述一个或多个CG传输时机。
  8. 一种通信方法,其特征在于,包括:
    向终端发送配置授权CG信息,所述CG信息配置一个或多个CG传输时机,所述一个或多个CG传输时机用于上行数据的传输;
    接收来自所述终端的指示信息,所述指示信息指示所述终端在所述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数;以及
    在所述N个CG传输时机上跳过对所述终端上行数据的接收。
  9. 根据权利要求8所述的方法,其特征在于,所述指示信息包括CG传输时机数量信息,所述CG传输时机数量信息指示所述N。
  10. 根据权利要求8所述的方法,其特征在于,所述指示信息包括CG索引信息,所述CG索引信息指示所述一个或多个CG传输时机。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,所述指示信息包含在上行控制信息UCI中,或者,所述指示信息由媒体接入控制MAC控制单元CE承载。
  12. 根据权利要求8-11中任一项所述的方法,其特征在于,所述方法还包括:
    将所述N个CG传输时机对应的全部或部分资源分配给除所述终端以外的终端使用。
  13. 根据权利要求8-12中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送逻辑信道配置信息,所述逻辑信道配置信息用于逻辑信道的配置,并且所述逻辑信道配置信息配置允许跳过与所述逻辑信道对应的所述一个或多个CG传输时机。
  14. 根据权利要求8-12中任一项所述的方法,其特征在于,所述CG信息还配置允许跳过所述一个或多个CG传输时机。
  15. 一种通信装置,其特征在于,包括:接口模块和处理模块;
    所述接口模块,用于获得来自网络设备的配置授权CG信息,所述CG信息配置一个或多个CG传输时机,所述一个或多个CG传输时机用于上行数据的传输;
    所述接口模块,还用于向所述网络设备发送指示信息,所述指示信息指示在所述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数;
    所述处理模块,用于控制所述装置在所述N个CG传输时机上跳过上行数据的传输。
  16. 根据权利要求15所述的装置,其特征在于,所述指示信息包括CG传输时机数量信息,所述CG传输时机数量信息指示所述N。
  17. 根据权利要求15所述的装置,其特征在于,所述指示信息包括CG索引信息,所述CG索引信息指示所述一个或多个CG传输时机。
  18. 根据权利要求15-17中任一项所述的装置,其特征在于,所述指示信息包含在上行控制信息UCI中,或者,所述指示信息由媒体接入控制MAC控制单元CE承载。
  19. 根据权利要求15-18中任一项所述的装置,其特征在于,所述上行数据包括图像数据,所述N的取值由下述的一项确定:
    图像组GOP内剩余数据帧的个数;或者
    ***数据帧的时延;或者
    数据帧的剩余传输时延预算。
  20. 根据权利要求15-19中任一项所述的装置,其特征在于,所述接口模块还用于获得来自所述网络设备的逻辑信道配置信息,所述逻辑信道配置信息用于逻辑信道的配置,并且所述逻辑信道配置信息配置允许跳过与所述逻辑信道对应的所述一个或多个CG传输时机。
  21. 根据权利要求15-19中任一项所述的装置,其特征在于,所述CG信息还配置允许跳过所述一个或多个CG传输时机。
  22. 一种通信装置,其特征在于,包括:接口模块和处理模块;
    所述接口模块,用于向终端发送配置授权CG信息,所述CG信息配置一个或多个CG传输时机,所述一个或多个CG传输时机用于上行数据的传输;
    所述接口模块,还用于接收来自所述终端的指示信息,所述指示信息指示所述终端在所述一个或多个CG传输时机中的N个CG传输时机上不进行上行数据传输,N为正整数;
    所述处理模块,用于控制所述装置在所述N个CG传输时机上跳过对所述终端上行数据的接收。
  23. 根据权利要求22所述的装置,其特征在于,所述指示信息包括CG传输时机数量信息,所述CG传输时机数量信息指示所述N。
  24. 根据权利要求22所述的装置,其特征在于,所述指示信息包括CG索引信息,所述CG索引信息指示所述一个或多个CG传输时机。
  25. 根据权利要求22-24中任一项所述的装置,其特征在于,所述指示信息包含在上行控制信息UCI中,或者,所述指示信息由媒体接入控制MAC控制单元CE承载。
  26. 根据权利要求22-25中任一项所述的装置,其特征在于,所述处理模块还用于将所述N个CG传输时机对应的全部或部分资源分配给除所述终端以外的终端使用。
  27. 根据权利要求22-26中任一项所述的装置,其特征在于,所述接口模块还用于向所述终端发送逻辑信道配置信息,所述逻辑信道配置信息用于逻辑信道的配置,并且所述逻辑信 道配置信息配置允许跳过与所述逻辑信道对应的所述一个或多个CG传输时机。
  28. 根据权利要求22-26中任一项所述的装置,其特征在于,所述CG信息还配置允许跳过所述一个或多个CG传输时机。
  29. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至7中任一项所述的方法,或者使得所述装置执行如权利要求8至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其上存储有指令,其特征在于,所述指令被执行时使得计算机执行如权利要求1至7中任一项所述的方法,或者使得计算机执行如权利要求8至14中任一项所述的方法。
  31. 一种通信装置,其特征在于,包括用于执行如权利要求1至7中任一项所述方法的模块,或包括用于执行如权利要求8至14中任一项所述方法的模块。
  32. 一种计算机程序产品,其特征在于,包括计算机程序代码,所述计算机程序代码在计算机上运行时,使得权利要求1至7中任一项所述的方法被执行,或使得权利要求8至14中任一项所述的方法被执行。
  33. 一种芯片,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储指令,当所述指令被所述处理器执行时,使得所述芯片实现如权利要求1至7中任一项所述的方法,或者使得所述芯片实现如权利要求8至14中任一项所述的方法。
  34. 一种通信***,其特征在于,包括如权利要求15至21中任一项所述的装置和如权利要求22至28中任一项所述的装置。
PCT/CN2022/132971 2021-12-13 2022-11-18 数据传输方法及装置 WO2023109431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111523030.7A CN116264740A (zh) 2021-12-13 2021-12-13 数据传输方法及装置
CN202111523030.7 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109431A1 true WO2023109431A1 (zh) 2023-06-22

Family

ID=86722151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132971 WO2023109431A1 (zh) 2021-12-13 2022-11-18 数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN116264740A (zh)
WO (1) WO2023109431A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025693A1 (en) * 2019-08-07 2021-02-11 Nokia Technologies Oy Methods and apparatuses for data demodulation reference signal (dmrs)-only transmission on configured grant resources
CN112534939A (zh) * 2018-08-10 2021-03-19 苹果公司 用于增强型机器类型通信(eMTC)和窄带物联网(NB-IoT)的预配置资源中的上行链路传输
EP3823397A1 (en) * 2019-11-15 2021-05-19 Nokia Technologies Oy Traffic-dependent transmission for interference reduction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534939A (zh) * 2018-08-10 2021-03-19 苹果公司 用于增强型机器类型通信(eMTC)和窄带物联网(NB-IoT)的预配置资源中的上行链路传输
WO2021025693A1 (en) * 2019-08-07 2021-02-11 Nokia Technologies Oy Methods and apparatuses for data demodulation reference signal (dmrs)-only transmission on configured grant resources
EP3823397A1 (en) * 2019-11-15 2021-05-19 Nokia Technologies Oy Traffic-dependent transmission for interference reduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "CG autonomous transmission in inter-UE prioritization", 3GPP TSG-RAN WG2 #110-E R2-2004964, 21 May 2020 (2020-05-21), XP051887502 *

Also Published As

Publication number Publication date
CN116264740A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US11812461B2 (en) Communication method and related device
WO2021197270A1 (zh) 信息传输方法、装置及***
JP7481440B2 (ja) ハイブリッド自動再送要求処理方法及び通信装置
WO2023109431A1 (zh) 数据传输方法及装置
CN113271179A (zh) 混合自动重传请求确认码本的反馈方法及装置
WO2023035909A1 (zh) 数据传输方法及装置
WO2023160043A1 (zh) 数据传输方法及装置
WO2024012140A1 (zh) 一种数据传输方法及装置
CN116391431A (zh) 解码失败的处理方法、装置和***
WO2024067064A1 (zh) 数据传输方法及装置
CN113810949A (zh) 数据传输方法和装置
CN113939019A (zh) 通信方法及通信设备
WO2024066876A1 (zh) 数据传输方法及装置
WO2023131331A1 (zh) 上行数据传输方法、网络设备、终端设备及通信***
WO2022247351A1 (zh) 数据处理方法及装置
WO2023016285A1 (zh) 通信方法及装置
WO2023045714A1 (zh) 一种调度方法及通信装置
WO2023246744A1 (zh) 一种通信方法及装置
WO2024140257A1 (zh) 一种基于配置授权的通信方法及装置
WO2023010905A1 (zh) 非连续接收的方法及装置
WO2023125339A1 (zh) 参考信号的传输方法及装置
WO2023216986A1 (zh) 缓存状态报告bsr指示方法和装置
WO2024140600A1 (zh) 通信方法、通信装置及通信***
WO2024082843A1 (zh) 逻辑信道分组方法及通信装置
WO2024131515A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022906183

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024009581

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022906183

Country of ref document: EP

Effective date: 20240523