WO2023108342A1 - 转换装置、电子设备以及控制转换装置的方法 - Google Patents

转换装置、电子设备以及控制转换装置的方法 Download PDF

Info

Publication number
WO2023108342A1
WO2023108342A1 PCT/CN2021/137455 CN2021137455W WO2023108342A1 WO 2023108342 A1 WO2023108342 A1 WO 2023108342A1 CN 2021137455 W CN2021137455 W CN 2021137455W WO 2023108342 A1 WO2023108342 A1 WO 2023108342A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
port
load
energy storage
Prior art date
Application number
PCT/CN2021/137455
Other languages
English (en)
French (fr)
Inventor
胡章荣
杨天宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180041918.9A priority Critical patent/CN116601843A/zh
Priority to PCT/CN2021/137455 priority patent/WO2023108342A1/zh
Publication of WO2023108342A1 publication Critical patent/WO2023108342A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Definitions

  • the present disclosure mainly relates to the technical field of power electronics, and more specifically, relates to a conversion device capable of realizing function multiplexing, a method for controlling the conversion device, and electronic equipment including the conversion device.
  • more and more electronic devices provide wireless charging function.
  • a charging device such as a charging pad
  • a power receiving coil it is possible to receive energy emitted by a charging device such as a charging pad through a power receiving coil, and use a power circuit to rectify and adjust the received power to supply power to the battery of the smartphone, thereby Realize wireless charging of mobile phone batteries.
  • electronic devices often also contain some load powered by batteries within the electronic device. For example, a linear motor is provided in a smart phone to provide a vibrating reminder function. This kind of load requires a dedicated power circuit or driver chip to drive.
  • embodiments of the present disclosure propose an improved conversion device, an electronic device including the conversion device, and a method for controlling the conversion device.
  • a conversion device including: a first converter including a plurality of switching devices, the first converter is configured to turn on and off the plurality of switching devices while switching between AC power and DC power the first DC port, configured to couple the first converter to the energy storage device; the first AC port, configured to couple the first converter to the wireless charging coil; and the second AC port, configured to couple the first converter to the first load.
  • the first converter can be used not only for power conversion during wireless charging or wireless reverse charging, but also for driving the first load.
  • the multiplexing of converters the number of required power conversion circuits or chips can be reduced, thereby reducing the area or space required for arranging circuits or chips, reducing product costs, and improving the utilization rate of power converters.
  • the plurality of switching devices are configured to: convert the first AC power received from the wireless charging coil via the first AC port into the first DC in response to receiving the first set of control signals
  • the first direct current power at the port is provided to the energy storage device.
  • the plurality of switching devices of the first converter can perform a rectification operation according to the control signal, so as to charge the energy storage device.
  • the plurality of switching devices is configured to convert the second DC power received from the energy storage device via the first DC port into the first AC power in response to receiving the second set of control signals.
  • the second AC power at the port is provided to the wireless charging coil.
  • the plurality of switching devices of the first converter can perform an inversion operation according to the control signal, so that the energy storage device reversely charges or discharges the load outside the electronic device.
  • the plurality of switching devices is configured to convert third DC power received from the energy storage device via the first DC port into a second AC power in response to receiving a third set of control signals
  • the third AC power at the port is provided to the first load.
  • the plurality of switching devices of the first converter can perform an inversion operation according to the control signal to drive the first load.
  • the AC frequency associated with the third AC power is different than the AC frequency associated with the first AC power or the second AC power.
  • multiplexing of conversion devices or converters can be realized without additional equipment for isolation, so it has the advantages of simplicity and low cost.
  • the conversion device further includes: a load switch coupled between the second AC port and the first load.
  • a load switch coupled between the second AC port and the first load.
  • the converter includes a first bridge arm and a second bridge arm, each of the first bridge arm and the second bridge arm includes at least two switching devices among the plurality of switching devices, the first An AC port and a second AC port are both coupled to the first bridge arm and the second bridge arm.
  • all the bridge arms of the first converter and their switching devices are multiplexed for various functions, thus maximizing the utilization of the switching devices of the first converter.
  • the first converter includes a first bridge arm, a second bridge arm, and a third bridge arm, and each of the first bridge arm, the second bridge arm, and the third bridge arm includes multiple For at least two switching devices among the switching devices, the first AC port is coupled to the first bridge arm and the second bridge arm, and the second AC port is coupled to the second bridge arm and the third bridge arm.
  • the additional bridge arm can be used to isolate the first load and the wireless charging coil, so as to eliminate the static current that may be generated in the first load.
  • the conversion device further includes: a second converter coupled between the first DC port and the energy storage device, and configured to switch between the plurality of switching devices in response to a third set of control signals
  • a boost operation is performed to make the voltage of the first DC port higher than the voltage of the energy storage device.
  • the second converter can be utilized to perform a boost operation to obtain a higher drive voltage to drive a high-voltage internal load such as a high-voltage linear motor, which avoids adding an additional boost specifically for high-voltage internal loads. Pressure (BOOST) circuit or chip.
  • BOOST Pressure
  • the first load includes at least one of a linear motor or a speaker.
  • linear motors and speakers are commonly used internal loads in electronic devices, and generally require a circuit similar to the power conversion circuit used in wireless charging to drive, so the power converter can be shared with wireless charging.
  • the linear motor and speaker operate at a different frequency than wireless charging, so they can function without interfering with each other when sharing the power converter.
  • a conversion device including: a third converter including a first group of switching devices, the third converter is configured to turn on and off the first group of switching devices while operating on AC power and Converting between DC power; a fourth converter including a second set of switching devices, the fourth converter is configured to turn on and off the second set of switching devices to convert DC power into AC power; at least one second DC The port is configured to couple the third converter and the fourth converter to the energy storage device; the third AC port is configured to couple the third converter to the wireless charging coil; the fourth AC port is configured to couple the first A fourth converter is coupled to the first load; and a fifth converter is coupled to the third converter and the fourth converter via at least one second DC port and to the energy storage device and is configured to connect the energy storage device The boosted voltage is output to at least one of the third converter or the fourth converter.
  • the boost function of the fifth converter can be shared for both wireless reverse charging and load driving, which saves additional BOOST circuits or chips, thereby reducing cost
  • the fifth converter includes a first switching device and a second switching device, and the fifth converter is configured to boost the voltage of the energy storage device through the first switching device and the second switching device output to at least one of the third converter and the fourth converter.
  • the third converter used for wireless charging or reverse charging and the fourth converter used for load driving share the boost circuit composed of the first switching device and the second switching device, and there is no need for wireless Charging or reverse charging and load driving are respectively provided with a boost circuit.
  • the arrangement that the third converter and the fourth converter share the DC port will not interfere with each other in function, and the first load can also be used to release excess energy when charging overvoltage.
  • the fifth converter includes a first switching device, a second switching device, and a third switching device, and the fifth converter is configured to convert the stored power through the first switching device and the second switching device
  • the voltage of the energy storage device is boosted and then output to the third converter, and is configured to boost the voltage of the energy storage device and output to the fourth converter through the third switching device and the second switching device.
  • the fifth converter is shared for wireless charging or reverse charging and load driving, different voltage requirements of the first load and the external load can be met.
  • an electronic device including: an energy storage device; a first load; a wireless charging coil; the conversion device according to the first aspect; and a processing device configured to send instructions to the conversion device.
  • a method for controlling a conversion device includes a first converter, coupling the first converter to a first DC port of an energy storage device, coupling the first converter to a wireless The first AC port of the charging coil, and the second AC port for coupling the first converter to the first load, the method includes: controlling the on-off of a plurality of switching devices of the first converter, so as to operate between AC power and DC power conversion.
  • controlling the on-off of the plurality of switching devices of the first converter to convert between AC power and DC power includes: in response to the plurality of switching devices receiving the first set of control signal, converting the first AC power received from the wireless charging coil via the first AC port into the first DC power at the first DC port to provide to the energy storage device.
  • controlling the on-off of the plurality of switching devices of the first converter to convert between AC power and DC power further includes: responding to the plurality of switching devices receiving the second group The control signal converts the second DC power received from the energy storage device through the first DC port into the second AC power at the first AC port to provide to the wireless charging coil.
  • controlling the switching on and off of the plurality of switching devices of the first converter to convert between AC power and DC power further includes: responding to the plurality of switching devices receiving a third set of The control signal converts the third DC power received from the energy storage device via the first DC port into third AC power at the second AC port to provide to the first load.
  • the AC frequency associated with the third AC power is different than the AC frequency associated with the first AC power or the second AC power.
  • Fig. 1 shows a schematic circuit diagram of an electronic device and its peripheral devices.
  • FIG. 2 shows a schematic circuit diagram of an electronic device and its peripheral devices according to an embodiment of the present disclosure.
  • Fig. 3 shows a schematic circuit diagram of an electronic device and its peripheral devices according to an alternative embodiment of the present disclosure.
  • Fig. 4 shows a schematic circuit diagram of an electronic device and its peripheral devices according to an alternative embodiment of the present disclosure.
  • Fig. 5 shows a schematic circuit diagram of an electronic device and its peripheral devices according to an embodiment of the present disclosure, in which an internal circuit of a second converter is schematically shown.
  • FIG. 6 shows a schematic circuit diagram of an electronic device and its peripheral devices according to another embodiment of the present disclosure.
  • Fig. 7 shows a schematic circuit diagram of an electronic device and its peripheral devices according to an alternative embodiment of the present disclosure.
  • Fig. 8 shows a schematic waveform diagram of a single inductor multiple output boost circuit composed of a first switching device, a second switching device and a third switching device.
  • the term “comprising” and its similar expressions should be interpreted as an open inclusion, that is, “including but not limited to”.
  • the term “based on” should be understood as “based at least in part on”.
  • the term “one embodiment” or “the embodiment” should be read as “at least one embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same object.
  • the term “and/or” means at least one of the two items associated with it. For example "A and/or B" means A, B, or A and B. Other definitions, both express and implied, may also be included below.
  • Fig. 1 shows a schematic circuit diagram of an electronic device 1000' and its peripheral devices.
  • an electronic device 1000' includes a first power circuit 100', a battery 200' and a wireless charging coil 400'.
  • the power supply 2000' charges the battery 200' of the electronic device 1000'
  • the power supply 2000' wirelessly transmits AC power through the transmitting coil, and is received by the wireless charging coil 400' of the electronic device 1000'.
  • the wireless charging coil 400' further inputs the received AC power to the first power circuit 100' to be rectified into DC power, and then provided to the battery 200' for charging.
  • the electronic device 1000' further includes a second power circuit 900' and a load 300'.
  • the load 300' may be a linear motor that requires AC power to drive.
  • the battery 200 can input DC power to the second power circuit 900', and invert the second power circuit 900' to obtain AC power to input to the load 300', thereby driving the load 300'.
  • the electronic device 1000' may also include other loads and their corresponding power circuits.
  • an improved conversion device and its control method are provided, and electronic equipment including the conversion device is also provided.
  • the same converter can be used for multiple functions, including at least wireless charging of the energy storage device, charging of the external electronic equipment by the energy storage device
  • the load can be reverse charged wirelessly, and internal loads such as linear motors can be driven.
  • the converters in the conversion device also have a higher utilization rate, thereby avoiding waste of resources.
  • FIG. 2 shows a schematic circuit diagram of an electronic device 1000 and its peripheral devices according to an embodiment of the present disclosure.
  • electronic device 1000 may be a smartphone, tablet computer, notebook computer, smart watch, personal digital assistant, or any other type of device that requires its own energy storage device to be powered.
  • the electronic device 1000 may include a conversion device 100 , an energy storage device 200 and a wireless charging coil 400 .
  • the electronic device 1000 may be coupled to the power source 2000 in a wireless or contactless manner via the wireless charging coil 400 .
  • the power source 2000 may be, for example, a utility grid, a power supply device connected to the utility grid, or any other type of device capable of providing electrical energy, and thus may deliver power to the electronic device 1000 .
  • the power supply 2000 may be connected to a charging pad including a transmitting coil, and when the electronic device 1000 is near or placed on the charging pad, the power supply 2000 may transmit power to the wireless charging coil 400 of the electronic device 1000 through the transmitting coil of the charging pad.
  • the power transmission from the power supply 2000 to the electronic device 1000 can also be implemented in other appropriate ways, for example, a transmitting coil can be set in the power supply 2000, and the power can be directly wirelessly transmitted from the power supply 2000 to the wireless charging coil 400, without additional equipment.
  • the wireless charging coil 400 receives power from the power source 2000
  • the received power is further provided to the energy storage device 200 of the electronic device 1000 via the conversion device 100 , so as to realize charging of the energy storage device 200 .
  • Electronic device 1000 may also be coupled to load 3000 in a wireless or contactless manner.
  • the load 3000 may be a device that needs to be driven by electric energy or capable of storing electric energy, and it may be another electronic device similar to the electronic device 1000 , for example.
  • the load 3000 may include a receiving coil or be connected to a device such as a charging pad that includes a receiving coil.
  • the energy storage device 200 of the electronic device 1000 can convert the electric energy stored by itself through the conversion device 100 by means such as adjusting frequency, duty cycle, etc., and then reversely transmit it to the load 3000 through the wireless charging coil 400, That is, power is transmitted by the wireless charging coil 400 and received by the receiving coil on one side of the load 3000 for use by the load 3000 or stored by an energy storage device in the load 3000 .
  • the energy storage device 200 may be a rechargeable battery including, but not limited to, a nickel-cadmium battery, a nickel-hydrogen battery, a lithium-ion battery, a lithium polymer battery, a lead-acid battery, and the like.
  • the energy storage device 200 may also be other types of energy storage devices, such as supercapacitors.
  • the electronic device 1000 may further include a first load 300 .
  • the first load 300 may be a linear motor. Different from the traditional rotor motor, the linear motor adopts linear motion to realize vibration, so as to provide a reminder function for the electronic device 1000, such as an incoming call reminder for a smart phone.
  • an AC voltage needs to be applied to the coil inside the linear motor, so the DC power of the energy storage device 200 needs to be converted into AC power before it can be used to drive the linear motor.
  • the first load 300 is not limited thereto, but may be other loads in the electronic device 1000, for example, the first load 300 may also be a speaker that also needs to be driven by AC power.
  • the electronic device 1000 may include a processing device 500 configured to send instructions to the conversion device 100 .
  • the processing device 500 may also perform other computing or processing tasks related to any function of the electronic device 1000 .
  • the processing device 500 may be an application processor in a smart phone or a smart watch.
  • the processing device 500 includes, but is not limited to, a central processing unit (CPU), a graphics processing unit (GPU), various dedicated artificial intelligence (AI) computing chips, various computing units that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc.
  • CPU central processing unit
  • GPU graphics processing unit
  • AI dedicated artificial intelligence
  • DSP digital signal processing processor
  • the conversion apparatus 100 includes a first converter 110 including a plurality of switching devices, and the first converter 110 is configured to turn on and off the plurality of switching devices while operating on AC power and Convert between DC power.
  • the first converter 110 may perform an inversion operation, that is, convert DC power into AC power, or perform a rectification operation, that is, convert AC power into DC power, by controlling on and off of a plurality of switching devices as required.
  • the plurality of switching devices of the first converter 110 may be controlled in a pulse width modulation (Pulse Width Modulation, PWM) manner or other appropriate manners, so as to realize rectification operation or inversion operation.
  • PWM pulse width modulation
  • the multiple switching devices of the first converter 110 may include but not limited to Insulated Gate Bipolar Translator (IGBT), Junction Field-Effect Transistor (JFET), Bipolar Junction Transistor (Bipolar Junction Transistor, BJT), Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET), Gate Turn Off thyristor (Gate Turn Off thyristor, GTO), MOS-Controlled Thyristor (MOS-Controlled Thyristor, MCT) , Integrated Gate-Commutated Thyristor (IGCT), silicon carbide (SiC) switching devices or gallium nitride (GaN) switching devices and other power switching devices.
  • the first converter 110 may be a full bridge circuit. However, it can be understood that the first converter 110 may be any other conversion circuit or device capable of implementing rectification and inversion operations.
  • the conversion device 100 may further include a first DC port 150, a first AC port 160, and a second AC port 170, wherein the first DC port 150 is configured to couple the first converter 110 to In the energy storage device 200 , the first AC port 160 is configured to couple the first converter 110 to the wireless charging coil 400 , and the second AC port 170 is configured to couple the first converter 110 to the first load 300 . That is to say, the conversion device 100 can provide two AC ports, wherein the first AC port 160 is used for coupling to the wireless charging coil 400 to help realize the charging and reverse charging functions of the energy storage device 200, and the second AC port 170 is used for Coupled to a first load 300 such as a linear motor to help drive the first load 300 .
  • the energy storage device 200 realizes multiplexing for various functions. In other words, it is no longer necessary to provide a conversion device or a power circuit for the wireless charging (or wireless reverse charging) and the first load 300 , but only the conversion device 100 is required.
  • the electronic device 1000 such as a smart phone
  • wireless charging and linear motor vibration are required to be simultaneously driven.
  • the electronic device 1000 is usually placed on a charging tray or a charging stand and is therefore far away from the user of the electronic device 1000, the vibration reminder function at this time cannot function, and in order to prevent Vibration causes the electronic device 1000 to move and affect charging, and the vibration function is often turned off.
  • the improved solution of the present disclosure proposes to use the same conversion device 100 in the electronic device 1000 for wireless charging, and also for driving internal loads (such as linear motors or speakers), thereby removing the need for driving internal loads.
  • required driving circuit or driving device which reduces product cost, saves the area or space required for arranging the driving circuit or driving device, and also improves the utilization rate of the power conversion device.
  • the improvements of the present disclosure may bring other benefits.
  • the DC side of the conversion device may cause overvoltage and damage subsequent components.
  • the excess energy can be converted into mechanical energy by turning on the linear motor to trigger vibration.
  • there is no need for an additional discharge path for the overvoltage on the DC side which further reduces the cost of the product and saves space or area.
  • the conversion device 100 can support multiple working modes, including but not limited to wireless charging mode, wireless reverse charging mode and load driving mode.
  • the processing device 500 of the electronic device 1000 can issue instructions to the conversion device 100 according to the scene requirements, so that the conversion device 100 works in a required working mode. For example, when the electronic device 1000 such as a smart phone receives an incoming call, the processing device 500 may issue an instruction to the conversion device 100 to make the conversion device 100 enter a load driving mode for driving a linear motor to vibrate.
  • the conversion device 100 may include a control unit 120 .
  • the control unit 120 may receive instructions from the processing device 500, and complete switching and configuration tasks of multiple working modes according to the instructions. In addition, the control unit 120 may also perform tasks such as linear motor closed-loop algorithms.
  • the complexity of the software of the processing device 500 can be reduced.
  • the implementation of the present disclosure is not limited thereto, and other methods may be used, for example, the switching and configuration tasks of multiple working modes may be directly controlled by the processing device 500 without the need for the conversion device 100 The settings in the control unit 120.
  • the conversion device 100 may further include a storage unit 130 and an analog-to-digital conversion unit 140 .
  • the storage unit 130 can store data and instructions required in the charging operation and reverse charging operation, and the analog-to-digital conversion unit 140 can be used to detect and obtain various operating parameters of the first converter 110, such as the first DC port 150, Voltage, current, etc. at the first AC port 160 and/or the second AC port 170 .
  • the storage unit 130 and the analog-to-digital conversion unit 140 can also provide assistance, for example, the analog-to-digital conversion unit 140 can detect the back electromotive force across the linear motor to track the resonant frequency of the linear motor To achieve closed-loop control, and the storage unit 130 can be used to store the vibration sequence of the linear motor.
  • a charging chip including an analog-to-digital converter and a memory is provided for charging requirements, and in order to drive a load such as a linear motor, a driver chip that also includes an analog-to-digital converter and a read-only memory is usually further provided , obviously, these repetitive devices increase the cost of the product.
  • the conversion device 100 may further include a low dropout regulator (Low Dropout Regulator, LDO) 180, and the LDO 180 may be coupled between the first converter 110 and the energy storage device 200, so that the energy storage device 200 Helps to stabilize the voltage from the first converter 110 while charging.
  • LDO Low Dropout Regulator
  • the plurality of switching devices of the first converter 110 are configured to convert the first AC power received from the wireless charging coil 400 via the first AC port 160 to converted into the first DC power at the first DC port 150 to be provided to the energy storage device 200 .
  • the electronic device 1000 processes The device 500 can send an instruction to the control unit 120 to instruct the conversion device 100 to enter the wireless charging mode, and the control unit 120 sends a first group of control signals to the plurality of switching devices of the first converter 110 to turn on and off a plurality of switch device.
  • the first converter 110 rectifies the first AC power received from the first AC port 160 .
  • the rectified DC power is provided to the energy storage device 200 via the first DC port 150 for charging.
  • the manner of controlling the plurality of switching devices is not limited thereto, and other manners are also possible, for example, the processing device 500 may directly send the first group of control to the plurality of switching devices of the first converter 110 signal to enable the conversion device 100 to enter the wireless charging mode.
  • the plurality of switching devices of the first converter 110 are configured to convert the second direct current received from the energy storage device 200 via the first direct current port 150 in response to receiving the second set of control signals.
  • the power is converted into the second AC power at the first AC port 160 to be provided to the wireless charging coil 400 .
  • the processing device 500 of the electronic device 1000 may send an instruction to the control unit 120 based on detecting a charging request for the load 3000, to The conversion device 100 is instructed to enter the wireless reverse charging mode, and the control unit 120 sends a second group of control signals to the plurality of switching devices of the first converter 110 to turn on and off the plurality of switching devices.
  • the first converter 110 inverts the second DC power received from the first DC port 150 .
  • the inverted AC power is provided to the wireless charging coil 400 via the first AC port 160 for reverse charging the load 3000 .
  • the processing device 500 may directly send the second group of control to the plurality of switching devices of the first converter 110 signal to enable the conversion device 100 to enter the wireless reverse charging mode.
  • the plurality of switching devices of the first converter 110 are configured to convert the third direct current received from the energy storage device 200 via the first direct current port 150 in response to receiving the third set of control signals.
  • the power is converted into third AC power at the second AC port 170 to be provided to the first load 300 .
  • the electronic device 1000 may need to drive the first load 300 , for example, the electronic device 1000 as a smart phone receives an incoming call and thus needs to drive the first load 300 as a linear motor to vibrate to remind the user of the electronic device 1000 .
  • the processing device 500 may send an instruction to the control unit 120 to instruct the conversion device 100 to enter the load driving mode, and the control unit 120 sends a third group of control to the plurality of switching devices of the first converter 110 signal to turn on and off multiple switching devices.
  • the first converter 110 inverts the third DC power received from the first DC port 150 .
  • the inverted AC power is provided to the first load 300 via the second AC port 170 for driving the first load 300 , for example, driving a linear motor to vibrate.
  • the manner of controlling the plurality of switching devices is not limited thereto, and other manners are also possible, for example, the processing device 500 may directly issue a third group of control to the plurality of switching devices of the first converter 110 signal to make the conversion device 100 enter the load driving mode.
  • the AC frequency associated with the third AC power is different than the AC frequency associated with the first AC power or the second AC power.
  • the third AC power is the AC power at the second AC port 170 for driving the first load 300
  • the first AC power is the AC power at the first AC port 160 for charging the energy storage device 200
  • the second AC power is the AC power at the first AC port 160 for reverse charging the external load 3000 .
  • the first AC port 160 and the second AC port 170 share the same converter, that is, the first converter 110 .
  • the first load 300 connected to the first alternating current port 160 and the wireless charging coil 400 connected to the second alternating current port 170 are in contact with each other.
  • the functions can basically not interfere with each other, and thus can be directly used in parallel.
  • the resonant frequency of the linear motor is generally 100Hz to 300Hz
  • the AC frequency associated with the third AC power will be maintained at 100Hz to 300Hz
  • the resonant frequency of reverse charging is generally 100kHz to 200kHz, so the frequency of the alternating current associated with the first alternating current power or the second alternating current power will be maintained at 100kHz to 200kHz.
  • there is a difference of 3 orders of magnitude between the AC frequency associated with the third AC power and the AC frequency associated with the first AC power or the second AC power so the vibration of the linear motor will not be induced on the wireless charging coil Energy is produced, and wireless charging does not cause motor vibration.
  • wireless charging has a resonant frequency of 100kHz to 200kHz
  • driving a linear motor at 100Hz to 300Hz might use a PWM signal with a switching frequency of 20kHz to 40kHz.
  • the impedance around 20kHz to 40kHz may be small.
  • you can change the switching frequency of the PWM signal driving the linear motor for example, use a PWM signal with a switching frequency of 1MHz, or change the resonant frequency of wireless charging, for example, use 6.78MHz to charge the linear motor.
  • the switching frequency of the PWM signal has a large difference from the resonant frequency of wireless charging, and ensures that the switching frequency corresponds to a large impedance in the impedance spectrum, thereby ensuring that wireless charging or reverse charging and load driving will not interfere with each other.
  • the frequency of the speaker is in the frequency range of 20Hz to 20kHz that can be heard by the human ear, and the resonant frequency of wireless charging or wireless reverse charging is 5 to 10 times that, so the speaker and wireless charging or reverse charging will not functionally interfere with each other. Since the wireless charging coil 400 and the first load 300 do not interfere with each other, the wireless charging coil 400 can be directly connected to the first AC port 160, and the first load 300 can be directly connected to the second AC port 170 without affecting each other. function.
  • control unit 120 and the processing device 500 can be used for coordination, so as to implement time-division multiplexing of the first converter 110 through software.
  • the processing device 500 can send an instruction to the control unit 120 to make the conversion device 100 temporarily exit the wireless charging mode.
  • the processing device 500 sends an instruction to the control unit 120 to make the conversion device 100 Return to wireless charging mode or wireless reverse charging mode.
  • multiplexing of conversion devices or converters can be realized without setting up additional equipment for isolation, so it has the advantages of simplicity and low cost.
  • the first converter 110 includes a first bridge arm 1101 and a second bridge arm 1102, each of the first bridge arm 1101 and the second bridge arm 1102 includes a plurality of switching devices At least two switching devices, the first AC port 160 and the second AC port 170 are both coupled to the first bridge arm 1101 and the second bridge arm 1102 .
  • the first bridge arm 1101 and the second bridge arm 1102 can form a full bridge circuit, and these two bridge arms are used for power conversion in various modes such as wireless charging mode, wireless reverse charging mode and load driving mode. .
  • the full bridge circuit can be used for inverter or rectification operation between the DC port 150 and the first AC port 160 , and can also be used for inverter operation between the DC port 150 and the second AC port 170 .
  • all the bridge arms of the first converter 110 and their switching devices are multiplexed for various functions, thus maximizing the utilization of the switching devices of the first converter 110 .
  • each bridge arm of the first bridge arm 1101 and the second bridge arm 1102 may include two switching devices respectively located at the upper bridge arm and the lower bridge arm.
  • each bridge arm may include more or less switching devices, and may also include other appropriate electrical components, such as capacitors, resistors, etc., as long as the first converter 110 constructed by such a bridge arm can realize rectification and Inversion operation is enough.
  • FIG. 3 shows a schematic circuit diagram of an electronic device 1000 and its peripheral devices according to an alternative embodiment of the present disclosure.
  • the conversion device 100 further includes a load switch 190 coupled between the second AC port 170 and the first load 300 .
  • the function of the load switch 190 is to realize the isolation between the first load 300 and the wireless charging coil 400 .
  • the first load 300 and the wireless charging coil 400 operating at different frequencies will not interfere with each other functionally.
  • the load switch 190 may be turned off for an appropriate period of time.
  • the load switch 190 when the wireless charging coil 400 needs to perform wireless charging or wireless reverse charging operation, that is, when the conversion device 100 is in the wireless charging mode or the wireless reverse charging mode, the load switch 190 is placed in the off state, thereby enabling the The first load 300 is isolated from the wireless charging coil 400 , so as to eliminate the static current that may be generated on the resistance inside the first load 300 .
  • the load switch 190 may be a power switching device, such as a bidirectional cut-off MOS field effect transistor.
  • the load switch 190 may also be an electrical switch such as a relay. It can be understood that although it is shown in FIG.
  • the load switch 190 may also be disposed inside the first load 300, or independently disposed between the conversion device 100 and the first load 300. between.
  • Other devices or devices shown in FIG. 3 are similar to those in FIG. 2 , and thus will not be repeated here.
  • FIG. 4 shows a schematic circuit diagram of an electronic device 1000 and its peripheral devices according to an alternative embodiment of the present disclosure.
  • the first converter 110 includes a first bridge arm 1101, a second bridge arm 1102 and a third bridge arm 1103, each of the first bridge arm 1101, the second bridge arm 1102 and the third bridge arm 1103 includes at least two switching devices among a plurality of switching devices, the first AC port 160 is coupled to the first bridge arm 1101 and the second bridge arm 1102, and the second AC port 170 is coupled to the second bridge arm 1102 and the third bridge arm 1103. It can be seen that, compared with the first converter 110 in FIG. 2 , an extra bridge arm 1103 is added to the first converter 110 in FIG. 4 .
  • the full bridge circuit composed of the first bridge arm 1101 and the second bridge arm 1102 is used for wireless charging or wireless reverse charging, and the irrelevant third bridge arm 1103 is turned off during wireless charging or wireless reverse charging. switch device.
  • a full bridge circuit is formed by the second bridge arm 1102 and the third bridge arm 1103 to drive the first load 300, and when the first load 300 is driven, the switching device on the irrelevant first bridge arm 1101 is turned off.
  • the wireless charging coil 400 can also be isolated from the first load 300 in different working modes, so as to eliminate the static current that may be generated on the internal resistance of the first load 300 .
  • Other devices or devices shown in FIG. 4 are similar to those in FIG. 2 , so details are not repeated here.
  • the conversion device 100 may include a second converter 100-1, and the second converter 100-1 is coupled to the first DC port 150 and the energy storage device 200.
  • the second converter 100-1 may be a charge management circuit or chip (Charger IC), or may be a part of the charge management circuit or chip, so as to manage the charge and discharge of the energy storage device 200, such as The charging and discharging voltage is controlled.
  • the second converter 100-1 can be a part of the converting device 100, for example, it can be directly formed in the converting device 100, and in alternative embodiments, the second converter 100-1 can also be an independent Circuits or devices in the conversion device 100 .
  • Fig. 5 shows a schematic circuit diagram of an electronic device 1000 and its peripheral devices according to an embodiment of the present disclosure, in which the internal circuit of the second converter 100-1 is schematically shown.
  • the second converter 100-1 may include a two-quadrant DC-DC conversion circuit composed of switching devices Q1 and Q2.
  • the two-quadrant DC-DC conversion circuit in the second converter 100-1 can work as a BUCK circuit, so the second converter 100-1 will be rectified by the first converter 110 The voltage is appropriately stepped down to be input to the energy storage device 200 for charging.
  • the load 3000 coupled to the electronic device 1000 may be external OTG (On-The-Go) devices such as a mouse and a keyboard, and these external OTG devices require a higher operating voltage.
  • the second converter 100-1 can work in OTG mode, that is, the two-quadrant DC-DC conversion circuit in the second converter 100-1 can work as a BOOST circuit , and thus properly boost the voltage of the energy storage device 200 to output to the first DC port 150, so as to supply power to external OTG devices.
  • the second converter 100-1 may further include an anti-backflow switching device M1, a path switching device M2, and an inductor L, wherein the anti-backflow switching device M1 is used to avoid backflow when charging the energy storage device 200, And the path switching device M2 is used for controlling and regulating the charging and discharging of the energy storage device 200 .
  • the first load 300 may include loads that need to be driven by high voltage, such as some high-performance linear motors.
  • these high-performance linear motors include but are not limited to X-axis linear motors with large volume and long stroke.
  • a high voltage to drive this type of linear motor, for example, a voltage as high as 9V or more.
  • the voltage of the energy storage device 200 such as a battery is generally lower, eg, 3.6V to 4.4V.
  • an additional BOOST circuit or chip is usually required to boost the voltage. For example, in the electronic device 1000' shown in FIG.
  • the second converter 100 - 1 may be utilized to implement a boost operation to drive an internal load that requires high voltage driving.
  • the second converter 100-1 may be configured to perform a boost operation so that the voltage of the first DC port 150 is higher than the voltage of the energy storage device 200 . That is, in the case where the first converter 110 drives the first load 300, the second converter 100-1 may perform a boost operation to provide the boosted voltage to the first converter 110, so that the first load 300 for a higher drive voltage.
  • the second converter 100-1 can be used to perform a boost operation to obtain a higher driving voltage to drive a high-voltage linear motor, which avoids adding additional BOOST circuit or chip.
  • the second converter 100-1 can not only be used for step-up or step-down when the energy storage device 200 is charging and driving an external OTG device, but can also be used for driving the first load 300 such as a high-voltage linear motor. Used to replace the BOOST circuit or chip, this advantageously realizes the multiplexing of the second converter 100-1, thereby further reducing the cost of the product and saving the layout area or space.
  • the first load 300 that needs to be driven by high voltage is not limited to a high-voltage linear motor, but may be other types of loads, such as speakers.
  • FIG. 6 shows a schematic circuit diagram of an electronic device 1000" and its peripheral devices according to another embodiment of the present disclosure.
  • an electronic device 1000 may include a conversion device 100".
  • the conversion device 100 includes a third converter 110-1" and a fourth converter 110-2".
  • the third converter 110-1 includes a first set of switching devices, and the third converter 110-1" is configured to connect to The first set of switching devices is turned on and off to convert between AC power and DC power.
  • the fourth converter 110-2 includes a second set of switching devices, and the fourth converter 110-2" is configured to turn on and turn off the second set of switching devices to convert the DC power into AC power.
  • the conversion device 100" also includes a DC port 151", an AC port 160” and an AC port 170", wherein the DC port 151" is configured to convert the third 110-1" and the fourth converter 110-2" are coupled to the energy storage device 200, the AC port 160" is configured to couple the third converter 110-1" to the wireless charging coil 400, and the AC port 170" is configured to configured to couple the fourth converter 110 - 2 ′′ to the first load 300 .
  • the conversion device 100" is provided with a fifth converter 110-3", which is coupled to the third converter 110-1" and the fourth converter 110-1" via the DC port 151". 2", and coupled to the energy storage device 200, and configured to boost the voltage of the energy storage device 200 and output it to at least one of the third converter 110-1" and the fourth converter 110-2".
  • the fifth converter 110-3′′ can provide a step-down operation, and when the electronic device 1000′′ is coupled to an external OTG device (such as a mouse, keyboard, etc.), the fifth converter 110-3′′ 110-3" may provide the boosted voltage to the third converter 110-1", so as to be supplied to an external OTG device.
  • the fifth converter 110-3′′ may perform a boost operation to provide the boosted voltage to the fourth converter 110-3′′ 2", so that the first load 300 can obtain a higher driving voltage.
  • a dedicated BOOST circuit or chip for a load such as a high-voltage linear motor, which reduces the cost of the product and saves the layout area or space.
  • the fifth converter 110-3" includes a first switching device Q1" and a second switching device Q2", and the fifth converter 110-3" is configured to pass the first switching device Q1" and the second The switching device Q2" boosts the voltage of the energy storage device 200 and outputs it to at least one of the third converter 110-1" and the fourth converter 110-2". Similar to the second converter 100-1 in FIG. 5, the first switching device Q1" and the second switching device Q2" form a two-quadrant DC-DC conversion circuit, and thus provide step-up and step-down in two power flow directions, respectively. pressure function.
  • the third converter 110-1" and the fourth converter 110-2" share the DC port 151", so the DC port 151" can be directly used to drive the first load 300 and the external load 3000 at the same time, while When only the first load 300 or the external load 3000 needs to be driven, since there is usually a difference in operating frequency between the wireless charging coil 400 and the first load 300 , they will not interfere with each other functionally. In addition, this is also beneficial for charging the energy storage device 200. For example, during the process of charging the energy storage device 200 by the third converter 110-1", if the output or DC port of the third converter 110-1" If an overvoltage occurs at 151", the overvoltage problem can be solved by driving a linear motor to vibrate or driving other types of loads to release excess energy.
  • FIG. 7 shows an alternative implementation according to the present disclosure A schematic circuit diagram of an example electronic device 1000" and its peripheral devices. The difference between the electronic device 1000" in FIG. 7 and that in FIG. 6 is that the fifth converter 110-3" is coupled to the third converter 110-1" via a DC port 151", and coupled to the third converter 110-1" via another DC port 152". to the fourth converter 110-2".
  • the fifth converter 110-3" may include a first switching device Q1", a second switching device Q2", and a third switching device Q3", and the fifth converter 110-3" is configured to pass the first switching device Q1 " and the second switching device Q2" to boost the voltage of the energy storage device 200 and output it to the third converter 110-1", and is configured to convert the The voltage of the energy storage device 200 is boosted and output to the fourth converter 110-2". That is to say, the fifth converter 110-3" in FIG. The fourth converter 110-2" and the fifth converter 110-3" are coupled to the flow port 152".
  • the control unit or processing device of the electronic device 1000" can properly control the fifth converter 110-3" according to needs or application scenarios to realize corresponding functions.
  • the third switching device Q3 ′′ of the fifth converter 110-3 ′′ can be turned off, and the first switching device Q1 ′′ and the second switching device Q1 ′′ can be controlled.
  • Device Q2" operates as a BOOST circuit.
  • the first switching device Q1 ′′ of the fifth converter 110-3 ′′ can be turned off, and the third switching device Q3 ′′ and the second switching device Q2 can be controlled.
  • the first switching device Q1", the second switching device Q2" and the third switching device Q3" can form a single inductor multi output (Single Inductor Multi Output, SIMO) BOOST circuit to output power to both the third converter 110-1" and the fourth converter 110-2".
  • SIMO Single Inductor Multi Output
  • Figure 8 shows a schematic waveform diagram of the SIMO BOOST circuit composed of the first switching device Q1 ", the second switching device Q2 “ and the third switching device Q3 ".
  • Both the first load 300 and the external load 3000 need a boost drive
  • the branch formed by the first switching device Q1 ′′ and the second switching device Q2 ′′ supplies power to the external load 3000
  • the branch formed by the second switching device Q2 ′′ and the third switching device Q3 ′′ supplies power to the first load 300
  • the voltages of the two outputs to the DC port 151 ′′ and to the DC port 152 ′′ can be adjusted respectively, so as to meet the requirements of the first load 300 and the The external loads 3000 each have different voltage requirements.
  • the wireless reverse charging and load driving in the electronic device 1000" share the same converter to implement the boost function, and the working mode of the converter can also be switched according to needs and application scenarios, This avoids separately setting BOOST circuits or chips for wireless anti-charging and load driving, thereby reducing cost and reducing space occupation.
  • the fifth converter 110-3" can be a charging management circuit or a chip (Charger IC), or A part of the charge management circuit or chip, and therefore can use the OTG mode in the charge management circuit or chip to provide a voltage above 9V to the first load 300 and the external load 3000 . It can be understood that the fifth converter 110-3" can also be realized by a separate BOOST circuit or chip.
  • a method for controlling the conversion device 100 includes: controlling on and off of a plurality of switching devices of the first converter 110 to convert between AC power and DC power.
  • controlling on and off of the plurality of switching devices of the first converter 110 to convert between AC power and DC power includes: in response to the plurality of switching devices receiving a first set of control signal, converting the first AC power received from the wireless charging coil 400 via the first AC port 160 into the first DC power at the first DC port 150 to provide to the energy storage device 200 .
  • controlling the on-off of the plurality of switching devices of the first converter 110 to convert between AC power and DC power further includes: responding to the plurality of switching devices receiving the second set of The control signal converts the second DC power received from the energy storage device 200 via the first DC port 150 into the second AC power at the first AC port 160 to provide to the wireless charging coil 400 .
  • controlling the on-off of the plurality of switching devices of the first converter 110 to convert between AC power and DC power further includes: responding to the plurality of switching devices receiving a third group The control signal converts the third DC power received from the energy storage device 200 via the first DC port 150 into third AC power at the second AC port 170 to provide to the first load 300 .
  • the AC frequency associated with the third AC power is different than the AC frequency associated with the first AC power or the second AC power.
  • the method further includes: when the plurality of switching devices operate in response to the first set of control signals or the second set of control signals, turning off the load switch 190; and when the plurality of switching devices respond to When the third group of control signals is operated, the load switch 190 is turned on.
  • the method further includes: turning off the switching devices of the third bridge arm 1103 in response to the plurality of switching devices receiving the first group of control signals or the second group of control signals;
  • the switching device receives the third group of control signals, and turns off the switching device of the first bridge arm 1101 .
  • the method further includes: performing a boost operation on the second converter 100-1 to make the first DC port 150 The voltage of is higher than the voltage of the energy storage device 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开涉及一种转换装置、包括该转换装置的电子设备以及控制该转换装置的方法。该转换装置包括:第一转换器,包括多个开关器件,第一转换器被配置为接通和关断多个开关器件而在交流功率和直流功率之间进行转换;第一直流端口,被配置为将第一转换器耦合至储能装置;第一交流端口,被配置为将第一转换器耦合至无线充电线圈;以及第二交流端口,被配置为将第一转换器耦合至第一负载。通过本公开的方案,减少了布置电路或芯片所需的面积或空间、降低了产品成本、并且提高了器件的利用率。

Description

转换装置、电子设备以及控制转换装置的方法 技术领域
本公开主要涉及电力电子技术领域,更具体而言,涉及能够实现功能复用的转换装置、控制该转换装置的方法、以及包括该转换装置的电子设备。
背景技术
目前,越来越多的电子设备提供了无线充电功能。例如,在智能手机中,可以通过功率接收线圈接收由诸如充电盘之类的充电装置发射的能量,并且利用功率电路对所接收的电能进行整流和调节以将电能提供给智能手机的电池,从而实现手机电池的无线充电。此外,电子设备通常还包含由该电子设备内的电池供电的一些负载。例如,智能手机中会设置有线性马达来提供振动提醒功能。这种负载需要专用的功率电路或驱动芯片来进行驱动。
为了实现电池充电和负载驱动等多种功能,通常需要在电子设备中设置专用电路或芯片。然而,目前的方案存在较多问题,例如这些专用电路或芯片需要在越来越小型化的电子设备中占用大量面积或空间、并且成本较高。
发明内容
为了解决上述问题,本公开的实施例提出了一种改进的转换装置、包括该转换装置的电子设备以及控制该转换装置的方法。
在本公开第一方面,提供了一种转换装置,包括:第一转换器,包括多个开关器件,第一转换器被配置为接通和关断多个开关器件而在交流功率和直流功率之间进行转换;第一直流端口,被配置为将第一转换器耦合至储能装置;第一交流端口,被配置为将第一转换器耦合至无线充电线圈;以及第二交流端口,被配置为将第一转换器耦合至第一负载。
在本公开的某些实现方式中,第一转换器既可以在无线充电或无线反充时用于功率转换,也可以用于驱动第一负载。通过转换器的复用,可以减少所需的功率转换电路或芯片的数量,从而减少了布置电路或芯片所需的面积或空间、降低了产品成本、并且提高了功率转换器的利用率。
在本公开的某些实现方式中,多个开关器件被配置为:响应于接收到第一组控制信号,将经由第一交流端口从无线充电线圈接收的第一交流功率转换为第一直流端口处的第一直流功率,以提供给储能装置。在该实施例中,第一转换器的多个开关器件可以根据控制信号执行整流操作,以对储能装置进行充电。
在本公开的某些实现方式中,多个开关器件被配置为:响应于接收到第二组控制信号,将经由第一直流端口从储能装置接收的第二直流功率转换为第一交流端口处的第二交流功率,以提供给无线充电线圈。在该实施例中,第一转换器的多个开关器件可以根据控制信号执行逆变操作,以使储能装置对电子设备外部的负载进行反向充电或放电。
在本公开的某些实现方式中,多个开关器件被配置为:响应于接收到第三组控制信号,将经由第一直流端口从储能装置接收的第三直流功率转换为第二交流端口处的第三交流功率,以提供给第一负载。在该实施例中,第一转换器的多个开关器件可以根据控制信号执行逆变操作,以驱动第一负载。
在本公开的某些实现方式中,与第三交流功率相关联的交流电频率不同于与第一交流功率或第二交流功率相关联的交流电频率。在该实施例中,不需要设置用于隔离的附加设备,就可以实现转换装置或转换器的复用,因此具有简单并且低成本的优势。
在本公开的某些实现方式中,转换装置还包括:负载开关,耦合在第二交流端口与第一负载之间。通过这种方式,可以有效实现第一负载与无线充电线圈的隔离,以消除可能在第一负载内产生的静态电流。
在本公开的某些实现方式中,转换器包括第一桥臂和第二桥臂,第一桥臂和第二桥臂中的每个包括多个开关器件中的至少两个开关器件,第一交流端口和第二交流端口均耦合至第一桥臂和第二桥臂。在该实施例中,第一转换器的所有的桥臂及其开关器件都实现了针对各种功能的复用,因此使第一转换器的开关器件的利用率最大化。
在本公开的某些实现方式中,第一转换器包括第一桥臂、第二桥臂和第三桥臂,第一桥臂、第二桥臂和第三桥臂中的每个包括多个开关器件中的至少两个开关器件,第一交流端口耦合至第一桥臂和第二桥臂,第二交流端口耦合至第二桥臂和第三桥臂。在这种方式中,可以利用附加桥臂来隔离第一负载与无线充电线圈,以消除可能在第一负载内产生的静态电流。
在本公开的某些实现方式中,转换装置还包括:第二转换器,耦合在第一直流端口与储能装置之间,并且被配置为在多个开关器件响应于第三组控制信号进行操作时,执行升压操作以使第一直流端口的电压高于储能装置的电压。在该实施例中,可以利用第二转换器来执行升压操作,以获得更高的驱动电压来驱动诸如高压线性马达之类的高压内部负载,这避免了专门针对高压内部负载增加额外的升压(BOOST)电路或者芯片。
在本公开的某些实现方式中,第一负载包括线性马达或扬声器中的至少一种。在该实施例中,线性马达和扬声器是电子设备内部常用的内部负载,并且通常都需要与无线充电所使用的功率转换电路类似的电路来驱动,因此可以与无线充电共用功率转换器。此外,线性马达和扬声器的工作频率与无线充电的工作频率不同,因此在共用功率转换器时,可以在功能上彼此不干扰。
在本公开第二方面,提供了一种转换装置,包括:第三转换器,包括第一组开关器件,第三转换器被配置为接通和关断第一组开关器件而在交流功率和直流功率之间进行转换;第四转换器,包括第二组开关器件,第四转换器被配置为接通和关断第二组开关器件而将直流功率转换为交流功率;至少一个第二直流端口,被配置为将第三转换器和第四转换器耦合至储能装置;第三交流端口,被配置为将第三转换器耦合至无线充电线圈;第四交流端口,被配置为将第四转换器耦合至第一负载;以及第五转换器,经由至少一个第二直流端口耦合至第三转换器和第四转换器,以及耦合至储能装置,并且被配置为将储能装置的电压升压后输出到第三转换器或第四转换器中的至少一个。在该实施例中,可以针对无线反充和负载驱动两种情况共用第五转换器的升压功能,这节省了额外增加的BOOST电路或者芯片,从而降低成本并减少空间占用。
在本公开的某些实现方式中,第五转换器包括第一开关器件和第二开关器件,第五转换器被配置为通过第一开关器件和第二开关器件将储能装置的电压升压后输出到第三转换器和第四转换器中的至少一个。在该实施例中,用于无线充电或反充的第三转换器和用于负载驱动的第四转换器共用了由第一开关器件和第二开关器件组成的升压电路,而无需针对无线充电或反充以及负载驱动分别设置升压电路。此外,第三转换器和第四转换器共用直流端口的布置不会在功能上互相干扰,并且还可以在充电过压时利用第一负载来释放多余的能量。
在本公开的某些实现方式中,第五转换器包括第一开关器件、第二开关器件和第三开关器件,第五转换器被配置为通过第一开关器件和第二开关器件而将储能装置的电压升压后输出到第三转换器,并且被配置为通过第三开关器件和第二开关器件而将储能装置的电压升压后输出到第四转换器。在该实施例中,在针对无线充电或反充和负载驱动共用第五转换器的同时,可以满足第一负载和外部负载各自不同的电压需求。
在本公开第三方面,提供了一种电子设备,包括:储能装置;第一负载;无线充电线圈;根据第一方面的转换装置;以及处理装置,被配置为向转换装置发送指令。
在本公开第四方面,提供了一种控制转换装置的方法,转换装置包括第一转换器、将第一转换器耦合至储能装置的第一直流端口、将第一转换器耦合至无线充电线圈的第一交流端口、以及将第一转换器耦合至第一负载的第二交流端口,方法包括:对第一转换器的多个开关器件的通断进行控制,以在交流功率和直流功率之间进行转换。
在本公开的某些实现方式中,对第一转换器的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换包括:响应于多个开关器件接收到第一组控制信号,将经由第一交流端口从无线充电线圈接收的第一交流功率转换为第一直流端口处的第一直流功率,以提供给储能装置。
在本公开的某些实现方式中,对第一转换器的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换还包括:响应于多个开关器件接收到第二组控制信号,将经由第一直流端口从储能装置接收的第二直流功率转换为第一交流端口处的第二交流功率,以提供给无线充电线圈。
在本公开的某些实现方式中,对第一转换器的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换还包括:响应于多个开关器件接收到第三组控制信号,将经由第一直流端口从储能装置接收的第三直流功率转换为第二交流端口处的第三交流功率,以提供给第一负载。
在本公开的某些实施例中,与第三交流功率相关联的交流电频率不同于与第一交流功率或第二交流功率相关联的交流电频率。
可以理解地,关于第一方面和第二方面的解释或者说明同样适用于第三方面和第四方面。此外,第三方面和第四方面所能达到的有益效果可参考对应的装置中的有益效果,此处不再赘述。
发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了电子设备及其***设备的示意性电路图。
图2示出了根据本公开的实施例的电子设备及其***设备的示意性电路图。
图3示出了根据本公开的备选实施例的电子设备及其***设备的示意性电路图。
图4示出了根据本公开的备选实施例的电子设备及其***设备的示意性电路图。
图5示出了根据本公开的实施例的电子设备及其***设备的示意性电路图,其中示意性示出了第二转换器的内部电路。
图6示出了根据本公开的另一实施例的电子设备及其***设备的示意性电路图。
图7示出了根据本公开的备选实施例的电子设备及其***设备的示意性电路图。
图8示出了第一开关器件、第二开关器件和第三开关器件组成的单电感多输出升压电路的示意性波形图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。术语“和/或”表示由其关联的两项的至少一项。例如“A和/或B”表示A、B、或者A和B。下文还可能包括其他明确的和隐含的定义。
应理解,本申请实施例提供的技术方案,在以下具体实施例的介绍中,某些重复之处可能不再赘述,但应视为这些具体实施例之间已有相互引用,可以相互结合。
图1示出了电子设备1000’及其***设备的示意性电路图。如图1所示,电子设备1000’包括第一功率电路100’、电池200’以及无线充电线圈400’。在电源2000’对电子设备1000’的电池200’进行充电时,电源2000’通过发射线圈以无线的方式传输交流功率,并由电子设备1000’的无线充电线圈400’接收。无线充电线圈400’将接收到的交流功率进一步输入到第一功率电路100’以整流成直流功率,从而提供给电池200’来实现充电。
另外,电子设备1000’还包括第二功率电路900’和负载300’。例如,在诸如智能手机之类的电子设备中,负载300’可以是线性马达,其需要交流功率来驱动。在驱动负载300’时,电池200可以将直流功率输入到第二功率电路900’,并且通过第二功率电路900’进行逆变以获得交流功率来输入到负载300’,从而驱动负载300’。此外,可以理解的是,除了负载300’之外,电子设备1000’还可能包括其他的负载以及与其相对应功率电路。
可以看出,在图1所示出的方案中,为了实现无线充电和负载驱动等多种功能,通常需要在电子设备1000’中设置和使用多个功率电路或多个芯片,例如第一功率电路100’和第二功率电路900’,从而实现分别与各个功能相对应的整流或逆变。由于要设置多个功率电路或多个芯片,因此需要在电子设备1000’中占用较多的布置面积或空间,并且增加了产品的成本。此外,这些功率电路或芯片的作用相似,但同时使用的场景却非常少,这造成了它们的实际利用率低下。
在本公开的实施例中,提供了一种改进的转换装置及其控制方法,并且还提供了包括该转换装置的电子设备。在改进方案中,通过对用于功率转换的转换器进行复用,可以在实现多种功能时使用同一转换器,这些功能至少包括对储能装置进行无线充电、由储能装置对电子设备外部的负载进行无线反充、以及驱动诸如线性马达之类的内部负载等。由此,不再需要针对诸如线性马达之类的负载设置专用的驱动电路或驱动芯片,这减少了布置电路或芯片所需的面积或空间,并且降低了产品成本。此外,该转换装置中的转换器还具有更高的利用率,从而避免了资源浪费。
图2示出了根据本公开的实施例的电子设备1000及其***设备的示意性电路图。作为示例,电子设备1000可以是智能手机、平板计算机、笔记本计算机、智能手表、个人数字助理或者需要自身的储能装置供电的任何其他类型的设备。
如图2所示,电子设备1000可以包括转换装置100、储能装置200以及无线充电线圈400。电子设备1000可以经由无线充电线圈400以无线或非接触的方式耦合到电源2000。电源2000例如可以是公用电网、与公用电网连接的供电装置、或者能够提供电能的任何其他类型的设备,并且因此可以向电子设备1000输送功率。例如,电源2000可以连接到包括发射线圈的充电盘,并且在电子设备1000靠近或放置在充电盘上时,电源2000可以将功率通过充电盘的发射线圈传输到电子设备1000的无线充电线圈400。可以理解的是,也可以以其他适当方式实现从电源2000到电子设备1000的功率传输,例如,可以在电源2000中设置发射线圈,并可以直接将功率从电源2000无线传输到无线充电线圈400,而不经由附加设备。在无线充电线圈400接收到来自电源2000的功率之后,接收到的功率经由转换装置100进一步被提供给电子设备1000的储能装置200,从而实现对储能装置200的充电。电子设备1000还可以以无线或非接触的方式耦合到负载3000。负载3000可以是需要电能驱动或者能够储存电能的设备,其例如可以是类似于电子设备1000的另一电子设备。负载3000可以包括接收线圈或者连接到包括接收线圈的诸如充电盘之类的装置。由此,电子设备1000的储能装置200可以将自身存储的电能通过转换装置100、利用诸如调节频率、占空比等手段进行功率转换,并且然后通过无线充电线圈400反向传输到负载3000,即,由无线充电线圈400发射功率并且由负载3000一侧的接收线圈接收功率,以供负载3000使用或者被负载3000中的储能装置存储。作为示例,储能装置200可以是可充电电池,其包括但不限于镍镉电池、镍氢电池、锂离子电池、锂聚合物电池、铅酸电池等。此外,储能装置200也可以是其他类型的能量存储设备,例如超级电容等。
电子设备1000还可以包括第一负载300。作为示例,第一负载300可以是线性马达。线性马达与传统转子马达不同,其采用直线运动方式来实现振动,从而为电子设备1000提供提醒功能,例如智能手机的来电提醒。通常需要将交流电压施加到线性马达内部的线圈,因此储能装置200的直流功率需要被转换为交流功率之后才能用于驱动线性马达。可以理解的是,第一负载300并不受限于此,而可以是电子设备1000内的其他负载,例如,第一负载300还可以是同样需要交流功率驱动的扬声器。此外,电子设备1000可以包括处理装置500,处理装置500被配置为向转换装置100发送指令。可以理解的是,处理装置500还可以执行与电子设备1000的任何功能有关的其他的计算或处理任务。例如,处理装置500可以是智能手机或智能手表中的应用处理器。作为示例,处理装置500包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。
下面将对电子设备1000的转换装置100进行详细描述。根据本公开的实施例,转换装置100包括第一转换器110,第一转换器110包括多个开关器件,第一转换器110被配置为接通和关断多个开关器件而在交流功率和直流功率之间进行转换。具体而言,根据需要,通过控制多个开关器件的通断,第一转换器110可以执行逆变操作,即将直流功率转换为交流功率,或者可以执行整流操作,即将交流功率转换为直流功率。例如,可以按照脉冲宽度调制(Pulse Width Modulation,PWM)的方式或者其他适当方式对第一转换器110的多个开关器件进行控制,以实现整流操作或逆变操作。第一转换器110的多个开关器件可以包括但不限于绝缘栅 双极晶体管(Insulated Gate Bipolar Translator,IGBT)、结栅场效应晶体管(Junction Field-Effect Transistor,JFET)、双极结晶体管(Bipolar Junction Transistor,BJT)、金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field Effect Transistor,MOSFET)、栅关断晶闸管(Gate Turn Off thyristor,GTO)、MOS控制晶闸管(MOS-Controlled Thyristor,MCT)、集成栅换流晶闸管(Integrated Gate-Commutated Thyristor,IGCT)、碳化硅(SiC)开关器件或氮化镓(GaN)开关器件等功率开关器件。仅仅作为示例,第一转换器110可以是全桥电路。然而,可以理解的是,第一转换器110可以是能够实现整流操作和逆变操作的任何其他转换电路或装置。
根据本公开的实施例,转换装置100还可以包括第一直流端口150、第一交流端口160和第二交流端口170,其中第一直流端口150被配置为将第一转换器110耦合至储能装置200,第一交流端口160被配置为将第一转换器110耦合至无线充电线圈400,并且第二交流端口170被配置为将第一转换器110耦合至第一负载300。也就是说,转换装置100可以提供两个交流端口,其中第一交流端口160用于耦合到无线充电线圈400以帮助实现储能装置200的充电和反充功能,并且第二交流端口170用于耦合到诸如线性马达的第一负载300以帮助驱动第一负载300。由此,储能装置200实现了针对多种功能的复用。换言之,不再需要针对无线充电(或无线反充)和第一负载300分别设置转换装置或功率电路,而仅设置转换装置100即可。
研究表明,这种复用转换装置或功率电路的方式是可行的,并且相对于常规方案具有很多优点。具体而言,在电源2000对电子设备1000的储能装置200进行充电或者储能装置200对负载3000进行反向充电或放电时,需要功率电路对无线充电线圈400接收的交流功率进行整流或者对储能装置200的直流功率进行逆变,而在另一方面,在驱动诸如线性马达之类的第一负载300时,也需要功率电路对储能装置200的直流功率进行逆变,以获得交流功率来驱动第一负载300。这些逆变或整流操作均是类似的功率转换操作,并且实际上可以利用同一套转换装置或功率电路来实现。另外,在诸如智能手机之类的电子设备1000的使用过程中,需要同时进行无线充电和驱动线性马达振动的场景是非常少的。例如,当电子设备1000进行无线充电时,电子设备1000通常被放置在充电盘或充电座上并因此远离电子设备1000的用户,此时的振动提醒功能无法发挥作用,并且为了防止充电过程中的振动导致电子设备1000发生移位而影响充电,也常常会关闭振动功能。基于此,本公开的改进方案提出了将电子设备1000内的同一转换装置100用于无线充电,并且还用于驱动内部的负载(诸如线性马达或扬声器),由此可以移除驱动内部负载所需的驱动电路或驱动装置,这降低了产品成本、节省了布置驱动电路或驱动装置所需的面积或空间、并且还提高了功率转换装置的利用率。
此外,本公开的改进方案还可以带来其他益处。例如,在无线充电过程中,由于过耦合、瞬态负载变化等原因,可能会导致转换装置的直流侧过电压而损害后级元件,而在根据本公开的实施例中,当无线充电发生过电压时,可以通过开启线性马达来触发振动,从而将多余能量转换为机械能。由此,可以无需针对直流侧过电压而额外泄放通路,这也进一步降低了产品的成本并节省了空间或面积。
转换装置100可以支持多种工作模式,这些工作模式包括但不限于无线充电模式、无线反充模式和负载驱动模式。电子设备1000的处理装置500可以根据场景需求来向转换装置100发出指令,以使转换装置100在所需的工作模式下工作。例如,当诸如智能手机的电子设备1000收到来电时,处理装置500可以向转换装置100发出指令,以使转换装置100进入驱动线性马达振动的负载驱动模式。在一个实施例中,转换装置100可以包括控制单元120。 控制单元120可以接收来自处理装置500的指令,并且根据指令来完成多个工作模式的切换和配置任务。此外,控制单元120还可以执行诸如线性马达闭环算法等任务。通过这种方式,可以降低处理装置500的软件的复杂度。然而,可以理解的是,本公开的实现方式并不受限于此,而可以是其他方式,例如可以直接由处理装置500来控制多个工作模式的切换和配置任务,而无需在转换装置100中的设置控制单元120。
在一个实施例中,转换装置100还可以包括存储单元130和模数转换单元140。存储单元130可以存储充电操作和反充操作中所需的数据和指令,而模数转换单元140可以用于检测和获取第一转换器110的各种运行参数,诸如第一直流端口150、第一交流端口160和/或第二交流端口170处的电压、电流等。在转换装置100驱动第一负载300的操作中,存储单元130和模数转换单元140也可以提供帮助,例如,模数转换单元140可以检测线性马达两端的反电动势,以跟踪线性马达的谐振频率来实现闭环控制,而存储单元130可以用于存储线性马达的振动序列。作为对比,在常规方案中,针对充电需求会设置包含模数转换器和存储器的充电芯片,并且为了驱动诸如线性马达的负载,通常会进一步设置同样包含模数转换器和只读存储器的驱动芯片,显然,这些重复设置的器件提高了产品的成本。与此相比,在本公开的方案中,存储单元130和模数转换单元140在多种功能中的重复利用降低了产品成本并且有效提高了器件的利用率。在一个实施例中,转换装置100还可以包括低压差调节器(Low Dropout Regulator,LDO)180,LDO 180可以耦合在第一转换器110与储能装置200之间,从而在对储能装置200进行充电时帮助稳定来自第一转换器110的电压。
在本公开的一些实施例中,第一转换器110的多个开关器件被配置为响应于接收到第一组控制信号,将经由第一交流端口160从无线充电线圈400接收的第一交流功率转换为第一直流端口150处的第一直流功率,以提供给储能装置200。作为示例,当电源2000耦合到电子设备1000并且准备对储能装置200进行充电时,基于检测到来自电源2000的功率传输或者接收到由充电盘遵循充电协议发送的数据包,电子设备1000的处理装置500可以而向控制单元120发送指令,以指示转换装置100进入无线充电模式,并且控制单元120向第一转换器110的多个开关器件发送第一组控制信号以接通和关断多个开关器件。第一转换器110对从第一交流端口160接收的第一交流功率进行整流。整流后的直流功率经由第一直流端口150提供到储能装置200以用于充电。然而,可以理解的是,控制多个开关器件的方式并不受限于此,也可以是其他方式,例如可以直接由处理装置500向第一转换器110的多个开关器件发出第一组控制信号以使转换装置100进入无线充电模式。
在本公开的一些实施例中,第一转换器110的多个开关器件被配置为响应于接收到第二组控制信号,将经由第一直流端口150从储能装置200接收的第二直流功率转换为第一交流端口160处的第二交流功率,以提供给无线充电线圈400。作为示例,当负载3000耦合到电子设备1000并且需要电子设备1000对其进行反向充电时,电子设备1000的处理装置500可以基于检测到针对负载3000的充电请求而向控制单元120发送指令,以指示转换装置100进入无线反充模式,并且控制单元120向第一转换器110的多个开关器件发送第二组控制信号以接通和关断多个开关器件。第一转换器110对从第一直流端口150接收的第二直流功率进行逆变。逆变后的交流功率经由第一交流端口160提供到无线充电线圈400,以用于为负载3000进行反向充电。然而,可以理解的是,控制多个开关器件的方式并不受限于此,也可以是其他方式,例如可以直接由处理装置500向第一转换器110的多个开关器件发出第二组控制信号以使转换装置100进入无线反充模式。
在本公开的一些实施例中,第一转换器110的多个开关器件被配置为响应于接收到第三组控制信号,将经由第一直流端口150从储能装置200接收的第三直流功率转换为第二交流端口170处的第三交流功率,以提供给第一负载300。作为示例,电子设备1000可能需要对第一负载300进行驱动,例如作为智能手机的电子设备1000接到来电并因此需要驱动作为线性马达的第一负载300振动以提醒电子设备1000的用户。在需要驱动第一负载300时,处理装置500可以向控制单元120发出指令,以指示转换装置100进入负载驱动模式,并且控制单元120向第一转换器110的多个开关器件发送第三组控制信号以接通和关断多个开关器件。第一转换器110对从第一直流端口150接收的第三直流功率进行逆变。逆变后的交流功率经由第二交流端口170提供到第一负载300,以用于驱动第一负载300,例如驱动线性马达振动。然而,可以理解的是,控制多个开关器件的方式并不受限于此,也可以是其他方式,例如可以直接由处理装置500向第一转换器110的多个开关器件发出第三组控制信号以使转换装置100进入负载驱动模式。
在本公开的一些实施例中,与第三交流功率相关联的交流电频率不同于与第一交流功率或第二交流功率相关联的交流电频率。具体而言,第三交流功率是第二交流端口170处的用于驱动第一负载300的交流功率,而第一交流功率是第一交流端口160处用于为储能装置200充电的交流功率,第二交流功率是第一交流端口160处用于为外部负载3000进行反向充电的交流功率。第一交流端口160和第二交流端口170共用了同一转换器,即第一转换器110。如果与第三交流功率相关联的交流电频率不同于第一交流功率或第二交流功率,则连接到第一交流端口160的第一负载300与连接到第二交流端口170的无线充电线圈400在功能上可以基本上互不干扰,并且因此可以直接并联使用。例如,在第二交流端口170连接并驱动线性马达时,由于线性马达的谐振频率一般为100Hz至300Hz,因此与第三交流功率相关联的交流电频率将维持在100Hz至300Hz,而无线充电或无线反充的谐振频率一般为100kHz至200kHz,因此与第一交流功率或第二交流功率相关联的交流电频率将维持在100kHz至200kHz。此时,与第三交流功率相关联的交流电频率和与第一交流功率或第二交流功率相关联的交流电频率存在了3个数量级的差距,因此线性马达的振动不会在无线充电线圈上感应出能量,而无线充电也不会引发马达振动。在一些情况下,还可以采取一些附加手段来确保无线充电或反充与负载驱动在功能上不会彼此干扰。例如,无线充电的谐振频率为100kHz至200kHz,驱动100Hz至300Hz的线性马达可能会采用开关频率为20kHz至40kHz的PWM信号。但是,在一些电子设备的无线充电谐振参数的阻抗谱中,20kHz至40kHz附近的阻抗可能会较小。为了进一步消除可能存在的干扰,可以改变驱动线性马达的PWM信号的开关频率,例如改为采用开关频率为1MHz的PWM信号,或者改变无线充电的谐振频率,例如采用6.78MHz充电,以使线性马达的PWM信号的开关频率与无线充电的谐振频率相差较大,并保证开关频率在阻抗谱中对应于较大的阻抗,从而确保无线充电或反充与负载驱动之间彼此不会干扰。类似地,扬声器的频率在人耳可以听到的20Hz至20kHz的频率范围内,而无线充电或无线反充的谐振频率是其5到10倍,因此,扬声器与无线充电或反充也不会在功能上互相干扰。由于无线充电线圈400和第一负载300互不干扰,因此可以将无线充电线圈400直接连接到第一交流端口160,同时将第一负载300直接连接到第二交流端口170,而不会影响彼此的功能。
此外,在直接并联第一负载300和无线充电线圈400时,可以利用控制单元120和处理装置500进行协调,从而通过软件实现第一转换器110的分时复用。例如,在无线充电或反 充的过程中,如果遇到需要线性马达立即振动的场景(例如来电或闹钟),可以由处理装置500向控制单元120发出指令以使转换装置100暂时退出无线充电模式或无线反充模式,并进入负载驱动模式,即发出第三组控制信号使第一转换器110驱动线性马达振动,并且在振动结束之后,处理装置500向控制单元120发出指令以使转换装置100重新返回无线充电模式或无线反充模式。通过这种方式中,不需要设置用于隔离的附加设备,就可以实现转换装置或转换器的复用,因此具有简单并且低成本的优势。
在本公开的一些实施例中,第一转换器110包括第一桥臂1101和第二桥臂1102,第一桥臂1101和第二桥臂1102中的每个桥臂包括多个开关器件中的至少两个开关器件,第一交流端口160和第二交流端口170均耦合至第一桥臂1101和第二桥臂1102。作为示例,第一桥臂1101和第二桥臂1102可以构成全桥电路,并且在无线充电模式、无线反充模式和负载驱动模式等多种模式下均使用这两个桥臂来进行功率转换。也就是说,该全桥电路可以用于在直流端口150与第一交流端口160之间进行逆变或整流操作,也可以用于在直流端口150与第二交流端口170之间进行逆变操作。在这种实现方式中,第一转换器110的所有的桥臂及其开关器件都实现了针对各种功能的复用,因此使第一转换器110的开关器件的利用率最大化。作为示例,第一桥臂1101和第二桥臂1102中的每个桥臂可以包括分别位于上桥臂和下桥臂的两个开关器件。然而,每个桥臂可以包括更多或更少的开关器件,并且还可以包括其他适当的电气元件,例如电容、电阻等,只要这种桥臂所构造的第一转换器110能够实现整流和逆变操作即可。
图3示出了根据本公开的备选实施例的电子设备1000及其***设备的示意性电路图。图3中的电子设备1000与图2的主要不同之处在于,转换装置100还包括负载开关190,该负载开关190耦合在第二交流端口170与第一负载300之间。负载开关190的作用在于实现第一负载300与无线充电线圈400的隔离。如前文所讨论的,通常而言,工作在不同频率下的第一负载300和无线充电线圈400在功能上不会互相干扰。然而,在无线充电的工作电压较高时,将会在诸如线性马达之类的第一负载300内部的等效直流电阻上产生不期望的静态电流。为此,可以在适当时段关断负载开关190。例如,在无线充电线圈400需要进行无线充电或无线反充操作时,即当转换装置100处于无线充电模式或无线反充模式的情况下,将负载开关190置于关断状态,由此可以将第一负载300与无线充电线圈400隔离开,从而消除可能在第一负载300内部的电阻上产生的静态电流。负载开关190可以是功率开关器件,例如双向截止的MOS场效应晶体管。此外,负载开关190也可以诸如继电器之类的电气开关。可以理解的是,虽然图3中示出负载开关190被设置在转换装置100中,但是也可以将负载开关190设置在第一负载300内部、或者独立设置在转换装置100与第一负载300之间。图3中所示出的其他装置或设备与图2类似,因此不再赘述。
图4示出了根据本公开的备选实施例的电子设备1000及其***设备的示意性电路图。如图4所示,第一转换器110包括第一桥臂1101、第二桥臂1102和第三桥臂1103,第一桥臂1101、第二桥臂1102和第三桥臂1103中的每个包括多个开关器件中的至少两个开关器件,第一交流端口160耦合至第一桥臂1101和第二桥臂1102,第二交流端口170耦合至第二桥臂1102和第三桥臂1103。可以看出,与图2中的第一转换器110相比,图4中的第一转换器110增加一个额外的桥臂1103。由此,由第一桥臂1101和第二桥臂1102构成的全桥电路被用于无线充电或无线反充,并且在无线充电或无线反充时关断无关的第三桥臂1103上的开关器件。由第二桥臂1102和第三桥臂1103构成全桥电路来驱动第一负载300,并且在驱动第 一负载300时关断与无关的第一桥臂1101上的开关器件。通过这种方式,同样可以将无线充电线圈400与第一负载300在不同工作模式下隔离开,从而消除可能在第一负载300内部的电阻上产生的静态电流。图4中所示出的其他装置或设备与图2类似,因此不再赘述。
如图2、图3和图4中所示,在本公开的一些实施例中,转换装置100可以包括第二转换器100-1,第二转换器100-1耦合在第一直流端口150与储能装置200之间。作为示例,第二转换器100-1可以是充电管理电路或芯片(Charger IC)、或者可以是充电管理电路或芯片的一部分,以用于对储能装置200的充电和放电进行管理,例如对充放电电压进行控制。可以理解的是,第二转换器100-1可以是转换装置100的一部分,例如可以直接将其形成在转换装置100中,在备选实施例中,第二转换器100-1也可以是独立于转换装置100的电路或装置。
图5示出了根据本公开的实施例的电子设备1000及其***设备的示意性电路图,其中示意性示出了第二转换器100-1的内部电路。作为示例,第二转换器100-1可以包括由开关器件Q1和Q2组成的两象限直流-直流转换电路。在对储能装置200进行充电时,第二转换器100-1中的两象限直流-直流转换电路可以作为BUCK电路工作,由此第二转换器100-1将经过第一转换器110整流后的电压进行适当降压以输入到储能装置200来实现充电。另一方面,耦合到电子设备1000的负载3000可能是诸如鼠标、键盘之类的外部OTG(On-The-Go)设备,这些外部OTG设备需要更高一些的工作电压。在电子设备1000耦合到外部OTG设备的情况下,第二转换器100-1可以在OTG模式下工作,即,第二转换器100-1中的两象限直流-直流转换电路可以作为BOOST电路工作,并且因此将储能装置200的电压进行适当升压以输出到第一直流端口150,从而给外部OTG设备供电。在一个实施例中,第二转换器100-1还可以包括防倒流开关器件M1、路径开关器件M2以及电感L,其中防倒流开关器件M1用于在对储能装置200充电时避免发生倒流,并且路径开关器件M2用于储能装置200的充电和放电的控制和调节。
在一些情况下,第一负载300可能包括需要高电压驱动的负载,例如一些高性能线性马达,这些高性能线性马达的示例包括但不限于具有大体积、长行程的X轴线线性马达。为了实现急振急停,并且提高振动响应速度,通常需要施加高电压来驱动这类线性马达,例如高达9V以上的电压。然而,诸如电池之类的储能装置200的电压通常较低,例如3.6V至4.4V。为了驱动具有诸如高性能线性马达之类的内部负载,通常需要额外增加BOOST电路或者芯片来进行升压。例如,在图1所示出的电子设备1000’中,如果负载300’为需要高电压驱动的负载,则需要在电池200’与第二功率电路900’之间额外设置BOOST电路或者芯片。然而,在本公开的一些实施例中,可以利用第二转换器100-1来实现升压操作,以驱动需要高电压驱动的内部负载。具体地,第二转换器100-1可以被配置为在第一转换器110的多个开关器件响应于第三组控制信号进行操作时,执行升压操作以使第一直流端口150的电压高于储能装置200的电压。也就是说,在第一转换器110驱动第一负载300的情况下,第二转换器100-1可以执行升压操作以将升压后的电压提供给第一转换器110,使得第一负载300获得更高的驱动电压。可以看出,在本公开的方案中,可以利用第二转换器100-1来执行升压操作,以获得更高的驱动电压来驱动高压线性马达,这避免了专门针对高压线性马达增加额外的BOOST电路或者芯片。换言之,第二转换器100-1不仅可以在储能装置200充电和驱动外部OTG设备的情况下用于升压或降压,还可以在驱动诸如高压线性马达之类的第一负载300时被用于替代BOOST电路或者芯片,这有利地实现了第二转换器100-1的复用,从而进一步减 少了产品的成本并且节省了布置面积或空间。可以理解的是,需要高压驱动的第一负载300并不受限于高压线性马达,而可以是需要其他类型的负载,例如扬声器。
需要说明的是,替代专用BOOST电路或芯片而利用第二转换器100-1来驱动高压负载的实现方式不仅仅可以用于图2所示的电子设备1000,并且还可以用于与图1所示出的电子设备1000’类似的电子设备。图6示出了根据本公开的另一实施例的电子设备1000”及其***设备的示意性电路图。
如图6所示,电子设备1000”可以包括转换装置100”。转换装置100”包括第三转换器110-1”和第四转换器110-2”。第三转换器110-1”包括第一组开关器件,第三转换器110-1”被配置为接通和关断第一组开关器件而在交流功率和直流功率之间进行转换。第四转换器110-2”包括包括第二组开关器件,第四转换器110-2”被配置为接通和关断第二组开关器件而将直流功率转换为交流功率。转换装置100”还包括直流端口151”、交流端口160”和交流端口170”,其中直流端口151”被配置为将第三转换器110-1”和第四转换器110-2”耦合至储能装置200,交流端口160”被配置为将第三转换器110-1”耦合至无线充电线圈400,并且交流端口170”被配置为将第四转换器110-2”耦合至第一负载300。
除此之外,转换装置100”设置有第五转换器110-3”,第五转换器110-3”经由直流端口151”耦合至第三转换器110-1”和第四转换器110-2”,以及耦合至储能装置200,并且被配置为将储能装置200的电压升压后输出到第三转换器110-1”和第四转换器110-2”中的至少一个。作为示例,在储能装置200需要充电时,第五转换器110-3”可以提供降压操作,而在电子设备1000”耦合到外部OTG设备(诸如鼠标、键盘等)时,第五转换器110-3”可以向第三转换器110-1”提供升压后的电压,以供应到外部OTG设备。在需要以高电压驱动第一负载300(诸如高压线性马达或扬声器)的情况下,第五转换器110-3”可以执行升压操作以将升压后的电压提供给第四转换器110-2”,以使第一负载300获得更高的驱动电压。通过这种方式,无需针对诸如高压线性马达之类的负载额外提供专用的BOOST电路或芯片,这减少了产品的成本并且节省了布置面积或空间。在一些实施例中,第五转换器110-3”包括第一开关器件Q1”和第二开关器件Q2”,第五转换器110-3”被配置为通过第一开关器件Q1”和第二开关器件Q2”将储能装置200的电压升压后输出到第三转换器110-1”和第四转换器110-2”中的至少一个。类似于图5中的第二转换器100-1,第一开关器件Q1”和第二开关器件Q2”组成两象限直流-直流转换电路,并且因此在两个功率流动方向分别提供升压和降压功能。在这种布置中,第三转换器110-1”和第四转换器110-2”共用了直流端口151”,因此可以直接利用直流端口151”同时驱动第一负载300和外部负载3000,而在仅需要驱动驱动第一负载300或外部负载3000时,由于无线充电线圈400与第一负载300之间的工作频率通常存在差异,因此它们在功能上不会彼此干扰。此外,这对于储能装置200的充电也是有利的,例如,在第三转换器110-1”对储能装置200进行充电的过程中,如果第三转换器110-1”的输出或直流端口151”处发生过压,则可以通过驱动线性马达振动或驱动其他类型的负载来释放多余能量,从而解决过压问题。
然而,在一些情况下,高压驱动的第一负载300和外部负载3000的电压需求并不一致,这限制了图6中的电子设备1000”的使用。图7示出了根据本公开的备选实施例的电子设备1000”及其***设备的示意性电路图。图7中的电子设备1000”与图6不同之处主要在于,第五转换器110-3”经由直流端口151”耦合至第三转换器110-1”,并经由另一直流端口152”耦合至第四转换器110-2”。此外,第五转换器110-3”可以包括第一开关器件Q1”、第二开关器 件Q2”和第三开关器件Q3”,第五转换器110-3”被配置为通过第一开关器件Q1”和第二开关器件Q2”而将储能装置200的电压升压后输出到第三转换器110-1”,并且被配置为通过第三开关器件Q3”和第二开关器件Q2”而将储能装置200的电压升压后输出到第四转换器110-2”。也就是说,图7中的第五转换器110-3”进一步增加了第三开关器件Q3”,并利用另一直流端口152”来耦合第四转换器110-2”和第五转换器110-3”。电子设备1000”的控制单元或处理装置可以根据需要或应用场景对第五转换器110-3”进行适当的控制以实现相应的功能。例如,当需要升压驱动外部负载3000而不驱动第一负载300时,可以关断第五转换器110-3”的第三开关器件Q3”,并且控制第一开关器件Q1”和第二开关器件Q2”作为BOOST电路来运行。当需要升压驱动第一负载300而不驱动外部负载3000时,可以关断第五转换器110-3”的第一开关器件Q1”,并且控制第三开关器件Q3”和第二开关器件Q2”作为BOOST电路来运行。当需要同时升压驱动第一负载300和外部负载3000时,第一开关器件Q1”、第二开关器件Q2”和第三开关器件Q3”可以组成单电感多输出(Single Inductor Multi Output,SIMO)BOOST电路,以向第三转换器110-1”和第四转换器110-2”均输出功率。
图8示出了第一开关器件Q1”、第二开关器件Q2”和第三开关器件Q3”组成的SIMO BOOST电路的示意性波形图。在第一负载300和外部负载3000均需要升压驱动的情况下,第一开关器件Q1”、第二开关器件Q2”构成的支路向外部负载3000供电,而由第二开关器件Q2”和第三开关器件Q3”构成的支路向第一负载300供电。如图8所示,在时刻t0至t1,第二开关器件Q2”接通,电感L”中的电流上升,因此电感L”充电储能;在时刻t1至t2,第二开关器件Q2”关断,第一开关器件Q1”接通,并且电感L”的能量向直流端口151”传输;在时刻t2至t3,第一开关器件Q1”关断,第三开关器件Q3”接通,电感L”的能量向直流端口152”传输。通过调节第一开关器件Q1”和第三开关器件Q3”的接通时间,可以分别针对去往直流端口151”和去往直流端口152”的两路输出调节电压,从而满足第一负载300和外部负载3000各自不同的电压需求。
在图6至图8的实施例中,电子设备1000”中的无线反充和负载驱动共用同一个转换器来实现升压功能,并且还可以根据需要和应用场景来切换转换器的工作模式,由此避免针对无线反充和负载驱动分别设置BOOST电路或芯片,从而降低成本并减少了空间占用。作为示例,第五转换器110-3”可以是充电管理电路或芯片(Charger IC),或充电管理电路或芯片的一部分,并因此可以利用充电管理电路或芯片中的OTG模式来向第一负载300和外部负载3000提供9V以上的电压。可以理解的是,第五转换器110-3”也可以利用单独的BOOST电路或芯片来实现。
根据本公开的又一实施例,还提供了一种控制转换装置100的方法。该方法包括:对第一转换器110的多个开关器件的通断进行控制,以在交流功率和直流功率之间进行转换。
在本公开的一些实施例中,对第一转换器110的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换包括:响应于多个开关器件接收到第一组控制信号,将经由第一交流端口160从无线充电线圈400接收的第一交流功率转换为第一直流端口150处的第一直流功率,以提供给储能装置200。
在本公开的一些实施例中,对第一转换器110的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换还包括:响应于多个开关器件接收到第二组控制信号,将经由第一直流端口150从储能装置200接收的第二直流功率转换为第一交流端口160处的第二交流功率,以提供给无线充电线圈400。
在本公开的一些实施例中,对第一转换器110的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换还包括:响应于多个开关器件接收到第三组控制信号,将经由第一直流端口150从储能装置200接收的第三直流功率转换为第二交流端口170处的第三交流功率,以提供给第一负载300。
在本公开的一些实施例中,与第三交流功率相关联的交流电频率不同于与第一交流功率或第二交流功率相关联的交流电频率。
在本公开的一些实施例中,该方法还包括:在多个开关器件响应于第一组控制信号或第二组控制信号进行操作时,关断负载开关190;以及在多个开关器件响应于第三组控制信号进行操作时,接通负载开关190。
在本公开的一些实施例中,该方法还包括:响应于多个开关器件接收到第一组控制信号或第二组控制信号,关断第三桥臂1103的开关器件;以及响应于多个开关器件接收到第三组控制信号,关断第一桥臂1101的开关器件。
在本公开的一些实施例中,该方法还包括:在多个开关器件响应于第三组控制信号进行操作时,对第二转换器100-1执行升压操作以使第一直流端口150的电压高于储能装置200的电压。
通过以上描述和相关附图中所给出的教导,这里所给出的本公开的许多修改形式和其它实施方式将被本公开相关领域的技术人员所意识到。因此,所要理解的是,本公开的实施方式并不局限于所公开的具体实施方式,并且修改形式和其它实施方式意在包括在本公开的范围之内。此外,虽然以上描述和相关附图在部件和/或功能的某些示例组合形式的背景下对示例实施方式进行了描述,但是应当意识到的是,可以由备选实施方式提供部件和/或功能的不同组合形式而并不背离本公开的范围。就这点而言,例如,与以上明确描述的有所不同的部件和/或功能的其它组合形式也被预期处于本公开的范围之内。虽然这里采用了具体术语,但是它们仅以一般且描述性的含义所使用而并非意在进行限制。

Claims (19)

  1. 一种转换装置(100),包括:
    第一转换器(110),包括多个开关器件,所述第一转换器(110)被配置为接通和关断所述多个开关器件而在交流功率和直流功率之间进行转换;
    第一直流端口(150),被配置为将所述第一转换器(110)耦合至储能装置(200);
    第一交流端口(160),被配置为将所述第一转换器(110)耦合至无线充电线圈(400);以及
    第二交流端口(170),被配置为将所述第一转换器(110)耦合至第一负载(300)。
  2. 根据权利要求1所述的转换装置(100),其中所述多个开关器件被配置为:
    响应于接收到第一组控制信号,将经由所述第一交流端口(160)从所述无线充电线圈(400)接收的第一交流功率转换为所述第一直流端口(150)处的第一直流功率,以提供给所述储能装置(200)。
  3. 根据权利要求1或2所述的转换装置(100),其中所述多个开关器件被配置为:
    响应于接收到第二组控制信号,将经由所述第一直流端口(150)从所述储能装置(200)接收的第二直流功率转换为所述第一交流端口(160)处的第二交流功率,以提供给所述无线充电线圈(400)。
  4. 根据权利要求1至3中任一项所述的转换装置(100),其中所述多个开关器件被配置为:
    响应于接收到第三组控制信号,将经由所述第一直流端口(150)从所述储能装置(200)接收的第三直流功率转换为所述第二交流端口(170)处的第三交流功率,以提供给所述第一负载(300)。
  5. 根据权利要求4所述的转换装置(100),其中与所述第三交流功率相关联的交流电频率不同于与所述第一交流功率或所述第二交流功率相关联的交流电频率。
  6. 根据权利要求1至5中任一项所述的转换装置(100),还包括:
    负载开关(190),耦合在所述第二交流端口(170)与所述第一负载(300)之间。
  7. 根据权利要求1至6中任一项所述的转换装置(100),其中所述转换器(110)包括第一桥臂(1101)和第二桥臂(1102),所述第一桥臂(1101)和第二桥臂(1102)中的每个包括所述多个开关器件中的至少两个开关器件,所述第一交流端口(160)和所述第二交流端口(170)均耦合至所述第一桥臂(1101)和第二桥臂(1102)。
  8. 根据权利要求1至7中任一项所述的转换装置(100),其中所述第一转换器(110)包括第一桥臂(1101)、第二桥臂(1102)和第三桥臂(1103),所述第一桥臂(1101)、所述第二桥臂(1102)和所述第三桥臂(1103)中的每个包括所述多个开关器件中的至少两个开关器件,所述第一交流端口(160)耦合至所述第一桥臂(1101)和所述第二桥臂(1102),所述第二交流端口(170)耦合至所述第二桥臂(1102)和所述第三桥臂(1103)。
  9. 根据权利要求4所述的转换装置(100),还包括:
    第二转换器(100-1),耦合在所述第一直流端口(150)与所述储能装置(200)之间,并且被配置为在所述多个开关器件响应于所述第三组控制信号进行操作时,执行升压操作以使所述第一直流端口(150)的电压高于所述储能装置(200)的电压。
  10. 根据权利要求1至9中任一项所述的转换装置(100),其中第一负载(300)包括线 性马达或扬声器中的至少一种。
  11. 一种转换装置(1000”),包括:
    第三转换器(110-1”),包括第一组开关器件,所述第三转换器(110-1”)被配置为接通和关断所述第一组开关器件而在交流功率和直流功率之间进行转换;
    第四转换器(110-2”),包括第二组开关器件,所述第四转换器(110-2”)被配置为接通和关断所述第二组开关器件而将直流功率转换为交流功率;
    至少一个第二直流端口(151”、152”),被配置为将所述第三转换器(110-1”)和所述第四转换器(110-2”)耦合至储能装置(200);
    第三交流端口(160”),被配置为将所述第三转换器(110-1”)耦合至无线充电线圈(400);
    第四交流端口(170”),被配置为将所述第四转换器(110-2”)耦合至第一负载(300);以及
    第五转换器(110-3”),经由所述至少一个第二直流端口(151”、152”)耦合至所述第三转换器(110-1”)和所述第四转换器(110-2”),以及耦合至所述储能装置(200),并且被配置为将所述储能装置(200)的电压升压后输出到所述第三转换器(110-1”)和所述第四转换器(110-2”)中的至少一个。
  12. 根据权利要求11所述的转换装置(1000”),其中所述第五转换器(110-3”)包括第一开关器件(Q1”)和第二开关器件(Q2”),所述第五转换器(110-3”)被配置为通过所述第一开关器件(Q1”)和所述第二开关器件(Q2”)将所述储能装置(200)的电压升压后输出到所述第三转换器(110-1”)和所述第四转换器(110-2”)中的至少一个。
  13. 根据权利要求11所述的转换装置(1000”),其中所述第五转换器(110-3”)包括第一开关器件(Q1”)、第二开关器件(Q2”)和第三开关器件(Q3”),所述第五转换器(110-3”)被配置为通过所述第一开关器件(Q1”)和所述第二开关器件(Q2”)而将所述储能装置(200)的电压升压后输出到所述第三转换器(110-1”),并且被配置为通过所述第三开关器件(Q3”)和所述第二开关器件(Q2”)而将所述储能装置(200)的电压升压后输出到所述第四转换器(110-2”)。
  14. 一种电子设备(1000),包括:
    储能装置(200);
    第一负载(300);
    无线充电线圈(400);
    根据权利要求1至13所述的转换装置(100);以及
    处理装置(500),被配置为向所述转换装置(100)发送指令。
  15. 一种控制转换装置(100)的方法,所述转换装置(100)包括第一转换器(110)、将所述第一转换器(110)耦合至储能装置(200)的第一直流端口(150)、将所述第一转换器(110)耦合至无线充电线圈(400)的第一交流端口(160)、以及将所述第一转换器(110)耦合至第一负载(300)的第二交流端口(170),所述方法包括:
    对所述第一转换器(110)的多个开关器件的通断进行控制,以在交流功率和直流功率之间进行转换。
  16. 根据权利要求15所述的方法,其中对所述第一转换器(110)的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换包括:
    响应于所述多个开关器件接收到第一组控制信号,将经由所述第一交流端口(160)从所 述无线充电线圈(400)接收的第一交流功率转换为所述第一直流端口(150)处的第一直流功率,以提供给储能装置(200)。
  17. 根据权利要求16所述的方法,其中对所述第一转换器(110)的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换还包括:
    响应于所述多个开关器件接收到第二组控制信号,将经由所述第一直流端口(150)从所述储能装置(200)接收的第二直流功率转换为所述第一交流端口(160)处的第二交流功率,以提供给所述无线充电线圈(400)。
  18. 根据权利要求17所述的方法,其中对所述第一转换器(110)的多个开关器件的通断进行控制以在交流功率和直流功率之间进行转换还包括:
    响应于所述多个开关器件接收到第三组控制信号,将经由所述第一直流端口(150)从所述储能装置(200)接收的第三直流功率转换为所述第二交流端口(170)处的第三交流功率,以提供给第一负载(300)。
  19. 根据权利要求18所述的方法,其中与所述第三交流功率相关联的交流电频率不同于与所述第一交流功率或所述第二交流功率相关联的交流电频率。
PCT/CN2021/137455 2021-12-13 2021-12-13 转换装置、电子设备以及控制转换装置的方法 WO2023108342A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180041918.9A CN116601843A (zh) 2021-12-13 2021-12-13 转换装置、电子设备以及控制转换装置的方法
PCT/CN2021/137455 WO2023108342A1 (zh) 2021-12-13 2021-12-13 转换装置、电子设备以及控制转换装置的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137455 WO2023108342A1 (zh) 2021-12-13 2021-12-13 转换装置、电子设备以及控制转换装置的方法

Publications (1)

Publication Number Publication Date
WO2023108342A1 true WO2023108342A1 (zh) 2023-06-22

Family

ID=86775279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137455 WO2023108342A1 (zh) 2021-12-13 2021-12-13 转换装置、电子设备以及控制转换装置的方法

Country Status (2)

Country Link
CN (1) CN116601843A (zh)
WO (1) WO2023108342A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067673A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 電源装置
JP2006074946A (ja) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd 電源装置
CN112910037A (zh) * 2021-01-21 2021-06-04 华为技术有限公司 一种电机控制器、电机控制***、动力总成及电动车辆

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067673A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 電源装置
JP2006074946A (ja) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd 電源装置
CN112910037A (zh) * 2021-01-21 2021-06-04 华为技术有限公司 一种电机控制器、电机控制***、动力总成及电动车辆

Also Published As

Publication number Publication date
CN116601843A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
CN102946451B (zh) 管理电路、电源供应配置和手提装置
US6741066B1 (en) Power management for battery powered appliances
US9917520B2 (en) Power supply including a flyback controller and buck converter
TW202034615A (zh) 自適應組合電源電路和充電架構
CN113287243B (zh) 无线电力传输***和方法
CN112823459B (zh) 充电控制方法、待充电设备、无线充电设备及存储介质
TW201622326A (zh) 電源管理電路和移動終端
CN104167768B (zh) 一种充电装置及充电方法
KR20090062236A (ko) 배터리 충전 장치
EP3879669A1 (en) Wireless charging method, device to be charged, power supply device, and storage medium
KR20150038091A (ko) 전압 레귤레이터
WO2022204251A1 (en) Battery management infrastructure
US20180145525A1 (en) Charging managment method and system thereof
WO2023108342A1 (zh) 转换装置、电子设备以及控制转换装置的方法
CN113890371A (zh) 多输出的功率分配控制装置
JP2020191771A (ja) 電動携行物、電動工具、移動体および携帯機器
CN107276134A (zh) 充电装置以及充电方法
CN102710006B (zh) 一种带平衡桥臂的双电源供电***
CN110970951A (zh) 一种无线充电电路、***、方法及电子设备
KR20110063186A (ko) 양방향 전력제어 방식의 배터리 충전장치
JPH09308134A (ja) 無停電電源装置
CN205565771U (zh) 具有放电管理的移动电源
KR102691474B1 (ko) 차량용 배터리 충전 제어 시스템 및 방법
CN111193312A (zh) 充电机及充电方法
WO2011119102A1 (en) High frequency switch mode power supply capable of gate charge recovery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180041918.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021967485

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021967485

Country of ref document: EP

Effective date: 20240603