WO2023106140A1 - Shaft seal - Google Patents

Shaft seal Download PDF

Info

Publication number
WO2023106140A1
WO2023106140A1 PCT/JP2022/043609 JP2022043609W WO2023106140A1 WO 2023106140 A1 WO2023106140 A1 WO 2023106140A1 JP 2022043609 W JP2022043609 W JP 2022043609W WO 2023106140 A1 WO2023106140 A1 WO 2023106140A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
shaft
lip portion
shaft seal
seal lip
Prior art date
Application number
PCT/JP2022/043609
Other languages
French (fr)
Japanese (ja)
Inventor
健 安田
佳大 ▲高▼橋
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021198154A external-priority patent/JP2023084053A/en
Priority claimed from JP2022054698A external-priority patent/JP2023147120A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023106140A1 publication Critical patent/WO2023106140A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3232Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips
    • F16J15/3236Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips with at least one lip for each surface, e.g. U-cup packings

Definitions

  • the present invention relates to a shaft seal for a rotary shaft, and more particularly to a shaft seal for a rotary shaft in a scroll compressor of an on-vehicle air conditioner.
  • the compressor uses a sealing member to prevent leakage of refrigerant and refrigerating machine oil.
  • a shaft seal is attached to a rotary shaft that drives the compression mechanism.
  • the scroll compressor is mounted on a vehicle and used as an electric compressor for an on-vehicle air conditioner, and is required to be smaller and more efficient.
  • Such shaft seals are required to have low torque in addition to sealing properties.
  • the shaft seal of Patent Document 1 is shown in FIG.
  • the shaft seal 71 is an annular shaft seal that is in close contact with the outer peripheral surface of the rotating shaft S to seal a sealing fluid containing oil.
  • the shaft seal 71 has a substantially U-shaped cross section in the axial direction. and an outer lip 73 provided.
  • a molding of a thermoplastic elastomer composition containing a polyester-based elastomer as a main component is used as a shaft seal, and the flexural modulus of the molding is set within a predetermined range, thereby providing excellent sealing performance and reducing rotational torque. can be reduced.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a shaft seal that has excellent sealing performance and low torque characteristics.
  • a shaft seal according to the present invention is an annular shaft seal that is in close contact with the outer peripheral surface of a rotating shaft to seal a sealing fluid, the shaft seal includes a seal lip portion that slides on the rotating shaft, The lip portion has a concave portion or a convex portion at or near the contact portion of the inner peripheral surface that slides on the rotating shaft.
  • the shaft seal has a substantially U-shaped cross section in the axial direction, and is characterized by having an outer lip portion provided on the outer diameter side of the seal lip portion.
  • the above-mentioned shaft seal is characterized by being a shaft seal used for a rotary shaft in a scroll compressor of an in-vehicle air conditioner.
  • a plurality of the grooves are spaced apart in the circumferential direction of the shaft seal, and the width of the grooves is 1% to 15% of the circumference of the inner diameter of the seal lip portion, and the grooves are adjacent to each other in the circumferential direction.
  • the interval between the grooves is 1% to 15% of the circumference of the inner diameter of the seal lip portion.
  • the width of the groove is characterized by being larger than the interval between the grooves adjacent in the circumferential direction.
  • the concave groove is formed so as to extend in the circumferential direction of the shaft seal, and when the total length of the seal lip portion is taken as 100%, the range is from a position of 5% to a position of 30% from the tip of the seal lip portion. characterized by being formed in
  • the maximum depth of the groove is 10% to 30% of the thickness of the seal lip portion.
  • a gap between the rotating shaft and the housing to which the shaft seal is mounted is divided into a high pressure side and a low pressure side by the shaft seal, and the seal lip portion extends to the high pressure side and slides on the rotating shaft. and the contact portion of the inner peripheral surface that slides on the rotating shaft has the convex portion formed over the entire circumference.
  • the contact portion is a region of the inner peripheral surface that contacts the rotation shaft.
  • the convex portion is characterized in that it is formed within a range of up to 30% from the tip of the seal lip portion toward the other end side when the total length of the seal lip portion is taken as 100%.
  • the maximum height of the convex portion is 5% to 20% of the thickness of the seal lip portion.
  • the seal lip portion has a concave groove as a recess in the vicinity of the contact portion (excluding the tip) of the inner peripheral surface that slides on the rotating shaft.
  • the contact area of the seal lip portion can be reduced while maintaining the performance, and the torque can be reduced more than the conventional shaft seal (see FIG. 9) in which no recessed groove is formed.
  • the groove since lubricant such as oil is held in the groove, the groove also functions as a lubrication groove, contributing to a reduction in torque. As a result, the shaft seal has excellent sealing performance and low torque characteristics.
  • the concave groove is formed so as to extend in the axial direction of the shaft seal, and when the total length of the seal lip portion is taken as 100%, the concave groove starts from a position 5% to 30% from the tip of the seal lip portion and extends toward the other end side. Therefore, the groove is not formed at least in the range of 5% of the total length from the tip of the seal lip portion, and the seal lip portion is in contact with the entire circumference with a certain width, so that the sealing performance is improved. can be maintained.
  • a plurality of grooves are formed at intervals in the circumferential direction of the shaft seal, and the width of the grooves is 1% to 15% of the inner peripheral length of the seal lip portion, and the distance between adjacent grooves in the circumferential direction. is 1% to 15% of the circumference of the inner diameter of the seal lip portion, so it is easy to stably support the rotating shaft while suitably reducing the torque.
  • the interval between grooves is the length of the convex surface between adjacent grooves.
  • the seal lip portion has a convex portion formed over the entire circumference at the contact portion of the inner peripheral surface that slides on the rotating shaft. , the contact area of the seal lip portion can be reduced, and the torque can be reduced more than the conventional shaft seal (see FIG. 9) in which no convex portion is formed. As a result, the shaft seal has excellent sealing performance and low torque characteristics.
  • the convex portion is formed within a range of up to 30% from the tip of the seal lip portion toward the other end side, so that the contact area of the seal lip portion is increased. can be reduced, and the low torque characteristics are better.
  • FIG. 1(a) is a plan view of the shaft seal viewed from the seal lip portion side
  • FIG. 1(b) is a sectional view taken along the line AA.
  • the shaft seal 11 is an annular member having a substantially U-shaped cross section in the axial direction. also has an outer lip portion 13 provided on the outer diameter side of the seal.
  • the seal lip portion 12 and the outer lip portion 13 extend from the base end portion 14, respectively, and the seal lip portion 12 and the outer lip portion 13 are formed so as to be inclined in directions in which the tips thereof are separated from each other.
  • the rotating shaft is inserted through the inner hole of the shaft seal 11, and the seal lip portion 12 slides on the rotating shaft.
  • An inner peripheral surface 12a of the seal lip portion 12 serves as a sliding surface with the outer peripheral surface of the rotating shaft, and a recessed groove 15 is formed as a concave portion recessed radially outward in the vicinity of the contact portion of the inner peripheral surface 12a.
  • the vicinity of the contact portion is a region that does not include the tip 12b of the seal lip portion 12 in the region where the inner peripheral surface 12a contacts the rotating shaft.
  • the concave groove is formed so as to cover at least the vicinity of the contact portion.
  • the tip 12b of the seal lip portion 12 is not formed with the recessed groove 15. As shown in FIG. In this case, the tip of the seal lip portion 12 is in contact with the rotating shaft all around. The seal lip portion 12 is pressed against the rotary shaft by the pressure on the high pressure side so as to be in close contact with the rotary shaft, and the closer the seal lip portion 12 is to the tip 12b of the shaft seal, the higher the adhesion strength. Therefore, as shown in FIG. 1(b), by contacting the whole circumference of a certain region including the tip 12b, it is easy to maintain good adhesion to the rotating shaft while forming the concave groove 15 in the contact region. Become.
  • a plurality of grooves 15 are formed so as to extend in the axial direction of the shaft seal 11 .
  • the groove 15 has a starting point at a position 5% to 30% (preferably a position 5% to 20%) from the tip 12b of the seal lip portion 12 and the other end. formed towards the side.
  • the concave groove 15 is formed so as not to open on the side of the tip 12b but to open on the side of the other end.
  • the groove 15 is also formed on the inner peripheral surface of the base end portion 14 .
  • the total length of the seal lip portion 12 is the length of a straight line from the corner (seal lip portion 12 side) of the bottom surface 14a of the shaft seal 11 to the top of the tip 2b of the seal lip portion 2 on the outer diameter side.
  • the concave groove 15 is open on the other end side in FIG. 1, for example, the concave groove may be formed so as not to open on the other end side. In this case, the groove is a groove that does not open on both axial sides of the shaft seal.
  • FIG. 2(a) shows a side view of the state where the shaft seal of FIG. 1 is attached to the rotating shaft, and FIG. A cut cross-sectional view) is shown.
  • the rotating shaft S is inserted through the inner hole of the shaft seal 11, and the shaft seal 11 is attached to a mounting portion such as a housing.
  • a plurality of recessed grooves 15 are formed at intervals in the circumferential direction of the shaft seal 11.
  • the inner peripheral surface 12a between the adjacent grooves 15 constitutes a part of the sliding surface, and the grooves 15 are non-contact portions with the outer peripheral surface of the rotating shaft S.
  • the width (length in the circumferential direction) of each groove 15 is preferably 1% to 15%, more preferably 5% to 15%, of the inner circumference of the seal lip portion.
  • the width of the groove 15 is the width of the opening with respect to the inner peripheral surface.
  • the interval (groove interval) between the grooves 15 adjacent in the circumferential direction is preferably 1% to 15%, more preferably 5% to 15%, of the inner circumference of the seal lip portion 12 . Moreover, from the viewpoint of reducing torque, it is preferable that the width of the concave groove 15 is larger than the groove interval.
  • the interval between the grooves 15 (groove interval) is the length of the convex surface between adjacent grooves.
  • the width of the groove may be constant in the axial direction (see FIG. 1(b)), or may vary in the axial direction.
  • the groove may be formed so that the width of the groove narrows stepwise or continuously toward the other end (base end side). In this case, the groove interval widens stepwise or continuously toward the other end side (base end side).
  • all the grooves 15 have the same size and that a plurality of them (six in FIG. 2) are provided at approximately equal intervals.
  • FIG. 3A is a cross-sectional view of the seal lip portion, showing the cross-sectional shape of the groove 15.
  • FIG. The recessed groove 15 is formed of an arc-shaped bottom surface 15a and sidewalls 15b, 15b standing upright from the bottom surface 15a.
  • the bottom surface 15 a is formed by an arc that is concentric with the arcs of the inner peripheral surface 12 a and the outer peripheral surface 12 c of the seal lip portion 12 .
  • the maximum depth d (length in the radial direction) of the groove 15 is preferably 10% to 30%, more preferably 20% to 30%, of the thickness T of the seal lip portion. As a result, while maintaining the strength of the seal lip portion, even if the seal lip portion is deformed, the concave groove 15 is less likely to come into contact with the rotating shaft.
  • the maximum depth d of the groove 15 is the length of a vertical line drawn from the deepest portion of the bottom surface 15a to the inner peripheral surface (dotted line in FIG. 3) assuming that no groove is formed.
  • the thickness T of the seal lip portion 12 is, for example, 0.3 mm to 1.5 mm.
  • the cross-sectional shape of the groove 15 is not limited to a substantially rectangular shape (FIG. 3(a)).
  • a substantially triangular concave groove 17 (FIG. 3(c)), an arc-shaped concave groove 18 (FIG. 3(d)), a substantially trapezoidal concave groove 19 (FIG. 3(e)), etc. can be employed.
  • the grooves 15 to 18 are symmetrical with respect to the circumferential center line of each groove.
  • the groove 19 has an asymmetrical shape with respect to its circumferential center line.
  • the width and maximum depth of these concave grooves 15 to 19 can be appropriately set, and are preferably within the numerical ranges described above.
  • the concave grooves in FIGS. 3(b) to 3(e) are formed in a wedge shape in the rotation direction X of the rotating shaft, the lubricant held in the concave grooves is squeezed to generate a dynamic pressure effect. and the rotational torque can be further reduced.
  • the wedge shape specifically, an inclined flat surface or an inclined curved surface whose groove depth becomes shallower toward the downstream side in the rotation direction of the rotating shaft is formed.
  • the circumferential corners of the groove are smaller than 135° as shown in FIGS. 3A and 3B, the circumferential corners may be chamfered or chamfered.
  • a dynamic pressure effect can also be expected by chamfering.
  • the seal lip portion 22 has a recessed groove 25 near the contact portion of the inner peripheral surface 22a (excluding the tip 22b).
  • the concave groove 25 is formed over the entire circumference of the inner peripheral surface 22a so as to extend in the circumferential direction.
  • the groove 25 extends from the tip 22b of the seal lip portion to the 5% to 30% position (preferably to the 5% to 20% position. ) is preferably formed in the range of
  • the shape of the concave groove 25 in an axial cross section is not particularly limited, and a rectangular groove, a triangular groove, an arc groove, or the like can be adopted.
  • a plurality of grooves 25 may be formed spaced apart in the axial direction.
  • the maximum depth (radial length) of the groove 25 is preferably 10% to 30%, more preferably 20% to 30%, of the thickness T of the seal lip portion 22. preferable.
  • the thickness T of the seal lip portion 22 is, for example, 0.3 mm to 1.5 mm.
  • the shaft seal 21 prevents the fluid on the high pressure side H from leaking to the low pressure side L by having the seal lip portion 22 in close contact with the outer peripheral surface of the rotating shaft S.
  • Fluids include refrigerants, oils, mixtures of refrigerants and oils, and the like.
  • the shaft seal 31 is an annular member having a substantially U-shaped cross section in the axial direction. also has an outer lip portion 33 provided on the outer diameter side of the seal.
  • the seal lip portion 32 and the outer lip portion 33 extend from the base end portion 34, respectively, and the seal lip portion 32 and the outer lip portion 33 are formed so as to be inclined in directions in which the tips thereof are separated from each other.
  • the housing 41 is provided with an insertion hole 41a through which the rotating shaft S is inserted, and an annular groove 42 is provided around the insertion hole 41a.
  • the shaft seal 31 is mounted in the annular groove 42, and the seal lip portion 32 slides on the rotating shaft S as the rotating shaft S rotates.
  • the inner peripheral surface 32a of the seal lip portion 32 serves as a sliding surface with respect to the outer peripheral surface of the rotating shaft S. As shown in FIG. When the compressor is operated, the pressure on the high pressure side rises, the seal lip portion 32 is pressed against the outer peripheral surface of the rotary shaft S, and the rear surface of the base end portion 34 is pressed against the bottom wall 42b.
  • the seal lip portion 32 has a convex portion 35 with a predetermined height at the contact portion of the inner peripheral surface 32a.
  • the convex portion 35 protrudes radially inward at the contact portion of the inner peripheral surface 32a and is formed over the entire circumference.
  • the contact portion is a region where the inner peripheral surface 32a of the seal lip portion 32 contacts the rotating shaft S.
  • the convex portion 35 may be formed on part or all of the contact portion.
  • the axial cross-sectional shape of the protrusion 35 is substantially rectangular.
  • the convex portion 35 extends from the tip 32b of the seal lip portion 32 toward the other end on the inner peripheral surface 32a of the seal lip portion 32 up to 30%. It is preferably formed between.
  • “formed within a range of up to 30% from the tip toward the other end” does not mean that it is formed in the entire range from the tip (0%) to 30%. %) to 30%. Also, as long as it is formed in the range from the tip (0%) to 30%, it may be formed in a range exceeding 30%, for example, it may be formed in the entire range from 10% to 35%. case is also included.
  • the convex portion 35 is preferably formed including the tip 32b, that is, formed starting from the tip 32b, and furthermore, the convex portion 35 is formed within a range of up to 20% from the tip 32b. is more preferably formed between
  • the total length Lt of the seal lip portion 32 refers to the length of a straight line from the corner (seal lip portion 32 side) of the bottom surface 34a of the shaft seal 31 to the top of the tip 32b of the seal lip portion 32 on the outer diameter side.
  • the total length Lt of the seal lip portion 32 is, for example, preferably 1.0 mm to 8.0 mm, more preferably 1.0 mm to 6.5 mm, and further preferably 2.0 mm to 6.5 mm. preferable.
  • the shaft seal 31 prevents the fluid on the high pressure side H from leaking to the low pressure side L by having the seal lip portion 32 in close contact with the outer peripheral surface of the rotating shaft S.
  • Fluids include refrigerants, oils, mixtures of refrigerants and oils, and the like.
  • Each shaft seal in FIG. 6 shows a state before being mounted on a rotating shaft, and represents a cut surface cut along the axial direction of the shaft seal.
  • Each of the shaft seals shown in FIG. 6 has a convex portion that protrudes in the inner peripheral direction from the inner peripheral surface 32a of the seal lip portion 32 and is formed within a range of 30% from the tip toward the other end. .
  • FIG. 6(a) is a diagram showing a cut surface on the lower side of the paper surface of the shaft seal shown in FIG.
  • FIG.6(b) is an enlarged view around the convex part in Fig.6 (a).
  • the convex portion 35 is located on the innermost side of the inner peripheral surface 32a, and has a planar contact surface 35a and a contact surface 35a. It is formed by convex side surfaces 35b, 35b.
  • the contact surface 35a is formed with a surface parallel to the axial direction
  • the convex side surfaces 35b, 35b are formed with surfaces parallel to the radial direction.
  • the strength of the convex portion 35 is easily maintained, so that the convex portion 35 is less likely to deform.
  • the contact area of the convex portion 35 with respect to the rotary shaft can be easily maintained constant, resulting in excellent sealing performance.
  • the maximum height (radial length) h of the convex portion 35 is preferably 5% to 20% of the thickness T of the seal lip portion 32, more preferably 10% to 20%. As a result, the strength of the convex portion 35 can be maintained, so that the convex portion 35 is less likely to deform. As a result, leakage of fluid is less likely to occur, and excellent sealing performance is achieved.
  • the maximum height h of the convex portion 35 is the height from the highest portion of the contact surface 35a to the inner peripheral surface 32a or the virtual surface F of the inner peripheral surface 32a assuming that no convex portion is formed (the convex height in FIG. 6B). is the length of the perpendicular drawn down to (dotted line at the bottom of section 35).
  • the thickness T of the seal lip portion 32 is, for example, 0.3 mm to 1.5 mm.
  • the cross-sectional shape of the convex portion is not limited to the above-described substantially rectangular shape, and may be, for example, an arc shape, substantially trapezoidal shape, substantially triangular shape, or the like.
  • the cross-sectional shape of the convex portion may be symmetrical or asymmetrical with respect to the center line.
  • one of the convex side surfaces 35b, 35b may be an inclined surface inclined with respect to the radial direction.
  • FIG. 6(c) is an enlarged view of the vicinity of the convex portion.
  • the convex portion 36 is located on the innermost side of the inner peripheral surface 32a, and has a curved contact surface 36a and convex side surfaces 36b, 36b depending from the contact surface 36a. is formed by For example, by forming the contact surface into a curved shape, the contact area of the seal lip portion 32 with respect to the rotating shaft can be reduced compared to the case where the axial cross-sectional shape is substantially rectangular, which contributes to lower torque. Further, when the inner peripheral end portion of the convex portion 36 is deformed, the contact area of the convex portion 36 with respect to the rotating shaft gradually increases as the amount of deformation increases, thereby improving the sealing performance.
  • FIG. 6(d) is an enlarged view of the vicinity of the convex portion.
  • the convex portion 37 is located on the innermost side of the inner peripheral surface 32a, and has a planar contact surface 37a and the contact surface 37a so that the width of the convex portion 37 is widened. It is formed of slanted surfaces 37b, 37b that are slanted to the opposite side, and convex side surfaces 37c, 37c that hang down from the slanted surfaces 37b, 37b, respectively.
  • the contact area of the seal lip portion 32 with respect to the rotating shaft can be reduced compared to the case where the cross-sectional shape in the axial direction is substantially rectangular, which contributes to lower torque.
  • the amount of change in the contact area of the protrusion 37 with respect to the rotation shaft before and after the deformation of the protrusion 37 is greater than when the cross-sectional shape in the axial direction is arcuate. It is small and has excellent sealing properties even at the initial stage of deformation.
  • a plurality of protrusions may be provided spaced apart in the axial direction.
  • two substantially rectangular projections can be provided spaced apart in the axial direction.
  • FIG. 6(f) is an enlarged view of the vicinity of the protrusions in the shaft seal having two adjacent protrusions.
  • a groove G is formed between the projections 35', 35'.
  • the groove since lubricant such as oil is held in the groove G, the groove also functions as a lubrication groove, contributing to a reduction in torque.
  • the maximum depth d of the groove G can be, for example, 20% to 100% of the maximum height of the projection 35'.
  • the maximum depth d of the groove G is preferably 30% to 80%, more preferably 40% to 60%, of the maximum height of the projection 35'. Thereby, deformation of the convex portion 35' can be prevented while maintaining the strength of the convex portion 35'.
  • the maximum depth d of the groove G is the distance (surface-to-surface distance) from the deepest part of the bottom surface Ga to the highest part of the contact surface 35'a of the protrusion 35'.
  • the above-described numerical ranges can be appropriately adopted for the width and maximum height of each convex portion and the maximum depth of the concave groove.
  • the shape of the convex portion is not limited to the shape shown in FIG.
  • some of the projections shown in FIG. 6 may be combined as appropriate, and planes and curved surfaces may also be combined as appropriate.
  • FIGS. 1 to 6 show shaft seals having a substantially U-shaped cross section in the axial direction
  • the shaft seal of the present invention is not limited to this.
  • the shaft seal may be provided with a lip portion other than the seal lip portion and the outer lip portion (for example, a dust lip that slides on the rotating shaft).
  • a shape consisting of the seal lip portion 2 and a fixed portion without the outer lip portion 3 may be used.
  • the high pressure side H of the housing 26 is provided with a compression mechanism.
  • the form of the compression mechanism may be any mechanism as long as the fluid is compressed by the rotation of the rotating shaft S, and a scroll type or a swash plate type can be adopted.
  • the compression mechanism unit is configured by combining a fixed scroll and a movable scroll that revolves with respect to the fixed scroll.
  • Fig. 7 shows a partial cross-sectional view of the scroll-type compression mechanism.
  • the compression mechanism section 51 includes a fixed rotor 53 having a base plate 53a and fixed side scroll blades 53b standing upright on its surface, and a movable rotor having a base plate 54a and movable side scroll blades 54b standing upright on its surface. 54.
  • a fixed rotor 53 and a movable rotor 54 are eccentrically meshed with each other to form a compression chamber 52 therebetween.
  • the movable rotor 54 is directly or indirectly connected to the above-described rotating shaft, and the compression chamber 52 moves toward the center of the spiral as the movable rotor 54 revolves around the axis of the fixed rotor 53.
  • the compressed fluid is discharged from the discharge pipe through the discharge port 55 at the center of the movable rotor 54 and flows out to the refrigeration cycle.
  • Fluid (refrigerant gas, etc.) of the refrigerating cycle is introduced into the compression chamber 52 through the suction port (not shown).
  • polytetrafluoroethylene (PTFE) resin polytetrafluoroethylene (PTFE) resin, tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) resin, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, ethylene-tetrafluoroethylene copolymer ( ETFE) resin, polyvinylidene fluoride resin, liquid crystal polymer, polyethersulfone resin, polysulfone resin, polyphenylsulfone resin, polyarylate resin, polyetherimide resin, polyimide resin, polyester resin, and the like can be used.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • a solid lubricant such as PTFE resin, graphite, and molybdenum disulfide can be blended into the above resin composition and thermoplastic elastomer composition for the purpose of improving friction and wear characteristics.
  • the blending amount of the solid lubricant is preferably 1% to 40% by volume, more preferably 1% to 20% by volume, relative to 100% by volume of the resin composition or thermoplastic elastomer composition. If it exceeds 40% by volume, the elongation properties of the resin composition or thermoplastic elastomer composition may deteriorate, and cracks may occur when the shaft seal is incorporated into the rotating shaft.
  • the resin composition or thermoplastic elastomer composition may contain fibrous reinforcing materials such as carbon fiber, glass fiber and aramid fiber; spherical fillers such as spherical silica; Reinforcing materials, sliding reinforcing materials such as calcium phosphate and calcium sulfate, and fine fiber reinforcing materials such as potassium titanate whiskers may also be used. Colorants such as carbon black and iron oxide can also be blended. These may be blended singly or in combination.
  • the shaft seal of the present invention can be used for scroll compressors of in-vehicle air conditioners.
  • the scroll compressor may be belt-driven using engine power or motor-driven without using engine power.
  • the shaft seal of the present invention can be used not only in compressors.
  • the shaft seal of the present invention is molded by injection molding, for example, using a general injection molding machine for thermoplastic resins.
  • the above-mentioned resin composition or the above-mentioned thermoplastic elastomer composition is prepared by mixing each constituent material with a Henschel mixer, an axial mixer, a ball mixer, a ribbon blender, etc., if necessary, and then melting with a twin-screw kneading extruder, etc.
  • the pellets for molding can be obtained by melt-kneading with an extruder.
  • side feed may be adopted for charging the filler when melt-kneading with a twin-screw extruder or the like.
  • a shaft seal is formed by injection molding using this molding pellet.
  • Test examples A1 to A4 A thermoplastic elastomer composition was prepared in a twin-screw kneading extruder and pelletized. Shaft seals of Test Examples A1 to A4 were formed by injection molding using the obtained pellets. As test examples A1 and A2, shaft seals (inner diameter: 20 mm) having the shapes shown in FIGS. 1 and 2 were obtained. Specifically, as the grooves, six grooves were formed so as to extend in the axial direction. Table 1 shows each dimension of the groove. The groove width and groove interval were measured as arc lengths. Further, as test examples A3 and A4, shaft seals (with an inner diameter of 20 mm) having the shape (no groove) shown in FIG. 9 were obtained.
  • ⁇ Rotating torque test> Using the rotational torque tester shown in FIG. 8, a rotational torque test was performed in oil under the following conditions to measure the rotational torque and the amount of oil leakage.
  • ⁇ Test conditions> Rotating shaft: Material S45C Rotation speed: 3000min -1 , 8000min -1 Oil pressure: 0.3MPa, 0.8MPa Oil temperature: 40°C Refrigerant oil: Polyalkylene glycol oil Test time: 60 minutes
  • the housing of the testing machine 56 is configured by assembling an outer peripheral housing 59 and an inner peripheral housing 60 .
  • an O-ring 61 is arranged in the outer circumferential groove of the inner peripheral side housing 60 to prevent leakage of refrigerating machine oil from the mating surfaces.
  • the shaft seal 57 is in close contact with the rotary shaft 58 and comes into sliding contact with the outer peripheral surface of the rotary shaft 58 as the rotary shaft 58 rotates.
  • Refrigerant oil was pumped and supplied to the space in the housing.
  • the refrigerating machine oil flows in from the inflow path 59b, passes through the housing inner space, and flows out from the outflow path 59c.
  • Test Examples A1 and A2 maintained oil leak resistance compared to Test Examples A3 and A4 (conventional products). However, an improvement in rotational torque was recognized. Specifically, in Test Examples A1 and A2, the rotational torque was reduced by about 8% to 10% compared to Test Examples A3 and A4.
  • Test examples B1-B2 The thermoplastic elastomer composition was pelletized with a twin-screw kneading extruder. Shaft seals of Test Examples B1 and B2 were formed by injection molding using the obtained pellets. As Test Example B1, a shaft seal having the shape shown in FIG. 5 (inner diameter: 20 mm, total length of the seal lip portion: 4 mm, thickness of the seal lip portion: 0.5 mm) was obtained. Specifically, a single protrusion was formed over the entire circumference of the contact portion of the inner peripheral surface of the shaft seal with a rotating shaft, which will be described later. Table 2 shows each dimension of the projection.
  • the width of the convex portion was measured as the maximum distance between two tangent lines formed by the two side surfaces of the convex portion and the imaginary plane F. Further, as test example B2, a shaft seal (inner diameter: 20 mm, full length of the seal lip portion: 4 mm, thickness of the seal lip portion: 0.5 mm) having a shape (without protrusions) shown in FIG. 9 was obtained.
  • the shaft seal of the present invention has excellent sealing properties and can further reduce rotational torque, so it can be widely used as a shaft seal that seals a sealing fluid while sliding on the outer peripheral surface of the rotating shaft.
  • it is suitable as a shaft seal for a rotating shaft that rotates the compression mechanism of a scroll-type refrigerant compressor for an in-vehicle air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Abstract

Provided is a shaft seal that exhibits excellent seal-ability and has low torque characteristics. A shaft seal 11 which is an annular shaft seal bonded to the outer circumferential surface of a rotary shaft to seal a sealed fluid. A gap between the rotary shaft and a housing having the shaft seal 11 fitted therein is divided into a high-pressure side and a low-pressure side by the shaft seal 11. The shaft seal 11 is provided with a seal lip 12 which extends toward the high pressure-side and slides with respect to the rotary shaft. The seal lip 12 has recessed grooves 15 in the vicinity of a part that makes contact with the inner circumferential surface 12a which slides with respect to the rotary shaft. The recessed grooves 15 are formed so as to extend in the axial direction of the the shaft seal 11. When the total length of the seal lip 12 is defined as 100%, the recessed grooves 15 are formed starting from a point located 5%-30% from a tip 12b of the seal lip 12 toward the other end.

Description

軸シールshaft seal
 本発明は、回転軸の軸シールに関し、特に、車載エアコンのスクロール式圧縮機における回転軸の軸シールに関する。 The present invention relates to a shaft seal for a rotary shaft, and more particularly to a shaft seal for a rotary shaft in a scroll compressor of an on-vehicle air conditioner.
 圧縮機には冷媒や冷凍機油の漏れを防止するシール部材が用いられている。例えば、固定スクロールと、該固定スクロールに対して旋回運動する可動スクロールとを組み合わせた圧縮機構部を備えるスクロール式圧縮機では、圧縮機構部を駆動する回転軸に軸シールが装着されている。 The compressor uses a sealing member to prevent leakage of refrigerant and refrigerating machine oil. For example, in a scroll compressor having a compression mechanism that combines a fixed scroll and a movable scroll that orbits relative to the fixed scroll, a shaft seal is attached to a rotary shaft that drives the compression mechanism.
 上記スクロール式圧縮機は、例えば車両に搭載され、車載エアコン用電動コンプレッサとして用いられ、小型化、高効率化が求められている。このような軸シールには、シール性に加えて、低トルク化が求められている。 For example, the scroll compressor is mounted on a vehicle and used as an electric compressor for an on-vehicle air conditioner, and is required to be smaller and more efficient. Such shaft seals are required to have low torque in addition to sealing properties.
 例えば、特許文献1の軸シールを図9に示す。図9に示すように、軸シール71は、回転軸Sの外周面に密着して油を含有する密封流体を封止する環状の軸シールである。この軸シール71は、軸方向の断面視が略U字状であり、軸方向一方側に延伸して回転軸Sと摺動するシールリップ部72と、シールリップ部72よりも外径側に設けられた外リップ部73とを備えている。特許文献1では、軸シールとして、ポリエステル系エラストマーを主成分とする熱可塑性エラストマー組成物の成形体を使用し、その曲げ弾性率を所定の範囲とすることで、シール性に優れるとともに、回転トルクを低減できるとしている。 For example, the shaft seal of Patent Document 1 is shown in FIG. As shown in FIG. 9, the shaft seal 71 is an annular shaft seal that is in close contact with the outer peripheral surface of the rotating shaft S to seal a sealing fluid containing oil. The shaft seal 71 has a substantially U-shaped cross section in the axial direction. and an outer lip 73 provided. In Patent Document 1, a molding of a thermoplastic elastomer composition containing a polyester-based elastomer as a main component is used as a shaft seal, and the flexural modulus of the molding is set within a predetermined range, thereby providing excellent sealing performance and reducing rotational torque. can be reduced.
特開2021-092279号公報JP 2021-092279 A
 近年、省エネルギー化の進展に伴い、シール性に優れ、さらに回転トルクが低減できる軸シールが要求されている。 In recent years, with the progress of energy saving, there is a demand for shaft seals that have excellent sealing performance and can reduce rotational torque.
 本発明はこのような事情に鑑みてなされたものであり、シール性に優れ、低トルク特性を有する軸シールを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a shaft seal that has excellent sealing performance and low torque characteristics.
 本発明の軸シールは、回転軸の外周面に密着して密封流体を封止する環状の軸シールであって、上記軸シールは、上記回転軸と摺動するシールリップ部を備え、上記シールリップ部は、上記回転軸と摺動する内周面の接触部または接触部近傍に、凹部または凸部を有することを特徴とする。 A shaft seal according to the present invention is an annular shaft seal that is in close contact with the outer peripheral surface of a rotating shaft to seal a sealing fluid, the shaft seal includes a seal lip portion that slides on the rotating shaft, The lip portion has a concave portion or a convex portion at or near the contact portion of the inner peripheral surface that slides on the rotating shaft.
 上記軸シールは、軸方向の断面視が略U字状であり、上記シールリップ部よりも外径側に設けられた外リップ部を有することを特徴とする。 The shaft seal has a substantially U-shaped cross section in the axial direction, and is characterized by having an outer lip portion provided on the outer diameter side of the seal lip portion.
 上記軸シールは、車載エアコンのスクロール式圧縮機における回転軸に用いられる軸シールであることを特徴とする。 The above-mentioned shaft seal is characterized by being a shaft seal used for a rotary shaft in a scroll compressor of an in-vehicle air conditioner.
 上記回転軸と上記軸シールを装着するハウジングとの隙間が、上記軸シールによって高圧側と低圧側に区画され、上記シールリップ部は、高圧側に延伸して上記回転軸と摺動するものであり、上記回転軸と摺動する内周面の接触部近傍に上記凹部として凹溝を有することを特徴とする。なお、接触部近傍とは、内周面の回転軸と接触する領域のうち、シールリップ部の先端を含まない領域である。 A gap between the rotating shaft and the housing to which the shaft seal is mounted is divided into a high pressure side and a low pressure side by the shaft seal, and the seal lip portion extends to the high pressure side and slides on the rotating shaft. and a recessed groove is provided as the recessed portion in the vicinity of the contact portion of the inner peripheral surface that slides on the rotating shaft. In addition, the vicinity of the contact portion is a region that does not include the tip of the seal lip portion in the region of the inner peripheral surface that contacts the rotating shaft.
 上記凹溝は、上記軸シールの軸方向に延びるように形成され、上記シールリップ部の全長を100%としたとき、上記シールリップ部の先端から5%~30%の位置を起点とし他端側に向けて形成されていることを特徴とする。 The concave groove is formed so as to extend in the axial direction of the shaft seal. It is characterized by being formed toward the side.
 上記凹溝は、上記軸シールの周方向に離間して複数形成され、上記凹溝の幅は、上記シールリップ部の内径周長の1%~15%であり、かつ、周方向で隣り合う上記凹溝の間隔は、上記シールリップ部の内径周長の1%~15%であることを特徴とする。 A plurality of the grooves are spaced apart in the circumferential direction of the shaft seal, and the width of the grooves is 1% to 15% of the circumference of the inner diameter of the seal lip portion, and the grooves are adjacent to each other in the circumferential direction. The interval between the grooves is 1% to 15% of the circumference of the inner diameter of the seal lip portion.
 上記凹溝の幅は、周方向で隣り合う上記凹溝の間隔よりも大きいことを特徴とする。 The width of the groove is characterized by being larger than the interval between the grooves adjacent in the circumferential direction.
 上記凹溝は、上記軸シールの周方向に延びるように形成され、上記シールリップ部の全長を100%としたとき、上記シールリップ部の先端から5%の位置~30%の位置までの範囲に形成されることを特徴とする。 The concave groove is formed so as to extend in the circumferential direction of the shaft seal, and when the total length of the seal lip portion is taken as 100%, the range is from a position of 5% to a position of 30% from the tip of the seal lip portion. characterized by being formed in
 上記凹溝の最大深さは、上記シールリップ部の厚みの10%~30%であることを特徴とする。 The maximum depth of the groove is 10% to 30% of the thickness of the seal lip portion.
 上記回転軸と上記軸シールを装着するハウジングとの隙間が、上記軸シールによって高圧側と低圧側に区画され、上記シールリップ部は、高圧側に延伸して上記回転軸と摺動するものであり、上記回転軸と摺動する内周面の接触部に、全周にわたって形成された上記凸部を有することを特徴とする。なお、接触部とは、内周面の回転軸と接触する領域である。 A gap between the rotating shaft and the housing to which the shaft seal is mounted is divided into a high pressure side and a low pressure side by the shaft seal, and the seal lip portion extends to the high pressure side and slides on the rotating shaft. and the contact portion of the inner peripheral surface that slides on the rotating shaft has the convex portion formed over the entire circumference. The contact portion is a region of the inner peripheral surface that contacts the rotation shaft.
 上記凸部は、上記シールリップ部の全長を100%としたとき、上記シールリップ部の先端から他端側に向けて30%までの範囲の間に形成されていることを特徴とする。 The convex portion is characterized in that it is formed within a range of up to 30% from the tip of the seal lip portion toward the other end side when the total length of the seal lip portion is taken as 100%.
 上記凸部の最大高さは、上記シールリップ部の厚みの5%~20%であることを特徴とする。 The maximum height of the convex portion is 5% to 20% of the thickness of the seal lip portion.
 上記凸部の軸方向断面における形状は、略矩形状、円弧状、略台形状、または略三角形状であることを特徴とする。 The shape of the convex portion in an axial cross-section is characterized by being substantially rectangular, arc-shaped, substantially trapezoidal, or substantially triangular.
 本発明の軸シールは、回転軸と摺動するシールリップ部を備え、シールリップ部は、回転軸と摺動する内周面の接触部または接触部近傍に、凹部または凸部を有するので、シール性に優れ、低トルク特性を有する。 The shaft seal of the present invention includes a seal lip portion that slides on the rotating shaft, and the seal lip portion has a concave portion or a convex portion on or near the contact portion of the inner peripheral surface that slides on the rotating shaft. Excellent sealing performance and low torque characteristics.
 一つの形態の軸シールにおいて、シールリップ部は、回転軸と摺動する内周面の接触部近傍(先端を除く)に凹部として凹溝を有するので、回転軸に対するシールリップ部の先端の密着性を維持しながら、シールリップ部の接触面積を減少でき、従来(図9参照)のように凹溝が形成されていない軸シールよりも低トルク化を図ることができる。さらに、凹溝にオイルなどの潤滑剤が保持されるため、当該凹溝は潤滑溝としても機能し、低トルク化に寄与する。これにより、シール性に優れ、低トルク特性を有する軸シールになる。 In one form of the shaft seal, the seal lip portion has a concave groove as a recess in the vicinity of the contact portion (excluding the tip) of the inner peripheral surface that slides on the rotating shaft. The contact area of the seal lip portion can be reduced while maintaining the performance, and the torque can be reduced more than the conventional shaft seal (see FIG. 9) in which no recessed groove is formed. Furthermore, since lubricant such as oil is held in the groove, the groove also functions as a lubrication groove, contributing to a reduction in torque. As a result, the shaft seal has excellent sealing performance and low torque characteristics.
 凹溝は、軸シールの軸方向に延びるように形成され、シールリップ部の全長を100%としたとき、シールリップ部の先端から5%~30%の位置を起点とし他端側に向けて形成されているので、少なくともシールリップ部の先端から上記全長に対して5%の範囲には溝が形成されず、シールリップ部がある程度幅をもって全周接触されることから、シール性を良好に維持できる。 The concave groove is formed so as to extend in the axial direction of the shaft seal, and when the total length of the seal lip portion is taken as 100%, the concave groove starts from a position 5% to 30% from the tip of the seal lip portion and extends toward the other end side. Therefore, the groove is not formed at least in the range of 5% of the total length from the tip of the seal lip portion, and the seal lip portion is in contact with the entire circumference with a certain width, so that the sealing performance is improved. can be maintained.
 凹溝は、軸シールの周方向に離間して複数形成され、凹溝の幅は、シールリップ部の内径周長の1%~15%であり、かつ、周方向で隣り合う凹溝の間隔は、シールリップ部の内径周長の1%~15%であるので、低トルク化を好適に図りつつ、回転軸を安定して支持しやすい。なお、凹溝の間隔とは、隣り合う凹溝と凹溝の間の凸面の長さである。 A plurality of grooves are formed at intervals in the circumferential direction of the shaft seal, and the width of the grooves is 1% to 15% of the inner peripheral length of the seal lip portion, and the distance between adjacent grooves in the circumferential direction. is 1% to 15% of the circumference of the inner diameter of the seal lip portion, so it is easy to stably support the rotating shaft while suitably reducing the torque. The interval between grooves is the length of the convex surface between adjacent grooves.
 凹溝の最大深さは、シールリップ部の厚みの10%~30%であるので、シールリップ部の強度を維持しつつ、シールリップ部が弾性変形した場合であっても、凹溝を非接触部にすることができ、低トルク化を図りやすい。 Since the maximum depth of the concave groove is 10% to 30% of the thickness of the seal lip portion, the strength of the seal lip portion is maintained, and the concave groove is not affected even when the seal lip portion is elastically deformed. It can be used as a contact part, and it is easy to achieve low torque.
 他の形態の軸シールにおいて、シールリップ部は、回転軸と摺動する内周面の接触部に、全周にわたって形成された凸部を有するので、回転軸に対するシールリップ部の先端の密着性を維持しながら、シールリップ部の接触面積を減少でき、従来(図9参照)のように凸部が形成されていない軸シールよりも低トルク化を図ることができる。これにより、シール性に優れ、低トルク特性を有する軸シールになる。 In another form of shaft seal, the seal lip portion has a convex portion formed over the entire circumference at the contact portion of the inner peripheral surface that slides on the rotating shaft. , the contact area of the seal lip portion can be reduced, and the torque can be reduced more than the conventional shaft seal (see FIG. 9) in which no convex portion is formed. As a result, the shaft seal has excellent sealing performance and low torque characteristics.
 凸部は、シールリップ部の全長を100%としたとき、シールリップ部の先端から他端側に向けて30%までの範囲の間に形成されているので、シールリップ部の接触面積をより減少でき、低トルク特性により優れる。 When the total length of the seal lip portion is taken as 100%, the convex portion is formed within a range of up to 30% from the tip of the seal lip portion toward the other end side, so that the contact area of the seal lip portion is increased. can be reduced, and the low torque characteristics are better.
 凸部の最大高さは、シールリップ部の厚みの5%~20%であるので、凸部が変形しにくくシール性により優れる。 Since the maximum height of the convex portion is 5% to 20% of the thickness of the seal lip portion, the convex portion is difficult to deform and has excellent sealing performance.
第1実施形態の軸シールの一例を示す平面図および断面図である。1A and 1B are a plan view and a cross-sectional view showing an example of a shaft seal according to a first embodiment; FIG. 図1の軸シールを回転軸に装着した状態の側面図などである。1. It is a side view etc. of the state which mounted|wore the rotating shaft with the shaft seal of FIG. 凹溝の溝形状の例を示す図である。It is a figure which shows the example of the groove shape of a concave groove. 第1実施形態の軸シールの他の例を回転軸に装着した状態の図である。It is a figure of the state where the rotating shaft was mounted|worn with the other example of the shaft seal of 1st Embodiment. 第2実施形態の軸シールの一例を回転軸に装着した状態の図である。It is a figure of the state which mounted|wore the rotating shaft with an example of the shaft seal of 2nd Embodiment. 凸部の断面形状の例を示す図である。It is a figure which shows the example of the cross-sectional shape of a convex part. スクロール式圧縮機の圧縮機構部を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing a compression mechanism portion of the scroll compressor; 回転トルクの測定試験の概略図である。FIG. 3 is a schematic diagram of a rotational torque measurement test; 従来の軸シールの構成を示す図である。FIG. 3 is a diagram showing the configuration of a conventional shaft seal;
 以下には、本発明の軸シールの各実施形態について説明する。なお、本発明において、軸シールの中心軸Oに平行な方向を「軸方向」、中心軸Oに直交する方向を「径方向」、中心軸Oを中心とする軸周りの方向を「周方向」という。 Each embodiment of the shaft seal of the present invention will be described below. In the present invention, the direction parallel to the central axis O of the shaft seal is the "axial direction," the direction orthogonal to the central axis O is the "radial direction," and the direction around the central axis O is the "circumferential direction." ”.
(第1実施形態)
 第1実施形態の軸シールについて、図1に基づいて説明する。図1(a)は軸シールをシールリップ部側から見た平面図であり、図1(b)はそのA-A線断面図である。
(First embodiment)
A shaft seal according to the first embodiment will be described with reference to FIG. FIG. 1(a) is a plan view of the shaft seal viewed from the seal lip portion side, and FIG. 1(b) is a sectional view taken along the line AA.
 図1に示すように、軸シール11は、軸方向の断面視が略U字状の環状部材であり、軸方向一方側に延伸したシール内径側のシールリップ部12と、シールリップ部12よりもシール外径側に設けられた外リップ部13とを有する。シールリップ部12と外リップ部13はそれぞれ基端部14から延伸しており、シールリップ部12と外リップ部13は相互に先端が離れる方向へ傾斜して形成されている。 As shown in FIG. 1, the shaft seal 11 is an annular member having a substantially U-shaped cross section in the axial direction. also has an outer lip portion 13 provided on the outer diameter side of the seal. The seal lip portion 12 and the outer lip portion 13 extend from the base end portion 14, respectively, and the seal lip portion 12 and the outer lip portion 13 are formed so as to be inclined in directions in which the tips thereof are separated from each other.
 後述するように、軸シール11の内孔に回転軸が挿通され、シールリップ部12がその回転軸と摺動する。シールリップ部12の内周面12aが回転軸の外周面との摺動面となり、この内周面12aの接触部近傍に、径方向外側に凹んだ凹部として凹溝15が形成されている。上述したように、この接触部近傍とは、内周面12aが回転軸と接触する領域のうち、シールリップ部12の先端12bを含まない領域である。例えば、シールリップ部12の全長を100%としたとき、シールリップ部の先端12bから5%の位置~50%の位置までの領域である。少なくとも接触部近傍にかかるように凹溝が形成されていればよい。 As will be described later, the rotating shaft is inserted through the inner hole of the shaft seal 11, and the seal lip portion 12 slides on the rotating shaft. An inner peripheral surface 12a of the seal lip portion 12 serves as a sliding surface with the outer peripheral surface of the rotating shaft, and a recessed groove 15 is formed as a concave portion recessed radially outward in the vicinity of the contact portion of the inner peripheral surface 12a. As described above, the vicinity of the contact portion is a region that does not include the tip 12b of the seal lip portion 12 in the region where the inner peripheral surface 12a contacts the rotating shaft. For example, when the total length of the seal lip portion 12 is 100%, it is the area from the 5% position to the 50% position from the tip 12b of the seal lip portion. It is sufficient that the concave groove is formed so as to cover at least the vicinity of the contact portion.
 図1(b)では、シールリップ部12の先端12bには凹溝15が形成されていない。この場合、回転軸に対してシールリップ部12の先端が全周接触する。シールリップ部12は、高圧側の圧力によって回転軸に密着するように押し付けられ、軸シールの先端12bに近いほど密着力が高くなる。そのため、図1(b)に示すように、先端12bを含むある程度の領域を全周接触させることで、接触領域に凹溝15を形成しながらも、回転軸に対する密着性を良好に維持しやすくなる。 In FIG. 1(b), the tip 12b of the seal lip portion 12 is not formed with the recessed groove 15. As shown in FIG. In this case, the tip of the seal lip portion 12 is in contact with the rotating shaft all around. The seal lip portion 12 is pressed against the rotary shaft by the pressure on the high pressure side so as to be in close contact with the rotary shaft, and the closer the seal lip portion 12 is to the tip 12b of the shaft seal, the higher the adhesion strength. Therefore, as shown in FIG. 1(b), by contacting the whole circumference of a certain region including the tip 12b, it is easy to maintain good adhesion to the rotating shaft while forming the concave groove 15 in the contact region. Become.
 図1において、凹溝15は、軸シール11の軸方向に延びるように複数形成されている。この凹溝15は、シールリップ部12の全長を100%としたとき、シールリップ部12の先端12bから5%~30%の位置(好ましくは5%~20%の位置)を起点とし他端側に向けて形成されている。また、この凹溝15は、先端12b側には開口しない一方で、他端側に開口するように形成されている。この場合、凹溝15は基端部14の内周面にも形成されている。なお、シールリップ部12の全長は、軸シール11の底面14aの隅部(シールリップ部12側)からシールリップ部2の先端2bの外径側の頂点までの直線の長さをいう。 In FIG. 1, a plurality of grooves 15 are formed so as to extend in the axial direction of the shaft seal 11 . When the total length of the seal lip portion 12 is taken as 100%, the groove 15 has a starting point at a position 5% to 30% (preferably a position 5% to 20%) from the tip 12b of the seal lip portion 12 and the other end. formed towards the side. Further, the concave groove 15 is formed so as not to open on the side of the tip 12b but to open on the side of the other end. In this case, the groove 15 is also formed on the inner peripheral surface of the base end portion 14 . The total length of the seal lip portion 12 is the length of a straight line from the corner (seal lip portion 12 side) of the bottom surface 14a of the shaft seal 11 to the top of the tip 2b of the seal lip portion 2 on the outer diameter side.
 また、図1では凹溝15は他端側に開口しているが、例えば、凹溝を他端側に開口しないように形成してもよい。この場合、当該凹溝は、軸シールの軸方向両側に開口しない溝となる。 In addition, although the concave groove 15 is open on the other end side in FIG. 1, for example, the concave groove may be formed so as not to open on the other end side. In this case, the groove is a groove that does not open on both axial sides of the shaft seal.
 続いて、図2(a)には、図1の軸シールを回転軸に装着した状態の側面図を示し、図2(b)はそのB-B線断面図(回転軸に垂直な方向に切断した断面図)を示す。図2(a)に示すように、使用時において、軸シール11の内孔に回転軸Sが挿通され、軸シール11は、ハウジングなどの取付部に装着される。 Next, FIG. 2(a) shows a side view of the state where the shaft seal of FIG. 1 is attached to the rotating shaft, and FIG. A cut cross-sectional view) is shown. As shown in FIG. 2(a), during use, the rotating shaft S is inserted through the inner hole of the shaft seal 11, and the shaft seal 11 is attached to a mounting portion such as a housing.
 図2(b)に示すように、凹溝15は軸シール11の周方向で離間して複数形成されている。図2(b)において、隣り合う凹溝15同士の間の内周面12aは摺動面の一部を構成し、凹溝15は回転軸Sの外周面との非接触部となっている。凹溝15のそれぞれの幅(周方向長さ)は、シールリップ部の内径周長の1%~15%であることが好ましく、5%~15%であることがより好ましい。なお、凹溝15の幅は、内周面に対する開口幅である。また、周方向で隣り合う凹溝15の間隔(溝間隔)は、シールリップ部12の内径周長の1%~15%であることが好ましく、5%~15%であることがより好ましい。また、低トルク化の観点から、凹溝15の幅は溝間隔よりも大きいことが好ましい。なお、凹溝15の間隔(溝間隔)とは、隣り合う凹溝と凹溝の間の凸面の長さである。 As shown in FIG. 2(b), a plurality of recessed grooves 15 are formed at intervals in the circumferential direction of the shaft seal 11. As shown in FIG. In FIG. 2B, the inner peripheral surface 12a between the adjacent grooves 15 constitutes a part of the sliding surface, and the grooves 15 are non-contact portions with the outer peripheral surface of the rotating shaft S. . The width (length in the circumferential direction) of each groove 15 is preferably 1% to 15%, more preferably 5% to 15%, of the inner circumference of the seal lip portion. The width of the groove 15 is the width of the opening with respect to the inner peripheral surface. The interval (groove interval) between the grooves 15 adjacent in the circumferential direction is preferably 1% to 15%, more preferably 5% to 15%, of the inner circumference of the seal lip portion 12 . Moreover, from the viewpoint of reducing torque, it is preferable that the width of the concave groove 15 is larger than the groove interval. The interval between the grooves 15 (groove interval) is the length of the convex surface between adjacent grooves.
 なお、シールリップ部の内径周長は、軸シールの内径寸法(シールリップ部の先端間の距離)に基づいて算出される。軸シールの内径寸法は、例えば10mm~50mm程度である。 The inner diameter circumference of the seal lip portion is calculated based on the inner diameter dimension of the shaft seal (the distance between the tips of the seal lip portion). The inner diameter of the shaft seal is, for example, about 10 mm to 50 mm.
 凹溝の幅は、軸方向に向けて一定でもよく(図1(b)参照)、軸方向に向けて変化させてもよい。例えば、他端側(基端部側)に向けて、凹溝の幅が段階的または連続的に狭くなるように凹溝を形成してもよい。この場合、溝間隔は、他端側(基端部側)に向けて、段階的または連続的に広くなる。 The width of the groove may be constant in the axial direction (see FIG. 1(b)), or may vary in the axial direction. For example, the groove may be formed so that the width of the groove narrows stepwise or continuously toward the other end (base end side). In this case, the groove interval widens stepwise or continuously toward the other end side (base end side).
 図2において、摺動特性が安定することから、凹溝15は全て同サイズとし、略等間隔で離間して複数(図2では6個)設けることが好ましい。 In FIG. 2, since the sliding characteristics are stabilized, it is preferable that all the grooves 15 have the same size and that a plurality of them (six in FIG. 2) are provided at approximately equal intervals.
 図2の凹溝15の形状について、図3(a)を用いて更に説明する。図3(a)はシールリップ部の断面図であり、凹溝15の断面形状を示している。凹溝15は、円弧状の底面15aと、その底面15aから直立した側壁15b、15bで形成されている。底面15aは、シールリップ部12の内周面12aおよび外周面12cの円弧と同心円の円弧で形成されている。 The shape of the recessed groove 15 in FIG. 2 will be further described with reference to FIG. 3(a). FIG. 3A is a cross-sectional view of the seal lip portion, showing the cross-sectional shape of the groove 15. FIG. The recessed groove 15 is formed of an arc-shaped bottom surface 15a and sidewalls 15b, 15b standing upright from the bottom surface 15a. The bottom surface 15 a is formed by an arc that is concentric with the arcs of the inner peripheral surface 12 a and the outer peripheral surface 12 c of the seal lip portion 12 .
 凹溝15の最大深さd(径方向の長さ)は、シールリップ部の厚みTの10%~30%であることが好ましく、20%~30%であることがより好ましい。これにより、シールリップ部の強度を維持しつつ、シールリップ部が変形した場合であっても、回転軸に対して凹溝15が接触しにくくなる。凹溝15の最大深さdは、底面15aの最深部から凹溝が形成されていないと仮定した場合の内周面(図3の点線)に降ろした垂線の長さである。なお、シールリップ部12の厚みTは、例えば0.3mm~1.5mmである。 The maximum depth d (length in the radial direction) of the groove 15 is preferably 10% to 30%, more preferably 20% to 30%, of the thickness T of the seal lip portion. As a result, while maintaining the strength of the seal lip portion, even if the seal lip portion is deformed, the concave groove 15 is less likely to come into contact with the rotating shaft. The maximum depth d of the groove 15 is the length of a vertical line drawn from the deepest portion of the bottom surface 15a to the inner peripheral surface (dotted line in FIG. 3) assuming that no groove is formed. Incidentally, the thickness T of the seal lip portion 12 is, for example, 0.3 mm to 1.5 mm.
 凹溝15の断面形状は、略矩形状(図3(a))に限定されず、例えば、略台形状の凹溝16(図3(b))や、底面が一対の平面17a、17aで形成された略三角形状の凹溝17(図3(c))、円弧状の凹溝18(図3(d))、略台形状の凹溝19(図3(e))などを採用できる。凹溝15~18は、各凹溝の周方向中央線に対して対称形状になっている。一方、凹溝19は、その周方向中央線に対して非対称形状になっている。これら凹溝15~19の幅や最大深さは、適宜設定でき、上述した数値範囲とすることが好ましい。 The cross-sectional shape of the groove 15 is not limited to a substantially rectangular shape (FIG. 3(a)). A substantially triangular concave groove 17 (FIG. 3(c)), an arc-shaped concave groove 18 (FIG. 3(d)), a substantially trapezoidal concave groove 19 (FIG. 3(e)), etc. can be employed. . The grooves 15 to 18 are symmetrical with respect to the circumferential center line of each groove. On the other hand, the groove 19 has an asymmetrical shape with respect to its circumferential center line. The width and maximum depth of these concave grooves 15 to 19 can be appropriately set, and are preferably within the numerical ranges described above.
 また、図3(b)~(e)の凹溝は、回転軸の回転方向Xにくさび形状が形成されているため、凹溝に保持された潤滑剤が絞り込まれることで動圧効果が発生し、回転トルクをより低下させることができる。くさび形状として、具体的には、回転軸の回転方向の下流側に向かって溝深さが浅くなる傾斜平面や傾斜曲面が形成されている。なお、図3(a)、(b)のように凹溝の周方向角部が135°より小さい場合は、周方向角部にC面取りあるいはR面取りを施してもよい。面取りを付けることで動圧効果も期待できる。 In addition, since the concave grooves in FIGS. 3(b) to 3(e) are formed in a wedge shape in the rotation direction X of the rotating shaft, the lubricant held in the concave grooves is squeezed to generate a dynamic pressure effect. and the rotational torque can be further reduced. As the wedge shape, specifically, an inclined flat surface or an inclined curved surface whose groove depth becomes shallower toward the downstream side in the rotation direction of the rotating shaft is formed. When the circumferential corners of the groove are smaller than 135° as shown in FIGS. 3A and 3B, the circumferential corners may be chamfered or chamfered. A dynamic pressure effect can also be expected by chamfering.
 次に、第1実施形態の軸シールの他の例について図4に基づいて説明する。図4は、軸シールを圧縮機に適用した例を示し、軸シールを回転軸に装着した状態の軸方向断面図を示している。図4において、ハウジング26には、回転軸Sが挿通される挿入孔26aが設けられており、挿入孔26aの周囲に環状溝27が設けられている。軸シール21は、この環状溝27に装着され、回転軸Sが回転することで、シールリップ部22が回転軸Sに摺動する。 Next, another example of the shaft seal of the first embodiment will be described with reference to FIG. FIG. 4 shows an example in which the shaft seal is applied to a compressor, and shows an axial cross-sectional view of a state in which the shaft seal is attached to the rotating shaft. In FIG. 4, the housing 26 is provided with an insertion hole 26a through which the rotating shaft S is inserted, and an annular groove 27 is provided around the insertion hole 26a. The shaft seal 21 is mounted in the annular groove 27, and the seal lip portion 22 slides on the rotating shaft S as the rotating shaft S rotates.
 図4において、軸シール21は、シールリップ部22と外リップ部23とがそれぞれ高圧側Hに延伸するように環状溝27に装着されている。この場合、各リップ部が延伸する側が高圧側Hに相当し、基端部24の背面側が低圧側Lに相当する。装着した状態では、軸シール21の外リップ部23が環状溝27の側壁27aに接触し、シールリップ部22が回転軸Sの外周面に接触する。また、基端部24の背面が環状溝27の底壁27bに密着する。一方、外リップ部23と側壁27aとの間、およびシールリップ部22と回転軸Sとの間にはそれぞれ空間が形成されており、基端部24は回転軸Sに接触していない。圧縮機を稼働させると高圧側の圧力が上昇し、シールリップ部22が回転軸Sの外周面に押し付けられ、さらに基端部24の背面が底壁27bに押し付けられる。 In FIG. 4, the shaft seal 21 is mounted in the annular groove 27 so that the seal lip portion 22 and the outer lip portion 23 extend toward the high pressure side H, respectively. In this case, the side where each lip portion extends corresponds to the high pressure side H, and the back side of the base end portion 24 corresponds to the low pressure side L. In the installed state, the outer lip portion 23 of the shaft seal 21 contacts the side wall 27a of the annular groove 27, and the seal lip portion 22 contacts the outer peripheral surface of the rotating shaft S. As shown in FIG. In addition, the rear surface of the base end portion 24 is in close contact with the bottom wall 27b of the annular groove 27. As shown in FIG. On the other hand, spaces are formed between the outer lip portion 23 and the side wall 27a and between the seal lip portion 22 and the rotating shaft S, and the base end portion 24 is not in contact with the rotating shaft S. When the compressor is operated, the pressure on the high pressure side rises, the seal lip portion 22 is pressed against the outer peripheral surface of the rotary shaft S, and the rear surface of the base end portion 24 is pressed against the bottom wall 27b.
 軸シール21において、シールリップ部22は、内周面22aの接触部近傍(先端22bを除く)に凹溝25を有している。この凹溝25は、周方向に延びるように、内周面22aの全周にわたって形成されている。凹溝25は、シールリップ部22の全長を100%としたとき、上記シールリップ部の先端22bから、5%の位置~30%の位置まで(好ましくは5%の位置~20%の位置まで)の範囲に形成されることが好ましい。凹溝25の軸方向断面における形状は特に限定されず、矩形溝、三角溝、円弧溝などを採用できる。 In the shaft seal 21, the seal lip portion 22 has a recessed groove 25 near the contact portion of the inner peripheral surface 22a (excluding the tip 22b). The concave groove 25 is formed over the entire circumference of the inner peripheral surface 22a so as to extend in the circumferential direction. When the total length of the seal lip portion 22 is taken as 100%, the groove 25 extends from the tip 22b of the seal lip portion to the 5% to 30% position (preferably to the 5% to 20% position. ) is preferably formed in the range of The shape of the concave groove 25 in an axial cross section is not particularly limited, and a rectangular groove, a triangular groove, an arc groove, or the like can be adopted.
 なお、図4では、凹溝25を1本形成したが、軸方向に離間して複数本形成してもよい。また、凹溝25についても、その最大深さ(径方向の長さ)は、シールリップ部22の厚みTの10%~30%であることが好ましく、20%~30%であることがより好ましい。なお、シールリップ部22の厚みTは、例えば0.3mm~1.5mmである。 Although one groove 25 is formed in FIG. 4, a plurality of grooves 25 may be formed spaced apart in the axial direction. The maximum depth (radial length) of the groove 25 is preferably 10% to 30%, more preferably 20% to 30%, of the thickness T of the seal lip portion 22. preferable. Incidentally, the thickness T of the seal lip portion 22 is, for example, 0.3 mm to 1.5 mm.
 軸シール21は、シールリップ部22が回転軸Sの外周面に密着することで、高圧側Hの流体が低圧側Lへ漏れ出すことを防いでいる。流体は、冷媒、油、冷媒と油の混合物などが挙げられる。 The shaft seal 21 prevents the fluid on the high pressure side H from leaking to the low pressure side L by having the seal lip portion 22 in close contact with the outer peripheral surface of the rotating shaft S. Fluids include refrigerants, oils, mixtures of refrigerants and oils, and the like.
(第2実施形態)
 第2実施形態の軸シールについて、図5に基づいて説明する。図5は、軸シールを圧縮機に適用した例を示し、軸シールを回転軸に装着した状態の軸方向断面図を示している。
(Second embodiment)
A shaft seal of the second embodiment will be described with reference to FIG. FIG. 5 shows an example in which the shaft seal is applied to a compressor, and shows an axial cross-sectional view of a state in which the shaft seal is attached to the rotating shaft.
 図5に示すように、軸シール31は、軸方向の断面視が略U字状の環状部材であり、軸方向一方側に延伸したシール内径側のシールリップ部32と、シールリップ部32よりもシール外径側に設けられた外リップ部33とを有する。シールリップ部32と外リップ部33はそれぞれ基端部34から延伸しており、シールリップ部32と外リップ部33は相互に先端が離れる方向へ傾斜して形成されている。 As shown in FIG. 5, the shaft seal 31 is an annular member having a substantially U-shaped cross section in the axial direction. also has an outer lip portion 33 provided on the outer diameter side of the seal. The seal lip portion 32 and the outer lip portion 33 extend from the base end portion 34, respectively, and the seal lip portion 32 and the outer lip portion 33 are formed so as to be inclined in directions in which the tips thereof are separated from each other.
 ハウジング41には、回転軸Sが挿通される挿入孔41aが設けられており、挿入孔41aの周囲に環状溝42が設けられている。軸シール31は、この環状溝42に装着され、回転軸Sが回転することで、シールリップ部32が回転軸Sに摺動する。 The housing 41 is provided with an insertion hole 41a through which the rotating shaft S is inserted, and an annular groove 42 is provided around the insertion hole 41a. The shaft seal 31 is mounted in the annular groove 42, and the seal lip portion 32 slides on the rotating shaft S as the rotating shaft S rotates.
 軸シール31は、シールリップ部32と外リップ部33とがそれぞれ高圧側Hに延伸するように環状溝42に装着されている。この場合、各リップ部が延伸する側を高圧側Hに向け、基端部34の背面側を低圧側Lに向け装着する。装着した状態では、軸シール31の外リップ部33が環状溝42の側壁42aに回転不能に接触し、シールリップ部32が回転軸Sの外周面に回転不能に接触する。また、基端部34の背面が環状溝42の底壁42bに密着する。一方、外リップ部33と側壁42aとの間、およびシールリップ部32と回転軸Sとの間にはそれぞれ空間が形成されており、基端部34は回転軸Sに接触していない。シールリップ部32の内周面32aは、回転軸Sの外周面との摺動面となる。圧縮機を稼働させると高圧側の圧力が上昇し、シールリップ部32が回転軸Sの外周面に押し付けられ、さらに基端部34の背面が底壁42bに押し付けられる。 The shaft seal 31 is mounted in the annular groove 42 so that the seal lip portion 32 and the outer lip portion 33 extend toward the high pressure side H, respectively. In this case, the extending side of each lip portion is directed toward the high pressure side H, and the rear side of the base end portion 34 is directed toward the low pressure side L and attached. In the mounted state, the outer lip portion 33 of the shaft seal 31 non-rotatably contacts the side wall 42a of the annular groove 42, and the seal lip portion 32 contacts the outer peripheral surface of the rotating shaft S non-rotatably. Also, the rear surface of the base end portion 34 is in close contact with the bottom wall 42 b of the annular groove 42 . On the other hand, spaces are formed between the outer lip portion 33 and the side wall 42a and between the seal lip portion 32 and the rotating shaft S, and the base end portion 34 does not contact the rotating shaft S. The inner peripheral surface 32a of the seal lip portion 32 serves as a sliding surface with respect to the outer peripheral surface of the rotating shaft S. As shown in FIG. When the compressor is operated, the pressure on the high pressure side rises, the seal lip portion 32 is pressed against the outer peripheral surface of the rotary shaft S, and the rear surface of the base end portion 34 is pressed against the bottom wall 42b.
 軸シール31において、シールリップ部32は、内周面32aの接触部に所定の高さの凸部35を有している。凸部35は、内周面32aの接触部において、径方向内側に向けて突出しており、全周にわたって形成されている。ここで、接触部とは、シールリップ部32の内周面32aが回転軸Sと接触する領域である。なお、凸部35は、接触部の一部または全部に形成されていればよい。図5において、凸部35の軸方向の断面形状は、略矩形状となっている。 In the shaft seal 31, the seal lip portion 32 has a convex portion 35 with a predetermined height at the contact portion of the inner peripheral surface 32a. The convex portion 35 protrudes radially inward at the contact portion of the inner peripheral surface 32a and is formed over the entire circumference. Here, the contact portion is a region where the inner peripheral surface 32a of the seal lip portion 32 contacts the rotating shaft S. As shown in FIG. Note that the convex portion 35 may be formed on part or all of the contact portion. In FIG. 5, the axial cross-sectional shape of the protrusion 35 is substantially rectangular.
 凸部35は、シールリップ部32の全長Ltを100%としたとき、シールリップ部32の内周面32aにおいて、シールリップ部32の先端32bから他端側に向けて30%までの範囲の間に形成されることが好ましい。ここで、先端から他端側に向けて30%までの範囲の間に形成されるとは、先端(0%)から30%までの範囲の全部に形成されるという意味ではなく、先端(0%)から30%までの範囲の一部または全部に形成されるという意味である。また、先端(0%)から30%までの範囲の間に形成されていれば、30%を超える範囲に形成されていてもよく、例えば10%から35%の全部に形成されているような場合も含まれる。シールリップ部32の内周面32aにおいて、凸部35は、先端32bを含んで形成される、つまり先端32bを起点として形成されることが好ましく、更に、その先端を起点として20%までの範囲の間に形成されることがより好ましい。 When the total length Lt of the seal lip portion 32 is taken as 100%, the convex portion 35 extends from the tip 32b of the seal lip portion 32 toward the other end on the inner peripheral surface 32a of the seal lip portion 32 up to 30%. It is preferably formed between. Here, "formed within a range of up to 30% from the tip toward the other end" does not mean that it is formed in the entire range from the tip (0%) to 30%. %) to 30%. Also, as long as it is formed in the range from the tip (0%) to 30%, it may be formed in a range exceeding 30%, for example, it may be formed in the entire range from 10% to 35%. case is also included. On the inner peripheral surface 32a of the seal lip portion 32, the convex portion 35 is preferably formed including the tip 32b, that is, formed starting from the tip 32b, and furthermore, the convex portion 35 is formed within a range of up to 20% from the tip 32b. is more preferably formed between
 なお、シールリップ部32の全長Ltは、軸シール31の底面34aの隅部(シールリップ部32側)からシールリップ部32の先端32bの外径側の頂点までの直線の長さをいう。シールリップ部32の全長Ltは、例えば、1.0mm~8.0mmであることが好ましく、1.0mm~6.5mmであることがより好ましく、2.0mm~6.5mmであることがさらに好ましい。 The total length Lt of the seal lip portion 32 refers to the length of a straight line from the corner (seal lip portion 32 side) of the bottom surface 34a of the shaft seal 31 to the top of the tip 32b of the seal lip portion 32 on the outer diameter side. The total length Lt of the seal lip portion 32 is, for example, preferably 1.0 mm to 8.0 mm, more preferably 1.0 mm to 6.5 mm, and further preferably 2.0 mm to 6.5 mm. preferable.
 軸シール31は、シールリップ部32が回転軸Sの外周面に密着することで、高圧側Hの流体が低圧側Lへ漏れ出すことを防いでいる。流体は、冷媒、油、冷媒と油の混合物などが挙げられる。 The shaft seal 31 prevents the fluid on the high pressure side H from leaking to the low pressure side L by having the seal lip portion 32 in close contact with the outer peripheral surface of the rotating shaft S. Fluids include refrigerants, oils, mixtures of refrigerants and oils, and the like.
 凸部の形状について、図6(a)~図6(f)を用いて更に説明する。図6の各軸シールは、回転軸に装着する前の状態を示しており、軸シールの軸方向に沿って切断した切断面を表している。図6の各軸シールのいずれも、凸部が、シールリップ部32の内周面32aから内周方向に突出され、先端から他端側に向けて30%の範囲の間に形成されている。 The shape of the convex portion will be further described with reference to FIGS. 6(a) to 6(f). Each shaft seal in FIG. 6 shows a state before being mounted on a rotating shaft, and represents a cut surface cut along the axial direction of the shaft seal. Each of the shaft seals shown in FIG. 6 has a convex portion that protrudes in the inner peripheral direction from the inner peripheral surface 32a of the seal lip portion 32 and is formed within a range of 30% from the tip toward the other end. .
 図6(a)は、図5に示した軸シールの紙面下側における切断面を示す図である。また、図6(b)は、図6(a)における凸部周辺の拡大図である。図6(a)および図6(b)に示すように、凸部35は、内周面32aのうち最も内周側に位置し、平面状の接触面35aと、その接触面35aから垂下した凸部側面35b、35bで形成されている。この場合、接触面35aは軸方向と平行な面で形成され、凸部側面35b、35bは、径方向と平行な面で形成される。図6(a)、(b)に示すような略矩形状にすることで、凸部35の強度が維持されやすいため、凸部35は変形しにくい。その結果、回転軸に対する凸部35の接触面積は一定に維持されやすくシール性に優れる。 FIG. 6(a) is a diagram showing a cut surface on the lower side of the paper surface of the shaft seal shown in FIG. Moreover, FIG.6(b) is an enlarged view around the convex part in Fig.6 (a). As shown in FIGS. 6(a) and 6(b), the convex portion 35 is located on the innermost side of the inner peripheral surface 32a, and has a planar contact surface 35a and a contact surface 35a. It is formed by convex side surfaces 35b, 35b. In this case, the contact surface 35a is formed with a surface parallel to the axial direction, and the convex side surfaces 35b, 35b are formed with surfaces parallel to the radial direction. By forming the substantially rectangular shape as shown in FIGS. 6A and 6B, the strength of the convex portion 35 is easily maintained, so that the convex portion 35 is less likely to deform. As a result, the contact area of the convex portion 35 with respect to the rotary shaft can be easily maintained constant, resulting in excellent sealing performance.
 凸部35の最大高さ(径方向の長さ)hは、シールリップ部32の厚みTの5%~20%であることが好ましく、10%~20%であることがより好ましい。これにより、凸部35の強度を維持できるため凸部35が変形しにくい。その結果、流体の漏れが起こりにくく、シール性に優れる。凸部35の最大高さhは、接触面35aの最高部から内周面32aまたは凸部が形成されていないと仮定した場合の内周面32aの仮想面F(図6(b)における凸部35の下部の点線)に降ろした垂線の長さである。なお、シールリップ部32の厚みTは、例えば、0.3mm~1.5mmである。 The maximum height (radial length) h of the convex portion 35 is preferably 5% to 20% of the thickness T of the seal lip portion 32, more preferably 10% to 20%. As a result, the strength of the convex portion 35 can be maintained, so that the convex portion 35 is less likely to deform. As a result, leakage of fluid is less likely to occur, and excellent sealing performance is achieved. The maximum height h of the convex portion 35 is the height from the highest portion of the contact surface 35a to the inner peripheral surface 32a or the virtual surface F of the inner peripheral surface 32a assuming that no convex portion is formed (the convex height in FIG. 6B). is the length of the perpendicular drawn down to (dotted line at the bottom of section 35). Incidentally, the thickness T of the seal lip portion 32 is, for example, 0.3 mm to 1.5 mm.
 凸部35の幅Wは、シールリップ部32の全長Ltの5%~30%であることが好ましく、5%~25%であることがより好ましく、10%~20%であることがさらに好ましい。これにより、凸部35の強度を維持できるため凸部35が変形しにくく、また、シールリップ部32の接触面積をより減少できる。その結果、シール性および低トルク特性により優れる。なお、凸部35の幅Wは、凸部側面35b、35bと、仮想面Fとの2点の交点間の最大距離である。 The width W of the convex portion 35 is preferably 5% to 30% of the total length Lt of the seal lip portion 32, more preferably 5% to 25%, and even more preferably 10% to 20%. . As a result, the strength of the convex portion 35 can be maintained, so that the convex portion 35 is less likely to deform, and the contact area of the seal lip portion 32 can be further reduced. As a result, it is superior in sealing performance and low torque characteristics. The width W of the protrusion 35 is the maximum distance between two points of intersection between the protrusion side surfaces 35b, 35b and the imaginary plane F. As shown in FIG.
 凸部の断面形状としては、上述した略矩形状に限られず、例えば、円弧状、略台形状、略三角形状などができる。凸部は、断面形状がその中央線に対して対称形状であってもよく、非対称形状であってもよい。例えば、図6(b)において、凸部側面35b、35bの一方を径方向に対して傾斜した傾斜面としてもよい。 The cross-sectional shape of the convex portion is not limited to the above-described substantially rectangular shape, and may be, for example, an arc shape, substantially trapezoidal shape, substantially triangular shape, or the like. The cross-sectional shape of the convex portion may be symmetrical or asymmetrical with respect to the center line. For example, in FIG. 6B, one of the convex side surfaces 35b, 35b may be an inclined surface inclined with respect to the radial direction.
 凸部の軸方向の断面形状が円弧状の場合について、図6(c)を用いて説明する。図6(c)は、その凸部周辺の拡大図である。図6(c)に示すように、凸部36は、内周面32aのうち最も内周側に位置し、曲面状の接触面36aと、その接触面36aから垂下した凸部側面36b、36bで形成されている。例えば、接触面を曲面状とすることで、軸方向断面形状が略矩形状の場合に比べ、回転軸に対するシールリップ部32の接触面積を減少でき、より低トルク化に寄与する。また、凸部36の内周側先端部が変形する場合、変形量の増大につれて回転軸に対する凸部36の接触面積が徐々に増え、シール性が向上する。 A case where the cross-sectional shape of the convex portion in the axial direction is circular will be described with reference to FIG. 6(c). FIG. 6(c) is an enlarged view of the vicinity of the convex portion. As shown in FIG. 6(c), the convex portion 36 is located on the innermost side of the inner peripheral surface 32a, and has a curved contact surface 36a and convex side surfaces 36b, 36b depending from the contact surface 36a. is formed by For example, by forming the contact surface into a curved shape, the contact area of the seal lip portion 32 with respect to the rotating shaft can be reduced compared to the case where the axial cross-sectional shape is substantially rectangular, which contributes to lower torque. Further, when the inner peripheral end portion of the convex portion 36 is deformed, the contact area of the convex portion 36 with respect to the rotating shaft gradually increases as the amount of deformation increases, thereby improving the sealing performance.
 凸部の軸方向の断面形状が略台形状の場合について、図6(d)を用いて説明する。図6(d)は、その凸部周辺の拡大図である。図6(d)に示すように、凸部37は、内周面32aのうち最も内周側に位置し、平面状の接触面37aと、凸部37の幅が広がるように接触面37aに対して傾斜した傾斜面37b、37bと、傾斜面37b、37bのそれぞれから垂下した凸部側面37c、37cで形成されている。これにより、軸方向の断面形状が略矩形状の場合に比べ、回転軸に対するシールリップ部32の接触面積を減少でき、より低トルク化に寄与する。また、凸部37の内周側先端部が変形する場合、軸方向の断面形状が円弧状の場合に比べ、凸部37における変形前後での回転軸に対する凸部37の接触面積の変化量が小さく、変形初期でもシール性に優れる。 A case where the cross-sectional shape of the convex portion in the axial direction is substantially trapezoidal will be described with reference to FIG. 6(d). FIG. 6(d) is an enlarged view of the vicinity of the convex portion. As shown in FIG. 6(d), the convex portion 37 is located on the innermost side of the inner peripheral surface 32a, and has a planar contact surface 37a and the contact surface 37a so that the width of the convex portion 37 is widened. It is formed of slanted surfaces 37b, 37b that are slanted to the opposite side, and convex side surfaces 37c, 37c that hang down from the slanted surfaces 37b, 37b, respectively. As a result, the contact area of the seal lip portion 32 with respect to the rotating shaft can be reduced compared to the case where the cross-sectional shape in the axial direction is substantially rectangular, which contributes to lower torque. Further, when the tip of the protrusion 37 on the inner peripheral side is deformed, the amount of change in the contact area of the protrusion 37 with respect to the rotation shaft before and after the deformation of the protrusion 37 is greater than when the cross-sectional shape in the axial direction is arcuate. It is small and has excellent sealing properties even at the initial stage of deformation.
 凸部の軸方向の断面形状が略三角形状の場合について、図6(e)を用いて説明する。図6(e)は、その凸部周辺の拡大図である。図6(e)に示すように、凸部38は、一対の傾斜面38a、38aで形成されている。これにより、軸方向の断面形状が略矩形状の場合に比べ、回転軸に対するシールリップ部32の接触面積を特に減少でき、一層低トルク化に寄与する。 A case where the cross-sectional shape of the convex portion in the axial direction is approximately triangular will be described with reference to FIG. 6(e). FIG. 6(e) is an enlarged view of the vicinity of the convex portion. As shown in FIG. 6(e), the convex portion 38 is formed of a pair of inclined surfaces 38a, 38a. As a result, the contact area of the seal lip portion 32 with respect to the rotating shaft can be particularly reduced compared to the case where the cross-sectional shape in the axial direction is substantially rectangular, which further contributes to lower torque.
 また、凸部は、軸方向に離間して複数設けられてもよい。例えば、2本の略矩形状の凸部を軸方向に離間して設けることもできる。2本の略矩形状の凸部が軸方向に離間して設けられた場合について、図6(f)を用いて説明する。図6(f)は、2本の隣接する凸部を有する軸シールにおける凸部周辺の拡大図である。図6(f)に示すように、2本の凸部35’、35’が軸方向に離間して設けられる場合、凸部35’、35’の間には凹溝Gが形成される。この場合、凹溝Gにオイルなどの潤滑剤が保持されるため、当該凹溝は潤滑溝としても機能し、低トルク化に寄与する。 Also, a plurality of protrusions may be provided spaced apart in the axial direction. For example, two substantially rectangular projections can be provided spaced apart in the axial direction. A case in which two substantially rectangular projections are spaced apart in the axial direction will be described with reference to FIG. 6(f). FIG. 6(f) is an enlarged view of the vicinity of the protrusions in the shaft seal having two adjacent protrusions. As shown in FIG. 6(f), when the two projections 35', 35' are spaced apart in the axial direction, a groove G is formed between the projections 35', 35'. In this case, since lubricant such as oil is held in the groove G, the groove also functions as a lubrication groove, contributing to a reduction in torque.
 凹溝Gの最大深さdは、例えば、凸部35’の最大高さの20%~100%にすることができる。凹溝Gの最大深さdは、凸部35’の最大高さの30%~80%であることが好ましく、40%~60%であることがより好ましい。これにより、凸部35’の強度を維持しつつ、凸部35’の変形を防止できる。凹溝Gの最大深さdは、底面Gaの最深部から凸部35’の接触面35’aの最高部までの距離(面間距離)である。 The maximum depth d of the groove G can be, for example, 20% to 100% of the maximum height of the projection 35'. The maximum depth d of the groove G is preferably 30% to 80%, more preferably 40% to 60%, of the maximum height of the projection 35'. Thereby, deformation of the convex portion 35' can be prevented while maintaining the strength of the convex portion 35'. The maximum depth d of the groove G is the distance (surface-to-surface distance) from the deepest part of the bottom surface Ga to the highest part of the contact surface 35'a of the protrusion 35'.
 図6において、各凸部の幅や最大高さ、凹溝の最大深さには、上述した数値範囲を適宜採用できる。また、凸部の形状は図6に示す形状に限らない。例えば、図6に示す各凸部の一部を適宜組み合わせてもよく、平面や曲面も適宜組み合わせることができる。  In Fig. 6, the above-described numerical ranges can be appropriately adopted for the width and maximum height of each convex portion and the maximum depth of the concave groove. Moreover, the shape of the convex portion is not limited to the shape shown in FIG. For example, some of the projections shown in FIG. 6 may be combined as appropriate, and planes and curved surfaces may also be combined as appropriate.
 上記図1~図6には、軸方向の断面視が略U字状の軸シールを示したが、本発明の軸シールはこれに限らない。例えば、軸シールに、シールリップ部と外リップ部以外のリップ部(例えば、回転軸と摺動するダストリップなど)を設けてもよく、また、軸シールが外リップ部を有さない形状(例えば、シールリップ部2と、外リップ部3の無い固定部とからなる形状)としてもよい。 Although FIGS. 1 to 6 show shaft seals having a substantially U-shaped cross section in the axial direction, the shaft seal of the present invention is not limited to this. For example, the shaft seal may be provided with a lip portion other than the seal lip portion and the outer lip portion (for example, a dust lip that slides on the rotating shaft). For example, a shape consisting of the seal lip portion 2 and a fixed portion without the outer lip portion 3 may be used.
 例えば図4の圧縮機において、ハウジング26の高圧側Hには圧縮機構部が設けられる。圧縮機構部の形態は、回転軸Sの回転によって流体の圧縮が行われる機構であればよく、スクロール式や斜板式などを採用できる。例えば、スクロール式の場合、圧縮機構部は、固定スクロールと、該固定スクロールに対して旋回運動する可動スクロールとを組み合わせて構成される。 For example, in the compressor of FIG. 4, the high pressure side H of the housing 26 is provided with a compression mechanism. The form of the compression mechanism may be any mechanism as long as the fluid is compressed by the rotation of the rotating shaft S, and a scroll type or a swash plate type can be adopted. For example, in the case of the scroll type, the compression mechanism unit is configured by combining a fixed scroll and a movable scroll that revolves with respect to the fixed scroll.
 図7には、スクロール式の圧縮機構部の一部断面図を示す。図7に示すように、圧縮機構部51は、基板53aとその表面に直立する固定側スクロール翼53bを有する固定ロータ53と、基板54aとその表面に直立する可動側スクロール翼54bを有する可動ロータ54とを備えている。固定ロータ53と可動ロータ54が相互に偏心状態にかみ合わされて、それらの間に圧縮室52が形成されている。可動ロータ54は、上述の回転軸に直接的または間接的に接続されており、可動ロータ54が固定ロータ53の軸線の周りで公転することにより、圧縮室52が渦巻形状の中心側に移動して流体の圧縮が行なわれる。圧縮された圧縮流体は、可動ロータ54の中心部の吐出口55を通って吐出管から吐出され、冷凍サイクルに流出する。そして、冷凍サイクルの流体(冷媒ガスなど)が吸入口(図示省略)を介して圧縮室52へ導入される。 Fig. 7 shows a partial cross-sectional view of the scroll-type compression mechanism. As shown in FIG. 7, the compression mechanism section 51 includes a fixed rotor 53 having a base plate 53a and fixed side scroll blades 53b standing upright on its surface, and a movable rotor having a base plate 54a and movable side scroll blades 54b standing upright on its surface. 54. A fixed rotor 53 and a movable rotor 54 are eccentrically meshed with each other to form a compression chamber 52 therebetween. The movable rotor 54 is directly or indirectly connected to the above-described rotating shaft, and the compression chamber 52 moves toward the center of the spiral as the movable rotor 54 revolves around the axis of the fixed rotor 53. compression of the fluid takes place. The compressed fluid is discharged from the discharge pipe through the discharge port 55 at the center of the movable rotor 54 and flows out to the refrigeration cycle. Fluid (refrigerant gas, etc.) of the refrigerating cycle is introduced into the compression chamber 52 through the suction port (not shown).
 本発明の軸シールは、樹脂組成物または熱可塑性エラストマー組成物からなる。樹脂組成物において、主成分となる樹脂(ベース樹脂)は限定されるものではなく、ポリアミド(PA)樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリアミドイミド(PAI)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、テトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)樹脂、エチレン-テトラフルオロエチレン共重合体(ETFE)樹脂、ポリビニリデンフルオライド樹脂、液晶ポリマー、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリフェニルスルホン樹脂、ポリアリレート樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、ポリエステル樹脂などを用いることができる。 The shaft seal of the present invention is made of a resin composition or a thermoplastic elastomer composition. In the resin composition, the resin (base resin) that is the main component is not limited, and may be polyamide (PA) resin, polyphenylene sulfide (PPS) resin, polyetheretherketone (PEEK) resin, polyamideimide (PAI) resin. , polytetrafluoroethylene (PTFE) resin, tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) resin, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, ethylene-tetrafluoroethylene copolymer ( ETFE) resin, polyvinylidene fluoride resin, liquid crystal polymer, polyethersulfone resin, polysulfone resin, polyphenylsulfone resin, polyarylate resin, polyetherimide resin, polyimide resin, polyester resin, and the like can be used.
 また、熱可塑性エラストマー組成物において、主成分となるエラストマーは限定されるものではなく、ポリオレフィン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマーなどを用いることができる。耐熱性、耐薬品性の点から、ポリエステル系エラストマーが特に好ましい。ポリエステル系エラストマーは、ハードセグメントとソフトセグメントを含み、ハードセグメントにポリエステル単位、ソフトセグメントにポリエーテル単位またはポリエステル単位が用いられる。ポリエステル系エラストマーは、ポリエステル-ポリエーテル型またはポリエステル-ポリエステル型のマルチブロック共重合体である。 In addition, in the thermoplastic elastomer composition, the elastomer that is the main component is not limited, and polyolefin-based elastomers, polyester-based elastomers, polyamide-based elastomers, etc. can be used. Polyester-based elastomers are particularly preferred in terms of heat resistance and chemical resistance. The polyester-based elastomer contains hard segments and soft segments, and polyester units are used for the hard segments, and polyether units or polyester units are used for the soft segments. Polyester-based elastomers are polyester-polyether type or polyester-polyester type multi-block copolymers.
 上記の樹脂組成物および熱可塑性エラストマー組成物には、摩擦摩耗特性を向上させる目的で、PTFE樹脂、グラファイト、二硫化モリブデンなどの固体潤滑剤を配合することができる。 A solid lubricant such as PTFE resin, graphite, and molybdenum disulfide can be blended into the above resin composition and thermoplastic elastomer composition for the purpose of improving friction and wear characteristics.
 固体潤滑剤の配合量は、樹脂組成物または熱可塑性エラストマー組成物100体積%に対して、1体積%~40体積%が好ましく、1体積%~20体積%がより好ましい。40体積%を超えると、樹脂組成物または熱可塑性エラストマー組成物の伸び特性が低下するおそれがあり、軸シールを回転軸に組み込む際に割れが発生するおそれがある。 The blending amount of the solid lubricant is preferably 1% to 40% by volume, more preferably 1% to 20% by volume, relative to 100% by volume of the resin composition or thermoplastic elastomer composition. If it exceeds 40% by volume, the elongation properties of the resin composition or thermoplastic elastomer composition may deteriorate, and cracks may occur when the shaft seal is incorporated into the rotating shaft.
 なお、本発明の効果を阻害しない程度に、樹脂組成物または熱可塑性エラストマー組成物に、炭素繊維、ガラス繊維、アラミド繊維などの繊維状補強材、球状シリカなどの球状充填材、マイカなどの鱗状補強材、リン酸カルシウム、硫酸カルシウムなどの摺動補強材、チタン酸カリウムウィスカなどの微小繊維補強材を用いてもよい。カーボンブラック、酸化鉄などの着色剤も配合できる。これらは単独で配合することも、組み合せて配合することもできる。 The resin composition or thermoplastic elastomer composition may contain fibrous reinforcing materials such as carbon fiber, glass fiber and aramid fiber; spherical fillers such as spherical silica; Reinforcing materials, sliding reinforcing materials such as calcium phosphate and calcium sulfate, and fine fiber reinforcing materials such as potassium titanate whiskers may also be used. Colorants such as carbon black and iron oxide can also be blended. These may be blended singly or in combination.
 本発明の軸シールは、車載エアコンのスクロール式圧縮機に用いることができる。スクロール式圧縮機は、エンジン動力を利用したベルト駆動、エンジン動力を利用しないモータ駆動のどちらであってもよい。また、本発明の軸シールは、圧縮機に限らず用いることができる。 The shaft seal of the present invention can be used for scroll compressors of in-vehicle air conditioners. The scroll compressor may be belt-driven using engine power or motor-driven without using engine power. Further, the shaft seal of the present invention can be used not only in compressors.
 本発明の軸シールは、例えば、一般的な熱可塑性樹脂用の射出成形機を用い、射出成形によって成形される。上記樹脂組成物または上記熱可塑性エラストマー組成物は、構成する各材料を、必要に応じて、ヘンシェルミキサー、アキシャルミキサー、ボールミキサー、リボンブレンダーなどにて混合した後、二軸混練押出し機などの溶融押出し機にて溶融混練し、成形用ペレットを得ることができる。なお、充填材の投入は、二軸押出し機などで溶融混練する際にサイドフィードを採用してもよい。この成形用ペレットを用いて射出成形により軸シールを成形する。 The shaft seal of the present invention is molded by injection molding, for example, using a general injection molding machine for thermoplastic resins. The above-mentioned resin composition or the above-mentioned thermoplastic elastomer composition is prepared by mixing each constituent material with a Henschel mixer, an axial mixer, a ball mixer, a ribbon blender, etc., if necessary, and then melting with a twin-screw kneading extruder, etc. The pellets for molding can be obtained by melt-kneading with an extruder. In addition, side feed may be adopted for charging the filler when melt-kneading with a twin-screw extruder or the like. A shaft seal is formed by injection molding using this molding pellet.
[試験例A]
試験例A1~A4
 熱可塑性エラストマー組成物を二軸混練押出し機で作製し、ペレット化した。得られたペレットを用いて射出成形により、試験例A1~A4の軸シールを成形した。試験例A1~A2として、図1および図2に示す形状の軸シール(内径寸法20mm)を得た。具体的には、凹溝として、軸方向に延びるように凹溝を6個形成した。凹溝の各寸法を表1に示す。なお、溝幅および溝間隔は、円弧の長さとして計測した。
 また、試験例A3~A4として、図9に示す形状(溝なし)の軸シール(内径寸法20mm)を得た。
[Test Example A]
Test examples A1 to A4
A thermoplastic elastomer composition was prepared in a twin-screw kneading extruder and pelletized. Shaft seals of Test Examples A1 to A4 were formed by injection molding using the obtained pellets. As test examples A1 and A2, shaft seals (inner diameter: 20 mm) having the shapes shown in FIGS. 1 and 2 were obtained. Specifically, as the grooves, six grooves were formed so as to extend in the axial direction. Table 1 shows each dimension of the groove. The groove width and groove interval were measured as arc lengths.
Further, as test examples A3 and A4, shaft seals (with an inner diameter of 20 mm) having the shape (no groove) shown in FIG. 9 were obtained.
<回転トルク試験>
 図8に示す回転トルク試験機を用いて、下記の条件でオイル中で回転トルク試験を実施して、回転トルクおよびオイルリーク量を測定した。
<試験条件>
  回転軸 :材質S45C
  回転数 :3000min-1、8000min-1
  油圧  :0.3MPa、0.8MPa
  油温  :40℃
  冷凍機油:ポリアルキレングリコール油
  試験時間:60分
<Rotating torque test>
Using the rotational torque tester shown in FIG. 8, a rotational torque test was performed in oil under the following conditions to measure the rotational torque and the amount of oil leakage.
<Test conditions>
Rotating shaft: Material S45C
Rotation speed: 3000min -1 , 8000min -1
Oil pressure: 0.3MPa, 0.8MPa
Oil temperature: 40°C
Refrigerant oil: Polyalkylene glycol oil Test time: 60 minutes
 図8に示すように、試験機56のハウジングは、外周側ハウジング59と内周側ハウジング60とを組み付けて構成される。これらハウジングの合わせ面において、内周側ハウジング60の外周溝にはOリング61が配置されており、合わせ面から冷凍機油が漏れることを防止している。軸シール57は回転軸58に密着しており、回転軸58の回転によって回転軸58の外周面と摺接する。冷凍機油を圧送して、ハウジング内空間に供給した。冷凍機油は、図8に示すように、流入路59bから流入し、ハウジング内空間を経て、流出路59cから流出する。オイルリーク量は、回転軸58と挿通孔59aとの間から漏れ出た冷凍機油の量に基づいており、試験開始後50分から60分までの10分間の平均値(n=2)を示している。また、回転トルクは、試験開始後50分から60分までの10分間の平均値(n=2)を示している。結果を表1に示す。 As shown in FIG. 8, the housing of the testing machine 56 is configured by assembling an outer peripheral housing 59 and an inner peripheral housing 60 . On the mating surfaces of these housings, an O-ring 61 is arranged in the outer circumferential groove of the inner peripheral side housing 60 to prevent leakage of refrigerating machine oil from the mating surfaces. The shaft seal 57 is in close contact with the rotary shaft 58 and comes into sliding contact with the outer peripheral surface of the rotary shaft 58 as the rotary shaft 58 rotates. Refrigerant oil was pumped and supplied to the space in the housing. As shown in FIG. 8, the refrigerating machine oil flows in from the inflow path 59b, passes through the housing inner space, and flows out from the outflow path 59c. The amount of oil leakage is based on the amount of refrigerating machine oil leaking from between the rotating shaft 58 and the insertion hole 59a, and is the average value (n=2) for 10 minutes from 50 minutes to 60 minutes after the start of the test. there is Further, the rotational torque shows the average value (n=2) for 10 minutes from 50 minutes to 60 minutes after the start of the test. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、回転数が3000min-1、8000min-1のいずれの場合も、試験例A1~A2は、試験例A3~A4(従来品)と比較して、オイルリーク性を保持しつつも、回転トルクの向上が認められた。具体的には、試験例A1~A2は、試験例A3~A4に比べて、回転トルクが8%~10%程度小さくなった。 As shown in Table 1, at both 3000 min -1 and 8000 min -1 rotation speeds, Test Examples A1 and A2 maintained oil leak resistance compared to Test Examples A3 and A4 (conventional products). However, an improvement in rotational torque was recognized. Specifically, in Test Examples A1 and A2, the rotational torque was reduced by about 8% to 10% compared to Test Examples A3 and A4.
[試験例B]
試験例B1~B2
 熱可塑性エラストマー組成物を二軸混練押出し機にてペレット化した。得られたペレットを用いて射出成形により、試験例B1、B2の軸シールを成形した。試験例B1として、図5に示す形状の軸シール(内径寸法20mm、シールリップ部の全長4mm、シールリップ部の厚み0.5mm)を得た。具体的には、軸シールの内周面における後述する回転軸との接触部に、全周にわたり、凸部を1本形成した。凸部の各寸法を表2に示す。なお、凸部幅は、2つの凸部側面と仮想面Fとによって形成される2本の接線の間の最大距離であるとして計測した。また、試験例B2として、図9に示す形状(凸部なし)の軸シール(内径寸法20mm、シールリップ部の全長4mm、シールリップ部の厚み0.5mm)を得た。
[Test example B]
Test examples B1-B2
The thermoplastic elastomer composition was pelletized with a twin-screw kneading extruder. Shaft seals of Test Examples B1 and B2 were formed by injection molding using the obtained pellets. As Test Example B1, a shaft seal having the shape shown in FIG. 5 (inner diameter: 20 mm, total length of the seal lip portion: 4 mm, thickness of the seal lip portion: 0.5 mm) was obtained. Specifically, a single protrusion was formed over the entire circumference of the contact portion of the inner peripheral surface of the shaft seal with a rotating shaft, which will be described later. Table 2 shows each dimension of the projection. The width of the convex portion was measured as the maximum distance between two tangent lines formed by the two side surfaces of the convex portion and the imaginary plane F. Further, as test example B2, a shaft seal (inner diameter: 20 mm, full length of the seal lip portion: 4 mm, thickness of the seal lip portion: 0.5 mm) having a shape (without protrusions) shown in FIG. 9 was obtained.
<回転トルク試験>
 図8に示す回転トルク試験機を用いて、下記の条件でオイル中で回転トルク試験を実施して、回転トルクおよびオイルリーク量を測定した。なお、オイルリーク量は、試験開始後60分間の平均値(n=2)を示しており、回転トルクは、試験開始後60分間の平均値(n=2)を示している。結果を表2に示す。
<試験条件>
  回転軸 :材質S45C
  回転数 :8000min-1
  油圧  :0.8MPa
  油温  :40℃
  冷凍機油:ポリアルキレングリコール油
  試験時間:60分
<Rotating torque test>
Using the rotational torque tester shown in FIG. 8, a rotational torque test was performed in oil under the following conditions to measure the rotational torque and the amount of oil leakage. The oil leak amount indicates an average value (n=2) for 60 minutes after the start of the test, and the rotational torque indicates an average value (n=2) for 60 minutes after the start of the test. Table 2 shows the results.
<Test conditions>
Rotating shaft: Material S45C
Rotation speed: 8000min -1
Hydraulic pressure: 0.8MPa
Oil temperature: 40°C
Refrigerant oil: Polyalkylene glycol oil Test time: 60 minutes
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試験例B1は、試験例B2(従来品)と比較して、オイルリーク性を保持しつつも、回転トルクの低減が認められた。具体的には、試験例B1は、試験例B2に比べて、回転トルクが約7%小さくなった。 As shown in Table 2, in Test Example B1, compared with Test Example B2 (conventional product), a reduction in rotational torque was observed while maintaining the oil leak property. Specifically, in Test Example B1, the rotational torque was about 7% smaller than in Test Example B2.
 本発明の軸シールは、シール性に優れるとともに、回転トルクを一層低減できるので、回転軸の外周面に摺接しながら密封流体を封止する軸シールとして広く使用できる。特に、車載エアコンのスクロール式冷媒圧縮機の圧縮機構部を回転させる回転軸の軸シールに適している。 The shaft seal of the present invention has excellent sealing properties and can further reduce rotational torque, so it can be widely used as a shaft seal that seals a sealing fluid while sliding on the outer peripheral surface of the rotating shaft. In particular, it is suitable as a shaft seal for a rotating shaft that rotates the compression mechanism of a scroll-type refrigerant compressor for an in-vehicle air conditioner.
  11 軸シール
  12 シールリップ部
  13 外リップ部
  14 基端部
  15 凹溝
  16 凹溝
  17 凹溝
  18 凹溝
  19 凹溝
  21 軸シール
  22 シールリップ部
  23 外リップ部
  24 基端部
  25 凹溝
  26 ハウジング
  27 環状溝
  31 軸シール
  32 シールリップ部
  33 外リップ部
  34 基端部
  35、35’ 凸部
  36 凸部
  37 凸部
  38 凸部
  41 ハウジング
  42 環状溝
  51 圧縮機構部
  52 圧縮室
  53 固定ロータ
  54 可動ロータ
  55 吐出口
  56 試験機
  57 軸シール
  58 回転軸
  59 外周側ハウジング
  60 内周側ハウジング
  61 Oリング
11 shaft seal 12 seal lip portion 13 outer lip portion 14 base end portion 15 concave groove 16 concave groove 17 concave groove 18 concave groove 19 concave groove 21 shaft seal 22 seal lip portion 23 outer lip portion 24 base end portion 25 concave groove 26 housing 27 annular groove 31 shaft seal 32 seal lip portion 33 outer lip portion 34 base end portion 35, 35' convex portion 36 convex portion 37 convex portion 38 convex portion 41 housing 42 annular groove 51 compression mechanism portion 52 compression chamber 53 fixed rotor 54 movable Rotor 55 Discharge port 56 Testing machine 57 Shaft seal 58 Rotating shaft 59 Outer peripheral housing 60 Inner peripheral housing 61 O-ring

Claims (14)

  1.  回転軸の外周面に密着して密封流体を封止する環状の軸シールであって、
     前記軸シールは、前記回転軸と摺動するシールリップ部を備え、
     前記シールリップ部は、前記回転軸と摺動する内周面の接触部または接触部近傍に、凹部または凸部を有することを特徴とする軸シール。
    An annular shaft seal that is in close contact with the outer peripheral surface of a rotating shaft to seal a sealing fluid,
    The shaft seal has a seal lip portion that slides on the rotating shaft,
    The shaft seal, wherein the seal lip portion has a concave portion or a convex portion at or near the contact portion of the inner peripheral surface that slides on the rotating shaft.
  2.  前記回転軸と前記軸シールを装着するハウジングとの隙間が、前記軸シールによって高圧側と低圧側に区画され、
     前記シールリップ部は、高圧側に延伸して前記回転軸と摺動するものであり、前記回転軸と摺動する内周面の接触部近傍に前記凹部として凹溝を有することを特徴とする請求項1記載の軸シール。
    a gap between the rotary shaft and a housing to which the shaft seal is mounted is divided into a high pressure side and a low pressure side by the shaft seal,
    The seal lip portion extends to the high pressure side and slides on the rotating shaft, and has a recessed groove as the recessed portion in the vicinity of the contact portion of the inner peripheral surface that slides on the rotating shaft. A shaft seal according to claim 1.
  3.  前記回転軸と前記軸シールを装着するハウジングとの隙間が、前記軸シールによって高圧側と低圧側に区画され、
     前記シールリップ部は、高圧側に延伸して前記回転軸と摺動するものであり、前記回転軸と摺動する内周面の接触部に、全周にわたって形成された前記凸部を有することを特徴とする請求項1記載の軸シール。
    a gap between the rotary shaft and a housing to which the shaft seal is mounted is divided into a high pressure side and a low pressure side by the shaft seal,
    The seal lip portion extends to the high pressure side and slides on the rotating shaft, and has the convex portion formed over the entire circumference at the contact portion of the inner peripheral surface that slides on the rotating shaft. A shaft seal according to claim 1, characterized by:
  4.  前記凹溝は、前記軸シールの軸方向に延びるように形成され、前記シールリップ部の全長を100%としたとき、前記シールリップ部の先端から5%~30%の位置を起点とし他端側に向けて形成されていることを特徴とする請求項2記載の軸シール。 The concave groove is formed to extend in the axial direction of the shaft seal, and when the total length of the seal lip portion is taken as 100%, the starting point is a position 5% to 30% from the tip of the seal lip portion and the other end. 3. A shaft seal according to claim 2, characterized in that it is formed towards the side.
  5.  前記凹溝は、前記軸シールの周方向に離間して複数形成され、前記凹溝の幅は、前記シールリップ部の内径周長の1%~15%であり、かつ、周方向で隣り合う前記凹溝の間隔は、前記シールリップ部の内径周長の1%~15%であることを特徴とする請求項4記載の軸シール。 A plurality of the grooves are spaced apart in the circumferential direction of the shaft seal, and the width of the grooves is 1% to 15% of the circumference of the inner diameter of the seal lip portion, and the grooves are adjacent to each other in the circumferential direction. 5. The shaft seal according to claim 4, wherein the interval between the grooves is 1% to 15% of the inner circumference of the seal lip portion.
  6.  前記凹溝の幅は、周方向で隣り合う前記凹溝の間隔よりも大きいことを特徴とする請求項5記載の軸シール。 The shaft seal according to claim 5, wherein the width of said groove is larger than the interval between said grooves adjacent to each other in the circumferential direction.
  7.  前記凹溝の最大深さは、前記シールリップ部の厚みの10%~30%であることを特徴とする請求項6記載の軸シール。 The shaft seal according to claim 6, wherein the maximum depth of said concave groove is 10% to 30% of the thickness of said seal lip portion.
  8.  前記凹溝は、前記軸シールの周方向に延びるように形成され、前記シールリップ部の全長を100%としたとき、前記シールリップ部の先端から5%の位置~30%の位置までの範囲に形成されることを特徴とする請求項2記載の軸シール。 The concave groove is formed to extend in the circumferential direction of the shaft seal, and when the total length of the seal lip portion is taken as 100%, the range is from a position of 5% to a position of 30% from the tip of the seal lip portion. 3. The shaft seal of claim 2, wherein the shaft seal is formed at
  9.  前記凹溝の最大深さは、前記シールリップ部の厚みの10%~30%であることを特徴とする請求項8記載の軸シール。 The shaft seal according to claim 8, wherein the maximum depth of said concave groove is 10% to 30% of the thickness of said seal lip portion.
  10.  前記軸シールは、軸方向の断面視が略U字状であり、前記シールリップ部よりも外径側に設けられた外リップ部を有することを特徴とする請求項1記載の軸シール。 The shaft seal according to claim 1, wherein the shaft seal has a substantially U-shaped cross section in the axial direction, and has an outer lip portion provided on the outer diameter side of the seal lip portion.
  11.  前記軸シールは、車載エアコンのスクロール式圧縮機における回転軸に用いられる軸シールであることを特徴とする請求項1記載の軸シール。 The shaft seal according to claim 1, wherein the shaft seal is used for a rotary shaft in a scroll compressor of an in-vehicle air conditioner.
  12.  前記凸部は、前記シールリップ部の全長を100%としたとき、前記シールリップ部の先端から他端側に向けて30%までの範囲の間に形成されていることを特徴とする請求項3記載の軸シール。 The convex portion is formed within a range of up to 30% from the tip of the seal lip portion toward the other end side when the total length of the seal lip portion is 100%. 3. A shaft seal according to claim 3.
  13.  前記凸部の最大高さは、前記シールリップ部の厚みの5%~20%であることを特徴とする請求項12記載の軸シール。 The shaft seal according to claim 12, wherein the maximum height of said convex portion is 5% to 20% of the thickness of said seal lip portion.
  14.  前記凸部の軸方向断面における形状は、略矩形状、円弧状、略台形状、または略三角形状であることを特徴とする請求項13記載の軸シール。 14. The shaft seal according to claim 13, wherein the shape of the projection in an axial cross section is substantially rectangular, circular, substantially trapezoidal, or substantially triangular.
PCT/JP2022/043609 2021-12-06 2022-11-25 Shaft seal WO2023106140A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-198154 2021-12-06
JP2021198154A JP2023084053A (en) 2021-12-06 2021-12-06 shaft seal
JP2022-054698 2022-03-29
JP2022054698A JP2023147120A (en) 2022-03-29 2022-03-29 shaft seal

Publications (1)

Publication Number Publication Date
WO2023106140A1 true WO2023106140A1 (en) 2023-06-15

Family

ID=86730420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043609 WO2023106140A1 (en) 2021-12-06 2022-11-25 Shaft seal

Country Status (1)

Country Link
WO (1) WO2023106140A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136858U (en) * 1989-04-19 1990-11-15
JP2009216198A (en) * 2008-03-11 2009-09-24 Nok Corp Sealing device
JP2015004414A (en) * 2013-06-21 2015-01-08 光洋シーリングテクノ株式会社 Sealing device
WO2021117601A1 (en) * 2019-12-11 2021-06-17 Ntn株式会社 Shaft seal
JP2021156314A (en) * 2020-03-25 2021-10-07 Nok株式会社 Sealing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136858U (en) * 1989-04-19 1990-11-15
JP2009216198A (en) * 2008-03-11 2009-09-24 Nok Corp Sealing device
JP2015004414A (en) * 2013-06-21 2015-01-08 光洋シーリングテクノ株式会社 Sealing device
WO2021117601A1 (en) * 2019-12-11 2021-06-17 Ntn株式会社 Shaft seal
JP2021156314A (en) * 2020-03-25 2021-10-07 Nok株式会社 Sealing device

Similar Documents

Publication Publication Date Title
JP6271992B2 (en) Internal gear pump
US10975868B2 (en) Compressor with floating seal
WO2016052595A1 (en) Sealing ring
JP2017053286A (en) Scroll fluid machine
WO2021117601A1 (en) Shaft seal
WO2014002582A1 (en) Resin composition and seal member
WO2023106140A1 (en) Shaft seal
WO2023286559A1 (en) Annular sealing member for scroll compressor
JP2023050146A (en) Annular seal member of scroll compressor
JP2023084053A (en) shaft seal
JP2023147120A (en) shaft seal
JP7405722B2 (en) shaft seal
JP2023147122A (en) shaft seal
JP2002250286A (en) Scroll type pump
JP7390177B2 (en) shaft seal
JP2023012367A (en) Annular seal member of scroll compressor
JP3162502B2 (en) Seal member for compressor
JP6492156B2 (en) Internal gear pump
JP2022056878A (en) Shaft seal
JP2023178146A (en) Annular seal member of scroll compressor
CN110159534A (en) A kind of sealing structure and whirlpool disk sealing device, screw compressor and refrigeration equipment
JP2018184956A (en) Internal gear pump
WO2022230782A1 (en) Seal for flow control valve and flow control valve device
JP2002213374A (en) Scroll compressor
CN220956037U (en) Fixed scroll and scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904071

Country of ref document: EP

Kind code of ref document: A1