WO2023105593A1 - 光回路素子、集積型光デバイスおよび集積型光デバイスの製造方法 - Google Patents

光回路素子、集積型光デバイスおよび集積型光デバイスの製造方法 Download PDF

Info

Publication number
WO2023105593A1
WO2023105593A1 PCT/JP2021/044780 JP2021044780W WO2023105593A1 WO 2023105593 A1 WO2023105593 A1 WO 2023105593A1 JP 2021044780 W JP2021044780 W JP 2021044780W WO 2023105593 A1 WO2023105593 A1 WO 2023105593A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal light
circuit element
integrated
optical device
Prior art date
Application number
PCT/JP2021/044780
Other languages
English (en)
French (fr)
Inventor
優生 倉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/044780 priority Critical patent/WO2023105593A1/ja
Priority to JP2023565700A priority patent/JPWO2023105593A1/ja
Publication of WO2023105593A1 publication Critical patent/WO2023105593A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • the present disclosure relates to an optical circuit element, an integrated optical device in which an optical circuit element and an optical functional element are directly connected, and a method of manufacturing an integrated optical device.
  • PLC PLC
  • Si-Photonics Si-Photonics
  • PLC is a waveguide type optical device with excellent features such as low loss, high reliability, and high degree of design freedom.
  • a PLC with integrated functions is installed.
  • SiP is an optical device that has a high degree of freedom in design, although it is not as good as PLC in terms of low loss, and can realize even smaller optical circuits with a small waveguide bending radius.
  • transmission devices in optical fiber transmission include Photo Diodes (hereinafter referred to as PDs) that convert light and electrical signals, Laser Diodes (hereinafter referred to as LDs). ), or an optical functional element such as an optical modulator is also mounted.
  • PDs Photo Diodes
  • LDs Laser Diodes
  • an optical functional element such as an optical modulator is also mounted.
  • optical waveguides such as PLCs that perform optical signal processing and optical devices such as PDs that perform high-speed photoelectric conversion made of indium phosphide (InP) materials are used. There is a need for integrated, highly functional integrated optical devices.
  • An integrated optical device having such a form for example, integrates a phase modulator on an InP chip, a polarization rotator and a polarization beam combiner on a PLC, and optically couples the chips through lenses. It is configured.
  • the PLC is used as the polarization mux chip, so the mounting area is small compared to the conventional method of constructing polarization synthesis with a spatial optical system. , has the advantage of simplifying optical axis alignment.
  • Such a form of optical coupling by combining an optical circuit element (for example, PLC) and an optical functional element (for example, a PD using an InP-based material) is expected to reduce the size of the device and increase the degree of freedom in designing the optical circuit. superior in terms of Therefore, in order to expand the communication capacity, development of integrated optical devices such as a PD having a waveguide structure suitable for broadening the bandwidth and an optical phase modulator having a high-speed phase modulation function is underway. However, in recent years, there has been an increasing demand for further miniaturization. etc.) are strongly desired.
  • the interface of the connecting portion is filled with a UV curing adhesive, the adhesive is cured by UV irradiation, and the optical fiber and the PLC are connected by adhesion.
  • a UV curing adhesive the adhesive is cured by UV irradiation, and the optical fiber and the PLC are connected by adhesion.
  • FIG. 1 is a diagram conceptually showing the structure of a prior art integrated optical device 10 in which an optical circuit element 11 and an optical functional element 12 are directly connected.
  • the optical circuit element is a PLC used as a polarization Mux chip
  • the optical functional element is an InP chip that performs phase modulation.
  • an integrated optical device 10 includes an optical circuit element 11 that serves as a platform for inputting and outputting signal light, and an optical functional element 12 that modulates and amplifies signals (here, phase modulation). , and the optical circuit element 11 and the optical functional element 12 are optically coupled by direct connection.
  • the optical circuit element 11 combines a polarization rotator 13 that rotates the polarization of part of the signal light, and the signal light that has been polarization-rotated by the polarization rotator 13 and the signal light that has not been polarization-rotated.
  • a polarization beam combiner 14 is further included, and the optical functional device 12 further includes a phase modulator 15 for phase-modulating the input signal light.
  • the optical circuit element 11 and the optical functional element 12 are directly connected after being aligned so as not to cause optical loss, as described above.
  • a large optical loss can occur due to mode field mismatch.
  • SOA semiconductor optical amplifier
  • FIG. 2 is a diagram conceptually showing the structure of an integrated optical device 20 that compensates for optical loss due to mode field mismatch at the connection portion according to the prior art.
  • the optical circuit element is a PLC used as a polarization Mux chip
  • the optical functional element is an InP-based chip that performs phase modulation.
  • the integrated optical device 20 further includes an optical amplifier 21 that amplifies the signal light input from the optical functional element 12 to the optical circuit element 11 through the connecting portion.
  • the optical amplifier 21 performs optical amplification to compensate for the optical loss due to the mode field mismatch at the connecting portion, and for example, the SOA described above can be applied.
  • the integrated optical device having such a configuration can maintain a high signal light output even though it is an integrated optical device in which the optical circuit element and the optical functional element are directly connected with the optical loss caused by the connecting portion. It becomes possible.
  • the optical amplifier installed on the optical circuit element becomes a loss medium when it is not performing optical amplification due to current application, so it can be a factor of attenuation of the output light. As a result, it may be difficult to adjust the position by the optical output monitor in the above-described alignment in the direct connection.
  • the optical amplifier is an SOA
  • a through port is provided in the vicinity of the input waveguide connected to the SOA, and the output light from the through port is monitored. Since the alignment is not performed while monitoring the optical coupling at , there is a problem that optical loss occurs due to positional deviation during sliding.
  • the present disclosure has been made in view of the problems described above, and aims to integrate an optical circuit element equipped with an optical amplifier and an optical functional element such as an optical modulator to: Provided is an integrated optical device capable of easily fabricating waveguide connections and realizing highly accurate optical coupling.
  • the present disclosure provides an integrated optical device in which an optical circuit element and an optical functional element are directly connected to each other, in which signal light input from the optical functional element to the optical circuit element through a connecting portion is An optical amplifier for amplification, and a connection tap port installed between the optical amplifier and the connection section for branching a part of the signal light input from the optical functional element through the connection section and outputting it to the outside, and connecting
  • the optical tap port includes an input port for receiving the signal light input from the optical functional element to the optical circuit element through the connecting portion, a demultiplexer for branching part of the signal light, and a part of the branched signal light.
  • an integrated optical device comprising a first output port for outputting to the outside and a second output port for outputting part of the branched signal light to an optical amplifier.
  • FIG. 1 is a diagram conceptually showing the structure of a prior art integrated optical device in which an optical circuit element and an optical functional element are directly connected;
  • FIG. 1 conceptually shows the structure of an integrated optical device that compensates for optical loss due to mode field mismatch at a connection according to the prior art;
  • FIG. 1 is a diagram conceptually showing the structure of an integrated optical device in which an optical circuit element and an optical functional element are directly connected according to the present disclosure;
  • FIG. 4 is a flow chart illustrating a method of manufacturing an integrated optical device according to the present disclosure;
  • 1 is a diagram conceptually showing the structure of an integrated optical device in which an optical circuit element and an optical functional element are directly connected according to the present disclosure;
  • FIG. 3 is a diagram conceptually showing the structure of an integrated optical device 30 in which the optical circuit element 11 and the optical functional element 12 are directly connected according to the present disclosure.
  • the optical circuit element is a PLC used as a polarization Mux chip
  • the optical functional element is an InP-based chip that performs phase modulation.
  • the integrated optical device 30 according to the present disclosure includes an optical circuit element 11 serving as a platform for signal light input/output, and signal modulation, amplification, etc. (here, , phase modulation), and the waveguide formed in the optical circuit element 11 and the waveguide formed in the optical functional element 12 are optically coupled by direct connection.
  • the optical circuit element 11 includes a polarization rotator 13 that rotates the polarization of part of the signal light, and multiplexes the signal light whose polarization has been rotated by the polarization rotator 13 and the signal light whose polarization has not been rotated. and a polarization beam combiner 14, an optical amplifier 21 installed on a substrate using an InP-based material, and performing optical amplification of signal light input from the optical functional element 12 to the optical circuit element 11 through the connection portion, and connection and the optical amplifier 21, and for outputting part of the signal light input from the optical functional element 12 to the optical circuit element 11 through the connecting portion to the outside of the integrated optical device 30; , further includes.
  • the connection tap port 31 includes an input port 311 for inputting the signal light from the optical functional element 12 through a connecting portion, a demultiplexer 312 for branching a part of the input signal light, and a branched signal light. It includes an output port 313 for outputting part of the signal light to the outside, and an output port 314 for outputting part of the branched signal light to the optical amplifier 21 .
  • the demultiplexer 312 can be, for example, a directional coupler, a Y branch, a multimode interferometer, or a Variable Optical Attenuator (hereinafter referred to as VOA).
  • VOA Variable Optical Attenuator
  • the optical circuit element 11 may be, for example, a PLC in which a waveguide is formed on a Si substrate.
  • the optical amplifier 21 may be, for example, an SOA formed on a substrate to which an InP-based material is applied.
  • the optical amplifier 21 is preferably fixed inside a groove provided so that the height of the waveguide of the optical circuit element 11 and that of its own waveguide are the same.
  • the integrated optical device 30 configured in this way according to the present disclosure can use part of the signal light output from the connection tap port 31 to monitor for alignment.
  • the connection tap port 31 is configured to tap a portion of the signal light before inputting it to the optical amplifier 21 . Therefore, it is not necessary to pass the optical amplifier 21 in output monitoring of signal light for alignment. Therefore, since the above-described optical loss due to the optical amplifier 21 does not occur, it is possible to perform alignment with higher precision than in the prior art.
  • FIG. 4 is a flowchart illustrating a method 40 of manufacturing an integrated optical device 30 according to the present disclosure.
  • the manufacturing method 40 of the integrated optical device 30 according to the present disclosure includes preparing the optical circuit element 11 and the optical functional element 12 (corresponding to step 41 in FIG. 4), and fixing the optical functional element 12 (step 42 in FIG. 4). (corresponding to step 42 in FIG. 4), adjusting 43 (corresponding to step 43 in FIG. 4) so that the end face of the waveguide of the optical circuit element 11 and the end face of the waveguide of the optical functional device 12 are parallel to each other, and the optical circuit The optical circuit element 11 and the optical functional element 12 are aligned while inputting the signal light from the element 11 and monitoring the output of the signal light output from the connection tap port (corresponding to step 44 in FIG. 4). (corresponding to step 45 in FIG. 4).
  • a method for connecting the optical circuit element 11 and the optical functional element 12 can be, for example, adhesion using a UV curable resin.
  • the optical amplifier 21 does not need to be operated because the output of the signal light output from the connection tap port is monitored in the alignment of the optical circuit element 11 and the optical functional element 12 . Therefore, there is no need to probe the optical amplifier 21 for alignment, and the work process for alignment can be simplified and shortened. In particular, this effect is great for integrated optical devices including multiple optical amplifiers.
  • the signal light output from the output port 313 of the connection tap port 31 is output to the side surface on the long side of the integrated optical device 30.
  • the integrated optical device according to the present disclosure may further include a mechanism for changing the optical path of the signal light output from the connection tap port 31 in the direction perpendicular to the substrate surface.
  • FIG. 5 is a diagram conceptually showing the structure of an integrated optical device 50 in which the optical circuit element 11 and the optical functional element 12 are directly connected according to the present disclosure.
  • the integrated optical device 50 converts the optical path of the signal light branched from the connection tap port 31 and used for alignment onto the optical circuit element 11 of the integrated optical device 30 in the direction perpendicular to the substrate surface.
  • the optical path changer 51 can be, for example, a grating coupler or a mirror. Moreover, the direction of conversion may be the top side (the side where the optical amplifier 21 or the like is installed) or the back side (the side where the optical amplifier 21 or the like is not installed) with respect to the substrate surface. .
  • the integrated optical device 50 having such a configuration is configured to output the signal light for alignment branched at the connection tap port 31 in a direction perpendicular to the substrate surface. Therefore, since there is no geometric interference between the measuring device and the optical fiber for monitoring the output signal light and the fixing jig, alignment can be performed more easily.
  • the compensation effect of the signal light due to the operation of the optical amplifier 21 was also verified.
  • a signal light having a wavelength of 1.55 ⁇ m and an optical intensity of 0 dBm was input to the directly connected integrated optical device 50 to the optical circuit element 11, and the signal output via the optical functional element 12 and the optical amplifier 21 was obtained.
  • Light intensity evaluation was performed.
  • the optical amplifier 21 was operated with a current of 300 mA applied.
  • an integrated optical device without the optical amplifier 21 was also prepared, and the intensity of output light was similarly evaluated. Note that SOA is applied to the optical amplifier 21 here as well.
  • the intensity of the output light was ⁇ 18 dBm in the integrated optical device without the SOA, whereas the intensity of the output light was ⁇ 6 dBm in the integrated optical device 50 without the SOA. It showed higher intensity than the integrated optical device. That is, the integrated optical device 50 according to the present disclosure is an integrated optical device in which dissimilar materials are directly bonded, but optical loss due to differences in refractive index and shape is compensated for, and signal light having high intensity can be output. was taken.
  • the integrated optical device according to the present disclosure monitors the signal light through the connection tap port 31 without going through the optical amplifier 21. It is configured for alignment. By monitoring part of the signal light branched by the connection tap port 31, optical loss caused by the optical amplifier 21 and complicated work during alignment can be suppressed, and alignment of the connection portion can be performed with high accuracy. It becomes possible to carry out easily.
  • the integrated optical device according to the present disclosure is an integrated optical device by direct connection that is advantageous for miniaturization, and it is possible to perform alignment of the connecting portion with high precision and simplicity compared to the conventional technology. Therefore, it is expected to be applied to optical fiber transmission equipment with increased communication capacity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

光増幅器(21)を搭載した光回路素子(11)と、光変調器等の光機能素子(12)との集積において、導波路の接続を簡便に作製でき、かつ高精度な光結合を実現する集積型光デバイスを提供する。本開示による集積型光デバイスは、光機能素子(12)から接続部を通じて光回路素子(11)に入力された信号光を増幅する光増幅器(21)と、光増幅器(21)と接続部の間に設置され、光機能素子(12)から接続部を通じて入力された信号光の一部を分岐し、外部へ出力する接続用タップポート(31)と、を備え、接続用タップポート(31)は、光機能素子(12)から接続部を通じて光回路素子(11)に入力される信号光を受信する入力ポート(311)と、信号光の一部を分岐する分波器(312)と、分岐された信号光の一部を外部へ出力させる第1の出力ポート(313)と、分岐された信号光の一部を光増幅器(21)へ出力させる第2の出力ポート(314)と、を備える。

Description

光回路素子、集積型光デバイスおよび集積型光デバイスの製造方法
 本開示は、光回路素子、光回路素子と光機能素子とが直接接続された集積型光デバイス、および集積型光デバイスの製造方法に関する。
 近年、光ファイバ伝送の普及に伴い、多数の光回路を高密度に集積する技術が求められており、そのプラットフォームとして適用される光回路素子の代表例として、石英系平面光波回路(Planar Lightwave Circuit:以下、PLCという)やシリコンフォトニクスによる光回路(Si-Photonics:以下、SiPという)が知られている。PLCは低損失、高信頼性、高い設計自由度といった優れた特徴を有する導波路型光デバイスであり、実際に光通信伝送端における伝送装置には、合分波器、分岐・結合器等の機能を集積したPLCが搭載されている。一方、SiPは低損失性ではPLCに及ばないものの、高い設計自由度を有し、小さい導波路曲げ半径によってさらに小型の光回路が実現可能な光デバイスである。光ファイバ伝送における伝送装置内には、このようなPLCやSiP以外にも、光と電気の信号を変換するフォトダイオード(Photo Diode:以下、PDという)や、レーザーダイオード(Laser Diode:以下、LDという)、或いは光変調器などの光機能素子も搭載されている。このような伝送装置では、さらなる通信容量の拡大に向け、光信号処理を行うPLC等の光導波路と、インジウムリン(InP)系材料により構成された高速な光電変換を行うPD等の光デバイスを集積した、高機能な集積型光デバイスが求められている。
 上述の通り、集積型光デバイスのプラットフォームにはPLCやSiPが有望であり、InP光変調器チップとPLCチップをハイブリッドに集積した集積型光デバイスが既に提案されている(例えば、非特許文献1参照)。このような形態を有する集積型光デバイスは、例えば、位相変調器をInPチップ上、偏波ローテータと偏波ビームコンバイナをPLC上に集積し、レンズを介してそれぞれのチップを光結合するように構成されている。このような形態を有する、従来技術による集積型光デバイスでは、PLCを偏波Muxチップとして用いているため、旧来の偏波合成を空間光学系で構築する方法と比較して、実装面積が小さい、光軸合わせ(アライメント)を簡略化できる、という利点を有する。
 このような光回路素子(例えば、PLC)と光機能素子(例えば、InP系材料が用いられたPD等)を組み合わせて光結合する形態は、デバイスの小型化、および光回路の設計自由度の観点で優位性が高い。そのため、通信容量の拡大に向けて、広帯域化に適した導波路構造を有するPDや、高速な位相変調機能を有する光位相変調器等の集積型光デバイスに関する開発が進められている。しかしながら、近年では、さらなる小型化に対する要求が高まっており、これを実現するため、レンズを介すことなく光回路素子(例えば、PLC等)と光機能素子(例えば、InP系材料を用いたPD等)とを、直接接続した集積型光デバイスが強く求められている。
 このような光回路素子と光機能素子を直接接続した集積型光デバイスは、接続部で光損失が生じないよう、高精度に調心した上で接続することが重要となる。例えば、光ファイバとPLCを突合せ接続する場合、先ず、光ファイバを固定したファイバブロックの端面とPLCの端面とを平行に調整した上で、光ファイバからの光出力位置をPLCの入力導波路に合わせる。次いで、その入力導波路と接続される出力導波路からの出力をモニタしながら最適な光結合が得られるように位置調整(調心)が行われる。その後、接続部の界面にUV硬化接着剤を充填し、UV照射によって接着剤を硬化させ、光ファイバとPLCとを接着により接続する。このような手順により、光回路素子と光機能素子を直接接続した集積型光デバイスが作製される。そして、このような方法で作製された集積型光デバイスは、上述した従来技術による集積型光デバイスとは異なり、光回路素子と光機能素子との光結合にレンズを介する必要が無いため、より小型な集積型光デバイスとなる。しかしながら、PLCとInPあるいはSiPとInPのような異材同士の組み合わせでは、屈折率や導波路形状が異なるため、信号光のモードフィールドが大きく異なる光導波路同士を接続する必要がある。
 図1は、光回路素子11と光機能素子12が直接接続された、従来技術による集積型光デバイス10の構造を概念的に示す図である。ここでは、例として、光回路素子は偏波Muxチップとして用いられるPLCであり、光機能素子は位相変調を行うInP系チップであるものとして示されている。図1に示される通り、集積型光デバイス10は、信号光が入出力されるプラットフォームとなる光回路素子11と、信号の変調や増幅等(ここでは、位相変調)を行う光機能素子12とを含み、光回路素子11と光機能素子12とが直接接続により光結合されている。さらに光回路素子11は、信号光の一部を偏波回転させる偏波ローテータ13と、偏波ローテータ13によって偏波回転された信号光と、偏波回転されていない信号光とを合波する偏波ビームコンバイナ14とをさらに含み、光機能素子12は入力された信号光の位相変調を行う位相変調器15をさらに含む。
 このように構成される集積型光デバイス10は、上述の通り、光回路素子11と光機能素子12とが、光損失が生じないように調心された上で直接接続される。しかし、両者は屈折率や導波路形状が異なるため、モードフィールドミスマッチにより大きな光損失が発生し得る。このようなモードフィールドミスマッチに起因する光損失を補償する技術として、従来までに、半導体光増幅器(Semiconductor Optical Amplifier:以下、SOAという)を光回路素子上に実装し、接続部で発生し得る結合損失を光増幅で補償する技術が知られている。
 図2は、従来技術による、接続部におけるモードフィールドミスマッチによる光損失を補償した集積型光デバイス20の構造を概念的に示す図である。図1と同様に、ここでは、例として、光回路素子は偏波Muxチップとして用いられるPLCであり、光機能素子は位相変調を行うInP系チップであるものとして示されている。集積型光デバイス20は、図1の構成に加え、光機能素子12から接続部を通じて光回路素子11へ入力される信号光に対して増幅をする光増幅器21をさらに含む。
 上述の通り、光増幅器21は接続部におけるモードフィールドミスマッチに起因した光損失分を補償するための光増幅を行うものであり、例えば、上述のSOAが適用され得る。このような構成を有する集積型光デバイスは、接続部による光損失を伴う光回路素子と光機能素子とを直接接続した集積型光デバイスでありながらも、高い信号光の出力を維持することが可能となる。
 しかしながら、光回路素子上に設置された光増幅器は、電流印加により光増幅動作していない場合は損失媒体となるため、出力光の減衰要因となり得る。その結果、上述した、直接接続における調心において、光出力モニタによる位置調整を困難にし得る。また、光増幅器がSOAである場合、SOAを動作させるためには電流印加するためにSOAチップまたは電極にプロービングする必要があり、特に複数のSOAを動作させる際には煩雑な作業になる。このような課題に対し、SOAへ接続される入力導波路の近傍にスルーポートを設けて、スルーポートからの出力光をモニタするという対策が挙げられるが、この方法では、信号光用の導波路での光結合をモニタしながら調心していないため、スライド時の位置ずれ等による光損失が発生するという問題がある。
 このように、光増幅器(例えば、SOA)が搭載された光回路素子(例えば、PLCやSiP)と光機能素子(例えば、位相変調器)との集積において、導波路同士を、高精度かつ簡便に接続することを可能にする集積型光デバイスの実現が必要とされている。
E. Yamada et al., "112-Gb/s InP DP-QPSK modulator integrated with a silica-PLC polarization multiplexing circuit", Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., Mar. 2012
 本開示は、上記のような課題に対して鑑みてなされたものであり、その目的とするところは、光増幅器を搭載した光回路素子と、光変調器等の光機能素子との集積において、導波路の接続を簡便に作製でき、かつ高精度な光結合を実現する集積型光デバイスを提供する。
 上記のような課題に対し、本開示では、光回路素子と光機能素子とが直接接続された集積型光デバイスであって、光機能素子から接続部を通じて光回路素子に入力された信号光を増幅する光増幅器と、光増幅器と接続部の間に設置され、光機能素子から接続部を通じて入力された信号光の一部を分岐し、外部へ出力する接続用タップポートと、を備え、接続用タップポートは、光機能素子から接続部を通じて光回路素子に入力される信号光を受信する入力ポートと、信号光の一部を分岐する分波器と、分岐された信号光の一部を外部へ出力させる第1の出力ポートと、分岐された信号光の一部を光増幅器へ出力させる第2の出力ポートと、を備える集積型光デバイスを提供する。
光回路素子と光機能素子が直接接続された、従来技術による集積型光デバイスの構造を概念的に示す図である。 従来技術による、接続部におけるモードフィールドミスマッチによる光損失を補償した集積型光デバイスの構造を概念的に示す図である。 本開示による、光回路素子と光機能素子が直接接続された集積型光デバイスの構造を概念的に示す図である。 本開示による集積型光デバイスの製造方法を示すフローチャートである。 本開示による、光回路素子と光機能素子が直接接続された集積型光デバイスの構造を概念的に示す図である。
 以下に、図面を参照しながら本開示の種々の実施形態について詳細に説明する。同一又は類似の参照符号は、同一又は類似の要素を示し重複する説明を省略する場合がある。以下の説明は、一例であって本開示の一実施形態の要旨を逸脱しない限り、一部の構成を省略若しくは変形し、又は追加の構成とともに実施することができる。
 図3は、本開示による、光回路素子11と光機能素子12が直接接続された集積型光デバイス30の構造を概念的に示す図である。図1および図2と同様に、ここでは、例として、光回路素子は偏波Muxチップとして用いられるPLCであり、光機能素子は位相変調を行うInP系チップであるものとして示されている。本開示による集積型光デバイス30は、集積型光デバイス10および集積型光デバイス20と同様に、信号光が入出力されるプラットフォームとなる光回路素子11と、信号の変調や増幅等(ここでは、位相変調)を行う光機能素子12とを含み、光回路素子11に形成された導波路と光機能素子12に形成された導波路は、直接接続により光結合されている。さらに、光回路素子11は、信号光の一部を偏波回転する偏波ローテータ13と、偏波ローテータ13によって偏波回転された信号光と、偏波回転されていない信号光とを合波する偏波ビームコンバイナ14と、InP系材料が用いられた基板上に設置され、光機能素子12から接続部を通じて光回路素子11へ入力される信号光の光増幅を行う光増幅器21と、接続部と光増幅器21との間に設置され、光機能素子12から接続部を通じて光回路素子11へ入力される信号光の一部を集積型光デバイス30の外部へ出力する接続用タップポート31と、をさらに含む。
 接続用タップポート31は、光機能素子12からの信号光を、接続部を通じて入射する入力ポート311と、入力された信号光の一部を分岐する分波器312と、分岐された信号光の一部を外部へ出射する出力ポート313と、分岐された信号光の一部を光増幅器21へ出射する出力ポート314と、を含む。分波器312は、例えば、方向性結合器、Y分岐、マルチモード干渉器、または可変光減衰器(Variable Optical Attenuator:以下、VOAという)であり得る。とりわけ、VOAは、光増幅器21に入力される信号光のパワーを調整することができるため、集積型光デバイス30から出力される信号光のパワーをより細かく制御することを可能にするという利点を有する。
 また、本開示において、光回路素子11は、例えば、Si基板上に導波路が形成されたPLCであり得る。また、光増幅器21は、例えば、InP系材料が適用された基板上に形成されたSOAであり得る。光増幅器21は、光回路素子11の導波路と自身の導波
路のそれぞれの高さが一致するように設けられた溝の内部に固定されることが好ましい。
 このように構成された本開示による集積型光デバイス30は、接続用タップポート31から外部に出力された信号光の一部を、調心のためのモニタに用いることができる。上述の通り、接続用タップポート31は信号光の一部を、光増幅器21に入力する前にタップするように構成されている。したがって、調心のための信号光の出力モニタリングにおいて、光増幅器21を介す必要がない。このため、上述した、光増幅器21による光損失が生じないため、従来技術よりも高精度な調心を行うことが可能となる
 図4は、本開示による集積型光デバイス30の製造方法40を示すフローチャートである。本開示による集積型光デバイス30の製造方法40は、光回路素子11および光機能素子12を準備すること(図4における工程41に対応)と、光機能素子12を固定すること42(図4における工程42に対応)と、光回路素子11の導波路の端面と光機能素子12の導波路の端面が平行になるように調整すること43(図4における工程43に対応)と、光回路素子11から信号光を入力し、接続用タップポートから出力される信号光の出力をモニタしながら調心すること(図4における工程44に対応)と、光回路素子11と光機能素子12とを接続すること(図4における工程45に対応)と、を含む。光回路素子11と光機能素子12とを接続する方法は、例えば、UV硬化樹脂を用いた接着であり得る。
 このような製造方法40では、光回路素子11と光機能素子12との調心において、接続用タップポートから出力される信号光の出力をモニタするため、光増幅器21を動作させる必要が無い。したがって、調心のために光増幅器21をプロービングする必要がなく、調心の作業工程を簡素化・短縮化することが可能となる。とりわけ、複数の光増幅器を含む集積型光デバイスに対して、この効果は大きい。
 なお、図3に示される本開示による集積型光デバイス30では、接続用タップポート31の出力ポート313から出力される信号光は、集積型光デバイス30の長辺側の側面に出力されるように描写されている。しかしながら、一般に、集積型光デバイスの側面は固定治具等が設置されることがあるため、出力光をモニタするための計測器や光ファイバを接続することが困難であり得る。このような場合に対応するため、本開示による集積型光デバイスは、接続用タップポート31から出力される信号光を基板面に対して垂直な方向に光路変換する機構をさらに含んでもよい。
 図5は、本開示による、光回路素子11と光機能素子12が直接接続された集積型光デバイス50の構造を概念的に示す図である。集積型光デバイス50は、上述した集積型光デバイス30の光回路素子11上に、接続用タップポート31から分岐された、調心に用いられる信号光を基板面に対して垂直方向に光路変換する、光路変換器51をさらに含む。
 光路変換器51は、例えば、グレーティングカプラやミラーであり得る。また、変換する方向は、基板面に対して上面側(光増幅器21等が設置されている側)であっても、裏面側(光増幅器21等が設置されていない側)であってもよい。
 このような構成を有する集積型光デバイス50は、接続用タップポート31で分岐された調心のための信号光を、基板面に対して垂直な方向に出力させるように構成されている。したがって、出力された信号光をモニタするための計測器および光ファイバと、固定治具が幾何学的に干渉しないため、より簡便に調心を行うことが可能となる。
 以上説明したような集積型光デバイス50を対象とし、接続用タップポート31によって分岐された信号光をモニタしながら調心を行うことで、調心の精度・簡便性を評価するための検証を行った。なお、本検証では、光増幅器21を介して出力される信号光をモニタしながら行う、従来技術よる調心も実施し、比較評価を行った。但し、ここでは光増幅器21は、動作させてはいない。なお、入力光は、光通信において代表的な1.55μmの波長を有する信号光とし、光増幅器21はSOAを適用した。
 この検証の結果、従来技術による調心では、SOAにおける光損失により信号光の強度が低下しており、信号光の強度が接続部のモードフィールドミスマッチにより生じた漏れ光強度に埋もれていた。そのため、調心に用いる信号光と漏れ光の区別ができず、調心が困難であった。一方、本開示による集積型光デバイス50では、このような光損失は生じず、高精度な調心を行うに十分な強度を有する信号光がモニタできることが認められた。
 また、集積型光デバイス50において、光増幅器21の動作による信号光の補償効果についての検証も実施した。検証には、直接接続された集積型光デバイス50に波長1.55μm、光強度0dBmの信号光を光回路素子11に入力し、光機能素子12及び光増幅器21を経由して出力される信号光の強度評価を行った。このとき、光増幅器21は、300mAの電流が印加されて動作した。また、比較のため、光増幅器21を有さない集積型光デバイスも準備し、同様に出力光の強度評価も併せて実施した。なお、ここでも光増幅器21にはSOAを適用した。
 この検証の結果、SOAを搭載しない集積型光デバイスでは、出力光の強度は-18dBmであったのに対し、集積型光デバイス50では、出力光の強度は-6dBmであり、SOAを搭載しない集積型光デバイスより高い強度を示した。すなわち、本開示による集積型光デバイス50は、異材を直接接合した集積型光デバイスでありながらも、屈折率や形状の違いによる光損失が補償され、高い強度を有する信号光が出力できることが認められた。
 なお、上記の検証は集積型光デバイス50を対象としたが、図3に示した集積型光デバイス30を対象としても、同様の効果を奏する。
 以上説明した様に、本開示による集積型光デバイス(例えば、集積型光デバイス30や集積型光デバイス50)は、接続用タップポート31により信号光を、光増幅器21を介することなくモニタしながら調心できるように構成されている。この接続用タップポート31が分岐した信号光の一部をモニタすることにより、光増幅器21に起因する光損失や、調心の際における複雑な作業を抑制し、接続部のアライメントを高精度且つ簡便に実施することが可能となる。
 本開示による集積型光デバイスは、小型化に有利な直接接続による集積型光デバイスであり、従来技術に比べて接続部のアライメントを高精度且つ簡便に実施することが可能である。したがって、通信容量が拡大する光ファイバ伝送装置への適用が見込まれる。

Claims (5)

  1.  光機能素子と直接接続される光回路素子であって、
     前記光機能素子との接続部を通じて入力された信号光を増幅する光増幅器と、
     前記光増幅器と前記接続部の間に設置され、前記接続部を通じて入力された前記信号光の一部を分岐し、外部へ出力する接続用タップポートと、
    を備え、
     前記接続用タップポートは、
      前記接続部を通じて前記信号光が入力される入力ポートと、
      前記信号光の一部を分岐する分波器と、
      前記信号光の分岐された一部を外部へ出力する第1の出力ポートと、
      前記信号光の残りを前記光増幅器へ出力する第2の出力ポートと、
     を備える、
    光回路素子。
  2.  前記光回路素子は、Si基板上に設置された石英系平面型光波回路(PLC)、またはシリコンフォトニクスを用いた光回路(SiP)であり、
     前記光増幅器は、インジウムリン(InP)系材料が用いられた基板上に設置される、請求項1に記載の光回路素子。
  3.  前記第1の出力ポートから出力された前記信号光の分岐された一部の光路を、基板面に対して垂直方向に変換する光路変換器をさらに備え、
     前記光路変換器が、グレーティングミラー、またはミラーである、
    請求項1または2に記載の光回路素子。
  4.  請求項1から3のいずれか一項に記載の光回路素子と、前記光機能素子とを直接接続した集積型光デバイス。
  5.  請求項4に記載の集積型光デバイスの製造方法であって、
     前記光回路素子および前記光機能素子を準備することと、
     前記光機能素子を固定することと、
     前記光回路素子の導波路の端面と、前記光機能素子の導波路の端面とが平行になるように調整することと、
     前記第1の出力ポートから出力された前記信号光の分岐された一部をモニタしながら調心することと、
     前記光回路素子と前記光機能素子とを接続することと、
    を備える、集積型光デバイスの製造方法。
PCT/JP2021/044780 2021-12-06 2021-12-06 光回路素子、集積型光デバイスおよび集積型光デバイスの製造方法 WO2023105593A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/044780 WO2023105593A1 (ja) 2021-12-06 2021-12-06 光回路素子、集積型光デバイスおよび集積型光デバイスの製造方法
JP2023565700A JPWO2023105593A1 (ja) 2021-12-06 2021-12-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044780 WO2023105593A1 (ja) 2021-12-06 2021-12-06 光回路素子、集積型光デバイスおよび集積型光デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2023105593A1 true WO2023105593A1 (ja) 2023-06-15

Family

ID=86729796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044780 WO2023105593A1 (ja) 2021-12-06 2021-12-06 光回路素子、集積型光デバイスおよび集積型光デバイスの製造方法

Country Status (2)

Country Link
JP (1) JPWO2023105593A1 (ja)
WO (1) WO2023105593A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077771A (ja) * 1998-06-16 2000-03-14 Fujitsu Ltd 半導体光増幅装置
JP2001013342A (ja) * 1999-07-01 2001-01-19 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置の作製方法、光半導体、導波路基板、および光半導体装置
EP2597736A1 (en) * 2011-11-22 2013-05-29 Alcatel Lucent Hybrid Laser
JP2016212414A (ja) * 2015-05-11 2016-12-15 株式会社中原光電子研究所 導波路用結合回路
JP2017090640A (ja) * 2015-11-09 2017-05-25 国立研究開発法人産業技術総合研究所 光機能素子
JP2018180027A (ja) * 2017-04-03 2018-11-15 富士通株式会社 光モジュール、及びこれを用いた電子機器
JP2020052269A (ja) * 2018-09-27 2020-04-02 沖電気工業株式会社 光チップ、光集積回路及び光モジュール
JP2020516932A (ja) * 2017-04-05 2020-06-11 ザイリンクス インコーポレイテッドXilinx Incorporated ウエハのプローブおよび検査を可能にするシリコンフォトニクス構造
US10985524B1 (en) * 2018-08-29 2021-04-20 Apple Inc. High-power hybrid silicon-photonics laser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077771A (ja) * 1998-06-16 2000-03-14 Fujitsu Ltd 半導体光増幅装置
JP2001013342A (ja) * 1999-07-01 2001-01-19 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置の作製方法、光半導体、導波路基板、および光半導体装置
EP2597736A1 (en) * 2011-11-22 2013-05-29 Alcatel Lucent Hybrid Laser
JP2016212414A (ja) * 2015-05-11 2016-12-15 株式会社中原光電子研究所 導波路用結合回路
JP2017090640A (ja) * 2015-11-09 2017-05-25 国立研究開発法人産業技術総合研究所 光機能素子
JP2018180027A (ja) * 2017-04-03 2018-11-15 富士通株式会社 光モジュール、及びこれを用いた電子機器
JP2020516932A (ja) * 2017-04-05 2020-06-11 ザイリンクス インコーポレイテッドXilinx Incorporated ウエハのプローブおよび検査を可能にするシリコンフォトニクス構造
US10985524B1 (en) * 2018-08-29 2021-04-20 Apple Inc. High-power hybrid silicon-photonics laser
JP2020052269A (ja) * 2018-09-27 2020-04-02 沖電気工業株式会社 光チップ、光集積回路及び光モジュール

Also Published As

Publication number Publication date
JPWO2023105593A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
US11929826B2 (en) Optical modules having an improved optical signal to noise ratio
US11256046B2 (en) Photonic interface for electronic circuit
US10284301B2 (en) Multi-channel transceiver with laser array and photonic integrated circuit
US11063671B2 (en) Method and system for redundant light sources by utilizing two inputs of an integrated modulator
US10439727B2 (en) Method and system for selectable parallel optical fiber and wavelength division multiplexed operation
JP4280290B2 (ja) 光モジュール及びその製造方法
US20210055623A1 (en) Optical module and process of assembling the same
US20180259725A1 (en) Method And System For Coupling A Light Source Assembly To An Optical Integrated Circuit
US10613274B2 (en) Method and system for integrated multi-port waveguide photodetectors
WO2023105593A1 (ja) 光回路素子、集積型光デバイスおよび集積型光デバイスの製造方法
US9185475B1 (en) Signal quality in bi-directional optical links using optical circulators
van Zantvoort et al. Mechanical devices for aligning optical fibers using elastic metal deformation techniques
Liu et al. High assembly tolerance and cost-effective 100-Gb/s TOSA with silica-PLC AWG multiplexer
WO2023119530A1 (ja) 光モジュール
WO2024013944A1 (ja) 集積型光デバイスおよび集積型光デバイスのアライメント方法
WO2022264321A1 (ja) 光回路デバイスのパッケージ構造およびその製造方法
JP5759401B2 (ja) 多チャネル光送信モジュールおよびその作製方法
JP2022053241A (ja) 光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023565700

Country of ref document: JP

Kind code of ref document: A