WO2023106580A1 - System and method for rapidly measuring food freshness through electrical conductivity measurement - Google Patents

System and method for rapidly measuring food freshness through electrical conductivity measurement Download PDF

Info

Publication number
WO2023106580A1
WO2023106580A1 PCT/KR2022/014657 KR2022014657W WO2023106580A1 WO 2023106580 A1 WO2023106580 A1 WO 2023106580A1 KR 2022014657 W KR2022014657 W KR 2022014657W WO 2023106580 A1 WO2023106580 A1 WO 2023106580A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical conductivity
food
freshness
equation
measurement
Prior art date
Application number
PCT/KR2022/014657
Other languages
French (fr)
Korean (ko)
Inventor
박성희
정아현
황정현
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Publication of WO2023106580A1 publication Critical patent/WO2023106580A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Definitions

  • the present invention relates to a system and method for rapidly measuring food leading by measuring electrical conductivity, and in particular, develops a correlation between real-time electrical conductivity and spoilage progress according to storage temperature of food as a regression prediction model to measure spoilage in real time. It relates to a measurement system and method for
  • the freshness of food is generally managed by physicochemical leading indicators such as pH, sugar level, titratable acidity, and protein denaturation, or by measuring microbial contamination. These measurement techniques are time-consuming and require tester skills and specialized equipment. .
  • Korean Patent Laid-open Publication No. 2002-0065871 Intelligent food spoilage detection system and food spoilage detection method using the same
  • a refrigerator that stores a large amount of food for a long time, such as a large restaurant or mart, as well as general households.
  • Disclosed is a system and method for providing only fresh food at all times by allowing the degree of spoilage to be easily and accurately checked from the outside.
  • An object of the present invention is to provide a measurement system and method for quickly and conveniently measuring the freshness index of food in real time through electrical conductivity measurement.
  • an object of the present invention is to provide a freshness prediction model using a regression equation through electrical conductivity characteristics at the temperature at which food is stored.
  • the present invention provides a method for rapidly measuring food by measuring electrical conductivity that changes according to the storage temperature. Electrical conductivity ( ) measuring; The electrical conductivity ( Calculating an Electrical Conductivity Freshness (EF) indicating the freshness of the food using ); And the correlation between the electrical conductivity freshness (EF) and at least one or more leading indicators of pH, chromaticity, protein denaturation, fatty acid denaturation, physical properties or microbial contamination related to the freshness of the food by a regression equation in the controller Provides a method for rapidly measuring food leading by measuring electrical conductivity, including the step of calculating.
  • the electrical conductivity freshness index (EF) may be measured by Equation 1 below.
  • the step of calculating the regression equation may further include setting a relationship between the electrical conductivity freshness index (EF) and the freshness indicator at the temperature as a first or second order regression equation.
  • quadratic regression equation may be set to [Equation 2] below.
  • the present invention provides a computer-readable recording medium on which a program for implementing the above-described rapid tracing method as a program is recorded.
  • the present invention in the rapid line measurement system for food through the measurement of electrical conductivity that is changed according to the storage temperature, a current generator for applying an alternating current having a frequency of a predetermined range to the food; electrodes configured to contact both sides of the electrical conductivity container in order to apply the alternating current to the electrical conductivity container in which the food is stored in order to measure the electrical conductivity of the food; And electrical conductivity measured in real time at the temperature ( ) to calculate the electrical conductivity freshness (EF) representing the freshness of the food, and to calculate the freshness of the food, pH, color, protein denaturation, fatty acid denaturation, physical properties or microbial contamination of at least one or more leading indicators
  • a rapid leading measurement system for food through electrical conductivity measurement including a control unit that calculates the correlation as a regression equation.
  • control unit may measure the electrical conductivity freshness index (EF) by Equation 1 below.
  • control unit sets the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second-order regression equation, and the second-order regression equation is 2].
  • the present invention has the advantage of being able to perform customized freshness management according to the storage temperature according to the characteristics of each refrigerated food group.
  • the present invention has the advantage of reducing the loss due to food waste due to insufficient lead management, reducing the opportunity benefit cost due to food waste, and improving public confidence in food safety.
  • 1 is a schematic view of the generation principle and concept of electrical conductivity.
  • Figure 2 is a rapid leading measurement system according to an embodiment of the present invention.
  • Figure 3 is a flow chart of the rapid curve measurement method of the present invention.
  • EF electrical conductivity freshness index
  • FIG. 6 is a diagram showing various uses of the electrical conductivity freshness index (EF) calculated according to an embodiment of the present invention.
  • the present invention provides a method for rapidly measuring food by measuring electrical conductivity that changes according to the storage temperature. Electrical conductivity ( ) measuring; The electrical conductivity ( Calculating an Electrical Conductivity Freshness (EF) indicating the freshness of the food using ); And the correlation between the electrical conductivity freshness (EF) and at least one or more leading indicators of pH, chromaticity, protein denaturation, fatty acid denaturation, physical properties or microbial contamination related to the freshness of the food by a regression equation in the controller Provides a method for rapidly measuring food leading by measuring electrical conductivity, including the step of calculating.
  • the electrical conductivity freshness index (EF) may be measured by Equation 1 below.
  • the step of calculating the regression equation may further include setting a relationship between the electrical conductivity freshness index (EF) and the freshness indicator at the temperature as a first or second order regression equation.
  • quadratic regression equation may be set to [Equation 2] below.
  • the present invention provides a computer-readable recording medium on which a program for implementing the above-described rapid tracing method as a program is recorded.
  • the present invention in the rapid line measurement system for food through the measurement of electrical conductivity that is changed according to the storage temperature, a current generator for applying an alternating current having a frequency of a predetermined range to the food; electrodes configured to contact both sides of the electrical conductivity container in order to apply the alternating current to the electrical conductivity container in which the food is stored in order to measure the electrical conductivity of the food; And electrical conductivity measured in real time at the temperature ( ) to calculate the electrical conductivity freshness (EF) representing the freshness of the food, and to calculate the freshness of the food, pH, color, protein denaturation, fatty acid denaturation, physical properties or microbial contamination of at least one or more leading indicators
  • a rapid leading measurement system for food through electrical conductivity measurement including a control unit that calculates the correlation as a regression equation.
  • control unit may measure the electrical conductivity freshness index (EF) by Equation 1 below.
  • control unit sets the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second-order regression equation, and the second-order regression equation is 2].
  • the present invention relates to the lead management of food through real-time electrical conductivity measurement, and more particularly, to investigate the correlation between electrical conductivity according to the progress of food spoilage during the storage period according to the storage temperature.
  • FIG. 1 shows a diagrammatic view of the generation principle and concept of electrical conductivity according to an embodiment of the present invention.
  • Fig. 1(A) shows before cell wall destruction
  • Fig. 1(B) shows after cell wall destruction.
  • the cell and tissue structure of food acts like a kind of electrical circuit.
  • protein food spoilage, fat rancidity, and carbohydrate deterioration during refrigeration storage are caused by cell walls (membranes).
  • ) causes the elution of the cell liquid electrolyte into the space of the cell structure by the destruction of the electrolyte, which facilitates the current flow by the electrolyte effect and has the characteristic of increasing the electrical conductivity. That is, due to the destruction of the cell wall, the elution of the cell liquid electrolyte can be seen, and the amount of elution increases as the decay rate progresses, resulting in an increase in electrical conductivity.
  • the present invention can manage freshness by developing a correlation between real-time electrical conductivity change of food and leading indicators such as pH, protein denaturation, fatty acid spoilage, and microbial growth in a regression equation.
  • the present invention may include a current generator 20, an electrode 10, and a controller 30.
  • the current generator 20 may apply an alternating current having a frequency in a predetermined range to the food, and the current generator 20 may be regarded as a kind of waveform generator. MHz) current is applied to the food contained in the electrically conductive container 40, and the food acts as a part of an electrical circuit having resistance, so that the current passing value changes according to the freshness state of the food.
  • the waveform generator supplies an appropriate frequency (1 kHz-100 MHz) according to the characteristics of food and can be designed to variably adjust the intensity of voltage.
  • the electrode 10 may be configured to contact both sides of the electrical conductivity container 40 in order to apply the alternating current to the electrical conductivity container 40 in which the food is stored in order to measure the electrical conductivity of the food. .
  • the electrode 10 and the electrically conductive container 40 may be formed in the food storage 50 .
  • the control unit 30 measures the electrical conductivity measured in real time at a predetermined temperature ( ) to calculate the electrical conductivity freshness (EF) representing the freshness of the food, and to calculate the freshness of the food, pH, color, protein denaturation, fatty acid denaturation, physical properties or microbial contamination of at least one or more leading indicators Correlation can be calculated by regression equation.
  • EF electrical conductivity freshness
  • the electrical conductivity container 40 for food is composed of two electrodes 10, so that a change in current value passing through the food can be measured.
  • the electrical conductivity can be calculated by measuring the current passing through compared to the supplied current, and the control unit 30 calculates the calculated electrical conductivity by a regression equation with various leading indicators (pH, microbial growth, sugar content, color), and the electrical conductivity Changes in freshness can be sensed in real time by displaying on the monitoring unit 60, which is a freshness display system.
  • Figure 3 shows a flow chart of the rapid curve measurement method of the present invention.
  • the present invention is an electrical conductivity ( ) may include a step of measuring (S10), a step of calculating an electrical conductivity freshness (EF) (S20), and a step of calculating with a regression equation (S30).
  • an alternating current having a frequency in a predetermined range from the current generator 20 is supplied to the food in the method of rapidly measuring the food by measuring the electrical conductivity that is changed according to the temperature at which the food is stored.
  • the electrical conductivity ( ) is the process of measuring
  • the electrical conductivity (through Equation 1 above) ) can be used to indicate the freshness of the food.
  • the step of calculating the regression equation (S30) at least one of the electrical conductivity freshness (EF) and pH, chromaticity, protein denaturation, fatty acid degradation, physical properties or microbial contamination related to the freshness of the food is one or more leading indicators.
  • the electrical conductivity freshness index (EF) may vary according to the change in electrical conductivity, and the equation may be set as shown in Equation 2 by correlating each leading index measured at the same temperature with the electrical conductivity.
  • control unit 30 may calculate a regression equation by calculating the coefficients of the equation by inserting the measured data into the modeling equation and performing calculation.
  • FIG 4 shows the change in electrical conductivity according to the storage temperature of makgeolli according to an embodiment of the present invention.
  • FIG. 4 is an experimental example, and FIG. 4(A) and FIG. 4(B) show changes in electrical conductivity during storage of makgeolli at 5 ° C (refrigeration) and 20 ° C (room temperature), respectively.
  • the electrical conductivity of makgeolli started to increase from the initial 0.80 S/m on the 4th day of storage and rapidly increased to a maximum of 0.50 S/m on the 20th day of storage.
  • FIG 5 shows the change in electrical conductivity freshness index (EF) according to the storage temperature of makgeolli according to an embodiment of the present invention.
  • FIGS. 5(A) and 5(B) show changes in electrical conductivity freshness index (EF) during storage of makgeolli at 5 ° C (refrigeration) and 20 ° C (room temperature), respectively.
  • EF electrical conductivity freshness index
  • the controller 30 may measure the electrical conductivity freshness index (EF) using Equation 1 below.
  • control unit 30 sets the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second-order regression equation, and the second-order regression equation is: [Equation 2] can be set to
  • the electrical conductivity freshness index (EF) is a relative comparison of the electrical conductivity of completely decayed food compared to the electrical conductivity of fresh ingredients at the beginning of storage, and has a value close to 1 as the decay progresses.
  • Real-time electrical conductivity of food in Equation 1 above ( ) shows a low value in the case of fresh ingredients at the beginning, but as the decay progresses, the value increases with the electrical conductivity of the spoiled food ( ), and the EF value has a value close to 1.
  • the electrical conductivity freshness index (EF) of makgeolli started to increase from the initial 0.00 on the 4th day of storage and rapidly increased to a maximum of 1.00 on the 15th day of storage, indicating that it was completely spoiled.
  • the regression equation such as Equation 2 using electrical conductivity as a variable can also be applied to pH, Brix, and lactic acid bacteria.
  • Table 1 shows the changes in pH, Brix, and lactic acid bacteria among the leading indicators of makgeolli according to the storage period for each storage temperature. , the growth of lactic acid bacteria was also active, confirming that the electrical conductivity increased rapidly at room temperature compared to refrigerated storage.
  • Table 2 shows the results of the correlation between the electrical conductivity freshness index (EF) and pH change during the storage period according to the storage temperature as a quadratic regression equation ( ).
  • the step of calculating the regression equation may further include setting the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second order regression equation, and in the present invention, the second order Modeling was performed by setting the regression equation.
  • EF electrical conductivity freshness index
  • the quadratic regression equation can be set to the above-described [Equation 2], and Table 2 below shows the electrical conductivity freshness index as a regression equation ( ), pH can be measured in real time, and the possibility of being used for predicting changes in Brix and microbial growth can be shown.
  • FIG 6 shows various uses of the electrical conductivity freshness index (EF) calculated according to an embodiment of the present invention.
  • FIG. 6 it is shown that freshness can be evaluated more quickly and conveniently during distribution and storage of food through electrical conductivity measurement.
  • this method can be implemented in software, and the present invention provides a computer-readable recording medium in which the above-described method is implemented as a program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Pure & Applied Mathematics (AREA)
  • Biochemistry (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Operations Research (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention relates to a system and a method for rapidly measuring food freshness through electrical conductivity measurement and, particularly, to a measurement system and method for measuring spoilage in real time by developing a regression prediction model for the correlation between real-time electrical conductivity and spoilage progress according to food storage temperature. The present invention provides a system and a method for rapidly measuring food freshness through electrical conductivity measurement, the method comprising steps in which: conductivity of electricity (δr) is measured by applying same to electrodes in contact with both side surfaces of an electrical conductive container in which food is stored; electrical conductivity freshness (EF) indicating the freshness of the food is calculated; and a control unit calculates the correlation between the EF and a freshness index through a regression equation.

Description

전기전도도 측정을 통한 식품의 신속 선도 측정 시스템 및 방법System and method for rapidly measuring food quality through electrical conductivity measurement
본 발명은, 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템 및 방법에 관한 것으로, 특히 실시간 전기전도도와 식품의 저장 온도에 따른 부패 진행과의 상관관계를 회귀 예측 모델로 개발하여 실시간으로 부패를 측정하는 측정 시스템 및 방법에 관한 것이다.The present invention relates to a system and method for rapidly measuring food leading by measuring electrical conductivity, and in particular, develops a correlation between real-time electrical conductivity and spoilage progress according to storage temperature of food as a regression prediction model to measure spoilage in real time. It relates to a measurement system and method for
식품의 신선도는 일반적으로 pH, 당도, 적정산도, 단백질 변성과 같은 물리화학적 선도 지표나 미생물 오염도 측정에 따라 관리되는데, 이러한 측정 기술은 시간이 많이 소요되고 시험자의 숙련도 및 전문적인 장비가 필요하게 된다.The freshness of food is generally managed by physicochemical leading indicators such as pH, sugar level, titratable acidity, and protein denaturation, or by measuring microbial contamination. These measurement techniques are time-consuming and require tester skills and specialized equipment. .
한편, 식품 내에는 다양한 부패 미생물이 존재하여 보관온도 등의 선도 관리가 제대로 이행되지 않으면 품질이 저하되고 심각하게는 식중독을 유발할 수 있으므로 선도 관리가 매우 중요한 실정이다. 또한 살균된 식품의 경우 병원성 미생물의 사멸을 주 목적으로 하였기 때문에 부패 미생물은 그대로 존재하여 냉장보관이 필요하며 냉장 보관 중 저장 온도가 적절하게 관리되지 않으면 부패가 진행되어 식중독 사고를 발생시킬 가능성이 있다.On the other hand, since various spoilage microorganisms exist in food, leading management such as storage temperature is not properly implemented, quality is deteriorated and serious food poisoning may occur, so lead management is very important. In addition, in the case of sterilized food, since the main purpose is the death of pathogenic microorganisms, spoilage microorganisms remain intact and require refrigeration. If the storage temperature is not properly managed during refrigeration, there is a possibility of spoilage and food poisoning accidents. .
이와 관련, 종래의 한국공개특허 제2002-0065871호(지능형 식품부패 감지시스템과 이를 이용한 식품부패감지방법)는 일반 가정은 물론 특히 대형식당이나 마트 등과 같이 장시간 다량의 식품을 보관하는 냉장고 등에 그 식품의 부패정도를 외부에서 용이하고도 정확하게 확인할 수 있게 하여 항시 신선한 식품만을 제공할 수 있도록 하는 시스템과 방법을 개시하고 있다.In this regard, conventional Korean Patent Laid-open Publication No. 2002-0065871 (Intelligent food spoilage detection system and food spoilage detection method using the same) is a refrigerator that stores a large amount of food for a long time, such as a large restaurant or mart, as well as general households. Disclosed is a system and method for providing only fresh food at all times by allowing the degree of spoilage to be easily and accurately checked from the outside.
다만, 종래 기술의 경우, 식품이 부패하면서 발생하는 가스 자체를 측정하는 기술로 식품의 신선도를 안전하고 정확하게 관리하기 위해서는 식품군의 특성에 따른 다양한 선도지표(pH, 색도, 단백질 변성, 지방산패도, 물성, 미생물 오염도)를 직접 측정하고 평가해야 하는 문제점이 있으며, 이는 전문적인 분석장비와 숙달된 인력을 요구하고 오랜시간이 소요되는 제약이 있다.However, in the case of the prior art, in order to safely and accurately manage the freshness of food with a technology that measures the gas itself generated as food decomposes, various leading indicators (pH, color, protein denaturation, fatty acid denaturation, physical properties) according to the characteristics of the food group However, there is a problem of directly measuring and evaluating the degree of microbial contamination), which requires professional analysis equipment and skilled personnel and has limitations in that it takes a long time.
본 발명은 식품의 선도 지표를 전기전도도 측정을 통해 실시간으로 빠르고 간편하게 측정하는 측정 시스템 및 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a measurement system and method for quickly and conveniently measuring the freshness index of food in real time through electrical conductivity measurement.
또한, 본 발명은 식품이 저장되는 온도에서 전기전도도 특성을 통한 회귀방정식을 이용하여 신선도의 예측 모델을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a freshness prediction model using a regression equation through electrical conductivity characteristics at the temperature at which food is stored.
상기 목적을 달성하기 위하여 본 발명은, 보관되는 온도에 따라 변화되는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법에 있어서, 전류발생기로부터 소정 범위의 주파수를 갖는 교류 전류를 상기 식품이 보관된 전기전도도 용기의 양 측면에 접촉하여 구성된 전극으로 인가하여 전기전도도(
Figure PCTKR2022014657-appb-img-000001
)를 측정하는 단계; 상기 전기전도도(
Figure PCTKR2022014657-appb-img-000002
)를 이용하여 상기 식품의 신선도를 나타내는 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하는 단계; 및 상기 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)와 상기 식품의 신선도와 관련된 pH, 색도, 단백질 변성, 지방산패도, 물성 또는 미생물 오염도 중 적어도 하나 이상의 선도지표와의 상관관계를 제어부에서 회귀방정식으로 산출하는 단계를 포함하는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법을 제공한다.
In order to achieve the above object, the present invention provides a method for rapidly measuring food by measuring electrical conductivity that changes according to the storage temperature. Electrical conductivity (
Figure PCTKR2022014657-appb-img-000001
) measuring; The electrical conductivity (
Figure PCTKR2022014657-appb-img-000002
Calculating an Electrical Conductivity Freshness (EF) indicating the freshness of the food using ); And the correlation between the electrical conductivity freshness (EF) and at least one or more leading indicators of pH, chromaticity, protein denaturation, fatty acid denaturation, physical properties or microbial contamination related to the freshness of the food by a regression equation in the controller Provides a method for rapidly measuring food leading by measuring electrical conductivity, including the step of calculating.
실시 예에 따라 상기 전기전도도 신선도 지수(EF)는, 아래 수학식1로 측정될 수 있다.According to an embodiment, the electrical conductivity freshness index (EF) may be measured by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2022014657-appb-img-000003
Figure PCTKR2022014657-appb-img-000003
(여기서,
Figure PCTKR2022014657-appb-img-000004
:전기전도도 신선도 지수(Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000005
: 식품의 실시간 전기전도도,
Figure PCTKR2022014657-appb-img-000006
: 신선 식품의 전기전도도,
Figure PCTKR2022014657-appb-img-000007
:부패 식품의 전기전도도)
(here,
Figure PCTKR2022014657-appb-img-000004
: Electrical conductivity freshness index (Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000005
: real-time electrical conductivity of food,
Figure PCTKR2022014657-appb-img-000006
: Electrical conductivity of fresh food,
Figure PCTKR2022014657-appb-img-000007
: Electrical conductivity of spoiled food)
실시 예에 따라, 상기 회귀방정식으로 산출하는 단계는, 상기 온도에서 상기 전기전도도 신선도 지수(EF)와 상기 선도지표와의 관계를 1차 또는 2차 회귀방정식으로 설정하는 단계를 더 포함할 수 있다.Depending on the embodiment, the step of calculating the regression equation may further include setting a relationship between the electrical conductivity freshness index (EF) and the freshness indicator at the temperature as a first or second order regression equation. .
실시 예에 따라, 상기 2차 회귀방정식은, 아래 [수학식 2]로 설정될 수 있다.Depending on the embodiment, the quadratic regression equation may be set to [Equation 2] below.
[수학식 2][Equation 2]
Figure PCTKR2022014657-appb-img-000008
Figure PCTKR2022014657-appb-img-000008
(여기서,
Figure PCTKR2022014657-appb-img-000009
,
Figure PCTKR2022014657-appb-img-000010
,
Figure PCTKR2022014657-appb-img-000011
는 상관계수,
Figure PCTKR2022014657-appb-img-000012
:전기전도도 신선도 지수,
Figure PCTKR2022014657-appb-img-000013
:오차보정계수)
(here,
Figure PCTKR2022014657-appb-img-000009
,
Figure PCTKR2022014657-appb-img-000010
,
Figure PCTKR2022014657-appb-img-000011
is the correlation coefficient,
Figure PCTKR2022014657-appb-img-000012
: Electrical conductivity freshness index,
Figure PCTKR2022014657-appb-img-000013
: error correction factor)
또한 본 발명은 상기와 같은 신속 선도 측정 방법을 프로그램으로 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체를 제공한다.In addition, the present invention provides a computer-readable recording medium on which a program for implementing the above-described rapid tracing method as a program is recorded.
또한 본 발명은, 보관되는 온도에 따라 변화되는 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템에 있어서, 상기 식품에 소정 범위의 주파수를 갖는 교류 전류를 인가하는 전류발생기; 상기 식품의 전기전도도를 측정하기 위해 상기 교류 전류를 상기 식품이 보관된 전기전도도 용기에 인가하기 위해 상기 전기전도도 용기의 양 측면에 접촉하여 구성된 전극; 및 상기 온도에서 실시간 측정된 전기전도도(
Figure PCTKR2022014657-appb-img-000014
)로부터 상기 식품의 신선도를 나타내는 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하고 상기 식품의 신선도와 관련된 pH, 색도, 단백질 변성, 지방산패도, 물성 또는 미생물 오염도 중 적어도 하나 이상의 선도지표와의 상관관계를 회귀방정식으로 산출하는 제어부를 포함하는 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템을 제공한다.
In addition, the present invention, in the rapid line measurement system for food through the measurement of electrical conductivity that is changed according to the storage temperature, a current generator for applying an alternating current having a frequency of a predetermined range to the food; electrodes configured to contact both sides of the electrical conductivity container in order to apply the alternating current to the electrical conductivity container in which the food is stored in order to measure the electrical conductivity of the food; And electrical conductivity measured in real time at the temperature (
Figure PCTKR2022014657-appb-img-000014
) to calculate the electrical conductivity freshness (EF) representing the freshness of the food, and to calculate the freshness of the food, pH, color, protein denaturation, fatty acid denaturation, physical properties or microbial contamination of at least one or more leading indicators Provided is a rapid leading measurement system for food through electrical conductivity measurement including a control unit that calculates the correlation as a regression equation.
실시 예에 따라, 상기 제어부는, 상기 전기전도도 신선도 지수(EF)를 아래 수학식1로 측정될 수 있다.Depending on the embodiment, the control unit may measure the electrical conductivity freshness index (EF) by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2022014657-appb-img-000015
Figure PCTKR2022014657-appb-img-000015
(여기서,
Figure PCTKR2022014657-appb-img-000016
:전기전도도 신선도 지수(Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000017
: 식품의 실시간 전기전도도,
Figure PCTKR2022014657-appb-img-000018
: 신선 식품의 전기전도도,
Figure PCTKR2022014657-appb-img-000019
:부패 식품의 전기전도도)
(here,
Figure PCTKR2022014657-appb-img-000016
: Electrical conductivity freshness index (Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000017
: real-time electrical conductivity of food,
Figure PCTKR2022014657-appb-img-000018
: Electrical conductivity of fresh food,
Figure PCTKR2022014657-appb-img-000019
: Electrical conductivity of spoiled food)
실시 예에 따라, 상기 제어부는, 상기 온도에서 상기 전기전도도 신선도 지수(EF)와 상기 선도지표와의 관계를 1차 또는 2차 회귀방정식으로 설정하며, 상기 2차 회귀방정식은, 아래 [수학식 2]로 설정될 수 있다.Depending on the embodiment, the control unit sets the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second-order regression equation, and the second-order regression equation is 2].
[수학식 2][Equation 2]
Figure PCTKR2022014657-appb-img-000020
Figure PCTKR2022014657-appb-img-000020
(여기서,
Figure PCTKR2022014657-appb-img-000021
,
Figure PCTKR2022014657-appb-img-000022
,
Figure PCTKR2022014657-appb-img-000023
는 상관계수,
Figure PCTKR2022014657-appb-img-000024
:전기전도도 신선도 지수,
Figure PCTKR2022014657-appb-img-000025
:오차보정계수)
(here,
Figure PCTKR2022014657-appb-img-000021
,
Figure PCTKR2022014657-appb-img-000022
,
Figure PCTKR2022014657-appb-img-000023
is the correlation coefficient,
Figure PCTKR2022014657-appb-img-000024
: Electrical conductivity freshness index,
Figure PCTKR2022014657-appb-img-000025
: error correction factor)
전술한 바와 같은 구성을 갖는 본 발명에 따르면, 식품의 신선도를 신속하게 측정하여 냉장식품의 부패 및 변질에 의한 식중독 사고를 미연에 방지할 수 있는 이점이 있다.According to the present invention having the configuration as described above, there is an advantage that can quickly measure the freshness of food to prevent food poisoning accidents due to spoilage and deterioration of refrigerated food in advance.
또한 본 발명은, 각 냉장 식품군별 특성에 맞춰 저장 온도에 따라 맞춤형 선도 관리를 수행할 수 있는 이점이 있다.In addition, the present invention has the advantage of being able to perform customized freshness management according to the storage temperature according to the characteristics of each refrigerated food group.
또한 본 발명은, 선도관리 미흡으로 버려지는 음식물 폐기에 의한 손실을 줄여 식품 폐기에 의한 기회편익 비용을 감소시키고, 식품 안전에 관한 국민 신뢰도를 제고시킬 수 있는 이점이 있다.In addition, the present invention has the advantage of reducing the loss due to food waste due to insufficient lead management, reducing the opportunity benefit cost due to food waste, and improving public confidence in food safety.
도 1은 전기전도도의 발생 원리 및 개념을 도식화한 모습.1 is a schematic view of the generation principle and concept of electrical conductivity.
도 2는 본 발명의 실시 예에 따른 신속 선도 측정 시스템.Figure 2 is a rapid leading measurement system according to an embodiment of the present invention.
도 3은 본 발명의 신속 선도 측정 방법의 순서도.Figure 3 is a flow chart of the rapid curve measurement method of the present invention.
도 4는 본 발명의 실시 예에 따른 막걸리의 저장 온도에 따른 전기전도도의 변화.4 is a change in electrical conductivity according to the storage temperature of makgeolli according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 막걸리의 저장 온도에 따른 전기전도도 신선도지수(EF)의 변화.5 is a change in electrical conductivity freshness index (EF) according to the storage temperature of makgeolli according to an embodiment of the present invention.
도 6은 본 발명의 실시 예에 따라 산출된 전기전도도 신선도 지수(EF)의 다양한 활용도.6 is a diagram showing various uses of the electrical conductivity freshness index (EF) calculated according to an embodiment of the present invention.
상기 목적을 달성하기 위하여 본 발명은, 보관되는 온도에 따라 변화되는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법에 있어서, 전류발생기로부터 소정 범위의 주파수를 갖는 교류 전류를 상기 식품이 보관된 전기전도도 용기의 양 측면에 접촉하여 구성된 전극으로 인가하여 전기전도도(
Figure PCTKR2022014657-appb-img-000026
)를 측정하는 단계; 상기 전기전도도(
Figure PCTKR2022014657-appb-img-000027
)를 이용하여 상기 식품의 신선도를 나타내는 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하는 단계; 및 상기 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)와 상기 식품의 신선도와 관련된 pH, 색도, 단백질 변성, 지방산패도, 물성 또는 미생물 오염도 중 적어도 하나 이상의 선도지표와의 상관관계를 제어부에서 회귀방정식으로 산출하는 단계를 포함하는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법을 제공한다.
In order to achieve the above object, the present invention provides a method for rapidly measuring food by measuring electrical conductivity that changes according to the storage temperature. Electrical conductivity (
Figure PCTKR2022014657-appb-img-000026
) measuring; The electrical conductivity (
Figure PCTKR2022014657-appb-img-000027
Calculating an Electrical Conductivity Freshness (EF) indicating the freshness of the food using ); And the correlation between the electrical conductivity freshness (EF) and at least one or more leading indicators of pH, chromaticity, protein denaturation, fatty acid denaturation, physical properties or microbial contamination related to the freshness of the food by a regression equation in the controller Provides a method for rapidly measuring food leading by measuring electrical conductivity, including the step of calculating.
실시 예에 따라 상기 전기전도도 신선도 지수(EF)는, 아래 수학식1로 측정될 수 있다.According to an embodiment, the electrical conductivity freshness index (EF) may be measured by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2022014657-appb-img-000028
Figure PCTKR2022014657-appb-img-000028
(여기서,
Figure PCTKR2022014657-appb-img-000029
:전기전도도 신선도 지수(Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000030
: 식품의 실시간 전기전도도,
Figure PCTKR2022014657-appb-img-000031
: 신선 식품의 전기전도도,
Figure PCTKR2022014657-appb-img-000032
:부패 식품의 전기전도도)
(here,
Figure PCTKR2022014657-appb-img-000029
: Electrical conductivity freshness index (Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000030
: real-time electrical conductivity of food,
Figure PCTKR2022014657-appb-img-000031
: Electrical conductivity of fresh food,
Figure PCTKR2022014657-appb-img-000032
: Electrical conductivity of spoiled food)
실시 예에 따라, 상기 회귀방정식으로 산출하는 단계는, 상기 온도에서 상기 전기전도도 신선도 지수(EF)와 상기 선도지표와의 관계를 1차 또는 2차 회귀방정식으로 설정하는 단계를 더 포함할 수 있다.Depending on the embodiment, the step of calculating the regression equation may further include setting a relationship between the electrical conductivity freshness index (EF) and the freshness indicator at the temperature as a first or second order regression equation. .
실시 예에 따라, 상기 2차 회귀방정식은, 아래 [수학식 2]로 설정될 수 있다.Depending on the embodiment, the quadratic regression equation may be set to [Equation 2] below.
[수학식 2][Equation 2]
Figure PCTKR2022014657-appb-img-000033
Figure PCTKR2022014657-appb-img-000033
(여기서,
Figure PCTKR2022014657-appb-img-000034
,
Figure PCTKR2022014657-appb-img-000035
,
Figure PCTKR2022014657-appb-img-000036
는 상관계수,
Figure PCTKR2022014657-appb-img-000037
:전기전도도 신선도 지수,
Figure PCTKR2022014657-appb-img-000038
:오차보정계수)
(here,
Figure PCTKR2022014657-appb-img-000034
,
Figure PCTKR2022014657-appb-img-000035
,
Figure PCTKR2022014657-appb-img-000036
is the correlation coefficient,
Figure PCTKR2022014657-appb-img-000037
: Electrical conductivity freshness index,
Figure PCTKR2022014657-appb-img-000038
: error correction factor)
또한 본 발명은 상기와 같은 신속 선도 측정 방법을 프로그램으로 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체를 제공한다.In addition, the present invention provides a computer-readable recording medium on which a program for implementing the above-described rapid tracing method as a program is recorded.
또한 본 발명은, 보관되는 온도에 따라 변화되는 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템에 있어서, 상기 식품에 소정 범위의 주파수를 갖는 교류 전류를 인가하는 전류발생기; 상기 식품의 전기전도도를 측정하기 위해 상기 교류 전류를 상기 식품이 보관된 전기전도도 용기에 인가하기 위해 상기 전기전도도 용기의 양 측면에 접촉하여 구성된 전극; 및 상기 온도에서 실시간 측정된 전기전도도(
Figure PCTKR2022014657-appb-img-000039
)로부터 상기 식품의 신선도를 나타내는 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하고 상기 식품의 신선도와 관련된 pH, 색도, 단백질 변성, 지방산패도, 물성 또는 미생물 오염도 중 적어도 하나 이상의 선도지표와의 상관관계를 회귀방정식으로 산출하는 제어부를 포함하는 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템을 제공한다.
In addition, the present invention, in the rapid line measurement system for food through the measurement of electrical conductivity that is changed according to the storage temperature, a current generator for applying an alternating current having a frequency of a predetermined range to the food; electrodes configured to contact both sides of the electrical conductivity container in order to apply the alternating current to the electrical conductivity container in which the food is stored in order to measure the electrical conductivity of the food; And electrical conductivity measured in real time at the temperature (
Figure PCTKR2022014657-appb-img-000039
) to calculate the electrical conductivity freshness (EF) representing the freshness of the food, and to calculate the freshness of the food, pH, color, protein denaturation, fatty acid denaturation, physical properties or microbial contamination of at least one or more leading indicators Provided is a rapid leading measurement system for food through electrical conductivity measurement including a control unit that calculates the correlation as a regression equation.
실시 예에 따라, 상기 제어부는, 상기 전기전도도 신선도 지수(EF)를 아래 수학식1로 측정될 수 있다.Depending on the embodiment, the control unit may measure the electrical conductivity freshness index (EF) by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2022014657-appb-img-000040
Figure PCTKR2022014657-appb-img-000040
(여기서,
Figure PCTKR2022014657-appb-img-000041
:전기전도도 신선도 지수(Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000042
: 식품의 실시간 전기전도도,
Figure PCTKR2022014657-appb-img-000043
: 신선 식품의 전기전도도,
Figure PCTKR2022014657-appb-img-000044
:부패 식품의 전기전도도)
(here,
Figure PCTKR2022014657-appb-img-000041
: Electrical conductivity freshness index (Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000042
: real-time electrical conductivity of food,
Figure PCTKR2022014657-appb-img-000043
: Electrical conductivity of fresh food,
Figure PCTKR2022014657-appb-img-000044
: Electrical conductivity of spoiled food)
실시 예에 따라, 상기 제어부는, 상기 온도에서 상기 전기전도도 신선도 지수(EF)와 상기 선도지표와의 관계를 1차 또는 2차 회귀방정식으로 설정하며, 상기 2차 회귀방정식은, 아래 [수학식 2]로 설정될 수 있다.Depending on the embodiment, the control unit sets the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second-order regression equation, and the second-order regression equation is 2].
[수학식 2][Equation 2]
Figure PCTKR2022014657-appb-img-000045
Figure PCTKR2022014657-appb-img-000045
(여기서,
Figure PCTKR2022014657-appb-img-000046
,
Figure PCTKR2022014657-appb-img-000047
,
Figure PCTKR2022014657-appb-img-000048
는 상관계수,
Figure PCTKR2022014657-appb-img-000049
:전기전도도 신선도 지수,
Figure PCTKR2022014657-appb-img-000050
:오차보정계수)
(here,
Figure PCTKR2022014657-appb-img-000046
,
Figure PCTKR2022014657-appb-img-000047
,
Figure PCTKR2022014657-appb-img-000048
is the correlation coefficient,
Figure PCTKR2022014657-appb-img-000049
: Electrical conductivity freshness index,
Figure PCTKR2022014657-appb-img-000050
: error correction factor)
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.The terms used in this specification will be briefly described, and the present invention will be described in detail.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다. The terms used in the present invention have been selected from general terms that are currently widely used as much as possible while considering the functions in the present invention, but these may vary depending on the intention of a person skilled in the art or precedent, the emergence of new technologies, and the like. In addition, in a specific case, there is also a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the invention. Therefore, the term used in the present invention should be defined based on the meaning of the term and the overall content of the present invention, not simply the name of the term.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다. 또한, 명세서 전체에서 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, "그 중간에 다른 구성을 사이에 두고" 연결되어 있는 경우도 포함한다.When it is said that a certain part "includes" a certain component throughout the specification, it means that it may further include other components without excluding other components unless otherwise stated. In addition, terms such as "...unit" and "module" described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software. . In addition, when a part is said to be "connected" to another part throughout the specification, this includes not only the case of being "directly connected" but also the case of being connected "with another component in between".
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice with reference to the accompanying drawings. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
본 발명은 실시간 전기전도도 측정을 통한 식품의 선도 관리에 관한 것으로, 보다 상세하게는 저장 온도에 따른 저장 기간 중 식품 부패 진행에 따른 전기전도도의 상관관계를 규명하는 것이다.The present invention relates to the lead management of food through real-time electrical conductivity measurement, and more particularly, to investigate the correlation between electrical conductivity according to the progress of food spoilage during the storage period according to the storage temperature.
도 1은 본 발명의 실시 예에 따른 전기전도도의 발생 원리 및 개념을 도식화한 모습을 나타낸다.1 shows a diagrammatic view of the generation principle and concept of electrical conductivity according to an embodiment of the present invention.
도 1(A)는 세포벽 파괴 전을 나타내고, 도 1(B)는 세포벽 파괴 후를 나타낸다. 식품의 세포 및 조직 구조는 일종의 전기 회로와 같은 역할을 하는데 도 1(A) 및 도 1(B)에 제시된 바와 같이, 냉장 저장 중 단백질 식품의 부패, 지방 산패 및 탄수화물의 변패 등은 세포벽(막)의 파괴에 의한 세포액 전해질의 세포 구조 공간으로의 용출을 초래하며, 이는 전해질 효과에 의해서 전류흐름을 용이하게 하여 전기전도도가 증대되는 특성이 있다. 즉, 세포벽의 파괴로 인해 세포액 전해질의 용출을 볼 수 있으며, 부패도가 진행됨에 따라 용출량은 많아져 전기전도도가 증가하게 된다.Fig. 1(A) shows before cell wall destruction, and Fig. 1(B) shows after cell wall destruction. The cell and tissue structure of food acts like a kind of electrical circuit. As shown in FIGS. 1(A) and 1(B), protein food spoilage, fat rancidity, and carbohydrate deterioration during refrigeration storage are caused by cell walls (membranes). ) causes the elution of the cell liquid electrolyte into the space of the cell structure by the destruction of the electrolyte, which facilitates the current flow by the electrolyte effect and has the characteristic of increasing the electrical conductivity. That is, due to the destruction of the cell wall, the elution of the cell liquid electrolyte can be seen, and the amount of elution increases as the decay rate progresses, resulting in an increase in electrical conductivity.
특히, 살균된 식품의 경우도 병원성 미생물의 사멸을 주 목적으로 하기 때문에 부패 미생물은 그대로 존재하여 냉장보관이 필요하며, 냉장 보관 중 저장 온도가 적절하게 관리되지 않으면 부패가 진행될 수 있고, 이는 식중독 사고를 발생시키는 원인이 된다.In particular, even in the case of sterilized food, since the main purpose is the death of pathogenic microorganisms, spoilage microorganisms remain intact and require refrigeration, and if the storage temperature is not properly managed during refrigeration, spoilage may proceed, which causes food poisoning accidents. cause to occur.
이러한 식중독 사고를 미연에 방지하기 위해서는 식품의 선도 지표를 실시간으로 빠르고 간편하게 측정할 수 있는 기술이 요구되고 있는 바, 전기전도도 측정이 이를 가능케 할 수 있다.In order to prevent such food poisoning accidents in advance, a technology capable of quickly and conveniently measuring the leading indicator of food in real time is required, and electrical conductivity measurement can make this possible.
따라서 본 발명은 식품의 실시간 전기전도도 변화를 pH, 단백질 변성, 지방산패, 미생물 증식 등 선도 지표와의 상관 관계를 회귀식으로 개발하여 신선도를 관리할 수 있다.Therefore, the present invention can manage freshness by developing a correlation between real-time electrical conductivity change of food and leading indicators such as pH, protein denaturation, fatty acid spoilage, and microbial growth in a regression equation.
도 2는 본 발명의 신속 선도 측정 시스템(1)을 나타낸다.2 shows a rapid tracing measurement system 1 of the present invention.
도 2를 참조하면, 본 발명은 전류발생기(20), 전극(10), 제어부(30)를 포함할 수 있다.Referring to FIG. 2 , the present invention may include a current generator 20, an electrode 10, and a controller 30.
전류발생기(20)는, 식품에 소정 범위의 주파수를 갖는 교류 전류를 인가할 수 있는데, 전류발생기(20)는 일종의 파형 발생기로 볼 수 있으며, 실시 예에 따라 파형 발생기는 교류(1 kHz-100 MHz) 전류를 전기전도도 용기(40)에 들어 있는 식품에 가하고, 식품은 저항을 가진 전기 회로의 일부로 작용하여 식품의 신선도 상태에 따라 전류를 통과시키는 값이 변화하게 된다. 파형발생기는 식품의 특성에 맞게 적정 주파수(1 kH-100 MHz)를 공급하게 되며 전압의 세기도 가변적으로 조절할 수 있도록 설계될 수 있다.The current generator 20 may apply an alternating current having a frequency in a predetermined range to the food, and the current generator 20 may be regarded as a kind of waveform generator. MHz) current is applied to the food contained in the electrically conductive container 40, and the food acts as a part of an electrical circuit having resistance, so that the current passing value changes according to the freshness state of the food. The waveform generator supplies an appropriate frequency (1 kHz-100 MHz) according to the characteristics of food and can be designed to variably adjust the intensity of voltage.
전극(10)은, 식품의 전기전도도를 측정하기 위해 상기 교류 전류를 상기 식품이 보관된 전기전도도 용기(40)에 인가하기 위해 상기 전기전도도 용기(40)의 양 측면에 접촉하여 구성될 수 있다. 이러한 전극(10)과 전기전도도 용기(40)는 식품보관고(50)에 형성될 수 있다.The electrode 10 may be configured to contact both sides of the electrical conductivity container 40 in order to apply the alternating current to the electrical conductivity container 40 in which the food is stored in order to measure the electrical conductivity of the food. . The electrode 10 and the electrically conductive container 40 may be formed in the food storage 50 .
제어부(30)는 소정의 온도에서 실시간 측정된 전기전도도(
Figure PCTKR2022014657-appb-img-000051
)로부터 상기 식품의 신선도를 나타내는 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하고 상기 식품의 신선도와 관련된 pH, 색도, 단백질 변성, 지방산패도, 물성 또는 미생물 오염도 중 적어도 하나 이상의 선도지표와의 상관관계를 회귀방정식으로 산출할 수 있다.
The control unit 30 measures the electrical conductivity measured in real time at a predetermined temperature (
Figure PCTKR2022014657-appb-img-000051
) to calculate the electrical conductivity freshness (EF) representing the freshness of the food, and to calculate the freshness of the food, pH, color, protein denaturation, fatty acid denaturation, physical properties or microbial contamination of at least one or more leading indicators Correlation can be calculated by regression equation.
식품의 전기전도도 용기(40)는 2개의 전극(10)으로 이루어져 있어 식품을 통과하는 전류값의 변화를 측정할 수 있다. 공급된 전류 대비 통과되는 전류를 측정하여 전기전도도로 산출될 수 있으며, 제어부(30)는 산출된 전기전도도를 다양한 선도지표(pH, 미생물 증식, 당도, 색도)와의 회귀식으로 계산하고, 전기전도도 신선도 디스플레이 시스템인 모니터링부(60)에 표시하여 실시간으로 신선도 변화를 감지할 수 있다.The electrical conductivity container 40 for food is composed of two electrodes 10, so that a change in current value passing through the food can be measured. The electrical conductivity can be calculated by measuring the current passing through compared to the supplied current, and the control unit 30 calculates the calculated electrical conductivity by a regression equation with various leading indicators (pH, microbial growth, sugar content, color), and the electrical conductivity Changes in freshness can be sensed in real time by displaying on the monitoring unit 60, which is a freshness display system.
이하, 상술한 신속 선도 측정 시스템(1)을 활용한 신속 선도 측정 방법을 설명한다.Hereinafter, a rapid lead measurement method using the above-described rapid lead measurement system 1 will be described.
도 3은 본 발명의 신속 선도 측정 방법의 순서도를 나타낸다.Figure 3 shows a flow chart of the rapid curve measurement method of the present invention.
도 3을 참조하면, 본 발명은 전기전도도(
Figure PCTKR2022014657-appb-img-000052
)를 측정하는 단계(S10), 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하는 단계(S20) 및 회귀방정식으로 산출하는 단계(S30)를 포함할 수 있다.
Referring to FIG. 3, the present invention is an electrical conductivity (
Figure PCTKR2022014657-appb-img-000052
) may include a step of measuring (S10), a step of calculating an electrical conductivity freshness (EF) (S20), and a step of calculating with a regression equation (S30).
전기전도도(
Figure PCTKR2022014657-appb-img-000053
)를 측정하는 단계(S10)는, 보관되는 온도에 따라 변화되는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법에 있어서, 전류발생기(20)로부터 소정 범위의 주파수를 갖는 교류 전류를 상기 식품이 보관된 전기전도도 용기(40)의 양 측면에 접촉하여 구성된 전극(10)으로 인가하여 전기전도도(
Figure PCTKR2022014657-appb-img-000054
)를 측정하는 과정이다.
electrical conductivity (
Figure PCTKR2022014657-appb-img-000053
In the step of measuring (S10), an alternating current having a frequency in a predetermined range from the current generator 20 is supplied to the food in the method of rapidly measuring the food by measuring the electrical conductivity that is changed according to the temperature at which the food is stored. The electrical conductivity (
Figure PCTKR2022014657-appb-img-000054
) is the process of measuring
전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하는 단계(S20)는, 위 수학식 1을 통해 전기전도도(
Figure PCTKR2022014657-appb-img-000055
)를 이용하여 상기 식품의 신선도를 나타낼 수 있다.
In the step of calculating the electrical conductivity freshness (EF) (S20), the electrical conductivity (through Equation 1 above)
Figure PCTKR2022014657-appb-img-000055
) can be used to indicate the freshness of the food.
회귀방정식으로 산출하는 단계(S30)는, 상기 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)와 상기 식품의 신선도와 관련된 pH, 색도, 단백질 변성, 지방산패도, 물성 또는 미생물 오염도 중 적어도 하나 이상의 선도지표와의 상관관계를 제어부(30)에서 회귀방정식으로 연산하는 과정이다. 이 과정에서 전기전도도의 변화에 따라 전기전도도 신선도 지수(EF)가 달라질 수 있으며, 동일 온도에서 측정된 각 선도 지표를 전기전도도와 상관시켜 수학식 2와 같이 수식을 설정할 수 있다. In the step of calculating the regression equation (S30), at least one of the electrical conductivity freshness (EF) and pH, chromaticity, protein denaturation, fatty acid degradation, physical properties or microbial contamination related to the freshness of the food is one or more leading indicators This is a process of calculating the correlation with the regression equation in the control unit 30. In this process, the electrical conductivity freshness index (EF) may vary according to the change in electrical conductivity, and the equation may be set as shown in Equation 2 by correlating each leading index measured at the same temperature with the electrical conductivity.
이와 같이 제어부(30)에서는 기 측정된 데이터를 모델링 수식에 넣어 연산을 함으로써 수식의 계수 산출을 통해 회귀방정식을 산출할 수 있다.In this way, the control unit 30 may calculate a regression equation by calculating the coefficients of the equation by inserting the measured data into the modeling equation and performing calculation.
도 4는 본 발명의 실시 예에 따른 막걸리의 저장 온도에 따른 전기전도도의 변화를 나타낸다.4 shows the change in electrical conductivity according to the storage temperature of makgeolli according to an embodiment of the present invention.
도 4는 실험 예로서 도 4(A)와 도 4(B)는 각각 막걸리의 5℃(냉장) 및 20℃(상온) 저장 과정 중 전기전도도의 변화를 나타낸다.4 is an experimental example, and FIG. 4(A) and FIG. 4(B) show changes in electrical conductivity during storage of makgeolli at 5 ° C (refrigeration) and 20 ° C (room temperature), respectively.
4℃ 냉장 저장 시 막걸리의 전기전도도는, 초기 0.060 S/m에서 서서히 증가하여 저장 20일차에는 0.075 S/m까지 미약하게 증가한 것을 알 수 있다.It can be seen that the electrical conductivity of makgeolli gradually increased from 0.060 S/m at the beginning when stored refrigerated at 4℃ and slightly increased to 0.075 S/m on the 20th day of storage.
20℃ 상온 저장 시 막걸리의 전기전도도는 초기 0.80 S/m에서 저장 4일차부터 증가하기 시작하여 저장 20일차에는 최대 0.50 S/m 까지 급격하게 증가한 것을 알 수 있다.When stored at room temperature at 20℃, the electrical conductivity of makgeolli started to increase from the initial 0.80 S/m on the 4th day of storage and rapidly increased to a maximum of 0.50 S/m on the 20th day of storage.
위 두 온도의 실험 예를 통해 상온 저장 시 막걸리의 부패가 냉장보다 빠르게 진행되는 결과라는 것을 알 수 있다.Through the experimental examples of the above two temperatures, it can be seen that the decay of makgeolli when stored at room temperature is the result of proceeding faster than refrigeration.
도 5는 본 발명의 실시 예에 따른 막걸리의 저장 온도에 따른 전기전도도 신선도지수(EF)의 변화를 나타낸다.5 shows the change in electrical conductivity freshness index (EF) according to the storage temperature of makgeolli according to an embodiment of the present invention.
도 5를 참조하면, 도 5(A) 및 도 5(B)는 각각 막걸리의 5℃(냉장) 및 20℃(상온) 저장 과정 중 전기전도도 신선도 지수(EF)의 변화를 나타낸다.Referring to FIG. 5, FIGS. 5(A) and 5(B) show changes in electrical conductivity freshness index (EF) during storage of makgeolli at 5 ° C (refrigeration) and 20 ° C (room temperature), respectively.
상기 제어부(30)는, 전기전도도 신선도 지수(EF)를 아래 수학식1을 이용하여 측정할 수 있다.The controller 30 may measure the electrical conductivity freshness index (EF) using Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2022014657-appb-img-000056
Figure PCTKR2022014657-appb-img-000056
(여기서,
Figure PCTKR2022014657-appb-img-000057
:전기전도도 신선도 지수(Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000058
: 식품의 실시간 전기전도도,
Figure PCTKR2022014657-appb-img-000059
: 신선 식품의 전기전도도,
Figure PCTKR2022014657-appb-img-000060
:부패 식품의 전기전도도)
(here,
Figure PCTKR2022014657-appb-img-000057
: Electrical conductivity freshness index (Electrical conductivity Freshness,
Figure PCTKR2022014657-appb-img-000058
: real-time electrical conductivity of food,
Figure PCTKR2022014657-appb-img-000059
: Electrical conductivity of fresh food,
Figure PCTKR2022014657-appb-img-000060
: Electrical conductivity of spoiled food)
또한 제어부(30)는, 상기 온도에서 상기 전기전도도 신선도 지수(EF)와 상기 선도지표와의 관계를 1차 또는 2차 회귀방정식으로 설정하며, 상기 2차 회귀방정식은, 아래 [수학식 2]로 설정될 수 있다.In addition, the control unit 30 sets the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second-order regression equation, and the second-order regression equation is: [Equation 2] can be set to
[수학식 2][Equation 2]
Figure PCTKR2022014657-appb-img-000061
Figure PCTKR2022014657-appb-img-000061
(여기서,
Figure PCTKR2022014657-appb-img-000062
,
Figure PCTKR2022014657-appb-img-000063
,
Figure PCTKR2022014657-appb-img-000064
는 상관계수,
Figure PCTKR2022014657-appb-img-000065
:전기전도도 신선도 지수,
Figure PCTKR2022014657-appb-img-000066
:오차보정계수)
(here,
Figure PCTKR2022014657-appb-img-000062
,
Figure PCTKR2022014657-appb-img-000063
,
Figure PCTKR2022014657-appb-img-000064
is the correlation coefficient,
Figure PCTKR2022014657-appb-img-000065
: Electrical conductivity freshness index,
Figure PCTKR2022014657-appb-img-000066
: error correction factor)
전기전도도 신선도 지수(EF)는 저장 초기 신선 재료의 전기전도도 대비 완전 부패 식품의 전기전도도를 상대적으로 비교한 것으로 부패가 진행될수록 1에 가까운 수치를 가지게 된다.The electrical conductivity freshness index (EF) is a relative comparison of the electrical conductivity of completely decayed food compared to the electrical conductivity of fresh ingredients at the beginning of storage, and has a value close to 1 as the decay progresses.
위 수학식 1에서 식품의 실시간 전기전도도(
Figure PCTKR2022014657-appb-img-000067
)는 초기 신선 재료의 경우 낮은 값을 나타내나 부패가 진행됨에 따라 그 값이 부패 식품의 전기전도도(
Figure PCTKR2022014657-appb-img-000068
)로 수렴하게 되어 EF 수치는 1에 가까운 수치를 가지게 된다.
Real-time electrical conductivity of food in Equation 1 above (
Figure PCTKR2022014657-appb-img-000067
) shows a low value in the case of fresh ingredients at the beginning, but as the decay progresses, the value increases with the electrical conductivity of the spoiled food (
Figure PCTKR2022014657-appb-img-000068
), and the EF value has a value close to 1.
4℃ 냉장 저장 시 막걸리의 전기전도도 신선도 지수(EF)는 초기 0.00 에서 서서히 증가하여 저장 15일차에는 최대 0.05 까지 증가한 것을 알 수 있다.It can be seen that the electrical conductivity freshness index (EF) of makgeolli gradually increased from 0.00 at the beginning when stored refrigerated at 4℃ and increased to a maximum of 0.05 on the 15th day of storage.
20℃ 상온 저장 시 막걸리의 전기전도도 신선도 지수(EF)는 초기 0.00 에서 저장 4일차부터 증가하기 시작하여 저장 15일차에는 최대 1.00 까지 급격하게 증가하여 완전하게 부패가 되었음을 알 수 있다.When stored at room temperature at 20 ° C, the electrical conductivity freshness index (EF) of makgeolli started to increase from the initial 0.00 on the 4th day of storage and rapidly increased to a maximum of 1.00 on the 15th day of storage, indicating that it was completely spoiled.
본 발명의 또 다른 실시 예에 따라 전기전도도를 변수로 하는 상기 수학식 2와 같은 회귀방정식은 pH, Brix, Lactic acid bactera에도 적용될 수 있다.According to another embodiment of the present invention, the regression equation such as Equation 2 using electrical conductivity as a variable can also be applied to pH, Brix, and lactic acid bacteria.
아래 표 1은 저장 온도 별 저장 기간에 따른 막걸리의 선도지표 중 pH, Brix 및 젖산균(lactic acid bacteria) 변화를 보여주고 있으며, 실온 20℃의 경우 냉장 5℃ 저장보다 pH 및 Brix가 급격하게 증가하며, 젖산균의 증식도 활발한 것으로 나타나 실온에서 냉장보관보다 전기전도도가 급격하게 증가하는 것을 확인할 수 있다.Table 1 below shows the changes in pH, Brix, and lactic acid bacteria among the leading indicators of makgeolli according to the storage period for each storage temperature. , the growth of lactic acid bacteria was also active, confirming that the electrical conductivity increased rapidly at room temperature compared to refrigerated storage.
Time (day)Time (day) Electrical conductivity freshness index (Electrical conductivity freshness index ( EFEF )) pHpH °Brix°Brix Lactic acid bacteriaLactic acid bacteria
(log CFU/ml) (log CFU/ml)
5℃5 20℃20 5℃5 20℃20 5℃5 20℃20 5℃5 20℃20
00 0.0420.042 0.0000.000 3.323.32 3.323.32 4.34.3 4.24.2 7.97.9 7.97.9
44 0.0150.015 0.0400.040 3.243.24 3.753.75 3.53.5 3.43.4 8.08.0 8.18.1
88 0.0250.025 0.2190.219 3.463.46 3.983.98 3.53.5 3.53.5 7.87.8 8.38.3
1212 0.0430.043 0.7260.726 3.653.65 4.114.11 3.53.5 4.24.2 7.97.9 8.78.7
1616 0.0550.055 0.9740.974 3.703.70 4.004.00 3.43.4 4.34.3 7.77.7 8.58.5
2020 0.0660.066 0.9530.953 3.713.71 4.004.00 3.53.5 4.44.4 7.87.8 8.28.2
<저장온도에 따른 저장 기간 중 막걸리의 pH, °Brix 및 젖산균(lactic acid bacteria) 변화><Changes in pH, °Brix and lactic acid bacteria of makgeolli during storage period according to storage temperature>
아래 표 2는 저장 온도에 따른 저장 기간 중 전기전도도 신선도 지수(EF)와 pH 변화의 상관관계를 2차 회귀 방정식으로 나타낸 결과를 보여준다(
Figure PCTKR2022014657-appb-img-000069
).
Table 2 below shows the results of the correlation between the electrical conductivity freshness index (EF) and pH change during the storage period according to the storage temperature as a quadratic regression equation (
Figure PCTKR2022014657-appb-img-000069
).
회귀방정식으로 산출하는 단계는, 상기 온도에서 상기 전기전도도 신선도 지수(EF)와 상기 선도지표와의 관계를 1차 또는 2차 회귀방정식으로 설정하는 단계를 더 포함할 수 있으며, 본 발명에서는 2차 회귀방정식을 설정하여 모델링을 하였다.The step of calculating the regression equation may further include setting the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second order regression equation, and in the present invention, the second order Modeling was performed by setting the regression equation.
2차 회귀방정식은, 상술한 [수학식 2]로 설정될 수 있으며 아래 표 2는 분석 결과 전기전도도 신선도 지수를 회귀방정식(
Figure PCTKR2022014657-appb-img-000070
)에 대입 시 실시간으로 pH를 측정 가능하게 하였으며 Brix와 미생물 증식의 변화 예측에도 활용될 수 있는 가능성을 보여줄 수 있다.
The quadratic regression equation can be set to the above-described [Equation 2], and Table 2 below shows the electrical conductivity freshness index as a regression equation (
Figure PCTKR2022014657-appb-img-000070
), pH can be measured in real time, and the possibility of being used for predicting changes in Brix and microbial growth can be shown.
5℃5 20℃20℃
CoefficientsCoefficients Pr > |t| Pr > |t| CoefficientsCoefficients Pr > |t| Pr > |t|
Figure PCTKR2022014657-appb-img-000071
Figure PCTKR2022014657-appb-img-000071
3.20463.2046 <.0001<.0001 3.46333.4633 <.0001<.0001
Figure PCTKR2022014657-appb-img-000072
Figure PCTKR2022014657-appb-img-000072
11.086111.0861 0.03990.0399 2.44542.4454 0.00050.0005
Figure PCTKR2022014657-appb-img-000073
Figure PCTKR2022014657-appb-img-000073
-48.1593-48.1593 0.47100.4710 -1.9984-1.9984 0.00160.0016
Figure PCTKR2022014657-appb-img-000074
Figure PCTKR2022014657-appb-img-000074
0.85870.8587 0.86130.8613
SEE(
Figure PCTKR2022014657-appb-img-000075
)
SEE(
Figure PCTKR2022014657-appb-img-000075
)
0.07960.0796 0.11410.1141
<저장 온도에 따른 저장 기간 중 전기전도도 신선도 지수(EF)와 pH 변화의 상관관계><Correlation between electrical conductivity freshness index (EF) and pH change during storage period according to storage temperature>
도 6은 본 발명의 실시 예에 따라 산출된 전기전도도 신선도 지수(EF)의 다양한 활용도를 나타낸다.6 shows various uses of the electrical conductivity freshness index (EF) calculated according to an embodiment of the present invention.
도 6을 참조하면, 전기전도도 측정을 통하여 식품의 유통 및 보관 과정 중 신선도를 보다 빠르고 간편하게 평가할 수 있음을 나타낸다.Referring to FIG. 6 , it is shown that freshness can be evaluated more quickly and conveniently during distribution and storage of food through electrical conductivity measurement.
또한 이러한 방법의 경우 소프트웨어로 구현이 가능하며, 본 발명은 상술한 방법을 프로그램으로 구현되는 컴퓨터로 판독 가능한 기록매체를 제공한다.In addition, this method can be implemented in software, and the present invention provides a computer-readable recording medium in which the above-described method is implemented as a program.
이상에서 대표적인 실시예를 통하여 본 발명을 상세하게 설명하였으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리 범위는 설명한 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태에 의하여 정해져야 한다.Although the present invention has been described in detail through representative embodiments, those skilled in the art will understand that various modifications are possible to the above-described embodiments without departing from the scope of the present invention. will be. Therefore, the scope of the present invention should not be limited to the described embodiments and should not be defined, and should be defined by all changes or modifications derived from the claims and equivalent concepts as well as the claims to be described later.

Claims (8)

  1. 보관되는 온도에 따라 변화되는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법에 있어서,In the rapid line measurement method of food through the measurement of electrical conductivity that changes according to the temperature at which it is stored,
    전류발생기로부터 소정 범위의 주파수를 갖는 교류 전류를 상기 식품이 보관된 전기전도도 용기의 양 측면에 접촉하여 구성된 전극으로 인가하여 전기전도도(
    Figure PCTKR2022014657-appb-img-000076
    )를 측정하는 단계;
    Electrical conductivity (
    Figure PCTKR2022014657-appb-img-000076
    ) measuring;
    상기 전기전도도(
    Figure PCTKR2022014657-appb-img-000077
    )를 이용하여 상기 식품의 신선도를 나타내는 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하는 단계; 및
    The electrical conductivity (
    Figure PCTKR2022014657-appb-img-000077
    Calculating an Electrical Conductivity Freshness (EF) indicating the freshness of the food using ); and
    상기 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)와 상기 식품의 신선도와 관련된 pH, 색도, 단백질 변성, 지방산패도, 물성 또는 미생물 오염도 중 적어도 하나 이상의 선도지표와의 상관관계를 제어부에서 회귀방정식으로 산출하는 단계를 포함하는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법.The control unit calculates the correlation between the electrical conductivity freshness (EF) and at least one or more leading indicators of pH, color, protein denaturation, fatty acid denaturation, physical properties or microbial contamination related to the freshness of the food by a regression equation A method for rapidly measuring food products through electrical conductivity measurement comprising the step of doing.
  2. 제 1 항에 있어서,According to claim 1,
    상기 전기전도도 신선도 지수(EF)는,The electrical conductivity freshness index (EF) is,
    아래 수학식1로 측정되는 것을 특징으로 하는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법. A method for rapidly measuring food by measuring electrical conductivity, characterized in that measured by Equation 1 below.
    [수학식 1][Equation 1]
    Figure PCTKR2022014657-appb-img-000078
    Figure PCTKR2022014657-appb-img-000078
    (여기서,
    Figure PCTKR2022014657-appb-img-000079
    :전기전도도 신선도 지수(Electrical conductivity Freshness,
    Figure PCTKR2022014657-appb-img-000080
    : 식품의 실시간 전기전도도,
    Figure PCTKR2022014657-appb-img-000081
    : 신선 식품의 전기전도도,
    Figure PCTKR2022014657-appb-img-000082
    :부패 식품의 전기전도도)
    (here,
    Figure PCTKR2022014657-appb-img-000079
    : Electrical conductivity freshness index (Electrical conductivity Freshness,
    Figure PCTKR2022014657-appb-img-000080
    : real-time electrical conductivity of food,
    Figure PCTKR2022014657-appb-img-000081
    : Electrical conductivity of fresh food,
    Figure PCTKR2022014657-appb-img-000082
    : Electrical conductivity of spoiled food)
  3. 제 1 항에 있어서,According to claim 1,
    상기 회귀방정식으로 산출하는 단계는,The step of calculating with the regression equation,
    상기 온도에서 상기 전기전도도 신선도 지수(EF)와 상기 선도지표와의 관계를 1차 또는 2차 회귀방정식으로 설정하는 단계를 더 포함하는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법.A method for quickly measuring food through electrical conductivity measurement, further comprising setting the relationship between the electrical conductivity freshness index (EF) and the freshness index at the temperature as a first or second order regression equation.
  4. 제 3 항에 있어서,According to claim 3,
    상기 2차 회귀방정식은,The second-order regression equation is,
    아래 [수학식 2]로 설정되는 것을 특징으로 하는 전기전도도 측정을 통한 식품의 신속 선도 측정 방법.A method for rapidly measuring food through electrical conductivity measurement, characterized in that set by [Equation 2] below.
    [수학식 2][Equation 2]
    Figure PCTKR2022014657-appb-img-000083
    Figure PCTKR2022014657-appb-img-000083
    (여기서,
    Figure PCTKR2022014657-appb-img-000084
    ,
    Figure PCTKR2022014657-appb-img-000085
    ,
    Figure PCTKR2022014657-appb-img-000086
    는 상관계수,
    Figure PCTKR2022014657-appb-img-000087
    :전기전도도 신선도 지수,
    Figure PCTKR2022014657-appb-img-000088
    :오차보정계수)
    (here,
    Figure PCTKR2022014657-appb-img-000084
    ,
    Figure PCTKR2022014657-appb-img-000085
    ,
    Figure PCTKR2022014657-appb-img-000086
    is the correlation coefficient,
    Figure PCTKR2022014657-appb-img-000087
    : Electrical conductivity freshness index,
    Figure PCTKR2022014657-appb-img-000088
    : error correction factor)
  5. 제 1 항 내지 제 4 항 중 어느 한 항의 방법을 프로그램으로 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체.A computer-readable recording medium on which a program for implementing the method of any one of claims 1 to 4 as a program is recorded.
  6. 보관되는 온도에 따라 변화되는 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템에 있어서,In the rapid lead measurement system of food through the measurement of electrical conductivity that changes according to the storage temperature,
    상기 식품에 소정 범위의 주파수를 갖는 교류 전류를 인가하는 전류발생기;a current generator for applying alternating current having a frequency within a predetermined range to the food;
    상기 식품의 전기전도도를 측정하기 위해 상기 교류 전류를 상기 식품이 보관된 전기전도도 용기에 인가하기 위해 상기 전기전도도 용기의 양 측면에 접촉하여 구성된 전극; 및electrodes configured to contact both sides of the electrical conductivity container in order to apply the alternating current to the electrical conductivity container in which the food is stored in order to measure the electrical conductivity of the food; and
    상기 온도에서 실시간 측정된 전기전도도(
    Figure PCTKR2022014657-appb-img-000089
    )로부터 상기 식품의 신선도를 나타내는 전기전도도 신선도 지수(EF: Electrical conductivity Freshness)를 산출하고 상기 식품의 신선도와 관련된 pH, 색도, 단백질 변성, 지방산패도, 물성 또는 미생물 오염도 중 적어도 하나 이상의 선도지표와의 상관관계를 회귀방정식으로 산출하는 제어부를 포함하는 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템.
    Electrical conductivity measured in real time at the temperature (
    Figure PCTKR2022014657-appb-img-000089
    ) to calculate the electrical conductivity freshness (EF) representing the freshness of the food, and to calculate the freshness of the food, pH, color, protein denaturation, fatty acid denaturation, physical properties or microbial contamination of at least one or more leading indicators A rapid leading measurement system for food through electrical conductivity measurement including a control unit that calculates correlation with a regression equation.
  7. 제 6 항에 있어서,According to claim 6,
    상기 제어부는,The control unit,
    상기 전기전도도 신선지수(EF)를 아래 수학식1로 측정되는 것을 특징으로 하는 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템.A rapid leading measurement system for food through electrical conductivity measurement, characterized in that the electrical conductivity freshness index (EF) is measured by Equation 1 below.
    [수학식 1][Equation 1]
    Figure PCTKR2022014657-appb-img-000090
    Figure PCTKR2022014657-appb-img-000090
    (여기서,
    Figure PCTKR2022014657-appb-img-000091
    :전기전도도 신선도 지수(Electrical conductivity Freshness,
    Figure PCTKR2022014657-appb-img-000092
    : 식품의 실시간 전기전도도,
    Figure PCTKR2022014657-appb-img-000093
    : 신선 식품의 전기전도도,
    Figure PCTKR2022014657-appb-img-000094
    :부패 식품의 전기전도도)
    (here,
    Figure PCTKR2022014657-appb-img-000091
    : Electrical conductivity freshness index (Electrical conductivity Freshness,
    Figure PCTKR2022014657-appb-img-000092
    : real-time electrical conductivity of food,
    Figure PCTKR2022014657-appb-img-000093
    : Electrical conductivity of fresh food,
    Figure PCTKR2022014657-appb-img-000094
    : Electrical conductivity of spoiled food)
  8. 제 6 항에 있어서,According to claim 6,
    상기 제어부는,The control unit,
    상기 온도에서 상기 전기전도도 신선지수(EF)와 상기 선도지표와의 관계를 1차 또는 2차 회귀방정식으로 설정하며,At the temperature, the relationship between the electrical conductivity freshness index (EF) and the leading index is set as a first or second order regression equation,
    상기 2차 회귀방정식은,The second-order regression equation is,
    아래 [수학식 2]로 설정되는 것을 특징으로 하는 전기전도도 측정을 통한 식품의 신속 선도 측정 시스템.A rapid leading measurement system for food through electrical conductivity measurement, characterized in that set by [Equation 2] below.
    [수학식 2][Equation 2]
    Figure PCTKR2022014657-appb-img-000095
    Figure PCTKR2022014657-appb-img-000095
    (여기서,
    Figure PCTKR2022014657-appb-img-000096
    ,
    Figure PCTKR2022014657-appb-img-000097
    ,
    Figure PCTKR2022014657-appb-img-000098
    는 상관계수,
    Figure PCTKR2022014657-appb-img-000099
    :전기전도도 신선도 지수,
    Figure PCTKR2022014657-appb-img-000100
    :오차보정계수)
    (here,
    Figure PCTKR2022014657-appb-img-000096
    ,
    Figure PCTKR2022014657-appb-img-000097
    ,
    Figure PCTKR2022014657-appb-img-000098
    is the correlation coefficient,
    Figure PCTKR2022014657-appb-img-000099
    : Electrical conductivity freshness index,
    Figure PCTKR2022014657-appb-img-000100
    : error correction factor)
PCT/KR2022/014657 2021-12-06 2022-09-29 System and method for rapidly measuring food freshness through electrical conductivity measurement WO2023106580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0172745 2021-12-06
KR1020210172745A KR102640473B1 (en) 2021-12-06 2021-12-06 System and method for rapid evaluation of food freshness using electrical conductivity measurement

Publications (1)

Publication Number Publication Date
WO2023106580A1 true WO2023106580A1 (en) 2023-06-15

Family

ID=86730547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014657 WO2023106580A1 (en) 2021-12-06 2022-09-29 System and method for rapidly measuring food freshness through electrical conductivity measurement

Country Status (2)

Country Link
KR (1) KR102640473B1 (en)
WO (1) WO2023106580A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270354A (en) * 1994-03-29 1995-10-20 Matsushita Refrig Co Ltd Freshness detector for shellfishes or the like
KR20100003798A (en) * 2008-07-02 2010-01-12 삼성전자주식회사 Apparatus and method for storing materials
KR20110009367A (en) * 2009-07-22 2011-01-28 경 연 김 Apparatus and metohd of erosion measurement
JP2018159591A (en) * 2017-03-22 2018-10-11 大和製衡株式会社 Quality state measurement device
US20210223224A1 (en) * 2020-01-22 2021-07-22 Texas State University Meat quality analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596972B1 (en) 2002-06-10 2006-07-05 경북대학교 산학협력단 Intelligent food decomposition detecting system and the way how to detect based on it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270354A (en) * 1994-03-29 1995-10-20 Matsushita Refrig Co Ltd Freshness detector for shellfishes or the like
KR20100003798A (en) * 2008-07-02 2010-01-12 삼성전자주식회사 Apparatus and method for storing materials
KR20110009367A (en) * 2009-07-22 2011-01-28 경 연 김 Apparatus and metohd of erosion measurement
JP2018159591A (en) * 2017-03-22 2018-10-11 大和製衡株式会社 Quality state measurement device
US20210223224A1 (en) * 2020-01-22 2021-07-22 Texas State University Meat quality analyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AH HYUN JUNG, JEONG HYEON HWANG, SEUNG SOO YOO, CHANG HEON LEE, SUNG HEE PARK: "P-48 Rapid freshness estimation of Makgeolli using in situ electrical conductivity measurement", 2021 KOREAN SOCIETY FOR FOOD ENGINEERING FALL REGULAR MEETING AND CONFERENCE; OCTOBER 14-15, 2021, KOREAN SOCIETY FOR FOOD ENGINEERING, KOREA, 14 October 2021 (2021-10-14) - 15 October 2021 (2021-10-15), Korea, pages 196 - 196, XP009546989 *

Also Published As

Publication number Publication date
KR102640473B1 (en) 2024-02-27
KR20230084732A (en) 2023-06-13

Similar Documents

Publication Publication Date Title
Berg Individual differences in respiratory gas exchange during recovery from moderate exercise
WO2023106580A1 (en) System and method for rapidly measuring food freshness through electrical conductivity measurement
EP1094749A1 (en) Apparatus for evaluation of skin impedance variations
WO2007093861A2 (en) Method and apparatus for evaluating the level of superficial pollution of a medium/high voltage outdoor insulator
Felice et al. Medium and interface components in impedance microbiology
EP0621810B1 (en) Disinfection of containers
CN115931035A (en) Multi-epitope digital hygrothermograph automatic calibration system and method
JPH11201857A (en) Method for determining with high accuracy leak rate from case of electric apparatus
US5591599A (en) Method for detecting antimicrobial compounds
Garvey et al. A year in the life of a contaminated heater-cooler unit with Mycobacterium chimaera?
CN111679699A (en) Temperature control method of constant-temperature metal bath
CN108562622B (en) Method for rapidly detecting total number of colonies of fresh goat milk based on dielectric characteristic technology
Firstenberg-Eden Collaborative study of the impedance method for examining raw milk samples
CN114487681B (en) High-frequency transformer abnormal heat generation diagnosis system based on Internet of things
Badnjevic et al. A novel method for conformity assessment testing of infusion and perfusion pumps for post-market surveillance purposes
Grissett Exposure of primates for one year to electric and magnetic fields associated with ELF communications systems
Badnjevic et al. A novel method for conformity assessment testing of electrocardiographs for post-market surveillance purposes
Fordham et al. An evaluation of milk temperature measurement for detecting oestrus in dairy cattle. II variations in body and milk temperature associated with oestrus
CA2073672A1 (en) Method and apparatus for incubating eggs
Liu et al. Evaluation Method for Insulation State of Cable Intermediate Joint based on Variable Weight and Set Pair Analysis
CN113109676B (en) Electroceramic insulation electric shock test system based on big data
CN206945848U (en) A kind of intermittent life testing equipment with junction temperature test
CN110243479A (en) A kind of method and system improving the online fault detection accuracy rate of overhead line structures
Badnjevic et al. A novel method for conformity assessment testing of patient monitors for post-market surveillance purposes
CN215180713U (en) Online intelligent detection data comprehensive processing device for marine three-phase asynchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904414

Country of ref document: EP

Kind code of ref document: A1