WO2023108910A1 - 转子组件、电机和电器设备 - Google Patents

转子组件、电机和电器设备 Download PDF

Info

Publication number
WO2023108910A1
WO2023108910A1 PCT/CN2022/078988 CN2022078988W WO2023108910A1 WO 2023108910 A1 WO2023108910 A1 WO 2023108910A1 CN 2022078988 W CN2022078988 W CN 2022078988W WO 2023108910 A1 WO2023108910 A1 WO 2023108910A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
magnetic
rotor
yoke
teeth
Prior art date
Application number
PCT/CN2022/078988
Other languages
English (en)
French (fr)
Inventor
李文瑞
葛梦
冯艳丽
Original Assignee
威灵(芜湖)电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111550908.6A external-priority patent/CN114069924A/zh
Priority claimed from CN202111550871.7A external-priority patent/CN114172290A/zh
Priority claimed from CN202123185293.XU external-priority patent/CN216356170U/zh
Priority claimed from CN202123183375.0U external-priority patent/CN216356169U/zh
Application filed by 威灵(芜湖)电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 威灵(芜湖)电机制造有限公司
Publication of WO2023108910A1 publication Critical patent/WO2023108910A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • H02K1/27915Magnets shaped to vary the mechanical air gap between the magnets and the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto

Definitions

  • the present application relates to the technical field of motors, in particular, to a rotor assembly, a motor and electrical equipment.
  • the amount of permanent magnets used in the permanent magnet motor is large, and the cost is relatively high.
  • the number of permanent magnet blocks is large, and the assembly process takes a long time, which affects the manufacturing efficiency.
  • the related technology adopts an alternating pole structure, and replaces all N-pole permanent magnets or S-pole permanent magnets in the original motor with permeable magnetic cores, so that the amplitude of the fundamental wave drops significantly, and the output performance of the motor will decrease.
  • the external rotor motor is mostly a surface-mounted permanent magnet motor structure, which is simple in structure and easy to manufacture.
  • the amount of permanent magnets used in this motor structure is large, and the cost is high.
  • the number of permanent magnet blocks is large, and the assembly process takes a long time, which affects the manufacturing efficiency.
  • the related technology adopts the alternating pole structure, that is, all the N-pole permanent magnets or S-pole permanent magnets in the original motor are replaced with magnetic cores. Under this design, the gap between two N-pole permanent magnets or S-pole permanent magnets
  • the magnetically permeable material will be magnetized into S pole or N pole by adjacent permanent magnet poles, forming an alternating pole structure.
  • due to the asymmetry of the air gap flux density under the magnetic poles of the alternating pole structure a large number of even harmonics will be introduced, resulting in asymmetric back EMF, which will cause large torque ripple and affect the reliability of the motor operation.
  • the first aspect of the present application provides a rotor assembly, including: a magnetically permeable hub frame, the magnetically permeable hub frame includes an end cover and an annular yoke, the end cover is connected to one axial end of the annular yoke, and the annular yoke
  • the inner peripheral wall is provided with a plurality of accommodation parts, and the plurality of accommodation parts are distributed along the circumferential direction of the annular yoke; a plurality of permanent magnets are respectively arranged in the plurality of accommodation parts, and the polarities of the plurality of permanent magnets are the same.
  • the rotor assembly proposed in this application includes a magnetically permeable hub frame and a plurality of permanent magnets.
  • the magnetically permeable hub frame includes a connected end cover and an annular yoke; the end cover is connected to one end of the annular yoke in the axial direction, and the inner peripheral wall of the annular yoke is provided with a plurality of accommodation parts, and the plurality of accommodation parts are arranged along the ring
  • the circumferential direction of the yoke is distributed; a plurality of permanent magnets are respectively arranged in a plurality of accommodating parts.
  • the polarities of the multiple permanent magnets in the rotor assembly proposed by the present application are the same.
  • the magnetically permeable hub frame is made of magnetically permeable materials.
  • the magnetically permeable hub frame includes a connected end cover portion and an annular yoke portion, and the overall structure of the magnetically permeable hub frame is simple.
  • a plurality of accommodating portions are provided directly on the inner peripheral wall of the annular yoke, and it is ensured that the a plurality of accommodating portions are distributed along the circumferential direction of the annular yoke.
  • the magnetically permeable hub frame in the rotor assembly proposed by this application includes an annular yoke and an end cover connected to the axial end of the annular yoke, which improves the overall structural strength of the magnetically permeable hub frame;
  • the inner peripheral wall of the annular yoke is provided with A plurality of accommodation parts, the plurality of accommodation parts are distributed along the circumferential direction of the annular yoke, and a plurality of permanent magnets with the same polarity are arranged in the plurality of accommodation parts, and a magnetic structure of alternating poles is produced on the annular yoke, thereby reducing the
  • the number of permanent magnets used reduces the manufacturing difficulty of the alternating-stage rotor, enhances the magnetic field modulation effect, increases the amplitude of the working sub-harmonic, and produces better output performance.
  • the magnetically permeable hub frame further includes: a protrusion disposed on the inner peripheral wall of the annular yoke and protruding toward the middle of the annular yoke, and the accommodation portion is located between two adjacent protrusions.
  • the magnetically permeable hub frame also includes protrusions.
  • the protruding part is arranged on the inner peripheral wall of the annular yoke part, and protrudes toward the middle part of the circular yoke part; a receiving part is formed between two adjacent protruding parts, on the basis of this application, a plurality of poles
  • the permanent magnets with the same property are arranged in the plurality of accommodation parts. In this way, the protrusions and the permanent magnets are alternately distributed in the circumferential direction of the annular yoke, thereby forming an alternating pole structure.
  • the rotor assembly cooperates with the design of the pole logarithm of the stator and rotor magnetic fields, and uses the magnetic density harmonics to work, avoiding the problem of output performance degradation caused by the decrease in the amplitude of the magnetic density fundamental wave after using alternating poles.
  • the alternating pole structure decreases, the amplitude of the fundamental wave of the air-gap magnetic field decreases, and the output performance of the motor decreases.
  • This application adopts the structure of the magnetic field modulation motor, that is, the rotor assembly proposed in this application is applied to the magnetic field modulation motor, which uses harmonics to work, enhances the modulation effect through the salient pole rotor, increases the working harmonic content, and thus improves the output performance of the motor. Avoid the problem that the amplitude of the fundamental wave of the alternating pole structure decreases and the performance of the motor decreases.
  • the thickness of the protrusion is equal to the thickness of the annular yoke.
  • the thickness of the protruding part is equal to that of the annular yoke, so that the protruding part and the annular yoke can be stretched and formed from the same sheet material, which has a simple structure and reduces manufacturing difficulty. Moreover, this setting makes the overall structural strength of the magnetically permeable hub frame high and has a longer service life.
  • the number of permanent magnets is equal to the number of protrusions.
  • the number of permanent magnets is equal to the number of protrusions. In this way, on the basis of ensuring that the protruding parts and the permanent magnets are alternately distributed, it is also ensured that each permanent magnet can be placed in the accommodating part. Moreover, the number of permanent magnets is equal to the number of protrusions, which ensures a simpler structure of the magnetically permeable hub frame, reduces the processing difficulty of the magnetically permeable hub frame, and improves the processing efficiency of the magnetically permeable hub frame.
  • the number of the receiving parts for placing the permanent magnets is also consistent with the number of the protruding parts, so that the ring-shaped yoke can be stretched and formed with an integral sheet material, which has a simple structure, reduced manufacturing difficulty, and high strength of the rotor assembly.
  • the end cap portion and the annular yoke portion are of one-piece construction.
  • the end cover part and the annular yoke part have an integrated structure, so that the connection between the end cover part and the annular yoke part does not require additional assembly parts, thereby reducing the difficulty of assembly.
  • the one-piece end cap and ring yoke have higher structural strength and longer service life.
  • the existence of the air gap can effectively reduce the flux leakage between the permanent magnet and the inner wall of the containing cavity, and the magnetization effect of the permanent magnet on the protrusion is better. Furthermore, the existence of the air gap can reduce the difficulty of assembly, thereby improving the reliability of the operation of the rotor assembly.
  • the size of the air gap is larger than 0 mm and smaller than 3 mm in the circumferential direction of the annular yoke.
  • the size of the air gap affects the operational reliability of the entire rotor assembly.
  • the air gap is too large, the reluctance will increase, thereby increasing the excitation loss and reducing the magnetization effect of the permanent magnet on the protrusion. , and thus cannot produce an alternating pole structure.
  • the air gap harmonic magnetic field will increase, and the permanent magnet will easily collide with the inner wall of the housing cavity during operation, thereby reducing the operating reliability and bringing difficulties to assembly.
  • the size of the air gap is set to be larger than 0mm and smaller than 3mm. In this way, the reluctance can be kept within an appropriate range, the permanent magnet has the best magnetization effect on the protruding part, and the assembly difficulty can be reduced, thereby improving the operation reliability.
  • an included angle ⁇ is formed between the center of the annular yoke and the line connecting the two ends of the permanent magnet, and satisfies 0.9 ⁇ /( ⁇ /(P_r)) ⁇ 1.7, where P_r is the permanent magnet quantity.
  • an included angle ⁇ is formed between the center of the annular yoke and the two ends of the permanent magnet.
  • the existence of the included angle can further change the air gap permeance process, enhance the magnetic field modulation effect, and work sub-harmoniously.
  • the amplitude of the wave increases, which further improves the torque of the motor using the secondary rotor assembly, thus avoiding the reduction in the number of magnetic poles after the use of alternating poles in traditional permanent magnet motors, and the decrease in the amplitude of the fundamental wave of the magnetic field, resulting in torque drop problem.
  • the permanent magnets include one of: ferrite or rare earth permanent magnets;
  • ferrite can be used as the permanent magnet, and the magnetic permeability of the rare earth permanent magnet is better.
  • the permanent magnet can also be a rare-earth permanent magnet, which has extremely high magnetic energy.
  • the protrusion comprises a spline surface disposed towards the middle of the annular yoke.
  • the protruding part includes a spline surface, and the spline surface is arranged towards the middle of the annular yoke, and the spline surface is integrally formed, thereby reducing the difficulty of processing.
  • the spline surface in the circumferential direction of the annular yoke, includes a plurality of connected sub-spline surfaces, and the sub-spline surfaces include planes and/or arc surfaces.
  • the spline surface in the circumferential direction of the annular yoke, includes a plurality of connected sub-spline surfaces, and the smooth connection between each section makes the curvature of the overall spline surface formed by them consistent, thereby making the rotor assembly Lower energy consumption during operation.
  • Sub-spline surfaces include planar and/or curved surfaces, allowing for closer curvature between segments.
  • a motor including: a rotor assembly as in any of the above possible designs, a stator assembly, at least a part of the stator assembly is located in the rotor assembly.
  • the motor proposed in the second aspect of the present application includes: the rotor assembly in any of the above possible designs, and therefore has all the beneficial effects of the rotor assembly in any of the above possible designs.
  • the motor further includes a stator assembly, and at least a part of the stator assembly is located in the rotor assembly.
  • the motor When the motor is working, the motor is energized, the stator assembly generates a rotating magnetic field, the rotor assembly is cut by the magnetic force lines in the rotating magnetic field to generate current, and the current is transmitted to the end in the motor, so that the motor can output current.
  • the protruding structure of the protruding part on the rotor enhances the air-gap permeance effect, enhances the modulation effect, increases the amplitude of the working sub-harmonic, and further improves the motor torque. , which in turn produces a greater driving torque and can generate a stronger driving force.
  • the stator assembly includes: a stator core, and the stator core includes: a yoke; the stator main teeth are arranged on the yoke, and the stator main teeth include tooth shoes, and there is a stator between two adjacent stator main teeth.
  • the slot has a notch between two adjacent tooth shoes, and the notch communicates with the stator slot; the stator winding is arranged on the main teeth of the stator and is located in the stator slot.
  • the stator assembly includes: stator core, stator main teeth and stator windings, and the stator core includes a yoke, which serves not only as the main magnetic circuit of the stator, but also as a mounting and fixing part for the stator main teeth and stator windings.
  • stator main teeth are arranged on the yoke, and then fixed by the yoke, the stator main teeth include tooth shoes, and there are stator slots between two adjacent stator main teeth, so that there are two adjacent stator main teeth. interval, and the stator slot can play a role of accommodation. There is a notch between two adjacent tooth shoes, and the notch communicates with the stator slot. In this way, through the arrangement of the stator slots and notches, the starting torque of the motor is reduced, the waveform of the air-gap magnetic field is improved, and additional loss is reduced.
  • stator winding in the stator assembly is arranged on the main teeth of the stator and located in the stator slot, the stator winding is the input circuit part of the motor, and an alternating magnetic field is generated by feeding an alternating current.
  • the stator core also includes at least two stator auxiliary teeth, which are arranged on the tooth shoe.
  • the stator auxiliary teeth are used as magnetic conductive parts for magnetic conduction.
  • the stator auxiliary teeth can also be used as modulation parts to realize The role of magnetic field modulation.
  • the size of the groove is not equal to the size of the notch, that is, the width of the groove between two adjacent stator auxiliary teeth is the same as that between two adjacent tooth shoes.
  • the slot widths of the stator slots are not equal.
  • the tooth body bisector of one stator auxiliary tooth forms an angle ⁇ with the tooth body bisector of the other stator auxiliary tooth, and satisfies 1 ⁇ /( 2 ⁇ /(ax)) ⁇ 1.4, wherein, a represents the number of stator main teeth, and x represents the number of stator auxiliary teeth on each stator main tooth.
  • an angle ⁇ is formed between the tooth body bisector of one stator auxiliary tooth and the tooth body bisector of the other stator auxiliary tooth. The existence of the angle ⁇ makes the motor Modulation generates harmonic amplitudes with a certain torque.
  • the included angle ⁇ satisfies the formula 1 ⁇ /(2 ⁇ /(ax)) ⁇ 1.4, wherein a represents the number of main stator teeth, and x represents the number of auxiliary stator teeth on each main stator tooth.
  • a represents the number of main stator teeth
  • x represents the number of auxiliary stator teeth on each main stator tooth.
  • the tooth body bisector of the stator auxiliary teeth is: on the outer circumference of the stator iron core, the middle part of the stator auxiliary teeth and the center of the stator iron core.
  • an electrical device including: a motor in any possible design above.
  • the electrical equipment proposed in another aspect of the present application includes the motor in any of the above-mentioned possible designs, and therefore has all the beneficial effects of the motor in any of the above-mentioned possible designs, which will not be repeated here.
  • the application provides a rotor assembly, including: a first rotor core, the first rotor core includes a first yoke and a plurality of first salient poles, the plurality of first salient poles are set On the first yoke, a first installation groove is formed between adjacent first salient poles; a plurality of first magnetic parts, the first magnetic parts are arranged in the first installation groove; the second rotor iron core, along the first rotor iron The axial direction of the core is arranged on one side of the first rotor core.
  • the second rotor core includes a second yoke and a plurality of second salient poles.
  • the plurality of second salient poles are arranged on the second yoke. Adjacent A second installation groove is formed between the second salient poles; a plurality of second magnetic parts are arranged in the second installation groove, wherein the first magnetic parts are arranged correspondingly to the second salient poles.
  • the rotor assembly proposed by the present application includes a first rotor core and a second rotor core, wherein the first yoke of the first rotor core is provided with a plurality of first salient poles, and the adjacent first salient poles
  • the first installation groove is formed between them, the first magnetic member is arranged in the first installation groove, and then the first salient poles and the first magnetic members are alternately surrounded to form a ring structure, and then the first salient poles are magnetized by the first magnetic member, Both the first salient pole and the first magnetic member have magnetism.
  • a plurality of second salient poles are arranged on the second yoke of the second rotor core, and a second installation is formed between adjacent second salient poles.
  • the second magnetic part is arranged in the second installation groove, and then the second salient pole and the second magnetic part alternately surround a ring structure, and then the second salient pole is magnetized by the second magnetic part, so that the second salient pole Both the magnetic part and the second magnetic part have magnetism, thereby reducing the investment of the first magnetic part and the second magnetic part by half, thereby reducing the production cost.
  • first rotor core and the second rotor core are axially stacked, and the first magnetic part is arranged corresponding to the second salient pole, so that the first magnetic part, the first salient pole, the second magnetic part and the second magnetic part can be adjusted.
  • the magnetic field formed by the salient poles makes the magnetic field formed by the rotor assembly more uniform, suppresses the influence of even harmonics, and reduces the magnetic field torque and torque fluctuation of the motor.
  • the second magnetic member is arranged correspondingly to the second salient pole.
  • the first magnetic part corresponds to the setting of the second salient pole
  • the second magnetic part corresponds to the setting of the second salient pole, so that the first magnetic part, the first salient pole, the second magnetic part and the second magnetic part can be further adjusted.
  • the magnetic field formed by the two salient poles makes the magnetic field formed by the rotor assembly more uniform, further suppresses the influence of even harmonics, and further reduces the magnetic field torque and torque fluctuation of the motor.
  • the magnetization polarities of all the first magnetic parts are the same; the magnetization polarities of all the second magnetic parts are the same; the magnetization polarities of the first magnetic parts and the magnetization polarities of the second magnetic parts are opposite .
  • the magnetization polarities of all the first magnetic parts are the same, and the magnetization polarities of all the second magnetic parts are the same, and the magnetization polarities of the first magnetic parts and the magnetization polarities of the second magnetic parts are opposite, That is, if the first magnetic piece is S pole, then the second magnetic piece is N pole, if the first magnetic piece is N pole, then the second magnetic piece is S pole, and the polarity after the first salient pole is magnetized is the same as that of the first salient pole.
  • the first magnetic part is also opposite, and the polarity of the second salient pole after being magnetized is also opposite to that of the second magnetic part, and then in the axial direction of the rotor assembly, the first salient pole of the same polarity and the second magnetic part are collinear and have the same polarity.
  • the second salient pole and the second magnetic part are collinear, so that the overall magnetic field formed by the rotor assembly is more uniform, so that the induced counter electromotive force generated by the first magnetic part and the second magnetic part on the winding armature in the axial direction differs by 180 °, so as to further suppress the influence of even harmonics, and further reduce the motor magnetic field torque and torque ripple.
  • the difference between the first rotor core and the second rotor core is an odd number of pole pitches.
  • the difference between the first rotor core and the second rotor core is an odd number of pole pitches, which makes the magnetic field generated by the rotor assembly more regular, thereby further suppressing the influence of even-order harmonics and further reducing the magnetic field rotation of the motor. torque and torque fluctuations.
  • the axial lengths of the first rotor core and the second rotor core are equal.
  • the length of the first rotor core is equal to the length of the second rotor core, so that in the axial direction of the rotor assembly, the magnetic field generated by the first magnetic part and the second
  • the symmetry of the magnetic field generated by the magnetic parts further makes the magnetic field generated by the rotor assembly more uniform, thereby further suppressing the influence of even harmonics and further reducing the magnetic field torque and torque fluctuation of the motor.
  • first gap between adjacent first magnetic pieces and first salient poles; and/or there is a second gap between adjacent second magnetic pieces and second salient poles .
  • adjacent first magnetic parts and first salient poles are spaced apart to form a first gap, through which the leakage magnetic flux at the end of the first salient pole on the adjacent first magnetic part is reduced , thereby increasing the working magnetic flux formed by the first salient pole in the main magnetic circuit to improve the output performance of the motor.
  • Adjacent second magnetic parts and second salient poles are spaced apart to form a second gap, and through the second gap, the leakage magnetic flux at the end of the second salient pole on the adjacent second magnetic parts is reduced, thereby increasing the second
  • the working magnetic flux formed by salient poles in the main magnetic circuit improves the output performance of the motor.
  • the width of the first gap is less than or equal to 3mm; and/or the width of the second gap is less than or equal to 3mm.
  • the width of the first gap is less than or equal to 3mm, and the distance between the adjacent first magnetic member and the first salient pole is less than or equal to 3mm, thereby ensuring the magnetic field strength and the output performance of the motor.
  • the width of the second gap is less than or equal to 3mm, and the distance between the adjacent second magnetic member and the second salient pole is less than or equal to 3mm, thereby ensuring the magnetic field strength and the output performance of the motor.
  • the angle of the central angle occupied by the first magnetic part and the second magnetic part is ⁇
  • the number of pole pairs of the second rotor formed by the second rotor core and the second magnetic member is Pr, wherein, 0.9 ⁇ ( ⁇ Pr) ⁇ 1.7.
  • the angle of the central angle occupied by the first magnetic part and the second magnetic part is ⁇ , and the existence of the included angle can increase the magnetomotive force of the motor, improve the modulation effect of the magnetic field, and increase the frequency of the working subharmonic
  • the amplitude ensures the torque of the motor, which also avoids the problem that the number of magnetic poles decreases after the use of alternating poles in the motor, and the amplitude of the fundamental wave of the magnetic field decreases, resulting in a decrease in torque.
  • first yoke and the first salient pole are integrated; and/or the second yoke and the second salient pole are integrated.
  • the first yoke and the first salient pole are of an integrated structure, and only the first magnetic part needs to be installed during installation, thereby reducing installation difficulty and improving production efficiency.
  • the second yoke and the second salient pole are of an integral structure, and only need to install the second magnetic part during installation, thereby reducing installation difficulty and improving production efficiency.
  • a plurality of first magnetic elements form a Halbach array; and/or a plurality of second magnetic elements form a Halbach array.
  • multiple first magnetic parts form a Halbach array, thereby improving the sinusoidality of the magnetic field generated by the first magnetic parts and improving the efficiency of the motor.
  • a plurality of second magnetic parts form a Halbach array, thereby improving the sinusoidality of the magnetic field generated by the second magnetic parts and improving the efficiency of the motor.
  • first magnetic member and the second magnetic member have the same structure; and/or the first salient pole and the second salient pole have the same structure.
  • the structure of the first magnetic part is the same as that of the second magnetic part, and then the magnetic fields generated by the first magnetic part and the second magnetic part are similar or identical, so that the overall magnetic field of the rotor assembly is more uniform, making the rotor assembly
  • the formed magnetic field is more uniform, the influence of even harmonics is suppressed, and the magnetic field torque and torque fluctuation of the motor are reduced.
  • the structure of the first salient pole is the same as that of the second salient pole, and the magnetic fields generated by the magnetization of the first salient pole and the second salient pole are similar or the same, which makes the overall magnetic field of the rotor assembly more uniform, so that the rotor assembly forms The magnetic field is more uniform, the influence of even harmonics is suppressed, and the magnetic field torque and torque fluctuation of the motor are reduced.
  • the first rotor core includes a plurality of first iron core segments, and the plurality of first iron cores are spliced into a ring shape;
  • the second rotor core includes a plurality of second iron core segments , a plurality of second iron cores are spliced into a ring shape.
  • the first rotor core includes a plurality of first core segments, and the plurality of first core segments are connected end to end along the circumferential direction of the first rotor core.
  • any first iron core segment includes a first yoke and at least one first salient pole, and the partial yokes of two adjacent first iron core segments are connected to form a ring structure.
  • a plurality of first core blocks can be connected end to end to manufacture the rotor core.
  • the first rotor core includes a plurality of first core segments.
  • the first rotor iron core can be unfolded first, and can be unfolded into one piece, or can be unfolded into a single first iron core block. Then, assemble the first magnetic part at the corresponding position on each first iron core block. In this way, the installation difficulty of the first magnetic part and the first rotor core can be reduced, and the production efficiency can be improved.
  • materials can be saved and costs can be reduced.
  • the second rotor core includes a plurality of second core segments connected end to end along the circumferential direction of the second rotor core.
  • any first iron core block includes a second yoke and at least one second salient pole, and the partial yokes of two adjacent second iron core blocks are connected to form a ring structure. In this way, in the process of manufacturing the second rotor core, a plurality of second core blocks can be connected end to end to manufacture the rotor core.
  • the second rotor core includes a plurality of second core segments.
  • the second rotor iron core can be unfolded first, and can be unfolded into one piece, or can be unfolded into a single second iron core block. Then, a second magnetic piece is assembled at a corresponding position on each second iron core block. In this way, the installation difficulty of the second magnetic part and the second rotor core can be reduced, and the production efficiency can be improved.
  • materials can be saved and costs can be reduced.
  • the present application provides a motor, including: a stator assembly; and a rotor assembly according to any one of the above technical solutions.
  • the motor proposed by this application includes a stator assembly and a rotor assembly as proposed by any one of the above technical solutions.
  • the stator assembly and the rotor assembly enable the rotor assembly to rotate through electromagnetic effects, and because the motor proposed by this application includes the above technical solutions.
  • the rotor assembly proposed by any one therefore, has all the effects of the rotor assembly proposed by any one of the above technical solutions, which will not be stated one by one here.
  • the stator assembly includes: a plurality of stator main teeth, the side of the stator main teeth facing the rotor is provided with grooves, and the grooves divide the stator main teeth into a plurality of stator auxiliary teeth.
  • the stator assembly is provided with multiple stator main teeth facing the rotor assembly, and the side of the stator main teeth facing the rotor is provided with grooves, which divide the stator main teeth into multiple stator auxiliary teeth, and then use the grooves and the stator
  • the form of auxiliary teeth can adjust the air gap, modulate the magnetic field, and improve the efficiency of the motor.
  • the number of pole pairs of the stator assembly is Pa
  • the number of stator main teeth is x
  • x represents the number of stator main teeth
  • a represents the number of stator auxiliary teeth on each stator main tooth
  • Pr represents the number of pole pairs of the second rotor.
  • the new harmonic components appearing in the air-gap magnetic density can be used as the working harmonics of the motor to provide output torque for the motor, thereby effectively improving the torque density of the motor.
  • the new harmonic components appearing in the air-gap flux density can be used as the working harmonics of the motor to provide output torque for the motor, thus effectively improving the torque density of the motor.
  • the distances from the bisector of the main teeth of the stator to the two side walls of the groove are equal or different.
  • the distances from the bisector of the main teeth of the stator to the two side walls of the groove are not equal.
  • the grooves are offset towards one end of the main teeth of the stator.
  • Such setting can change the distribution of air gap permeance and weaken some harmonics, thereby reducing torque ripple and improving the vibration and noise performance of the motor.
  • the magnetomotive force of the permanent magnet interacts with the air-gap permeance containing harmonics, new harmonic components will appear in the air-gap flux density.
  • at least two stator auxiliary teeth lead to the introduction of more harmonic components into the air gap permeance, so that the performance of the motor is significantly improved.
  • stator auxiliary teeth of one stator main tooth there is a notch between the stator auxiliary teeth of one stator main tooth and the stator auxiliary tooth of the other stator main tooth; The distances from the angle bisectors of two adjacent stator main teeth to two adjacent stator auxiliary teeth are equal or unequal.
  • the angle bisector of the main teeth of the stator is equidistant from both side walls of the groove. In this way, in the circumferential direction of the stator assembly, the groove is located in the middle of the main teeth of the stator.
  • Such a design can simplify the overall structure of the stator main teeth and facilitate the processing and manufacturing of the stator main teeth, thereby improving the processing efficiency of the stator assembly and the entire motor.
  • the distances from the angle bisector of the main teeth of the stator to the two side walls of the groove are not equal. In this way, in the circumferential direction of the stator assembly, the grooves are offset towards one end of the main teeth of the stator.
  • Such setting can change the distribution of air gap permeance and weaken some harmonics, thereby reducing torque ripple and improving the vibration and noise performance of the motor.
  • the magnetomotive force of the permanent magnet interacts with the air-gap permeance containing harmonics, new harmonic components will appear in the air-gap flux density.
  • at least two stator auxiliary teeth lead to the introduction of more harmonic components into the air gap permeance, so that the performance of the motor is significantly improved.
  • the angle ⁇ formed between the bisector of one stator auxiliary tooth and the other stator auxiliary tooth is Satisfy 1 ⁇ (2 ⁇ ax) ⁇ 1.4, where x represents the number of stator main teeth, and a represents the number of stator auxiliary teeth on each stator main tooth.
  • the angle ⁇ formed between the bisector of one stator tooth and the other stator tooth satisfies 1 ⁇ ⁇ [2 ⁇ (a ⁇ x)] ⁇ 1.4; wherein, x represents the number of stator main teeth, and a represents the number of stator auxiliary teeth on each stator main tooth.
  • x represents the number of stator main teeth
  • a represents the number of stator auxiliary teeth on each stator main tooth.
  • the stator assembly includes: a plurality of stator segments, the stators respectively include yoke segments and stator main teeth, and adjacent stator segments are connected through the yoke segments.
  • the stator assembly includes a plurality of stator segments, and the stator assembly is formed by splicing the plurality of stator segments.
  • the staff can first perform operations such as winding on a single stator block, which is conducive to reducing the difficulty of winding, thereby improving the working efficiency of winding and reducing material costs.
  • the present application can first perform operations such as winding on a single stator block, which can effectively increase the number of windings, increase the slot fill rate of the windings, and improve the output performance of the applied motor. Moreover, on the basis of reducing the difficulty of winding, the present application can reduce the scrap rate in the winding process, thereby reducing scrap and improving the cost rate of the stator assembly. In addition, individual stator blocks have lower requirements on materials, which can improve the utilization rate of materials, thereby reducing the material cost of the stator assembly.
  • the yoke sections of two adjacent stator segments are detachably connected or fixedly connected.
  • the yoke sections of two adjacent stator blocks are detachably connected, thereby ensuring the disassembly and assembly of two adjacent stator blocks.
  • the stator block further includes a first connecting portion and a second connecting portion.
  • the first connection part is arranged at the first end of the yoke section
  • the second connection part is arranged at the second end of the yoke section
  • the first connection part and the second connection part are opposite to each other on the yoke section.
  • the structures of the first connecting portion and the second connecting portion match, and furthermore, the first connecting portion of one stator block cooperates with the second connecting portion of the other stator block to realize self-locking. Therefore, in the process of splicing stator blocks, the present application can connect two adjacent stator blocks through the first connection part and the second connection part, including the detachable connection of two adjacent stator blocks.
  • one of the first connecting portion and the second connecting portion is a convex portion, and the other is a concave portion.
  • the shape of the convex part matches the shape of the concave part, and the convex part and the concave part can be detachably connected, and have a self-locking function.
  • the recesses include, but are not limited to, the following structures: polygonal grooves, circular grooves, and elliptical grooves; the shape of the convex portion matches the shape of the concave portion.
  • the stator assembly further includes: a stator yoke, and the main teeth of the stator are detachably arranged on the stator yoke.
  • the stator assembly includes a stator yoke and stator main teeth arranged on the stator yoke, wherein the stator main teeth and the stator yoke are detachably connected.
  • the wire can be wound on the main teeth of the stator first, and then installed on the yoke.
  • it facilitates winding and improves the fullness of the motor slot;
  • the width of the notch can avoid the influence of the too large notch on the performance of the motor.
  • the main teeth of the stator include: a tooth body, one end of which is connected to the stator yoke; and a tooth shoe, detachably provided at the end of the tooth body away from the stator yoke.
  • the tooth shoe is detachably connected to the tooth body.
  • the wire can be wound on the tooth body first, and then the tooth shoe can be installed.
  • the width of the slot is small, so as to avoid the influence of the excessive slot on the performance of the motor.
  • the present application provides an electrical device, including: the motor provided by any one of the above technical solutions.
  • the electrical equipment proposed by this application includes the motor proposed by this application including the motor proposed by any one of the above technical solutions, therefore, it has all the effects of the motor proposed by any one of the above technical solutions, and will not be stated here. .
  • FIG. 1 shows a schematic structural view of a magnetically permeable hub frame in a rotor assembly according to an embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of a rotor assembly according to an embodiment of the present application
  • Fig. 3 shows a schematic structural diagram of a motor according to an embodiment of the present application
  • Fig. 4 shows a schematic structural diagram of a first rotor core and a first magnetic member in a rotor assembly provided by an embodiment of the present application
  • Fig. 5 shows a schematic structural diagram of a first rotor core in a rotor assembly provided by an embodiment of the present application
  • Fig. 6 shows a schematic structural diagram of a first rotor core and a first magnetic member in a rotor assembly provided by an embodiment of the present application
  • Fig. 7 shows a schematic structural diagram of a first rotor core in a rotor assembly provided by an embodiment of the present application
  • Fig. 8 shows a schematic structural diagram of a first rotor core and a first magnetic member in a rotor assembly provided by an embodiment of the present application
  • Fig. 9 shows a schematic structural diagram of a second rotor core and a second magnetic member in a rotor assembly provided by an embodiment of the present application
  • Fig. 10 shows a schematic structural diagram of a second rotor core in a rotor assembly provided by an embodiment of the present application
  • Fig. 11 shows a schematic structural diagram of a second rotor core and a second magnetic member in a rotor assembly provided by an embodiment of the present application
  • Fig. 12 shows a schematic structural view of the second rotor core in the rotor assembly provided by an embodiment of the present application
  • Fig. 13 shows a schematic structural diagram of a second rotor core and a second magnetic member in a rotor assembly provided by an embodiment of the present application
  • Fig. 14 shows a schematic structural diagram of a motor provided by an embodiment of the present application.
  • Fig. 15 shows a schematic structural diagram of a stator assembly of a motor provided by an embodiment of the present application
  • Fig. 16 shows a schematic structural diagram of a stator assembly of a motor provided by an embodiment of the present application
  • Fig. 17 shows a schematic structural diagram of a stator assembly of a motor provided by an embodiment of the present application
  • Fig. 18 shows a schematic structural diagram of a stator assembly of a motor provided by an embodiment of the present application.
  • stator assembly 100 rotor assembly, 102 magnetically conductive hub frame, 104 end cover, 106 annular yoke, 108 housing, 110 permanent magnet, 112 protruding part, 114 air gap, 116 motor, 118 yoke, 120 stator main teeth, 122 Tooth shoe, 124 stator slot, 126 notch, 128 stator auxiliary tooth, 130 groove, 132 spline surface, 134 first rotor core, 136 first iron core segment, 138 first yoke, 140 first convex pole, 142 the first installation slot, 144 the first magnetic part, 146 the second rotor core, 148 the second iron core segment, 150 the second yoke, 152 the second salient pole, 154 the second installation slot, 156 the second Magnetic part, 158 first gap, 160 second gap, 162 stator assembly, 164 tooth body, 166 tooth shoe, 168 stator yoke, 170 stator slot, 172 stator segment, 174 yoke section, 176 first
  • a rotor assembly 100 , a motor 116 and electrical equipment provided according to some embodiments of the present application are described below with reference to FIGS. 1 to 18 .
  • the dotted line in FIG. 3 represents the tooth body bisector of the auxiliary stator tooth 128 .
  • the present application proposes a rotor assembly 100 in a first aspect. It includes: a magnetically permeable hub frame 102, the magnetically permeable hub frame 102 includes an end cover portion 104 and an annular yoke portion 106, the end cover portion 104 is connected to one axial end of the annular yoke portion 106, and the inner peripheral wall of the annular yoke portion 106 is provided with a plurality of The accommodating portion 108 , a plurality of accommodating portions 108 are distributed along the circumferential direction of the annular yoke portion 106 ; a plurality of permanent magnets 110 are respectively arranged in the a plurality of accommodating portions 108 , and the polarities of the plurality of permanent magnets 110 are the same.
  • the rotor assembly 100 provided in the present application includes a magnetically permeable hub frame 102 and a plurality of permanent magnets 110 .
  • the magnetically permeable hub frame 102 includes a connected end cover portion 104 and an annular yoke portion 106; the end cover portion 104 is connected to one axial end of the annular yoke portion 106, and the inner peripheral wall of the annular yoke portion 106 is provided with a plurality of accommodating portions 108 , a plurality of accommodating portions 108 are distributed along the circumferential direction of the annular yoke portion 106; a plurality of permanent magnets 110 are disposed in the plurality of accommodating portions 108 respectively.
  • the polarities of the plurality of permanent magnets 110 in the rotor assembly 100 proposed by the present application are the same.
  • the magnetically permeable hub frame 102 is made of magnetically permeable materials.
  • the dimensions of the plurality of accommodating portions 108 are equal, so that they are all applicable to the permanent magnet 110 of the same specification.
  • the permanent magnet 110 may be a bar-shaped permanent magnet, a sector-shaped permanent magnet, a horseshoe-shaped permanent magnet or a circular permanent magnet.
  • the magnetically permeable hub frame 102 in the rotor assembly 100 proposed in this application includes a connected end cover portion 104 and an annular yoke portion 106 , and the overall structure of the magnetically permeable hub frame 102 is simple.
  • a plurality of accommodating portions 108 are provided directly on the inner peripheral wall of the annular yoke portion 106 , and the plurality of accommodating portions 108 are ensured to be distributed along the circumferential direction of the annular yoke portion 106 .
  • the effective installation and positioning of the plurality of permanent magnets 110 can be ensured at first, and secondly, the permanent magnets 110 with the same polarity can be ensured to be positioned in the ring.
  • the circumferential direction of the yoke 106 is distributed at intervals.
  • the permanent magnet 110 includes a bar-shaped permanent magnet, a polygonal permanent magnet, etc., because in this embodiment, the permanent magnet 110 is placed in the setting of the accommodating portion 108, so that the permanent magnet 110 of various shapes, as long as its size is located in the accommodating portion 108 can be used within the limited size range, which makes the processing and manufacturing of the permanent magnet 110 more convenient and quicker, and the versatility of various permanent magnets 110 is stronger.
  • the magnetically permeable hub frame 102 in the rotor assembly 100 proposed by the present application includes an annular yoke portion 106 and an end cover portion 104 connected to one axial end of the annular yoke portion 106, which improves the overall structural strength of the magnetically permeable hub frame 102; the annular yoke
  • the inner peripheral wall of the portion 106 is provided with a plurality of accommodation portions 108, and the plurality of accommodation portions 108 are distributed along the circumferential direction of the annular yoke portion 106, and a plurality of permanent magnets 110 with the same polarity are arranged in the plurality of accommodation portions 108, and in the annular yoke portion
  • a magnetic structure with alternating poles is produced on 106, which not only reduces the number of permanent magnets 110 used, but also enhances the magnetic field modulation effect, increases the amplitude of the working magnetic density harmonic, and produces better output performance.
  • the magnetically permeable hub frame 102 further includes: a protrusion 112 disposed on the inner peripheral wall of the annular yoke 106 and facing the annular yoke 106 The middle part of each protrudes, and the accommodating part 108 is located between two adjacent protruding parts 112 .
  • the magnetically permeable hub frame 102 further includes a protrusion 112 .
  • the protruding part 112 is arranged on the inner peripheral wall of the annular yoke part 106, and protrudes toward the middle part of the annular yoke part 106; a receiving part 108 is formed between two adjacent protruding parts 112, and the present application is based on this , disposing a plurality of permanent magnets 110 with the same polarity in the plurality of accommodating portions 108 .
  • the protruding portions 112 and the permanent magnets 110 are alternately distributed in the circumferential direction of the annular yoke portion 106 , thereby forming an alternating pole structure.
  • the protruding portion 112 made of magnetically permeable material will be magnetized by the adjacent permanent magnet 110 into a magnet with opposite magnetic poles, and then the permanent magnets 110 have the same polarity, while the adjacent permanent magnets 110 have the same polarity.
  • the protrusions 112 are all of opposite polarity, forming an alternating pole structure.
  • the protruding portion 112 includes a square protruding portion or a polygonal protruding portion, and any shape of the protruding portion 112 that can realize the partition function and facilitate processing is within the protection scope of the present application.
  • the rotor assembly 100 cooperates with the pole logarithm design of the stator and rotor magnetic fields, and works by using the flux density harmonics, avoiding the problem of output performance degradation caused by the decrease in the amplitude of the flux density fundamental wave after using alternating poles.
  • the number of magnetic poles decreases, the amplitude of the fundamental wave of the air-gap magnetic field decreases, and the output performance of the motor decreases.
  • This application adopts the magnetic field modulation motor structure, that is, the rotor assembly 100 proposed in this application is applied to the magnetic field modulation motor, and the harmonics are used to work, and the modulation effect is enhanced through the salient pole rotor, and the working harmonic content is increased, thereby improving the output of the motor 116 performance. This avoids the problem of performance degradation of the motor 116 caused by the decrease in the amplitude of the fundamental wave of the alternating pole structure.
  • the number of permanent magnets 110 is equal to the number of protrusions 112
  • the thickness of the protrusion 112 is equal to the thickness of the annular yoke 106 .
  • the thickness of the protruding portion 112 is equal to that of the annular yoke portion 106 , so that the protruding portion 112 and the annular yoke portion 106 can be stretched and formed from the same plate, which has a simple structure and reduces manufacturing difficulty. Moreover, this setting makes the overall structural strength of the magnetically permeable hub frame 102 high and has a longer service life.
  • an air gap 114 between the permanent magnet 110 and the inner wall of the housing 108 in the circumferential direction of the annular yoke 106 .
  • the existence of the air gap 114 can effectively reduce the flux leakage between the permanent magnet 110 and the inner wall of the containing chamber, and the magnetization effect of the permanent magnet 110 on the protrusion 112 is the best. Further, the existence of the air gap 114 can reduce assembly difficulty, thereby improving the reliability of the rotor assembly 100 in operation.
  • the size of the air gap 114 is larger than 0 mm and smaller than 3 mm.
  • the size of the air gap 114 affects the operational reliability of the entire rotor assembly 100.
  • the air gap 114 is too large, the reluctance will increase, thereby increasing the excitation loss, so that the permanent magnets 110 protrude The magnetization effect of the portion 112 is reduced, so that an alternating pole structure cannot be produced.
  • the harmonic magnetic field of the air gap 114 will increase, and the permanent magnet 110 will easily collide with the inner wall of the containing cavity during operation, thereby reducing the operating reliability and bringing difficulties to assembly.
  • the dimension d of the air gap 114 is set to be larger than 0 mm and smaller than 3 mm. In this way, the reluctance can be kept within an appropriate range, the permanent magnet 110 has the best magnetization effect on the protruding portion 112 , and the assembly difficulty can be reduced, thereby improving the operation reliability.
  • the application further optimizes the size d of the air gap 114, which further enhances the magnetic field modulation effect, increases the amplitude of the working sub-harmonic, and produces Better output performance.
  • the size of the air gap 114 can be set to 1mm, 1.5mm, 2mm, 2.5mm and so on.
  • an included angle ⁇ is formed between the center of the annular yoke 106 and the line connecting the two ends of the permanent magnet 110, and satisfies 0.9 ⁇ /( ⁇ /(Pr)) ⁇ 1.7, where Pr is the number of permanent magnets 110 .
  • an included angle ⁇ is formed between the center of the annular yoke 106 and the two ends of the permanent magnet 110.
  • the existence of the included angle ⁇ can further change the air gap permeance process, enhance the magnetic field modulation effect, and work
  • the amplitude of the sub-flux density harmonic increases, which further improves the torque of the motor 116 using the rotor assembly 100, thereby avoiding the reduction in the number of magnetic poles after the use of alternating poles in traditional permanent magnet motors, and the fundamental amplitude of the magnetic field The value drops, causing the problem of torque drop.
  • the included angle ⁇ satisfies: 0.9 ⁇ /( ⁇ /(Pr)) ⁇ 1.7, where Pr is the number of permanent magnets 110, when the included angle ⁇ satisfies the above conditions, the magnetic field modulation effect is further enhanced, and the rotor assembly 100 works well.
  • the present application further optimizes the included angle ⁇ formed between the center of the annular yoke 106 and the two ends of the permanent magnet 110 to further make the magnetic field modulation
  • the effect is enhanced, and the amplitude of the working magnetic subharmonic is increased, resulting in better output performance.
  • the permanent magnet 110 includes one of the following: ferrite or rare earth permanent magnet.
  • the permanent magnet 110 can be made of ferrite, which has better magnetic permeability.
  • the permanent magnet 110 is an object that generates a magnetic field.
  • Ferrite is made of various mixed materials, which can generate a stronger magnetic field than natural magnets in nature. It is cheap in price, high in corrosion resistance, and does not require additional
  • the coating is used for protection and can resist the degaussing of the external magnetic field, thereby not only ensuring the use performance, but also reducing the manufacturing cost.
  • the permanent magnet 110 may also be a rare-earth permanent magnet, and the magnetic energy of the rare-earth permanent magnet is positively high.
  • Rare earth permanent magnets can resist demagnetization by external magnetic fields.
  • the protrusion 112 includes a spline surface 132 disposed toward the middle of the annular yoke 106 .
  • the protruding portion 112 includes a spline surface 132 , and the spline surface 132 is disposed toward the middle of the annular yoke 106 .
  • the spline surface 132 is integrally formed, thereby reducing the difficulty of processing.
  • the spline surface 132 in the circumferential direction of the annular yoke 106, includes a plurality of connected sub-spline surfaces, and the sub-spline surfaces include Flat and/or curved.
  • the spline surface 132 in the circumferential direction of the annular yoke 106, includes a plurality of connected sub-spline surfaces, and each section is smoothly connected, so that the curvature of the overall spline surface 132 formed by them changes uniformly. In turn, the energy loss of the rotor assembly 100 during operation is lower.
  • Sub-spline faces include planar and/or arcuate surfaces, resulting in a closer approximation of surface curvature between segments.
  • a motor 116 including: a rotor assembly 100 in any possible design above, a stator assembly, at least a part of the stator assembly is located in the rotor assembly 100 .
  • a motor 116 is proposed, including the rotor assembly 100 in any of the above embodiments, so it has all the beneficial effects of the rotor assembly 100 in any of the above embodiments, and will not be repeated here. .
  • the motor 116 realizes the conversion or transmission of electric energy according to the law of electromagnetic induction, and it can generate driving torque as a power source for equipment or various machines.
  • the electric machine of the present application may be an inner rotor or an outer rotor assembly.
  • the motor 116 further includes a stator assembly, and at least a part of the stator assembly is located in the rotor assembly 100 .
  • the motor 116 When the motor 116 is working, the motor 116 is energized, the stator assembly generates a rotating magnetic field, the rotor assembly 100 is cut by the magnetic force lines in the rotating magnetic field to generate current, and the current is transmitted to the output terminal in the motor 116, so that the motor 116 can output current.
  • the protruding structure of the protruding part 112 on the rotor enhances the air gap permeance effect, enhances the modulation effect, increases the amplitude of the working sub-magnetic density harmonic, and further increases the torque of the motor 116. It has been improved, which in turn produces a greater driving torque and can produce a stronger driving effect.
  • the stator assembly includes: a stator core, and the stator core includes: a yoke 118; a stator main tooth 120, disposed on the yoke 118, and the stator main tooth 120 includes a tooth
  • the shoe 122 has a stator slot 124 between two adjacent stator main teeth 120, and a notch 126 between two adjacent tooth shoes 122, and the notch 126 communicates with the stator slot 124; the stator winding is arranged on the stator main tooth 120, located in the stator slot 124.
  • the stator assembly includes: a stator core, stator main teeth 120 and stator windings, and the stator core includes a yoke 118, which serves both as the main magnetic circuit of the stator and as a mounting for the stator main teeth 120 and the stator windings. and fixed parts.
  • stator main teeth 120 are arranged on the yoke 118 and are further fixed by the yoke 118.
  • the stator main teeth 120 include tooth shoes 122, and there are stator slots 124 between two adjacent stator main teeth 120, so that two adjacent stator teeth 120 There are intervals between the two stator main teeth 120, and the stator slots 124 can play a role of accommodation.
  • stator windings in the stator assembly are arranged on the stator main teeth 120 and located in the stator slots 124 , the stator windings are part of the input circuit of the motor 116 , and the alternating current is passed through to generate an alternating magnetic field.
  • the tooth roots of the stator main teeth 120 are connected to the yoke 118 to achieve a stable connection between the stator main teeth 120 and the yoke 118 .
  • the tooth shoe 122 is arranged on the top of the main tooth 120 of the stator.
  • the setting of the tooth shoe 122 can play a good role in limiting the stator winding in the stator slot 124, thereby ensuring that this part of the stator winding is stably located in the stator slot 124. This prevents the part of the winding assembly from falling out of the stator slot 124, thereby improving the reliability of the stator assembly.
  • the tooth shoe 122 is detachably connected to the main stator tooth 120 . That is, the tooth shoe 122 and the stator main tooth 120 are arranged in a separable sheathing assembly structure, so that the coil can be wound on the stator main tooth 120 first, and then assembled with the tooth shoe 122 after the winding is completed. In this way, the winding process is simplified and the difficulty of winding is reduced.
  • the stator core also includes at least two stator auxiliary teeth 128, which are arranged on the tooth shoe 122.
  • the stator auxiliary teeth 128 are used as magnetic conductive parts for magnetic conduction.
  • the stator auxiliary teeth 128 can also be As a modulation component, it realizes the function of magnetic field modulation.
  • a represents the number of stator main teeth 120
  • x represents the number of stator auxiliary teeth 128 on each stator main tooth 120
  • Pr represents the number The number of permanent magnets 110.
  • the present application further optimizes the number of pole pairs Ps of the stator winding, which further enhances the magnetic field modulation effect, increases the amplitude of the working magnetic density harmonic, and generates better output performance.
  • FIG. 3 there is a groove 130 between two adjacent stator auxiliary teeth 128; in the circumferential direction of the stator assembly, the size of the groove 130 is not the same as the size of the notch 126 wait.
  • the size of the groove 130 is not equal to the size of the notch 126, that is, the width of the groove 130 between two adjacent stator auxiliary teeth 128 is different from that of the adjacent two
  • the slots 126 of the stator slots 124 between the tooth shoes 122 are not equal in width.
  • the uniformity of the distribution of multiple stator auxiliary teeth 128 in the circumferential direction of the stator assembly will be changed, thereby reducing the number of cycles of the air gap permeance, and when the number of cycles of the air gap permeance is reduced, the magnetic flux density generated by The harmonic components will increase, that is, more working harmonics will be generated, and the output torque of the motor 116 will be further increased. In turn, the running performance of the motor 116 is better.
  • the present application further optimizes the size of the groove 130 and the size of the notch 126 to further enhance the magnetic field modulation effect, and the amplitude of the working sub-harmonic Increasing the value yields better output performance.
  • stator auxiliary teeth 128 among two adjacent stator auxiliary teeth 128 , between the tooth body bisector of one stator auxiliary tooth 128 and the tooth body bisector of the other stator auxiliary tooth 128
  • the included angle ⁇ is formed and satisfies 1 ⁇ /(2 ⁇ /(ax)) ⁇ 1.4, where a represents the number of stator main teeth 120 and x represents the number of stator auxiliary teeth 128 on each stator main tooth 120 .
  • an included angle ⁇ is formed between the tooth body bisector of one stator auxiliary tooth 128 and the tooth body bisector of the other stator auxiliary tooth 128, and the included angle ⁇
  • the presence of makes the motor 116 modulated to generate harmonic amplitudes with a certain torque.
  • the included angle ⁇ satisfies the formula 1 ⁇ /(2 ⁇ /(ax)) ⁇ 1.4, where a represents the number of stator main teeth 120 , and x represents the number of stator auxiliary teeth 128 on each stator main tooth 120 .
  • a represents the number of stator main teeth 120
  • x represents the number of stator auxiliary teeth 128 on each stator main tooth 120 .
  • the included angle ⁇ between the tooth body bisector of one stator auxiliary tooth 128 and the tooth body bisector of the other stator auxiliary tooth 128 is further carried out.
  • the optimization further enhances the magnetic field modulation effect, increases the amplitude of the working magnetic subharmonic, and produces better output performance.
  • ⁇ /(2 ⁇ /(ax)) can be 1, 1.1, 1.2, 1.3, 1.4, etc., and those skilled in the art can design according to the actual product.
  • an electrical device including: the motor 116 in any possible design above.
  • the electrical equipment proposed in this embodiment includes the motor 116 in any of the above-mentioned embodiments, so it has all the beneficial effects of the motor 116 in any of the above-mentioned embodiments, and a plurality of permanent magnets 110 with the same polarity are arranged in a plurality of accommodating parts In 108, a magnetic structure with alternating poles is produced on the annular yoke 106, which not only reduces the number of permanent magnets 110 used, but also enhances the magnetic field modulation effect, increases the amplitude of the working sub-harmonic, and produces better The output performance of , will not be discussed in detail here.
  • the motor 116 includes a rotor assembly 100 and a stator assembly disposed concentrically with the rotor assembly 100 and inside the rotor assembly 100 .
  • the stator assembly includes a stator core and a stator winding wound on the stator core.
  • the stator core includes a yoke 118 and a plurality of stator main teeth 120 formed by extending radially from the yoke 118.
  • the stator main teeth 120 include tooth shoes 122.
  • the stator slot 124 can be used to place a stator winding.
  • the stator winding includes a plurality of coils, and each coil is only wound on one stator main tooth 120 . That is to say, a concentrated winding structure with a single stator main tooth 120 wound is adopted. At this time, the winding end of the motor 116 is smaller, which is beneficial to reduce copper consumption, facilitates modularization, and improves manufacturing efficiency.
  • stator auxiliary teeth 128 are distributed on each tooth shoe 122, and the stator auxiliary teeth 128 can not only be used as magnetic conductive parts, but also can be used as modulation parts to realize the function of magnetic field modulation, and the adjacent stator auxiliary teeth 128 A groove 130 is formed between them, and the width of the groove 130 is relatively large, so that more harmonic components are introduced into the air-gap magnetic conduction.
  • the magnetomotive force of the permanent magnet 110 in the rotor assembly 100 and the air gap containing harmonic When the permeation acts, a new harmonic component will appear in the air hole flux density, thereby increasing the torque density of the motor 116 .
  • the width of the stator slot 124 is not equal to the width of the groove 130 between the adjacent stator auxiliary teeth 128.
  • the uniformity of the distribution of the plurality of stator auxiliary teeth 128 on the circumference is determined Change, the cycle number of the air-gap permeance is reduced, so that the flux density harmonic component generated by the adjustment increases, thereby generating more working harmonics, so that the output torque of the motor 116 will be further improved.
  • an included angle ⁇ is formed between the tooth body bisector of one stator auxiliary tooth 128 and the tooth body bisector of the other stator auxiliary tooth 128, and satisfies 1 ⁇ / (2 ⁇ /(ax)) ⁇ 1.4, in the above relationship, a represents the number of stator main teeth 120 , and x represents the number of stator auxiliary teeth 128 on each stator main tooth 120 .
  • a represents the number of stator main teeth 120
  • x represents the number of stator auxiliary teeth 128 on each stator main tooth 120 .
  • the rotor assembly 100 includes a magnetically permeable hub frame 102, and the magnetically permeable hub frame 102 includes an annular yoke portion 106 extending along the circumferential direction of the end cover portion 104 and a plurality of protruding portions 112 uniformly distributed in the circumferential direction, and the annular yoke portion 106 and protrusion 112 are equal in thickness.
  • the magnetically conductive hub frame can be integrally stretched and formed with magnetically conductive materials, which has a simple structure and is less difficult to manufacture, and the magnetically conductive hub frame is an integrated structure with high strength.
  • An accommodating portion 108 is arranged between two adjacent protruding portions 112, and the permanent magnet 110 is arranged on the inner peripheral surface of the annular yoke portion 106 and placed in the accommodating portion 108, and the number and protrusion of the permanent magnets 110
  • the number of parts 112 is equal, and the polarities of a plurality of permanent magnets 110 are all the same, which can be all S poles or all N poles, so that the magnetization produced by the permanent magnets 110 can magnetize the adjacent protruding parts 112, and the magnetization
  • the rear protrusions 112 are of a different polarity than the permanent magnets 110, thereby creating an alternating pole structure.
  • the motor 116 has better output performance.
  • the protruding part 112 includes a square surface, a polygonal surface or a spline surface 132.
  • the sub-spline surface can be a combination of multiple straight lines or straight lines and arcs, so as to ensure the smoothness of each part of the curved surface. Consistent curvature.
  • the permanent magnet 110 includes a square permanent magnet, a tile-shaped permanent magnet or a bread-shaped permanent magnet.
  • the angle between the two ends of the permanent magnets 110 and the centerline of the rotor is ⁇ , and when 0.9 ⁇ /( ⁇ /(Pr)) ⁇ 1.7, the motor 116 has Better output performance.
  • the permanent magnet 110 includes a ferrite or rare earth permanent magnet.
  • the number of pole pairs of the stator assembly and the rotor assembly 100 satisfies a certain relationship, specifically, the number of stator main teeth 120 is a, and the number of stator auxiliary teeth 128 distributed on the tooth shoe 122 of each stator main tooth 120
  • the number of is x
  • the number of pole pairs of the stator winding is Ps
  • the number of permanent magnets 110 in the rotor assembly 100 is Pr
  • the harmonic components can be used as working harmonics of the motor 116 to provide output torque for the motor 116 , thereby effectively increasing the torque density of the motor 116 .
  • the electronic rotor assembly 100 is provided with a protruding portion 112 , the existence of the protruding structure makes the modulation effect stronger, and the amplitude of the working sub-magnetic density harmonic is higher, which is beneficial to increase the output torque of the motor 116 .
  • the application adopts a magnetic field modulation motor structure, that is, the rotor assembly 100 is applied to a magnetic field modulation motor, and harmonics are used to work, and the modulation effect is enhanced by the protruding structure of the rotor assembly 100 with polarity , increase the working harmonic content, thereby improving the output performance of the motor 116 .
  • the present application provides a rotor assembly 100 , including: a first rotor core 134 , a first magnetic part 144 , a second rotor core 146 and a second magnetic part 156 , the first rotor
  • the core 134 and the second rotor core 146 are axially stacked, that is, the first rotor core 134 is located on one side of the second rotor core 146 .
  • the first rotor core 134 includes a first yoke portion 138 and a plurality of first salient poles 140 , the plurality of first salient poles 140 are arranged on the first yoke portion 138 , and a first salient pole 140 is formed between adjacent first salient poles 140 .
  • An installation slot 142 a plurality of first magnetic pieces 144 are disposed in the first installation slot 142 , specifically, at least one first magnetic piece 144 can be set in each first installation slot 142 .
  • the second rotor core 146 includes a second yoke 150 and a plurality of second salient poles 152 , the plurality of second salient poles 152 are arranged on the second yoke 150 , and a second mounting structure is formed between adjacent second salient poles 152 .
  • a plurality of second magnetic pieces 156 are disposed in the second installation slot 154 , specifically, at least one first magnetic piece 144 can be disposed in each first installation slot 142 .
  • the rotor assembly 100 provided in this application includes a first rotor core 134 and a second rotor core 146, wherein a plurality of first salient poles 140 are arranged on the first yoke portion 138 of the first rotor core 134, adjacent
  • the first installation groove 142 is formed between the first salient poles 140, and the first magnetic parts 144 are arranged in the first installation groove 142, and then the first salient poles 140 and the first magnetic parts 144 are alternately surrounded to form a ring structure,
  • the first salient pole 140 is magnetized by the first magnetic member 144, so that both the first salient pole 140 and the first magnetic member 144 have magnetism.
  • the second yoke portion 150 of the second rotor core 146 is provided with a plurality of Second salient poles 152, second installation grooves 154 are formed between adjacent second salient poles 152, second magnetic members 156 are arranged in the second installation grooves 154, and second salient poles 152 and second magnetic members 156 alternately It is surrounded by a ring structure, and then the second salient pole 152 is magnetized by the second magnetic member 156, so that both the second salient pole 152 and the second magnetic member 156 have magnetic properties, thereby reducing the magnetic force of the first magnetic member 144 and the second magnetic member 156. Part 156 half of the input, thereby reducing production costs.
  • first rotor core 134 and the second rotor core 146 form a deflected structure, that is, the first salient pole 140 of the first rotor core 134 and the second salient pole 152 of the second rotor core 146 are misaligned, so that The first magnetic member 144 disposed on the first rotor core 134 is opposite to the second salient pole 152 of the second core.
  • the first rotor core 134 and the second rotor core 146 are axially stacked, and the first magnetic member 144 is arranged corresponding to the second salient pole 152, so that the first magnetic member 144, the first salient pole 140, and the second salient pole 152 can be adjusted.
  • the magnetic field formed by the two magnetic parts 156 and the second salient pole 152 makes the magnetic field formed by the rotor assembly 100 more uniform, suppresses the influence of even harmonics, and reduces the magnetic field torque and torque fluctuation of the motor.
  • the magnetic field strength of the first salient pole 140 is slightly different from the magnetic field strength of the second magnetic member 156, therefore, it is easy to cause even times of back EMF
  • the increase of harmonics, and the present application arranges the first magnetic member 144 and the second salient pole 152 on an axial straight line, which can improve the structure of the overall magnetic field, break the alternating situation of magnetic field strength, and make the overall magnetic field more uniform , suppress the influence of even harmonics, reduce the motor magnetic field torque and torque ripple.
  • the rotor assembly 100 adopts an alternating pole structure, which can reduce the amount of magnetic parts and reduce the cost of the motor.
  • the first rotor core 134 and the first magnetic part 144 are assembled in the form of patches
  • the second rotor core 146 and the second magnetic part 156 are assembled in the form of patches
  • the first rotor The first salient pole 140 of the iron core 134 and the second salient pole 152 of the second rotor iron core 146 can realize the adjustment of the air gap, the modulation effect is enhanced, the amplitude of the working sub-harmonic is increased, and the motor torque is further improved. promote.
  • the centerline of the first magnetic member 144 along the radial direction of the first rotor core 134 may be coplanar with the centerline of the second salient pole 152 along the radial direction of the second rotor core 146 .
  • the first magnetic member 144 is a first permanent magnet
  • the second magnetic member 156 is a second permanent magnet
  • the first salient pole 140 is a first soft magnetic material
  • the second salient pole 152 is a second soft magnetic material.
  • a plurality of first rotor cores 134 and a plurality of second rotor cores 146 may be stacked alternately.
  • the first rotor core 134 and the second rotor core 146 form a deflected structure, that is, the first protrusion of the first rotor core 134
  • the pole 140 and the second salient pole 152 of the second rotor core 146 are misaligned, so that the second magnetic member 156 disposed on the second rotor core 146 is opposite to the first salient pole 140 of the first iron core.
  • the first rotor core 134 and the second rotor core 146 are axially stacked, and the second magnetic member 156 is arranged corresponding to the first salient pole 140, so that the first magnetic member 144, the first salient pole 140, and the first salient pole 140 can be adjusted.
  • the magnetic field formed by the two magnetic parts 156 and the second salient pole 152 makes the magnetic field formed by the rotor assembly 100 more uniform, suppresses the influence of even harmonics, and reduces the magnetic field torque and torque fluctuation of the motor.
  • the magnetic field strength of the second salient pole 152 is slightly different from the magnetic field strength of the second magnetic member 156, so it is easy to cause even times of back EMF Harmonic increases, and the present application arranges the second magnetic member 156 and the first salient pole 140 on an axial straight line, which in turn can improve the structure of the overall magnetic field, break the alternating situation of magnetic field strength, and make the overall magnetic field more uniform , suppress the influence of even harmonics, reduce the motor magnetic field torque and torque ripple.
  • the centerline of the second magnetic member 156 along the radial direction of the second rotor core 146 may be coplanar with the centerline of the first salient pole 140 along the radial direction of the first rotor core 134 .
  • the suppression of even harmonics can be enhanced.
  • the magnetization polarities of all the first magnetic parts 144 are the same; the magnetization polarities of all the second magnetic parts 156 are the same; The magnetization polarity of the first magnetic part 144 is opposite to that of the second magnetic part 156 .
  • the magnetization polarities of all the first magnetic parts 144 are the same, the magnetization polarities of all the second magnetic parts 156 are the same, and the magnetization polarities of the first magnetic parts 144 and the magnetization polarities of the second magnetic parts 156 opposite, that is, if the first magnetic piece 144 is an S pole, then the second magnetic piece 156 is an N pole, if the first magnetic piece 144 is an N pole, then the second magnetic piece 156 is an S pole, and the first salient pole 140
  • the magnetized polarity is also opposite to that of the first magnetic member 144, and the magnetized polarity of the second salient pole 152 is also opposite to that of the second magnetic member 156, so that in the axial direction of the rotor assembly 100, the same polarity of the first
  • the salient pole 140 and the second magnetic member 156 are collinear, and the second salient pole 152 of the same polarity and the second magnetic member 156 are collinear, so that the overall magnetic field formed by the rot
  • the magnetic field intensity generated after the first salient pole 140 and the second salient pole 152 are magnetized is similar, the magnetic field strength of the first magnetic member 144 and the second magnetic member 156 are similar, and thus the magnetization polarity of the first magnetic member 144 If the polarity of the magnetization of the second magnetic member 156 is opposite, then the polarities of the first salient pole 140 and the second salient pole 152 after being magnetized are also opposite.
  • the first magnetic member 144 is an S pole and the second magnetic member 156 is an N pole for example.
  • the number of S poles and N poles is equal, and then the first magnetic member 144 generates a strong S pole, the second magnetic member 156 generates a strong N pole, the first salient pole 140 generates a weak N pole, and the second magnetic member 156 generates a strong N pole.
  • the salient poles 152 generate weak S poles. In the circumferential direction, in the first rotor core 134, the adjacent magnetic poles are distributed as strong S poles, weak N poles, and strong S poles.
  • the adjacent magnetic poles are Very strong N pole, weak S pole and strong N pole, and in the axial direction, the adjacent polarity distribution is strong S pole, weak S pole, strong S pole, or strong N pole, weak N pole, strong N pole , so that the distribution of the entire magnetic field is more uniform, and the influence of even harmonics is further suppressed.
  • the difference between the first rotor core 134 and the second rotor core 146 is an odd number of pole pitches.
  • the difference between the first rotor core 134 and the second rotor core 146 is an odd number of pole pitches, thereby making the magnetic field generated by the rotor assembly 100 more regular, thereby further suppressing the influence of even harmonics, further Reduce motor field torque and torque ripple.
  • the difference between the first rotor core 134 and the second rotor core 146 is 1 pole pitch, 2 pole pitches or 5 pole pitches, etc.
  • the rotor assembly 100 adopts an axially segmented structure, and is formed by stacking the first rotor core 134 and the second rotor core 146 in the axial direction.
  • the upper and lower rotor cores are staggered by one pole moment, and all the first
  • the magnetization polarities of the magnetic parts 144 are both N poles or S poles
  • the magnetization polarities of the second magnetic parts 156 are both S poles or N poles, so that the induced back EMF phases of the two adjacent rotor assemblies 100 The difference is 180°, thereby suppressing the even harmonics in the synthetic back EMF, reducing the cogging torque and torque ripple of the motor.
  • the axial lengths of the first rotor core 134 and the second rotor core 146 are equal.
  • the length of the first rotor core 134 is equal to the length of the second rotor core 146 , so that the first magnetic member 144 is lifted in the axial direction of the rotor assembly 100
  • the symmetry of the generated magnetic field and the magnetic field generated by the second magnetic member 156 further makes the magnetic field generated by the rotor assembly 100 more uniform, thereby further suppressing the influence of even harmonics and further reducing the magnetic field torque and torque ripple of the motor .
  • the first rotor core 134 may be formed by stacking first punches, or press-molded by a soft magnetic material.
  • the second rotor core 146 can be formed by stacking the second punched sheets, or press-molded by soft magnetic material.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • adjacent first magnetic members 144 and first salient poles 140 are spaced apart to form a first gap 158.
  • first gap 158 Through the first gap 158, the distance between the end of the first salient pole 140 and the adjacent first pole 140 is reduced.
  • the leakage magnetic flux on the magnetic member 144 increases the working magnetic flux formed by the first salient pole 140 in the main magnetic circuit and improves the output performance of the motor.
  • the width d1 of the first gap 158 is less than or equal to 3 mm.
  • the width of the first gap 158 is less than or equal to 3mm, and the distance between the adjacent first magnetic member 144 and the first salient pole 140 is less than or equal to 3mm, thereby ensuring the magnetic field strength and the output performance of the motor.
  • the width of the first gap 158 may take a value of 3mm, 2.8mm, 2.5mm, 2.0mm, 1.5mm or 1mm and so on.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • adjacent second magnetic members 156 and second salient poles 152 are spaced apart to form a second gap 160, and through the second gap 160, the distance between the end of the second salient pole 152 and the adjacent second pole is reduced.
  • the leakage magnetic flux on the magnetic member 156 increases the working magnetic flux formed by the second salient pole 152 in the main magnetic circuit and improves the output performance of the motor.
  • the width d1 of the second gap 160 is less than or equal to 3 mm.
  • the width of the second gap 160 is less than or equal to 3mm, and the distance between the adjacent second magnetic member 156 and the second salient pole 152 is less than or equal to 3mm, thereby ensuring the magnetic field strength and the output performance of the motor.
  • the width of the second gap 160 may take a value of 3mm, 2.8mm, 2.5mm, 2.0mm, 1.5mm or 1mm.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the angle of the central angle of the first rotor iron core 134 occupied by the first magnetic member 144 is ⁇
  • the number of pole pairs Pr of the first rotor formed by the core 134 and the first magnetic member 144 is 0.9 ⁇ ( ⁇ Pr) ⁇ 1.7.
  • the angle of the central angle of the first rotor core 134 occupied by the first magnetic member 144 is ⁇ , and the existence of the included angle can increase the magnetomotive force of the motor, improve the modulation effect of the magnetic field, and increase the working sub-magnetic density harmonic.
  • the amplitude of the wave ensures the torque of the motor, which also avoids the problem that the number of magnetic poles decreases after the use of alternating poles in the motor, and the amplitude of the fundamental wave of the magnetic field decreases, resulting in a decrease in torque.
  • the line connecting the two ends of the first magnetic member 144 to the center of the first rotor core 134 forms an included angle ⁇ .
  • the angle ⁇ formed between the two ends of the magnetic part 144 and the center of the first rotor core 134 is optimized, which further enhances the magnetic field modulation effect, increases the amplitude of the working sub-harmonic, and produces more Good output performance.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • the angle of the central angle of the second rotor iron core 146 occupied by the second magnetic member 156 is ⁇
  • the second rotor iron core 146 The number of pole pairs Pr of the second rotor formed by the core 146 and the second magnetic member 156 is 0.9 ⁇ ( ⁇ Pr) ⁇ 1.7.
  • the angle of the central angle of the second rotor core 146 occupied by the second magnetic member 156 is ⁇ , and the existence of the included angle can increase the magnetomotive force of the motor, enhance the modulation effect of the magnetic field, and increase the working sub-magnetic density harmonic.
  • the amplitude of the wave ensures the torque of the motor, which also avoids the problem that the number of magnetic poles decreases after the use of alternating poles in the motor, and the amplitude of the fundamental wave of the magnetic field decreases, resulting in a decrease in torque.
  • the line connecting the two ends of the second magnetic member 156 to the center of the second rotor core 146 forms an angle ⁇ .
  • the second rotor core 146 produces a magnetic structure with alternating poles
  • the second The angle ⁇ formed between the two ends of the magnetic part 156 and the center of the second rotor core 146 is optimized, which further enhances the magnetic field modulation effect, increases the amplitude of the working sub-harmonic, and produces more Good output performance.
  • the first yoke portion 138 and the first salient pole 140 are of an integrated structure.
  • the first yoke portion 138 and the first salient pole 140 are integrated, and only the first magnetic member 144 is required for installation, thereby reducing installation difficulty and improving production efficiency.
  • first yoke portion 138 and the first salient pole 140 may be stamped and formed at the same time, or soft magnetic materials may be used for simultaneous press forming.
  • the second yoke 150 and the second salient pole 152 are of an integrated structure.
  • the second yoke portion 150 and the second salient pole 152 are of an integral structure, and only the second magnetic member 156 is required for installation, thereby reducing installation difficulty and improving production efficiency.
  • the second yoke portion 150 and the second salient pole 152 can be stamped and formed at the same time, or soft magnetic materials can be used to press and form at the same time.
  • a plurality of first magnetic elements 144 form a Halbach array.
  • the plurality of first magnetic elements 144 form a Halbach array, thereby improving the sinusoidality of the magnetic field generated by the first magnetic elements 144 and improving the efficiency of the motor.
  • the first magnetic member 144 adopts a Halbach structure, and is composed of a combination of small magnetic members whose magnetization directions are greater than or equal to three directions.
  • the magnetic field of the first magnetic member 144 is shown by the arrow in FIG. 8 .
  • a plurality of second magnetic elements 156 form a Halbach array (Halbach).
  • the multiple second magnetic elements 156 form a Halbach array, thereby improving the sinusoidality of the magnetic field generated by the second magnetic elements 156 and improving the efficiency of the motor.
  • the second magnetic member 156 adopts a Halbach structure, and is composed of a combination of small magnetic members whose magnetization directions are greater than or equal to three directions.
  • the flux leakage of the magnetic parts can be reduced, the sine degree of the back electromotive force can be further increased, the output performance of the motor can be improved, and the cogging torque and torque fluctuation of the motor can be further reduced.
  • the magnetic field of the second magnetic member 156 is shown by the arrow in FIG. 13 .
  • the first salient pole 140 is disposed inside the first yoke portion 138
  • the second salient pole 152 is disposed on the inner side of the first yoke portion 138 .
  • the inner side of the second yoke 150 is shown in FIGS. 4 to 13 .
  • the first yoke 138 is an annular structure
  • the first salient pole 140 is arranged on the inner circle of the first yoke 138
  • the second yoke 150 is an annular structure
  • the second salient pole 152 is arranged
  • the first salient pole 140 is disposed outside the first yoke portion 138
  • the second salient pole 152 is disposed outside the second yoke portion 150.
  • the first yoke 138 is an annular structure
  • the first salient pole 140 is arranged on the outer ring of the first yoke 138
  • the second yoke 150 is an annular structure
  • the second salient pole 152 is arranged
  • the first magnetic member 144 and the second magnetic member 156 have the same structure.
  • the structure of the first magnetic part 144 is the same as that of the second magnetic part 156, and the magnetic fields generated by the first magnetic part 144 and the second magnetic part 156 are similar or identical, so that the overall magnetic field of the rotor assembly 100 It is more uniform, so that the magnetic field formed by the rotor assembly 100 is more uniform, the influence of even harmonics is suppressed, and the magnetic field torque and torque fluctuation of the motor are reduced.
  • the structure of the first salient pole 140 and the structure of the second salient pole 152 are the same, and then the magnetic fields generated by the magnetization of the first salient pole 140 and the second salient pole 152 are similar or identical, so that the rotor assembly 100
  • the overall magnetic field is more uniform, so that the magnetic field formed by the rotor assembly 100 is more uniform, the influence of even harmonics is suppressed, and the magnetic field torque and torque fluctuation of the motor are reduced.
  • the first rotor core 134 includes a plurality of first iron core segments 136 , and the plurality of first iron cores are spliced into ring.
  • the first rotor core 134 includes a plurality of first core segments 136 connected end to end along the circumferential direction of the first rotor core 134 .
  • any first iron core segment 136 includes a first yoke 138 and at least one first salient pole 140, and the partial yokes of two adjacent first iron core segments 136 are connected to form a ring structure .
  • a plurality of first core segments 136 can be connected end to end to manufacture the rotor core.
  • the first rotor core 134 includes a plurality of first core segments 136 .
  • the first rotor core 134 can be expanded firstly, and can be expanded into one piece, or can be expanded into a single first iron core block 136 . Then, assemble the first magnetic element 144 at the corresponding position on each first iron core block 136 . In this way, the installation difficulty of the first magnetic member 144 and the first rotor core 134 can be reduced, and the production efficiency can be improved.
  • materials can be saved and costs can be reduced.
  • the second rotor core 146 includes a plurality of second core segments 148, and the plurality of second core segments are spliced into ring.
  • the second rotor core 146 includes a plurality of second core segments 148 connected end to end along the circumferential direction of the second rotor core 146 .
  • any first iron core block 136 includes a second yoke 150 and at least one second salient pole 152, and the partial yokes of two adjacent second iron core blocks 148 are connected to form a ring structure .
  • a plurality of second core segments 148 can be connected end to end to manufacture the rotor core.
  • the second rotor core 146 includes a plurality of second core segments 148 .
  • the second rotor core 146 can be expanded firstly, and can be expanded into one piece, or can be expanded into a single second iron core segment 148 .
  • a second magnetic member 156 is assembled at a corresponding position on each second iron core block 148 .
  • the installation difficulty of the second magnetic member 156 and the second rotor core 146 can be reduced, and the production efficiency can be improved.
  • materials can be saved and costs can be reduced.
  • the present application provides a motor, including: a stator assembly 162 ; and a rotor assembly 100 as provided in any one of the above-mentioned embodiments.
  • the motor provided by this application includes a stator assembly 162 and a rotor assembly 100 as proposed in any one of the above-mentioned technical solutions.
  • the stator assembly 162 and the rotor assembly 100 enable the rotor assembly 100 to rotate through electromagnetic effects, and, because of the motor proposed by this application It includes the rotor assembly 100 proposed by any one of the above technical solutions, therefore, it has all the effects of the rotor assembly 100 proposed by any one of the above technical solutions, and will not be stated here one by one.
  • the stator assembly 162 further includes a stator yoke 168 and a plurality of stator main teeth 120 arranged on the stator yoke 168 . Between adjacent stator main teeth 120 Stator slots 170 are formed between them. Moreover, grooves 130 are provided on the side of the stator main teeth 120 facing the rotor, and the grooves 130 divide the stator main teeth 120 into a plurality of stator auxiliary teeth 128 . Specifically, the width of the groove is d2, and d2 is larger or smaller than d3.
  • the stator assembly 162 is provided with a plurality of stator main teeth 120 facing the rotor assembly 100, and the side of the stator main teeth 120 facing the rotor is provided with a groove 130, which divides the stator main teeth 120 into a plurality of stator auxiliary teeth 128, and then use the form of the groove 130 and the auxiliary stator teeth 128 to adjust the air gap, modulate the magnetic field, and improve the efficiency of the motor.
  • the number of pole pairs of the stator assembly 162 is Pa
  • the number of stator main teeth 120 is x
  • x represents the number of stator main teeth 120
  • a represents the number of stator auxiliary teeth 128 on each stator main tooth 120
  • Pr represents the number of pole pairs of the second rotor.
  • the new harmonic components appearing in the air-gap magnetic density can be used as the working harmonics of the motor to provide output torque for the motor, thereby effectively improving the torque density of the motor.
  • the new harmonic components appearing in the air-gap flux density can be used as the working harmonics of the motor to provide output torque for the motor, thus effectively improving the torque density of the motor.
  • stator auxiliary teeth 128 are arranged on the stator main teeth 120, and then the stator auxiliary teeth 128 are used as modulation components to realize the effect of magnetic field modulation, so that more Harmonic components, so that the performance of the motor has been significantly improved.
  • the new harmonic components appearing in the air-gap flux density can be used as the working harmonics of the motor to provide output torque for the motor, thus effectively improving the torque density of the motor.
  • a groove 130 is disposed on one stator main tooth 120 to form two stator auxiliary teeth 128 .
  • the dotted line L1 in FIG. 18 represents the bisector of the main stator teeth 120 along the radial direction of the stator assembly 162 .
  • the distance from the bisector of the stator main tooth 120 to the two side walls of the groove 130 is equal, that is, the distance between the stator main tooth 120
  • the distances from the bisector to the two sidewalls of the groove 130 are d4 and d5 respectively, and d4 is equal to d5.
  • the distance from the bisector of the main stator teeth 120 to the two side walls of the groove 130 is equal.
  • the groove 130 is located in the middle of the stator main teeth 120 .
  • the dotted line L1 in FIG. 18 represents the bisector of the main stator teeth 120 along the radial direction of the stator assembly 162 .
  • the distance from the bisector of the stator main tooth 120 to the two side walls of the groove 130 is equal, that is, the distance between the stator main tooth 120
  • the distances from the bisector to the two sidewalls of the groove 130 are d4 and d5 respectively, and d4 is not equal to d5.
  • the distances from the bisector of the main stator teeth 120 to the two side walls of the groove 130 are not equal.
  • the groove 130 is offset toward one end of the stator main teeth 120 .
  • Such setting can change the distribution of air gap permeance and weaken some harmonics, thereby reducing torque ripple and improving the vibration and noise performance of the motor.
  • the magnetomotive force of the permanent magnet interacts with the air-gap permeance containing harmonics, new harmonic components will appear in the air-gap flux density.
  • at least two auxiliary stator teeth 128 introduce more harmonic components into the air-gap permeance, so that the performance of the motor is significantly improved.
  • the dotted line L2 in FIG. 18 represents the angle bisector of two adjacent stator main teeth 120 .
  • Embodiment 21 to Embodiment 24 On the basis of any one of Embodiment 21 to Embodiment 24, further, among two adjacent stator main teeth 120, the stator auxiliary teeth 128 of one stator main tooth 120 and the stator auxiliary teeth 128 of the other stator main tooth 120 There is a notch between the teeth 128. At the notch, the distance from the angle bisector of two adjacent stator main teeth 120 to the two adjacent stator auxiliary teeth 128 is equal. Specifically, as shown in FIG. 18 , in the notch , the distances from the angle bisectors of two adjacent stator main teeth 120 to two adjacent stator auxiliary teeth 128 are d6 and d7, and d5 is equal to d6.
  • the distance from the bisector of the angle of the main stator teeth 120 to the two side walls of the groove 130 is equal.
  • the groove 130 is located in the middle of the stator main teeth 120 .
  • the dotted line L2 in FIG. 18 represents the angle bisector of two adjacent stator main teeth 120 .
  • Embodiment 21 to Embodiment 24 On the basis of any one of Embodiment 21 to Embodiment 24, further, among two adjacent stator main teeth 120, the stator auxiliary teeth 128 of one stator main tooth 120 and the stator auxiliary teeth 128 of the other stator main tooth 120 There is a notch between the teeth 128; at the notch, the distance from the angle bisector of two adjacent stator main teeth 120 to the adjacent two stator auxiliary teeth 128 is not equal, specifically, as shown in Figure 18, in the slot At the mouth, the distances from the angle bisectors of two adjacent stator main teeth 120 to two adjacent stator auxiliary teeth 128 are d6 and d7, and d5 is not equal to d6.
  • the distances from the bisector of the angle of the stator main teeth 120 to the two side walls of the groove 130 are not equal.
  • the groove 130 is offset toward one end of the stator main teeth 120 .
  • Such setting can change the distribution of air gap permeance and weaken some harmonics, thereby reducing torque ripple and improving the vibration and noise performance of the motor.
  • new harmonic components will appear in the air-gap flux density.
  • at least two auxiliary stator teeth 128 introduce more harmonic components into the air-gap permeance, so that the performance of the motor is significantly improved.
  • the dotted line L3 in FIG. 18 represents the tooth body bisector of the auxiliary stator teeth 128 along the radial direction of the stator assembly 162 .
  • Embodiment 21 to Embodiment 26 On the basis of any one of Embodiment 21 to Embodiment 26, further, among the two adjacent stator auxiliary teeth 128, along the radial direction of the stator assembly 162, the bisector of one stator auxiliary tooth 128 and the other stator The angle ⁇ formed between the bisectors of the auxiliary teeth 128 satisfies 1 ⁇ [2 ⁇ (a ⁇ x)] ⁇ 1.4, where x represents the number of stator main teeth 120, and a represents each stator main tooth 120 The number of stator secondary teeth 128 .
  • the angle ⁇ formed between the bisector of one stator auxiliary tooth 128 and the other stator auxiliary tooth 128 is , and satisfy 1 ⁇ [2 ⁇ (a ⁇ x)] ⁇ 1.4; wherein, x represents the number of stator main teeth 120, and a represents the number of stator auxiliary teeth 128 on each stator main tooth 120.
  • x represents the number of stator main teeth 120
  • a represents the number of stator auxiliary teeth 128 on each stator main tooth 120.
  • the stator assembly 162 is composed of a plurality of stator segments 172 assembled, and each stator includes a yoke section 174 and a Stator main teeth 120 , adjacent stator segments 172 are connected by yoke sections 174 .
  • the stator assembly 162 includes a plurality of stator segments 172 , and the stator assembly 162 is formed by splicing the plurality of stator segments 172 .
  • workers can first perform operations such as winding on a single stator block 172, which is beneficial to reduce the difficulty of winding, thereby improving the working efficiency of winding and reducing material costs.
  • operations such as winding can be performed on a single stator block 172 first, which can effectively increase the number of windings, increase the slot fill rate of the windings, and improve the output performance of the applied motor.
  • the present application can reduce the scrap rate during the winding process, thereby reducing scrap and improving the cost rate of the stator assembly 162 .
  • the independent stator block 172 has lower requirements on materials, which can improve the utilization rate of materials, thereby reducing the material cost of the stator assembly 162 .
  • the yoke sections 174 of two adjacent stator segments 172 are detachably connected or fixedly connected.
  • the yoke sections 174 of two adjacent stator blocks 172 are detachably connected, thereby ensuring the disassembly and assembly of two adjacent stator blocks 172 .
  • the stator block 172 further includes a first connection portion 176 and a second connection portion 178 .
  • the first connecting portion 176 is arranged at the first end of the yoke section 174
  • the second connecting portion 178 is arranged at the second end of the yoke section 174
  • the first connecting portion 176 and the second connecting portion 178 are arranged on the yoke section. Segment 174 is opposite.
  • the structures of the first connecting portion 176 and the second connecting portion 178 are matched, and the first connecting portion 176 of one stator block 172 cooperates with the second connecting portion 178 of another stator block 172 to realize self-locking. Therefore, in the process of splicing the stator blocks 172, the present application can connect two adjacent stator blocks 172 through the first connection part 176 and the second connection part 178, including the detachable parts of the two adjacent stator blocks 172. connect.
  • one of the first connecting portion 176 and the second connecting portion 178 is a convex portion, and the other is a concave portion.
  • the shape of the convex part matches the shape of the concave part, and the convex part and the concave part can be detachably connected, and have a self-locking function.
  • the recesses include, but are not limited to, the following structures: polygonal grooves, circular grooves, and elliptical grooves; the shape of the protrusions matches the shape of the recesses.
  • stator yoke 168 and the stator main teeth 120 are detachably fitted.
  • the stator assembly 162 includes a stator yoke 168 and a stator main tooth 120 disposed on the stator yoke 168 , wherein the stator main tooth 120 and the stator yoke 168 are detachably connected.
  • the wire can be wound on the main teeth of the stator 120 first, and then installed on the yoke.
  • the notch width d3 of the slot 170 can avoid the influence of the too large notch on the performance of the motor.
  • portions of the stator yoke 168 may be embedded in the stator main teeth 120 , or portions of the stator main teeth 120 may be embedded in the stator yoke 168 .
  • the stator main tooth 120 includes: a tooth body 164 and a tooth shoe 166 , and one end of the stator main tooth 120 is in phase with the stator yoke 168 connected, and the other end is detachably connected to the tooth shoe 166.
  • the groove 130 is disposed on the tooth shoe 166
  • the auxiliary stator teeth 128 are disposed on the tooth shoe 166 .
  • the tooth shoe 166 is detachably connected to the tooth body 164 .
  • the wire can be wound on the tooth body 164 first, and then the tooth shoe 166 can be installed.
  • Circumferential width reduce the width d3 of the notch, so as to avoid the influence of the too large notch on the performance of the motor.
  • the motor provided in this application includes a stator assembly 162 and a rotor assembly 100, and the stator assembly 162 includes a stator core and a winding.
  • the stator core includes a stator yoke 168 and stator main teeth 120 extending radially from the stator yoke 168 , and stator slots 170 are formed between adjacent stator main teeth 120 .
  • Each stator main tooth 120 includes a tooth body 164 and a tooth shoe 166 arranged at one end of the tooth body 164, a notch is formed between adjacent tooth shoes 166, and a plurality of stator auxiliary teeth 128 are distributed on each tooth shoe 166, correspondingly Grooves 130 are formed between adjacent stator auxiliary teeth 128 ; the winding is composed of multiple coils, the number of coils is the same as the number of stator main teeth 120 , and each coil is wound on a single stator main tooth 120 .
  • the rotor assembly 100 and the stator assembly 162 are arranged concentrically.
  • the rotor assembly 100 includes a magnetically permeable first rotor core 134, a second rotor core 146, a first magnetic member 144 attached to the first rotor core 134, and a first magnetic member 144 attached to the
  • the second magnetic member 156 of the second rotor core 146, the first rotor core 134 and the second rotor core 146 are stacked in the axial direction, and the difference between the first rotor core 134 and the second rotor core 146 is 1 pole moment,
  • the structure of the first rotor core 134 is the same as that of the second rotor core 146, except that they are assembled after rotating a pole pitch, and the first salient poles 140 are uniformly distributed on the inside or outside of the first rotor core 134, and the second A magnetic piece 144 is arranged between the adjacent first salient poles 140, second salient poles 152 are evenly distributed on the outside
  • the centerline of the first salient pole 140 is aligned with the centerline of the second magnetic member 156
  • the centerline of the second salient pole 152 is aligned with the centerline of the first magnetic member 144
  • the magnetization polarities of the first magnetic part 144 and the second magnetic part 156 are opposite.
  • the auxiliary stator teeth 128 on the tooth shoe 166 are used as modulation components to realize the magnetic field modulation.
  • the slot opening is small, and the air gap permeance is close to a constant.
  • the main stator tooth 120 is split into multiple stator auxiliary teeth 128, and a large groove 130 is formed between adjacent stator auxiliary teeth 128, so that more harmonics are introduced into the air gap permeance portion.
  • new harmonic components will appear in the air-gap flux density.
  • the rotor assembly 100 adopts an alternating pole structure, the first rotor core 134 has the first salient pole 140 and the second rotor core 146 has the second salient pole 152, the air gap permeance is further changed, the modulation effect is enhanced, and the working The amplitude of the sub-flux harmonic increases, the motor torque is further improved, and the alternating pole structure can reduce the amount of permanent magnets and reduce the cost of the motor.
  • the rotor assembly 100 adopts an axially segmented structure, and is formed by stacking the first rotor core 134 and the second rotor core 146 in the axial direction.
  • the upper and lower rotor cores are staggered by one pole moment, and all the first magnetic parts 144
  • the magnetization polarities of the two magnets are both N poles or S poles
  • the magnetization polarities of the second magnetic member 156 are both S poles or N poles, so that the phase difference of the induced back EMFs of the two adjacent rotor assemblies 100 is 180° , thereby suppressing the even harmonics in the synthetic back EMF, reducing the cogging torque and torque ripple of the motor.
  • each coil is only wound on one stator main tooth 120, that is, a single-tooth-wound concentrated winding structure is adopted. At this time, the end of the motor winding is small, which is beneficial to reduce copper loss and facilitates the realization of Modularization improves manufacturing efficiency.
  • first gap 158 between the first magnetic member 144 and the first salient pole 140
  • second gap 160 between the second magnetic member 156 and the second salient pole 152
  • the first gap 158 and the second gap 160 When the width range is 0 to 3mm, the output performance of the motor is better.
  • the first magnetic part 144 and the second magnetic part 156 adopt a Halbach structure, and are composed of a combination of small magnetic parts with magnetization directions greater than or equal to three directions.
  • the motor of the present application may be an inner rotor motor or an outer rotor motor.
  • the present application provides an electrical device, including: the motor provided in any one of the above embodiments.
  • the electrical equipment provided by the present application includes the motor provided by any of the above embodiments, therefore, it has all the effects of the motor provided by any of the above embodiments, and will not be stated here one by one.
  • the electrical equipment provided in this application includes but is not limited to products such as refrigerators, washing machines, and air conditioners.
  • connection means two or more, unless otherwise clearly defined.
  • connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提出了一种转子组件、电机和电器设备。其中,转子组件,包括:导磁毂框架,导磁毂框架包括端盖部和环形轭部,端盖部连接于环形轭部轴向的一端,环形轭部的内周壁设置有多个容纳部,多个容纳部沿环形轭部的圆周方向分布;多个永磁体,分别设置于多个容纳部内,多个永磁体的极性相同。通过本申请的转子组件,环形轭部和连接于环形轭部轴向一端的端盖部,提高了导磁毂框架的整体结构强度;环形轭部的内周壁设置有多个容纳部,多个极性相同的永磁体设置于多个容纳部内,在环形轭部上产生了交替极的磁性结构,进而既降低了永磁体的使用数量,且降低了交替极转子的制造难度,又使得磁场调制效应增强,工作次磁密谐波的幅值增加。

Description

转子组件、电机和电器设备
本申请要求于2021年12月17日提交到中国国家知识产权局、申请号为“202111550871.7”、发明名称为“转子组件、电机和电器设备”的中国专利申请的优先权;2021年12月17日提交到中国国家知识产权局、申请号为“202123183375.0”、发明名称为“转子组件、电机和电器设备”的中国专利申请的优先权;2021年12月17日提交到中国国家知识产权局、申请号为“202111550908.6”、发明名称为“转子结构、电机和电器设备”的中国专利申请的优先权;2021年12月17日提交到中国国家知识产权局、申请号为“202123185293.X”、发明名称为“转子结构、电机和电器设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,具体而言,涉及一种转子组件、电机和电器设备。
背景技术
相关技术中,永磁体电机中永磁体用量多,成本较高。且对于极数较大的设计方案而言,永磁体块数较多,装配工序时间长,影响生产制造效率。此外,相关技术中采用了交替极结构,将原电机中所有的N极永磁体或者S极永磁体全部替换成导磁铁芯,使得基波幅值下降明显,电机输出性能会有下降。
外转子电机多为表贴式永磁体电机结构,结构简单,且易于制造。但此电机结构中永磁体用量多,成本较高。且对于极数较大的设计方案而言,永磁体块数较多,装配工序时间长,影响生产制造效率。相关技术中采用了交替极结构,即将原电机中所有的N极永磁体或者S极永磁体全部替换成导磁铁芯,在此设计之下,两块N极永磁体或者S极永磁体之间的导磁材料会被相邻的永磁磁极磁化成S极或者N极,形成交替极结构。但由于交替极结构磁极下的气隙磁密不对称,会引入大量的偶次谐波,导致反电 势不对称,从而引起较大的转矩脉动,影响电机运行的可靠性。
发明内容
本申请的第一方面提供的一种转子组件,包括:导磁毂框架,导磁毂框架包括端盖部和环形轭部,端盖部连接于环形轭部轴向的一端,环形轭部的内周壁设置有多个容纳部,多个容纳部沿环形轭部的圆周方向分布;多个永磁体,分别设置于多个容纳部内,多个永磁体的极性相同。
本申请所提出的转子组件包括导磁毂框架和多个永磁体。其中,导磁毂框架包括相连接的端盖部和环形轭部;端盖部连接于环形轭部轴向的一端,环形轭部的内周壁设置有多个容纳部,多个容纳部沿环形轭部的圆周方向分布;多个永磁体分别设置于多个容纳部内。并且,本申请提出的转子组件中多个永磁体的极性相同。具体地,在本申请提出的转子组件中,导磁毂框架采用导磁材料制造而成。
特别地,本申请提出的转子组件中,导磁毂框架包括相连接的端盖部和环形轭部,导磁毂框架的整体结构简单。此外,本申请直接在环形轭部的内周壁设置有多个容纳部,并保证多个容纳部沿环形轭部的圆周方向分布。
这样,在将多个极性相同的永磁体分别装配到多个容纳部后,首先可保证多个永磁体的有效安装定位,其次可保证多个极性相同的永磁体在环形轭部的圆周方向间隔分布。
因此,本申请提出的转子组件中导磁毂框架包括环形轭部和连接于环形轭部轴向一端的端盖部,提高了导磁毂框架的整体结构强度;环形轭部的内周壁设置有多个容纳部,多个容纳部沿环形轭部的圆周方向分布,多个极性相同的永磁体设置于多个容纳部内,在环形轭部上产生了交替极的磁性结构,进而既降低了永磁体的使用数量,且降低了交替级转子的制造难度,又使得磁场调制效应增强,工作次磁密谐波的幅值增加,产生了更好的输出性能。
在一些可能的设计中,导磁毂框架还包括:凸出部,设置于环形轭部的内周壁,并朝向环形轭部的中部凸出,容纳部位于相邻两个凸出部之间。
在该设计中,导磁毂框架还包括凸出部。其中,凸出部设置于环形轭 部的内周壁上,并朝向环形轭部的中部凸出;相邻两个凸出部之间形成了容纳部,本申请在此基础上,将多个极性相同的永磁体设置于多个容纳部内。这样,在环形轭部的圆周方向上凸出部与永磁体交替分布,进而形成了交替极结构。
如此设计,有效减小了相关技术中交替极转子的制造难度。此外,该转子组件配合定转子磁场极对数设计,利用磁密谐波进行工作,避免采用交替极后磁密基波幅值下降带来的输出性能下降的问题。
具体地,相关技术在采用交替极结构后,磁极数量减小,气隙磁场基波幅值会下降,电机输出性能降低。本申请采用了磁场调制电机结构,即将本申请提出的转子组件应用于磁场调制电机中,利用谐波来进行工作,通过凸极转子增强调制效果,提高工作谐波含量,从而提升电机输出性能。避免交替极结构基波幅值下降带来电机性能下降的问题。
在一些可能的设计中,凸出部的厚度与环形轭部的厚度相等。
在该设计中,凸出部的厚度与环形轭部的厚度相等,使得凸出部和环形轭部可由同一个板材进行拉伸成型,结构简单,制造难度降低。并且,此设置使得导磁毂框架的整体结构强度高,具有更长的使用寿命。
在一些可能的设计中,永磁体的数量与凸出部的数量相等。
在该设计中,永磁体的数量与凸出部的数量相等。这样,在保证凸出部与永磁体交替分布的基础上,还可保证每一个永磁体均可放置在容纳部内。并且,永磁体的数量与凸出部的数量相等,保证导磁毂框架的结构更加简单,可降低导磁毂框架的加工难度,进而提升导磁毂框架的加工效率。
进一步地,用于放置永磁体的容纳部的数量也与凸出部的数量相一致,使得环形轭部可采用一体式板材进行拉伸成型,结构简单,制造难度降低,并且转子组件强度高。
在一些可能设计中,端盖部和环形轭部为一体式结构。
在该设计中,端盖部和环形轭部一体式结构,使得端盖部与环形轭部之间的连接无需额外的装配件,进而降低了装配难度。同时,一体式的端盖部和环形轭部具有更高的结构强度,使用寿命更高。
在一些可能的设计中,在环形轭部的圆周方向上,永磁体与容纳部的内 壁之间存在气隙。
在该设计中,在环形轭部的圆周方向上,永磁体与容纳部的内壁之间存在气隙。气隙的存在可以有效减小永磁体与容纳腔内壁之间的漏磁,永磁体对凸出部的磁化效果较佳。进一步地,气隙的存在可以降低装配难度,进而提升了转子组件运行的可靠性。
在一些可能的设计中,在环形轭部的圆周方向上,气隙的尺寸大于0mm并小于3mm。
在该设计中,气隙的大小影响整个转子组件的运作可靠性,气隙过大时,将会使磁阻增大,从而将励磁损耗增大,使得永磁体对凸出部的磁化效果降低,进而无法产生交替极结构。而当气隙过小时,又会使得气隙谐波磁场增大,运行时永磁体易与容纳腔的内壁之间发生碰撞,从而降低了运行可靠性,也给装配带来困难。
在该设计中,将气隙的尺寸设置为大于0mm并小于3mm。这样,既可以使磁阻保持在合适范围内,永磁体对凸出部的磁化效果最佳,又可以降低装配难度,进而提升了运行可靠性。
在一些可能的设计中,环形轭部的中心到永磁体两端的连线之间形成有夹角γ,并满足0.9<γ/(π/(P_r))<1.7,其中,P_r为永磁体的数量。
在该设计中,环形轭部的中心到永磁体的两端的连线之间形成有夹角γ,夹角的存在可以使得气隙磁导过程进一步变化,磁场调制效应增强,工作次磁密谐波的幅值增加,进而使得采用次转子组件的电机转矩进一步地得到提升,由此也避免了传统永磁电机中采用交替极后磁极数量减小,磁场基波幅值下降,导致转矩下降的问题。
进一步地,并满足0.9<γ/(π/(P_r))<1.7,其中,P_r为永磁体的数量,当夹角γ满足上述条件时,转子组件的工作性能良好。
在一些可能的设计中,永磁体包括以下一者:铁氧体或稀土永磁体;
在该设计中,永磁体可以采用铁氧体,稀土永磁体的导磁性能较好。
在该设计中,永磁体还可以采用稀土永磁体,稀土永磁体的磁能极高。
在一些可能的设计中,凸出部包括样条曲面,样条曲面朝向环形轭部的中部设置。
在该设计中,凸出部包括样条曲面,样条曲面朝向环形轭部的中部设置,样条曲面一体成型,进而减低了加工的难度。
在一些可能的设计中,在环形轭部的圆周方向上,样条曲面包括多段相连接的子样条面,子样条面包括平面和/或弧面。
在该设计中,在环形轭部的圆周方向上,样条曲面包括多段相连接的子样条面,各段之间光滑连接,使得其形成的整体样条曲面曲率变化一致,进而使得转子组件在运作时的能量损耗更低。子样条面包括平面和/弧面,使得各段之间的曲率更为接近。
根据本申请的第二个方面,提出了一种电机,包括:如上述任一可能设计中的转子组件,定子组件,定子组件的至少一部分位于转子组件内。
本申请的第二个方面提出的电机,包括:如上述任一可能设计中的转子组件,因此具有上述任一可能设计中转子组件的全部有益效果。
进一步地,电机中还包括定子组件,定子组件的至少一部分位于转子组件内。在电机工作时,电机通电,定子组件产生旋转磁场,转子组件在旋转磁场中被磁力线切割而产生电流,电流在电机内传输至末端,从而使得电机能够进行电流输出。
同时,转子组件采用交替极结构后,转子上凸出部的凸出结构,使得气隙磁导作用增强,调制效应增强,工作次磁密谐波的幅值增加,电机转矩进一步得到了提升,进而产生了更大的驱动转矩,能够产生更强的驱动力。
另外,本申请提供的上述可能设计中的电机,还可以具有如下附加技术特征:
在一些可能设计中,定子组件包括:定子铁芯,定子铁芯包括:轭部;定子主齿,设置于轭部上,定子主齿包括齿靴,相邻两个定子主齿之间具有定子槽,相邻两个齿靴之间具有槽口,槽口与定子槽相连通;定子绕组,设置于定子主齿上,位于定子槽内。
在该设计中,定子组件包括:定子铁芯、定子主齿和定子绕组,定子铁芯包括轭部,其既作为定子的主要磁路,又作为定子主齿和定子绕组的安装和固定部件。
进一步地,定子主齿设置于轭部上,进而被轭部固定,定子主齿包括齿靴,相邻两个定子主齿之间具有定子槽,使得相邻的两个定子主齿之间具有间隔,且定子槽内可起到容纳作用。相邻的两个齿靴之间具有槽口,槽口与定子槽相连通。这样,通过定子槽和槽口的设置,使得电机的启动转矩降低,改善气隙磁场波形,减少了附加的损耗。
进一步地,定子组件中的定子绕组设置于定子主齿上,并位于定子槽内,定子绕组是电机的输入电路部分,通过通入交变电流,进而产生交变磁场。
在一些可能设计中,定子铁芯还包括:至少两个定子副齿,设置于齿靴上;其中,定子绕组的极对数Ps=│ax±Pr│,a表示定子主齿的数量,x表示每个定子主齿上定子副齿的数量,Pr表示多个永磁体的数量。
在该设计中,定子铁芯还包括至少两个定子副齿,设置于齿靴上,一方面,定子副齿作为导磁部件进行导磁,一方面,定子副齿还可作为调制部件,实现磁场调制的作用。
进一步地,定子绕组的极对数满足关系式Ps=│ax±Pr│,其中,a表示定子主齿的数量,x表示每个定子主齿上定子副齿的数量,Pr表示多个永磁体的数量。这样,气隙磁密中出现的新的谐波成分可作为电机的工作谐波,进而为电机提供输出转矩,从而有效提升了电机的转矩密度。
在一些可能设计中,相邻两个定子副齿之间具有凹槽;在定子组件的圆周方向上,凹槽的尺寸与槽口的尺寸不等。
在该设计中,相邻的两个定子副齿之间具有凹槽,使得气隙导磁中引入较多的谐波分量,当转子组件中永磁体的磁动势和含有谐波的气隙磁导作用时,气隙磁密中会出现新的谐波成分。其可作为电机的工作谐波,为电机提供输出转矩,从而有效提升了电机的转矩密度。
进一步地,在定子组件的圆周方向上,凹槽的尺寸与槽口的尺寸不等,即相邻的两个定子副齿之间的凹槽的宽度,与相邻的两个齿靴之间的定子槽的槽口宽度不相等。这样,会改变多个定子副齿在定子组件圆周方向上的分布均匀程度,从而减小了气隙磁导的周期数,而当气隙磁导周期数减小后,调制生成的磁密谐波分量将增加,即会产生更多的工作谐波,电机输出转矩会进一步提 升。进而使得电机的运行性能更佳。
在一些可能设计中,在相邻两个定子副齿中,一个定子副齿的齿身平分线与另一个定子副齿的齿身平分线之间形成夹角β,且满足1≤β/(2π/(ax))<1.4,其中,a表示定子主齿的数量,x表示每一个定子主齿上定子副齿的数量。
在该设计中,在相邻的两个定子副齿中,一个定子副齿的齿身平分线与另一个定子副齿的齿身平分线之间形成夹角β,夹角β的存在使得电机调制生成谐波幅值,且具有一定的转矩。
进一步地,夹角β满足公式1≤β/(2π/(ax))<1.4,其中,a表示定子主齿的数量,x表示每一个定子主齿上定子副齿的数量。此时,电机调整生成的谐波幅值较大,且电机转矩也较大。
具体地,定子副齿的齿身平分线为:在定子铁芯的外圆周上,定子副齿的中部与定子铁芯中心的连线。
根据本申请的再一个方面,还提出了一种电器设备,包括:如上述任一可能设计中的电机。
本申请的再一个方面提出的电器设备,包括上述任一可能设计中的电机,因此具有上述任一可能设计中的电机的全部有益效果,在此不做赘述。
根据本申请的第四方面,本申请提出了一种转子组件,包括:第一转子铁芯,第一转子铁芯包括第一轭部和多个第一凸极,多个第一凸极设于第一轭部,相邻的第一凸极之间形成第一安装槽;多个第一磁性件,第一磁性件设于第一安装槽;第二转子铁芯,沿第一转子铁芯的轴向,设于第一转子铁芯的一侧,第二转子铁芯包括第二轭部和多个第二凸极,多个第二凸极设于第二轭部,相邻的第二凸极之间形成第二安装槽;多个第二磁性件,第二磁性件设于第二安装槽,其中,第一磁性件的和第二凸极相对应的设置。
本申请提出的转子组件,包括第一转子铁芯和第二转子铁芯,其中,第一转子铁芯的第一轭部上设置有多个第一凸极,相邻的第一凸极之间形成第一安装槽,第一磁性件设置在第一安装槽内,进而第一凸极和第一磁性件交替的围绕呈一环状结构,进而第一凸极被第一磁性件磁化,使得第一凸极和第一磁性件均具有磁性,同样地,第二转子铁芯的第二轭部上设置有多个第二凸极,相邻的第二凸极之间形成第二安装槽,第二磁性件设 置在第二安装槽内,进而第二凸极和第二磁性件交替的围绕呈一环状结构,进而第二凸极被第二磁性件磁化,使得第二凸极和第二磁性件均具有磁性,进而可以在减少第一磁性件和第二磁性件一半的投入,从而降低生产成本。
并且,第一转子铁芯和第二转子铁芯轴向堆叠,且第一磁性件对应第二凸极的设置,进而可以调节第一磁性件、第一凸极、第二磁性件和第二凸极形成的磁场,使得转子组件形成的磁场更均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
另外,根据本申请提供的上述技术方案中的转子组件,还可以具有如下附加技术特征:
在上述技术方案的基础上,进一步地,第二磁性件和第二凸极相对应的设置。
在该设计中,第一磁性件对应第二凸极的设置,第二磁性件对应第二凸极的设置,进而可以进一步地调节第一磁性件、第一凸极、第二磁性件和第二凸极形成的磁场,使得转子组件形成的磁场更均匀,进一步地抑制偶次谐波的影响,进一步地降低电机磁场转矩和转矩波动。
在一些可能的设计中,进一步地,全部第一磁性件的充磁极性相同;全部第二磁性件的充磁极性相同;第一磁性件的充磁极性和第二磁性件的充磁极性相反。
在该设计中,全部的第一磁性件的充磁极性相同,全部的第二磁性件的充磁极性相同,并且,第一磁性件的充磁极性和第二磁性件的充磁极性相反,即若第一磁性件为S极,则第二磁性件为N极,若第一磁性件为N极,则第二磁性件为S极,而第一凸极被磁化后的极性和第一磁性件也相反,第二凸极被磁化后的极性和第二磁性件也相反,进而转子组件的轴向上,同极性的第一凸极和第二磁性件共线,同极性的第二凸极和第二磁性件共线,进而使得转子组件的形成整体磁场更加均匀,使得轴向上第一磁性件和第二磁性件在绕组电枢上产生的感应反电势相差180°,从而进一步地抑制偶次谐波的影响,进一步地降低电机磁场转矩和转矩波动。
在一些可能的设计中,进一步地,第一转子铁芯和第二转子铁芯相差单数个极距。
在该设计中,第一转子铁芯和第二转子铁芯相差单数个极距,进而使得转子组件产生的磁场更加的规整,从而进一步地抑制偶次谐波的影响,进一步地降低电机磁场转矩和转矩波动。
在一些可能的设计中,进一步地,第一转子铁芯和第二转子铁芯的轴向长度相等。
在该设计中,沿着转子组件的轴向,第一转子铁芯的长度和第二转子铁芯的长度相等,从而在转子组件的轴向上,提升第一磁性件产生的磁场和第二磁性件产生的磁场的对称性,进而使得转子组件产生的磁场更加的均匀,从而进一步地抑制偶次谐波的影响,进一步地降低电机磁场转矩和转矩波动。
在一些可能的设计中,进一步地,相邻的第一磁性件和第一凸极之间具有第一间隙;和/或相邻的第二磁性件和第二凸极之间具有第二间隙。
在该设计中,相邻的第一磁性件和第一凸极相间隔,从而形成第一间隙,通过第一间隙,减小第一凸极端部在相邻第一磁性件上的漏磁通,从而增加第一凸极在主磁路中形成的工作磁通提升电机的输出性能。
相邻的第二磁性件和第二凸极相间隔,从而形成第二间隙,通过第二间隙,减小第二凸极端部在相邻第二磁性件上的漏磁通,从而增加第二凸极在主磁路中形成的工作磁通,提升电机的输出性能。
在一些可能的设计中,进一步地,第一间隙的宽度小于等于3mm;和/或第二间隙的宽度小于等于3mm。
在该设计中,第一间隙的宽度小于等于3mm,进而相邻的第一磁性件和第一凸极之间的距离小于等于3mm,进而保证磁场强度,确保电机的输出性能。
第二间隙的宽度小于等于3mm,进而相邻的第二磁性件和第二凸极之间的距离小于等于3mm,进而保证磁场强度,确保电机的输出性能。
在一些可能的设计中,进一步地,第一磁性件和第二磁性件的所占的圆心角的角度为γ,第一转子铁芯和第一磁性件形成的第一转子的极对数,以及第二转子铁芯和第二磁性件形成的第二转子的极对数均为Pr,其中,0.9≤γ÷(π÷Pr)≤1.7。
在该设计中,第一磁性件和第二磁性件的所占的圆心角的角度为γ,夹角的存在可以提升电机磁动势,提升磁场的调制效应,增加工作次磁密谐波的幅值,确保电机转矩,由此也避免了电机中采用交替极后磁极数量减小,磁场基波幅值下降,导致转矩下降的问题。
进一步地,满足0.9≤γ÷(π÷Pr)≤1.7时,转子组件的工作性能良好。
在一些可能的设计中,进一步地,第一轭部和第一凸极为一体式结构;和/或第二轭部和第二凸极为一体式结构。
在该设计中,第一轭部和第一凸极为一体式结构,进而在安装时,只需安装第一磁性件即可,进而降低安装难度,提升生产效率。
第二轭部和第二凸极为一体式结构,进而在安装时,只需安装第二磁性件即可,进而降低安装难度,提升生产效率。
在一些可能的设计中,进一步地,多个第一磁性件形成海尔贝克阵列;和/或多个第二磁性件形成海尔贝克阵列。
在该设计中,多个第一磁性件形成海尔贝克阵列,进而提升第一磁性件产生的磁场的正弦性,提升电机的效率。
多个第二磁性件形成海尔贝克阵列,进而提升第二磁性件产生的磁场的正弦性,提升电机的效率。
在一些可能的设计中,进一步地,第一磁性件和第二磁性件结构相同;和/或第一凸极和第二凸极的结构相同。
在该设计中,第一磁性件的结构和第二磁性件的结构相同,进而第一磁性件和第二磁性件产生的磁场相近或相同,进而使得转子组件的整体磁场更加均匀,使得转子组件形成的磁场更均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
第一凸极的结构和第二凸极的结构相同,进而第一凸极和第二凸极被磁化后产生的磁场相近或相同,进而使得转子组件的整体磁场更加均匀,使得转子组件形成的磁场更均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
在一些可能的设计中,进一步地,第一转子铁芯包括多个第一铁芯分块,多个第一铁芯拼接成环状;第二转子铁芯包括多个第二铁芯分块,多个第二铁 芯拼接成环状。
在该设计中,第一转子铁芯包括多个第一铁芯分块,多个第一铁芯分块沿第一转子铁芯的圆周方向首尾连接。其中,任一第一铁芯分块包括第一轭部和至少一个第一凸极,相邻两个第一铁芯分块的部分轭部相连接,进而形成一个环状结构。这样,在制造第一转子铁芯的过程中,可将多个第一铁芯分块首尾连接来制造转子铁芯。
具体地,第一转子铁芯包括多个第一铁芯分块。这样,安装时,可首先将第一转子铁芯展开,可以展开为一条,也可展开为单个第一铁芯分块。而后,在每一个第一铁芯分块上对应的位置装配第一磁性件。这样,可以降低第一磁性件和第一转子铁芯的安装难度,提升生产效率,并且,第一转子铁芯采用冲片堆叠时,可以节省材料,降低成本。
第二转子铁芯包括多个第二铁芯分块,多个第二铁芯分块沿第二转子铁芯的圆周方向首尾连接。其中,任一第一铁芯分块包括第二轭部和至少一个第二凸极,相邻两个第二铁芯分块的部分轭部相连接,进而形成一个环状结构。这样,在制造第二转子铁芯的过程中,可将多个第二铁芯分块首尾连接来制造转子铁芯。
具体地,第二转子铁芯包括多个第二铁芯分块。这样,安装时,可首先将第二转子铁芯展开,可以展开为一条,也可展开为单个第二铁芯分块。而后,在每一个第二铁芯分块上对应的位置装配第二磁性件。这样,可以降低第二磁性件和第二转子铁芯的安装难度,提升生产效率,并且,第二转子铁芯采用冲片堆叠时,可以节省材料,降低成本。
根据本申请的第五方面,本申请提出了一种电机,包括:定子组件;如上述技术方案任一项提出的转子组件。
本申请提出的电机,包括定子组件和如上述技术方案任一项提出的转子组件,定子组件和转子组件通过电磁效应,使得转子组件可以转动,并且,因本申请提出的电机包括如上述技术方案任一项提出的转子组件,因此,具有如上述技术方案任一项提出的转子组件的全部效果,在此不再一一陈述。
在上述技术方案的基础上,进一步地,定子组件包括:多个定子主齿,定 子主齿朝向转子的一侧设置有凹槽,凹槽将定子主齿分隔为多个定子副齿。
在该设计中,定子组件朝向转子组件的设置有多个定子主齿,定子主齿朝向转子的一侧设置有凹槽,将定子主齿分隔为多个定子副齿,进而利用凹槽和定子副齿的形式,调节气隙,调制磁场,提升电机的效率。
在一些可能的设计中,进一步地,定子组件的极对数为Pa,定子主齿的数量为x,每个定子主齿上定子副齿的数量为a,其中,Pa=|ax±Pr|。
在该设计中,定子组件的极对数Pa满足:Pa=│ax±Pr│。其中,x表示定子主齿的数量,a表示每个定子主齿上定子副齿的数量,Pr表示第二转子的极对数。气隙磁密中出现的新的谐波成分可作为电机的工作谐波,为电机提供输出转矩,从而有效提升了电机的转矩密度。在该限定下,气隙磁密中出现的新的谐波成分可作为电机的工作谐波,为电机提供输出转矩,从而有效提升了电机的转矩密度。
在一些可能的设计中,进一步地,沿定子组件的径向,定子主齿的平分线到凹槽的两侧壁的距离相等或不等。
在该设计中,沿定子组件的径向,定子主齿的平分线到凹槽的两侧壁的距离相等。这样,在定子组件的圆周方向上,凹槽位于定子主齿的中部。如此设计,可简化定子主齿的整体结构,并且便于定子主齿的加工制造,进而提升定子组件以及整个电机的加工效率。
沿定子组件的径向,定子主齿的平分线到凹槽的两侧壁的距离不等。这样,在定子组件的圆周方向上,凹槽朝向定子主齿的一端偏移设置。如此设置,可改变气隙磁导分布,削弱部分谐波,从而减小转矩脉动,改善电机振动噪音性能。并且,当永磁磁动势和含有谐波的气隙磁导作用时,气隙磁密中会出现新的谐波成分。此时,至少两个定子副齿使得气隙磁导中引入较多的谐波分量,使得电机的性能得到了明显的提升。
在一些可能的设计中,进一步地,在相邻两个定子主齿中,一个定子主齿的定子副齿和另一个定子主齿的定子副齿之间具有槽口;在槽口处,相邻两个定子主齿的角平分线到相邻两个定子副齿的距离相等或不等。
在该设计中,定子主齿的角平分线到凹槽的两侧壁的距离相等。这样,在定子组件的圆周方向上,凹槽位于定子主齿的中部。如此设计,可简化定子 主齿的整体结构,并且便于定子主齿的加工制造,进而提升定子组件以及整个电机的加工效率。
定子主齿的角平分线到凹槽的两侧壁的距离不等。这样,在定子组件的圆周方向上,凹槽朝向定子主齿的一端偏移设置。如此设置,可改变气隙磁导分布,削弱部分谐波,从而减小转矩脉动,改善电机振动噪音性能。并且,当永磁磁动势和含有谐波的气隙磁导作用时,气隙磁密中会出现新的谐波成分。此时,至少两个定子副齿使得气隙磁导中引入较多的谐波分量,使得电机的性能得到了明显的提升。
在一些可能的设计中,进一步地,在相邻两个定子副齿中,沿定子组件的径向,一个定子副齿的平分线与另一个定子副齿的平分线之间的形成夹角β满足1≤β÷(2π÷ax)<1.4,其中,x表示定子主齿的数量,a表示每一个定子主齿上定子副齿的数量。
在该设计中,在相邻两个定子副齿中,沿定子组件的径向,一个定子副齿的平分线与另一个定子副齿的平分线之间的形成夹角β,并且满足1≤β÷[2π÷(a×x)]<1.4;其中,x表示定子主齿的数量,a表示每一个定子主齿上定子副齿的数量。这样,本申请进一步对定子副齿的结构以及分布进行优化,使得应用该电机调制生成的谐波次数增加,转矩较高,以进一步提升电机的工作效率。
在一些可能的设计中,进一步地,定子组件包括:多个定子分块,定子分别包括轭部区段和定子主齿,相邻的定子分块通过轭部区段相连接。
在该设计中,定子组件包括多个定子分块,并通过多个定子分块拼接的方式形成定子组件。这样,在定子组件的加工制造过程中,工作人员可先在单个定子分块上进行绕线等操作,有利于降低绕线难度,进而提高绕线的工作效率,降低材料成本。
此外,本申请可以首先在单个定子分块上进行绕线等操作,可有效提升绕组的缠绕数量,并提升绕组的槽满率,提高应用电机输出性能。并且,本申请在降低绕线难度的基础上,可降低绕线过程中废品率,进而减少废料并提升定子组件的成本率。此外,单独定子分块对材料的要求较低,可提升材料的利用率,进而降低定子组件的材料成本。
在一些可能的设计中,进一步地,相邻两个定子分块的轭部区段可拆卸连接或固定连接。
在该设计中,相邻两个定子分块的轭部区段可拆卸连接,进而保证相邻两个定子分块的拆装。
具体地,定子分块还包括第一连接部和第二连接部。其中,第一连接部设置在轭部区段的第一端,第二连接部设置在轭部区段的第二端,第一连接部和第二连接部在轭部区段上相背。并且,第一连接部和第二连接部的结构相匹配,进而一个定子分块的第一连接部和另一个定子分块的第二连接部配合能够实现自锁。因此,在拼接定子分块的过程中,本申请可以通过第一连接部和第二连接部来连接相邻两个定子分块,包括相邻两个定子分块的可拆卸连接。
其中,第一连接部与第二连接部中的一者为凸部,另一者为凹部。此外,凸部的形状与凹部的形状相适配,并且凸部与凹部之间能够可拆卸的连接,并具有自锁功能。具体地,凹部包括但不限于以下结构多边形槽、圆形槽、椭圆形槽;凸部的形状与凹部的形状相匹配。
在一些可能的设计中,进一步地,定子组件还包括:定子轭,定子主齿可拆卸地设于定子轭。
在该设计中,定子组件包括定子轭和设置在定子轭上的定子主齿,其中,定子主齿和定子轭可拆卸式连接。这样,在定子组件的加工制造过程中,可在定子主齿上的先绕线,然后再安装到轭部,一方面便于绕线,提高电机槽满率,另一方面,减小定子槽的槽口宽度,从而避免槽口过大对电机性能造成的影响。
在一些可能的设计中,进一步地,定子主齿包括:齿身,一端和定子轭相连接;齿靴,可拆卸地设于齿身背离定子轭的一端。
在该设计中,齿靴与齿身可拆卸式连接。这样,在定子组件的加工制造过程中,可在齿身上先绕线,然后再安装齿靴,一方面便于绕线,提高电机槽满率,另一方面,可以增加齿靴周向宽度,减小槽口宽度,从而避免槽口过大对电机性能造成的影响。
根据本申请的第六方面,本申请提出了一种电器设备,包括:如上述任一 技术方案提出的电机。
本申请提出的电器设备,包括因本申请提出的电机包括如上述技术方案任一项提出的电机,因此,具有如上述技术方案任一项提出的电机的全部效果,在此不再一一陈述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
图1示出了根据本申请的一个实施例的转子组件中导磁毂框架的结构示意图;
图2示出了根据本申请的一个实施例的转子组件的结构示意图;
图3示出了根据本申请的一个实施例的电机的结构示意图;
图4示出本申请一个实施例提供的转子组件中第一转子铁芯和第一磁性件的结构示意图;
图5示出本申请一个实施例提供的转子组件中第一转子铁芯的结构示意图;
图6示出本申请一个实施例提供的转子组件中第一转子铁芯和第一磁性件的结构示意图;
图7示出本申请一个实施例提供的转子组件中第一转子铁芯的结构示意图;
图8示出本申请一个实施例提供的转子组件中第一转子铁芯和第一磁性件的结构示意图;
图9示出本申请一个实施例提供的转子组件中第二转子铁芯和第二磁性件的结构示意图;
图10示出本申请一个实施例提供的转子组件中第二转子铁芯的结构示意图;
图11示出本申请一个实施例提供的转子组件中第二转子铁芯和第二磁性件的结构示意图;
图12示出本申请一个实施例提供的转子组件中第二转子铁芯的结构 示意图;
图13示出本申请一个实施例提供的转子组件中第二转子铁芯和第二磁性件的结构示意图;
图14示出本申请一个实施例提供的电机的结构示意图;
图15示出本申请一个实施例提供的电机的定子组件的结构示意图;
图16示出本申请一个实施例提供的电机的定子组件的结构示意图;
图17示出本申请一个实施例提供的电机的定子组件的结构示意图;
图18示出本申请一个实施例提供的电机的定子组件的结构示意图。
其中,图1至图18中附图标记与部件名称之间的对应关系为:
100转子组件,102导磁毂框架,104端盖部,106环形轭部,108容纳部,110永磁体,112凸出部,114气隙,116电机,118轭部,120定子主齿,122齿靴,124定子槽,126槽口,128定子副齿,130凹槽,132样条曲面,134第一转子铁芯,136第一铁芯分块,138第一轭部,140第一凸极,142第一安装槽,144第一磁性件,146第二转子铁芯,148第二铁芯分块,150第二轭部,152第二凸极,154第二安装槽,156第二磁性件,158第一间隙,160第二间隙,162定子组件,164齿身,166齿靴,168定子轭,170定子槽,172定子分块,174轭部区段,176第一连接部,178第二连接部。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图18来描述根据本申请一些实施例提供的转子组件100、电机116和电器设备。其中,图3中虚线表示定子副齿128的齿身平分线。
如图1、图2和图3所示,本申请提出了第一方面提出了一种转子组件100。包括:导磁毂框架102,导磁毂框架102包括端盖部104和环形轭部106,端盖部104连接于环形轭部106轴向的一端,环形轭部106的内周壁设置有多个容纳部108,多个容纳部108沿环形轭部106的圆周方向分布;多个永磁体110,分别设置于多个容纳部108内,多个永磁体110的极性相同。
本申请提供的转子组件100包括导磁毂框架102和多个永磁体110。其中,导磁毂框架102包括相连接的端盖部104和环形轭部106;端盖部104连接于环形轭部106轴向的一端,环形轭部106的内周壁设置有多个容纳部108,多个容纳部108沿环形轭部106的圆周方向分布;多个永磁体110分别设置于多个容纳部108内。并且,本申请提出的转子组件100中多个永磁体110的极性相同。具体地,本申请提出的转子组件100中,导磁毂框架102采用导磁材料制造而成。
具体地,多个容纳部108的尺寸相等,使得其皆可以适用于相同规格的永磁体110。进一步地,永磁体110可以为条形永磁铁、扇形永磁铁、马蹄形永磁铁或圆形永磁铁。
特别地,本申请提出的转子组件100中的导磁毂框架102包括相连接的端盖部104和环形轭部106,导磁毂框架102的整体结构简单。此外,本申请直接在环形轭部106的内周壁设置有多个容纳部108,并保证多个容纳部108沿环形轭部106的圆周方向分布。
这样,在将多个极性相同的永磁体110分别装配到多个容纳部108后,首先可保证多个永磁体110的有效安装定位,其次可保证多个极性相同的永磁体110在环形轭部106的圆周方向间隔分布。
具体地,永磁体110包括条形永磁体,多边形永磁体等,因为本实施例中将永磁体110置于容纳部108内的设置,使得各类形状的永磁体110,只要其尺寸位于容纳部108的尺寸限制范围内,均可被使用,使得对永磁体110的加工制造更加方便快捷,各类永磁体110之间的通用性更强。
因此,本申请提出的转子组件100中导磁毂框架102包括环形轭部106和连接于环形轭部106轴向一端的端盖部104,提高了导磁毂框架102的整体结构强度;环形轭部106的内周壁设置有多个容纳部108,多个容纳部108沿 环形轭部106的圆周方向分布,多个极性相同的永磁体110设置于多个容纳部108内,在环形轭部106上产生了交替极的磁性结构,进而既降低了永磁体110的使用数量,又使得磁场调制效应增强,工作次磁密谐波的幅值增加,产生了更好的输出性能。
在本申请的一个实施例中,如图1、图2和图3所示,导磁毂框架102还包括:凸出部112,设置于环形轭部106的内周壁,并朝向环形轭部106的中部凸出,容纳部108位于相邻两个凸出部112之间。
在该实施例中,导磁毂框架102还包括凸出部112。其中,凸出部112设置于环形轭部106的内周壁上,并朝向环形轭部106的中部凸出;相邻两个凸出部112之间形成了容纳部108,本申请在此基础上,将多个极性相同的永磁体110设置于多个容纳部108内。这样,在环形轭部106的圆周方向上凸出部112与永磁体110交替分布,进而形成了交替极结构。
具体地,使用导磁材料制成的凸出部112会被与之相邻的永磁体110磁化成与之相反磁极的磁体,进而,永磁体110的极性相相同,而与之相邻的凸出部112皆为相反的极性,从而形成了交替极结构。
具体地,凸出部112包括方形凸出部或多边形凸出部,凡是可以在实现隔断作用的同时,还能便于加工的凸出部112的形状,均在本申请的保护范围之内。
如此设计,有效减小了相关技术中交替极转子的制造难度。此外,该转子组件100配合定转子磁场极对数设计,利用磁密谐波进行工作,避免采用交替极后磁密基波幅值下降带来的输出性能下降的问题。
具体地,相关技术在采用交替极结构后,磁极数量减小,气隙磁场基波幅值会下降,电机输出性能降低。本申请采用了磁场调制电机结构,即将本申请提出的转子组件100应用于磁场调制电机中,利用谐波来进行工作,通过凸极转子增强调制效果,提高工作谐波含量,从而提升电机116输出性能。避免交替极结构基波幅值下降带来电机116性能下降的问题。
具体地,永磁体110的数量和凸出部112的数量相等
在本申请的一个实施例中,如图1、图2和图3所示,凸出部112的厚度与环形轭部106的厚度相等。
在该实施例中,凸出部112的厚度与环形轭部106的厚度相等,使得凸出部112和环形轭部106可由同一个板材进行拉伸成型,结构简单,制造难度降低。并且,此次设置使得导磁毂框架102的整体结构强度高,具有更长的使用寿命。
在本申请的一个实施例中,在环形轭部106的圆周方向上,永磁体110与容纳部108的内壁之间存在气隙114。
在该实施例中,在环形轭部106的圆周方向上,永磁体110与容纳部108的内壁之间存在气隙114。气隙114的存在可以有效减小永磁体110与容纳腔内壁之间的漏磁,永磁体110对凸出部112的磁化效果最佳。进一步地,气隙114的存在可以降低装配难度,进而提升了转子组件100运行的可靠性。
在本申请的一个实施例中,如图2所示,在环形轭部106的圆周方向上,气隙114的尺寸大于0mm并小于3mm。
在该实施例中,气隙114的大小影响整个转子组件100的运作可靠性,气隙114过大时,将会使磁阻增大,从而将励磁损耗增大,使得永磁体110对凸出部112的磁化效果降低,进而无法产生交替极结构。而当气隙114过小时,又会使得气隙114谐波磁场增大,运行时永磁体110易与容纳腔的内壁之间发生碰撞,从而降低了运行可靠性,也给装配带来困难。
进一步地,将气隙114的尺寸d设置为大于0mm并小于3mm。这样,既可以使磁阻保持在合适范围内,永磁体110对凸出部112的磁化效果最佳,又可以降低装配难度,进而提升了运行可靠性。
因此,本申请在环形轭部106上产生了交替极的磁性结构后,进一步对气隙114的尺寸d进行优化,进一步使得磁场调制效应增强,工作次磁密谐波的幅值增加,产生了更好的输出性能。
具体地,将气隙114的尺寸可以设置为1mm,1.5mm,2mm,2.5mm等。
在本申请的一个实施例中,如图2所示,环形轭部106的中心到永磁体110两端的连线之间形成有夹角γ,并满足0.9<γ/(π/(Pr))<1.7,其中,Pr为永磁体110的数量。
在该实施例中,环形轭部106的中心到永磁体110的两端的连线之间形成有夹角γ,夹角γ的存在可以使得气隙磁导过程进一步变化,磁场调制效应增 强,工作次磁密谐波的幅值增加,进而使得采用此转子组件100的电机116转矩进一步地得到提升,由此也避免了传统永磁电机中采用交替极后磁极数量减小,磁场基波幅值下降,导致转矩下降的问题。
进一步地,夹角γ满足:0.9<γ/(π/(Pr))<1.7,其中,Pr为永磁体110的数量,当夹角γ满足上述条件时,磁场调制效应得到进一步增强,转子组件100的工作性能良好。
因此,本申请在环形轭部106上产生了交替极的磁性结构后,进一步对环形轭部106的中心到永磁体110的两端的连线之间形成的夹角γ进行优化,进一步使得磁场调制效应增强,工作次磁密谐波的幅值增加,产生了更好的输出性能。
在本申请的一个实施例中,如图1、图2和图3所示,永磁体110包括以下一者:铁氧体或稀土永磁体。
在该实施例中,永磁体110可以采用铁氧体,铁氧体的导磁性能较好。
具体地,永磁体110是产生磁场的物体,铁氧体是经由各种混合材料值得的,可以比自然界内的天然磁体产生更强大的磁场,其价格上低廉,耐腐蚀性高,无需额外的涂层进行防护,且能耐抵抗外界磁场的消磁,从而既保证了使用性能,又降低了制造成本。
在该实施例中,永磁体110还可以采用稀土永磁体,稀土永磁体的磁能积极高。稀土永磁体可以抵抗外界磁场的退磁。
在本申请的一个实施例中,如图1、图2和图3所示,凸出部112包括样条曲面132,样条曲面132朝向环形轭部106的中部设置。
在该实施例中,凸出部112包括样条曲面132,样条曲面132朝向环形轭部106的中部设置,样条曲面132一体成型,进而降低了加工的难度。
在本申请的一个实施例中,如图1、图2和图3所示,在环形轭部106的圆周方向上,样条曲面132包括多段相连接的子样条面,子样条面包括平面和/或弧面。
在该实施例中,在环形轭部106的圆周方向上,样条曲面132包括多段相连接的子样条面,各段之间光滑连接,使得其形成的整体样条曲面132曲率变化一致,进而使得转子组件100在运作时的能量损耗更低。子样条面包括平面 和/或弧面,使得各段之间的曲面曲率更为接近。
如图3所示,根据本申请的第二个方面提出了一种电机116,包括:如上述任一可能设计中的转子组件100,定子组件,定子组件的至少一部分位于转子组件100内。
在本申请的一个实施例中,提出了一种电机116,包括如上述任一实施例中的转子组件100,因此具有上述任一实施例中转子组件100的全部有益效果,在此不做赘述。
电机116依据电磁感应定律实现电能的转换或传递,其可产生驱动转矩,作为用设备或各种机械的动力源。具体地,本申请的电机可为内转子或外转子组件。
进一步地,电机116中还包括定子组件,定子组件的至少一部分位于转子组件100内。在电机116工作时,电机116通电,定子组件产生旋转磁场,转子组件100在旋转磁场中被磁力线切割而产生电流,电流在电机116内传输至输出端,从而使得电机116能够进行电流输出。
同时,转子组件100采用交替极结构后,转子上凸出部112的凸出结构,使得气隙磁导作用增强,调制效应增强,工作次磁密谐波的幅值增加,电机116转矩进一步得到了提升,进而产生了更大的驱动转矩,能够产生更强的驱动效果。
在本申请的一个实施例中,如图3所示,定子组件包括:定子铁芯,定子铁芯包括:轭部118;定子主齿120,设置于轭部118上,定子主齿120包括齿靴122,相邻两个定子主齿120之间具有定子槽124,相邻两个齿靴122之间具有槽口126,槽口126与定子槽124相连通;定子绕组,设置于定子主齿120上,位于定子槽124内。
在该实施例中,定子组件包括:定子铁芯、定子主齿120和定子绕组,定子铁芯包括轭部118,其既作为定子的主要磁路,又作为定子主齿120和定子绕组的安装和固定部件。
进一步地,定子主齿120设置于轭部118上,进而被轭部118固定,定子主齿120包括齿靴122,相邻两个定子主齿120之间具有定子槽124,使得相邻的两个定子主齿120之间具有间隔,且定子槽124可起到容纳作用。相邻的 两个齿靴122之间具有槽口126,槽口126与定子槽124相连通。这样,通过定子槽124和槽口126的设置,使得电机116的启动转矩降低,改善气隙磁场波形,减少了附加的损耗。
进一步地,定子组件中的定子绕组设置于定子主齿120上,并位于定子槽124内,定子绕组是电机116的输入电路部分,通过通入交变电流,进而产生交变磁场。
具体地,定子主齿120的齿根与轭部118相连接,以实现定子主齿120和轭部118的稳定连接。齿靴122设置于定子主齿120的齿顶,通过齿靴122的设置可对位于定子槽124内的定子绕组起到良好的限位作用,进而保证该部分定子绕组稳定处于定子槽124内,避免该部分绕组组件从定子槽124中脱落,进而提升定子组件的可靠性。
更进一步地,齿靴122与定子主齿120为可拆卸式连接。即齿靴122与定子主齿120的设置为可分离的套设组装结构,从而可在定子主齿120上先进行绕制线圈,当绕制完成后,再与齿靴122组装。这样,简化了绕线工艺,降低了绕线的难度。
在本申请的一个实施例中,如图3所示,定子铁芯还包括:至少两个定子副齿128,设置于齿靴122上;其中,定子绕组的极对数Ps=│ax±Pr│,a表示定子主齿120的数量,x表示每个定子主齿120上定子副齿128的数量,Pr表示多个永磁体110的数量。
在该实施例中,定子铁芯还包括至少两个定子副齿128,设置于齿靴122上,一方面,定子副齿128作为导磁部件进行导磁,一方面,定子副齿128还可作为调制部件,实现磁场调制的作用。
进一步地,定子绕组的极对数满足关系式Ps=│ax±Pr│,其中,a表示定子主齿120的数量,x表示每个定子主齿120上定子副齿128的数量,Pr表示多个永磁体110的数量。这样,气隙磁密中出现的新的谐波成分可作为电机116的工作谐波,进而为电机116提供输出转矩,从而有效提升了电机116的转矩密度。
因此,本申请在环形轭部106上产生了交替极的磁性结构后,进一步对定子绕组的极对数Ps进行优化,进一步使得磁场调制效应增强,工作次磁密谐 波的幅值增加,产生了更好的输出性能。
在本申请的一个实施例中,如图3所示,相邻两个定子副齿128之间具有凹槽130;在定子组件的圆周方向上,凹槽130的尺寸与槽口126的尺寸不等。
在该实施例中,相邻的两个定子副齿128之间具有凹槽130,使得气隙导磁中引入较多的谐波分量,当转子组件100中永磁体110的磁动势和含有谐波的气隙磁导作用时,气隙磁密中会出现新的谐波成分。其可作为电机116的工作谐波,为电机116提供输出转矩,从而有效提升了电机116的转矩密度。
进一步地,在定子组件的圆周方向上,凹槽130的尺寸与槽口126的尺寸不等,即相邻的两个定子副齿128之间的凹槽130的宽度,与相邻的两个齿靴122之间的定子槽124的槽口126宽度不相等。这样,会改变多个定子副齿128在定子组件圆周方向上的分布均匀程度,从而减小了气隙磁导的周期数,而当气隙磁导周期数减小后,调制生成的磁密谐波分量将增加,即会产生更多的工作谐波,电机116输出转矩会进一步提升。进而使得电机116的运行性能更佳。
因此,本申请在环形轭部106上产生了交替极的磁性结构后,进一步对凹槽130的尺寸与槽口126的尺寸进行优化,进一步使得磁场调制效应增强,工作次磁密谐波的幅值增加,产生了更好的输出性能。
在本申请的一个实施例中,如图3所示,在相邻两个定子副齿128中,一个定子副齿128的齿身平分线与另一个定子副齿128的齿身平分线之间形成夹角β,且满足1≤β/(2π/(ax))<1.4,其中,a表示定子主齿120的数量,x表示每一个定子主齿120上定子副齿128的数量。
在该实施例中,在相邻的两个定子副齿128中,一个定子副齿128的齿身平分线与另一个定子副齿128的齿身平分线之间形成夹角β,夹角β的存在使得电机116调制生成谐波幅值,且具有一定的转矩。
进一步地,夹角β满足公式1≤β/(2π/(ax))<1.4,其中,a表示定子主齿120的数量,x表示每一个定子主齿120上定子副齿128的数量。此时,电机116调整生成的谐波幅值较大,且电机116转矩也较大。
因此,本申请在环形轭部106上产生了交替极的磁性结构后,进一步对一个定子副齿128的齿身平分线与另一个定子副齿128的齿身平分线之间的夹角β进行优化,进一步使得磁场调制效应增强,工作次磁密谐波的幅值增加,产 生了更好的输出性能。
具体实施例中,β/(2π/(ax))可以为1、1.1、1.2、1.3、1.4等,本领域技术人员可以根据实际产品进行设计。
根据本申请的一个实施例,还提出了一种电器设备,包括:如上述任一可能设计中的电机116。
本实施例提出的电器设备,包括上述任一实施例中的电机116,因此具有上述任一实施例中的电机116的全部有益效果,多个极性相同的永磁体110设置于多个容纳部108内,在环形轭部106上产生了交替极的磁性结构,进而既降低了永磁体110的使用数量,又使得磁场调制效应增强,工作次磁密谐波的幅值增加,产生了更好的输出性能,在此不再详细展开论述。
在本申请的一个实施例中,如图1、图2和图3所示,电机116包括转子组件100和与转子组件100同心设置且设置于转子组件100内侧的定子组件。
其中,定子组件包括定子铁芯和缠绕于定子铁芯上的定子绕组。定子铁芯包括轭部118和由轭部118径向延伸形成的多个定子主齿120,相邻的两个定子主齿120之间具有定子槽124,定子主齿120包括齿靴122,相邻的两个齿靴122之间具有槽口126,该槽口126与定子槽124相连接。该定子槽124可以用于放置定子绕组。
具体地,定子绕组包含多个线圈,且每个线圈只缠绕于一个定子主齿120之上。即采用单定子主齿120缠绕的集中绕组结构,此时,电机116的绕组端部较小,有利于减小铜消耗,并且便于实现模块化,提高生产制造的效率。
进一步地,每个齿靴122上分布有多个定子副齿128,定子副齿128除了可以作为导磁部件外,还可作为调制部件,实现磁场调制的作用,相邻的定子副齿128之间形成有凹槽130,凹槽130的宽度尺寸较大,使得气隙导磁中引入较多的谐波分量,当转子组件100中的永磁体110的磁动势和含有谐波的气隙磁导作用时,气孔磁密中会出现新的谐波成分,从而提升电机116的转矩密度。
进一步地,本实施例中的定子组件,定子槽124的宽度与相邻定子副 齿128之间的凹槽130宽度不相等,此时,多个定子副齿128在圆周上分布的均匀程度被改变,气隙磁导的周期数减小,使得调整生成的磁密谐波分量增加,从而会产生更多的工作谐波,使得电机116输出转矩会进一步提升。
进一步地,在相邻的两个定子副齿128中,一个定子副齿128的齿身平分线与另一个定子副齿128的齿身平分线之间形成夹角β,且满足1≤β/(2π/(ax))<1.4,在上述关系式中,a表示定子主齿120的数量,x表示每一个定子主齿120上定子副齿128的数量。此时,电机116调制生成的谐波幅值较大,转矩较高。
转子组件100中包括导磁毂框架102,而导磁毂框架102包括沿端盖部104周向延伸形成环形轭部106和在圆周方向上均匀分布的多个凸出部112,并且环形轭部106和凸出部112的厚度相等。在此设计下,导磁毂毂框架可采用导磁材料一体拉伸成型,结构简单,制造难度小,并且导磁毂毂框架为一体式结构,强度较高。
相邻两个凸出部112之间设置有容纳部108,永磁体110设置于环形轭部106的内周面上,并放置于容纳部108之内,并且,永磁体110的数量和凸出部112的数量相等,且多个永磁体110的极性均相同,其可以均为S极或均为N极,这样,永磁体110产生的磁化可以将相邻的凸出部112磁化,磁化后的凸出部112与永磁体110的极性不同,从而创造出了交替磁极的结构。
进一步地,永磁体110和凸出部112之间存在气隙114,从而有效减小永磁体110两端与凸出部112之间的漏磁现象,将气隙114的宽度设置在0mm至3mm之内,此时电机116具有较佳的输出性能。
进一步地,凸出部112包括方形面、多边形面或样条曲面132,当其为样条曲面132时,子样条面可以为多段直线或直线和弧形的组合,从而保证曲面各部分的曲率一致。
进一步地,永磁体110包括方形永磁体、瓦形永磁体或面包形永磁体。当永磁体110的数量为Pr时,永磁体110的两端侧面与转子中心线之间的夹角为γ,当0.9<γ/(π/(Pr))<1.7关系式时,电机116具有较佳的输出性能。 永磁体110包括铁氧体或稀土永磁。
在本申请中,定子组件和转子组件100的极对数之间满足一定关系,具体地,定子主齿120的数量为a,每个定子主齿120的齿靴122上分布的定子副齿128的数量为x,定子绕组的极对数为Ps,转子组件100中的永磁体110的数量为Pr,当其满足关系式Ps=│ax±Pr│时,气隙磁密中出现的新的谐波成分可作为电机116的工作谐波,为电机116提供输出转矩,从而有效提升了电机116的转矩密度。
并且,此时电子转子组件100中设置有凸出部112,凸出结构的存在使得调制效应较强,工作次磁密谐波的幅值较高,有利于提升电机116输出转矩。避免了传统交替极结构中磁极数量减小,使得基波幅值下降、电机116输出性能下降的问题。
在该实施例中,本申请采用了磁场调制电机结构,即将本转子组件100应用于磁场调制电机中,利用谐波来进行工作,通过转子组件100的凸出结构带有极性来增强调制效果,提高工作谐波含量,从而提升电机116输出性能。避免交替极结构基波幅值下降带来电机116性能下降的问题。
实施例1:
如图1至图10所示,本申请提供了一种转子组件100,包括:第一转子铁芯134、第一磁性件144、第二转子铁芯146和第二磁性件156,第一转子铁芯134和第二转子铁芯146轴向堆叠,即第一转子铁芯134位于第二转子铁芯146的一侧。
其中,第一转子铁芯134包括第一轭部138和多个第一凸极140,多个第一凸极140设于第一轭部138,相邻的第一凸极140之间形成第一安装槽142,多个第一磁性件144设于第一安装槽142,具体地,每个第一安装槽142中可以设置至少一个第一磁性件144。
第二转子铁芯146包括第二轭部150和多个第二凸极152,多个第二凸极152设于第二轭部150,相邻的第二凸极152之间形成第二安装槽154,多个第二磁性件156设于第二安装槽154,具体地,每个第一安装槽142中可以设置至少一个第一磁性件144。
本申请提供的转子组件100,包括第一转子铁芯134和第二转子铁芯 146,其中,第一转子铁芯134的第一轭部138上设置有多个第一凸极140,相邻的第一凸极140之间形成第一安装槽142,第一磁性件144设置在第一安装槽142内,进而第一凸极140和第一磁性件144交替的围绕呈一环状结构,进而第一凸极140被第一磁性件144磁化,使得第一凸极140和第一磁性件144均具有磁性,同样地,第二转子铁芯146的第二轭部150上设置有多个第二凸极152,相邻的第二凸极152之间形成第二安装槽154,第二磁性件156设置在第二安装槽154内,进而第二凸极152和第二磁性件156交替的围绕呈一环状结构,进而第二凸极152被第二磁性件156磁化,使得第二凸极152和第二磁性件156均具有磁性,进而可以减少第一磁性件144和第二磁性件156一半的投入,从而降低生产成本。
并且,第一转子铁芯134和第二转子铁芯146形成一个偏转的结构,即第一转子铁芯134的第一凸极140和第二转子铁芯146的第二凸极152错位,使得设置在第一转子铁芯134上的第一磁性件144和第二铁芯的第二凸极152相对。
因此,第一转子铁芯134和第二转子铁芯146轴向堆叠,且第一磁性件144对应第二凸极152的设置,进而可以调节第一磁性件144、第一凸极140、第二磁性件156和第二凸极152形成的磁场,使得转子组件100形成的磁场更均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
具体地,由于第一凸极140是被第一磁性件144磁化的,因此,第一凸极140的磁场强度和第二磁性件156的磁场强度略有不同,因此,易造成反电势偶次谐波的增加,而本申请将第一磁性件144和第二凸极152设置在一条轴向的直线上,进而可以改善整体磁场的结构,打破磁场强弱交替的情况,使得整体磁场更加均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
具体地,本申请中转子组件100采用交替极结构,可减小磁性件用量,降低电机成本。另一方面,第一转子铁芯134和第一磁性件144采用贴片的组装形式,第二转子铁芯146和第二磁性件156采用贴片的组装形式,采用交替极后,第一转子铁芯134的第一凸极140和第二转子铁芯146的第二凸极152,可以实现对气隙的调节,调制效应增强,工作次磁密谐波 的幅值增加,电机转矩进一步提升。
具体地,可以是第一磁性件144沿第一转子铁芯134径向上的中心线和第二凸极152沿第二转子铁芯146径向上的中心线共面。
具体地,第一磁性件144为第一永磁体,第二磁性件156为第二永磁体,第一凸极140为第一软磁材料,第二凸极152为第二软磁材料。
其中,转子组件100中可以是多个第一转子铁芯134和多个第二转子铁芯146交替堆叠。
实施例2:
如图4至图14所示,在实施例1的基础上,进一步地,第一转子铁芯134和第二转子铁芯146形成一个偏转的结构,即第一转子铁芯134的第一凸极140和第二转子铁芯146的第二凸极152错位,使得设置在第二转子铁芯146上的第二磁性件156和第一铁芯的第一凸极140相对。
因此,第一转子铁芯134和第二转子铁芯146轴向堆叠,且第二磁性件156对应第一凸极140的设置,进而可以调节第一磁性件144、第一凸极140、第二磁性件156和第二凸极152形成的磁场,使得转子组件100形成的磁场更均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
具体地,由于第二凸极152是被第二磁性件156磁化的,因此,第二凸极152的磁场强度和第二磁性件156的磁场强度略有不同,因此,易造成反电势偶次谐波的增加,而本申请将第二磁性件156和第一凸极140设置在一条轴向的直线上,进而可以改善整体磁场的结构,打破磁场强弱交替的情况,使得整体磁场更加均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
具体地,可以是第二磁性件156沿第二转子铁芯146径向上的中心线和第一凸极140沿第一转子铁芯134径向上的中心线共面。
并且,和设置在第一转子铁芯134上的第一磁性件144和第二铁芯的第二凸极152相对相结合,可以增强对偶次谐波的抑制。
实施例3:
如图4和图9所示,在实施例1或实施例2的基础上,进一步地,全部的第一磁性件144的充磁极性相同;全部的第二磁性件156的充磁极性相同; 第一磁性件144的充磁极性和第二磁性件156的充磁极性相反。
在该实施例中,全部的第一磁性件144的充磁极性相同,全部的第二磁性件156的充磁极性相同,第一磁性件144的充磁极性和第二磁性件156的充磁极性相反,即若第一磁性件144为S极,则第二磁性件156为N极,若第一磁性件144为N极,则第二磁性件156为S极,而第一凸极140被磁化后的极性和第一磁性件144也相反,第二凸极152被磁化后的极性和第二磁性件156也相反,进而转子组件100的轴向上,同极性的第一凸极140和第二磁性件156共线,同极性的第二凸极152和第二磁性件156共线,进而使得转子组件100的形成整体磁场更加均匀,使得轴向上第一磁性件144和第二磁性件156在绕组电枢上产生的感应反电势相差180°,从而进一步地抑制偶次谐波的影响,进一步地降低电机磁场转矩和转矩波动。
具体地,第一凸极140和第二凸极152被磁化后所产生的磁场强度相近,第一磁性件144和第二磁性件156的磁场强度相近,进而第一磁性件144的充磁极性和第二磁性件156的充磁极性相反,那么第一凸极140和第二凸极152被磁化后的极性也相反。
以第一磁性件144为S极,第二磁性件156为N极为例进行说明。对于整个转子组件100而言,S极和N极的数量相等,进而第一磁性件144产生强S极,第二磁性件156产生强N极,第一凸极140产生弱N极,第二凸极152产生弱S极,在周向上,第一转子铁芯134中,相邻的磁极分布为强S极、弱N极和强S极,第二转子铁芯146中,相邻的磁极为强N极、弱S极和强N极,而在轴向上,相邻的极性分布为强S极,弱S极,强S极,或者强N极,弱N极,强N极,进而使得整个磁场的分布更加均匀,进一步地抑制偶次谐波的影响。
实施例4:
如图4至图14所示,在实施例1至实施例3中任一者的基础上,进一步地,第一转子铁芯134和第二转子铁芯146相差单数个极距。
在该实施例中,第一转子铁芯134和第二转子铁芯146相差单数个极距,进而使得转子组件100产生的磁场更加的规整,从而进一步地抑制偶次谐波 的影响,进一步地降低电机磁场转矩和转矩波动。具体地,第一转子铁芯134和第二转子铁芯146相差1个极距、2个极距或5个极距等。
具体地,转子组件100采用轴向分段结构,由第一转子铁芯134和第二转子铁芯146沿轴向堆叠而成,上下两段转子铁芯错开1个极矩,且全部第一磁性件144的充磁极性均为N极或均为S极,第二磁性件156的充磁极性均为S极或均为N极,使得相邻的两段转子组件100的感应反电势相位相差180°,从而抑制合成反电势中的偶次谐波,降低电机齿槽转矩和转矩波动。
实施例5:
在实施例1至实施例4中任一者的基础上,进一步地,第一转子铁芯134和第二转子铁芯146的轴向长度相等。
在该实施例中,沿着转子组件100的轴向,第一转子铁芯134的长度和第二转子铁芯146的长度相等,从而在转子组件100的轴向上,提升第一磁性件144产生的磁场和第二磁性件156产生的磁场的对称性,进而使得转子组件100产生的磁场更加的均匀,从而进一步地抑制偶次谐波的影响,进一步地降低电机磁场转矩和转矩波动。
具体地,第一转子铁芯134可以是第一冲片堆叠而成,或者通过软磁材料压制成型。第二转子铁芯146可以是第二冲片堆叠而成,或者通过软磁材料压制成型。
实施例6:
如图10所示,在实施例1至实施例5中任一者的基础上,进一步地,相邻的第一磁性件144和第一凸极140之间具有第一间隙158。
在该实施例中,相邻的第一磁性件144和第一凸极140相间隔,从而形成第一间隙158,通过第一间隙158,减小第一凸极140端部在相邻第一磁性件144上的漏磁通,从而增加第一凸极140在主磁路中形成的工作磁通,提升电机的输出性能。
进一步地,第一间隙158的宽度d1小于等于3mm。
在该实施例中,第一间隙158的宽度小于等于3mm,进而相邻的第一磁性件144和第一凸极140之间的距离小于等于3mm,进而保证磁场强度, 确保电机的输出性能。具体地,第一间隙158的宽度可以取值3mm、2.8mm、2.5mm、2.0mm、1.5mm或1mm等。
实施例7:
如图11所示,在实施例1至实施例6中任一者的基础上,进一步地,相邻的第二磁性件156和第二凸极152之间具有第二间隙160。
在该实施例中,相邻的第二磁性件156和第二凸极152相间隔,从而形成第二间隙160,通过第二间隙160,减小第二凸极152端部在相邻第二磁性件156上的漏磁通,从而增加第二凸极152在主磁路中形成的工作磁通,提升电机的输出性能。
进一步地,第二间隙160的宽度d1小于等于3mm。
在该实施例中,第二间隙160的宽度小于等于3mm,进而相邻的第二磁性件156和第二凸极152之间的距离小于等于3mm,进而保证磁场强度,确保电机的输出性能。具体地,第二间隙160的宽度可以取值3mm、2.8mm、2.5mm、2.0mm、1.5mm或1mm等。
实施例8:
如图6所示,在实施例1至实施例7中任一者的基础上,进一步地,第一磁性件144所占第一转子铁芯134的圆心角的角度为γ,第一转子铁芯134和第一磁性件144形成的第一转子的极对数Pr,0.9≤γ÷(π÷Pr)≤1.7。
在该实施例中,第一磁性件144所占第一转子铁芯134的圆心角的角度为γ,夹角的存在可以提升电机磁动势,提升磁场的调制效应,增加工作次磁密谐波的幅值,确保电机转矩,由此也避免了电机中采用交替极后磁极数量减小,磁场基波幅值下降,导致转矩下降的问题。
进一步地,满足0.9≤γ÷(π÷Pr)≤1.7时,转子组件100的工作性能良好。
因此,具体地,第一磁性件144两端向第一转子铁芯134中心的连线形成夹角γ,本申请在第一转子铁芯134产生了交替极的磁性结构后,进一步对第一磁性件144的两端到第一转子铁芯134的中心位置的连线之间形成的夹角γ进行优化,进一步使得磁场调制效应增强,工作次磁密谐波的幅值增加,产生了更好的输出性能。
实施例9:
如图11所示,在实施例1至实施例8中任一者的基础上,进一步地,第二磁性件156所占第二转子铁芯146的圆心角的角度为γ,第二转子铁芯146和第二磁性件156形成的第二转子的极对数Pr,0.9≤γ÷(π÷Pr)≤1.7。
在该实施例中,第二磁性件156所占第二转子铁芯146的圆心角的角度为γ,夹角的存在可以提升电机磁动势,提升磁场的调制效应,增加工作次磁密谐波的幅值,确保电机转矩,由此也避免了电机中采用交替极后磁极数量减小,磁场基波幅值下降,导致转矩下降的问题。
进一步地,满足0.9≤γ÷(π÷Pr)≤1.7时,转子组件100的工作性能良好。
因此,具体地,第二磁性件156两端向第二转子铁芯146中心的连线形成夹角γ,本申请在第二转子铁芯146产生了交替极的磁性结构后,进一步对第二磁性件156的两端到第二转子铁芯146的中心位置的连线之间形成的夹角γ进行优化,进一步使得磁场调制效应增强,工作次磁密谐波的幅值增加,产生了更好的输出性能。
实施例10:
如图5所示,在实施例1至实施例9中任一者的基础上,进一步地,第一轭部138和第一凸极140为一体式结构。
在该实施例中,第一轭部138和第一凸极140为一体式结构,进而在安装时,只需安装第一磁性件144即可,进而降低安装难度,提升生产效率。
具体地,第一轭部138和第一凸极140可以同时冲压成型,或者采用软磁材料同时压制成型。
实施例11:
如图10所示,在实施例1至实施例10中任一者的基础上,进一步地,第二轭部150和第二凸极152为一体式结构。
在该实施例中,第二轭部150和第二凸极152为一体式结构,进而在安装时,只需安装第二磁性件156即可,进而降低安装难度,提升生产效率。
具体地,第二轭部150和第二凸极152可以同时冲压成型,或者采用软磁材料同时压制成型。
实施例12:
如图8所示,在实施例1至实施例11中任一者的基础上,进一步地,多个第一磁性件144形成海尔贝克阵列(Halbach)。
在该实施例中,多个第一磁性件144形成海尔贝克阵列(Halbach),进而提升第一磁性件144产生的磁场的正弦性,提升电机的效率。
具体地,如图8所示,第一磁性件144采用Halbach结构,由充磁方向大于等于3种方向的小块磁性件组合组成。通过上述设计可减小磁性件的漏磁,进一步提高反电势的正弦度,提高电机的输出性能,同时进一步降低电机齿槽转矩和转矩波动。
第一磁性件144的磁场为如图8中箭头所示。
实施例13:
如图13所示,在实施例1至实施例12中任一者的基础上,进一步地,多个第二磁性件156形成海尔贝克阵列(Halbach)。
在该实施例中,多个第二磁性件156形成海尔贝克阵列(Halbach),进而提升第二磁性件156产生的磁场的正弦性,提升电机的效率。
具体地,如图13所示,第二磁性件156采用Halbach结构,由充磁方向大于等于3种方向的小块磁性件组合组成。通过上述设计可减小磁性件的漏磁,进一步提高反电势的正弦度,提高电机的输出性能,同时进一步降低电机齿槽转矩和转矩波动。第二磁性件156的磁场为如图13中箭头所示。
实施例14:
如图4至图13所示,在实施例1至实施例13中任一者的基础上,进一步地,第一凸极140设于第一轭部138的内侧,第二凸极152设于第二轭部150的内侧。
在该实施例中,第一轭部138为一环状结构,第一凸极140设置在第一轭部138的内圈,第二轭部150为一环状结构,第二凸极152设置在第一轭部138的内圈,进而转子组件100安装成外转子电机时,磁场的中心位置更加靠近定子组件162,提升电机的效率。
实施例15:
在实施例1至实施例13中任一者的基础上,进一步地,第一凸极140设 于第一轭部138的外侧,第二凸极152设于第二轭部150的外侧。
在该实施例中,第一轭部138为一环状结构,第一凸极140设置在第一轭部138的外圈,第二轭部150为一环状结构,第二凸极152设置在第一轭部138的外圈,进而转子组件100安装成内转子电机时,磁场的中心位置更加靠近定子组件162,提升电机的效率。
实施例16:
如图4至图13所示,在实施例1至实施例15中任一者的基础上,进一步地,第一磁性件144和第二磁性件156结构相同。
在该实施例中,第一磁性件144的结构和第二磁性件156的结构相同,进而第一磁性件144和第二磁性件156产生的磁场相近或相同,进而使得转子组件100的整体磁场更加均匀,使得转子组件100形成的磁场更均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
实施例17:
如图3、图4、图8、图11和图12所示,在实施例1至实施例16中任一者的基础上,进一步地,第一凸极140和第二凸极152的结构相同。
在该实施例中,第一凸极140的结构和第二凸极152的结构相同,进而第一凸极140和第二凸极152被磁化后产生的磁场相近或相同,进而使得转子组件100的整体磁场更加均匀,使得转子组件100形成的磁场更均匀,抑制偶次谐波的影响,降低电机磁场转矩和转矩波动。
实施例18:
如图7所示,在实施例1至实施例17中任一者的基础上,进一步地,第一转子铁芯134包括多个第一铁芯分块136,多个第一铁芯拼接成环状。
在该实施例中,第一转子铁芯134包括多个第一铁芯分块136,多个第一铁芯分块136沿第一转子铁芯134的圆周方向首尾连接。其中,任一第一铁芯分块136包括第一轭部138和至少一个第一凸极140,相邻两个第一铁芯分块136的部分轭部相连接,进而形成一个环状结构。这样,在制造第一转子铁芯134的过程中,可将多个第一铁芯分块136首尾连接来制造转子铁芯。
具体地,第一转子铁芯134包括多个第一铁芯分块136。这样,安装时,可首先将第一转子铁芯134展开,可以展开为一条,也可展开为单个第一铁芯 分块136。而后,在每一个第一铁芯分块136上对应的位置装配第一磁性件144。这样,可以降低第一磁性件144和第一转子铁芯134的安装难度,提升生产效率,并且,第一转子铁芯134采用冲片堆叠时,可以节省材料,降低成本。
实施例19:
如图12所示,在实施例1至实施例18中任一者的基础上,进一步地,第二转子铁芯146包括多个第二铁芯分块148,多个第二铁芯拼接成环状。
在该实施例中,第二转子铁芯146包括多个第二铁芯分块148,多个第二铁芯分块148沿第二转子铁芯146的圆周方向首尾连接。其中,任一第一铁芯分块136包括第二轭部150和至少一个第二凸极152,相邻两个第二铁芯分块148的部分轭部相连接,进而形成一个环状结构。这样,在制造第二转子铁芯146的过程中,可将多个第二铁芯分块148首尾连接来制造转子铁芯。
具体地,第二转子铁芯146包括多个第二铁芯分块148。这样,安装时,可首先将第二转子铁芯146展开,可以展开为一条,也可展开为单个第二铁芯分块148。而后,在每一个第二铁芯分块148上对应的位置装配第二磁性件156。这样,可以降低第二磁性件156和第二转子铁芯146的安装难度,提升生产效率,并且,第二转子铁芯146采用冲片堆叠时,可以节省材料,降低成本。
实施例20:
如图14所示,本申请提供了一种电机,包括:定子组件162;如上述任一实施例提供的转子组件100。
本申请提供的电机,包括定子组件162和如上述技术方案任一项提出的转子组件100,定子组件162和转子组件100通过电磁效应,使得转子组件100可以转动,并且,因本申请提出的电机包括如上述技术方案任一项提出的转子组件100,因此,具有如上述技术方案任一项提出的转子组件100的全部效果,在此不再一一陈述。
实施例21:
如图14至图18所示,在实施例20的基础上,进一步地,定子组件162包括定子轭168和设置在定子轭168上的多个定子主齿120,相邻的定子主齿120之间形成定子槽170。并且,定子主齿120朝向转子的一侧设置有凹槽130,凹槽130将定子主齿120分隔为多个定子副齿128。具体地, 凹槽的宽度为d2,d2大于或小于d3。
在该实施例中,定子组件162朝向转子组件100的设置有多个定子主齿120,定子主齿120朝向转子的一侧设置有凹槽130,将定子主齿120分隔为多个定子副齿128,进而利用凹槽130和定子副齿128的形式,调节气隙,调制磁场,提升电机的效率。
实施例22:
在实施例21的基础上,进一步地,定子组件162的极对数为Pa,定子主齿120的数量为x,每个定子主齿120上定子副齿128的数量为a,其中,Pa=|ax±Pr|。
在该实施例中,定子组件162的极对数Pa满足:Pa=│ax±Pr│。其中,x表示定子主齿120的数量,a表示每个定子主齿120上定子副齿128的数量,Pr表示第二转子的极对数。气隙磁密中出现的新的谐波成分可作为电机的工作谐波,为电机提供输出转矩,从而有效提升了电机的转矩密度。在该限定下,气隙磁密中出现的新的谐波成分可作为电机的工作谐波,为电机提供输出转矩,从而有效提升了电机的转矩密度。
因此,本申请提出的电机中,定子主齿120上设置有至少两个定子副齿128,进而通过定子副齿128作为调制部件,实现磁场调制的作用,使得气隙磁导中引入较多的谐波分量,使得电机的性能得到了明显的提升。并且,定子组件162的极对数Pa满足:Pa=│ax±Pr│。在该限定下,气隙磁密中出现的新的谐波成分可作为电机的工作谐波,为电机提供输出转矩,从而有效提升了电机的转矩密度。具体地,一个定子主齿120上设置有一个凹槽130,形成两个定子副齿128。
实施例23:
如图18所示,图18中虚线L1表示沿定子组件162的径向,定子主齿120的平分线。
在实施例21或实施例22的基础上,进一步地,沿定子组件162的径向,定子主齿120的平分线到凹槽130的两侧壁的距离相等,也就是,定子主齿120的平分线到凹槽130的两侧壁的距离分别为d4和d5,并且满足d4等于d5。
在该实施例中,沿定子组件162的径向,定子主齿120的平分线到凹槽130的两侧壁的距离相等。这样,在定子组件162的圆周方向上,凹槽130位于定子主齿120的中部。如此设计,可简化定子主齿120的整体结构,并且便于定子主齿120的加工制造,进而提升定子组件162以及整个电机的加工效率。
实施例24:
如图18所示,图18中虚线L1表示沿定子组件162的径向,定子主齿120的平分线。
在实施例21或实施例22的基础上,进一步地,沿定子组件162的径向,定子主齿120的平分线到凹槽130的两侧壁的距离相等,也就是,定子主齿120的平分线到凹槽130的两侧壁的距离分别为d4和d5,并且满足d4不等于d5。
在该实施例中,沿定子组件162的径向,定子主齿120的平分线到凹槽130的两侧壁的距离不等。这样,在定子组件162的圆周方向上,凹槽130朝向定子主齿120的一端偏移设置。如此设置,可改变气隙磁导分布,削弱部分谐波,从而减小转矩脉动,改善电机振动噪音性能。并且,当永磁磁动势和含有谐波的气隙磁导作用时,气隙磁密中会出现新的谐波成分。此时,至少两个定子副齿128使得气隙磁导中引入较多的谐波分量,使得电机的性能得到了明显的提升。
实施例25:
如图18所示,图18中虚线L2表示相邻两个定子主齿120的角平分线。
在实施例21至实施例24中任一者的基础上,进一步地,在相邻两个定子主齿120中,一个定子主齿120的定子副齿128和另一个定子主齿120的定子副齿128之间具有槽口,在槽口处,相邻两个定子主齿120的角平分线到相邻两个定子副齿128的距离相等,具体地,如图18所示,在槽口处,相邻两个定子主齿120的角平分线到相邻两个定子副齿128的距离为d6和d7,并且满足d5等于d6。
在该实施例中,定子主齿120的角平分线到凹槽130的两侧壁的距离相等。这样,在定子组件162的圆周方向上,凹槽130位于定子主齿120的中部。如此设计,可简化定子主齿120的整体结构,并且便于定子主齿120的加工制 造,进而提升定子组件162以及整个电机的加工效率。
实施例26:
如图18所示,图18中虚线L2表示相邻两个定子主齿120的角平分线。
在实施例21至实施例24中任一者的基础上,进一步地,在相邻两个定子主齿120中,一个定子主齿120的定子副齿128和另一个定子主齿120的定子副齿128之间具有槽口;在槽口处,相邻两个定子主齿120的角平分线到相邻两个定子副齿128的距离不等,具体地,如图18所示,在槽口处,相邻两个定子主齿120的角平分线到相邻两个定子副齿128的距离为d6和d7,并且满足d5不等于d6。
在该实施例中,定子主齿120的角平分线到凹槽130的两侧壁的距离不等。这样,在定子组件162的圆周方向上,凹槽130朝向定子主齿120的一端偏移设置。如此设置,可改变气隙磁导分布,削弱部分谐波,从而减小转矩脉动,改善电机振动噪音性能。并且,当永磁磁动势和含有谐波的气隙磁导作用时,气隙磁密中会出现新的谐波成分。此时,至少两个定子副齿128使得气隙磁导中引入较多的谐波分量,使得电机的性能得到了明显的提升。
实施例27:
如图18所示,图18中虚线L3表示沿定子组件162的径向,定子副齿128的齿身平分线。
在实施例21至实施例26中任一者的基础上,进一步地,在相邻两个定子副齿128中,沿定子组件162的径向,一个定子副齿128的平分线与另一个定子副齿128的平分线之间的形成夹角β满足1≤β÷[2π÷(a×x)]<1.4,其中,x表示定子主齿120的数量,a表示每一个定子主齿120上定子副齿128的数量。
在该实施例中,在相邻两个定子副齿128中,沿定子组件162的径向,一个定子副齿128的平分线与另一个定子副齿128的平分线之间的形成夹角β,并且满足1≤β÷[2π÷(a×x)]<1.4;其中,x表示定子主齿120的数量,a表示每一个定子主齿120上定子副齿128的数量。这样,本申请进一步对定子副齿128的结构以及分布进行优化,使得应用该电机调制生成的谐波幅值较大,转矩较高,以进一步提升电机的工作效率。
实施例28:
如图15所示,在实施例21至实施例27中任一者的基础上,进一步地,定子组件162由多个定子分块172拼装组成,每个定子分别均包括轭部区段174和定子主齿120,相邻的定子分块172通过轭部区段174相连接。
在该实施例中,定子组件162包括多个定子分块172,并通过多个定子分块172拼接的方式形成定子组件162。这样,在定子组件162的加工制造过程中,工作人员可先在单个定子分块172上进行绕线等操作,有利于降低绕线难度,进而提高绕线的工作效率,降低材料成本。
此外,本申请可以首先在单个定子分块172上进行绕线等操作,可有效提升绕组的缠绕数量,并提升绕组的槽满率,提高应用电机输出性能。并且,本申请在降低绕线难度的基础上,可降低绕线过程中废品率,进而减少废料并提升定子组件162的成本率。此外,单独定子分块172对材料的要求较低,可提升材料的利用率,进而降低定子组件162的材料成本。
实施例29:
如图15所示,在实施例21至实施例28中任一者的基础上,进一步地,相邻两个定子分块172的轭部区段174可拆卸连接或固定连接。
在该实施例中,相邻两个定子分块172的轭部区段174可拆卸连接,进而保证相邻两个定子分块172的拆装。
具体地,定子分块172还包括第一连接部176和第二连接部178。其中,第一连接部176设置在轭部区段174的第一端,第二连接部178设置在轭部区段174的第二端,第一连接部176和第二连接部178在轭部区段174上相背。并且,第一连接部176和第二连接部178的结构相匹配,进而一个定子分块172的第一连接部176和另一个定子分块172的第二连接部178配合能够实现自锁。因此,在拼接定子分块172的过程中,本申请可以通过第一连接部176和第二连接部178来连接相邻两个定子分块172,包括相邻两个定子分块172的可拆卸连接。
其中,第一连接部176与第二连接部178中的一者为凸部,另一者为凹部。此外,凸部的形状与凹部的形状相适配,并且凸部与凹部之间能够可拆卸的连接,并具有自锁功能。具体地,凹部包括但不限于以下结构多边形槽、圆形槽、 椭圆形槽;凸部的形状与凹部的形状相匹配。
实施例30:
如图16所示,在实施例21至实施例29中任一者的基础上,进一步地,定子轭168和定子主齿120可拆卸地配合。
在该实施例中,定子组件162包括定子轭168和设置在定子轭168上的定子主齿120,其中,定子主齿120和定子轭168可拆卸式连接。这样,在定子组件162的加工制造过程中,可在定子主齿120上的先绕线,然后再安装到轭部,一方面便于绕线,提高电机槽满率,另一方面,减小定子槽170的槽口宽度d3,从而避免槽口过大对电机性能造成的影响。
具体地,定子轭168的部分可以嵌入到定子主齿120中,或者定子主齿120的部分嵌入到定子轭168中。
实施例31:
如图17所示,在实施例21至实施例30中任一者的基础上,进一步地,定子主齿120包括:齿身164和齿靴166,定子主齿120的一端和定子轭168相连接,另一端和齿靴166可拆卸地连接。具体地,凹槽130设置在齿靴166上,定子副齿128设置在齿靴166上。
在该实施例中,齿靴166与齿身164可拆卸式连接。这样,在定子组件162的加工制造过程中,可在齿身164上先绕线,然后再安装齿靴166,一方面便于绕线,提高电机槽满率,另一方面,可以增加齿靴166周向宽度,减小槽口宽度d3,从而避免槽口过大对电机性能造成的影响。
实施例32:
本申请提供的电机包括定子组件162和转子组件100,定子组件162包括定子铁芯和绕组。具体地,定子铁芯包括定子轭168和由定子轭168沿径向延伸的定子主齿120,相邻的定子主齿120之间形成定子槽170。每个定子主齿120包括齿身164和设置在齿身164一端的齿靴166,相邻齿靴166之间形成槽口,且每个齿靴166上分布有多个定子副齿128,相邻定子副齿128之间形成有凹槽130;绕组由多个线圈组成,线圈个数与定子主齿120的个数一致,每个线圈缠绕在单个定子主齿120上。
转子组件100和定子组件162同心设置,转子组件100包括导磁的第一转 子铁芯134、第二转子铁芯146、贴设在第一转子铁芯134的第一磁性件144和贴设在第二转子铁芯146的第二磁性件156,第一转子铁芯134和第二转子铁芯146沿轴向堆叠,第一转子铁芯134和第二转子铁芯146相差1个极矩,且第一转子铁芯134的结构和第二转子铁芯146的结构相同,只是两者转动一个极距后装配,第一转子铁芯134的内侧或外侧均匀分布有第一凸极140,第一磁性件144设置在相邻的第一凸极140之间,第二转子铁芯146的外侧或外侧均匀分布有第二凸极152,第二磁性件156设置在相邻的第二凸极152之间。
沿着第一转子铁芯134的径向,第一凸极140的中心线和第二磁性件156的中心线对齐,第二凸极152的中心线和第一磁性件144的中心线对齐,且第一磁性件144和第二磁性件156的充磁极性相反。
通过上述设计,齿靴166上的定子副齿128作为调制部件,实现磁场调制的作用。此时,不同于常规永磁电机,其槽开口较小,气隙磁导接近于常数。在本申请的电机中,定子主齿120***成多个定子副齿128,且相邻定子副齿128之间形成有较大的凹槽130,使得气隙磁导中引入较多的谐波分量。当永磁磁动势和含有谐波的气隙磁导作用时,气隙磁密中会出现新的谐波成分。进一步的,转子组件100通过采用交替极结构,第一转子铁芯134具有第一凸极140和第二转子铁芯146具有第二凸极152,气隙磁导进一步变化,调制效应增强,工作次磁密谐波的幅值增加,电机转矩进一步提升,且交替极结构可减小永磁体用量,降低电机成本。
转子组件100采用轴向分段结构,由第一转子铁芯134和第二转子铁芯146沿轴向堆叠而成,上下两段转子铁芯错开1个极矩,且全部第一磁性件144的充磁极性均为N极或均为S极,第二磁性件156的充磁极性均为S极或均为N极,使得相邻的两段转子组件100的感应反电势相位相差180°,从而抑制合成反电势中的偶次谐波,降低电机齿槽转矩和转矩波动。
并且,在本申请中,每个线圈仅绕设于一个定子主齿120上,即采用单齿绕的集中绕组结构,此时电机绕组端部较小,有利于减小铜耗,并且便于实现模块化,提高生产制造效率。
定义第一磁性件144两侧面与定子中心之间的夹角和第二磁性件156两侧面与定子中心之间的夹角为γ,当0.9≤γ÷(π÷Pr)≤1.7,电机输出性能较好。
进一步地,第一磁性件144和第一凸极140之间存在第一间隙158,第二磁性件156和第二凸极152之间存在第二间隙160,第一间隙158和第二间隙160的宽度范围为0到3mm时,电机输出性能较优。
第一磁性件144和第二磁性件156采用Halbach结构,由充磁方向大于等于3种方向的小块磁性件组合组成。通过上述设计可减小磁性件的漏磁,进一步提高反电势的正弦度,提高电机的输出性能,同时进一步降低电机齿槽转矩和转矩波动。本申请的电机可为内转子电机或外转子电机。
实施例33:
本申请提供了一种电器设备,包括:如上述任一实施例提供的电机。
本申请提供的电器设备,包括因包括如上述任一实施例提供的电机,因此,具有如上述任一实施例提供的电机的全部效果,在此不再一一陈述。
具体地,本申请提供的电器设备包括但不限于冰箱、洗衣机、空调器等产品。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (37)

  1. 一种转子组件,其中,包括:
    导磁毂框架,所述导磁毂框架包括端盖部和环形轭部,所述端盖部连接于所述环形轭部轴向的一端,所述环形轭部的内周壁设置有多个容纳部,所述多个容纳部沿所述环形轭部的圆周方向分布;
    多个永磁体,分别设置于所述多个容纳部内,所述多个永磁体的极性相同。
  2. 根据权利要求1所述的转子组件,其中,所述导磁毂框架还包括:
    凸出部,设置于所述环形轭部的内周壁,并朝向所述环形轭部的中部凸出,所述容纳部位于相邻两个所述凸出部之间。
  3. 根据权利要求2所述的转子组件,其中,
    所述凸出部的厚度与所述环形轭部的厚度相等;和/或
    所述永磁体的数量与所述凸出部的数量相等;和/或
    所述端盖部和所述环形轭部为一体式结构。
  4. 根据权利要求1至3中任一项所述的转子组件,其中,
    在所述环形轭部的圆周方向上,所述永磁体与所述容纳部的内壁之间存在气隙。
  5. 根据权利要求4所述的转子组件,其中,
    在所述环形轭部的圆周方向上,所述气隙的尺寸大于0mm并小于3mm。
  6. 根据权利要求1至3中任一项所述的转子组件,其中,
    所述环形轭部的中心到所述永磁体两端的连线之间形成有夹角γ,并满足0.9<γ/(π/(Pr))<1.7,其中,Pr为所述永磁体的数量。
  7. 根据权利要求1至3中任一项所述的转子组件,其中,
    所述永磁体包括以下一者:铁氧体或稀土永磁体。
  8. 根据权利要求2所述的转子组件,其中,
    所述凸出部包括样条曲面,所述样条曲面朝向所述环形轭部的中部设置。
  9. 根据权利要求8所述的转子组件,其中,
    在所述环形轭部的圆周方向上,所述样条曲面包括多段相连接的子样条面,所述子样条面包括平面和/或弧面。
  10. 一种电机,其中,包括:
    如权利要求1至9中任一项所述的转子组件;
    定子组件,所述定子组件的至少一部分位于所述转子组件内。
  11. 根据权利要求10所述的电机,其中,所述定子组件包括:
    定子铁芯,所述定子铁芯包括:
    轭部;
    定子主齿,设置于所述轭部上,所述定子主齿包括齿靴,相邻两个所述定子主齿之间具有定子槽,相邻两个所述齿靴之间具有槽口,所述槽口与所述定子槽相连通;
    定子绕组,设置于所述定子主齿上,位于所述定子槽内。
  12. 根据权利要求11所述的电机,其中,所述定子铁芯还包括:
    至少两个定子副齿,设置于所述齿靴上;
    其中,定子绕组的极对数Ps=│ax±Pr│,a表示所述定子主齿的数量,x表示每个所述定子主齿上所述定子副齿的数量,Pr表示所述多个永磁体的数量。
  13. 根据权利要求12所述的电机,其中,
    相邻两个所述定子副齿之间具有凹槽;
    在所述定子组件的圆周方向上,所述凹槽的尺寸与所述槽口的尺寸不等。
  14. 根据权利要求12或13所述的电机,其中,
    在相邻两个所述定子副齿中,一个所述定子副齿的齿身平分线与另一个所述定子副齿的齿身平分线之间的形成夹角β,且满足1≤β/(2π/(ax))<1.4,其中,a表示所述定子主齿的数量,x表示每一个所述定子主齿上所述定子副齿的数量。
  15. 一种电器设备,其中,包括:
    如权利要求10至14中任一项所述的电机。
  16. 一种转子组件,其中,包括:
    第一转子铁芯,所述第一转子铁芯包括第一轭部和多个第一凸极,多个所述第一凸极设于所述第一轭部,相邻的所述第一凸极之间形成第一安装槽;
    多个第一磁性件,所述第一磁性件设于所述第一安装槽;
    第二转子铁芯,沿所述第一转子铁芯的轴向,设于所述第一转子铁芯的一侧,所述第二转子铁芯包括第二轭部和多个第二凸极,多个所述第二凸极设于所述第二轭部,相邻的所述第二凸极之间形成第二安装槽;
    多个第二磁性件,所述第二磁性件设于所述第二安装槽,
    其中,所述第一磁性件的和所述第二凸极相对应的设置。
  17. 根据权利要求16所述的转子组件,其中,
    所述第二磁性件和所述第二凸极相对应的设置。
  18. 根据权利要求16所述的转子组件,其中,
    全部所述第一磁性件的充磁极性相同;
    全部所述第二磁性件的充磁极性相同;
    所述第一磁性件的充磁极性和所述第二磁性件的充磁极性相反。
  19. 根据权利要求16所述的转子组件,其中,
    所述第一转子铁芯和所述第二转子铁芯相差单数个极距。
  20. 根据权利要求16所述的转子组件,其中,
    所述第一转子铁芯和所述第二转子铁芯的轴向长度相等。
  21. 根据权利要求16至20中任一项所述的转子组件,其中,
    相邻的所述第一磁性件和所述第一凸极之间具有第一间隙;和/或
    相邻的所述第二磁性件和所述第二凸极之间具有第二间隙。
  22. 根据权利要求21所述的转子组件,其中,
    所述第一间隙的宽度小于等于3mm;和/或
    所述第二间隙的宽度小于等于3mm。
  23. 根据权利要求16至20中任一项所述的转子组件,其中,
    所述第一磁性件和所述第二磁性件的所占的圆心角的角度为γ,所述第一转子铁芯和所述第一磁性件形成的第一转子的极对数,以及所述第二转子铁芯和所述第二磁性件形成的第二转子的极对数均为Pr,
    其中,0.9≤γ÷(π÷Pr)≤1.7。
  24. 根据权利要求16至20中任一项所述的转子组件,其中,
    所述第一轭部和所述第一凸极为一体式结构;和/或
    所述第二轭部和所述第二凸极为一体式结构。
  25. 根据权利要求16至20中任一项所述的转子组件,其中,
    多个所述第一磁性件形成海尔贝克阵列;和/或
    多个所述第二磁性件形成海尔贝克阵列。
  26. 根据权利要求16至20中任一项所述的转子组件,其中,
    所述第一磁性件和所述第二磁性件结构相同;和/或
    所述第一凸极和所述第二凸极的结构相同。
  27. 根据权利要求16至20中任一项所述的转子组件,其中,
    所述第一转子铁芯包括多个第一铁芯分块,多个所述第一铁芯分块拼接成环状;
    所述第二转子铁芯包括多个第二铁芯分块,多个所述第二铁芯分块拼接成环状。
  28. 一种电机,其中,包括:
    定子组件;
    如上述权利要求16至27中任一项所述的转子组件。
  29. 根据权利要求28所述的电机,其中,所述定子组件包括:
    多个定子主齿,所述定子主齿朝向所述转子的一侧设置有凹槽,所述凹槽将所述定子主齿分隔为多个定子副齿。
  30. 根据权利要求29所述的电机,其中,
    所述定子组件的极对数为Pa,所述定子主齿的数量为x,每个所述定子主齿上定子副齿的数量为a,
    其中,Pa=|ax±Pr|。
  31. 根据权利要求29所述的电机,其中,
    沿所述定子组件的径向,定子主齿的平分线到所述凹槽的两侧壁的距离相等或不等。
  32. 根据权利要求29或30所述的电机,其中,
    在相邻两个所述定子主齿中,一个所述定子主齿的所述定子副齿和另一个所述定子主齿的所述定子副齿之间具有槽口;在所述槽口处,相邻两个所述定子主齿的角平分线到相邻两个所述定子副齿的距离相等或不等。
  33. 根据权利要求29或30所述的电机,其中,所述定子组件包括:
    多个定子分块,所述定子组件分别包括轭部区段和定子主齿,相邻的所述定子分块通过轭部区段相连接。
  34. 根据权利要求33所述的电机,其中,
    相邻两个所述定子分块的所述轭部区段可拆卸连接或固定连接。
  35. 根据权利要求29或30所述的电机,其中,所述定子组件还包括:
    定子轭,所述定子主齿可拆卸地设于所述定子轭。
  36. 根据权利要求35所述的电机,其中,所述定子主齿包括:
    齿身,一端和所述定子轭相连接;
    齿靴,可拆卸地设于所述齿身背离所述定子轭的一端。
  37. 一种电器设备,其中,包括:
    如权利要求28至36中任一项所述的电机。
PCT/CN2022/078988 2021-12-17 2022-03-03 转子组件、电机和电器设备 WO2023108910A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202123183375.0 2021-12-17
CN202111550908.6A CN114069924A (zh) 2021-12-17 2021-12-17 转子结构、电机和电器设备
CN202111550871.7 2021-12-17
CN202123185293.X 2021-12-17
CN202111550871.7A CN114172290A (zh) 2021-12-17 2021-12-17 转子组件、电机和电器设备
CN202123185293.XU CN216356170U (zh) 2021-12-17 2021-12-17 转子结构、电机和电器设备
CN202111550908.6 2021-12-17
CN202123183375.0U CN216356169U (zh) 2021-12-17 2021-12-17 转子组件、电机和电器设备

Publications (1)

Publication Number Publication Date
WO2023108910A1 true WO2023108910A1 (zh) 2023-06-22

Family

ID=86775112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078988 WO2023108910A1 (zh) 2021-12-17 2022-03-03 转子组件、电机和电器设备

Country Status (1)

Country Link
WO (1) WO2023108910A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080039A (zh) * 2023-09-05 2023-11-17 广东省新兴激光等离子体技术研究院 分析磁场装置及离子注入机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023861A (ja) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp 電機子鉄心とモータ
CN202309462U (zh) * 2011-09-30 2012-07-04 佛山市南海区东唐电机厂 直流无刷电机外转子总成装置
CN104969446A (zh) * 2013-02-08 2015-10-07 罗伯特·博世有限公司 用于电机的转子装置
CN107124053A (zh) * 2017-05-27 2017-09-01 南京航空航天大学 一种采用混合永磁体的交替极永磁电机转子
CN113364155A (zh) * 2020-03-05 2021-09-07 广东威灵电机制造有限公司 单相无刷直流电机和电器设备
CN114069924A (zh) * 2021-12-17 2022-02-18 威灵(芜湖)电机制造有限公司 转子结构、电机和电器设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023861A (ja) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp 電機子鉄心とモータ
CN202309462U (zh) * 2011-09-30 2012-07-04 佛山市南海区东唐电机厂 直流无刷电机外转子总成装置
CN104969446A (zh) * 2013-02-08 2015-10-07 罗伯特·博世有限公司 用于电机的转子装置
CN107124053A (zh) * 2017-05-27 2017-09-01 南京航空航天大学 一种采用混合永磁体的交替极永磁电机转子
CN113364155A (zh) * 2020-03-05 2021-09-07 广东威灵电机制造有限公司 单相无刷直流电机和电器设备
CN114069924A (zh) * 2021-12-17 2022-02-18 威灵(芜湖)电机制造有限公司 转子结构、电机和电器设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080039A (zh) * 2023-09-05 2023-11-17 广东省新兴激光等离子体技术研究院 分析磁场装置及离子注入机
CN117080039B (zh) * 2023-09-05 2024-05-31 广东省新兴激光等离子体技术研究院 分析磁场装置及离子注入机

Similar Documents

Publication Publication Date Title
JP5610726B2 (ja) 電気モータ
CN109861413B (zh) 一种聚磁型交替极容错永磁游标电机
CN210246575U (zh) 电机、压缩机及制冷设备
KR102623591B1 (ko) 돌극형 하이브리드 여자 모터
WO2023108910A1 (zh) 转子组件、电机和电器设备
WO2022193593A1 (zh) 外转子永磁电机以及洗衣机
JP7230185B2 (ja) ロータ及び永久磁石モータ
CN218071130U (zh) 转子组件和电机
CN217469587U (zh) 转子组件和电机
CN216356127U (zh) 定子组件、电机和电器设备
CN115065181A (zh) 转子组件和电机
WO2022110311A1 (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN114157069A (zh) 电机和电器设备
CN114069924A (zh) 转子结构、电机和电器设备
CN114069912A (zh) 定子组件、电机和电器设备
CN114069910A (zh) 定子组件、电机和电器设备
WO2022193592A1 (zh) 电机转子以及电机
CN216356169U (zh) 转子组件、电机和电器设备
KR20120129162A (ko) 길이가 다른 도체바를 갖는 회전자 및 그를 포함하는 lspm 모터
WO2023108887A1 (zh) 定子组件、电机和电器设备
WO2023108916A1 (zh) 定子组件、电机和电器设备
CN216530781U (zh) 电机和电器设备
WO2023108893A1 (zh) 定子组件、电机和电器设备
CN217469586U (zh) 转子组件和电机
CN216356170U (zh) 转子结构、电机和电器设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905681

Country of ref document: EP

Kind code of ref document: A1