WO2023105605A1 - Refrigeration cycle device and control method - Google Patents

Refrigeration cycle device and control method Download PDF

Info

Publication number
WO2023105605A1
WO2023105605A1 PCT/JP2021/044840 JP2021044840W WO2023105605A1 WO 2023105605 A1 WO2023105605 A1 WO 2023105605A1 JP 2021044840 W JP2021044840 W JP 2021044840W WO 2023105605 A1 WO2023105605 A1 WO 2023105605A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
refrigeration cycle
target value
protection
Prior art date
Application number
PCT/JP2021/044840
Other languages
French (fr)
Japanese (ja)
Inventor
孝史 福井
有輝 森
孝洋 中井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180100693.XA priority Critical patent/CN118284778A/en
Priority to PCT/JP2021/044840 priority patent/WO2023105605A1/en
Priority to JP2023565712A priority patent/JPWO2023105605A1/ja
Publication of WO2023105605A1 publication Critical patent/WO2023105605A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration cycle device and a control method.
  • the limit value for the high pressure of the refrigerant which is a fixed value, must be set to a value that can protect the refrigeration cycle device under any circumstances. There is a problem that the performance of the refrigeration cycle apparatus is unnecessarily limited.
  • the present disclosure has been made in view of such circumstances, and provides a refrigeration cycle device and a control method that can prevent unnecessary performance limitations.
  • a refrigeration cycle circuit including a compressor that compresses a refrigerant, and an operating state detection unit that detects the operating state of the refrigeration cycle circuit.
  • a protection target value determination unit that determines a protection target value of a protection variable related to the refrigeration cycle circuit based on the operating state; a temperature capability target value to be adjusted by the refrigeration cycle circuit;
  • a refrigeration cycle apparatus comprising: a rotational speed determination unit that determines the operating rotational speed of the compressor based on the above.
  • the rotational speed determination unit includes an I (integral) controller, PI (proportional/integral) controller or PID (proportional, integral/derivative) controller.
  • the protected variables are the discharge temperature of the refrigerant discharged from the compressor, the condensation temperature of the refrigerant, the evaporation temperature of the refrigerant, the It includes either the high pressure of the refrigerant and the low pressure of said refrigerant.
  • Another aspect of the present disclosure is the refrigeration cycle device described above, wherein the operating state is the outside temperature or the room temperature.
  • the refrigeration cycle device described above comprising a storage unit that stores the correspondence between the outside temperature or the indoor temperature and the protection target value, wherein the protection target value determination unit includes: The protection target value is determined by referring to the correspondence stored in the storage unit.
  • Another aspect of the present disclosure is the refrigeration cycle apparatus described above, wherein the operating state is the condensation temperature or high pressure of the refrigerant and the evaporation temperature or low pressure of the refrigerant.
  • the refrigeration cycle apparatus comprising a storage unit that stores an operation map indicating the operating pressure range or operating temperature range of the refrigerant, wherein the protection target value determination unit includes the The protection target value corresponding to the operating state is determined by referring to the driving map stored in the storage unit.
  • Another aspect of the present disclosure is a control method for a refrigeration cycle device including a compressor that compresses a refrigerant, comprising: detecting an operating state of the refrigeration cycle device; determining a protection target value of a protection variable relating to the apparatus; and determining an operating speed of the compressor based at least on the temperature capability target value adjusted by the refrigeration cycle device and the protection target value.
  • FIG. 1 is a refrigerant circuit diagram showing the configuration of an air conditioner 100 according to a first embodiment of the present disclosure
  • FIG. It is a block diagram which shows the structure of the control part 30 which concerns on the same embodiment.
  • 3 is a functional block diagram showing the functional configuration of a control section 30 according to the same embodiment;
  • FIG. 4 is a flow chart showing the flow of control operation of the compressor 1 of the air conditioner 100 according to the same embodiment. 4 is an operation map showing the operating pressure range of the air conditioner 200 according to the second embodiment of the present disclosure;
  • the air conditioner 100 is used as a refrigerating cycle device, but other devices such as a heat pump water heater may be used as long as they use a refrigerating cycle.
  • FIG. 1 is a refrigerant circuit diagram schematically showing an air conditioner 100 according to the first embodiment of the present disclosure.
  • the air conditioner 100 is a device used for indoor cooling and heating by performing vapor compression refrigeration cycle operation.
  • the air conditioner 100 includes a heat source unit A and a utilization unit B. As shown in FIG.
  • the heat source unit A and the utilization unit B are connected via a liquid connection pipe 6 and a gas connection pipe 9 that serve as refrigerant communication pipes.
  • a plurality of utilization units B may be connected to the heat source unit A via liquid connection pipes 6 and gas connection pipes 9 .
  • Refrigerants used in the air conditioner 100 include, for example, HFC refrigerants such as R410A, R407C, R404A, and R32, HFO refrigerants such as R1234yf/ze, HCFC refrigerants such as R22 and R134a, carbon dioxide (CO 2 ), and carbonization.
  • Natural refrigerants such as hydrogen, helium, propane, and the like.
  • the user unit B is installed by an installation method such as being embedded in the indoor ceiling, hanging from the ceiling, or by an installation method such as wall hanging on the indoor wall surface.
  • the usage unit B is also called an indoor unit.
  • the utilization unit B is connected to the heat source unit A through the liquid connection pipe 6 and the gas connection pipe 9 as described above, and constitutes a part of the refrigerant circuit.
  • the usage unit B constitutes an indoor refrigerant circuit that is part of the refrigerant circuit, and includes an indoor air blower 8 and an indoor heat exchanger 7 that is a usage side heat exchanger.
  • the indoor heat exchanger 7 is a cross-fin fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins.
  • the indoor heat exchanger 7 functions as a refrigerant evaporator to cool indoor air during cooling operation, and functions as a refrigerant condenser to heat indoor air during heating operation.
  • the indoor blower 8 is a fan capable of controlling the flow rate of air supplied to the indoor heat exchanger 7, and is composed of, for example, a centrifugal fan or a multi-blade fan driven by a DC motor (not shown). It is The indoor air blower 8 has a function of sucking indoor air into the utilization unit B and supplying the air heat-exchanged with the refrigerant by the indoor heat exchanger 7 indoors as supply air.
  • various sensors are installed in the usage unit B. That is, on the liquid side of the indoor heat exchanger 7, the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state (refrigerant temperature corresponding to the supercooled liquid temperature Tco during heating operation or the evaporation temperature Te during cooling operation) is A liquid side temperature sensor 205 is provided for detection.
  • the indoor heat exchanger 7 includes a gas-side temperature sensor 207 that detects the temperature of the refrigerant in a gas-liquid two-phase state (refrigerant temperature corresponding to the condensation temperature Tc during heating operation or the evaporation temperature Te during cooling operation). is provided.
  • an indoor temperature sensor 206 for detecting the temperature of the indoor air flowing into the unit is provided on the side of the indoor air intake port of the utilization unit B.
  • the liquid-side temperature sensor 205, the gas-side temperature sensor 207, and the room temperature sensor 206 are all composed of thermistors.
  • the liquid-side temperature sensor 205 and the gas-side temperature sensor 207 may measure the surface temperature of a heat transfer tube or the like and use it as the temperature of the refrigerant instead, or may directly measure the temperature of the refrigerant.
  • the operation of the indoor blower 8 is controlled by the controller 30 .
  • the heat source unit A is installed outdoors.
  • the heat source unit A is also called an outdoor unit.
  • the heat source unit A is connected to the utilization unit B via the liquid connection pipe 6 and the gas connection pipe 9, and constitutes a part of the refrigerant circuit.
  • the heat source unit A includes a compressor 1 , a four-way valve 2 , an outdoor heat exchanger 3 as a heat source side heat exchanger, an outdoor blower 4 , and a pressure reducing device 5 .
  • the decompression device 5 is arranged on the liquid side of the heat source unit A in order to adjust the flow rate of the refrigerant flowing through the refrigerant circuit.
  • the compressor 1 is a compressor whose operating capacity (frequency, operating speed) can be controlled.
  • a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used. Note that although there is only one compressor 1 here, it is not limited to this, and two or more compressors 1 may be connected in parallel according to the number of connected usage units B or the like.
  • the four-way valve 2 is a valve that has the function of switching the direction of refrigerant flow.
  • the four-way valve 2 connects the discharge side of the compressor 1 and the gas side of the outdoor heat exchanger 3, and also connects the suction side of the compressor 1 and the gas connection pipe 9 side. Switch the path (broken line of four-way valve 2 in FIG. 1).
  • the four-way valve 2 causes the outdoor heat exchanger 3 to function as a condenser for the refrigerant compressed in the compressor 1, and the indoor heat exchanger 7 as an evaporator for the refrigerant condensed in the outdoor heat exchanger 3. make it work.
  • the four-way valve 2 connects the discharge side of the compressor 1 and the gas connection pipe 9 side, and also connects the suction side of the compressor 1 and the gas side of the outdoor heat exchanger 3 to allow the refrigerant flow to flow. Switch the path (the solid line of the four-way valve 2 in FIG. 1). As a result, the four-way valve 2 causes the indoor heat exchanger 7 to function as a condenser for the refrigerant compressed in the compressor 1, and the outdoor heat exchanger 3 to function as an evaporator for the refrigerant condensed in the indoor heat exchanger 7. .
  • the outdoor heat exchanger 3 is a cross-fin type fin-and-tube type, which is composed of a heat transfer tube having a gas side connected to the four-way valve 2 and a liquid side connected to the liquid connection pipe 6 and a large number of fins. It consists of a heat exchanger.
  • the outdoor heat exchanger 3 functions as a refrigerant condenser during cooling operation, and functions as a refrigerant evaporator during heating operation.
  • the outdoor blower 4 is a fan that can change the flow rate of air supplied to the outdoor heat exchanger 3, and is composed of, for example, a propeller fan driven by a DC motor (not shown).
  • the outdoor blower 4 has a function of sucking outdoor air into the heat source unit A by means of the fan and discharging the air heat-exchanged with the refrigerant by the outdoor heat exchanger 3 to the outside.
  • the compressor 1 is provided with a discharge temperature sensor 201 that detects the discharge temperature Td and a compressor shell temperature sensor 208 that detects the shell temperature of the compressor 1 .
  • the outdoor heat exchanger 3 is provided with a gas-side temperature sensor 202 that detects the temperature of the gas-liquid two-phase refrigerant (refrigerant temperature corresponding to the condensation temperature Tc during cooling operation or the evaporation temperature Te during heating operation).
  • a liquid-side temperature sensor 204 is provided to detect the temperature of the refrigerant in a liquid state or a gas-liquid two-phase state.
  • An outdoor temperature sensor 203 for detecting the temperature of the outdoor air flowing into the unit, that is, the outside air temperature, is provided on the outdoor air intake side of the heat source unit A.
  • the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, the liquid side temperature sensor 204, and the compressor shell temperature sensor 208 are all composed of thermistors.
  • the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, the liquid side temperature sensor 204, and the compressor shell temperature sensor 208 measure the surface temperature of the heat transfer tube or the like, and use it as the temperature of the refrigerant. Alternatively, the temperature of the refrigerant may be measured directly.
  • the operations of the compressor 1 , the four-way valve 2 , the outdoor blower 4 , and the decompression device 5 are controlled by the controller 30 .
  • the refrigerant circuit of the air conditioner 100 is configured by connecting the heat source unit A and the utilization unit B as described above through the liquid connection pipe 6 and the gas connection pipe 9 .
  • the liquid connection pipe 6 and the gas connection pipe 9 have different lengths depending on the installation environment of the air conditioner 100. In some cases, the pipe length is short (for example, the total length is 10 m or less), or long (for example, the total length is 100 m or more). ).
  • the liquid connection pipe 6 and the gas connection pipe 9 that connect the heat source unit A and the utilization unit B are made of copper pipes that are generally used as refrigerant pipes.
  • materials for copper pipes for refrigerant piping include O material, OL material, H material, and 1/2H material.
  • the maximum working pressure is about 3.6 MPa for O material and about 6.7 MPa for H material. is different.
  • Materials for the liquid connection pipe 6 and the gas connection pipe 9 are normally selected based on the refrigerant to be used and the working pressure.
  • the liquid connection pipe 6 and the gas connection pipe 9 that connect the heat source unit A and the utilization unit B are inevitable. relatively long. Therefore, there are cases where the existing liquid connection pipes 6 and gas connection pipes 9 are used as they are because the construction cost for updating the liquid connection pipes 6 and the gas connection pipes 9 increases. Therefore, even in the same air conditioner 100, the materials of the liquid connection pipe 6 and the gas connection pipe 9 may differ depending on the installation environment.
  • heat source unit A a configuration in which there is one heat source unit A will be described as an example, but the present disclosure is not limited to this, and even if the number of heat source units A is two or more, good. Further, when both the heat source unit A and the utilization unit B are a plurality of units, even if the capacities of the units are different from large to small, they may all have the same capacity.
  • FIG. 2 is a block diagram showing the configuration of the control section 30 according to this embodiment.
  • FIG. 2 shows the connection configuration of the control unit 30 that performs measurement control of the air conditioner 100 of the present embodiment, the operating state information connected thereto, and the actuators.
  • the control unit 30 is built in the air conditioner 100 and includes a measurement unit 30a, a calculation unit 30b, a drive unit 30c, and a storage unit 30d.
  • the measurement unit 30a is an interface circuit with various sensors including the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, the liquid side temperature sensor 204, and the compressor shell temperature sensor 208.
  • the measurement unit 30a measures operating state quantities indicating the operating state, such as the refrigerant pressure Pr, the refrigerant temperature Tr, the air temperature Ta, and the operating speed (frequency) Rc of the compressor 1, using various sensors.
  • the operating state quantity measured by the measurement unit 30a is input to the calculation unit 30b.
  • the refrigerant pressure Pr includes the high pressure Pd and the low pressure Ps
  • the refrigerant temperature Tr includes the condensation temperature Tc and the evaporation temperature Te
  • the air temperature Ta includes the outside air temperature and the room temperature.
  • the computing unit 30b is a processor such as a CPU (Central Processing Unit).
  • the calculation unit 30b reads and executes a program stored in the storage unit 30d. By executing a program, the calculation unit 30b calculates, for example, refrigerant physical property values (saturation pressure, saturation temperature, density, etc.) using a formula given in advance based on the operating state quantity measured by the measurement unit 30a. do. Further, the calculation unit 30b performs calculation processing based on the operating state quantity measured by the measurement unit 30a.
  • the drive unit 30c is an interface circuit for controlling the driving of the compressor 1, the four-way valve 2, the decompression device 5, the outdoor blower 4, the indoor blower 8, etc. based on the calculation result of the calculation unit 30b.
  • the storage unit 30d is a memory such as RAM (Random Access Memory) and ROM (Read Only Memory).
  • the storage unit 30d stores functional expressions and functions for calculating the calculation result by the calculation unit 30b, predetermined constants, specification values of the equipment and its constituent elements, and physical property values of the refrigerant (saturation pressure, saturation temperature, density, etc.) Tables and the like are stored. These stored contents in the storage unit 30d can be referenced and rewritten as needed.
  • the storage unit 30d further stores programs executed by the calculation unit 30b, and the control unit 30 controls the air conditioner 100 according to the programs in the storage unit 30d.
  • control unit 30 is configured to be built in the air conditioner 100, but the present disclosure is not limited to this.
  • a main control section of the control section 30 is provided in the heat source unit A, a sub-control section having a part of the functions of the control section 30 is provided in the utilization unit B, and data communication is performed between the main control section and the sub-control section.
  • a configuration in which the control section 30 having all the functions is installed in the usage unit B may be employed.
  • a configuration in which the control section 30 is separately provided outside the heat source unit A and the utilization unit B may be employed.
  • the discharge side of the compressor 1 is connected to the gas side of the outdoor heat exchanger 3, and the suction side of the compressor 1 is connected to the indoor heat exchanger 7. It is connected to the gas side.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 reaches the outdoor heat exchanger 3, which is a condenser, via the four-way valve 2.
  • the outdoor heat exchanger 3 the refrigerant is condensed and liquefied by the air blowing action of the outdoor air blower 4, and becomes a high pressure and low temperature refrigerant.
  • the high-temperature, low-pressure refrigerant that has been condensed and liquefied is decompressed by the decompression device 5 .
  • the two-phase refrigerant decompressed by the decompression device 5 is sent to the indoor heat exchanger 7 of the utilization unit B via the liquid connection pipe 6 .
  • the decompressed two-phase refrigerant evaporates in the indoor heat exchanger 7, which is an evaporator, by the blowing action of the indoor air blower 8, and becomes a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant is sucked into the compressor 1 again via the four-way valve 2 .
  • the decompression device 5 controls the flow rate of the refrigerant circulating through the indoor heat exchanger 7 by adjusting the degree of opening so that the temperature of the refrigerant discharged from the compressor 1 reaches a predetermined value. Therefore, the discharged gas refrigerant discharged from the compressor 1 is in a predetermined temperature state.
  • the discharge refrigerant temperature of the compressor 1 is detected by the discharge temperature sensor 201 of the compressor 1 or the compressor shell temperature sensor 208 .
  • the refrigerant flows through the indoor heat exchanger 7 at a flow rate corresponding to the operating load required in the air-conditioned space where the utilization unit B is installed.
  • the four-way valve 2 is in the state indicated by the solid line in FIG. It is connected to the gas side.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is sent to the utilization unit B via the four-way valve 2 and the gas connection pipe 9, and reaches the indoor heat exchanger 7, which is a condenser.
  • the refrigerant is condensed and liquefied by the air blowing action of the indoor air blower 8, and becomes a high pressure and low temperature refrigerant.
  • the condensed and liquefied high-temperature, low-pressure refrigerant is sent to the heat source unit A via the liquid connection pipe 6 , decompressed by the decompression device 5 to become a two-phase refrigerant, and sent to the outdoor heat exchanger 3 .
  • the depressurized two-phase refrigerant is evaporated by the blowing action of the outdoor blower 4 in the outdoor heat exchanger 3, which is an evaporator, and becomes a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant is sucked into the compressor 1 again through the four-way valve 2 .
  • the decompression device 5 controls the flow rate of the refrigerant circulating through the outdoor heat exchanger 3 by adjusting the degree of opening so that the temperature of the refrigerant discharged from the compressor 1 becomes a specific value. Therefore, the discharged gas refrigerant discharged from the compressor 1 is in a specific temperature state.
  • the discharge refrigerant temperature of the compressor 1 is detected by the discharge temperature sensor 201 of the compressor 1 or the compressor shell temperature sensor 208 .
  • the refrigerant flows through the indoor heat exchanger 7 at a flow rate corresponding to the operating load required in the air-conditioned space where the utilization unit B is installed.
  • FIG. 3 is a functional block diagram showing an example of the functional configuration of the controller 30 of the air conditioner 100 according to this embodiment.
  • the control unit 30 includes a capacity control unit 41, a protection control unit 42, a rotational speed selection unit 43, an upper/lower limit limiter 44, a protection target value determination unit 45, and a storage unit 30d.
  • the power control unit 41, the protection control unit 42, the rotation speed selection unit 43, and the upper/lower limit limiter 44 constitute a rotation speed determination unit.
  • the operating state detection unit 50 includes a discharge temperature sensor 201, gas side temperature sensors 202 and 207, an outdoor temperature sensor 203, liquid side temperature sensors 204 and 205, an indoor temperature sensor 206, and a compressor shell temperature sensor. 208.
  • the refrigeration cycle circuit 60 also includes a compressor 1 , an outdoor heat exchanger 3 , a pressure reducing device 5 and an indoor heat exchanger 7 .
  • control unit 30 controls the capacity control unit 41, the protection control unit 42, the rotational speed selection unit 43, the upper/lower limit limiter 44 , the protection target value determination unit 45, and the storage unit 30d.
  • the capacity control unit 41 includes, for example, a PI (Proportional Integral) controller 41a, which is a dynamic control device.
  • the capacity control unit 41 defines the room temperature detected by the room temperature sensor 206 as the current capacity value representing the current capacity.
  • the capacity control unit 41 defines the set room temperature externally set by the user of the air conditioning apparatus 100 through a user interface such as a remote control as the capacity target value.
  • the protection control unit 42 controls a predetermined protection variable required to protect the equipment that configures the air conditioning apparatus 100 to asymptotically or match a predetermined protection target value in a timely or predetermined manner.
  • a protection rotation speed which is a rotation speed command for the machine 1, is calculated.
  • the discharge temperature Td of the compressor 1 the condensing temperature Tc of the refrigerant, the evaporation temperature Te, the high pressure Pd, the low pressure Ps, etc. are determined as the protected variables.
  • the protection target value includes, for example, a discharge temperature upper limit value, a condensation temperature upper limit value, an evaporation temperature lower limit value, a high pressure upper limit value, a low pressure pressure lower limit value, and the like.
  • the protection control unit 42 has PI controllers 42a and 42b for each protection variable, and calculates the protection rotation speed for each protection variable.
  • a PI controller 42b is provided, which inputs a low pressure difference ⁇ Te, which is the difference between Te and the lower limit of the evaporation temperature.
  • ⁇ Te low pressure difference
  • Each of the PI controllers 42a and 42b outputs a protection rotation speed for the condensation temperature Tc and a protection rotation speed for the evaporation temperature Te.
  • the above protection variables are examples of representative variables required to protect the device, and variables other than the above may be adopted as protection variables.
  • the protection variable to be adopted is the upper limit value of the protection variable for which the protection target value of the protection variable increases when the operating speed of the compressor 1 is increased, and the rotation speed of the compressor 1 is It has the characteristic that it is the lower limit value of the protected variable that decreases when the number is increased.
  • the capacity control unit 41 and the protection control unit 42 may include at least a dynamic controller including an integrator, for example, a PID (proportional-integral-derivative) controller or an I (integral) controller. good.
  • the rotation speed selection unit 43 has a minimum rotation speed selection unit, and controls the smallest rotation speed among the capacity rotation speed output from the capacity control unit 41 and each protection rotation speed output from the protection control unit 42. Select as number of revolutions.
  • All the protection variables exemplified in this embodiment have the characteristic that they change in the direction of deviating from each constraint as the rotation speed of the compressor 1 increases. For example, when the rotation speed of the compressor 1 is increased, the high pressure Pd also increases and changes in the direction exceeding the high pressure upper limit value. Therefore, the rotation speed selection unit 43 selects the smallest rotation speed from among the power rotation speed output from the power control unit 41 and each protection rotation speed output from the protection control unit 42, so that all protection variables can be controlled within the upper and lower limits.
  • the upper/lower limit limiter 44 holds a predetermined operating speed upper limit Fmax and operating speed lower limit Fmin of the compressor 1 .
  • the upper/lower limit limiter 44 outputs the operating rotation speed lower limit value Fmin when the control rotation speed selected by the rotation speed selection unit 43 is equal to or lower than the operating rotation speed lower limit value Fmin, and the control rotation speed is equal to or higher than the operating rotation speed upper limit value Fmax.
  • the operating rotation speed upper limit value Fmax is output, and in other cases, the control rotation speed is output as it is.
  • the compressor 1 is driven according to the rotational speed output from the upper/lower limiter 44 .
  • the protection target value determination unit 45 determines the operation state of the air conditioner 100 detected by the operation state detection unit 50 based on the specification information of the element devices constituting the air conditioner 100 stored in advance in the storage unit 30d. , the protection target value in the protection control unit 42 is calculated and set.
  • the specification information of an element device is mainly a constraint condition for protecting the element device. This is information such as the temperature range.
  • the operating state detection unit 50 includes various sensors installed in the heat source unit A and the utilization unit B, and a sensor that detects the operating rotation speed of the compressor 1 .
  • the storage format of the specification information of element devices is, for example, the format of function formulas or function tables (tables) with operating conditions as parameters.
  • the protection target value determining unit 45 calculates a corresponding protection target value based on the operating state value detected by the operating state detection unit 50 .
  • Table 1 is an example of specification information in a table format. The example in Table 1 is used during cooling operation, the operating state is the outside air temperature detected by the outdoor temperature sensor 203, and the protection target value is the upper condensing temperature limit. In the example of Table 1, the outside air temperature is divided into five temperature ranges: less than T1, T1 or more and less than T2, T2 or more and less than T3, T3 or more and less than T4, and T4 or more. , Tu2, Tu3, Tu4, and Tu5.
  • the elements constituting the heat source unit A such as the electronic equipment of the control unit 30, are affected by the outside air temperature and the condensation temperature during the cooling operation.
  • the ability of the air conditioner 100 according to the outside air temperature can be exhibited.
  • the specification information is the condensing temperature upper limit value for each temperature range of the outside air temperature, but other combinations may be used.
  • the specification information may be a condensing temperature upper limit value for each room temperature range during heating operation. As a result, during heating operation, it is possible to protect the elemental devices constituting the utilization unit B that are affected by the room temperature and the condensation temperature, and allow the air conditioning apparatus 100 to exhibit its ability according to the room temperature.
  • the specification information may be the lower limit value of the evaporation temperature for each temperature range of the outside air temperature, or the lower limit value of the evaporation temperature for each temperature range of the room temperature.
  • the outdoor temperature is detected by the outdoor temperature sensor 203 and the indoor temperature is detected by the indoor temperature sensor 206 .
  • FIG. 4 is a flow chart showing the flow of the control operation of the compressor 1 of the air conditioner 100 according to this embodiment.
  • control unit 30 After starting the flow, the control unit 30 first detects the operating conditions (STEP 1).
  • the set room temperature that is externally set by a user interface such as a remote controller is detected.
  • the operating state detection unit 50 detects the operating state of the air conditioner 100 (STEP 2).
  • a temperature sensor installed in the heat source unit A or the utilization unit B of the air conditioner 100 to measure the refrigerant temperature or the air temperature, and a sensor to detect the operating speed of the compressor 1 (Fig. not shown). The operating state is detected based on these sensor detection values.
  • the capacity control unit 41 calculates and outputs the capacity rotation speed Fq based on the detected operating state quantity (STEP 3).
  • the capacity rotation speed Fq is output by a controller that constitutes the capacity control section 41, and is calculated using the following formula (1) in the control configuration shown in FIG. 3, for example.
  • ⁇ t is the room temperature difference [deg] defined as the difference between the room temperature and the set room temperature.
  • K p and K I are control gains in the PI controller 41a, respectively.
  • Kp is the proportional gain [Hz/°C]
  • KI is the integral gain [Hz/(°C ⁇ sec)].
  • T int is the control period [sec].
  • the room temperature difference ⁇ t is calculated from the room temperature detected by the room temperature sensor 206 and the set room temperature detected in STEP 1 among the operating conditions detected by the operating condition detection unit 50 .
  • the control gains Kp and Ki are determined by the responsiveness of the refrigerating cycle system in the air conditioner 100 to the actuator operation, and the control period Tint is also determined by the device specifications. It is used as calculation information when calculating in 30b.
  • the protection target value determination unit 45 sets the protection target value (STEP 4).
  • the protection target value determination unit 45 determines and sets protection target values for each of the PI controllers 42a and 42b that constitute the protection control unit 42 based on the operating state.
  • the protection target value determining unit 45 uses this device specification information when determining the protection target value.
  • the protection control unit 42 calculates and outputs the protection rotation speed Fp (STEP 5).
  • the protection rotation speed Fp is output by each of the PI controllers 42a and 42b that constitute the protection control unit 42.
  • the evaporation temperature protective rotation speed FTe [Hz] are calculated using the following equations (2) and (3), respectively.
  • ⁇ Tc is the difference between the condensation temperature Tc and the upper limit of the condensation temperature (the value obtained by subtracting the condensation temperature Tc from the upper limit of the condensation temperature), the high pressure difference [deg], and ⁇ Te is the difference between the evaporation temperature Te and the lower limit of the evaporation temperature. It is a low pressure difference [deg] defined by the difference (a value obtained by subtracting the lower limit of the evaporation temperature from the evaporation temperature Te).
  • K p and K I are control gains in PI control, K p is a proportional gain [Hz/°C], and K I is an integral gain [Hz/(°C ⁇ sec)].
  • T int is the control period [sec].
  • control gains K p and K I are determined by the responsiveness to actuator operation of the refrigeration cycle system in the air conditioner 100, and the control period T int is also determined by the equipment specifications. Therefore, these values are stored in advance in the storage unit 30d as device specification information, and used as calculation information when the protection control unit 42 performs calculations.
  • the condensation temperature Tc of the refrigerant As the condensation temperature Tc of the refrigerant, the value detected by the gas side temperature sensor 202 or the liquid side temperature sensor 204 provided in the outdoor heat exchanger 3 during cooling operation, and the gas side temperature sensor 204 provided in the indoor heat exchanger 7 during heating operation.
  • a value detected by the sensor 207 or the liquid-side temperature sensor 205 is used.
  • the evaporation temperature Te As the evaporation temperature Te, the value detected by the gas side temperature sensor 207 or the liquid side temperature sensor 205 provided in the indoor heat exchanger 7 during cooling operation, and the gas side temperature sensor 202 provided in the outdoor heat exchanger 3 during heating operation.
  • the detected value of the liquid-side temperature sensor 204 is used.
  • a temperature sensor is used here to detect the condensation temperature and evaporation temperature of the refrigerant.
  • pressure sensors are installed directly on the suction side and the discharge side of the compressor 1, and the pressure values of the high pressure Pd detected by the pressure sensor on the discharge side and the low pressure Ps detected by the pressure sensor on the suction side are respectively measured at the saturation temperature.
  • the condensation temperature Tc and the evaporation temperature Te may be obtained.
  • the high pressure Pd and the low pressure Ps may be obtained by converting the detected condensation temperature Tc and evaporation temperature Te into saturation temperatures, respectively.
  • the upper limit of the condensation temperature at the high pressure difference ⁇ Tc and the lower limit of the evaporation temperature at the low pressure difference ⁇ Te are the protection target values calculated by the protection target value determination unit 45, and are calculated and set based on the operating conditions.
  • the storage unit 30d holds in advance specification information such that the upper limit of the condensation temperature is changed stepwise according to the outside air temperature conditions. In this case, when the outside air temperature during operation detected by the outdoor temperature sensor 203 is high, the set value of the upper limit of condensation temperature becomes high, and when the outside air temperature is low, the set value of the upper limit of condensation temperature becomes low. set. In this manner, the protection target value determination unit 45 changes the protection target value according to the operating state during operation.
  • the storage unit 30d holds specification information in advance so that the upper limit of the condensation temperature is changed step by step according to the room temperature conditions. In this case, if the room temperature during operation detected by the room temperature sensor 206 is high, the set value of the upper limit of the condensation temperature will be high, and if the room temperature is low, the set value of the upper limit of the condensation temperature will be low. set. In this manner, the protection target value determination unit 45 changes the protection target value according to the operating state during operation.
  • the rotation speed selection unit 43 selects the minimum rotation speed from the capability rotation speed Fq output from the capability control unit 41 and the protection rotation speed Fp output from the protection control unit 42 .
  • the rotational speed selection unit 43 determines whether or not protection rotational speed Fp ⁇ capable rotational speed Fq is satisfied (STEP 6). If the condition is satisfied (STEP6; YES), the rotation speed selection unit 43 selects the protection rotation speed Fp (STEP7). is selected (STEP 8). As shown in FIG. 3, when there are a plurality of protected variables, in STEP7, the rotational speed selection unit 43 selects the smallest protected rotational speed Fp corresponding to each protected variable.
  • the upper and lower limit limiter 44 performs processing so that the rotation speed selected by the rotation speed selection unit 43 does not deviate from the upper and lower limit values.
  • the upper and lower limit limiter 44 determines whether or not the value of the operating speed F selected in STEPs 6 to 8 is smaller than the operating speed upper limit value Fmax (STEP 9). If the condition is not satisfied (STEP 9; NO), the upper/lower limiter 44 updates the selected operating speed F to the operating speed upper limit value Fmax (STEP 10) and outputs it as the control speed F (STEP 13).
  • the upper/lower limiter 44 determines whether or not the value of the operating rotation speed F selected in STEP 6 to 8 is greater than the operating rotation speed lower limit Fmin (STEP 11). If the condition is not satisfied (STEP 11; NO), the upper/lower limiter 44 updates the selected operating speed F to the operating speed lower limit value Fmin (STEP 12), outputs it as the control speed F (STEP 13), and then , ends the control flow.
  • the protection target value is changed according to the operating state, but parameters for changing the protection target value are not limited to operating conditions.
  • the protection target value may be changed according to the situation.
  • the protection target value can be set according to the installation conditions of the refrigeration cycle circuit, such as the material, shape, and length of the refrigerant pipes (liquid connection pipe 6 and gas connection pipe 9 shown in FIG. 1) connecting the heat source unit A and the utilization unit B. You can change it.
  • the upper limit of condensation temperature is stored as specification information in advance so that it can be changed according to the material of the refrigerant pipe, and the heat source unit A and the utilization unit If the material of the refrigerant pipe connecting B is a material with a high maximum working pressure, set the condensing temperature upper limit value higher, and if it is a material with a lower maximum working pressure, set the condensing temperature upper limit value lower. make it
  • the storage unit 30d stores a plurality of correspondence tables between the outside air temperature and the condensing temperature upper limit value as shown in Table 1, each corresponding to the material or shape of the refrigerant pipe.
  • the protection target value determination unit 45 stores the information in the storage unit 30d. The protection target value is determined by using a correspondence table corresponding to the set material, shape, or length among a plurality of correspondence tables stored by .
  • the protection target value is changed according to the outside air temperature condition, but the operating state of the parameter for changing the protection target value is not limited to this.
  • the protection target value may be changed from time to time based on other operating conditions such as the operating pressure of the refrigerant circuit at 100 (high pressure refrigerant pressure, low pressure refrigerant pressure).
  • the operating pressure of the refrigerant circuit at 100 high pressure refrigerant pressure, low pressure refrigerant pressure
  • ⁇ Second embodiment> A configuration of an air conditioner 200 according to a second embodiment of the present disclosure will be described. Regarding the air conditioner 200 according to the present embodiment, the differences from the first embodiment will be mainly described in the second embodiment, and the description of the same portions will be omitted.
  • the refrigerant circuit of the air conditioner 200, the configuration of the control unit 30, and the operation are the same as those of the first embodiment. However, the method of determining the protection target value by the protection target value determination unit 45 and the specification information stored in the storage unit 30d are different.
  • FIG. FIG. 5 is a diagram (hereinafter referred to as an operation map) showing the operating pressure range of the air conditioner 200 according to this embodiment.
  • the vertical axis in FIG. 5 is the high pressure Pd of the refrigerant, and the horizontal axis is the low pressure Ps of the refrigerant.
  • a range surrounded by a solid line connecting points A to F in FIG. 5 is a guarantee that the air conditioner 200 operates normally if the combination of the high pressure Pd and the low pressure Ps of the refrigerant is within the range. It means the range to be covered.
  • the operating rotation speed of the compressor 1 is controlled so as to operate within the range surrounded by the solid line.
  • the data on the driving map as shown in FIG. 5 (for example, the values of points A to F) are stored in advance in the storage unit 30d as specification information.
  • the pressure value on the operation map is used for control after being converted to the saturation temperature.
  • a functional expression having pressure as a variable based on the physical properties of the refrigerant is created in advance, and the temperature is converted using the functional expression.
  • each part of the air conditioning apparatus 200 first performs STEP1 to STEP3 in the same manner as in the first embodiment.
  • the protection target value determining unit 45 Detecting which position it is operating, that is, the position of the operating pressure.
  • the protection target value determination unit 45 calculates and sets the condensation temperature upper limit value and the evaporation temperature lower limit value, which are the protection target values of the protection control unit 42, based on the detected operating pressure position (STEP 4). For example, when the operating pressure is at the position of point X shown in FIG.
  • the upper limit value that is, the saturation temperature conversion value of the pressure value Pd1 at the intersection with the horizontal line connecting points C and D
  • the lower limit value of the low-pressure pressure on the operation map that is, point B and point C is set as the lower limit value of the evaporating temperature.
  • a saturated temperature conversion value of the pressure value Ps1 at the intersection with the connecting straight line is set.
  • the protection control unit 42 calculates and outputs the protection rotational speed Fp (STEP 5). After that, STEP6 to STEP13 are the same operations as in the first embodiment.
  • the operation map stored in the storage unit 30d is the operating pressure range between the high pressure and the low pressure, but it may be the operating temperature range between the condensation temperature Tc and the evaporation temperature Te. . Further, the storage unit 30d may store a plurality of operation maps corresponding to respective ranges of the operating rotation speed of the compressor 1.
  • FIG. The protection target value determining unit 45 determines protection target values such as the upper limit of the condensation temperature and the lower limit of the evaporating temperature using the operation map corresponding to the range to which the operating rotation speed of the compressor 1 belongs.
  • the air conditioners 100 and 200 in each of the above-described embodiments include a refrigeration cycle circuit including a compressor 1 that compresses a refrigerant, an operating state detection unit 50 that detects the operating state of the refrigerating cycle circuit, and a refrigeration unit based on the operating state.
  • the operating speed of the compressor 1 is determined based on at least a protection target value determination unit 45 that determines a protection target value of a protection variable relating to the cycle circuit, a temperature capability target value adjusted by the refrigeration cycle circuit, and the protection target value. and a rotational speed determination unit.
  • the protection target value for satisfying the constraint conditions of the element equipment can be changed according to the operating state, so that the performance of the air conditioners 100 and 200 is prevented from being unnecessarily limited, Higher performance of the air conditioners 100 and 200 can be realized.
  • the air conditioners 100 and 200 in each of the above-described embodiments timely set protection target values based on not only the constraint conditions based on the specifications of the element equipment, but also the installation and operating conditions of the air conditioners 100 and 200, and control the operation. As a result, it becomes possible to avoid excessive protective operation against the limit values of the element devices. As a result, the air conditioners 100 and 200 can achieve an expansion of the operating range in which normal operation is possible compared to the conventional one.
  • the air conditioners 100 and 200 in each of the above-described embodiments have high-precision operational control with respect to protection target values based not only on the constraint conditions based on the specifications of the element equipment, but also on the installation conditions and operating conditions of the air conditioners 100 and 200. becomes possible. Thereby, the reliability of the air conditioners 100 and 200 can be further improved.
  • each functional block of the control unit 30 in FIG. 3 described above may be chipped individually, or part or all of them may be integrated and chipped.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. It can be either hybrid or monolithic. Some of the functions may be implemented by hardware and some may be implemented by software. In addition, when a technology such as integration circuit that replaces LSI appears due to progress in semiconductor technology, it is also possible to use an integrated circuit based on this technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is a refrigeration cycle device comprising: a refrigeration cycle circuit that comprises a compressor for compressing a refrigerant; an operational state detection unit that detects the operational state of the refrigeration cycle circuit; a protection target value determination unit that, on the basis of the operational state, determines the protection target value of a protection variable pertaining to the refrigeration cycle circuit; and a rotational speed determination unit that, on the basis of at least the protection target value and a temperature capacity target value which is adjusted by the refrigeration cycle circuit, determines the operating rotational speed of the compressor. As a result of the above, unnecessarily restricted performance can be curbed.

Description

冷凍サイクル装置、および制御方法Refrigeration cycle device and control method
 本発明は、冷凍サイクル装置、および制御方法に関する。 The present invention relates to a refrigeration cycle device and a control method.
 従来、冷媒の高圧圧力の制限値および高圧側の検出圧力に基づいて、グラフからインバータモータの速度指令の上限速度を算出する冷凍サイクル装置の制御装置がある(例えば特許文献1参照)。これにより、冷媒の高圧圧力を許容値に抑えつつ、負荷に適合するインバータモータの速度指令を求めることができる。 Conventionally, there is a control device for a refrigeration cycle device that calculates the upper limit speed of the inverter motor speed command from a graph based on the limit value of the high pressure of the refrigerant and the detected pressure on the high pressure side (see Patent Document 1, for example). As a result, the speed command for the inverter motor that matches the load can be obtained while suppressing the high pressure of the refrigerant to an allowable value.
日本国特開2005-16753号公報Japanese Patent Application Laid-Open No. 2005-16753
 しかしながら、固定値である冷媒の高圧圧力の制限値は、どのような状況においても冷凍サイクル装置を保護できるような値とする必要があるため、状況によっては、インバータモータの速度が不必要に制限されてしまう、すなわち、不必要に冷凍サイクル装置の性能が制限されてしまうことがあるという問題がある。 However, the limit value for the high pressure of the refrigerant, which is a fixed value, must be set to a value that can protect the refrigeration cycle device under any circumstances. There is a problem that the performance of the refrigeration cycle apparatus is unnecessarily limited.
 本開示は、このような事情に鑑みてなされたもので、不必要に性能が制限されてしまうことを抑えることができる冷凍サイクル装置、および制御方法を提供する。 The present disclosure has been made in view of such circumstances, and provides a refrigeration cycle device and a control method that can prevent unnecessary performance limitations.
 この開示は上述した課題を解決するためになされたもので、本開示の一態様は、冷媒を圧縮する圧縮機を備える冷凍サイクル回路と、前記冷凍サイクル回路の運転状態を検出する運転状態検出部と、前記運転状態に基づき、前記冷凍サイクル回路に関する保護変数の保護目標値を決定する保護目標値決定部と、前記冷凍サイクル回路により調整する温度の能力目標値と、前記保護目標値とに少なくとも基づき、前記圧縮機の運転回転数を決定する回転数決定部とを備える冷凍サイクル装置である。 This disclosure has been made to solve the above-described problems, and one aspect of the present disclosure is a refrigeration cycle circuit including a compressor that compresses a refrigerant, and an operating state detection unit that detects the operating state of the refrigeration cycle circuit. a protection target value determination unit that determines a protection target value of a protection variable related to the refrigeration cycle circuit based on the operating state; a temperature capability target value to be adjusted by the refrigeration cycle circuit; A refrigeration cycle apparatus comprising: a rotational speed determination unit that determines the operating rotational speed of the compressor based on the above.
 また、本開示の他の態様は、上述の冷凍サイクル装置であって、前記回転数決定部は、前記保護変数が、前記保護目標値に漸近するように制御するI(積分)制御器、PI(比例・積分)制御器、またはPID(比例、積分・微分)制御器を備える。 Another aspect of the present disclosure is the refrigeration cycle apparatus described above, wherein the rotational speed determination unit includes an I (integral) controller, PI (proportional/integral) controller or PID (proportional, integral/derivative) controller.
 また、本開示の他の態様は、上述の冷凍サイクル装置であって、前記保護変数は、前記圧縮機から吐出される前記冷媒の吐出温度、前記冷媒の凝縮温度、前記冷媒の蒸発温度、前記冷媒の高圧圧力、および前記冷媒の低圧圧力のいずれかを含む。 Another aspect of the present disclosure is the refrigeration cycle apparatus described above, wherein the protected variables are the discharge temperature of the refrigerant discharged from the compressor, the condensation temperature of the refrigerant, the evaporation temperature of the refrigerant, the It includes either the high pressure of the refrigerant and the low pressure of said refrigerant.
 また、本開示の他の態様は、上述の冷凍サイクル装置であって、前記運転状態は、外気温または室内気温である。 Another aspect of the present disclosure is the refrigeration cycle device described above, wherein the operating state is the outside temperature or the room temperature.
 また、本開示の他の態様は、上述の冷凍サイクル装置であって、前記外気温または室内気温と、前記保護目標値との対応を記憶する記憶部を備え、前記保護目標値決定部は、前記記憶部が記憶する対応を参照して、前記保護目標値を決定する。 Further, another aspect of the present disclosure is the refrigeration cycle device described above, comprising a storage unit that stores the correspondence between the outside temperature or the indoor temperature and the protection target value, wherein the protection target value determination unit includes: The protection target value is determined by referring to the correspondence stored in the storage unit.
 また、本開示の他の態様は、上述の冷凍サイクル装置であって、前記運転状態は、前記冷媒の凝縮温度または高圧圧力、および前記冷媒の蒸発温度または低圧圧力である。 Another aspect of the present disclosure is the refrigeration cycle apparatus described above, wherein the operating state is the condensation temperature or high pressure of the refrigerant and the evaporation temperature or low pressure of the refrigerant.
 また、本開示の他の態様は、上述の冷凍サイクル装置であって、前記冷媒の動作圧力範囲または動作温度範囲を示す運転マップを記憶する記憶部を備え、前記保護目標値決定部は、前記記憶部が記憶する運転マップを参照して、前記運転状態に対応する前記保護目標値を決定する。 Another aspect of the present disclosure is the refrigeration cycle apparatus described above, comprising a storage unit that stores an operation map indicating the operating pressure range or operating temperature range of the refrigerant, wherein the protection target value determination unit includes the The protection target value corresponding to the operating state is determined by referring to the driving map stored in the storage unit.
 また、本開示の他の態様は、冷媒を圧縮する圧縮機を備える冷凍サイクル装置の制御方法であって、前記冷凍サイクル装置の運転状態を検出するステップと、前記運転状態に基づき、前記冷凍サイクル装置に関する保護変数の保護目標値を決定するステップと、前記冷凍サイクル装置により調整する温度の能力目標値と、前記保護目標値とに少なくとも基づき、前記圧縮機の運転回転数を決定するステップとを備える。 Another aspect of the present disclosure is a control method for a refrigeration cycle device including a compressor that compresses a refrigerant, comprising: detecting an operating state of the refrigeration cycle device; determining a protection target value of a protection variable relating to the apparatus; and determining an operating speed of the compressor based at least on the temperature capability target value adjusted by the refrigeration cycle device and the protection target value. Prepare.
 本開示によれば、不必要に冷凍サイクル装置の性能が制限されてしまうことを抑えることができる。 According to the present disclosure, it is possible to prevent the performance of the refrigeration cycle device from being unnecessarily restricted.
本開示の第1の実施形態に係る空気調和装置100の構成を示す冷媒回路図である。1 is a refrigerant circuit diagram showing the configuration of an air conditioner 100 according to a first embodiment of the present disclosure; FIG. 同実施形態に係る制御部30の構成を示すブロック図である。It is a block diagram which shows the structure of the control part 30 which concerns on the same embodiment. 同実施形態に係る制御部30の機能構成を示す機能ブロック図である。3 is a functional block diagram showing the functional configuration of a control section 30 according to the same embodiment; FIG. 同実施形態に係る空気調和装置100の圧縮機1の制御動作の流れを示すフローチャートである。4 is a flow chart showing the flow of control operation of the compressor 1 of the air conditioner 100 according to the same embodiment. 本開示の第2の実施形態に係る空気調和装置200の動作圧力範囲を示す運転マップである。4 is an operation map showing the operating pressure range of the air conditioner 200 according to the second embodiment of the present disclosure;
<第1の実施形態>
 以下、図面を参照して、本開示の第1の実施形態について説明する。なお、第1の実施形態では、冷凍サイクル装置として、空気調和装置100が挙げられているが、冷凍サイクルを用いる装置であれば、ヒートポンプ式の給湯器など、その他の装置であってもよい。
<First embodiment>
A first embodiment of the present disclosure will be described below with reference to the drawings. In the first embodiment, the air conditioner 100 is used as a refrigerating cycle device, but other devices such as a heat pump water heater may be used as long as they use a refrigerating cycle.
 図1は本開示の第1の実施形態に係る空気調和装置100を概略的に示す冷媒回路図である。空気調和装置100は、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内の冷暖房に使用される装置である。空気調和装置100は、熱源ユニットAと、利用ユニットBとを備える。熱源ユニットAと、利用ユニットBとは、冷媒連絡配管となる液接続配管6及びガス接続配管9を介して接続される。なお、複数の利用ユニットBが、液接続配管6及びガス接続配管9を介して熱源ユニットAと接続されていてもよい。 FIG. 1 is a refrigerant circuit diagram schematically showing an air conditioner 100 according to the first embodiment of the present disclosure. The air conditioner 100 is a device used for indoor cooling and heating by performing vapor compression refrigeration cycle operation. The air conditioner 100 includes a heat source unit A and a utilization unit B. As shown in FIG. The heat source unit A and the utilization unit B are connected via a liquid connection pipe 6 and a gas connection pipe 9 that serve as refrigerant communication pipes. A plurality of utilization units B may be connected to the heat source unit A via liquid connection pipes 6 and gas connection pipes 9 .
 空気調和装置100に用いられる冷媒としては、例えば、R410A、R407C、R404A、R32などのHFC冷媒、R1234yf/zeなどのHFO冷媒、R22、R134aなどのHCFC冷媒、もしくは二酸化炭素(CO)、炭化水素、ヘリウム、プロパン等のような自然冷媒などがある。 Refrigerants used in the air conditioner 100 include, for example, HFC refrigerants such as R410A, R407C, R404A, and R32, HFO refrigerants such as R1234yf/ze, HCFC refrigerants such as R22 and R134a, carbon dioxide (CO 2 ), and carbonization. Natural refrigerants such as hydrogen, helium, propane, and the like.
<利用ユニットB>
 利用ユニットBは、屋内の天井に対する埋め込み、あるいは天井からの吊り下げ等の設置方法により、または屋内の壁面に対する壁掛け等の設置方法により設置される。利用ユニットBは、室内機とも呼ばれる。利用ユニットBは、既述したように液接続配管6及びガス接続配管9を介して熱源ユニットAに接続されて冷媒回路の一部を構成している。
<Usage unit B>
The user unit B is installed by an installation method such as being embedded in the indoor ceiling, hanging from the ceiling, or by an installation method such as wall hanging on the indoor wall surface. The usage unit B is also called an indoor unit. The utilization unit B is connected to the heat source unit A through the liquid connection pipe 6 and the gas connection pipe 9 as described above, and constitutes a part of the refrigerant circuit.
 次に、利用ユニットBの詳細な構成について説明する。利用ユニットBは冷媒回路の一部である室内側冷媒回路を構成しており、室内送風装置8と、利用側熱交換器である室内熱交換器7とを備えている。 Next, the detailed configuration of the usage unit B will be explained. The usage unit B constitutes an indoor refrigerant circuit that is part of the refrigerant circuit, and includes an indoor air blower 8 and an indoor heat exchanger 7 that is a usage side heat exchanger.
 室内熱交換器7は、ここでは伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器7は、冷房運転時には冷媒の蒸発器として機能して室内の空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内の空気を加熱する。 The indoor heat exchanger 7 is a cross-fin fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins. The indoor heat exchanger 7 functions as a refrigerant evaporator to cool indoor air during cooling operation, and functions as a refrigerant condenser to heat indoor air during heating operation.
 室内送風装置8は、室内熱交換器7に供給する空気の流量を制御することが可能なファンであり、例えば、DCモータ(図示せず)によって駆動される遠心ファンあるいは多翼ファン等から構成されている。室内送風装置8は、利用ユニットB内に室内空気を吸入し、室内熱交換器7により冷媒との間で熱交換した空気を供給空気として室内に供給する機能を有する。 The indoor blower 8 is a fan capable of controlling the flow rate of air supplied to the indoor heat exchanger 7, and is composed of, for example, a centrifugal fan or a multi-blade fan driven by a DC motor (not shown). It is The indoor air blower 8 has a function of sucking indoor air into the utilization unit B and supplying the air heat-exchanged with the refrigerant by the indoor heat exchanger 7 indoors as supply air.
 また、利用ユニットBには、各種センサが設置されている。すなわち、室内熱交換器7の液側には、液状態または気液二相状態の冷媒の温度(暖房運転時における過冷却液温度Tcoまたは冷房運転時における蒸発温度Teに対応する冷媒温度)を検出する液側温度センサ205が設けられている。また、室内熱交換器7には、気液二相状態の冷媒の温度(暖房運転時における凝縮温度Tcまたは冷房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサ207が設けられている。さらに利用ユニットBの室内空気の吸入口側には、ユニット内に流入する室内空気の温度(室内気温)を検出する室内温度センサ206が設けられている。なお、ここでは液側温度センサ205、ガス側温度センサ207、及び室内温度センサ206はいずれもサーミスタにより構成されている。また、液側温度センサ205、ガス側温度センサ207は、伝熱管などの表面温度を測定して、冷媒の温度として代用してもよいし、冷媒の温度を直接測定してもよい。室内送風装置8の動作は、制御部30によって制御される。 In addition, various sensors are installed in the usage unit B. That is, on the liquid side of the indoor heat exchanger 7, the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state (refrigerant temperature corresponding to the supercooled liquid temperature Tco during heating operation or the evaporation temperature Te during cooling operation) is A liquid side temperature sensor 205 is provided for detection. In addition, the indoor heat exchanger 7 includes a gas-side temperature sensor 207 that detects the temperature of the refrigerant in a gas-liquid two-phase state (refrigerant temperature corresponding to the condensation temperature Tc during heating operation or the evaporation temperature Te during cooling operation). is provided. Further, an indoor temperature sensor 206 for detecting the temperature of the indoor air flowing into the unit (indoor air temperature) is provided on the side of the indoor air intake port of the utilization unit B. As shown in FIG. Here, the liquid-side temperature sensor 205, the gas-side temperature sensor 207, and the room temperature sensor 206 are all composed of thermistors. Further, the liquid-side temperature sensor 205 and the gas-side temperature sensor 207 may measure the surface temperature of a heat transfer tube or the like and use it as the temperature of the refrigerant instead, or may directly measure the temperature of the refrigerant. The operation of the indoor blower 8 is controlled by the controller 30 .
<熱源ユニットA>
 熱源ユニットAは、屋外に設置される。熱源ユニットAは、室外機とも呼ばれる。熱源ユニットAは、液接続配管6及びガス接続配管9を介して利用ユニットBに接続されており、冷媒回路の一部を構成している。
<Heat source unit A>
The heat source unit A is installed outdoors. The heat source unit A is also called an outdoor unit. The heat source unit A is connected to the utilization unit B via the liquid connection pipe 6 and the gas connection pipe 9, and constitutes a part of the refrigerant circuit.
 次に、熱源ユニットAの詳細な構成について説明する。熱源ユニットAは、圧縮機1と、四方弁2と、熱源側熱交換器としての室外熱交換器3と、室外送風装置4と、減圧装置5と、を備えている。 Next, the detailed configuration of the heat source unit A will be explained. The heat source unit A includes a compressor 1 , a four-way valve 2 , an outdoor heat exchanger 3 as a heat source side heat exchanger, an outdoor blower 4 , and a pressure reducing device 5 .
 減圧装置5は、冷媒回路内を流れる冷媒の流量調整等を行うために、熱源ユニットAの液側に配置されている。 The decompression device 5 is arranged on the liquid side of the heat source unit A in order to adjust the flow rate of the refrigerant flowing through the refrigerant circuit.
 圧縮機1は、運転容量(周波数、運転回転数)を制御することが可能な圧縮機である。ここでは、圧縮機1として、インバータにより制御されるモータ(図示せず)によって駆動される容積式圧縮機が用いられている。なお、圧縮機1は、ここでは1台のみであるが、これに限定されず、利用ユニットBの接続台数等に応じて、2台以上の圧縮機1が並列に接続されていてもよい。 The compressor 1 is a compressor whose operating capacity (frequency, operating speed) can be controlled. Here, as the compressor 1, a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used. Note that although there is only one compressor 1 here, it is not limited to this, and two or more compressors 1 may be connected in parallel according to the number of connected usage units B or the like.
 四方弁2は、冷媒の流れの方向を切り換える機能を有する弁である。四方弁2は、冷房運転時には、圧縮機1の吐出側と室外熱交換器3のガス側とを接続するとともに、圧縮機1の吸入側とガス接続配管9側とを接続するように冷媒流路を切り換える(図1の四方弁2の破線)。これにより、四方弁2は、室外熱交換器3を圧縮機1において圧縮された冷媒の凝縮器として機能させ、かつ室内熱交換器7を室外熱交換器3において凝縮された冷媒の蒸発器として機能させる。四方弁2は、暖房運転時には、圧縮機1の吐出側とガス接続配管9側とを接続するとともに、圧縮機1の吸入側と室外熱交換器3のガス側とを接続するように冷媒流路を切り換える(図1の四方弁2の実線)。これにより、四方弁2は、室内熱交換器7を圧縮機1において圧縮された冷媒の凝縮器として、かつ室外熱交換器3を室内熱交換器7において凝縮された冷媒の蒸発器として機能させる。 The four-way valve 2 is a valve that has the function of switching the direction of refrigerant flow. During cooling operation, the four-way valve 2 connects the discharge side of the compressor 1 and the gas side of the outdoor heat exchanger 3, and also connects the suction side of the compressor 1 and the gas connection pipe 9 side. Switch the path (broken line of four-way valve 2 in FIG. 1). As a result, the four-way valve 2 causes the outdoor heat exchanger 3 to function as a condenser for the refrigerant compressed in the compressor 1, and the indoor heat exchanger 7 as an evaporator for the refrigerant condensed in the outdoor heat exchanger 3. make it work. During heating operation, the four-way valve 2 connects the discharge side of the compressor 1 and the gas connection pipe 9 side, and also connects the suction side of the compressor 1 and the gas side of the outdoor heat exchanger 3 to allow the refrigerant flow to flow. Switch the path (the solid line of the four-way valve 2 in FIG. 1). As a result, the four-way valve 2 causes the indoor heat exchanger 7 to function as a condenser for the refrigerant compressed in the compressor 1, and the outdoor heat exchanger 3 to function as an evaporator for the refrigerant condensed in the indoor heat exchanger 7. .
 室外熱交換器3は、そのガス側が四方弁2に接続され、その液側が液接続配管6に接続された伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型の熱交換器からなる。室外熱交換器3は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。 The outdoor heat exchanger 3 is a cross-fin type fin-and-tube type, which is composed of a heat transfer tube having a gas side connected to the four-way valve 2 and a liquid side connected to the liquid connection pipe 6 and a large number of fins. It consists of a heat exchanger. The outdoor heat exchanger 3 functions as a refrigerant condenser during cooling operation, and functions as a refrigerant evaporator during heating operation.
 室外送風装置4は、室外熱交換器3に供給する空気の流量を変更することが可能なファンであり、例えば、DCモータ(図示せず)によって駆動されるプロペラファンから構成されている。室外送風装置4は、このファンによって、熱源ユニットA内に室外空気を吸入し、室外熱交換器3により冷媒との間で熱交換された空気を室外に排出する機能を有する。 The outdoor blower 4 is a fan that can change the flow rate of air supplied to the outdoor heat exchanger 3, and is composed of, for example, a propeller fan driven by a DC motor (not shown). The outdoor blower 4 has a function of sucking outdoor air into the heat source unit A by means of the fan and discharging the air heat-exchanged with the refrigerant by the outdoor heat exchanger 3 to the outside.
 また、熱源ユニットAには、各種センサが設置されている。すなわち、圧縮機1には、吐出温度Tdを検出する吐出温度センサ201、圧縮機1のシェル温度を検出する圧縮機シェル温度センサ208が設けられている。室外熱交換器3には気液二相状態の冷媒の温度(冷房運転時における凝縮温度Tcまたは暖房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサ202が設けられている。さらに室外熱交換器3の液側には、液状態または気液二相状態の冷媒の温度を検出する液側温度センサ204が設けられている。また熱源ユニットAの室外空気の吸入口側には、ユニット内に流入する室外空気の温度すなわち外気温を検出する室外温度センサ203が設けられている。なお、ここでは吐出温度センサ201、ガス側温度センサ202、室外温度センサ203、液側温度センサ204、及び圧縮機シェル温度センサ208はいずれもサーミスタにより構成されている。また、吐出温度センサ201、ガス側温度センサ202、及び室外温度センサ203、液側温度センサ204、圧縮機シェル温度センサ208は、伝熱管などの表面温度を測定して、冷媒の温度として代用してもよいし、冷媒の温度を直接測定してもよい。なお、圧縮機1、四方弁2、室外送風装置4、減圧装置5の動作は、制御部30によって制御される。 In addition, various sensors are installed in the heat source unit A. That is, the compressor 1 is provided with a discharge temperature sensor 201 that detects the discharge temperature Td and a compressor shell temperature sensor 208 that detects the shell temperature of the compressor 1 . The outdoor heat exchanger 3 is provided with a gas-side temperature sensor 202 that detects the temperature of the gas-liquid two-phase refrigerant (refrigerant temperature corresponding to the condensation temperature Tc during cooling operation or the evaporation temperature Te during heating operation). there is Further, on the liquid side of the outdoor heat exchanger 3, a liquid-side temperature sensor 204 is provided to detect the temperature of the refrigerant in a liquid state or a gas-liquid two-phase state. An outdoor temperature sensor 203 for detecting the temperature of the outdoor air flowing into the unit, that is, the outside air temperature, is provided on the outdoor air intake side of the heat source unit A. As shown in FIG. Here, the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, the liquid side temperature sensor 204, and the compressor shell temperature sensor 208 are all composed of thermistors. In addition, the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, the liquid side temperature sensor 204, and the compressor shell temperature sensor 208 measure the surface temperature of the heat transfer tube or the like, and use it as the temperature of the refrigerant. Alternatively, the temperature of the refrigerant may be measured directly. The operations of the compressor 1 , the four-way valve 2 , the outdoor blower 4 , and the decompression device 5 are controlled by the controller 30 .
 以上のような熱源ユニットAと利用ユニットBとが液接続配管6とガス接続配管9を介して接続されて、空気調和装置100の冷媒回路が構成されている。液接続配管6とガス接続配管9は空気調和装置100の設置環境により長さが異なり、配管長が短尺(例えば全長が10m以内)で構成される場合もあれば、長尺(例えば全長100m以上)で構成される場合もある。 The refrigerant circuit of the air conditioner 100 is configured by connecting the heat source unit A and the utilization unit B as described above through the liquid connection pipe 6 and the gas connection pipe 9 . The liquid connection pipe 6 and the gas connection pipe 9 have different lengths depending on the installation environment of the air conditioner 100. In some cases, the pipe length is short (for example, the total length is 10 m or less), or long (for example, the total length is 100 m or more). ).
 また、熱源ユニットAと利用ユニットBとを接続する液接続配管6とガス接続配管9は、一般的に冷媒配管として用いられる銅管で構成される。冷媒配管用銅管の材料の一例としては、О材、OL材、H材、1/2H材といったものがある。例えば、配管外径φ19.05、肉厚1.00mmの銅管の場合、最高使用圧力はО材が3.6MPa程度、H材は6.7MPa程度であり、同じ寸法でも材料により最高使用圧力は異なる。 Also, the liquid connection pipe 6 and the gas connection pipe 9 that connect the heat source unit A and the utilization unit B are made of copper pipes that are generally used as refrigerant pipes. Examples of materials for copper pipes for refrigerant piping include O material, OL material, H material, and 1/2H material. For example, in the case of a copper pipe with an outer diameter of φ19.05 and a wall thickness of 1.00 mm, the maximum working pressure is about 3.6 MPa for O material and about 6.7 MPa for H material. is different.
 通常は使用する冷媒および使用圧力に基づいて液接続配管6とガス接続配管9の材料選定がなされる。しかし、従来設置の古い空気調和装置の更新においては、例えば大規模施設の建物などに設置されている場合は熱源ユニットAと利用ユニットBとを接続する液接続配管6とガス接続配管9は必然的に長尺となる。このため、液接続配管6とガス接続配管9更新の施工コストが高くなることで、液接続配管6とガス接続配管9は既設のものをそのまま利用するケースもある。したがって、同じ空気調和装置100であっても設置環境により液接続配管6とガス接続配管9の材質が異なる場合がある。 Materials for the liquid connection pipe 6 and the gas connection pipe 9 are normally selected based on the refrigerant to be used and the working pressure. However, in updating an old conventionally installed air conditioner, for example, if it is installed in a building of a large facility, the liquid connection pipe 6 and the gas connection pipe 9 that connect the heat source unit A and the utilization unit B are inevitable. relatively long. Therefore, there are cases where the existing liquid connection pipes 6 and gas connection pipes 9 are used as they are because the construction cost for updating the liquid connection pipes 6 and the gas connection pipes 9 increases. Therefore, even in the same air conditioner 100, the materials of the liquid connection pipe 6 and the gas connection pipe 9 may differ depending on the installation environment.
 なお、本実施の形態では、熱源ユニットAが1台の場合の構成を例に説明するが、本開示はこれに限定されるものではなく、熱源ユニットAが2台以上の複数であっても良い。また、熱源ユニットAと利用ユニットBのいずれも複数のユニットの場合にそれぞれの容量が大から小まで異なっても、全てが同一容量でも良い。 In the present embodiment, a configuration in which there is one heat source unit A will be described as an example, but the present disclosure is not limited to this, and even if the number of heat source units A is two or more, good. Further, when both the heat source unit A and the utilization unit B are a plurality of units, even if the capacities of the units are different from large to small, they may all have the same capacity.
 図2は本実施形態に係る制御部30の構成を示すブロック図である。
 図2には、本実施形態の空気調和装置100の計測制御を行う制御部30及びこれに接続される運転状態情報、アクチュエータ類の接続構成を表している。
FIG. 2 is a block diagram showing the configuration of the control section 30 according to this embodiment.
FIG. 2 shows the connection configuration of the control unit 30 that performs measurement control of the air conditioner 100 of the present embodiment, the operating state information connected thereto, and the actuators.
 制御部30は、空気調和装置100に内蔵されており、測定部30aと、演算部30bと、駆動部30cと、記憶部30dとを備える。 The control unit 30 is built in the air conditioner 100 and includes a measurement unit 30a, a calculation unit 30b, a drive unit 30c, and a storage unit 30d.
 測定部30aは、吐出温度センサ201、ガス側温度センサ202、及び室外温度センサ203、液側温度センサ204、圧縮機シェル温度センサ208を含む各種センサ類等とのインターフェース回路である。測定部30aは、各種センサ類等により、冷媒圧力Pr、冷媒温度Tr、空気温度Ta、圧縮機1の運転回転数(周波数)Rc等、運転状態を示す運転状態量の測定を行う。測定部30aで計測された運転状態量は演算部30bに入力される。なお、冷媒圧力Prは、高圧圧力Pd、低圧圧力Psを含み、冷媒温度Trは、凝縮温度Tc、蒸発温度Teを含み、空気温度Taは、外気温、室内気温を含む。 The measurement unit 30a is an interface circuit with various sensors including the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, the liquid side temperature sensor 204, and the compressor shell temperature sensor 208. The measurement unit 30a measures operating state quantities indicating the operating state, such as the refrigerant pressure Pr, the refrigerant temperature Tr, the air temperature Ta, and the operating speed (frequency) Rc of the compressor 1, using various sensors. The operating state quantity measured by the measurement unit 30a is input to the calculation unit 30b. The refrigerant pressure Pr includes the high pressure Pd and the low pressure Ps, the refrigerant temperature Tr includes the condensation temperature Tc and the evaporation temperature Te, and the air temperature Ta includes the outside air temperature and the room temperature.
 演算部30bは、CPU(Central Processing Unit)などのプロセッサである。演算部30bは、記憶部30dに記憶されているプログラムを読み込み実行する。演算部30bは、プログラムを実行することにより、測定部30aで測定された運転状態量に基づき、予め与えられた式等を用いて例えば冷媒物性値(飽和圧力、飽和温度、密度など)を演算する。また、演算部30bは測定部30aで測定された運転状態量に基づき、演算処理を行う。 The computing unit 30b is a processor such as a CPU (Central Processing Unit). The calculation unit 30b reads and executes a program stored in the storage unit 30d. By executing a program, the calculation unit 30b calculates, for example, refrigerant physical property values (saturation pressure, saturation temperature, density, etc.) using a formula given in advance based on the operating state quantity measured by the measurement unit 30a. do. Further, the calculation unit 30b performs calculation processing based on the operating state quantity measured by the measurement unit 30a.
 駆動部30cは、演算部30bの演算結果に基づき、圧縮機1、四方弁2、減圧装置5、室外送風装置4、室内送風装置8等の駆動を制御するためのインターフェース回路である。 The drive unit 30c is an interface circuit for controlling the driving of the compressor 1, the four-way valve 2, the decompression device 5, the outdoor blower 4, the indoor blower 8, etc. based on the calculation result of the calculation unit 30b.
 記憶部30dは、RAM(Random Access Memory)、ROM(Read Only Memory)などのメモリである。また、記憶部30dは、演算部30bによる演算結果、予め定められた定数、機器及びその構成要素の仕様値、冷媒の物性値(飽和圧力、飽和温度、密度等)を計算する関数式および関数表(テーブル)などを記憶する。記憶部30d内のこれらの記憶内容は、必要に応じて参照、書き換えることが可能である。記憶部30dには、更に演算部30bが実行するプログラムが記憶されており、記憶部30d内のプログラムに従って制御部30が空気調和装置100を制御する。 The storage unit 30d is a memory such as RAM (Random Access Memory) and ROM (Read Only Memory). In addition, the storage unit 30d stores functional expressions and functions for calculating the calculation result by the calculation unit 30b, predetermined constants, specification values of the equipment and its constituent elements, and physical property values of the refrigerant (saturation pressure, saturation temperature, density, etc.) Tables and the like are stored. These stored contents in the storage unit 30d can be referenced and rewritten as needed. The storage unit 30d further stores programs executed by the calculation unit 30b, and the control unit 30 controls the air conditioner 100 according to the programs in the storage unit 30d.
 なお、本実施形態の構成例では制御部30が空気調和装置100に内蔵される構成としたが、本開示はこれに限るものではない。熱源ユニットAに制御部30のメイン制御部を、利用ユニットBに制御部30の機能の一部を持つサブ制御部を設けて、メイン制御部とサブ制御部との間でデータ通信を行うことにより連携処理を行う構成でもよい。利用ユニットBに全ての機能を持つ制御部30を設置する構成でもよい。あるいは、熱源ユニットAおよび利用ユニットBの外部に制御部30を別置する構成でもよい。 In addition, in the configuration example of the present embodiment, the control unit 30 is configured to be built in the air conditioner 100, but the present disclosure is not limited to this. A main control section of the control section 30 is provided in the heat source unit A, a sub-control section having a part of the functions of the control section 30 is provided in the utilization unit B, and data communication is performed between the main control section and the sub-control section. may be configured to perform cooperative processing. A configuration in which the control section 30 having all the functions is installed in the usage unit B may be employed. Alternatively, a configuration in which the control section 30 is separately provided outside the heat source unit A and the utilization unit B may be employed.
《空気調和装置100の運転動作》
 続いて、本実施形態の空気調和装置100の各運転モードにおける動作を説明する。まず、冷房運転の動作について図1を用いて説明する。
<<Operating operation of the air conditioner 100>>
Next, the operation in each operation mode of the air conditioner 100 of this embodiment will be described. First, the operation of the cooling operation will be described with reference to FIG.
 冷房運転時は四方弁2が図1の破線で示される状態、すなわち、圧縮機1の吐出側が室外熱交換器3のガス側に接続され、かつ圧縮機1の吸入側が室内熱交換器7のガス側に接続された状態となっている。 1, the discharge side of the compressor 1 is connected to the gas side of the outdoor heat exchanger 3, and the suction side of the compressor 1 is connected to the indoor heat exchanger 7. It is connected to the gas side.
 圧縮機1から吐出した高温高圧のガス冷媒は、四方弁2を経由して凝縮器である室外熱交換器3へ至る。室外熱交換器3において、室外送風装置4の送風作用により冷媒は凝縮液化し、高圧低温の冷媒となる。凝縮液化した高温低圧の冷媒は、減圧装置5で減圧される。減圧装置5で減圧された二相冷媒は、液接続配管6を経由して利用ユニットBの室内熱交換器7へ送られる。減圧された二相冷媒は、蒸発器である室内熱交換器7にて室内送風装置8の送風作用により蒸発し、低圧のガス冷媒となる。そして、低圧ガス冷媒は、四方弁2を経由して、再び圧縮機1へ吸入される。 The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 reaches the outdoor heat exchanger 3, which is a condenser, via the four-way valve 2. In the outdoor heat exchanger 3, the refrigerant is condensed and liquefied by the air blowing action of the outdoor air blower 4, and becomes a high pressure and low temperature refrigerant. The high-temperature, low-pressure refrigerant that has been condensed and liquefied is decompressed by the decompression device 5 . The two-phase refrigerant decompressed by the decompression device 5 is sent to the indoor heat exchanger 7 of the utilization unit B via the liquid connection pipe 6 . The decompressed two-phase refrigerant evaporates in the indoor heat exchanger 7, which is an evaporator, by the blowing action of the indoor air blower 8, and becomes a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant is sucked into the compressor 1 again via the four-way valve 2 .
 ここで、減圧装置5は圧縮機1の吐出冷媒温度が所定値になるように開度を調整して室内熱交換器7を循環する冷媒の流量を制御している。このため、圧縮機1より吐出された吐出ガス冷媒は、所定の温度状態となる。圧縮機1の吐出冷媒温度は、圧縮機1の吐出温度センサ201もしくは圧縮機シェル温度センサ208で検出する。このように、室内熱交換器7には利用ユニットBが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。 Here, the decompression device 5 controls the flow rate of the refrigerant circulating through the indoor heat exchanger 7 by adjusting the degree of opening so that the temperature of the refrigerant discharged from the compressor 1 reaches a predetermined value. Therefore, the discharged gas refrigerant discharged from the compressor 1 is in a predetermined temperature state. The discharge refrigerant temperature of the compressor 1 is detected by the discharge temperature sensor 201 of the compressor 1 or the compressor shell temperature sensor 208 . Thus, the refrigerant flows through the indoor heat exchanger 7 at a flow rate corresponding to the operating load required in the air-conditioned space where the utilization unit B is installed.
 次に、暖房運転の動作について図1を用いて説明する。 Next, the operation of the heating operation will be explained using FIG.
 暖房運転時は四方弁2が図1の実線で示される状態、すなわち、圧縮機1の吐出側が室内熱交換器7のガス側に接続され、かつ圧縮機1の吸入側が室外熱交換器3のガス側に接続された状態となっている。 During heating operation, the four-way valve 2 is in the state indicated by the solid line in FIG. It is connected to the gas side.
 圧縮機1から吐出した高温高圧のガス冷媒は、四方弁2及びガス接続配管9を経由して利用ユニットBへ送られ、凝縮器である室内熱交換器7へ至る。室内送風装置8の送風作用により冷媒は凝縮液化し、高圧低温の冷媒となる。凝縮液化した高温低圧の冷媒は、液接続配管6を経由して熱源ユニットAに送られ、減圧装置5で減圧されて二相冷媒となり、室外熱交換器3へ送られる。減圧された二相冷媒は蒸発器である室外熱交換器3にて室外送風装置4の送風作用により蒸発し、低圧のガス冷媒となる。そして、低圧ガス冷媒は四方弁2を経由して、再び圧縮機1へ吸入される。 The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is sent to the utilization unit B via the four-way valve 2 and the gas connection pipe 9, and reaches the indoor heat exchanger 7, which is a condenser. The refrigerant is condensed and liquefied by the air blowing action of the indoor air blower 8, and becomes a high pressure and low temperature refrigerant. The condensed and liquefied high-temperature, low-pressure refrigerant is sent to the heat source unit A via the liquid connection pipe 6 , decompressed by the decompression device 5 to become a two-phase refrigerant, and sent to the outdoor heat exchanger 3 . The depressurized two-phase refrigerant is evaporated by the blowing action of the outdoor blower 4 in the outdoor heat exchanger 3, which is an evaporator, and becomes a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant is sucked into the compressor 1 again through the four-way valve 2 .
 ここで、減圧装置5は圧縮機1の吐出冷媒温度が特定の値になるように開度を調整して室外熱交換器3を循環する冷媒の流量を制御している。このため、圧縮機1より吐出された吐出ガス冷媒は特定の温度状態となる。圧縮機1の吐出冷媒温度は、圧縮機1の吐出温度センサ201もしくは圧縮機シェル温度センサ208で検出する。このように、室内熱交換器7には利用ユニットBが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。 Here, the decompression device 5 controls the flow rate of the refrigerant circulating through the outdoor heat exchanger 3 by adjusting the degree of opening so that the temperature of the refrigerant discharged from the compressor 1 becomes a specific value. Therefore, the discharged gas refrigerant discharged from the compressor 1 is in a specific temperature state. The discharge refrigerant temperature of the compressor 1 is detected by the discharge temperature sensor 201 of the compressor 1 or the compressor shell temperature sensor 208 . Thus, the refrigerant flows through the indoor heat exchanger 7 at a flow rate corresponding to the operating load required in the air-conditioned space where the utilization unit B is installed.
《空気調和装置100の制御構成》
 図3は、本実施形態に係る空気調和装置100の制御部30における機能構成の一例を示す機能ブロック図である。
<<Control Configuration of Air Conditioner 100>>
FIG. 3 is a functional block diagram showing an example of the functional configuration of the controller 30 of the air conditioner 100 according to this embodiment.
 図3に示すように、制御部30は、能力制御部41と、保護制御部42と、回転数選択部43と、上下限リミッタ44と、保護目標値決定部45と、記憶部30dとを備える。能力制御部41と、保護制御部42と、回転数選択部43と、上下限リミッタ44とにより、回転数決定部を構成する。なお、運転状態検出部50は、吐出温度センサ201と、ガス側温度センサ202、207と、室外温度センサ203と、液側温度センサ204、205と、室内温度センサ206と、圧縮機シェル温度センサ208とを備える。また、冷凍サイクル回路60は、圧縮機1、室外熱交換器3、減圧装置5、室内熱交換器7を備える。 As shown in FIG. 3, the control unit 30 includes a capacity control unit 41, a protection control unit 42, a rotational speed selection unit 43, an upper/lower limit limiter 44, a protection target value determination unit 45, and a storage unit 30d. Prepare. The power control unit 41, the protection control unit 42, the rotation speed selection unit 43, and the upper/lower limit limiter 44 constitute a rotation speed determination unit. The operating state detection unit 50 includes a discharge temperature sensor 201, gas side temperature sensors 202 and 207, an outdoor temperature sensor 203, liquid side temperature sensors 204 and 205, an indoor temperature sensor 206, and a compressor shell temperature sensor. 208. The refrigeration cycle circuit 60 also includes a compressor 1 , an outdoor heat exchanger 3 , a pressure reducing device 5 and an indoor heat exchanger 7 .
なお、図2の演算部30bが、記憶部30dに記憶されたプログラムを読み込み実行することで、制御部30は、能力制御部41、保護制御部42、回転数選択部43、上下限リミッタ44、保護目標値決定部45、記憶部30dとして機能する。 2 reads and executes the program stored in the storage unit 30d, the control unit 30 controls the capacity control unit 41, the protection control unit 42, the rotational speed selection unit 43, the upper/lower limit limiter 44 , the protection target value determination unit 45, and the storage unit 30d.
 能力制御部41は、例えば動的制御機器であるPI(比例・積分:Proportional Integral)制御器41aを備える。能力制御部41は、室内温度を設定室温に漸近(室内温度と設定室温との差で定義される室温差Δt≒0)または一致(室温差Δt=0)とするのに必要な圧縮機1の回転数指令である能力回転数を算出する。すなわち、能力制御部41は、室温差Δtを入力としてPI制御を行う。このとき、能力制御部41は、室内温度センサ206により検出した室内温度を現在の能力を表す現在能力値と定義する。また、能力制御部41は、空気調和装置100のユーザーがリモコン等のユーザインターフェースにより外部から設定する設定室温を能力目標値と定義する。 The capacity control unit 41 includes, for example, a PI (Proportional Integral) controller 41a, which is a dynamic control device. The capacity control unit 41 controls the compressor 1 necessary to bring the room temperature asymptotically to the set room temperature (room temperature difference Δt defined by the difference between the room temperature and the set room temperature) or match it (room temperature difference Δt=0). Calculates the capacity rotation speed, which is the rotation speed command of. That is, the capacity control unit 41 performs PI control using the room temperature difference Δt as an input. At this time, the capacity control unit 41 defines the room temperature detected by the room temperature sensor 206 as the current capacity value representing the current capacity. Further, the capacity control unit 41 defines the set room temperature externally set by the user of the air conditioning apparatus 100 through a user interface such as a remote control as the capacity target value.
 保護制御部42は、空気調和装置100を構成する機器を保護するために必要となる、予め定められた保護変数を、適時もしくは予め定められた保護目標値に漸近または一致させるために必要な圧縮機1の回転数指令である保護回転数を算出する。ここで、保護変数には例えば、圧縮機1の吐出温度Td、冷媒の凝縮温度Tc、蒸発温度Te、高圧圧力Pd、低圧圧力Psなどが定められる。また、保護目標値には、例えば吐出温度上限値、凝縮温度上限値、蒸発温度下限値、高圧圧力上限値、低圧圧力下限値などが定められる。保護制御部42は、各保護変数に対してPI制御器42a、42bを有し、保護変数ごとに保護回転数を算出する。例えば、図3に示すような制御構成例の場合、保護制御部42は冷媒の凝縮温度Tcと凝縮温度上限値の差である高圧差ΔTcを入力とするPI制御器42aと、冷媒の蒸発温度Teと蒸発温度下限値の差である低圧差ΔTeを入力とするPI制御器42bとを備える。PI制御器42a、42bの各々はそれぞれ凝縮温度Tcの保護回転数と、蒸発温度Teの保護回転数を出力する。 The protection control unit 42 controls a predetermined protection variable required to protect the equipment that configures the air conditioning apparatus 100 to asymptotically or match a predetermined protection target value in a timely or predetermined manner. A protection rotation speed, which is a rotation speed command for the machine 1, is calculated. Here, for example, the discharge temperature Td of the compressor 1, the condensing temperature Tc of the refrigerant, the evaporation temperature Te, the high pressure Pd, the low pressure Ps, etc. are determined as the protected variables. The protection target value includes, for example, a discharge temperature upper limit value, a condensation temperature upper limit value, an evaporation temperature lower limit value, a high pressure upper limit value, a low pressure pressure lower limit value, and the like. The protection control unit 42 has PI controllers 42a and 42b for each protection variable, and calculates the protection rotation speed for each protection variable. For example, in the case of the control configuration example as shown in FIG. A PI controller 42b is provided, which inputs a low pressure difference ΔTe, which is the difference between Te and the lower limit of the evaporation temperature. Each of the PI controllers 42a and 42b outputs a protection rotation speed for the condensation temperature Tc and a protection rotation speed for the evaporation temperature Te.
 なお、上記の保護変数は、機器を保護するために必要な代表的な変数を例示したものであり、上記以外の変数を保護変数として採用しても良い。ただし、採用する保護変数は、当該保護変数の保護目標値が、圧縮機1の運転回転数を増大した時に増大する保護変数に対しては当該保護変数の上限値であり、圧縮機1の回転数を増大した時に減少する保護変数に対しては当該保護変数の下限値であるという特徴を有する。 The above protection variables are examples of representative variables required to protect the device, and variables other than the above may be adopted as protection variables. However, the protection variable to be adopted is the upper limit value of the protection variable for which the protection target value of the protection variable increases when the operating speed of the compressor 1 is increased, and the rotation speed of the compressor 1 is It has the characteristic that it is the lower limit value of the protected variable that decreases when the number is increased.
 また、ここでは能力制御部41及び保護制御部42はPI制御器41a、42a、42bを備えるとしたが、これに限らない。能力制御部41及び保護制御部42は、少なくとも積分器を含む動的制御器を備えていればよく、例えばPID(比例・積分・微分)制御器又はI(積分)制御器を備えていてもよい。 Also, although the ability control unit 41 and the protection control unit 42 are provided with the PI controllers 41a, 42a, and 42b here, the present invention is not limited to this. The capacity control unit 41 and the protection control unit 42 may include at least a dynamic controller including an integrator, for example, a PID (proportional-integral-derivative) controller or an I (integral) controller. good.
 回転数選択部43は最小回転数選択部を有し、能力制御部41から出力された能力回転数と、保護制御部42から出力された各保護回転数とのうち、最も小さい回転数を制御回転数として選択する。 The rotation speed selection unit 43 has a minimum rotation speed selection unit, and controls the smallest rotation speed among the capacity rotation speed output from the capacity control unit 41 and each protection rotation speed output from the protection control unit 42. Select as number of revolutions.
 本実施の形態で例示するすべての保護変数は、圧縮機1の回転数が増大すると各制約を逸脱する方向に変化する特徴を有している。例えば、高圧圧力Pdは圧縮機1の回転数を増大させると高圧圧力Pdも増大し、高圧圧力上限値を上回る方向に変化する。従って、回転数選択部43が能力制御部41から出力された能力回転数と、保護制御部42から出力された各保護回転数のうち、最も小さい回転数を選択することによって、すべての保護変数を上下限以内で制御することが可能となる。 All the protection variables exemplified in this embodiment have the characteristic that they change in the direction of deviating from each constraint as the rotation speed of the compressor 1 increases. For example, when the rotation speed of the compressor 1 is increased, the high pressure Pd also increases and changes in the direction exceeding the high pressure upper limit value. Therefore, the rotation speed selection unit 43 selects the smallest rotation speed from among the power rotation speed output from the power control unit 41 and each protection rotation speed output from the protection control unit 42, so that all protection variables can be controlled within the upper and lower limits.
 上下限リミッタ44は、予め定められた圧縮機1の運転回転数上限値Fmax及び運転回転数下限値Fminを保持している。上下限リミッタ44は、回転数選択部43が選択した制御回転数が運転回転数下限値Fmin以下であるときは運転回転数下限値Fminを出力し、制御回転数が運転回転数上限値Fmax以上であるときは、運転回転数上限値Fmaxを出力し、それ以外の時は制御回転数をそのまま出力する。圧縮機1は上下限リミッタ44から出力された回転数に従って駆動される。 The upper/lower limit limiter 44 holds a predetermined operating speed upper limit Fmax and operating speed lower limit Fmin of the compressor 1 . The upper/lower limit limiter 44 outputs the operating rotation speed lower limit value Fmin when the control rotation speed selected by the rotation speed selection unit 43 is equal to or lower than the operating rotation speed lower limit value Fmin, and the control rotation speed is equal to or higher than the operating rotation speed upper limit value Fmax. When , the operating rotation speed upper limit value Fmax is output, and in other cases, the control rotation speed is output as it is. The compressor 1 is driven according to the rotational speed output from the upper/lower limiter 44 .
 保護目標値決定部45は、記憶部30dに予め記憶された空気調和装置100を構成する要素機器の仕様情報と、運転状態検出部50により検出された空気調和装置100の運転状態とに基づいて、保護制御部42における保護目標値を算出し設定する。ここで、要素機器の仕様情報とは、主として要素機器を保護するための制約条件であり、例えば、当該要素機器単体に関して耐圧性能から動作保証されている圧力範囲および耐熱性能から動作保証されている温度範囲などの情報である。また、運転状態検出部50とは、熱源ユニットAおよび利用ユニットBに設置された各種センサと、圧縮機1の運転回転数を検出するセンサを含む。 The protection target value determination unit 45 determines the operation state of the air conditioner 100 detected by the operation state detection unit 50 based on the specification information of the element devices constituting the air conditioner 100 stored in advance in the storage unit 30d. , the protection target value in the protection control unit 42 is calculated and set. Here, the specification information of an element device is mainly a constraint condition for protecting the element device. This is information such as the temperature range. Further, the operating state detection unit 50 includes various sensors installed in the heat source unit A and the utilization unit B, and a sensor that detects the operating rotation speed of the compressor 1 .
 要素機器の仕様情報の記憶保持形式としては、例えば動作条件をパラメータとした関数式あるいは関数表(テーブル)の形式である。保護目標値決定部45は、運転状態検出部50が検出した運転状態の値に基づいて対応する保護目標値を算出する。表1は、テーブル形式の仕様情報の例である。表1の例は、冷房運転時に用いられ、運転状態は室外温度センサ203が検出する外気温であり、保護目標値は凝縮温度上限値である。表1の例では、外気温を、T1未満、T1以上T2未満、T2以上T3未満、T3以上T4未満、T4以上の5つの温度範囲に分け、それぞれの温度範囲に対し、凝縮温度上限値Tu1、Tu2、Tu3、Tu4、Tu5を対応付けている。 The storage format of the specification information of element devices is, for example, the format of function formulas or function tables (tables) with operating conditions as parameters. The protection target value determining unit 45 calculates a corresponding protection target value based on the operating state value detected by the operating state detection unit 50 . Table 1 is an example of specification information in a table format. The example in Table 1 is used during cooling operation, the operating state is the outside air temperature detected by the outdoor temperature sensor 203, and the protection target value is the upper condensing temperature limit. In the example of Table 1, the outside air temperature is divided into five temperature ranges: less than T1, T1 or more and less than T2, T2 or more and less than T3, T3 or more and less than T4, and T4 or more. , Tu2, Tu3, Tu4, and Tu5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように外気温度の温度範囲ごとに凝縮温度上限値を設けることで、冷房運転時に、外気温と凝縮温度との影響を受ける熱源ユニットAを構成する要素機器、例えば、制御部30の電子機器、室外熱交換器3のフィンおよび伝熱管などを保護しつつ、外気温に応じた空気調和装置100の能力を発揮させることができる。 By setting the upper limit value of the condensation temperature for each temperature range of the outside air temperature in this way, the elements constituting the heat source unit A, such as the electronic equipment of the control unit 30, are affected by the outside air temperature and the condensation temperature during the cooling operation. , while protecting the fins and heat transfer tubes of the outdoor heat exchanger 3, the ability of the air conditioner 100 according to the outside air temperature can be exhibited.
 なお、表1の例では、仕様情報は、外気温度の温度範囲ごとの凝縮温度上限値であったが、これ以外の組み合わせであってもよい。例えば、仕様情報は、暖房運転時の室内気温の温度範囲ごとの凝縮温度上限値であってもよい。これにより、暖房運転時に、室内気温と凝縮温度との影響を受ける利用ユニットBを構成する要素機器を保護しつつ、室内気温に応じた空気調和装置100の能力を発揮させることができる。また、仕様情報は、外気温度の温度範囲ごとの蒸発温度下限値であってもよいし、室内気温の温度範囲ごとの蒸発温度下限値であってもよい。なお、外気温度は、室外温度センサ203により検出され、室内気温は室内温度センサ206により検出される。 In addition, in the example of Table 1, the specification information is the condensing temperature upper limit value for each temperature range of the outside air temperature, but other combinations may be used. For example, the specification information may be a condensing temperature upper limit value for each room temperature range during heating operation. As a result, during heating operation, it is possible to protect the elemental devices constituting the utilization unit B that are affected by the room temperature and the condensation temperature, and allow the air conditioning apparatus 100 to exhibit its ability according to the room temperature. Further, the specification information may be the lower limit value of the evaporation temperature for each temperature range of the outside air temperature, or the lower limit value of the evaporation temperature for each temperature range of the room temperature. The outdoor temperature is detected by the outdoor temperature sensor 203 and the indoor temperature is detected by the indoor temperature sensor 206 .
《空気調和装置100の制御動作》
 本実施形態の空気調和装置100の制御部30による制御動作について図4に基づいて説明する。図4は、本実施形態に係る空気調和装置100の圧縮機1の制御動作の流れを示すフローチャートである。
<<Control operation of the air conditioner 100>>
A control operation by the control unit 30 of the air conditioner 100 of the present embodiment will be described with reference to FIG. FIG. 4 is a flow chart showing the flow of the control operation of the compressor 1 of the air conditioner 100 according to this embodiment.
 制御部30は、フロー開始後、最初に運転条件を検出する(STEP1)。ここでは、例えばリモコン等のユーザインターフェースにより外部から設定される設定室温を検出する。 After starting the flow, the control unit 30 first detects the operating conditions (STEP 1). Here, for example, the set room temperature that is externally set by a user interface such as a remote controller is detected.
 次に、運転状態検出部50が空気調和装置100の運転状態を検出する(STEP2)。運転状態の検出手段としては例えば、空気調和装置100の熱源ユニットAもしくは利用ユニットBに設置され、冷媒温度あるいは空気温度を測定する温度センサと、圧縮機1の運転回転数を検出するセンサ(図示せず)を用いる。これらのセンサ検出値に基づいて運転状態として検出する。 Next, the operating state detection unit 50 detects the operating state of the air conditioner 100 (STEP 2). As means for detecting the operating state, for example, a temperature sensor installed in the heat source unit A or the utilization unit B of the air conditioner 100 to measure the refrigerant temperature or the air temperature, and a sensor to detect the operating speed of the compressor 1 (Fig. not shown). The operating state is detected based on these sensor detection values.
 続いて、検出した運転状態量を基に能力制御部41が能力回転数Fqを算出し出力する(STEP3)。ここで能力回転数Fqは、能力制御部41を構成する制御器により出力されるものであり、例えば、図3に示すような制御構成においては、下記式(1)を用いて算出する。 Subsequently, the capacity control unit 41 calculates and outputs the capacity rotation speed Fq based on the detected operating state quantity (STEP 3). Here, the capacity rotation speed Fq is output by a controller that constitutes the capacity control section 41, and is calculated using the following formula (1) in the control configuration shown in FIG. 3, for example.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Δtは室内温度と設定室温の差で定義される室温差[deg]である。K、KはそれぞれPI制御器41aにおける制御ゲインである。Kは比例ゲイン[Hz/℃]であり、Kは積分ゲイン[Hz/(℃・sec)]である。Tintは制御周期[sec]である。室温差Δtは、運転状態検出部50にて検出した運転状態のうち、室内温度センサ206で検出した室内温度と、STEP1で検出した設定室温より算出する。制御ゲインKp、Kiは空気調和装置100における冷凍サイクル系のアクチュエータ操作に対する応答性により決まり、制御周期Tintも機器仕様にて決まるため、機器仕様情報として予め記憶部30dに記憶させておき、演算部30bで演算する時に演算情報として用いる。 Here, Δt is the room temperature difference [deg] defined as the difference between the room temperature and the set room temperature. K p and K I are control gains in the PI controller 41a, respectively. Kp is the proportional gain [Hz/°C] and KI is the integral gain [Hz/(°C·sec)]. T int is the control period [sec]. The room temperature difference Δt is calculated from the room temperature detected by the room temperature sensor 206 and the set room temperature detected in STEP 1 among the operating conditions detected by the operating condition detection unit 50 . The control gains Kp and Ki are determined by the responsiveness of the refrigerating cycle system in the air conditioner 100 to the actuator operation, and the control period Tint is also determined by the device specifications. It is used as calculation information when calculating in 30b.
 次に、保護目標値決定部45は保護目標値を設定する(STEP4)。保護目標値決定部45は、保護制御部42を構成しているPI制御器42a、42b各々の保護目標値を、運転状態に基づき決定し設定する。 Next, the protection target value determination unit 45 sets the protection target value (STEP 4). The protection target value determination unit 45 determines and sets protection target values for each of the PI controllers 42a and 42b that constitute the protection control unit 42 based on the operating state.
 ここで、保護目標値と運転状態との対応は空気調和装置100を構成する要素機器仕様に依存して決まるため、機器仕様情報として予め記憶部30dに記憶させておく。保護目標値決定部45は、保護目標値を決定する際に、この機器仕様情報を用いる。 Here, since the correspondence between the protection target value and the operating state is determined depending on the specifications of the element equipment that constitutes the air conditioner 100, it is stored in advance in the storage unit 30d as equipment specification information. The protection target value determining unit 45 uses this device specification information when determining the protection target value.
 続いて、保護制御部42が保護回転数Fpを算出し出力する(STEP5)。ここで保護回転数Fpは、保護制御部42を構成する各PI制御器42a、42bにより出力されるものであり、例えば図3に示すような制御構成において、凝縮温度の保護回転数FTc[Hz]と、蒸発温度の保護回転数FTe[Hz]はそれぞれ下記式(2)、(3)を用いて算出される。 Subsequently, the protection control unit 42 calculates and outputs the protection rotation speed Fp (STEP 5). Here, the protection rotation speed Fp is output by each of the PI controllers 42a and 42b that constitute the protection control unit 42. For example, in the control configuration shown in FIG. ] and the evaporation temperature protective rotation speed FTe [Hz] are calculated using the following equations (2) and (3), respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、ΔTcは凝縮温度Tcと凝縮温度上限値の差(凝縮温度上限値から凝縮温度Tcを引いた値)で定義される高圧差[deg]、ΔTeは蒸発温度Teと蒸発温度下限値の差(蒸発温度Teから蒸発温度下限値を引いた値)で定義される低圧差[deg]である。K、KはそれぞれPI制御における制御ゲインであり、Kは比例ゲイン[Hz/℃]、Kは積分ゲイン[Hz/(℃・sec)]である。Tintは制御周期[sec]である。制御ゲインK、Kは空気調和装置100における冷凍サイクル系のアクチュエータ操作に対する応答性により決まり、制御周期Tintも機器仕様にて決まる。このため、これらの値は、機器仕様情報として予め記憶部30dに記憶させておき、保護制御部42で演算する時に演算情報として用いられる。 Here, ΔTc is the difference between the condensation temperature Tc and the upper limit of the condensation temperature (the value obtained by subtracting the condensation temperature Tc from the upper limit of the condensation temperature), the high pressure difference [deg], and ΔTe is the difference between the evaporation temperature Te and the lower limit of the evaporation temperature. It is a low pressure difference [deg] defined by the difference (a value obtained by subtracting the lower limit of the evaporation temperature from the evaporation temperature Te). K p and K I are control gains in PI control, K p is a proportional gain [Hz/°C], and K I is an integral gain [Hz/(°C·sec)]. T int is the control period [sec]. The control gains K p and K I are determined by the responsiveness to actuator operation of the refrigeration cycle system in the air conditioner 100, and the control period T int is also determined by the equipment specifications. Therefore, these values are stored in advance in the storage unit 30d as device specification information, and used as calculation information when the protection control unit 42 performs calculations.
 冷媒の凝縮温度Tcとしては、冷房運転時には室外熱交換器3に設けられたガス側温度センサ202もしくは液側温度センサ204の検出値、暖房運転時には室内熱交換器7に設けられたガス側温度センサ207もしくは液側温度センサ205の検出値が用いられる。蒸発温度Teとしては、冷房運転時には室内熱交換器7に設けられたガス側温度センサ207もしくは液側温度センサ205の検出値、暖房運転時には室外熱交換器3に設けられたガス側温度センサ202もしくは液側温度センサ204の検出値が用いられる。 As the condensation temperature Tc of the refrigerant, the value detected by the gas side temperature sensor 202 or the liquid side temperature sensor 204 provided in the outdoor heat exchanger 3 during cooling operation, and the gas side temperature sensor 204 provided in the indoor heat exchanger 7 during heating operation. A value detected by the sensor 207 or the liquid-side temperature sensor 205 is used. As the evaporation temperature Te, the value detected by the gas side temperature sensor 207 or the liquid side temperature sensor 205 provided in the indoor heat exchanger 7 during cooling operation, and the gas side temperature sensor 202 provided in the outdoor heat exchanger 3 during heating operation. Alternatively, the detected value of the liquid-side temperature sensor 204 is used.
 なお、ここでは冷媒の凝縮温度および蒸発温度を検出するのに温度センサが用いられている。しかし、圧縮機1の吸入側、吐出側に直接圧力センサを設置して、吐出側の圧力センサから検出した高圧圧力Pd、吸入側の圧力センサから検出した低圧圧力Psの圧力値をそれぞれ飽和温度換算して、凝縮温度Tc、蒸発温度Teが求められるようにしてもよい。逆に、検出した凝縮温度Tc、蒸発温度Teを、それぞれ飽和温度換算して、高圧圧力Pd、低圧圧力Psが求められるようにしてもよい。 Note that a temperature sensor is used here to detect the condensation temperature and evaporation temperature of the refrigerant. However, pressure sensors are installed directly on the suction side and the discharge side of the compressor 1, and the pressure values of the high pressure Pd detected by the pressure sensor on the discharge side and the low pressure Ps detected by the pressure sensor on the suction side are respectively measured at the saturation temperature. By conversion, the condensation temperature Tc and the evaporation temperature Te may be obtained. Conversely, the high pressure Pd and the low pressure Ps may be obtained by converting the detected condensation temperature Tc and evaporation temperature Te into saturation temperatures, respectively.
 また、高圧差ΔTcにおける凝縮温度上限値、低圧差ΔTeにおける蒸発温度下限値は保護目標値決定部45により算出した保護目標値であり、運転条件に基づいて算出し設定される。例えば、冷房運転時用に、予め凝縮温度上限値を外気温条件に応じて段階的に変化させるように仕様情報として記憶部30dが保持しておく。この場合、室外温度センサ203で検出した運転時の外気温が高い場合には凝縮温度上限値の設定値は高くなり、外気温が低い場合には凝縮温度上限値の設定値が低くなるように設定する。このように、保護目標値決定部45は、運転時の運転状態に応じて保護目標値を変化させる。 Also, the upper limit of the condensation temperature at the high pressure difference ΔTc and the lower limit of the evaporation temperature at the low pressure difference ΔTe are the protection target values calculated by the protection target value determination unit 45, and are calculated and set based on the operating conditions. For example, for cooling operation, the storage unit 30d holds in advance specification information such that the upper limit of the condensation temperature is changed stepwise according to the outside air temperature conditions. In this case, when the outside air temperature during operation detected by the outdoor temperature sensor 203 is high, the set value of the upper limit of condensation temperature becomes high, and when the outside air temperature is low, the set value of the upper limit of condensation temperature becomes low. set. In this manner, the protection target value determination unit 45 changes the protection target value according to the operating state during operation.
 また、例えば、暖房運転時用に、予め凝縮温度上限値を室内気温条件に応じて段階的に変化させるように仕様情報として記憶部30dが保持しておく。この場合、室内温度センサ206で検出した運転時の室内気温が高い場合には凝縮温度上限値の設定値は高くなり、室内気温が低い場合には凝縮温度上限値の設定値が低くなるように設定する。このように、保護目標値決定部45は、運転時の運転状態に応じて保護目標値を変化させる。 In addition, for example, for heating operation, the storage unit 30d holds specification information in advance so that the upper limit of the condensation temperature is changed step by step according to the room temperature conditions. In this case, if the room temperature during operation detected by the room temperature sensor 206 is high, the set value of the upper limit of the condensation temperature will be high, and if the room temperature is low, the set value of the upper limit of the condensation temperature will be low. set. In this manner, the protection target value determination unit 45 changes the protection target value according to the operating state during operation.
 次に、回転数選択部43が、能力制御部41から出力された能力回転数Fqと保護制御部42から出力された保護回転数Fpのうち、最小となる回転数を選択する。そのために、まず、回転数選択部43は保護回転数Fp<能力回転数Fqを満たすか否かを判定する(STEP6)。条件を満たす場合(STEP6;YES)は、回転数選択部43は保護回転数Fpを選択(STEP7)し、条件を満たしていなければ(STEP6;NO)、回転数選択部43は能力回転数Fqを選択する(STEP8)。なお、図3に示したように、保護変数が複数ある場合は、STEP7において、回転数選択部43は各保護変数に対応する保護回転数Fpのうち、最も値が小さいものを選択する。 Next, the rotation speed selection unit 43 selects the minimum rotation speed from the capability rotation speed Fq output from the capability control unit 41 and the protection rotation speed Fp output from the protection control unit 42 . For this purpose, first, the rotational speed selection unit 43 determines whether or not protection rotational speed Fp<capable rotational speed Fq is satisfied (STEP 6). If the condition is satisfied (STEP6; YES), the rotation speed selection unit 43 selects the protection rotation speed Fp (STEP7). is selected (STEP 8). As shown in FIG. 3, when there are a plurality of protected variables, in STEP7, the rotational speed selection unit 43 selects the smallest protected rotational speed Fp corresponding to each protected variable.
 続いて、上下限リミッタ44が回転数選択部43で選択された回転数が上下限値を逸脱しないように処理をする。まず、上下限リミッタ44は、STEP6~8で選択された運転回転数Fの値が運転回転数上限値Fmaxより小さいかどうか判定する(STEP9)。条件を満たしていなければ(STEP9;NO)、上下限リミッタ44は、選択された運転回転数Fを運転回転数上限値Fmaxに更新し(STEP10)、制御回転数Fとして出力する(STEP13) Subsequently, the upper and lower limit limiter 44 performs processing so that the rotation speed selected by the rotation speed selection unit 43 does not deviate from the upper and lower limit values. First, the upper and lower limit limiter 44 determines whether or not the value of the operating speed F selected in STEPs 6 to 8 is smaller than the operating speed upper limit value Fmax (STEP 9). If the condition is not satisfied (STEP 9; NO), the upper/lower limiter 44 updates the selected operating speed F to the operating speed upper limit value Fmax (STEP 10) and outputs it as the control speed F (STEP 13).
 また、上下限リミッタ44は、STEP6~8で選択された運転回転数Fの値が運転回転数下限値Fminより大きいかどうか判定する(STEP11)。条件を満たしていなければ(STEP11;NO)、上下限リミッタ44は、選択された運転回転数Fを運転回転数下限値Fminに更新し(STEP12)、制御回転数Fとして出力(STEP13)、その後、制御フローを終了する。 Also, the upper/lower limiter 44 determines whether or not the value of the operating rotation speed F selected in STEP 6 to 8 is greater than the operating rotation speed lower limit Fmin (STEP 11). If the condition is not satisfied (STEP 11; NO), the upper/lower limiter 44 updates the selected operating speed F to the operating speed lower limit value Fmin (STEP 12), outputs it as the control speed F (STEP 13), and then , ends the control flow.
 なお、本実施形態においては、保護目標値を運転状態に応じて変化させる場合について説明したが、保護目標値を変化させるパラメータは運転条件に限定されたものではなく、例えば空気調和装置100の据付状況に応じて保護目標値を変化させても良い。例えば、熱源ユニットAと利用ユニットBとを接続する冷媒配管(図1に示す液接続配管6およびガス接続配管9)の材質、形状、長さなどの冷凍サイクル回路の据え付け条件により保護目標値を変化させても良い。この場合、冷媒配管の材質、形状により最高使用圧力が異なるため、例えば、予め凝縮温度上限値を冷媒配管の材質に応じて変化させるように仕様情報として保持しておき、熱源ユニットAと利用ユニットBとを接続する冷媒配管の材質が最高使用圧力が高い材質の場合は凝縮温度上限値の設定値を高くして、最高使用圧力が低い材質の場合は凝縮温度上限値の設定値が低くなるようにする。 In the present embodiment, a case has been described in which the protection target value is changed according to the operating state, but parameters for changing the protection target value are not limited to operating conditions. The protection target value may be changed according to the situation. For example, the protection target value can be set according to the installation conditions of the refrigeration cycle circuit, such as the material, shape, and length of the refrigerant pipes (liquid connection pipe 6 and gas connection pipe 9 shown in FIG. 1) connecting the heat source unit A and the utilization unit B. You can change it. In this case, since the maximum working pressure varies depending on the material and shape of the refrigerant pipe, for example, the upper limit of condensation temperature is stored as specification information in advance so that it can be changed according to the material of the refrigerant pipe, and the heat source unit A and the utilization unit If the material of the refrigerant pipe connecting B is a material with a high maximum working pressure, set the condensing temperature upper limit value higher, and if it is a material with a lower maximum working pressure, set the condensing temperature upper limit value lower. make it
 この場合、例えば、それぞれが、冷媒配管の材質あるいは形状に対応している、表1に示すような外気温と凝縮温度上限値との複数の対応表を、記憶部30dが記憶する。空気調和装置100の設置施工者が、液接続配管6及びガス接続配管9の材質、形状、あるいは長さを、制御部30に設定しておくと、保護目標値決定部45は、記憶部30dが記憶する複数の対応表のうち、設定された材質、形状、あるいは長さに対応した対応表を用いて、保護目標値を決定する。 In this case, for example, the storage unit 30d stores a plurality of correspondence tables between the outside air temperature and the condensing temperature upper limit value as shown in Table 1, each corresponding to the material or shape of the refrigerant pipe. When the installer of the air conditioner 100 sets the material, shape, or length of the liquid connection pipe 6 and the gas connection pipe 9 in the control unit 30, the protection target value determination unit 45 stores the information in the storage unit 30d. The protection target value is determined by using a correspondence table corresponding to the set material, shape, or length among a plurality of correspondence tables stored by .
 また、本実施形態においては、保護目標値を外気温条件に応じて変化させる場合について説明したが、保護目標値を変化させるパラメータの運転状態はこれに限定されたものではなく、例えば空気調和装置100における冷媒回路の動作圧力(高圧冷媒圧力、低圧冷媒圧力)のような他の運転状態に基づいて保護目標値を適時変化させても良い。具体的な制御動作例については次の実施の形態にて説明する。 Further, in the present embodiment, a case has been described in which the protection target value is changed according to the outside air temperature condition, but the operating state of the parameter for changing the protection target value is not limited to this. The protection target value may be changed from time to time based on other operating conditions such as the operating pressure of the refrigerant circuit at 100 (high pressure refrigerant pressure, low pressure refrigerant pressure). A specific control operation example will be described in the next embodiment.
<第2の実施形態>
 本開示の第2の実施形態に係る空気調和装置200の構成について説明する。本実施形態に係る空気調和装置200は、なお、この第2の実施形態では第1の実施形態との相違点を中心に説明し、同様の箇所については説明を割愛する。空気調和装置200の冷媒回路、制御部30の構成、運転動作は第1の実施形態と同様である。しかし、保護目標値決定部45による保護目標値の決定方法と、記憶部30dが記憶する仕様情報が異なる。
<Second embodiment>
A configuration of an air conditioner 200 according to a second embodiment of the present disclosure will be described. Regarding the air conditioner 200 according to the present embodiment, the differences from the first embodiment will be mainly described in the second embodiment, and the description of the same portions will be omitted. The refrigerant circuit of the air conditioner 200, the configuration of the control unit 30, and the operation are the same as those of the first embodiment. However, the method of determining the protection target value by the protection target value determination unit 45 and the specification information stored in the storage unit 30d are different.
《空気調和装置200の制御動作》
 本実施形態における空気調和装置200の制御動作について図4及び図5に基づいて説明する。図5は、本実施形態に係る空気調和装置200の動作圧力範囲を示す図(以下、運転マップと称する)である。図5の縦軸は、冷媒の高圧圧力Pdであり、横軸は、冷媒の低圧圧力Psである。図5の点A~点Fを結ぶ実線で囲まれた範囲は、冷媒の高圧圧力Pdと低圧圧力Psの組み合わせが該範囲内であれば、空気調和装置200が正常動作することを機器として保証される範囲を意味している。本実施形態では、この実線で囲まれた範囲内の圧力帯で動作するように、圧縮機1の運転回転数が制御される。
<<Control operation of the air conditioner 200>>
The control operation of the air conditioner 200 in this embodiment will be described with reference to FIGS. 4 and 5. FIG. FIG. 5 is a diagram (hereinafter referred to as an operation map) showing the operating pressure range of the air conditioner 200 according to this embodiment. The vertical axis in FIG. 5 is the high pressure Pd of the refrigerant, and the horizontal axis is the low pressure Ps of the refrigerant. A range surrounded by a solid line connecting points A to F in FIG. 5 is a guarantee that the air conditioner 200 operates normally if the combination of the high pressure Pd and the low pressure Ps of the refrigerant is within the range. It means the range to be covered. In this embodiment, the operating rotation speed of the compressor 1 is controlled so as to operate within the range surrounded by the solid line.
 本実施形態においては、予め仕様情報として図5のような運転マップ上のデータ(例えば点A~点Fの値)を、記憶部30dに記憶させておく。運転マップ上の圧力値は飽和温度換算した上で制御に用いる。圧力から飽和温度への換算については、例えば予め冷媒物性に基づいた圧力を変数とする関数式を作成し、その関数式を用いて温度換算する。 In this embodiment, the data on the driving map as shown in FIG. 5 (for example, the values of points A to F) are stored in advance in the storage unit 30d as specification information. The pressure value on the operation map is used for control after being converted to the saturation temperature. For conversion from pressure to saturation temperature, for example, a functional expression having pressure as a variable based on the physical properties of the refrigerant is created in advance, and the temperature is converted using the functional expression.
 フロー開始後、まず第1の実施形態と同様に、空気調和装置200の各部がSTEP1~STEP3の動作を行う。次に、保護目標値決定部45は、空気調和装置200の運転状態としてSTEP2にて検出した凝縮温度Tc及び蒸発温度Teの値を基に、記憶部30dから読み出した図5の運転マップ上のどの位置で動作しているか、すなわち動作圧力の位置を検知する。保護目標値決定部45は、検知した動作圧力の位置に基づいて保護制御部42の保護目標値となる凝縮温度上限値、蒸発温度下限値を算出し設定する(STEP4)。例えば、凝縮温度Tc及び蒸発温度Teの検出値より動作圧力が図5上に示す点Xの位置であった場合、保護目標値決定部45は、凝縮温度上限値には運転マップ上の高圧圧力上限値、つまり点Cと点Dを結ぶ水平線との交点の圧力値Pd1の飽和温度換算値を設定し、蒸発温度下限値には運転マップ上の低圧圧力下限値、つまり点Bと点Cを結ぶ直線との交点の圧力値Ps1の飽和温度換算値を設定する。 After starting the flow, each part of the air conditioning apparatus 200 first performs STEP1 to STEP3 in the same manner as in the first embodiment. Next, based on the values of the condensation temperature Tc and the evaporation temperature Te detected in STEP 2 as the operating state of the air conditioner 200, the protection target value determining unit 45 Detecting which position it is operating, that is, the position of the operating pressure. The protection target value determination unit 45 calculates and sets the condensation temperature upper limit value and the evaporation temperature lower limit value, which are the protection target values of the protection control unit 42, based on the detected operating pressure position (STEP 4). For example, when the operating pressure is at the position of point X shown in FIG. The upper limit value, that is, the saturation temperature conversion value of the pressure value Pd1 at the intersection with the horizontal line connecting points C and D, is set, and the lower limit value of the low-pressure pressure on the operation map, that is, point B and point C is set as the lower limit value of the evaporating temperature. A saturated temperature conversion value of the pressure value Ps1 at the intersection with the connecting straight line is set.
 その後、STEP4で設定した凝縮温度上限値と蒸発温度下限値を用いて、保護制御部42にて保護回転数Fpを算出し出力する(STEP5)。これ以降、STEP6~STEP13は第1の実施形態と同様の動作となる。 After that, using the condensation temperature upper limit value and the evaporation temperature lower limit value set in STEP 4, the protection control unit 42 calculates and outputs the protection rotational speed Fp (STEP 5). After that, STEP6 to STEP13 are the same operations as in the first embodiment.
 なお、本実施形態において、記憶部30dが記憶する運転マップは、高圧圧力と、低圧圧力との動作圧力範囲としたが、凝縮温度Tcと、蒸発温度Teとの動作温度範囲であってもよい。
 また、圧縮機1の運転回転数の範囲各々に対応した複数の運転マップを記憶部30dが記憶するようにしてもよい。保護目標値決定部45は、圧縮機1の運転回転数が属する範囲に対応した運転マップを用いて、凝縮温度上限値、蒸発温度下限値などの保護目標値を決定する。
In the present embodiment, the operation map stored in the storage unit 30d is the operating pressure range between the high pressure and the low pressure, but it may be the operating temperature range between the condensation temperature Tc and the evaporation temperature Te. .
Further, the storage unit 30d may store a plurality of operation maps corresponding to respective ranges of the operating rotation speed of the compressor 1. FIG. The protection target value determining unit 45 determines protection target values such as the upper limit of the condensation temperature and the lower limit of the evaporating temperature using the operation map corresponding to the range to which the operating rotation speed of the compressor 1 belongs.
 上述の各実施形態における空気調和装置100、200は、冷媒を圧縮する圧縮機1を備える冷凍サイクル回路と、冷凍サイクル回路の運転状態を検出する運転状態検出部50と、運転状態に基づき、冷凍サイクル回路に関する保護変数の保護目標値を決定する保護目標値決定部45と、冷凍サイクル回路により調整する温度の能力目標値と、保護目標値とに少なくとも基づき、圧縮機1の運転回転数を決定する回転数決定部とを備える。
 これにより、要素機器の制約条件を満足させるための保護目標値を、運転状態に応じて変更することができるため、不必要に空気調和装置100、200の性能が制限されてしまうことを抑え、空気調和装置100、200の高性能化を実現できる。
The air conditioners 100 and 200 in each of the above-described embodiments include a refrigeration cycle circuit including a compressor 1 that compresses a refrigerant, an operating state detection unit 50 that detects the operating state of the refrigerating cycle circuit, and a refrigeration unit based on the operating state. The operating speed of the compressor 1 is determined based on at least a protection target value determination unit 45 that determines a protection target value of a protection variable relating to the cycle circuit, a temperature capability target value adjusted by the refrigeration cycle circuit, and the protection target value. and a rotational speed determination unit.
As a result, the protection target value for satisfying the constraint conditions of the element equipment can be changed according to the operating state, so that the performance of the air conditioners 100 and 200 is prevented from being unnecessarily limited, Higher performance of the air conditioners 100 and 200 can be realized.
 上述の各実施形態における空気調和装置100、200は、要素機器仕様に基づく制約条件だけでなく、空気調和装置100、200の据付状況および運転状態に基づいて保護目標値を適時設定し運転制御することで、要素機器の限界値に対する過度な保護動作を回避することが可能となる。これにより、空気調和装置100、200は、従来のよりも通常運転が可能な運転範囲の拡大を実現できる。 The air conditioners 100 and 200 in each of the above-described embodiments timely set protection target values based on not only the constraint conditions based on the specifications of the element equipment, but also the installation and operating conditions of the air conditioners 100 and 200, and control the operation. As a result, it becomes possible to avoid excessive protective operation against the limit values of the element devices. As a result, the air conditioners 100 and 200 can achieve an expansion of the operating range in which normal operation is possible compared to the conventional one.
 上述の各実施形態における空気調和装置100、200は要素機器仕様に基づく制約条件だけでなく、空気調和装置100、200の据付状況および運転状態に基づいた保護目標値に対して高精度な運転制御が可能となる。これにより、空気調和装置100、200の信頼性をより高くすることができる。 The air conditioners 100 and 200 in each of the above-described embodiments have high-precision operational control with respect to protection target values based not only on the constraint conditions based on the specifications of the element equipment, but also on the installation conditions and operating conditions of the air conditioners 100 and 200. becomes possible. Thereby, the reliability of the air conditioners 100 and 200 can be further improved.
 本開示の特徴事項を各実施の形態において説明したが、例えば、冷媒の流路構成(配管接続)、圧縮機・熱交換器・膨張弁等の冷媒回路要素の構成、等の内容は、各実施の形態で説明した内容に限定されるものではなく、本開示の技術の範囲内で適宜変更が可能である。 Although the features of the present disclosure have been described in each embodiment, for example, the contents of the refrigerant flow path configuration (pipe connection), the configuration of refrigerant circuit elements such as compressors, heat exchangers, expansion valves, etc. It is not limited to the contents described in the embodiment, and can be changed as appropriate within the technical scope of the present disclosure.
 また、上述した図3における制御部30の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず、専用回路、または汎用プロセッサで実現しても良い。ハイブリッド、モノリシックのいずれでも良い。一部は、ハードウェアにより、一部はソフトウェアにより機能を実現させても良い。
 また、半導体技術の進歩により、LSIに代替する集積回路化等の技術が出現した場合、当該技術による集積回路を用いることも可能である。
Further, each functional block of the control unit 30 in FIG. 3 described above may be chipped individually, or part or all of them may be integrated and chipped. Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. It can be either hybrid or monolithic. Some of the functions may be implemented by hardware and some may be implemented by software.
In addition, when a technology such as integration circuit that replaces LSI appears due to progress in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like are included within the scope of the gist of the present invention.
1 圧縮機、2 四方弁、3 室外熱交換器、4、室外送風装置、5 減圧装置、6 液接続配管、7 室内熱交換器、8 室内送風装置、9 ガス接続配管、30 制御部、30a 測定部、30b 演算部、30c 駆動部、30d 記憶部、41 能力制御部、41a PI制御器、42 保護制御部、42a PI制御器、42b PI制御器、43 回転数選択部、44 上下限リミッタ、45 保護目標値決定部、50 運転状態検出部、60 冷凍サイクル回路、201 吐出温度センサ、202 ガス側温度センサ、203 室外温度センサ、204 液側温度センサ、205 液側温度センサ、206 室内温度センサ、207 ガス側温度センサ、208 圧縮機シェル温度センサ、A 熱源ユニット、B 利用ユニット 1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 4 outdoor blower, 5 decompression device, 6 liquid connection pipe, 7 indoor heat exchanger, 8 indoor blower, 9 gas connection pipe, 30 control unit, 30a Measurement unit, 30b operation unit, 30c drive unit, 30d storage unit, 41 capacity control unit, 41a PI controller, 42 protection control unit, 42a PI controller, 42b PI controller, 43 rotation speed selection unit, 44 upper and lower limit limiter , 45 protection target value determination unit, 50 operation state detection unit, 60 refrigeration cycle circuit, 201 discharge temperature sensor, 202 gas side temperature sensor, 203 outdoor temperature sensor, 204 liquid side temperature sensor, 205 liquid side temperature sensor, 206 indoor temperature Sensor, 207 Gas side temperature sensor, 208 Compressor shell temperature sensor, A Heat source unit, B Usage unit

Claims (8)

  1.  冷媒を圧縮する圧縮機を備える冷凍サイクル回路と、
     前記冷凍サイクル回路の運転状態を検出する運転状態検出部と、
     前記運転状態に基づき、前記冷凍サイクル回路に関する保護変数の保護目標値を決定する保護目標値決定部と、
     前記冷凍サイクル回路により調整する温度の能力目標値と、前記保護目標値とに少なくとも基づき、前記圧縮機の運転回転数を決定する回転数決定部と
     を備える冷凍サイクル装置。
    a refrigeration cycle circuit including a compressor that compresses a refrigerant;
    an operating state detection unit that detects the operating state of the refrigeration cycle circuit;
    a protection target value determination unit that determines a protection target value of a protection variable related to the refrigeration cycle circuit based on the operating state;
    A refrigeration cycle apparatus comprising: a rotation speed determination unit that determines an operation rotation speed of the compressor based on at least a target temperature capacity value to be adjusted by the refrigeration cycle circuit and the protection target value.
  2.  前記回転数決定部は、前記保護変数が、前記保護目標値に漸近するように制御するI(積分)制御器、PI(比例・積分)制御器、またはPID(比例、積分・微分)制御器を備える、請求項1に記載の冷凍サイクル装置。 The rotational speed determination unit is an I (integral) controller, a PI (proportional/integral) controller, or a PID (proportional, integral/differential) controller that controls the protected variable to asymptotically approach the protected target value. The refrigeration cycle apparatus according to claim 1, comprising:
  3.  前記保護変数は、前記圧縮機から吐出される前記冷媒の吐出温度、前記冷媒の凝縮温度、前記冷媒の蒸発温度、前記冷媒の高圧圧力、および前記冷媒の低圧圧力のいずれかを含む、請求項1に記載の冷凍サイクル装置。 3. The protected variable includes any one of a discharge temperature of the refrigerant discharged from the compressor, a condensing temperature of the refrigerant, an evaporation temperature of the refrigerant, a high pressure of the refrigerant, and a low pressure of the refrigerant. 2. The refrigeration cycle device according to 1.
  4.  前記運転状態は、外気温または室内気温である、請求項1から請求項3のいずれかの項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the operating state is the outside air temperature or the room temperature.
  5.  前記外気温または室内気温と、前記保護目標値との対応を記憶する記憶部を備え、
     前記保護目標値決定部は、前記記憶部が記憶する対応を参照して、前記保護目標値を決定する、請求項4に記載の冷凍サイクル装置。
    A storage unit that stores the correspondence between the outside temperature or the indoor temperature and the protection target value,
    5. The refrigeration cycle apparatus according to claim 4, wherein said protection target value determination unit determines said protection target value by referring to the correspondence stored in said storage unit.
  6.  前記運転状態は、前記冷媒の凝縮温度または高圧圧力、および前記冷媒の蒸発温度または低圧圧力である、請求項1から請求項3のいずれかの項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the operating state is the condensation temperature or high pressure of the refrigerant and the evaporation temperature or low pressure of the refrigerant.
  7.  前記冷媒の動作圧力範囲または動作温度範囲を示す運転マップを記憶する記憶部を備え、
     前記保護目標値決定部は、前記記憶部が記憶する運転マップを参照して、前記運転状態に対応する前記保護目標値を決定する、請求項6に記載の冷凍サイクル装置。
    A storage unit that stores an operation map indicating the operating pressure range or operating temperature range of the refrigerant,
    7. The refrigeration cycle apparatus according to claim 6, wherein said protection target value determination unit refers to an operation map stored in said storage unit to determine said protection target value corresponding to said operating state.
  8.  冷媒を圧縮する圧縮機を備える冷凍サイクル装置の制御方法であって、
     前記冷凍サイクル装置の運転状態を検出するステップと、
     前記運転状態に基づき、前記冷凍サイクル装置に関する保護変数の保護目標値を決定するステップと、
     前記冷凍サイクル装置により調整する温度の能力目標値と、前記保護目標値とに少なくとも基づき、前記圧縮機の運転回転数を決定するステップと
     を備える制御方法。
    A control method for a refrigeration cycle device including a compressor that compresses a refrigerant,
    a step of detecting the operating state of the refrigeration cycle device;
    determining a protection target value of a protection variable relating to the refrigeration cycle device based on the operating state;
    A control method comprising: determining an operating speed of the compressor based on at least a target value of temperature ability to be adjusted by the refrigeration cycle device and the target value of protection.
PCT/JP2021/044840 2021-12-07 2021-12-07 Refrigeration cycle device and control method WO2023105605A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180100693.XA CN118284778A (en) 2021-12-07 2021-12-07 Refrigeration cycle device and control method
PCT/JP2021/044840 WO2023105605A1 (en) 2021-12-07 2021-12-07 Refrigeration cycle device and control method
JP2023565712A JPWO2023105605A1 (en) 2021-12-07 2021-12-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044840 WO2023105605A1 (en) 2021-12-07 2021-12-07 Refrigeration cycle device and control method

Publications (1)

Publication Number Publication Date
WO2023105605A1 true WO2023105605A1 (en) 2023-06-15

Family

ID=86729784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044840 WO2023105605A1 (en) 2021-12-07 2021-12-07 Refrigeration cycle device and control method

Country Status (3)

Country Link
JP (1) JPWO2023105605A1 (en)
CN (1) CN118284778A (en)
WO (1) WO2023105605A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354019A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Cooling device
JP2006349258A (en) * 2005-06-16 2006-12-28 Hitachi Ltd Air conditioner
JP2007327717A (en) * 2006-06-09 2007-12-20 Mitsubishi Electric Building Techno Service Co Ltd Air conditioner
JP2015130752A (en) * 2014-01-08 2015-07-16 株式会社富士通ゼネラル air conditioner
JP2016099059A (en) * 2014-11-21 2016-05-30 三菱電機株式会社 Refrigeration cycle device
WO2019053858A1 (en) * 2017-09-14 2019-03-21 三菱電機株式会社 Refrigeration cycle apparatus and refrigeration apparatus
JP2021156532A (en) * 2020-03-27 2021-10-07 株式会社富士通ゼネラル Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354019A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Cooling device
JP2006349258A (en) * 2005-06-16 2006-12-28 Hitachi Ltd Air conditioner
JP2007327717A (en) * 2006-06-09 2007-12-20 Mitsubishi Electric Building Techno Service Co Ltd Air conditioner
JP2015130752A (en) * 2014-01-08 2015-07-16 株式会社富士通ゼネラル air conditioner
JP2016099059A (en) * 2014-11-21 2016-05-30 三菱電機株式会社 Refrigeration cycle device
WO2019053858A1 (en) * 2017-09-14 2019-03-21 三菱電機株式会社 Refrigeration cycle apparatus and refrigeration apparatus
JP2021156532A (en) * 2020-03-27 2021-10-07 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JPWO2023105605A1 (en) 2023-06-15
CN118284778A (en) 2024-07-02

Similar Documents

Publication Publication Date Title
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
JP5213966B2 (en) Refrigeration cycle equipment
JP6493432B2 (en) Air conditioner
JP4840522B2 (en) Refrigeration equipment
JP2004233046A (en) Power dehumidification operating method for air conditioner
JP5263522B2 (en) Refrigeration equipment
JP5094801B2 (en) Refrigeration cycle apparatus and air conditioner
JP4849095B2 (en) Air conditioner
JP2007218532A (en) Air conditioner
WO2012043376A1 (en) Outdoor unit for refrigeration device
JP2005249384A (en) Refrigerating cycle device
JP5448566B2 (en) Multi air conditioner
EP3859247B1 (en) Air-conditioning device
KR20190115892A (en) Control method of air-conditioning system
JP2008275216A (en) Air conditioner
WO2023105605A1 (en) Refrigeration cycle device and control method
JP5884381B2 (en) Refrigeration unit outdoor unit
JP2002147819A (en) Refrigeration unit
JP6537629B2 (en) Air conditioner
JP6115594B2 (en) Air conditioning indoor unit
JP2010007993A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
JP3838267B2 (en) Air conditioner
JP2019060590A (en) Refrigeration unit
KR20070088077A (en) Air-condition and the control method for the same
JP6271011B2 (en) Refrigeration air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565712

Country of ref document: JP