WO2023106269A1 - Glass ceramic composition - Google Patents

Glass ceramic composition Download PDF

Info

Publication number
WO2023106269A1
WO2023106269A1 PCT/JP2022/044792 JP2022044792W WO2023106269A1 WO 2023106269 A1 WO2023106269 A1 WO 2023106269A1 JP 2022044792 W JP2022044792 W JP 2022044792W WO 2023106269 A1 WO2023106269 A1 WO 2023106269A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ceramic composition
less
reflectance
mass
Prior art date
Application number
PCT/JP2022/044792
Other languages
French (fr)
Japanese (ja)
Inventor
まりな 熊谷
広修 熊岡
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023106269A1 publication Critical patent/WO2023106269A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers

Definitions

  • the present invention relates to glass-ceramic compositions.
  • LEDs light emitting diodes
  • LEDs light emitting diodes
  • the LED chip is placed on a flat substrate such as aluminum nitride, and a resin-based member is used. A sealed configuration is often used.
  • GCHP registered trademark
  • Glass Ceramics Hybrid Package Glass Ceramics Hybrid Package
  • the light reflected by the cavity may affect the emitted light, causing stray light.
  • the light emitted from the light emitting element 3 when the light emitted from the light emitting element 3 is the light h ⁇ perpendicular to the main surface of the substrate 1, the light h ⁇ should be transmitted without being attenuated. is desired.
  • the light emitted from the light emitting element 3 is light h ⁇ ' that is not perpendicular to the main surface of the substrate 1, it is desirable to reduce the reflectance of the substrate 1 to absorb such light h ⁇ '. .
  • the light source when looking at the light source from the headlights of a car, the light source is very dazzling (glare) and can cause discomfort to the eyes. For this reason, for example, in a low-beam headlight, while ensuring a certain amount of light emitted toward the front of the light source, reflected light emitted toward directions other than the front of the light source is suppressed, and the light beam direction It is required to obtain light with little variation and high directivity. Such characteristics are required not only for automobile headlights but also for projectors and the like.
  • Patent Document 1 a substrate body made of a sintered body of a glass ceramic composition containing a glass powder and a ceramic filler and having a light emitting element mounting portion, and a region surrounding the light emitting element mounting portion of the substrate body and a light absorbing layer for absorbing light emitted from the light emitting element, wherein the light absorbing layer is made of a glass powder sintered body containing a light absorbing material.
  • a substrate is disclosed. As a result, the amount of reflected light on the substrate surface is reduced, and the directivity of the obtained light can be improved.
  • the strength of the obtained glass-ceramic composition decreases when trying to lower the reflectance of the fired glass-ceramic composition by adding a pigment to the glass-ceramic.
  • an object of the present invention is to provide a glass-ceramic composition that maintains a low reflectance while suppressing a decrease in strength.
  • the present inventor newly found that voids are generated by the addition of inorganic pigments and heat treatment, and that such voids are a factor in reducing the strength of the glass-ceramic composition.
  • the reflectance is 32% or less
  • the reflectance at a wavelength of 1550 nm is 25% or less
  • the porosity is 10% or less
  • the inorganic pigment is a Cr-based oxide, an Fe-based oxide, a Co-based oxide
  • the content of Al 2 O 3 in the glass-ceramic composition, which contains a composite oxide containing at least one selected from the group consisting of Mn-based oxides and Cu-based oxides, is expressed in mass %
  • a glass-ceramic composition, wherein the residual carbon content of the glass-ceramic composition is 20 mass ppm or less, which is greater than the content of the glass matrix
  • the glass matrix is made of borosilicate glass, and contains 35 to 50% by mass of the borosilicate glass, 45 to 60% by mass of the Al 2 O 3 , and 3 to 10% by mass of the inorganic pigment.
  • the glass-ceramic composition according to the present invention it is possible to suppress a decrease in strength while maintaining a low reflectance. Therefore, when the glass-ceramic composition is used as a substrate for mounting a light-emitting diode element or a semiconductor laser element, the directivity of the obtained light can be enhanced by suppressing stray light while satisfying the required strength. .
  • FIG. 1 is a schematic cross-sectional view of a common substrate on which light emitting elements are mounted.
  • FIG. 2 is a schematic cross-sectional view showing an example of the structure of a hermetically sealed package using the glass-ceramic composition according to this embodiment.
  • the glass-ceramic composition according to this embodiment is a fired body containing a glass matrix, Al 2 O 3 (alumina) and an inorganic pigment.
  • the glass-ceramic composition comprises a glass-ceramic in which Al 2 O 3 is dispersed as a filler component in a glass matrix, and an inorganic pigment is further included.
  • the optical properties of the glass-ceramic composition are such that the average reflectance in the wavelength range of 800 to 880 nm is 30% or less, the reflectance in the entire wavelength range of 900 to 910 nm is 32% or less, and the reflection at a wavelength of 1550 nm. rate is 25% or less.
  • Inorganic pigments include composite oxides containing at least one selected from the group consisting of Cr-based oxides, Fe-based oxides, Co-based oxides, Mn-based oxides, and Cu-based oxides. Inclusion of such an inorganic pigment can reduce the reflectance of the glass-ceramic composition.
  • the porosity of the glass-ceramic composition is 10% or less. This suppresses a decrease in the strength of the glass-ceramic composition. Moreover, the porosity can be reduced by lowering the residual carbon content of the glass-ceramic composition.
  • the residual carbon content in the glass-ceramic composition of the present embodiment is 20 mass ppm or less.
  • the wavelength of 800 to 880 nm is the IR wavelength region, and the average reflectance of the glass-ceramic composition in this region is 30% or less, preferably 5 to 30%, more preferably 5 to 27%. , 5 to 25% is more preferred.
  • the average reflectance is preferably 27% or less, more preferably 25% or less.
  • the lower limit of the average reflectance is not particularly limited, and the lower one is preferable, but it is usually 5% or more.
  • a wavelength of 900 to 910 nm is a wavelength range for semiconductor laser applications, and the reflectance of the glass-ceramic composition in the entire wavelength range is 32% or less, and the reflectance is preferably 5 to 32%, more preferably 5 to 30%. is more preferred, and 5 to 27% is even more preferred.
  • the reflectance is preferably 30% or less, more preferably 27% or less.
  • the lower limit of the reflectance is not particularly limited, and the lower one is preferable, but it is usually 5% or more.
  • a wavelength of 1550 nm is a wavelength range for semiconductor laser applications, and the reflectance of the glass-ceramic composition at this wavelength is 25% or less, preferably 5 to 25%, more preferably 2 to 22%, 2 to 20% is more preferred.
  • the reflectance is preferably 22% or less, more preferably 20% or less.
  • the lower limit of the reflectance is not particularly limited, and the lower one is preferable, but it is usually 5% or more.
  • the glass ceramic composition preferably has a reflectance of 5 to 25%, more preferably 5 to 20%, in the entire wavelength range of 780 to 800 nm.
  • the reflectance is preferably 25% or less, more preferably 20% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
  • the glass ceramic composition preferably has a reflectance of 5 to 25%, more preferably 5 to 22%, in the entire wavelength range of 800 to 820 nm.
  • the reflectance is preferably 25% or less, more preferably 22% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
  • the glass ceramic composition preferably has a reflectance of 5 to 30%, more preferably 5 to 25%, in the entire wavelength range of 820 to 840 nm.
  • the reflectance is preferably 30% or less, more preferably 25% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
  • the glass ceramic composition preferably has a reflectance of 5 to 30%, more preferably 5 to 25%, in the entire wavelength range of 840 to 860 nm.
  • the reflectance is preferably 30% or less, more preferably 25% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
  • the glass ceramic composition preferably has a reflectance of 5 to 32%, more preferably 5 to 25%, in the entire wavelength range of 860 to 880 nm.
  • the reflectance is preferably 32% or less, more preferably 25% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
  • the glass ceramic composition preferably has a reflectance of 5 to 30%, more preferably 5 to 27%, in the entire wavelength range of 800 to 880 nm.
  • the reflectance is preferably 30% or less, more preferably 27% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
  • the content of the glass matrix in the glass-ceramic composition, the content of Al 2 O 3 as a filler component in the glass-ceramic composition, and the content of the inorganic pigment in the glass-ceramic composition were all measured by cross-sectional scanning of the glass-ceramic composition. It is a value measured from a type electron microscope (SEM) image. Specifically, a cross-sectional SEM image taken at a magnification of 2000 times is binarized using image analysis software (ImageJ, manufactured by the National Institutes of Health, USA), and the glass matrix and Al 2 O 3 particles are obtained. , and the cross-sectional area of each of the inorganic pigments, and the volume % is obtained from the ratio to the sum of these, and then calculated as mass % by conversion of specific gravity.
  • SEM type electron microscope
  • the porosity of the glass-ceramic composition is 10% or less, preferably 1-10%, more preferably 1-5%, even more preferably 1-3%.
  • the porosity is preferably 5% or less, more preferably 3% or less.
  • the porosity is preferably 1% or more.
  • the porosity of the glass-ceramic composition is a value measured from a cross-sectional scanning electron microscope (SEM) image of the glass-ceramic composition.
  • a cross-sectional SEM image taken at a magnification of 500 times is subjected to binarization processing using image analysis software (ImageJ, manufactured by the National Institutes of Health, USA), and the area of the void is the total area. It is a value calculated by dividing
  • Porosity can be reduced by reducing the residual carbon content of the glass-ceramic composition.
  • a residual carbon content is thought to be derived from, for example, the carbon content contained in the inorganic pigment and the resin and solvent contained in the green sheet, which will be described later. Therefore, it is preferable to use an inorganic pigment with a low carbon content.
  • the residual carbon content in the glass-ceramic composition is 20 mass ppm or less, preferably 5 to 20 mass ppm, more preferably 5 to 18 mass ppm, even more preferably 5 to 16 mass ppm.
  • the residual carbon content is preferably 18 mass ppm or less, more preferably 16 mass ppm or less.
  • the lower limit of the residual carbon content is not particularly limited, it is preferably 5 ppm by mass or more from the viewpoint of the cost of cleaning the raw material pigment.
  • the XY shrinkage during firing means the degree of sintering of the green sheet before and after firing. Therefore, the XY shrinkage rate is preferably 14 to 17%, more preferably 14.5 to 16.5%, even more preferably 15 to 16%. Here, the XY shrinkage rate is preferably 14% or more, more preferably 14.5% or more, and even more preferably 15% or more. From the viewpoint of moldability, the XY shrinkage rate is preferably 17% or less, more preferably 16.5% or less, and even more preferably 16% or less. As the XY shrinkage, values obtained by measuring the XY dimensions of the glass-ceramic composition before and after firing using a vernier caliper are used.
  • the average density of the glass-ceramic composition is preferably 2.8 to 3.8, more preferably 2.9 to 3.7, even more preferably 3.0 to 3.6.
  • the average density is preferably 2.8 or higher, more preferably 2.9 or higher, and even more preferably 3.0 or higher.
  • the average density is preferably 3.8 or less, more preferably 3.7 or less, and even more preferably 3.6 or less.
  • a value of apparent specific gravity calculated using an electronic hydrometer is used.
  • the average strength of the glass-ceramic composition is preferably 250-400 MPa, more preferably 290-390 MPa, even more preferably 300-380 MPa.
  • the average strength is preferably 250 MPa or higher, more preferably 290 MPa or higher, and even more preferably 300 MPa or higher.
  • the average strength is preferably 400 MPa or less, more preferably 390 MPa or less, and even more preferably 380 MPa or less.
  • Autograph manufactured by Shimadzu Corporation, Autograph AGS-X
  • the inorganic pigment includes a composite oxide containing at least one selected from the group consisting of Cr-based oxides, Fe-based oxides, Co-based oxides, Mn-based oxides, and Cu-based oxides. Inclusion of such an inorganic pigment can reduce the reflectance of the glass-ceramic composition. In addition, from the viewpoint of achieving a lower reflectance, the inorganic pigment preferably exhibits a blackish or brownish hue, and more preferably exhibits a blackish hue.
  • a composite oxide of the above oxides is used as the inorganic pigment, it is easy to effectively obtain a pigment having a blackish or brownish tint.
  • a pigment having a black tint it preferably contains Mn or Fe.
  • Mn or Fe when a pigment having a blackish or brownish tint is used, it is preferable to contain Co, Cu, or Cr instead of Mn or Fe, or in addition to Mn or Fe.
  • other elements may be contained within a range that does not impair the effects of the present invention. Other elements include, for example, Zn, Ti, Mg, Ni, V, and the like.
  • the content of the residual carbon in the oxide which is an inorganic pigment, may vary depending on the composition of the oxide and the manufacturing method. For example, when there is a step of wet pulverization as a refining process in the manufacturing process, the residual carbon content tends to be low. Therefore, even if the inorganic pigments have the same composition, the inorganic pigments that have undergone wet pulverization are preferable.
  • the inorganic pigment has a residual carbon content of preferably 50 mass ppm or less, more preferably 40 mass ppm or less, even more preferably 30 mass ppm or less after heat treatment at 900°C for 12 hours, and the lower the better.
  • salts contained in the above oxides, which are inorganic pigments, in the order of impurities can also affect the porosity of the glass-ceramic composition.
  • NOx when nitrates are included as residual salts, NOx may be generated, and when sulfates are included as residual salts, SOx may be generated. Due to the generated gases such as NOx and SOx, voids were formed during the production of the glass-ceramic composition, and there was a tendency for the porosity of the glass-ceramic composition to increase.
  • the content of each of nitrate and sulfate in the inorganic pigment is preferably 300 mass ppm or less, more preferably 200 mass ppm or less, and even more preferably 100 mass ppm or less.
  • the total content of nitrates and sulfates is preferably 500 mass ppm or less, more preferably 400 mass ppm or less, and even more preferably 200 mass ppm or less.
  • the contents of the nitrates and sulfates can be obtained by determining the elution amount ( ⁇ g/g) of NO 3 - and SO 4 2- using anion chromatography and converting the values into parts per million. is the value obtained.
  • the extraction solvent in ICP emission spectrometry may be either pure water or a weak acid such as nitric acid diluted to pH 2.
  • the content of K and Na is preferably 200 ppm by mass or less, more preferably 100 ppm by mass or less, and even more preferably 80 ppm by mass or less.
  • the total content thereof is preferably 400 mass ppm or less, more preferably 300 mass ppm or less, and even more preferably 200 mass ppm or less.
  • the total content of inorganic pigments in the glass-ceramic composition is preferably 3-10% by mass, more preferably 4-10% by mass, and even more preferably 6-10% by mass.
  • the total content of inorganic pigments is preferably 3% by mass or more, more preferably 4% by mass or more, and even more preferably 6% by mass or more.
  • the total content of inorganic pigments is preferably 10% by mass or less.
  • the composition of the glass matrix is not particularly limited, it is preferably made of amorphous glass containing no crystal phase from the viewpoint of suppressing warping of the substrate. Among them, for example, it is more preferable from the viewpoint of acid resistance to use borosilicate-based glass with a low content of Li 2 O, Na 2 O and K 2 O, which are alkali components.
  • the composition of the borosilicate glass is not particularly limited, it may contain, for example, RO, R′ 2 O 3 , ZrO 2 and the like in addition to SiO 2 and B 2 O 3 .
  • R is at least one selected from the group consisting of Zn, Ba, Sr, Mg and Ca.
  • R' is at least one selected from the group consisting of Al, Fe, Gd and La.
  • Al 2 O 3 when R′ is Al is clearly distinguished from aluminum oxide as a filler component constituting the glass-ceramic composition. That is, the Al 2 O 3 content as the glass composition is excluded from the content of the crystalline powder containing aluminum oxide as the filler component.
  • Borosilicate glass preferably contains Al 2 O 3 and CaO in addition to SiO 2 and B 2 O 3 . More specifically, for example, it contains 45 to 65% by mass of SiO 2 , 5 to 20% by mass of B 2 O 3 , 5 to 25% by mass of Al 2 O 3 , 10 to 35% by mass of CaO, and Li A glass that does not contain 2 O, Na 2 O and K 2 O or has a total content of Li 2 O, Na 2 O and K 2 O of less than 3.5 mass % is preferably used.
  • Boron oxide (B 2 O 3 ) is a component that improves the sinterability of glass, and its content in the glass matrix is preferably 5 to 20% by mass, more preferably 6 to 15% by mass, and more preferably 7 to 11% by mass. more preferred.
  • the content of boron oxide is preferably 5% by mass or more, more preferably 6% by mass or more, and even more preferably 7% by mass or more.
  • the boron oxide content is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 11% by mass or less.
  • SiO2 is a constituent of glass.
  • the component represented by RO containing CaO is a component that lowers the melting temperature of the glass and improves the sinterability.
  • crystals typified by anorthite SiO 2 —Al 2 O 3 —CaO
  • the component represented by R′ 2 O 3 including Al 2 O 3 is a component that has an effect of stabilizing the glass, suppressing crystallization, and improving the chemical durability of the glass. On the other hand, if it is added excessively, crystals typified by anorthite may precipitate during firing, making the sintered body more likely to warp, and the acid resistance may not be sufficient.
  • the component represented by ZrO2 is a component that improves the chemical durability of glass. On the other hand, if it is added excessively, the sinterability may deteriorate.
  • the content of the glass matrix in the glass-ceramic composition is preferably 30-50% by mass, more preferably 33-45% by mass, even more preferably 35-42% by mass. From the viewpoint of obtaining a dense sintered body, the content of the glass matrix is preferably 30% by mass or more, more preferably 33% by mass or more, and even more preferably 35% by mass or more. From the viewpoint of obtaining a sintered body with high strength, the content of the glass matrix is preferably 50% by mass or less, more preferably 45% by mass or less, and even more preferably 42% by mass or less. Moreover, when the glass matrix is made of borosilicate glass, the content of the borosilicate glass in the glass-ceramic composition is preferably within the above range.
  • the glass softening point Ts of the glass matrix is preferably 700-900°C, more preferably 750-870°C, even more preferably 800-850°C.
  • the glass softening point Ts of the glass matrix is preferably 900° C. or lower, more preferably 870° C. or lower, and even more preferably 850° C. or lower, because it is co-fired with Ag.
  • the glass softening point Ts of the glass matrix is preferably 700° C. or higher, more preferably 750° C. or higher, and even more preferably 800° C. or higher, from the viewpoint of suppressing an increase in residual carbon content.
  • the glass softening point Ts of the glass matrix is a value determined by the fourth inflection point of the DTA chart of the glass alone.
  • the glass transition point Tg of the glass matrix is preferably 700°C or lower, more preferably 680°C or lower, and even more preferably 650°C or lower so as not to inhibit thermal decomposition of the resin component.
  • the glass transition point Tg of the glass matrix is a value determined by the first inflection point of the DTA chart of the glass alone.
  • Al 2 O 3 in the glass-ceramic composition is included as a filler component.
  • the filler component in addition to Al 2 O 3 , is at least one selected from the group consisting of zirconium oxide, titanium oxide, magnesium oxide, silicon dioxide, zirconium phosphate, ⁇ -eucryptite (LiAlSiO 4 ) and mixtures thereof. It may further contain a crystalline powder containing.
  • Al 2 O 3 includes ⁇ -alumina type, ⁇ -alumina type, ⁇ -alumina type, ⁇ -alumina type, etc., depending on the type of crystal phase. preferable.
  • the content of Al 2 O 3 as a filler component in the glass-ceramic composition is preferably 40 to 60% by mass, more preferably 42 to 59% by mass, even more preferably 45 to 58% by mass.
  • the content of Al 2 O 3 is preferably 40% by mass or more, more preferably 42% by mass or more, and even more preferably 45% by mass or more.
  • the content of Al 2 O 3 is preferably 60% by mass or less, more preferably 59% by mass or less, and even more preferably 58% by mass or less.
  • the total content of the other filler components is preferably 3% by mass or less from the viewpoint of obtaining good sinterability, and 2% by mass or less. more preferred.
  • the content of Al 2 O 3 is higher than the content of the glass matrix. This is preferable because a dense sintered body having high strength can be obtained.
  • the ratio of the content of Al 2 O 3 to the content of the glass matrix is preferably 58:36 to 47.5:46.5, more preferably 54:42 to 47, in terms of Al 2 O 3 :glass matrix. .5:46.5 is more preferred, and 52:42 to 47.5:46.5 are even more preferred.
  • the shape of the Al 2 O 3 crystal powder which is the filler component, is not particularly limited and may be spherical, flat, scaly, fibrous, or the like. Similarly, when other filler components are included, the shape of the crystalline powder of the other filler components is not particularly limited.
  • the size of the crystal powder is not particularly limited, for example, the 50% particle size (D 50 ) is preferably 0.5 to 4 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the 50% particle size is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the 50% particle size is a value measured using a laser diffraction/scattering particle size distribution analyzer.
  • the glass-ceramic composition according to this embodiment is preferably used as a substrate for mounting a light-emitting diode element or a semiconductor laser element.
  • a substrate preferably has a base portion and a frame portion from the viewpoint of hermetic sealing.
  • the base and the frame may be formed of the glass-ceramic composition, or the base and the frame may be formed of the flat glass and the glass-ceramic composition, respectively.
  • the substrate on which the light-emitting diode element or the semiconductor laser element is mounted is, for example, a backlight of a liquid crystal display, a light-emitting part in an operation button of a small information terminal, lighting for automobiles or decoration, a deep ultraviolet light LED for sterilization, etc. , a laser unit of a 3D ranging sensor, and other light sources.
  • the above-mentioned substrate is equipped with a system that can detect cracks in the glass because of its intended use.
  • the base has a conductive film on at least a partial region thereof
  • the frame has a metal conductor that penetrates therethrough, and that the conductive film and the metal conductor are electrically connected.
  • the metal conductor is preferably silver from the viewpoint of being able to be fired simultaneously with the glass-ceramic composition and having high heat dissipation.
  • the glass-ceramic composition according to the present embodiment has a low porosity of 10% or less and is excellent in strength, so it is also suitable as a hermetically sealed package.
  • other than optical elements such as light emitting diode elements and semiconductor laser elements, it may be used as a package that houses electronic components that require hermetic sealing by sealing them with air, nitrogen, or the like.
  • an electronic component that requires hermetic sealing is an all-solid-state battery.
  • all-solid-state batteries two types of electrolytes, an oxide-based solid electrolyte and a sulfide-based solid electrolyte, are mainly used, and the latter in particular is known to react with moisture to generate toxic gas.
  • high water resistance is required, and a package that can be hermetically sealed may be required.
  • FIG. 2 shows a schematic cross-sectional view as an example of the structure of a hermetically sealed package using the glass-ceramic composition according to this embodiment.
  • the hermetically sealed package 100 includes at least a substrate 10 made of the glass-ceramic composition according to the present embodiment, a lid portion 20, and an electronic component 30. Electrodes 12 and internal wirings 13 are provided on the surface and inside of the substrate 10 to enable electrical connection with the electronic component 30 .
  • the material of the lid portion 20 is not particularly limited as long as it can hermetically seal the electronic component 30, and may be, for example, the glass-ceramic composition according to the present embodiment, a metal material, or a translucent material.
  • the lid portion 20 is made of a light-transmitting material, it is possible to visually determine the appearance, electrode polarity, etc. of the components housed in the airtightly sealed package 100 .
  • the method of sealing the substrate 10 and the lid portion 20 is not particularly limited as long as it can be airtightly sealed, but for example, a method using metal bonding can be used. Specifically, the first metal layer 11 and the second metal layer 21 are formed on the substrate 10 and the lid portion 20 respectively, and then these are sealed using the sealing layer 40 .
  • Examples of metals used for the first metal layer 11 and the second metal layer 21 include silver (Ag), copper (Cu), and gold (Au), and these are used alone or in combination of two or more.
  • Ag is preferable in that it can be fired simultaneously with a general glass-ceramic composition including the glass-ceramic composition according to the present embodiment.
  • a protective metal film may be provided on the outermost surface of the first metal layer 11 or the second metal layer 21 , that is, the surface facing the substrate 10 or the lid portion 20 .
  • the protective metal film include gold (Au), nickel (Ni), palladium (Pd), platinum (Pt), and the like, and these are used alone or in combination of two or more.
  • sealing layer 40 for example, a sealing metal preform or solder may be used.
  • Au, tin (Sn), antimony (Sb), Ag, Ni, Pt, or alloys of these metals may be used as the metal preform for sealing. Seam sealing may be performed when forming the sealing layer 40 .
  • a glass-ceramic composition is obtained by sintering by molding and firing a mixture of glass powder, a filler component containing Al 2 O 3 and an inorganic pigment. Specifically, there is a method of forming the above mixture into a sheet called a green sheet and firing the sheet.
  • each raw material is blended so as to obtain a desired glass composition, and the mixed raw material mixture is melted, cooled, and pulverized to obtain a glass powder.
  • the glass powder obtained by grinding becomes the glass matrix and determines the glass composition of the glass-ceramic composition.
  • the melting temperature of the raw material mixture is preferably, for example, 1200 to 1600° C. or higher, and the melting time is preferably, for example, 30 to 60 minutes.
  • Pulverization may be a dry pulverization method or a wet pulverization method. In the wet pulverization method, water, ethanol, or the like can be used as a solvent.
  • pulverizers such as roll mills, ball mills, and jet mills can be used.
  • the 50% particle diameter (D 50 ) is preferably 0.5 to 4 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the 50% particle size (D 50 ) is preferably 0.5 ⁇ m or more from the viewpoint of preventing the glass powder from agglomerating and making it difficult to handle, and from the viewpoint of preventing the time required for pulverization from becoming longer. 1 ⁇ m or more is more preferable.
  • the 50% particle size (D 50 ) is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the maximum particle size of the glass powder is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, from the viewpoints of obtaining good sinterability and preventing a decrease in reflectance due to undissolved components remaining in the sintered body.
  • the particle size can be adjusted by, if necessary, classifying after pulverization.
  • the glass powder and filler components are then mixed.
  • the filler component may contain Al 2 O 3 crystal powder, and may further contain other filler components such as cordierite powder and zirconium phosphate powder, but the total amount of the other filler components may be The content is preferably 3% by mass or less.
  • the inorganic pigment may be mixed together when the glass powder and the filler component are mixed, or may be mixed after the glass powder and the filler component are mixed.
  • an organic solvent, a plasticizer, a binder, a dispersant, and the like are blended as necessary to prepare a slurry or paste.
  • Conventionally known materials can be applied to each material to be blended.
  • organic solvents include alcohols, ketones, aromatic hydrocarbons, and the like. More specifically, toluene, methyl ethyl ketone, methanol, 2-butanol, xylene and the like can be used, and these may be used alone or in combination of two or more.
  • the plasticizer include adipic acid-based and phthalic acid-based plasticizers.
  • bis(2-ethylhexyl) adipate, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used.
  • a thermally decomposable resin etc. are mentioned as a binder. More specifically, acrylic resin, polyvinyl butyral, etc. can be used.
  • dispersants include surfactant-type dispersants. More specifically, DISPERBYK180 (trade name, manufactured by BYK-Chemie) or the like can be used.
  • a green sheet is obtained by applying the obtained slurry or paste on the film and drying it.
  • the thickness of the green sheet is not particularly limited, and can be adjusted by the thickness at the time of application, slurry concentration, and the like.
  • the obtained green sheets are laminated according to the desired height and molded appropriately. At this time, a mold or the like may be used instead of the green sheet for molding.
  • the green sheets may be produced one by one according to the desired shape, but by producing a large green sheet and punching it at multiple locations with a hole puncher, etc., it is possible to obtain a large number of substrates by connecting a plurality of substrates. may be used as a connecting substrate. By dividing this connecting substrate after firing, individual substrates made of the glass-ceramic composition can be obtained.
  • a conductive film, a metal conductor, or the like may be provided on such a substrate by a conventionally known method.
  • the glass-ceramic composition according to the present embodiment may be used as a frame to be joined to a base made of flat glass.
  • the glass-ceramic composition according to the present embodiment can be used as a light-emitting diode element or a semiconductor laser element together with a wiring conductor such as a conductive film or a metal conductor, even if it is not a ferrite-embedded glass-ceramic composition containing ferrite crystals in the green sheet. It is suitable for use as a substrate for mounting.
  • Degreasing may be performed as necessary, preferably at 400-550°C, for example.
  • the degreasing time is preferably 1 to 10 hours, for example.
  • the firing temperature varies depending on the glass composition constituting the glass matrix, but is preferably 850 to 905°C, more preferably 860 to 900°C, and even more preferably 870 to 890°C.
  • the firing temperature is preferably 850° C. or higher, more preferably 860° C. or higher, and even more preferably 870° C. or higher.
  • the temperature during firing should be adjusted from the viewpoint of preventing the metal such as silver from softening or melting during firing, which may prevent the shape of the wiring pattern or through conductor from being maintained. is preferably 905° C. or lower, more preferably 900° C. or lower, and even more preferably 890° C. or lower.
  • the baking time is preferably 10 to 60 minutes, more preferably 15 to 55 minutes, even more preferably 25 to 50 minutes.
  • the firing time is preferably 10 minutes or longer, more preferably 15 minutes or longer, and even more preferably 25 minutes or longer.
  • the baking time is preferably 60 minutes or less, more preferably 55 minutes or less, and even more preferably 50 minutes or less.
  • Examples 1 to 4 are working examples, and examples 5 to 7 are comparative examples.
  • the obtained glass powder, alumina powder (manufactured by Sumitomo Chemical Co., Ltd., trade name: ALM-41-01), and an inorganic pigment were blended in the ratio shown in Table 1 and mixed to obtain a glass-ceramic composition.
  • obtained the precursor of the product Details of the pigments are as shown in Table 2.
  • blanks in Table 1 mean that they are not blended.
  • a hole with a diameter of 0.17 mm was made in the green sheet using a hole puncher. Square holes with sides of 0.82 mm and 1.2 mm were formed using a hole puncher. These holes were filled with silver paste by screen printing. Further, a wiring pattern was printed on the green sheet by a screen printing method. These green sheets were then laminated. This was held at 550° C. for 5 hours for degreasing, and further held at 870° C. for 60 minutes for firing to obtain a glass-ceramic composition. The size of one piece of glass-ceramic composition was 3.1 ⁇ 2.6 mm.
  • Maximum reflectance, maximum reflectance in the entire wavelength range from 840 to 860 nm, maximum reflectance in the entire wavelength range from 860 to 880 nm, maximum reflectance in the entire wavelength range from 900 to 910 nm , and the reflectance at a wavelength of 1550 nm are shown in Table 3. For example, when the "maximum value of the reflectance in the entire wavelength range" is 20%, it means that "the reflectance in the entire wavelength range is 20% or less".
  • the fired glass-ceramic composition was appropriately pulverized using a mortar to obtain a powder state, and the residual carbon content of the resulting powder was measured using a carbon analyzer (EMIA-320V, manufactured by Horiba, Ltd.). .
  • Table 3 shows the results.
  • the residual carbon content after heat treatment at 900° C. for 12 hours was similarly measured using a carbon analyzer (EMIA-320V manufactured by Horiba, Ltd.).
  • Table 2 shows the results.
  • the glass-ceramic compositions of Examples 1 to 4 had a porosity of 5% or less, and high average strength was obtained.
  • the glass-ceramic composition also had very good reflectance results, which may be attributed to the low residual carbon content.
  • the inorganic pigments used were Pigment F and Pigment A and the compositions were similar, the porosity and residual carbon content in the glass-ceramic compositions were significantly different. . It was suggested that this is because Pigment F was purified by wet pulverization, whereas Pigment A was not purified.
  • the average strength of the glass-ceramic composition of Example 5 was extremely low, resulting in a failure to achieve both low reflectance and suppression of reduction in strength.
  • the inorganic pigments used were Pigment F and Pigment G.
  • Pigment F was subjected to wet pulverization as purification treatment
  • Pigment G was subjected to wet pulverization and high-temperature firing as purification treatment.
  • the average strength of the glass-ceramic composition of Example 7 was extremely low, resulting in a failure to achieve both a low reflectance and suppression of a decrease in strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention pertains to a glass ceramic composition which contains a glass matrix, Al2O3, and an inorganic pigment, wherein: the average reflectance at a wavelength of 800-880nm is 30% or less; the reflectance across the entire wavelength range of 900-910nm is 32% or less; the reflectance at a wavelength of 1,550nm is 25% or less; the porosity is 10% or less; the inorganic pigment contains a specific complex oxide; the Al2O3 content is greater than the glass matrix content; and the residual carbon content in the glass ceramic composition is 20 mass ppm or less.

Description

ガラスセラミック組成物glass ceramic composition
 本発明はガラスセラミック組成物に関する。 The present invention relates to glass-ceramic compositions.
 発光ダイオード(LED:Light Emission Diode)を使用したデバイスは、携帯電話や大型液晶テレビのバックライト、照明用途等、幅広い用途に用いられている。
 例えば、可視光を発する発光ダイオード(可視光LED)を利用した発光装置の場合、窒化アルミニウムに代表されるような平板状の基板の上にLEDチップを載せて、樹脂ベースの部材を使用して封止する構成がよく用いられている。
Devices using light emitting diodes (LEDs) are used in a wide range of applications, such as backlights for mobile phones and large liquid crystal televisions, and lighting applications.
For example, in the case of a light-emitting device that uses a light-emitting diode that emits visible light (visible light LED), the LED chip is placed on a flat substrate such as aluminum nitride, and a resin-based member is used. A sealed configuration is often used.
 かかる基板についての検討は種々なされており、例えばGCHP(登録商標)(Glass Ceramics Hybrid Package)が提案されている。GCHP(登録商標)は反射率の高いキャビティを備えることから、これを基板として用いることで、発光ダイオードの高輝度化に寄与する。 Various studies have been conducted on such substrates, and for example, GCHP (registered trademark) (Glass Ceramics Hybrid Package) has been proposed. Since GCHP (registered trademark) has a cavity with high reflectance, using it as a substrate contributes to increasing the brightness of the light-emitting diode.
 しかしながら、上記発光ダイオード素子や半導体レーザー素子を用いる場合、出射した光に対して、キャビティによって反射した光が影響し、かえって迷光の原因となることがある。
 具体的には、図1に示すように、発光素子3から出射される光が基板1の主面に対して垂直な光hνである場合には、かかる光hνを減衰させることなく透過させることが望まれる。しかしながら、発光素子3から出射される光が基板1の主面に対して垂直でない光hν’である場合には、基板1の反射率を小さくし、かかる光hν’を吸収させることが望まれる。
However, in the case of using the light-emitting diode element or the semiconductor laser element, the light reflected by the cavity may affect the emitted light, causing stray light.
Specifically, as shown in FIG. 1, when the light emitted from the light emitting element 3 is the light hν perpendicular to the main surface of the substrate 1, the light hν should be transmitted without being attenuated. is desired. However, if the light emitted from the light emitting element 3 is light hν' that is not perpendicular to the main surface of the substrate 1, it is desirable to reduce the reflectance of the substrate 1 to absorb such light hν'. .
 例えば自動車のヘッドライトでは、光源を正面から見たときに非常に眩しく感じ(グレア)、目に不快感を催すことがある。このため、例えば、ロービーム用のヘッドライトでは、光源の正面に向けて出射される光の光量はある程度確保しつつ、光源の正面以外の方向に向けて出射される反射光を抑制し、光線方向のばらつきが少なく、指向性の高い光を得ることが求められる。このような特性は、自動車のヘッドライトの他、例えばプロジェクター等にも求められる。 For example, when looking at the light source from the headlights of a car, the light source is very dazzling (glare) and can cause discomfort to the eyes. For this reason, for example, in a low-beam headlight, while ensuring a certain amount of light emitted toward the front of the light source, reflected light emitted toward directions other than the front of the light source is suppressed, and the light beam direction It is required to obtain light with little variation and high directivity. Such characteristics are required not only for automobile headlights but also for projectors and the like.
 これに対し、例えば窒化アルミニウム基板であっても、赤外領域の光の反射率は概ね40%程度であり、さらなる低い反射率が求められる。
 そこで、特許文献1には、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体からなり、発光素子の搭載部を有する基板本体と、前記基板本体の発光素子の搭載部を囲む領域に形成され、前記発光素子から発せられる光を吸収する光吸収層と、を有し、前記光吸収層が、光吸収材料を含有するガラス粉末焼結体からなることを特徴とする発光素子搭載用基板が開示されている。これにより、基板表面での反射光が少なく、得られる光の指向性を高められる。
On the other hand, even with an aluminum nitride substrate, for example, the reflectance of light in the infrared region is approximately 40%, and even lower reflectance is required.
Therefore, in Patent Document 1, a substrate body made of a sintered body of a glass ceramic composition containing a glass powder and a ceramic filler and having a light emitting element mounting portion, and a region surrounding the light emitting element mounting portion of the substrate body and a light absorbing layer for absorbing light emitted from the light emitting element, wherein the light absorbing layer is made of a glass powder sintered body containing a light absorbing material. A substrate is disclosed. As a result, the amount of reflected light on the substrate surface is reduced, and the directivity of the obtained light can be improved.
日本国特開2013-183129号公報Japanese Patent Application Laid-Open No. 2013-183129
 しかしながら、ガラスセラミックに顔料を添加して焼成したガラスセラミック組成物の反射率を低くしようとすると、得られるガラスセラミック組成物の強度が低下することが分かった。 However, it has been found that the strength of the obtained glass-ceramic composition decreases when trying to lower the reflectance of the fired glass-ceramic composition by adding a pigment to the glass-ceramic.
 そこで本発明は、低い反射率を維持しつつ、強度低下が抑制されたガラスセラミック組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a glass-ceramic composition that maintains a low reflectance while suppressing a decrease in strength.
 本発明者が鋭意検討を行った結果、無機顔料の添加及び熱処理により空隙が発生し、かかる空隙がガラスセラミック組成物の強度低下の要因であることを新たに見出した。 As a result of intensive studies, the present inventor newly found that voids are generated by the addition of inorganic pigments and heat treatment, and that such voids are a factor in reducing the strength of the glass-ceramic composition.
 すなわち、本発明及びその一態様は下記[1]~[10]に関するものである。
[1] ガラスマトリックス、Al、及び無機顔料を含むガラスセラミック組成物であって、波長800~880nmの領域における平均反射率が30%以下であり、波長900~910nmの全波長領域における反射率が32%以下であり、波長1550nmにおける反射率が25%以下であり、空隙率が10%以下であり、前記無機顔料が、Cr系酸化物、Fe系酸化物、Co系酸化物、Mn系酸化物、及びCu系酸化物からなる群より選ばれる少なくとも1種を含む複合酸化物を含み、質量%表示で、前記ガラスセラミック組成物における前記Alの含有量は、前記ガラスセラミック組成物における前記ガラスマトリックスの含有量よりも多く、前記ガラスセラミック組成物の残留カーボン含有量が20質量ppm以下である、ガラスセラミック組成物。
[2] 波長780~800nmの全波長領域における反射率が25%以下である、前記[1]に記載のガラスセラミック組成物。
[3] 波長800~820nmの全波長領域における反射率が25%以下である、前記[1]又は[2]に記載のガラスセラミック組成物。
[4] 波長820~840nmの全波長領域における反射率が30%以下である、前記[1]~[3]のいずれか1に記載のガラスセラミック組成物。
[5] 波長840~860nmの全波長領域における反射率が30%以下である、前記[1]~[4]のいずれか1に記載のガラスセラミック組成物。
[6] 波長860~880nmの全波長領域における反射率が32%以下である、前記[1]~[5]のいずれか1に記載のガラスセラミック組成物。
[7] 前記残留カーボン含有量が16質量ppm以下である、前記[1]~[6]のいずれか1に記載のガラスセラミック組成物。
[8] 前記ガラスマトリックスがホウケイ酸系ガラスからなり、前記ホウケイ酸系ガラスを35~50質量%、前記Alを45~60質量%、及び前記無機顔料を3~10質量%含む、前記[1]~[7]のいずれか1に記載のガラスセラミック組成物。
[9] 前記無機顔料における硝酸塩及び硫酸塩の合計の含有量が500質量ppm以下である、前記[1]~[8]のいずれか1に記載のガラスセラミック組成物。
[10] 発光ダイオード素子を搭載するための基板、又は、半導体レーザー素子を搭載するための基板に用いられる、前記[1]~[9]のいずれか1に記載のガラスセラミック組成物。
That is, the present invention and one aspect thereof relate to the following [1] to [10].
[1] A glass-ceramic composition containing a glass matrix, Al 2 O 3 , and an inorganic pigment, having an average reflectance of 30% or less in a wavelength range of 800 to 880 nm, and an average reflectance of 30% or less in a wavelength range of 900 to 910 nm The reflectance is 32% or less, the reflectance at a wavelength of 1550 nm is 25% or less, the porosity is 10% or less, and the inorganic pigment is a Cr-based oxide, an Fe-based oxide, a Co-based oxide, The content of Al 2 O 3 in the glass-ceramic composition, which contains a composite oxide containing at least one selected from the group consisting of Mn-based oxides and Cu-based oxides, is expressed in mass %, A glass-ceramic composition, wherein the residual carbon content of the glass-ceramic composition is 20 mass ppm or less, which is greater than the content of the glass matrix in the ceramic composition.
[2] The glass-ceramic composition according to [1] above, which has a reflectance of 25% or less in the entire wavelength range of 780 to 800 nm.
[3] The glass-ceramic composition according to [1] or [2], which has a reflectance of 25% or less in the entire wavelength range of 800 to 820 nm.
[4] The glass-ceramic composition according to any one of [1] to [3] above, which has a reflectance of 30% or less in the entire wavelength range of 820 to 840 nm.
[5] The glass-ceramic composition according to any one of [1] to [4] above, which has a reflectance of 30% or less in the entire wavelength range of 840 to 860 nm.
[6] The glass-ceramic composition according to any one of [1] to [5] above, which has a reflectance of 32% or less in the entire wavelength range of 860 to 880 nm.
[7] The glass-ceramic composition according to any one of [1] to [6], wherein the residual carbon content is 16 mass ppm or less.
[8] The glass matrix is made of borosilicate glass, and contains 35 to 50% by mass of the borosilicate glass, 45 to 60% by mass of the Al 2 O 3 , and 3 to 10% by mass of the inorganic pigment. The glass-ceramic composition according to any one of [1] to [7].
[9] The glass-ceramic composition according to any one of [1] to [8] above, wherein the total content of nitrates and sulfates in the inorganic pigment is 500 mass ppm or less.
[10] The glass-ceramic composition according to any one of [1] to [9], which is used for a substrate for mounting a light-emitting diode element or a substrate for mounting a semiconductor laser element.
 本発明に係るガラスセラミック組成物によれば、低い反射率を維持しつつ、強度低下も抑制できる。そのため、上記ガラスセラミック組成物を発光ダイオード素子や半導体レーザー素子を搭載するための基板に用いた際に、必要な強度を満たしつつ、迷光を抑制することで、得られる光の指向性を高められる。 According to the glass-ceramic composition according to the present invention, it is possible to suppress a decrease in strength while maintaining a low reflectance. Therefore, when the glass-ceramic composition is used as a substrate for mounting a light-emitting diode element or a semiconductor laser element, the directivity of the obtained light can be enhanced by suppressing stray light while satisfying the required strength. .
図1は、発光素子を搭載した一般的な基板の模式断面図である。FIG. 1 is a schematic cross-sectional view of a common substrate on which light emitting elements are mounted. 図2は、本実施形態に係るガラスセラミック組成物を用いた気密封止パッケージの構造の一例を示した模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the structure of a hermetically sealed package using the glass-ceramic composition according to this embodiment.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 Although the present invention will be described in detail below, the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the gist of the present invention. In addition, "to" indicating a numerical range is used to include the numerical values described before and after it as a lower limit and an upper limit.
<ガラスセラミック組成物>
 本実施形態に係るガラスセラミック組成物は、ガラスマトリックス、Al(アルミナ)及び無機顔料を含む焼成体である。ガラスセラミック組成物は、ガラスマトリックス中に、フィラー成分としてAlが分散されたガラスセラミックに対して、さらに無機顔料が含まれる。
<Glass ceramic composition>
The glass-ceramic composition according to this embodiment is a fired body containing a glass matrix, Al 2 O 3 (alumina) and an inorganic pigment. The glass-ceramic composition comprises a glass-ceramic in which Al 2 O 3 is dispersed as a filler component in a glass matrix, and an inorganic pigment is further included.
 ガラスセラミック組成物の光学特性は、波長800~880nmの領域における平均反射率が30%以下であり、波長900~910nmの全波長領域における反射率が32%以下であり、かつ、波長1550nmにおける反射率が25%以下である。 The optical properties of the glass-ceramic composition are such that the average reflectance in the wavelength range of 800 to 880 nm is 30% or less, the reflectance in the entire wavelength range of 900 to 910 nm is 32% or less, and the reflection at a wavelength of 1550 nm. rate is 25% or less.
 無機顔料は、Cr系酸化物、Fe系酸化物、Co系酸化物、Mn系酸化物、及びCu系酸化物からなる群より選ばれる少なくとも1種を含む複合酸化物を含む。かかる無機顔料を含むことで、ガラスセラミック組成物の反射率を低減できる。 Inorganic pigments include composite oxides containing at least one selected from the group consisting of Cr-based oxides, Fe-based oxides, Co-based oxides, Mn-based oxides, and Cu-based oxides. Inclusion of such an inorganic pigment can reduce the reflectance of the glass-ceramic composition.
 ガラスセラミック組成物の空隙率は10%以下である。これにより、ガラスセラミック組成物の強度低下が抑制される。また、ガラスセラミック組成物の残留カーボン含有量を低くすることで、上記空隙率を低減できる。本実施形態におけるガラスセラミック組成物における上記残留カーボン含有量は、20質量ppm以下である。 The porosity of the glass-ceramic composition is 10% or less. This suppresses a decrease in the strength of the glass-ceramic composition. Moreover, the porosity can be reduced by lowering the residual carbon content of the glass-ceramic composition. The residual carbon content in the glass-ceramic composition of the present embodiment is 20 mass ppm or less.
 波長800~880nmとはIR波長域であり、かかる領域におけるガラスセラミック組成物の平均反射率は30%以下であるが、上記平均反射率は5~30%が好ましく、5~27%がより好ましく、5~25%がさらに好ましい。ここで、上記平均反射率は27%以下が好ましく、25%以下がより好ましい。なお、上記平均反射率の下限は特に限定されず、低い方が好ましいが、通常5%以上である。 The wavelength of 800 to 880 nm is the IR wavelength region, and the average reflectance of the glass-ceramic composition in this region is 30% or less, preferably 5 to 30%, more preferably 5 to 27%. , 5 to 25% is more preferred. Here, the average reflectance is preferably 27% or less, more preferably 25% or less. In addition, the lower limit of the average reflectance is not particularly limited, and the lower one is preferable, but it is usually 5% or more.
 波長900~910nmとは半導体レーザー用途の波長域であり、かかる全波長領域におけるガラスセラミック組成物の反射率は32%以下であるが、上記反射率は5~32%が好ましく、5~30%がより好ましく、5~27%がさらに好ましい。ここで、上記反射率は30%以下が好ましく、27%以下がより好ましい。なお、上記反射率の下限は特に限定されず、低い方が好ましいが、通常5%以上である。 A wavelength of 900 to 910 nm is a wavelength range for semiconductor laser applications, and the reflectance of the glass-ceramic composition in the entire wavelength range is 32% or less, and the reflectance is preferably 5 to 32%, more preferably 5 to 30%. is more preferred, and 5 to 27% is even more preferred. Here, the reflectance is preferably 30% or less, more preferably 27% or less. In addition, the lower limit of the reflectance is not particularly limited, and the lower one is preferable, but it is usually 5% or more.
 波長1550nmとは半導体レーザー用途の波長域であり、かかる波長におけるガラスセラミック組成物の反射率は25%以下であるが、上記反射率は5~25%が好ましく、2~22%がより好ましく、2~20%がさらに好ましい。ここで、上記反射率は22%以下が好ましく、20%以下がより好ましい。なお、上記反射率の下限は特に限定されず、低い方が好ましいが、通常5%以上である。 A wavelength of 1550 nm is a wavelength range for semiconductor laser applications, and the reflectance of the glass-ceramic composition at this wavelength is 25% or less, preferably 5 to 25%, more preferably 2 to 22%, 2 to 20% is more preferred. Here, the reflectance is preferably 22% or less, more preferably 20% or less. In addition, the lower limit of the reflectance is not particularly limited, and the lower one is preferable, but it is usually 5% or more.
 ガラスセラミック組成物は、波長780~800nmの全波長領域における反射率が5~25%が好ましく、5~20%がより好ましい。ここで、上記反射率は25%以下が好ましく、20%以下がより好ましく、下限は特に限定されず低い方が好ましいが、通常5%以上である。 The glass ceramic composition preferably has a reflectance of 5 to 25%, more preferably 5 to 20%, in the entire wavelength range of 780 to 800 nm. Here, the reflectance is preferably 25% or less, more preferably 20% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
 ガラスセラミック組成物は、波長800~820nmの全波長領域における反射率が5~25%が好ましく、5~22%がより好ましい。ここで、上記反射率は25%以下が好ましく、22%以下がより好ましく、下限は特に限定されず低い方が好ましいが、通常5%以上である。 The glass ceramic composition preferably has a reflectance of 5 to 25%, more preferably 5 to 22%, in the entire wavelength range of 800 to 820 nm. Here, the reflectance is preferably 25% or less, more preferably 22% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
 ガラスセラミック組成物は、波長820~840nmの全波長領域における反射率が5~30%が好ましく、5~25%がより好ましい。ここで、上記反射率は30%以下が好ましく、25%以下がより好ましく、下限は特に限定されず低い方が好ましいが、通常5%以上である。 The glass ceramic composition preferably has a reflectance of 5 to 30%, more preferably 5 to 25%, in the entire wavelength range of 820 to 840 nm. Here, the reflectance is preferably 30% or less, more preferably 25% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
 ガラスセラミック組成物は、波長840~860nmの全波長領域における反射率が5~30%が好ましく、5~25%がより好ましい。ここで、上記反射率は30%以下が好ましく、25%以下がより好ましく、下限は特に限定されず低い方が好ましいが、通常5%以上である。 The glass ceramic composition preferably has a reflectance of 5 to 30%, more preferably 5 to 25%, in the entire wavelength range of 840 to 860 nm. Here, the reflectance is preferably 30% or less, more preferably 25% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
 ガラスセラミック組成物は、波長860~880nmの全波長領域における反射率が5~32%が好ましく、5~25%がより好ましい。ここで、上記反射率は32%以下が好ましく、25%以下がより好ましく、下限は特に限定されず低い方が好ましいが、通常5%以上である。 The glass ceramic composition preferably has a reflectance of 5 to 32%, more preferably 5 to 25%, in the entire wavelength range of 860 to 880 nm. Here, the reflectance is preferably 32% or less, more preferably 25% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
 また、ガラスセラミック組成物は、波長800~880nmの全波長領域における反射率が5~30%が好ましく、5~27%がより好ましい。ここで、上記反射率は30%以下が好ましく、27%以下がより好ましく、下限は特に限定されず低い方が好ましいが、通常5%以上である。 In addition, the glass ceramic composition preferably has a reflectance of 5 to 30%, more preferably 5 to 27%, in the entire wavelength range of 800 to 880 nm. Here, the reflectance is preferably 30% or less, more preferably 27% or less, and the lower limit is not particularly limited, and is preferably 5% or more.
 ガラスセラミック組成物におけるガラスマトリックスの含有量、ガラスセラミック組成物におけるフィラー成分であるAlの含有量、およびガラスセラミック組成物における無機顔料の含有量は、いずれもガラスセラミック組成物の断面走査型電子顕微鏡(SEM)像により測定される値である。
 具体的には、2000倍の倍率で撮影した断面SEM像に対して画像解析ソフト(ImageJ、アメリカ国立衛生研究所製)を用いて画像を2値化処理し、ガラスマトリックス、Al粒子、および無機顔料の各断面積を算出し、これらの総和に対する比から体積%を求めた後に、比重換算により質量%として求められる。
The content of the glass matrix in the glass-ceramic composition, the content of Al 2 O 3 as a filler component in the glass-ceramic composition, and the content of the inorganic pigment in the glass-ceramic composition were all measured by cross-sectional scanning of the glass-ceramic composition. It is a value measured from a type electron microscope (SEM) image.
Specifically, a cross-sectional SEM image taken at a magnification of 2000 times is binarized using image analysis software (ImageJ, manufactured by the National Institutes of Health, USA), and the glass matrix and Al 2 O 3 particles are obtained. , and the cross-sectional area of each of the inorganic pigments, and the volume % is obtained from the ratio to the sum of these, and then calculated as mass % by conversion of specific gravity.
 ガラスセラミック組成物の空隙率は10%以下であるが、1~10%が好ましく、1~5%がより好ましく、1~3%がさらに好ましい。ここで、ガラスセラミック組成物の強度低下を抑制する観点から、空隙率は5%以下が好ましく、3%以下がより好ましい。また、空隙率が低すぎるとヤング率が高くなり靭性が低くなり基板が損傷しやすくなる観点から、空隙率は1%以上が好ましい。
 本明細書において、ガラスセラミック組成物の空隙率とは、ガラスセラミック組成物の断面走査型電子顕微鏡(SEM)像により測定される値である。具体的には、500倍の倍率で撮影した断面SEM像に対して画像解析ソフト(ImageJ、アメリカ国立衛生研究所製)を用いて画像を2値化処理し、空隙の面積を全体の面積で除することで算出した値である。
The porosity of the glass-ceramic composition is 10% or less, preferably 1-10%, more preferably 1-5%, even more preferably 1-3%. Here, from the viewpoint of suppressing a decrease in strength of the glass-ceramic composition, the porosity is preferably 5% or less, more preferably 3% or less. On the other hand, if the porosity is too low, the Young's modulus will be high, the toughness will be low, and the substrate will be easily damaged, so the porosity is preferably 1% or more.
As used herein, the porosity of the glass-ceramic composition is a value measured from a cross-sectional scanning electron microscope (SEM) image of the glass-ceramic composition. Specifically, a cross-sectional SEM image taken at a magnification of 500 times is subjected to binarization processing using image analysis software (ImageJ, manufactured by the National Institutes of Health, USA), and the area of the void is the total area. It is a value calculated by dividing
 空隙率は、ガラスセラミック組成物の残留カーボン含有量を少なくすることで低減できる。かかる残留カーボン含有量とは、例えば無機顔料に含まれるカーボン含有量や、後述するグリーンシート中に含まれる樹脂および溶剤に由来すると思われる。そのため、カーボン含有量の少ない無機顔料を用いることが好ましい。
 ガラスセラミック組成物における上記残留カーボン含有量は20質量ppm以下であるが、5~20質量ppmが好ましく、5~18質量ppmがより好ましく、5~16質量ppmがさらに好ましい。ここで、上記残留カーボン含有量は18質量ppm以下が好ましく、16質量ppm以下がさらに好ましい。また、残留カーボン含有量の下限は特に限定されないが、原料顔料の洗浄コストの観点から、5質量ppm以上が好ましい。
Porosity can be reduced by reducing the residual carbon content of the glass-ceramic composition. Such a residual carbon content is thought to be derived from, for example, the carbon content contained in the inorganic pigment and the resin and solvent contained in the green sheet, which will be described later. Therefore, it is preferable to use an inorganic pigment with a low carbon content.
The residual carbon content in the glass-ceramic composition is 20 mass ppm or less, preferably 5 to 20 mass ppm, more preferably 5 to 18 mass ppm, even more preferably 5 to 16 mass ppm. Here, the residual carbon content is preferably 18 mass ppm or less, more preferably 16 mass ppm or less. Although the lower limit of the residual carbon content is not particularly limited, it is preferably 5 ppm by mass or more from the viewpoint of the cost of cleaning the raw material pigment.
 ガラスセラミック組成物に対し、焼成した際のXY収縮率は焼成前後でのグリーンシートの焼結度合いを意味する。そのため、XY収縮率は、14~17%が好ましく、14.5~16.5%がより好ましく、15~16%がさらに好ましい。ここで、XY収縮率は14%以上が好ましく、14.5%以上がより好ましく、15%以上がさらに好ましい。また、成形性の観点から、XY収縮率は17%以下が好ましく、16.5%以下がより好ましく、16%以下がさらに好ましい。
 XY収縮率は、ノギスを用いて焼成前後のガラスセラミック組成物のXY寸法を測定した値を用いる。
For a glass-ceramic composition, the XY shrinkage during firing means the degree of sintering of the green sheet before and after firing. Therefore, the XY shrinkage rate is preferably 14 to 17%, more preferably 14.5 to 16.5%, even more preferably 15 to 16%. Here, the XY shrinkage rate is preferably 14% or more, more preferably 14.5% or more, and even more preferably 15% or more. From the viewpoint of moldability, the XY shrinkage rate is preferably 17% or less, more preferably 16.5% or less, and even more preferably 16% or less.
As the XY shrinkage, values obtained by measuring the XY dimensions of the glass-ceramic composition before and after firing using a vernier caliper are used.
 ガラスセラミック組成物の平均密度は、2.8~3.8が好ましく、2.9~3.7がより好ましく、3.0~3.6がさらに好ましい。ここで、強度の高い基板を得る観点から、上記平均密度は2.8以上が好ましく、2.9以上がより好ましく、3.0以上がさらに好ましい。また、原料比重の観点から、平均密度は3.8以下が好ましく、3.7以下がより好ましく、3.6以下がさらに好ましい。
 平均密度は、電子比重計を用いて算出された見かけ比重の値を用いる。
The average density of the glass-ceramic composition is preferably 2.8 to 3.8, more preferably 2.9 to 3.7, even more preferably 3.0 to 3.6. Here, from the viewpoint of obtaining a substrate with high strength, the average density is preferably 2.8 or higher, more preferably 2.9 or higher, and even more preferably 3.0 or higher. Moreover, from the viewpoint of raw material specific gravity, the average density is preferably 3.8 or less, more preferably 3.7 or less, and even more preferably 3.6 or less.
For the average density, a value of apparent specific gravity calculated using an electronic hydrometer is used.
 ガラスセラミック組成物の平均強度は、250~400MPaが好ましく、290~390MPaがより好ましく、300~380MPaがさらに好ましい。ここで、発光ダイオード素子又は半導体レーザー素子を搭載するための基板に用いる場合には、上記平均強度は250MPa以上が好ましく、290MPa以上がより好ましく、300MPa以上がさらに好ましい。また、分割性低下の観点から、平均強度は400MPa以下が好ましく、390MPa以下がより好ましく、380MPa以下がさらに好ましい。
 平均強度は、オートグラフ(島津製作所製、オートグラフAGS-X)を用いて3点曲げ試験の最大荷重値より応力を算出することで得られる値を用いる。
The average strength of the glass-ceramic composition is preferably 250-400 MPa, more preferably 290-390 MPa, even more preferably 300-380 MPa. When used as a substrate for mounting a light-emitting diode element or a semiconductor laser element, the average strength is preferably 250 MPa or higher, more preferably 290 MPa or higher, and even more preferably 300 MPa or higher. In addition, from the viewpoint of reducing divisibility, the average strength is preferably 400 MPa or less, more preferably 390 MPa or less, and even more preferably 380 MPa or less.
For the average strength, a value obtained by calculating the stress from the maximum load value of the three-point bending test using an Autograph (manufactured by Shimadzu Corporation, Autograph AGS-X) is used.
 無機顔料は、Cr系酸化物、Fe系酸化物、Co系酸化物、Mn系酸化物、及びCu系酸化物からなる群より選ばれる少なくとも1種を含む複合酸化物を含む。かかる無機顔料を含むことで、ガラスセラミック組成物の反射率を低減できる。
 また、無機顔料はより低い反射率を実現する観点から、黒色系や茶色系の色合いを示すものが好ましく、黒色系の色合いを示すものがより好ましい。
The inorganic pigment includes a composite oxide containing at least one selected from the group consisting of Cr-based oxides, Fe-based oxides, Co-based oxides, Mn-based oxides, and Cu-based oxides. Inclusion of such an inorganic pigment can reduce the reflectance of the glass-ceramic composition.
In addition, from the viewpoint of achieving a lower reflectance, the inorganic pigment preferably exhibits a blackish or brownish hue, and more preferably exhibits a blackish hue.
 無機顔料として上記酸化物の複合酸化物を用いると、効果的に黒色系又は茶色系の色合いを有する顔料としやすい。例えば、黒色系の色合いを有する顔料とする場合には、MnやFeを含むことが好ましい。また、黒色系又は茶色系の色合いを有する顔料とする場合には、MnやFeに代えて、又はMnやFeの他に、Co、Cu、Crを含むことも好ましい。また、本発明の効果を損なわない範囲において、その他の元素を含んでいてもよい。その他の元素としては、例えば、Zn、Ti、Mg、Ni、V等が挙げられる。 When a composite oxide of the above oxides is used as the inorganic pigment, it is easy to effectively obtain a pigment having a blackish or brownish tint. For example, in the case of a pigment having a black tint, it preferably contains Mn or Fe. Further, when a pigment having a blackish or brownish tint is used, it is preferable to contain Co, Cu, or Cr instead of Mn or Fe, or in addition to Mn or Fe. Further, other elements may be contained within a range that does not impair the effects of the present invention. Other elements include, for example, Zn, Ti, Mg, Ni, V, and the like.
 無機顔料となる複合酸化物として、より具体的には、Fe-Mn系酸化物、Co-Fe系酸化物、Co-Mn系酸化物、Co-Cr系酸化物、Cu-Fe系酸化物、Cu-Mn系酸化物、Cu-Cr系酸化物、Cu-Co系硫化物、Fe-V系酸化物、Mn-Co系酸化物、Fe-Zn系酸化物、Cd-Cr系酸化物、Co-Fe-Cr系酸化物、Co-Fe-Mn系酸化物、Cu-Cr-Mn系酸化物、Fe-Zn-Ti系酸化物、Fe-Zn-Cr系酸化物、Cr-Fe-Co-Mn系酸化物、Cr-Fe-Co-Cu系酸化物、Ce-Fe-Co-Ni系酸化物等が挙げられる。 More specifically, as the composite oxide that becomes an inorganic pigment, Fe—Mn oxide, Co—Fe oxide, Co—Mn oxide, Co—Cr oxide, Cu—Fe oxide, Cu—Mn oxide, Cu—Cr oxide, Cu—Co sulfide, Fe—V oxide, Mn—Co oxide, Fe—Zn oxide, Cd—Cr oxide, Co -Fe-Cr-based oxide, Co-Fe-Mn-based oxide, Cu-Cr-Mn-based oxide, Fe-Zn-Ti-based oxide, Fe-Zn-Cr-based oxide, Cr-Fe-Co- Examples include Mn-based oxides, Cr--Fe--Co--Cu-based oxides, Ce--Fe--Co--Ni-based oxides, and the like.
 無機顔料である上記酸化物は、その酸化物を構成する組成の他に、その製造方法の違いにより上記残留カーボン含有量が変わり得る。例えば、製造方法の工程中に、精製処理として湿式粉砕を行う工程がある場合に、残留カーボン含有量が低くなる傾向が見られた。そのため、同じ組成の無機顔料であっても、湿式粉砕を経た無機顔料が好ましい。 The content of the residual carbon in the oxide, which is an inorganic pigment, may vary depending on the composition of the oxide and the manufacturing method. For example, when there is a step of wet pulverization as a refining process in the manufacturing process, the residual carbon content tends to be low. Therefore, even if the inorganic pigments have the same composition, the inorganic pigments that have undergone wet pulverization are preferable.
 無機顔料は、900℃で12時間熱処理した後の残留カーボン含有量が50質量ppm以下が好ましく、40質量ppm以下がより好ましく、30質量ppm以下がさらに好ましく、少ないほど好ましい。 The inorganic pigment has a residual carbon content of preferably 50 mass ppm or less, more preferably 40 mass ppm or less, even more preferably 30 mass ppm or less after heat treatment at 900°C for 12 hours, and the lower the better.
 また、上記残留カーボン含有量の他に、無機顔料である上記酸化物に不純物のオーダーで含まれる塩も、ガラスセラミック組成物の空隙率に影響を与え得ることが判明した。
 例えば、残留塩類として硝酸塩が含まれる場合にはNOxが、残留塩類として硫酸塩が含まれる場合にはSOxが、それぞれ発生し得る。その発生したNOxやSOxといったガスに起因して、ガラスセラミック組成物の製造時に空隙が出来、ガラスセラミック組成物の空隙率が高くなる傾向が見られた。
In addition to the above residual carbon content, it has also been found that salts contained in the above oxides, which are inorganic pigments, in the order of impurities can also affect the porosity of the glass-ceramic composition.
For example, when nitrates are included as residual salts, NOx may be generated, and when sulfates are included as residual salts, SOx may be generated. Due to the generated gases such as NOx and SOx, voids were formed during the production of the glass-ceramic composition, and there was a tendency for the porosity of the glass-ceramic composition to increase.
 すなわち、ガラスセラミック組成物の空隙率を増加させないために、無機顔料における硝酸塩、硫酸塩のそれぞれの含有量は300質量ppm以下が好ましく、200質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。また、硝酸塩及び硫酸塩の合計の含有量は500質量ppm以下が好ましく、400質量ppm以下がより好ましく、200質量ppm以下がさらに好ましい。
 なお、上記硝酸塩、硫酸塩の含有量は、陰イオンクロマトグラフィーを用いてNO やSO 2-の溶出量(μg/g)を求め、その値を百万分率に変換することで得られる値である。
That is, in order not to increase the porosity of the glass-ceramic composition, the content of each of nitrate and sulfate in the inorganic pigment is preferably 300 mass ppm or less, more preferably 200 mass ppm or less, and even more preferably 100 mass ppm or less. . Also, the total content of nitrates and sulfates is preferably 500 mass ppm or less, more preferably 400 mass ppm or less, and even more preferably 200 mass ppm or less.
The contents of the nitrates and sulfates can be obtained by determining the elution amount (μg/g) of NO 3 - and SO 4 2- using anion chromatography and converting the values into parts per million. is the value obtained.
 ガス発生に寄与する硝酸塩や硫酸塩の対カチオン種としてはKやNa等が挙げられる。よって、これらのイオンの無機顔料における含有量が小さいほど好ましい。KやNaの含有量は、陰イオンクロマトグラフィーによる分析では求められないため、ICP(Inductively Coupled Plasma、誘導結合プラズマ)発光分光分析を用いて分析を行う。ICP発光分光分析における抽出溶媒は、純水でもpH2に希釈した硝酸等の弱酸でもよい。
 例えば純水を用いて抽出した場合の、上記K、Naの含有量は、それぞれ200質量ppm以下が好ましく、100質量ppm以下がより好ましく、80質量ppm以下がさらに好ましい。また、それらの合計の含有量が400質量ppm以下が好ましく、300質量ppm以下がより好ましく、200質量ppm以下がさらに好ましい。
Counter cation species of nitrate and sulfate that contribute to gas generation include K and Na. Therefore, the smaller the content of these ions in the inorganic pigment, the better. Since the contents of K and Na cannot be determined by anion chromatography analysis, they are analyzed using ICP (Inductively Coupled Plasma) emission spectrometry. The extraction solvent in ICP emission spectrometry may be either pure water or a weak acid such as nitric acid diluted to pH 2.
For example, when pure water is used for extraction, the content of K and Na is preferably 200 ppm by mass or less, more preferably 100 ppm by mass or less, and even more preferably 80 ppm by mass or less. Also, the total content thereof is preferably 400 mass ppm or less, more preferably 300 mass ppm or less, and even more preferably 200 mass ppm or less.
 ガラスセラミック組成物における無機顔料の合計の含有量は、3~10質量%が好ましく、4~10質量%がより好ましく、6~10質量%がさらに好ましい。ここで、低い反射率を得る観点から、無機顔料の合計の含有量は3質量%以上が好ましく、4質量%以上がより好ましく、6質量%以上がさらに好ましい。また、焼結性低下防止の観点から、無機顔料の合計の含有量は10質量%以下が好ましい。 The total content of inorganic pigments in the glass-ceramic composition is preferably 3-10% by mass, more preferably 4-10% by mass, and even more preferably 6-10% by mass. Here, from the viewpoint of obtaining a low reflectance, the total content of inorganic pigments is preferably 3% by mass or more, more preferably 4% by mass or more, and even more preferably 6% by mass or more. Moreover, from the viewpoint of preventing deterioration of sinterability, the total content of inorganic pigments is preferably 10% by mass or less.
 ガラスマトリックスの組成は特に限定されないが、結晶相を含まない非晶質ガラスからなることが基板の反りを抑制する観点から好ましい。中でも、例えば、アルカリ成分であるLiO、NaOおよびKOの含有量が少ないホウケイ酸系ガラスからなることが耐酸性の観点からより好ましい。 Although the composition of the glass matrix is not particularly limited, it is preferably made of amorphous glass containing no crystal phase from the viewpoint of suppressing warping of the substrate. Among them, for example, it is more preferable from the viewpoint of acid resistance to use borosilicate-based glass with a low content of Li 2 O, Na 2 O and K 2 O, which are alkali components.
 ホウケイ酸系ガラスの組成は特に限定されないが、例えば、SiO及びBの他に、RO、R’、ZrO等を含有していてもよい。
 ここで、RとはZn、Ba、Sr、Mg、及びCaからなる群より選ばれる少なくとも一種である。R’とはAl、Fe、Gd及びLaからなる群より選ばれる少なくとも一種である。
 また、R’がAlである時のAlは、ガラスセラミック組成物を構成するフィラー成分としての酸化アルミニウムとは明確に区別される。すなわち、ガラス組成としてのAl含有量は、フィラー成分としての酸化アルミニウムを含む結晶体粉末の含有量からは除かれる。
Although the composition of the borosilicate glass is not particularly limited, it may contain, for example, RO, R′ 2 O 3 , ZrO 2 and the like in addition to SiO 2 and B 2 O 3 .
Here, R is at least one selected from the group consisting of Zn, Ba, Sr, Mg and Ca. R' is at least one selected from the group consisting of Al, Fe, Gd and La.
Also, Al 2 O 3 when R′ is Al is clearly distinguished from aluminum oxide as a filler component constituting the glass-ceramic composition. That is, the Al 2 O 3 content as the glass composition is excluded from the content of the crystalline powder containing aluminum oxide as the filler component.
 ホウケイ酸系ガラスは、SiO及びBの他に、Al、CaOを含有することが好ましい。より具体的には、例えば、SiOを45~65質量%、Bを5~20質量%、Alを5~25質量%、CaOを10~35質量%含有し、LiO、NaOおよびKOを含有しない、あるいはLiO、NaOおよびKOの合計した含有量が3.5質量%未満であるガラスが好適に用いられる。 Borosilicate glass preferably contains Al 2 O 3 and CaO in addition to SiO 2 and B 2 O 3 . More specifically, for example, it contains 45 to 65% by mass of SiO 2 , 5 to 20% by mass of B 2 O 3 , 5 to 25% by mass of Al 2 O 3 , 10 to 35% by mass of CaO, and Li A glass that does not contain 2 O, Na 2 O and K 2 O or has a total content of Li 2 O, Na 2 O and K 2 O of less than 3.5 mass % is preferably used.
 酸化ホウ素(B)はガラスの焼結性を向上させる成分であり、ガラスマトリックスにおける含有量は5~20質量%が好ましく、6~15質量%がより好ましく、7~11質量%がより好ましい。ここで、ガラスの焼結性を向上させる観点から、酸化ホウ素の含有量は5質量%以上が好ましく、6質量%以上がより好ましく、7質量%以上がよりさらに好ましい。一方、耐酸性の観点から、酸化ホウ素の含有量は20質量%以下が好ましく、15質量%以下がより好ましく、11質量%以下がさらに好ましい。 Boron oxide (B 2 O 3 ) is a component that improves the sinterability of glass, and its content in the glass matrix is preferably 5 to 20% by mass, more preferably 6 to 15% by mass, and more preferably 7 to 11% by mass. more preferred. Here, from the viewpoint of improving the sinterability of the glass, the content of boron oxide is preferably 5% by mass or more, more preferably 6% by mass or more, and even more preferably 7% by mass or more. On the other hand, from the viewpoint of acid resistance, the boron oxide content is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 11% by mass or less.
 SiOはガラスを構成する成分である。一方で、過剰に添加すると、溶解性が低下するために均質なガラスを安価に生産することが難しく、またガラスの焼結性も低下するために緻密な焼結体を得られないおそれがある。
 CaOを含む、ROで表される成分は、ガラスの溶融温度を低下させるとともに、焼結性を向上させる成分である。一方で、過剰に添加すると、焼成時にアノーサイト(SiO-Al-CaO)に代表される結晶が析出するために焼結体が反りやすくなり、また耐酸性も十分でなくなるおそれがある。
 Alを含むR’で表される成分は、ガラスの安定化に効果があり結晶化を抑制する作用及びガラスの化学耐久性を向上させる成分である。一方で、過剰に添加すると、焼成時にアノーサイトに代表される結晶が析出して焼結体が反りやすくなり、また耐酸性も十分でなくなるおそれがある。
 ZrOで表される成分は、ガラスの化学的耐久性を向上させる成分である。一方で、過剰に添加すると、焼結性が低下するおそれがある。
SiO2 is a constituent of glass. On the other hand, if it is added excessively, the melting property will decrease, making it difficult to produce a homogeneous glass at a low cost, and the sinterability of the glass will also decrease, so there is a risk that a dense sintered body cannot be obtained. .
The component represented by RO containing CaO is a component that lowers the melting temperature of the glass and improves the sinterability. On the other hand, if it is added excessively, crystals typified by anorthite (SiO 2 —Al 2 O 3 —CaO) are precipitated during firing, so that the sintered body tends to warp and the acid resistance may not be sufficient. be.
The component represented by R′ 2 O 3 including Al 2 O 3 is a component that has an effect of stabilizing the glass, suppressing crystallization, and improving the chemical durability of the glass. On the other hand, if it is added excessively, crystals typified by anorthite may precipitate during firing, making the sintered body more likely to warp, and the acid resistance may not be sufficient.
The component represented by ZrO2 is a component that improves the chemical durability of glass. On the other hand, if it is added excessively, the sinterability may deteriorate.
 ガラスセラミック組成物におけるガラスマトリックスの含有量は30~50質量%が好ましく、33~45質量%がより好ましく、35~42質量%がさらに好ましい。ここで上記ガラスマトリックスの含有量は、緻密な焼結体を得る観点から、30質量%以上が好ましく、33質量%以上がより好ましく、35質量%以上がさらに好ましい。また、強度の高い焼結体を得る観点から、ガラスマトリックスの含有量は50質量%以下が好ましく、45質量%以下がより好ましく、42質量%以下がさらに好ましい。
 また、ガラスマトリックスがホウケイ酸系ガラスからなる場合には、ガラスセラミック組成物におけるホウケイ酸系ガラスの含有量が上記範囲であることが好ましい。
The content of the glass matrix in the glass-ceramic composition is preferably 30-50% by mass, more preferably 33-45% by mass, even more preferably 35-42% by mass. From the viewpoint of obtaining a dense sintered body, the content of the glass matrix is preferably 30% by mass or more, more preferably 33% by mass or more, and even more preferably 35% by mass or more. From the viewpoint of obtaining a sintered body with high strength, the content of the glass matrix is preferably 50% by mass or less, more preferably 45% by mass or less, and even more preferably 42% by mass or less.
Moreover, when the glass matrix is made of borosilicate glass, the content of the borosilicate glass in the glass-ceramic composition is preferably within the above range.
 ガラスマトリックスのガラス軟化点Tsは700~900℃が好ましく、750~870℃がより好ましく、800~850℃がさらに好ましい。ここで、Agと同時焼成することから、ガラスマトリックスのガラス軟化点Tsは900℃以下が好ましく、870℃以下がより好ましく、850℃以下がさらに好ましい。また、ガラスマトリックスのガラス軟化点Tsは、残留カーボン含有量が増えるのを抑制する観点から、700℃以上が好ましく、750℃以上がより好ましく、800℃以上がさらに好ましい。なお、ガラスマトリックスのガラス軟化点Tsは、ガラス単体のDTAチャートの第四変曲点により決定される値である。 The glass softening point Ts of the glass matrix is preferably 700-900°C, more preferably 750-870°C, even more preferably 800-850°C. Here, the glass softening point Ts of the glass matrix is preferably 900° C. or lower, more preferably 870° C. or lower, and even more preferably 850° C. or lower, because it is co-fired with Ag. Further, the glass softening point Ts of the glass matrix is preferably 700° C. or higher, more preferably 750° C. or higher, and even more preferably 800° C. or higher, from the viewpoint of suppressing an increase in residual carbon content. The glass softening point Ts of the glass matrix is a value determined by the fourth inflection point of the DTA chart of the glass alone.
 ガラスマトリックスのガラス転移点Tgは、樹脂成分の熱分解を阻害せぬよう、700℃以下が好ましく、680℃以下がより好ましく、650℃以下がさらに好ましい。なお、ガラスマトリックスのガラス転移点Tgは、ガラス単体のDTAチャートの第一変曲点により決定される値である。 The glass transition point Tg of the glass matrix is preferably 700°C or lower, more preferably 680°C or lower, and even more preferably 650°C or lower so as not to inhibit thermal decomposition of the resin component. The glass transition point Tg of the glass matrix is a value determined by the first inflection point of the DTA chart of the glass alone.
 ガラスセラミック組成物におけるAlはフィラー成分として含まれる。フィラー成分は、Alの他に、酸化ジルコニウム、酸化チタン、酸化マグネシウム、二酸化ケイ素、リン酸ジルコニウム、β-ユークリプタイト(LiAlSiO)及びこれらの混合物からなる群より選ばれる少なくとも1種を含む結晶体粉末をさらに含んでいてもよい。 Al 2 O 3 in the glass-ceramic composition is included as a filler component. The filler component, in addition to Al 2 O 3 , is at least one selected from the group consisting of zirconium oxide, titanium oxide, magnesium oxide, silicon dioxide, zirconium phosphate, β-eucryptite (LiAlSiO 4 ) and mixtures thereof. It may further contain a crystalline powder containing.
 Alは結晶相の種類によって、α-アルミナ型、γ-アルミナ型、δ-アルミナ型、θ-アルミナ型等が挙げられるが、結晶相がコランダム型構造を有するα-アルミナ型がより好ましい。 Al 2 O 3 includes α-alumina type, γ-alumina type, δ-alumina type, θ-alumina type, etc., depending on the type of crystal phase. preferable.
 ガラスセラミック組成物におけるフィラー成分であるAlの含有量は、40~60質量%が好ましく、42~59質量%がより好ましく、45~58質量%がさらに好ましい。ここで、焼結体の強度を向上させる観点から、Alの含有量は40質量%以上が好ましく、42質量%以上がより好ましく、45質量%以上がさらに好ましい。また、緻密な焼結体を得る観点から、Alの含有量は60質量%以下が好ましく、59質量%以下がより好ましく、58質量%以下がさらに好ましい。 The content of Al 2 O 3 as a filler component in the glass-ceramic composition is preferably 40 to 60% by mass, more preferably 42 to 59% by mass, even more preferably 45 to 58% by mass. Here, from the viewpoint of improving the strength of the sintered body, the content of Al 2 O 3 is preferably 40% by mass or more, more preferably 42% by mass or more, and even more preferably 45% by mass or more. From the viewpoint of obtaining a dense sintered body, the content of Al 2 O 3 is preferably 60% by mass or less, more preferably 59% by mass or less, and even more preferably 58% by mass or less.
 Al以外の他のフィラー成分を含有する場合には、上記他のフィラー成分の合計の含有量は、良好な焼結性を得る観点から3質量%以下が好ましく、2質量%以下がより好ましい。 When other filler components other than Al 2 O 3 are contained, the total content of the other filler components is preferably 3% by mass or less from the viewpoint of obtaining good sinterability, and 2% by mass or less. more preferred.
 ガラスセラミック組成物において、Alの含有量はガラスマトリックスの含有量よりも多い。これにより、強度が高く緻密な焼結体を得られることから好ましい。
 Alの含有量とガラスマトリックスの含有量の比率は、Al:ガラスマトリックスで表される比が、58:36~47.5:46.5が好ましく、54:42~47.5:46.5がより好ましく、52:42~47.5:46.5がさらに好ましい。
In the glass-ceramic composition, the content of Al 2 O 3 is higher than the content of the glass matrix. This is preferable because a dense sintered body having high strength can be obtained.
The ratio of the content of Al 2 O 3 to the content of the glass matrix is preferably 58:36 to 47.5:46.5, more preferably 54:42 to 47, in terms of Al 2 O 3 :glass matrix. .5:46.5 is more preferred, and 52:42 to 47.5:46.5 are even more preferred.
 フィラー成分であるAlの結晶体粉末の形状は、球状、扁平状、鱗片状、繊維状等、特に限定されない。他のフィラー成分を含む場合の、当該他のフィラー成分の結晶体粉末の形状も同様に特に限定されない。
 結晶体粉末の大きさも特に限定されるものではないが、例えば50%粒径(D50)が0.5~4μmが好ましく、1~3μmがより好ましい。ここで、50%粒径は0.5μm以上が好ましく、1μm以上がより好ましく、また、4μm以下が好ましく、3μm以下がより好ましい。50%粒径は、レーザー回折/散乱式粒度分布測定装置を用いて測定される値である。
The shape of the Al 2 O 3 crystal powder, which is the filler component, is not particularly limited and may be spherical, flat, scaly, fibrous, or the like. Similarly, when other filler components are included, the shape of the crystalline powder of the other filler components is not particularly limited.
Although the size of the crystal powder is not particularly limited, for example, the 50% particle size (D 50 ) is preferably 0.5 to 4 μm, more preferably 1 to 3 μm. Here, the 50% particle size is preferably 0.5 μm or more, more preferably 1 μm or more, and preferably 4 μm or less, more preferably 3 μm or less. The 50% particle size is a value measured using a laser diffraction/scattering particle size distribution analyzer.
 本実施形態に係るガラスセラミック組成物は、発光ダイオード素子又は半導体レーザー素子を搭載するための基板に用いられることが好ましい。かかる基板は基部と枠部とを有することが、気密封止性の観点から好ましい。また、ガラスセラミック組成物によって基部と枠部とが形成されてもよく、平板状ガラスにより基部が、ガラスセラミック組成物によって枠部がそれぞれ形成されてもよい。 The glass-ceramic composition according to this embodiment is preferably used as a substrate for mounting a light-emitting diode element or a semiconductor laser element. Such a substrate preferably has a base portion and a frame portion from the viewpoint of hermetic sealing. Alternatively, the base and the frame may be formed of the glass-ceramic composition, or the base and the frame may be formed of the flat glass and the glass-ceramic composition, respectively.
 発光ダイオード素子又は半導体レーザー素子が搭載された上記基板は、例えば、液晶ディスプレイ等のバックライト、小型情報端末の操作ボタンにおける発光部、自動車用又は装飾用の照明、殺菌用途等の深紫外光LED、3D測距センサーのレーザー部、その他の光源として好適である。 The substrate on which the light-emitting diode element or the semiconductor laser element is mounted is, for example, a backlight of a liquid crystal display, a light-emitting part in an operation button of a small information terminal, lighting for automobiles or decoration, a deep ultraviolet light LED for sterilization, etc. , a laser unit of a 3D ranging sensor, and other light sources.
 上記基板は、その用途から、ガラスの割れが検知できるようなシステムを備えていることが好ましい。かかるシステムとして、基部は、その少なくとも一部の領域に導電性膜を備え、枠部は、貫通する金属導体を備え、かかる導電性膜と金属導体とが導通することが好ましい。金属導体はガラスセラミック組成物と同時に焼成可能かつ放熱性の高さの観点から銀が好ましい。 It is preferable that the above-mentioned substrate is equipped with a system that can detect cracks in the glass because of its intended use. As such a system, it is preferable that the base has a conductive film on at least a partial region thereof, the frame has a metal conductor that penetrates therethrough, and that the conductive film and the metal conductor are electrically connected. The metal conductor is preferably silver from the viewpoint of being able to be fired simultaneously with the glass-ceramic composition and having high heat dissipation.
 さらに、本実施形態に係るガラスセラミック組成物は、空隙率が10%以下と低く、強度に優れることから、気密封止パッケージとしても適している。具体的には、発光ダイオード素子又は半導体レーザー素子といった光素子以外でも、気密封止が必要な電子部品を、大気または窒素等で封止して収容するパッケージとして用いられてもよい。 Furthermore, the glass-ceramic composition according to the present embodiment has a low porosity of 10% or less and is excellent in strength, so it is also suitable as a hermetically sealed package. Specifically, other than optical elements such as light emitting diode elements and semiconductor laser elements, it may be used as a package that houses electronic components that require hermetic sealing by sealing them with air, nitrogen, or the like.
 気密封止が必要な電子部品の一つとしては、例えば全固体電池が挙げられる。
 全固体電池においては、酸化物系固体電解質と硫化物系固体電解質の2種が主に電解質として用いられ、特に後者は水分と反応し有毒ガスを生成することで知られる。また、電解質の種類を問わず車載バックアップ電源の用途等に用いる場合は高い耐水性を求められ、気密に封止できるパッケージが必要となる場合がある。
One example of an electronic component that requires hermetic sealing is an all-solid-state battery.
In all-solid-state batteries, two types of electrolytes, an oxide-based solid electrolyte and a sulfide-based solid electrolyte, are mainly used, and the latter in particular is known to react with moisture to generate toxic gas. In addition, regardless of the type of electrolyte, when used for applications such as vehicle backup power supplies, high water resistance is required, and a package that can be hermetically sealed may be required.
 図2に、本実施形態に係るガラスセラミック組成物を用いた気密封止パッケージの構造の一例となる模式断面図を示す。 FIG. 2 shows a schematic cross-sectional view as an example of the structure of a hermetically sealed package using the glass-ceramic composition according to this embodiment.
 図2において、気密封止パッケージ100は、少なくとも、本実施形態に係るガラスセラミック組成物からなる基板10と、蓋部20と、電子部品30とを含む。基板10の表面および内部には、電子部品30との電気的接続を可能とするための電極12や内部配線13が設けられている。 In FIG. 2, the hermetically sealed package 100 includes at least a substrate 10 made of the glass-ceramic composition according to the present embodiment, a lid portion 20, and an electronic component 30. Electrodes 12 and internal wirings 13 are provided on the surface and inside of the substrate 10 to enable electrical connection with the electronic component 30 .
 蓋部20の材料は、電子部品30を気密封止できるものであれば特に限定されないが、例えば本実施形態に係るガラスセラミック組成物、金属材料、または透光性材料であってもよい。蓋部20が透光性材料からなる場合は、気密封止パッケージ100に収容された部品の外観や電極極性などを目視で判別することが可能となる。 The material of the lid portion 20 is not particularly limited as long as it can hermetically seal the electronic component 30, and may be, for example, the glass-ceramic composition according to the present embodiment, a metal material, or a translucent material. When the lid portion 20 is made of a light-transmitting material, it is possible to visually determine the appearance, electrode polarity, etc. of the components housed in the airtightly sealed package 100 .
 基板10と蓋部20との封止方法は、気密封止できるものであれば特に限定されないが、例えば金属接合による方法が挙げられる。具体的には、基板10および蓋部20に第1金属層11および第2金属層21をそれぞれ形成し、その後これらを封止層40を用いて封止する。 The method of sealing the substrate 10 and the lid portion 20 is not particularly limited as long as it can be airtightly sealed, but for example, a method using metal bonding can be used. Specifically, the first metal layer 11 and the second metal layer 21 are formed on the substrate 10 and the lid portion 20 respectively, and then these are sealed using the sealing layer 40 .
 第1金属層11および第2金属層21に用いる金属としては、銀(Ag)、銅(Cu)、金(Au)などが挙げられ、これらを単独でまたは2種以上組み合わせて用いる。これら中でも、Agは、本実施形態に係るガラスセラミック組成物を含む、一般的なガラスセラミック組成物と同時に焼成可能である点で好ましい。 Examples of metals used for the first metal layer 11 and the second metal layer 21 include silver (Ag), copper (Cu), and gold (Au), and these are used alone or in combination of two or more. Among these, Ag is preferable in that it can be fired simultaneously with a general glass-ceramic composition including the glass-ceramic composition according to the present embodiment.
 また、第1金属層11または第2金属層21には、その最表面、すなわち、基板10または蓋部20と対向する面に保護金属膜を設けてもよい。保護金属膜としては、金(Au)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)などが挙げられ、これらを単独でまたは2種以上組み合わせて用いる。 A protective metal film may be provided on the outermost surface of the first metal layer 11 or the second metal layer 21 , that is, the surface facing the substrate 10 or the lid portion 20 . Examples of the protective metal film include gold (Au), nickel (Ni), palladium (Pd), platinum (Pt), and the like, and these are used alone or in combination of two or more.
 封止層40としては、例えば封止用金属プリフォームや、はんだを用いてよい。封止用金属プリフォームとして用いられる金属としてはAu、錫(Sn)、アンチモン(Sb)、Ag、Ni、Pt、またはこれらの合金などが挙げられる。また、封止層40を形成する際には、シーム封止を行ってもよい。 As the sealing layer 40, for example, a sealing metal preform or solder may be used. Au, tin (Sn), antimony (Sb), Ag, Ni, Pt, or alloys of these metals may be used as the metal preform for sealing. Seam sealing may be performed when forming the sealing layer 40 .
<ガラスセラミック組成物の製造方法>
 ガラスセラミック組成物の製造方法は特に限定されないが、以下に一実施形態を説明する。
 ガラスセラミック組成物は、ガラス粉末、Alを含むフィラー成分及び無機顔料の混合物を成形、焼成することで焼結されて得られる。具体的には、上記混合物をグリーンシートと呼ばれるシート状に成形し、焼成する方法が挙げられる。
<Method for producing glass-ceramic composition>
Although the method for producing the glass-ceramic composition is not particularly limited, one embodiment is described below.
A glass-ceramic composition is obtained by sintering by molding and firing a mixture of glass powder, a filler component containing Al 2 O 3 and an inorganic pigment. Specifically, there is a method of forming the above mixture into a sheet called a green sheet and firing the sheet.
 グリーンシートの製造方法の一例を下記に示す。
 まず、所望するガラス組成となるように各原料を配合、混合した原料混合物を溶融させた後に冷却し、粉砕することでガラス粉末を得る。粉砕により得られたガラス粉末がガラスマトリックスとなり、ガラスセラミック組成物のガラス組成を決定する。
An example of a green sheet manufacturing method is shown below.
First, each raw material is blended so as to obtain a desired glass composition, and the mixed raw material mixture is melted, cooled, and pulverized to obtain a glass powder. The glass powder obtained by grinding becomes the glass matrix and determines the glass composition of the glass-ceramic composition.
 原料混合物の溶融温度は例えば1200~1600℃以上が好ましく、溶融時間は例えば30~60分が好ましい。
 粉砕は乾式粉砕法でも湿式粉砕法でもよい。湿式粉砕法の場合には、溶媒として水やエタノール等が使用できる。
 粉砕は、例えば、ロールミル、ボールミル、ジェットミル等の粉砕機を使用できる。
The melting temperature of the raw material mixture is preferably, for example, 1200 to 1600° C. or higher, and the melting time is preferably, for example, 30 to 60 minutes.
Pulverization may be a dry pulverization method or a wet pulverization method. In the wet pulverization method, water, ethanol, or the like can be used as a solvent.
For pulverization, for example, pulverizers such as roll mills, ball mills, and jet mills can be used.
 ガラス粉末の大きさは、50%粒径(D50)が0.5~4μmが好ましく、1~3μmがより好ましい。ここで、ガラス粉末が凝集して取扱いが困難となるのを防ぎ、また、粉末化に要する時間の長時間化を防ぐ観点から、50%粒径(D50)は0.5μm以上が好ましく、1μm以上がより好ましい。また、焼結不足を防ぐ観点から、50%粒径(D50)は4μm以下が好ましく、3μm以下がより好ましい。
 ガラス粉末の最大粒径は、良好な焼結性を得る観点、及び焼結体中への未溶解成分残留に伴う反射率低下を防ぐ観点から、20μm以下が好ましく、10μm以下がより好ましい。
 粒径の調整は、粉砕後に必要に応じて分級する等により可能である。
As for the size of the glass powder, the 50% particle diameter (D 50 ) is preferably 0.5 to 4 μm, more preferably 1 to 3 μm. Here, the 50% particle size (D 50 ) is preferably 0.5 μm or more from the viewpoint of preventing the glass powder from agglomerating and making it difficult to handle, and from the viewpoint of preventing the time required for pulverization from becoming longer. 1 μm or more is more preferable. Moreover, from the viewpoint of preventing insufficient sintering, the 50% particle size (D 50 ) is preferably 4 μm or less, more preferably 3 μm or less.
The maximum particle size of the glass powder is preferably 20 μm or less, more preferably 10 μm or less, from the viewpoints of obtaining good sinterability and preventing a decrease in reflectance due to undissolved components remaining in the sintered body.
The particle size can be adjusted by, if necessary, classifying after pulverization.
 次いで、ガラス粉末とフィラー成分とを混合する。
 フィラー成分はAlの結晶体粉末を含めばよく、その他に、例えばコージェライト粉末やリン酸ジルコニウム粉末等の他のフィラー成分をさらに含んでいてもよいが、他のフィラー成分の合計の含有量は3質量%以下が好ましい。
The glass powder and filler components are then mixed.
The filler component may contain Al 2 O 3 crystal powder, and may further contain other filler components such as cordierite powder and zirconium phosphate powder, but the total amount of the other filler components may be The content is preferably 3% by mass or less.
 無機顔料は、ガラス粉末とフィラー成分とを混合する際に、共に混合してもよく、ガラス粉末とフィラー成分とを混合した後に混合してもよい。 The inorganic pigment may be mixed together when the glass powder and the filler component are mixed, or may be mixed after the glass powder and the filler component are mixed.
 また、上記の他、必要に応じて有機溶剤、可塑剤、バインダー、分散剤等を配合してスラリー又はペーストを調製する。配合する各材料は従来公知のものを適用できる。
 有機溶剤は、例えば、アルコール、ケトン、芳香族炭化水素等が挙げられる。より具体的には、トルエン、メチルエチルケトン、メタノール、2-ブタノール、キシレン等を使用でき、これらを1種用いても2種以上を混合してもよい。
 可塑剤は、アジピン酸系、フタル酸系等が挙げられる。より具体的には、アジピン酸ビス(2-エチルへキシル)、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等を使用できる。
 バインダーは、熱分解性樹脂等が挙げられる。より具体的には、アクリル樹脂、ポリビニルブチラール等を使用できる。
 分散剤は、界面活性剤型分散剤等が挙げられる。より具体的には、DISPERBYK180(商品名、ビックケミー社製)等を使用できる。
In addition to the above, an organic solvent, a plasticizer, a binder, a dispersant, and the like are blended as necessary to prepare a slurry or paste. Conventionally known materials can be applied to each material to be blended.
Examples of organic solvents include alcohols, ketones, aromatic hydrocarbons, and the like. More specifically, toluene, methyl ethyl ketone, methanol, 2-butanol, xylene and the like can be used, and these may be used alone or in combination of two or more.
Examples of the plasticizer include adipic acid-based and phthalic acid-based plasticizers. More specifically, bis(2-ethylhexyl) adipate, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used.
A thermally decomposable resin etc. are mentioned as a binder. More specifically, acrylic resin, polyvinyl butyral, etc. can be used.
Examples of dispersants include surfactant-type dispersants. More specifically, DISPERBYK180 (trade name, manufactured by BYK-Chemie) or the like can be used.
 得られたスラリー又はペーストをフィルムの上に塗布し、乾燥させることで、グリーンシートが得られる。グリーンシートの厚みは特に限定されず、塗布する際の厚みや、スラリー濃度等により調整できる。 A green sheet is obtained by applying the obtained slurry or paste on the film and drying it. The thickness of the green sheet is not particularly limited, and can be adjusted by the thickness at the time of application, slurry concentration, and the like.
 得られたグリーンシートを、所望する高さに応じて積層し、適宜成形する。この際、グリーンシートではなく、金型等を用いて成形してもよい。 The obtained green sheets are laminated according to the desired height and molded appropriately. At this time, a mold or the like may be used instead of the green sheet for molding.
 また、グリーンシートは、所望する形状に合わせてひとつずつ作製してもよいが、大きなグリーンシートを作製し、孔あけ機で複数箇所打ち抜きを行うこと等により、基板が複数連結された多数個取りの連結基板としてもよい。この連結基板を焼成後に分割することで、ガラスセラミック組成物による単独の基板が得られる。 The green sheets may be produced one by one according to the desired shape, but by producing a large green sheet and punching it at multiple locations with a hole puncher, etc., it is possible to obtain a large number of substrates by connecting a plurality of substrates. may be used as a connecting substrate. By dividing this connecting substrate after firing, individual substrates made of the glass-ceramic composition can be obtained.
 かかる基板に対し、所望により、導電性膜や金属導体等を従来公知の方法により設けてもよい。また、本実施形態に係るガラスセラミック組成物を枠部として、平板状ガラスによる基部との接合を行ってもよい。また、本実施形態に係るガラスセラミック組成物は、グリーンシートにフェライト結晶を含むフェライト内臓ガラスセラミック組成物としなくても、導電性膜や金属導体といった配線導体と共に、発光ダイオード素子又は半導体レーザー素子を搭載するための基板に良好に用いられる。 If desired, a conductive film, a metal conductor, or the like may be provided on such a substrate by a conventionally known method. Also, the glass-ceramic composition according to the present embodiment may be used as a frame to be joined to a base made of flat glass. Further, the glass-ceramic composition according to the present embodiment can be used as a light-emitting diode element or a semiconductor laser element together with a wiring conductor such as a conductive film or a metal conductor, even if it is not a ferrite-embedded glass-ceramic composition containing ferrite crystals in the green sheet. It is suitable for use as a substrate for mounting.
 脱脂は必要に応じて行えばよく、例えば400~550℃が好ましい。脱脂時間は、例えば1~10時間が好ましい。 Degreasing may be performed as necessary, preferably at 400-550°C, for example. The degreasing time is preferably 1 to 10 hours, for example.
 焼成時の温度は、ガラスマトリックスを構成するガラス組成によっても異なるが、例えば、850~905℃が好ましく、860~900℃がより好ましく、870~890℃がさらに好ましい。ここで、十分な焼結性を得るとともに銀ペーストと同時に焼成する観点から、焼成時の温度は850℃以上が好ましく、860℃以上がより好ましく、870℃以上がさらに好ましい。また、金属膜や金属導体等を設ける場合には、焼成時に銀等の金属が軟化したり溶融することで、配線パターンや貫通導体の形状が保持できなくなるのを防ぐ観点から、焼成時の温度は905℃以下が好ましく、900℃以下がより好ましく、890℃以下がさらに好ましい。 The firing temperature varies depending on the glass composition constituting the glass matrix, but is preferably 850 to 905°C, more preferably 860 to 900°C, and even more preferably 870 to 890°C. Here, from the viewpoint of obtaining sufficient sinterability and simultaneously firing the silver paste, the firing temperature is preferably 850° C. or higher, more preferably 860° C. or higher, and even more preferably 870° C. or higher. In addition, when a metal film or a metal conductor is provided, the temperature during firing should be adjusted from the viewpoint of preventing the metal such as silver from softening or melting during firing, which may prevent the shape of the wiring pattern or through conductor from being maintained. is preferably 905° C. or lower, more preferably 900° C. or lower, and even more preferably 890° C. or lower.
 焼成時間は10~60分が好ましく、15~55分がより好ましく、25~50分がさらに好ましい。ここで、十分な焼結性を得る観点から、焼成時間は10分以上が好ましく、15分以上がより好ましく、25分以上がさらに好ましい。また、生産性の観点から、焼成時間は60分以下が好ましく、55分以下がより好ましく、50分以下がさらに好ましい。 The baking time is preferably 10 to 60 minutes, more preferably 15 to 55 minutes, even more preferably 25 to 50 minutes. Here, from the viewpoint of obtaining sufficient sinterability, the firing time is preferably 10 minutes or longer, more preferably 15 minutes or longer, and even more preferably 25 minutes or longer. From the viewpoint of productivity, the baking time is preferably 60 minutes or less, more preferably 55 minutes or less, and even more preferably 50 minutes or less.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。なお、例1~例4は実施例であり、例5~例7は比較例である。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these. Examples 1 to 4 are working examples, and examples 5 to 7 are comparative examples.
[例1~例7]
 酸化物基準の百分率表示で、SiO:56.81質量%、B:17.0質量%、Al:9.60質量%、CaO:13.17質量%、KO:1.47質量%、NaO:1.94質量%となるようにガラス原料を配合、混合して原料混合物とした。この原料混合物を白金ルツボに入れて1500~1600℃で60分溶融させた後、溶融状態のガラスを流し出し冷却した。このガラスを溶媒であるエチルアルコールと共に容器に入れ、アルミナ製ボールミルにより20~60時間粉砕して、ガラスマトリックスとなるガラス粉末を得た。得られたガラス粉末の50%粒径は1.6μmであった。
 得られたガラス粉末と、アルミナ粉末(住友化学社製、商品名:ALM―41-01)と、無機顔料とが、表1の割合となるように配合し、混合することで、ガラスセラミック組成物の前駆体を得た。なお、顔料の詳細は表2に示したとおりである。また、表1の空欄は未配合であることを意味する。
 次いで、ガラスセラミック組成物の前駆体5kgに、有機溶剤として、トルエン:メチルエチルケトン:メタノール:2-ブタノール=37.5:37.5:8.5:16.5(質量比)で混合したものを1.702kg、可塑剤として、アジピン酸ビス(2-エチルヘキシル)を0.3kg、バインダーとして、ブチラール樹脂を0.6kg、及び分散剤(ビックケミー社製、商品名:DISPERBYK180)を0.075kg配合し、混合してスラリーを調製した。
 スラリーをポリエチレンテレフタレート(PET)フィルム上にドクターブレード法により塗布し、乾燥させることで、グリーンシートを製造した。グリーンシートの一枚あたりの厚さは200μmであった。
[Examples 1 to 7]
SiO 2 : 56.81% by mass, B 2 O 3 : 17.0% by mass, Al 2 O 3 : 9.60% by mass, CaO: 13.17% by mass, K 2 O in percentage display based on oxides : 1.47% by mass and Na 2 O: 1.94% by mass. This raw material mixture was placed in a platinum crucible and melted at 1500 to 1600° C. for 60 minutes, after which the molten glass was poured out and cooled. This glass was placed in a container together with ethyl alcohol as a solvent, and pulverized with an alumina ball mill for 20 to 60 hours to obtain a glass powder serving as a glass matrix. The 50% particle size of the obtained glass powder was 1.6 μm.
The obtained glass powder, alumina powder (manufactured by Sumitomo Chemical Co., Ltd., trade name: ALM-41-01), and an inorganic pigment were blended in the ratio shown in Table 1 and mixed to obtain a glass-ceramic composition. obtained the precursor of the product. Details of the pigments are as shown in Table 2. In addition, blanks in Table 1 mean that they are not blended.
Next, 5 kg of the precursor of the glass-ceramic composition was mixed with toluene:methyl ethyl ketone:methanol:2-butanol=37.5:37.5:8.5:16.5 (mass ratio) as an organic solvent. 1.702 kg, 0.3 kg of bis(2-ethylhexyl) adipate as a plasticizer, 0.6 kg of butyral resin as a binder, and 0.075 kg of a dispersant (manufactured by BYK-Chemie, trade name: DISPERBYK180). , were mixed to prepare a slurry.
A green sheet was produced by applying the slurry onto a polyethylene terephthalate (PET) film by a doctor blade method and drying it. The thickness of each green sheet was 200 μm.
 グリーンシートに穴あけ機を用いて直径0.17mmの孔をあけた。また、穴あけ機を用いて1辺が0.82mm、1.2mmの正方形の孔をそれぞれあけた。これらの孔内にスクリーン印刷法により銀ペーストを充填した。さらにグリーンシートにスクリーン印刷法により配線パターンを印刷した。次いでこれらのグリーンシートを積層した。これを、550℃で5時間保持して脱脂し、さらに870℃で60分間保持することで焼成し、ガラスセラミック組成物を得た。ガラスセラミック組成物の1ピースの大きさは3.1×2.6mmであった。 A hole with a diameter of 0.17 mm was made in the green sheet using a hole puncher. Square holes with sides of 0.82 mm and 1.2 mm were formed using a hole puncher. These holes were filled with silver paste by screen printing. Further, a wiring pattern was printed on the green sheet by a screen printing method. These green sheets were then laminated. This was held at 550° C. for 5 hours for degreasing, and further held at 870° C. for 60 minutes for firing to obtain a glass-ceramic composition. The size of one piece of glass-ceramic composition was 3.1×2.6 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価]
(反射率(%))
 ガラスセラミック組成物に対し、パーキンエルマージャパン社LAMBDA950と150mm積分球を用いて波長250~2000nmの領域における反射率を測定した。リファレンスとしては硫酸バリウムを使用した。
 波長800~880nmの領域における平均反射率、波長780~800nmの全波長領域における反射率の最大値、波長800~820nmの全波長領域における反射率の最大値、波長820~840nmの全波長領域における反射率の最大値、波長840~860nmの全波長領域における反射率の最大値、波長860~880nmの全波長領域における反射率の最大値、波長900~910nmの全波長領域における反射率の最大値、及び波長1550nmにおける反射率を表3に示す。なお、「全波長領域における反射率の最大値」が例えば20%である場合、かかる「全波長領域における反射率が20%以下」であることを意味する。
[evaluation]
(Reflectance (%))
The reflectance in the wavelength range of 250 to 2000 nm was measured for the glass-ceramic composition using LAMBDA950 of PerkinElmer Japan Co., Ltd. and a 150 mm integrating sphere. Barium sulfate was used as a reference.
Average reflectance in the wavelength range of 800 to 880 nm, maximum reflectance in the entire wavelength range of 780 to 800 nm, maximum reflectance in the entire wavelength range of 800 to 820 nm, in the entire wavelength range of 820 to 840 nm Maximum reflectance, maximum reflectance in the entire wavelength range from 840 to 860 nm, maximum reflectance in the entire wavelength range from 860 to 880 nm, maximum reflectance in the entire wavelength range from 900 to 910 nm , and the reflectance at a wavelength of 1550 nm are shown in Table 3. For example, when the "maximum value of the reflectance in the entire wavelength range" is 20%, it means that "the reflectance in the entire wavelength range is 20% or less".
(XY収縮率(%))
 1辺45mmの正方形のグリーンシートを6枚積層したものに対して870℃で30分間保持する焼成を行って焼結体を得た。この焼結体のXY寸法を測定し、焼成前の寸法で除することによってXY収縮率を測定した。結果を表3に示す。
(XY shrinkage rate (%))
A sintered body was obtained by firing at 870° C. for 30 minutes for a stack of six square green sheets each having a side of 45 mm. The XY shrinkage ratio was measured by measuring the XY dimensions of this sintered body and dividing them by the dimensions before firing. Table 3 shows the results.
(平均密度)
 1辺45mmの正方形のグリーンシートを6枚積層したものに対して870℃で30分間保持する焼成を行って焼結体を得た。この焼結体を電子比重計を用いて見かけ比重を算出することで、平均密度を測定した。結果を表3に示す。
(average density)
A sintered body was obtained by firing at 870° C. for 30 minutes for a stack of six square green sheets each having a side of 45 mm. The average density was measured by calculating the apparent specific gravity of this sintered body using an electronic hydrometer. Table 3 shows the results.
(平均強度)
 45mm×5mmの長方形のグリーンシートを6枚積層したものに対して870℃で30分間保持する焼成を行って焼結体を得た。この焼結体をオートグラフ(島津製作所製、オートグラフAGS-X)を用いて3点曲げ試験の最大荷重値より応力を算出することで、平均強度を測定した。結果を表3に示す。
(average strength)
Six rectangular green sheets of 45 mm×5 mm were stacked and fired at 870° C. for 30 minutes to obtain a sintered body. The average strength of this sintered body was measured by calculating the stress from the maximum load value in a three-point bending test using an Autograph (manufactured by Shimadzu Corporation, Autograph AGS-X). Table 3 shows the results.
(空隙率(%))
 焼成後のガラスセラミック組成物に対し、樹脂に包埋し鏡面研磨を行った試料に対して500倍の倍率でSEMを撮影した断面像に対して画像解析ソフト(ImageJ、アメリカ国立衛生研究所製)を用いて画像を2値化処理し、空隙の面積を全体の面積で除することで算出することで、空隙率を測定した。結果を表3に示す。
(Porosity (%))
Image analysis software (ImageJ, manufactured by the National Institutes of Health ) was used to binarize the image, and the porosity was measured by dividing the area of the voids by the total area. Table 3 shows the results.
(残留カーボン含有量(質量ppm))
 焼成後のガラスセラミック組成物に対し、乳鉢を用いて適宜粉砕して粉末状態とし、得られた粉末の残留カーボン含有量を、炭素分析装置(堀場製作所製、EMIA-320V)を用いて測定した。結果を表3に示す。
 また、各顔料A~Gについても、900℃で12時間熱処理した後の残留カーボン含有量を、同様に炭素分析装置(堀場製作所製、EMIA-320V)を用いて測定した。結果を表2に示す。
(Residual carbon content (mass ppm))
The fired glass-ceramic composition was appropriately pulverized using a mortar to obtain a powder state, and the residual carbon content of the resulting powder was measured using a carbon analyzer (EMIA-320V, manufactured by Horiba, Ltd.). . Table 3 shows the results.
For each pigment A to G, the residual carbon content after heat treatment at 900° C. for 12 hours was similarly measured using a carbon analyzer (EMIA-320V manufactured by Horiba, Ltd.). Table 2 shows the results.
(無機顔料の硝酸塩含有量及び硫酸塩含有量)
 例4及び例7のガラスセラミック組成物を製造する際に用いた顔料F及び顔料Gについて、硝酸塩含有量及び硫酸塩含有量の測定のために、陰イオンクロマトグラフィー測定を行った。サンプルは、Thermo Fisher Scientific社製 ICS-2100 (カラム:AS11-HC)を用いてポリカップに顔料F、顔料Gを5gずつ分取し、純水を20mL加えて30分攪拌し、上澄みをフィルター(孔径:0.5μm)でろ過し、10mM水酸化ナトリウムにより100倍希釈したものを用いた。陰イオンクロマトグラフィー測定を行い、NO の溶出量とSO 2-の溶出量を求めた。この溶出量を百万分率に変換した値が、無機顔料における硝酸塩、硫酸塩の含有量である。結果を表3に示す。
(Nitrate content and sulfate content of inorganic pigment)
Anion chromatography measurements were performed to determine nitrate content and sulfate content on Pigment F and Pigment G used in making the glass-ceramic compositions of Examples 4 and 7. For samples, 5 g each of Pigment F and Pigment G were placed in a plastic cup using Thermo Fisher Scientific ICS-2100 (column: AS11-HC), 20 mL of pure water was added and stirred for 30 minutes, and the supernatant was filtered ( pore size: 0.5 μm) and diluted 100-fold with 10 mM sodium hydroxide. Anion chromatography measurements were performed to determine the elution amounts of NO 3 - and SO 4 2- . The value obtained by converting this elution amount into parts per million is the content of nitrate and sulfate in the inorganic pigment. Table 3 shows the results.
(無機顔料のK、Na含有量)
 例4及び例7のガラスセラミック組成物を製造する際に用いた顔料F及び顔料Gについて、KとNaの含有量の測定のために、ICP発光分光分析装置(Agilent Technologies社製、商品名:Agilent5800)を用いて、Na、Kの陽イオンの抽出を行った。サンプルは、ポリカップに顔料F、顔料Gを5gずつ分取し、純水を20mL加えて30分攪拌し、上澄みをフィルター(孔径:0.5μm)でろ過したものを用いた。Na、Kの陽イオンの抽出量を百万分率に変換した値がNa、Kの含有量である。結果を表3に示す。
(K and Na content of inorganic pigment)
For the pigment F and pigment G used in producing the glass-ceramic compositions of Examples 4 and 7, an ICP emission spectrometer (manufactured by Agilent Technologies, trade name: Agilent 5800) was used to extract Na and K cations. The samples were obtained by taking 5 g each of Pigment F and Pigment G in a plastic cup, adding 20 mL of pure water, stirring for 30 minutes, and filtering the supernatant through a filter (pore size: 0.5 μm). The content of Na and K is the value obtained by converting the extracted amount of cations of Na and K into parts per million. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果より、例1~例4のガラスセラミック組成物は、空隙率が5%以下であり、高い平均強度が得られた。また、上記ガラスセラミック組成物は、反射率の結果も非常に良好であったが、これらは、残留カーボン含有量が少ないことに起因していると思われる。
 例4と例5は、用いた無機顔料が顔料Fと顔料Aであって、似た組成であるにも関わらず、ガラスセラミック組成物における空隙率と残留カーボン含有量が大きく異なる結果となった。これは、顔料Fが湿式粉砕による精製処理がなされているのに対し、顔料Aが精製処理がなされていないことによる可能性が示唆された。また、それにより、例5のガラスセラミック組成物の平均強度が非常に低くなっており、低い反射率と強度低下の抑制の両立はできていない結果となった。
 例4と例7は、用いた無機顔料が顔料Fと顔料Gであるが、顔料Fは精製処理として湿式粉砕がされており、顔料Gは精製処理として湿式粉砕に加えて高温焼成がされている。これらはいずれも、ガラスセラミック組成物における残留カーボン含有量は少なくなったにも関わらず、顔料Gを用いた例7のガラスセラミック組成物は空隙率が高い結果となった。これは、顔料G中の残留塩類が多いことに起因するものと考えている。すなわち、顔料Gは、硝酸塩含有量及び硫酸塩含有量が多く、NOxやSOxが多く発生して空隙となった可能性が考えられる。また、それにより、例7のガラスセラミック組成物の平均強度が極端に低くなっており、低い反射率と強度低下の抑制の両立はできていない結果となった。
From the above results, the glass-ceramic compositions of Examples 1 to 4 had a porosity of 5% or less, and high average strength was obtained. The glass-ceramic composition also had very good reflectance results, which may be attributed to the low residual carbon content.
In Examples 4 and 5, although the inorganic pigments used were Pigment F and Pigment A and the compositions were similar, the porosity and residual carbon content in the glass-ceramic compositions were significantly different. . It was suggested that this is because Pigment F was purified by wet pulverization, whereas Pigment A was not purified. In addition, as a result, the average strength of the glass-ceramic composition of Example 5 was extremely low, resulting in a failure to achieve both low reflectance and suppression of reduction in strength.
In Examples 4 and 7, the inorganic pigments used were Pigment F and Pigment G. Pigment F was subjected to wet pulverization as purification treatment, and Pigment G was subjected to wet pulverization and high-temperature firing as purification treatment. there is All of these resulted in a higher porosity in the glass-ceramic composition of Example 7 with Pigment G, despite the lower residual carbon content in the glass-ceramic composition. It is believed that this is due to the large amount of residual salts in Pigment G. That is, it is conceivable that Pigment G has a high content of nitrate and a high content of sulfate, resulting in generation of large amounts of NOx and SOx to form voids. Moreover, as a result, the average strength of the glass-ceramic composition of Example 7 was extremely low, resulting in a failure to achieve both a low reflectance and suppression of a decrease in strength.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2021年12月10日出願の日本特許出願(特願2021-200824)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2021-200824) filed on December 10, 2021, the content of which is hereby incorporated by reference.
 1 基板
 2 蓋部
 3 発光素子
 10 基板
 11 第1金属層
 12 電極
 13 内部配線
 20 蓋部
 21 第2金属層
 30 電子部品
 40 封止層
 100 気密封止パッケージ
 hν,hν’ 光
REFERENCE SIGNS LIST 1 substrate 2 lid 3 light emitting element 10 substrate 11 first metal layer 12 electrode 13 internal wiring 20 lid 21 second metal layer 30 electronic component 40 sealing layer 100 hermetically sealed package hν, hν' light

Claims (10)

  1.  ガラスマトリックス、Al、及び無機顔料を含むガラスセラミック組成物であって、
     波長800~880nmの領域における平均反射率が30%以下であり、
     波長900~910nmの全波長領域における反射率が32%以下であり、
     波長1550nmにおける反射率が25%以下であり、
     空隙率が10%以下であり、
     前記無機顔料が、Cr系酸化物、Fe系酸化物、Co系酸化物、Mn系酸化物、及びCu系酸化物からなる群より選ばれる少なくとも1種を含む複合酸化物を含み、
     質量%表示で、前記ガラスセラミック組成物における前記Alの含有量は、前記ガラスセラミック組成物における前記ガラスマトリックスの含有量よりも多く、
     前記ガラスセラミック組成物の残留カーボン含有量が20質量ppm以下である、ガラスセラミック組成物。
    A glass-ceramic composition comprising a glass matrix, Al2O3 , and an inorganic pigment ,
    The average reflectance in the wavelength range of 800 to 880 nm is 30% or less,
    The reflectance in the entire wavelength range of 900 to 910 nm is 32% or less,
    Reflectance at a wavelength of 1550 nm is 25% or less,
    The porosity is 10% or less,
    The inorganic pigment comprises a composite oxide containing at least one selected from the group consisting of Cr-based oxides, Fe-based oxides, Co-based oxides, Mn-based oxides, and Cu-based oxides,
    The content of the Al 2 O 3 in the glass-ceramic composition is higher than the content of the glass matrix in the glass-ceramic composition, expressed as % by mass,
    A glass-ceramic composition, wherein the residual carbon content of the glass-ceramic composition is 20 mass ppm or less.
  2.  波長780~800nmの全波長領域における反射率が25%以下である、請求項1に記載のガラスセラミック組成物。 The glass-ceramic composition according to claim 1, which has a reflectance of 25% or less in the entire wavelength range of 780 to 800 nm.
  3.  波長800~820nmの全波長領域における反射率が25%以下である、請求項1又は2に記載のガラスセラミック組成物。 The glass-ceramic composition according to claim 1 or 2, which has a reflectance of 25% or less in the entire wavelength range of 800 to 820 nm.
  4.  波長820~840nmの全波長領域における反射率が30%以下である、請求項1又は2に記載のガラスセラミック組成物。 The glass-ceramic composition according to claim 1 or 2, which has a reflectance of 30% or less in the entire wavelength range of 820 to 840 nm.
  5.  波長840~860nmの全波長領域における反射率が30%以下である、請求項1又は2に記載のガラスセラミック組成物。 The glass-ceramic composition according to claim 1 or 2, which has a reflectance of 30% or less in the entire wavelength range of 840 to 860 nm.
  6.  波長860~880nmの全波長領域における反射率が32%以下である、請求項1又は2に記載のガラスセラミック組成物。 The glass-ceramic composition according to claim 1 or 2, which has a reflectance of 32% or less in the entire wavelength range of 860 to 880 nm.
  7.  前記残留カーボン含有量が16質量ppm以下である、請求項1又は2に記載のガラスセラミック組成物。 The glass-ceramic composition according to claim 1 or 2, wherein the residual carbon content is 16 mass ppm or less.
  8.  前記ガラスマトリックスがホウケイ酸系ガラスからなり、
     前記ホウケイ酸系ガラスを35~50質量%、前記Alを45~60質量%、及び前記無機顔料を3~10質量%含む、請求項1又は2に記載のガラスセラミック組成物。
    the glass matrix is made of borosilicate glass,
    3. The glass-ceramic composition according to claim 1, comprising 35-50% by weight of said borosilicate glass, 45-60% by weight of said Al 2 O 3 and 3-10% by weight of said inorganic pigment.
  9.  前記無機顔料における硝酸塩及び硫酸塩の合計の含有量が500質量ppm以下である、請求項1又は2に記載のガラスセラミック組成物。 The glass-ceramic composition according to claim 1 or 2, wherein the total content of nitrates and sulfates in the inorganic pigment is 500 ppm by mass or less.
  10.  発光ダイオード素子又は半導体レーザー素子を搭載するための基板に用いられる、請求項1又は2に記載のガラスセラミック組成物。 The glass-ceramic composition according to claim 1 or 2, which is used for a substrate for mounting a light-emitting diode element or a semiconductor laser element.
PCT/JP2022/044792 2021-12-10 2022-12-05 Glass ceramic composition WO2023106269A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-200824 2021-12-10
JP2021200824 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023106269A1 true WO2023106269A1 (en) 2023-06-15

Family

ID=86730438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044792 WO2023106269A1 (en) 2021-12-10 2022-12-05 Glass ceramic composition

Country Status (2)

Country Link
TW (1) TW202337859A (en)
WO (1) WO2023106269A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158641A (en) * 1999-12-01 2001-06-12 Asahi Glass Co Ltd Glass and glass ceramic composition
WO2011096126A1 (en) * 2010-02-05 2011-08-11 旭硝子株式会社 Substrate for mounting light-emitting element, and light-emitting device
JP2013254820A (en) * 2012-06-06 2013-12-19 Stanley Electric Co Ltd Substrate for mounting light-emitting element and light-emitting device
WO2014073604A1 (en) * 2012-11-07 2014-05-15 旭硝子株式会社 Glass ceramic substrate and housing for portable electronic equipment using substrate
JP2017178631A (en) * 2016-03-28 2017-10-05 日本電気硝子株式会社 Production method of glass chip for authenticity certification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158641A (en) * 1999-12-01 2001-06-12 Asahi Glass Co Ltd Glass and glass ceramic composition
WO2011096126A1 (en) * 2010-02-05 2011-08-11 旭硝子株式会社 Substrate for mounting light-emitting element, and light-emitting device
JP2013254820A (en) * 2012-06-06 2013-12-19 Stanley Electric Co Ltd Substrate for mounting light-emitting element and light-emitting device
WO2014073604A1 (en) * 2012-11-07 2014-05-15 旭硝子株式会社 Glass ceramic substrate and housing for portable electronic equipment using substrate
JP2017178631A (en) * 2016-03-28 2017-10-05 日本電気硝子株式会社 Production method of glass chip for authenticity certification

Also Published As

Publication number Publication date
TW202337859A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
US8304357B2 (en) Ceramic material composition
US8753992B2 (en) Glass ceramic composition, substrate for light emitting element, and light emitting device
US20150010721A1 (en) Glass ceramic body, layered body, portable electronic device housing, and portable electronic device
WO2011096126A1 (en) Substrate for mounting light-emitting element, and light-emitting device
JP5765526B2 (en) Light reflecting substrate and light emitting device using the same
JP5556336B2 (en) Glass ceramic composition and element mounting substrate
WO2013002113A1 (en) Glass ceramic sintered body, reflective member using same, substrate for mounting light emitting element using same, and light emitting device
US10450219B2 (en) Composite powder, green sheet, light reflective substrate, and light emitting device using same
JP5516082B2 (en) Glass ceramic composition, substrate for light emitting diode element, and light emitting device
WO2023106269A1 (en) Glass ceramic composition
JP5516026B2 (en) Glass ceramic composition, light emitting diode element substrate, and light emitting device
JP6150159B2 (en) Glass ceramic for light emitting diode package, ceramic substrate using the same, and light emitting diode package
JP5655375B2 (en) Glass ceramic composition, light emitting diode element substrate and light emitting device.
WO2011126012A1 (en) Material for light-reflecting substrate, light-reflecting substrate and light emitting device using the same
EP3620440B1 (en) Laminate for preparing a wavelength converting member and process for preparing a wavelength converting member
JP5500494B2 (en) Light reflecting material
WO2023243472A1 (en) Cover glass with outer frame, semiconductor light emitting device, and semiconductor light receiving device
US20230055612A1 (en) Connected substrate and method for manufacturing element substrate using same
JP2004182510A (en) Glass frit mixture, method of manufacturing electronic circuit board, and electronic circuit board
JP5907481B2 (en) Light reflecting substrate and light emitting device using the same
TW202414696A (en) Cover glass with frame, semiconductor light emitting device and semiconductor light receiving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904197

Country of ref document: EP

Kind code of ref document: A1