WO2023103863A1 - 流体机械、换热设备和流体机械的运行方法 - Google Patents

流体机械、换热设备和流体机械的运行方法 Download PDF

Info

Publication number
WO2023103863A1
WO2023103863A1 PCT/CN2022/135779 CN2022135779W WO2023103863A1 WO 2023103863 A1 WO2023103863 A1 WO 2023103863A1 CN 2022135779 W CN2022135779 W CN 2022135779W WO 2023103863 A1 WO2023103863 A1 WO 2023103863A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
fluid machine
crankshaft
machine according
cylinder liner
Prior art date
Application number
PCT/CN2022/135779
Other languages
English (en)
French (fr)
Inventor
杜忠诚
任丽萍
张培林
李直
宋雪威
于瑞波
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023103863A1 publication Critical patent/WO2023103863A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to the technical field of heat exchange systems, and in particular to a fluid machine, heat exchange equipment and an operating method of the fluid machine.
  • fluid machines include compressors, expanders, and the like.
  • compressors as an example, according to energy-saving and environmental protection policies and consumers' requirements for air-conditioning comfort, the air-conditioning industry has been pursuing high efficiency and low noise.
  • the compressor As the heart of the air conditioner, the compressor has a direct impact on the energy efficiency and noise level of the air conditioner.
  • the rolling rotor compressor As the mainstream household air-conditioning compressor, the rolling rotor compressor is relatively mature at present, limited by the structural principle, and the optimization space is limited. In order to achieve a major breakthrough, it is necessary to innovate from the structural principle.
  • a fluid machine including a crankshaft, a cylinder liner, a cross groove structure and a slider, wherein the crankshaft is provided with two eccentric parts along its axial direction, and a first clip is provided between the two eccentric parts.
  • the phase difference of the angle A, the eccentricity of the two eccentric parts are not equal; the crankshaft and the cylinder liner are set eccentrically and the eccentric distance is fixed; Two limiting channels are arranged in sequence along the axial direction of the crankshaft, the extending direction of the limiting channels is perpendicular to the axial direction of the crankshaft, and there is a phase difference of the second angle B between the extending directions of the two limiting channels, wherein, the first The first included angle A is twice the second included angle B; the slider has a through hole, and there are two sliders, and the two eccentric parts extend into the two through holes of the two sliders correspondingly, and the two sliders slide correspondingly It is arranged in two limiting channels and forms a variable volume chamber, which is located in the sliding direction of the slider.
  • the crankshaft rotates to drive the slider to reciprocate in the limiting channel while interacting with the cross groove structure, so that the cross groove The structure and the slider rotate in the cylinder sleeve.
  • the shaft part of the crankshaft includes a first section and a second section connected along its axial direction, the first section and the second section are not coaxially arranged and movably connected, and the two eccentric parts are respectively arranged on the first paragraph and the second paragraph.
  • the crankshaft further includes a sliding connection
  • the first section is movably connected to the second section through the sliding connection
  • the sliding connection slides relative to the first section when the first section rotates, and slides while the second section rotates.
  • the link slides relative to the second section.
  • the sliding connection has two limit slide slots, the extension directions of the two limit slide slots are both perpendicular to the axial direction of the crankshaft, and the extension directions of the two limit slide slots are perpendicular to each other;
  • the first section The end portion facing the side of the sliding connector has a first protruding structure
  • the end of the second section facing the side of the sliding connector has a second protruding structure
  • the first protruding structure and the second protruding structure are respectively slidably arranged on In the two limit chutes;
  • the first section rotates to make the first protruding structure reciprocate in the corresponding limit chute while interacting with the sliding connector, and the sliding connector rotates and drives the second protruding structure in the corresponding limit chute.
  • the second segment is driven to rotate while reciprocating sliding in the corresponding limiting chute; or, the second segment is rotated so that the second protruding structure interacts with the sliding connector while reciprocating sliding in the corresponding limiting chute, sliding
  • the connecting piece rotates and drives the first protruding structure to slide back and forth in the corresponding limiting chute, and at the same time drives the first section to rotate.
  • the sliding connector has two position-limiting protrusions extending toward the first segment and the second segment respectively; the end of the first segment toward the side of the sliding connector has a first chute structure, The end of the section facing the side of the sliding connector has a second chute structure, and the two limiting protrusions are respectively slidably arranged in the first chute structure and the second chute structure, and the extension direction of the first chute structure is in line with the The extension direction of the second chute structure is perpendicular; the first section rotates to make the corresponding stop protrusion slide back and forth in the first chute structure, and at the same time, the first chute structure interacts with the sliding connector, and the sliding connector Rotate and drive the limit protrusion to slide back and forth in the second chute structure while driving the second segment to rotate; or, while the second segment rotates to make the corresponding limit protrusion slide back and forth in the second chute structure, The second chute structure interacts with the sliding link, and the slidable link rotates and drives the position-limiting protrusion to slide back
  • the assembly eccentricity of the first section and the cylinder liner is equal to the eccentricity of the eccentric part arranged on the first section
  • the assembling eccentricity of the second section and the cylinder liner is equal to the eccentricity of the eccentric part provided on the second section the amount of eccentricity
  • both ends of the limiting channel penetrate to the outer peripheral surface of the intersecting groove structure.
  • the two sliders are arranged concentrically with the two eccentric parts respectively, and the sliders make circular motions around the axis of the crankshaft.
  • the intersecting groove structure is arranged coaxially with the cylinder liner, and there is a second rotation gap between the outer peripheral surface of the intersecting groove structure and the inner wall surface of the cylinder liner, and the size of the second rotation gap is 0.005mm-0.1mm.
  • the first included angle A is 160-200 degrees; the second included angle B is 80-100 degrees.
  • the fluid machine further includes a flange, the flange is arranged at the axial end of the cylinder liner, and the crankshaft is arranged concentrically with the flange.
  • first assembly gap between the crankshaft and the flange, and the range of the first assembly gap is 0.005mm ⁇ 0.05mm.
  • the first assembly gap ranges from 0.01 mm to 0.03 mm.
  • the eccentric portion has an arc surface, and the central angle of the arc surface is greater than or equal to 180 degrees.
  • the eccentric portion is cylindrical.
  • the proximal end of the eccentric portion is flush with the outer circle of the shaft portion of the crankshaft; or, the proximal end of the eccentric portion protrudes from the outer circle of the shaft portion of the crankshaft; or, the proximal end of the eccentric portion is located on the crankshaft The inner side of the outer circle of the shaft body part.
  • the slider includes a plurality of sub-sliders, and the plurality of sub-sliders are spliced to form a through hole.
  • the two eccentric portions are arranged at intervals in the axial direction of the crankshaft.
  • the intersecting groove structure has a central hole through which the two limiting passages communicate, and the diameter of the central hole is larger than the diameter of the crankshaft shaft body.
  • the diameter of the central hole is larger than the diameter of the eccentric portion.
  • the projection of the slider on the axial direction of the through hole has two relatively parallel straight line segments and an arc segment connecting ends of the two straight line segments.
  • the position-limiting channel has a set of opposite first sliding surfaces that are in sliding contact with the slider, the slider has a second sliding surface that cooperates with the first sliding surfaces, and the slider has a The extrusion surface at the end of the channel serves as the head of the slider, the two second sliding surfaces are connected through the extrusion surface, and the extrusion surface faces the variable volume cavity.
  • the extrusion surface is an arc surface, and the distance between the arc center of the arc surface and the center of the through hole is equal to the eccentricity of the eccentric portion.
  • the radius of curvature of the arc surface is equal to the radius of the inner circle of the cylinder liner; or, there is a difference between the radius of curvature of the arc surface and the radius of the inner circle of the cylinder liner, and the difference ranges from -0.05mm to 0.025 mm.
  • the difference ranges from -0.02mm to 0.02mm.
  • the projected area of the extrusion surface in the sliding direction of the slider S is the area between the compression and exhaust port of the slider and the cylinder liner . .
  • the value of S slider /S row is 12-18.
  • the cylinder liner has a compression intake port and a compression exhaust port.
  • the compression intake port When any slider is in the intake position, the compression intake port is connected to the corresponding variable volume chamber; In the case of the air position, the corresponding variable volume chamber is connected to the compression exhaust port.
  • the inner wall of the cylinder liner has an air suction chamber, and the air suction chamber communicates with the compressed air inlet.
  • the suction cavity extends a first preset distance around the inner wall surface of the cylinder liner to form an arc-shaped suction cavity.
  • the two suction cavities are arranged at intervals along the axial direction of the cylinder liner, the cylinder liner also has a suction communication cavity, both of the two suction cavities communicate with the suction communication cavity, and The compressed air inlet communicates with the suction cavity through the suction communication cavity.
  • the suction communication cavity extends a second preset distance along the axial direction of the cylinder liner, and at least one end of the suction communication cavity passes through the axial end surface of the cylinder liner.
  • an exhaust cavity is opened on the outer wall of the cylinder liner, and the compressed exhaust port is connected to the exhaust cavity by the inner wall of the cylinder liner.
  • the fluid machine also includes an exhaust valve assembly, which is arranged on the exhaust The cavity is set correspondingly to the compression exhaust port.
  • a communication hole is provided on the axial end surface of the cylinder liner, and the communication hole communicates with the exhaust cavity.
  • the fluid machine also includes a flange, and an exhaust passage is arranged on the flange, and the communication hole communicates with the exhaust passage. .
  • the exhaust cavity penetrates to the outer wall of the cylinder liner, and the fluid machine further includes an exhaust cover plate, which is connected with the cylinder liner and seals the exhaust cavity.
  • the fluid machine is a compressor.
  • the cylinder liner has an expansion exhaust port and an expansion intake port.
  • the expansion exhaust port When any slider is in the intake position, the expansion exhaust port is connected to the corresponding variable volume chamber; In the case of the air position, the corresponding variable volume chamber is connected to the expansion air inlet.
  • the inner wall of the cylinder liner has an expansion exhaust cavity, and the expansion exhaust cavity communicates with the expansion exhaust port.
  • the expansion exhaust cavity extends a first preset distance around the inner wall surface of the cylinder liner to form an arc-shaped expansion exhaust cavity, and the expansion exhaust cavity extends from the expansion exhaust port to the expansion intake The side where the port is located extends, and the extension direction of the expansion exhaust cavity is in the same direction as the rotation direction of the intersecting groove structure.
  • the two expansion exhaust chambers are arranged at intervals along the axial direction of the cylinder liner.
  • the communication cavity communicates, and the expansion exhaust port communicates with the expansion exhaust cavity through the expansion exhaust communication cavity.
  • the expansion exhaust communication cavity extends a second preset distance along the axial direction of the cylinder liner, and at least one end of the expansion exhaust communication cavity passes through the axial end surface of the cylinder liner.
  • the fluid machine is an expander.
  • a heat exchange device including a fluid machine, and the fluid machine is the above-mentioned fluid machine.
  • a method for operating a fluid machine comprising: the first section of the crankshaft revolves around the axis O 0 of the first section, and the second section of the crankshaft revolves around the axis O' 0 of the second section Rotation, wherein, O 0 and O′ 0 do not coincide; the axis O 0 of the first section and the axis O 1 of the intersecting groove structure are set eccentrically and the eccentric distance is fixed, and the axis O′ 0 of the second section and the intersecting groove structure
  • the axis O 1 of the axis is set eccentrically and the eccentric distance is fixed;
  • the first slider makes a circular motion with the axis O 0 of the first section as the center, and the center O 3 of the first slider is the same as the axis O of the first section
  • the distance between 0 is equal to the eccentric amount of the eccentric portion on the first section, and the eccentric amount on the first section is equal to the eccentric distance between the axis O 0 of
  • the operation method adopts the principle of the cross slider mechanism, wherein the eccentric part on the first section is used as the first connecting rod L 1 , and the eccentric part on the second section is used as the second connecting rod L 2 , the cross groove structure
  • the two limiting passages are respectively used as the third link L 3 and the fourth link L 4 , wherein the lengths of the first link L 1 and the second link L 2 are not equal.
  • first included angle A between the first link L1 and the second link L2
  • second included angle B between the third link L3 and the fourth link L4
  • the first included angle A is twice the second included angle B.
  • the line connecting the axis O 0 of the first section, the axis O' 0 of the second section, and the axis O 1 of the intersecting groove structure is the line O 0 O' 0 O 1
  • Angle D wherein, the third included angle C is twice the fourth included angle D
  • the corresponding fourth connecting rod There is a sixth included angle F between the rod L 4 and the connecting line O 0 O' 0 O 1 , wherein the fifth included angle E is twice the sixth included angle F; the third included angle C and the fifth included angle E
  • the sum is the first included angle A
  • the sum of the fourth included angle D and the sixth included angle F is the
  • the operating method further includes that the angular velocity of the slider's rotation is the same as the angular velocity of the slider; the angular velocity of the intersecting groove structure is the same as the angular velocity of the slider.
  • the crankshaft rotates 2 times to complete 4 intake and exhaust processes.
  • the first angle A between the two eccentric parts is the first angle A between the extension directions of the two limiting passages Two times the included angle B, so that when one of the two sliders is at the dead point position, that is, the driving torque of the eccentric part corresponding to the slider at the dead point position is 0, and it is at the dead point position
  • the slider at the position cannot continue to rotate, and at this time the driving torque of the other eccentric part of the two eccentric parts driving the corresponding slider is the maximum value, ensuring that the eccentric part with the largest driving torque can normally drive the corresponding slider Rotate, so that the cross groove structure is driven to rotate through the slider, and then the slider at the dead point is driven to continue to rotate through the cross groove structure, realizing the stable operation of the fluid machine, avoiding the dead point position of the movement mechanism, and lifting The motion reliability of fluid machinery is improved.
  • the fluid machine provided by the present disclosure can operate stably, that is, the energy efficiency of the fluid machine such as the compressor and the expander is improved, and the noise is reduced, thereby ensuring the reliability of the heat exchange equipment.
  • Fig. 1 shows a schematic diagram of the mechanism and principle of compressor operation provided according to some embodiments of the present disclosure
  • Fig. 2 shows a schematic diagram of the principle of operation of the compressor in Fig. 1;
  • FIG. 3 shows a schematic diagram of the internal structure of a compressor according to Embodiment 1 of the present disclosure
  • Fig. 4 shows a schematic structural view of the pump body assembly of the compressor in Fig. 3;
  • Figure 5 shows a schematic diagram of the exploded structure of the pump body assembly in Figure 4.
  • Fig. 6 shows the schematic diagram of the assembly structure of crankshaft, intersecting groove structure, slide block in Fig. 5;
  • Fig. 7 shows the schematic cross-sectional structure diagram of the crankshaft, the intersecting groove structure and the slide block in Fig. 6;
  • Fig. 8 shows a schematic structural view of the first section of the crankshaft in Fig. 5;
  • Fig. 9 shows a structural schematic view of the first section in Fig. 8 and the eccentricity of the eccentric part located on the first section;
  • Fig. 10 shows a schematic structural view of the second section of the crankshaft in Fig. 5;
  • Fig. 11 shows a schematic structural view of the second section in Fig. 10 and the eccentricity of the eccentric part located on the second section;
  • Fig. 12 shows a structural schematic view of the eccentricity between the crankshaft and the cylinder liner in Fig. 4;
  • Fig. 13 shows a schematic structural view of the cylinder liner and the lower flange in Fig. 5 when they are in an exploded state;
  • Fig. 14 shows a schematic structural view of the eccentricity between the cylinder liner and the lower flange in Fig. 13;
  • Fig. 15 shows a schematic structural view of the slider in Fig. 5 in the axial direction of the through hole
  • Figure 16 shows a schematic structural view of the cylinder liner in Figure 13;
  • Fig. 17 shows a structural schematic view of the first viewing angle of the cylinder liner in Fig. 16;
  • Fig. 18 shows a schematic cross-sectional structural view of the cylinder liner in Fig. 16;
  • Fig. 19 shows a schematic cross-sectional structural view of the cylinder liner in Fig. 16 at a second viewing angle
  • Fig. 20 shows a schematic view of the structure of the Y-direction viewing angle in Fig. 19;
  • Fig. 21 shows a schematic cross-sectional structural view of the upper flange and the cylinder liner in Fig. 4, in which the exhaust path of the pump body assembly is shown;
  • Fig. 22 shows a schematic structural view of the cylinder liner and exhaust cover in Fig. 5 when they are in an exploded state;
  • Fig. 23 shows a schematic diagram of the state structure of the compressor in Fig. 3 at the beginning of suction
  • Fig. 24 shows a schematic diagram of the state structure of the compressor in Fig. 3 in the suction process
  • Fig. 25 shows a schematic diagram of the state structure of the compressor in Fig. 3 at the end of suction
  • Figure 26 shows a schematic view of the state structure of the compressor in Figure 3 when it is compressing gas
  • Fig. 27 shows a schematic diagram of the state structure of the compressor in Fig. 3 in the exhaust process
  • Fig. 28 shows a schematic diagram of the state structure of the compressor in Fig. 3 at the end of exhaust
  • Fig. 29 shows a schematic diagram of an exploded structure of a pump body assembly of a compressor according to Embodiment 2 of the present disclosure
  • Figure 30 shows a schematic diagram of the assembled structure of the crankshaft, the intersecting groove structure, and the slide block in Figure 29;
  • Fig. 31 shows a schematic diagram of the internal structure of a compressor according to Embodiment 3 of the present disclosure
  • Fig. 32 shows a schematic structural view of the pump body assembly of the compressor in Fig. 31;
  • Figure 33 shows a schematic diagram of the assembly structure of the crankshaft, the intersecting groove structure, and the slide block in Figure 32;
  • Fig. 34 shows a schematic cross-sectional structural view of the crankshaft, the intersecting groove structure, and the slide block in Fig. 33;
  • Figure 35 shows a schematic structural view of the crankshaft in Figure 33;
  • Figure 36 shows a schematic diagram of the exploded structure of the crankshaft in Figure 35;
  • Fig. 37 shows a structural schematic view of the first section in Fig. 36 and the eccentricity of the eccentric portion located on the first section;
  • Fig. 38 shows a schematic structural view of the second section in Fig. 36 and the eccentricity of the eccentric part located on the second section;
  • Fig. 39 shows a schematic diagram of the mechanism principle of compressor operation in some related technologies
  • Fig. 40 shows a schematic diagram of the mechanism principle of improved compressor operation in some related technologies
  • Fig. 41 shows a schematic diagram of the operating mechanism of the compressor in Fig. 40, in which the force arm of the drive shaft driving the slider to rotate is shown;
  • Fig. 42 shows a schematic diagram of the operating mechanism of the compressor in Fig. 40, in which the center of the limiting groove structure coincides with the center of the eccentric part.
  • Some embodiments of the present disclosure provide a fluid machine, a heat exchange device, and an operating method of the fluid machine, so as to solve the problems of low energy efficiency and high noise of the fluid machine such as a compressor and an expander.
  • a principle of compressor operating mechanism is proposed based on the cross slider mechanism, that is, point O1 is used as the center of the cylinder, point O2 is used as the center of the drive shaft, and point O3 is used as the slider
  • the center of the block, the cylinder and the drive shaft are arranged eccentrically, wherein the center O3 of the slider performs circular motion on a circle whose diameter is equal to the length of the line segment O1O2 .
  • the cylinder center O 1 and the drive shaft center O 2 are used as the two rotation centers of the motion mechanism, and at the same time, the midpoint O 0 of the line segment O 1 O 2 is used as the virtual center of the slider center O 3 , so that the slider While the block reciprocates relative to the cylinder, the slider also reciprocates relative to the drive shaft.
  • a The motion mechanism with O 0 as the drive shaft center that is, the cylinder center O 1 and the drive shaft center O 0 as the two rotation centers of the motion mechanism, the drive shaft has an eccentric portion, the slider and the eccentric portion are coaxially arranged, and the drive shaft and The assembly eccentricity of the cylinder is equal to the eccentricity of the eccentric part, so that the slider center O3 makes a circular motion with the drive shaft center O0 as the center and O1O0 as the radius .
  • a set of operating mechanisms including a cylinder, a limit groove structure, a slider and a drive shaft, wherein the limit groove structure is rotatably arranged in the cylinder, and the cylinder and the limit groove structure are coaxially arranged, that is, The center O1 of the cylinder is also the center of the limit groove structure, the slider reciprocates relative to the limit groove structure, the slider is coaxially assembled with the eccentric part of the drive shaft, and the slider makes a circular motion around the shaft part of the drive shaft, specifically The movement process is: the drive shaft rotates, driving the slider to revolve around the center of the shaft part of the drive shaft, the slider rotates relative to the eccentric part at the same time, and the slider reciprocates in the limit groove of the limit groove structure, and pushes the limit Bitslot structure rotation.
  • the present disclosure proposes a mechanism principle of a cross groove structure with two limiting channels and double sliders, and builds a fluid machine such as a compressor and an expander based on this principle, and the fluid machine has high energy efficiency , low noise, the following will take the compressor as an example to introduce the compressor based on the cross-groove structure with two limiting channels and double sliders.
  • the present disclosure provides a fluid machinery, heat exchange equipment and a method for operating the fluid machinery, wherein the heat exchange equipment includes the following fluid machinery, The fluid machinery operates in the following operation method.
  • the fluid machine of the present disclosure includes a crankshaft 10 , a cylinder liner 20 , an intersecting groove structure 30 and a slider 40 , wherein the crankshaft 10 is provided with two eccentric portions 11 along its axial direction, and there is a gap between the two eccentric portions 11 .
  • the phase difference of the first angle A (refer to Figure 1), the eccentricity of the two eccentric parts 11 is not equal; the crankshaft 10 and the cylinder liner 20 are set eccentrically and the eccentric distance is fixed; the cross groove structure 30 is rotatably set on the cylinder liner 20 Inside, the intersecting groove structure 30 has two limiting channels 31, the two limiting channels 31 are sequentially arranged along the axial direction of the crankshaft 10, the extending direction of the limiting channels 31 is perpendicular to the axial direction of the crankshaft 10, and the two limiting channels There is a phase difference of a second angle B (refer to FIG.
  • variable volume chamber 311 is located in the sliding direction of the slider 40, and the crankshaft 10 rotates to drive the slider 40 to reciprocally slide in the limiting channel 31 while interacting with the intersecting groove structure 30, so that the intersecting groove structure 30 ,
  • the slide block 40 rotates in the cylinder liner 20 .
  • the two eccentric parts 11 of the crankshaft 10 correspondingly extend into the two through holes 41 of the two sliders 40
  • the two sliders 40 are correspondingly slidably arranged in the two limiting passages 31 to form a variable volume chamber 311, because the first angle A between the two eccentric parts 11 is the extension of the two limiting passages 31 Two times the second included angle B between the directions, so that when one of the two sliders 40 is at the dead point position, that is, the driving rotation of the eccentric part 11 corresponding to the slider 40 at the dead point position
  • the driving torque of the other eccentric part 11 in the two eccentric parts 11 to drive the corresponding slider 40 is the maximum value, ensuring the maximum driving force.
  • the eccentric portion 11 of the torque can normally drive the corresponding slider 40 to rotate, thereby driving the cross groove structure 30 to rotate through the slider 40, and then driving the slider 40 at the dead point to continue to rotate through the cross groove structure 30, realizing It ensures the stable operation of the fluid machinery, avoids the dead point position of the motion mechanism, and improves the movement reliability of the fluid machinery, thereby ensuring the working reliability of the heat exchange equipment.
  • the fluid machine provided by the present disclosure can run stably, that is, it ensures high energy efficiency and low noise of the fluid machine such as a compressor and an expander, thereby ensuring the working reliability of the heat exchange equipment.
  • neither the first included angle A nor the second included angle B is zero.
  • the operation method of the fluid machine includes that the first segment 121 of the crankshaft 10 rotates around the axis O of the first segment 121 , and the second segment 122 of the crankshaft 10 rotates around The axis O'0 of the second section 122 rotates by itself, wherein O0 and O'0 do not coincide; the axis O0 of the first section 121 and the axis O1 of the intersecting groove structure 30 are set eccentrically and the eccentric distance is fixed, and the second section The axis O'0 of the second section 122 is set eccentrically with the axis O1 of the intersecting groove structure 30 and the eccentric distance is fixed; The distance between the center O3 of a slide block 40 and the axis O0 of the first section 121 is equal to the eccentricity of the eccentric part 11 on the first section 121, and the eccentricity on the first section 121 is equal to that of the crankshaft 10 The eccentric distance between the axis O
  • the fluid machine operated in the above method constitutes the cross slider mechanism.
  • the operation method adopts the principle of the cross slider 40 mechanism, wherein the eccentric part 11 on the first section 121 is used as the first connecting rod L 1 , and the second section 122
  • the eccentric part 11 of the cross groove structure 30 serves as the second link L 2
  • the two limiting passages 31 of the intersecting groove structure 30 serve as the third link L 3 and the fourth link L 4 respectively, wherein the first link L 1 and the second The lengths of the connecting rods L2 are not equal.
  • first included angle A between the first link L1 and the second link L2
  • second included angle B between the third link L3 and the fourth link L4
  • first included angle A is twice the second included angle B
  • the line connecting the axis O 0 of the first section 121, the axis O' 0 of the second section 122, and the axis O 1 of the intersecting groove structure 30 is the line O 0 O' 0 O 1 , there is a third angle C between the first link L 1 and the connection line O 0 O′ 0 O 1 , and there is a third angle C between the corresponding third link L 3 and the connection line O 0 O′ 0 O 1
  • the fourth included angle D wherein, the third included angle C is twice the fourth included angle D; there is a fifth included angle E between the second connecting rod L 2 and the connecting line O 0 O' 0 O 1 , corresponding There is a sixth included angle F between the fourth connecting rod L 4 and the connecting line O 0 O′ 0 O 1 , wherein the fifth included angle E is twice the sixth included angle F; the third included angle C and the fifth included angle
  • the sum of the included angle E is the first included angle A, and the sum of the fourth included angle D and
  • the running method further includes that the rotational angular velocity of the slider 40 is the same as the orbital angular velocity of the slider 40 ;
  • the axis O'0 of the first segment 121 is equivalent to the rotation center of the first connecting rod L1
  • the axis O'0 of the second segment 122 is equivalent to the rotation center of the second connecting rod L2
  • the intersecting groove structure The axis O 1 of 30 corresponds to the rotation center of the third connecting rod L 3 and the fourth connecting rod L 4
  • the two eccentric parts 11 of the crankshaft 10 serve as the first connecting rod L 1 and the second connecting rod L 2
  • the two limiting passages 31 of the groove structure 30 serve as the third link L 3 and the fourth link L 4 respectively, and the lengths of the first link L 1 and the second link L 2 are not equal, so that the first section 121 rotates, the eccentric part 11 on the first section 121 drives the corresponding slider 40 to revolve around the axis O0 of the first section 121, and the slider 40 can rotate relative to the eccentric part 11 at the same time, and the relationship between the two The relative rotation speed is the same, since the first slider 40 and the second slider 40 reciprocate in the
  • the maximum moment arm of the driving torque of the eccentric portion 11 is 2e.
  • the running tracks of each slider 40 are circles, one of which takes the axis O 0 of the first section 121 as the center and the connecting line O 0 O 1 as the radius, and the other circle takes the second section 122 as the radius.
  • the axis O' 0 is the center of the circle and the connecting line O' 0 O 1 is the radius.
  • crankshaft 10 rotates 2 times to complete 4 intake and exhaust processes.
  • the shaft body portion 12 of the crankshaft 10 includes a first section 121 and a second section 122 connected axially, the first section 121 and the second section 122 are not coaxially arranged and movably connected,
  • the two eccentric parts 11 are respectively arranged on the first segment 121 and the second segment 122 .
  • the shaft body portion 12 of the crankshaft 10 as a first section 121 and a second section 122 connected axially, at the same time, the first section 121 and the second section 122 are not axially arranged and are movably connected to ensure that the second section While the eccentricity of the eccentric portion 11 on the first segment 121 and the eccentric portion 11 on the second segment 122 are not equal, the rotation reliability of the first segment 121 and the second segment 122 can also be ensured.
  • the crankshaft 10 also includes a sliding link 13, the first section 121 is movably connected with the second section 122 through the sliding link 13, and the sliding link 13 slides relative to the first section 121 while the first section 121 rotates. , while the second segment 122 rotates, the sliding connection member 13 slides relative to the second segment 122 . In this way, the rotation reliability between the first segment 121 and the second segment 122 can be ensured while the first segment 121 and the second segment 122 are not coaxially ensured by the sliding connecting member 13 .
  • the sliding connector 13 has two limit slide grooves 131, the extension directions of the two limit slide grooves 131 are perpendicular to the axial direction of the crankshaft 10, and the extension directions of the two limit slide grooves 131 are opposite to each other.
  • the first protrusion The structure 1211 and the second protruding structure 1221 are respectively slidably arranged in the two limiting chute 131; the first section 121 rotates so that the first protruding structure 1211 slides back and forth in the corresponding limiting chute 131 while sliding
  • the connecting piece 13 interacts, and the sliding connecting piece 13 rotates and drives the second protruding structure 1221 to reciprocate and slide in the corresponding limit slide groove 131, while driving the second section 122 to rotate; or, the second section 122 rotates to make the second section 122 rotate.
  • the protruding structure 1221 interacts with the sliding connecting member 13 while reciprocatingly sliding in the corresponding limiting chute 131 , and the sliding connecting member 13 rotates and drives the first protruding structure 1211 to reciprocate sliding in the corresponding limiting chute 131 At the same time, the first section 121 is driven to rotate. In this way, while ensuring the reliability of the connection between the first segment 121 and the second segment 122 , the stability of rotation between the two can also be ensured.
  • the assembly eccentricity of the first section 121 and the cylinder liner 20 is equal to the eccentricity of the eccentric part 11 arranged on the first section 121, and the second section 122 and the cylinder liner
  • the assembly eccentricity of 20 is equal to the eccentricity of the eccentric portion 11 provided on the second segment 122 .
  • the eccentricity of the eccentric part 11 on the first section 121 is e1
  • the eccentricity of the assembly of the first section 121 and the cylinder liner 20 in Fig. 14 is also e1
  • the eccentricity of the upper eccentric portion 11 is e2
  • the assembly eccentricity of the second section 122 and the cylinder liner 20 in FIG. 14 is also e2, which ensures the motion reliability of the motion mechanism constructed in FIG.
  • the symbol H1 denotes the axis of the first section 121
  • the symbol H2 denotes the axis of the second section 122
  • the symbol I denotes the axis of the inner ring of the cylinder liner 20 .
  • both ends of the limiting channel 31 penetrate to the outer peripheral surface of the intersecting groove structure 30 . In this way, it is beneficial to reduce the manufacturing difficulty of the intersecting groove structure 30 .
  • the two sliders 40 are arranged concentrically with the two eccentric parts 11 respectively, the sliders 40 make a circular motion around the axis of the crankshaft 10, and there is a first rotation between the wall of the through hole 41 and the eccentric parts 11.
  • the gap, the range of the first rotation gap is 0.005mm-0.05mm.
  • the intersecting groove structure 30 is arranged coaxially with the cylinder liner 20, and there is a second rotation gap between the outer peripheral surface of the intersecting groove structure 30 and the inner wall surface of the cylinder liner 20, and the size of the second rotation gap is 0.005mm- 0.1mm.
  • the first included angle A is 160 degrees to 200 degrees; the second included angle B is 80 degrees to 100 degrees. As long as the relationship that the first included angle A is twice the second included angle B is satisfied.
  • the first included angle A is 160 degrees
  • the second included angle B is 80 degrees
  • the first included angle A is 165 degrees
  • the second included angle B is 82.5 degrees.
  • the first included angle A is 170 degrees, and the second included angle B is 85 degrees.
  • the first included angle A is 175 degrees
  • the second included angle B is 87.5 degrees
  • the first included angle A is 180 degrees
  • the second included angle B is 90 degrees
  • the first included angle A is 185 degrees
  • the second included angle B is 92.5 degrees.
  • the first included angle A is 190 degrees, and the second included angle B is 95 degrees.
  • the first included angle A is 195 degrees
  • the second included angle B is 97.5 degrees.
  • the fluid machine also includes a flange 50, the flange 50 is arranged on the axial end of the cylinder liner 20, the crankshaft 10 is concentrically arranged with the flange 50, the intersecting groove structure 30 and the cylinder
  • the sleeve 20 is set coaxially, and the assembly eccentricity between the crankshaft 10 and the cross groove structure 30 is determined by the relative positional relationship between the flange 50 and the cylinder liner 20, wherein the flange 50 is fixed on the cylinder liner 20 by a fastener 90, and the flange 50
  • the relative position of the axis of the crankshaft and the axis of the inner ring of the cylinder liner 20 is controlled by the flange 50.
  • the relative position of the axis of the flange 50 and the axis of the inner ring of the cylinder liner 20 determines the axis and intersection of the crankshaft 10.
  • the relative position of the shaft center of the groove structure 30 is essentially adjusted by the flange 50 to make the eccentricity of the eccentric part 11 equal to the assembly eccentricity of the crankshaft 10 and the cylinder liner 20 .
  • first assembly gap between the crankshaft 10 and the flange 50, and the range of the first assembly gap is 0.005mm ⁇ 0.05mm.
  • the first assembly gap ranges from 0.01 mm to 0.03 mm.
  • the eccentric portion 11 has an arc surface, and the central angle of the arc surface is greater than or equal to 180 degrees. In this way, it is ensured that the arc surface of the eccentric portion 11 can exert an effective driving force on the slider 40 , thereby ensuring the reliability of the movement of the slider 40 .
  • the eccentric portion 11 is cylindrical.
  • the proximal end of the eccentric portion 11 is flush with the outer circle of the shaft portion 12 of the crankshaft 10 .
  • the proximal end of the eccentric portion 11 protrudes beyond the outer circle of the shaft portion 12 of the crankshaft 10 .
  • the proximal end of the eccentric portion 11 is located inside the outer circle of the shaft portion 12 of the crankshaft 10 .
  • the slider 40 includes a plurality of sub-sliders, and the plurality of sub-sliders are assembled to form a through hole 41 .
  • two eccentric portions 11 are arranged at intervals in the axial direction of the crankshaft 10 .
  • the cylinder liner 20 and the two sliders 40 ensuring the distance between the two eccentric parts 11 can provide an assembly space for the cylinder liner 20 to ensure the convenience of assembly.
  • the intersecting groove structure 30 has a central hole 32 through which the two limiting passages 31 communicate.
  • the diameter of the central hole 32 is larger than the diameter of the shaft portion 12 of the crankshaft 10 . In this way, it is ensured that the crankshaft 10 can pass through the central hole 32 smoothly.
  • the diameter of the central hole 32 is larger than the diameter of the eccentric portion 11 . In this way, it is ensured that the eccentric portion 11 of the crankshaft 10 can smoothly pass through the central hole 32 .
  • the axial projection of the slider 40 on the through hole 41 has two relatively parallel straight line segments and an arc segment connecting ends of the two straight line segments.
  • the limiting channel 31 has a set of first sliding surfaces oppositely disposed in sliding contact with the slider 40 , the sliding block 40 has a second sliding surface cooperating with the first sliding surfaces, and the sliding block 40 has a
  • the extrusion surface 42 at the end of the slider 40 is used as the head of the slider 40, and the two second sliding surfaces are connected by the extrusion surface 42, and the extrusion surface 42 faces the variable volume chamber 311.
  • the projection of the second sliding surface of the slider 40 in the axial direction of the through hole 41 is a straight line segment, and at the same time, the projection of the extrusion surface 42 of the slider 40 in the axial direction of the through hole 41 is an arc segment.
  • the extrusion surface 42 is an arc surface, and the distance between the arc center of the arc surface and the center of the through hole 41 is equal to the eccentricity of the eccentric portion 11 .
  • the center of the through hole 41 of the slider 40 is the O slider , and the distance between the arc centers of the two arc surfaces and the center of the through hole 41 is e, that is, the eccentricity of the eccentric portion 11, as shown in Fig. 15
  • the dotted line of X indicates the circle where the arc centers of the two arc surfaces are located.
  • the radius of curvature of the arc surface is equal to the radius of the inner circle of the cylinder liner 20; or, there is a difference between the radius of curvature of the arc surface and the radius of the inner circle of the cylinder liner 20, and the range of the difference is -0.05mm ⁇ 0.025mm.
  • the difference ranges from -0.02mm to 0.02mm.
  • the projected area S of the extrusion surface 42 in the sliding direction of the slider 40 satisfies the area between the S slider and the compression exhaust port of the cylinder liner 20 as S rows : the value of the S slider /S row is 8 ⁇ 25.
  • the value of S slider /S row is 12-18.
  • the fluid machine shown in this embodiment is a compressor.
  • the lower cover assembly 85 wherein the liquid separator part 80 is arranged on the outside of the housing assembly 81, the upper cover assembly 84 is assembled on the upper end of the housing assembly 81, the lower cover assembly 85 is assembled on the lower end of the housing assembly 81, and the motor assembly 82
  • Both the motor assembly 82 and the pump body assembly 83 are located inside the housing assembly 81 , wherein the motor assembly 82 is located above the pump body assembly 83 , or the motor assembly 82 is located below the pump body assembly 83 .
  • the pump body assembly 83 of the compressor includes the crankshaft 10 , the cylinder liner 20 , the intersecting groove structure 30 , the slider 40 , the upper flange 52 and the lower flange 53 .
  • the above components are connected by means of welding, shrink fitting, or cold pressing.
  • the assembly process of the entire pump body assembly 83 is as follows: the lower flange 53 is fixed on the cylinder liner 20, the two sliders 40 are respectively placed in the corresponding two limiting channels 31, and the first section 121, the second section 122 and the After the sliding connector 13 is assembled into the crankshaft 10, the two eccentric parts 11 of the crankshaft 10 respectively extend into the two through holes 41 of the corresponding two sliders 40, and then the assembled crankshaft 10, the intersecting groove structure 30 and the two A slide block 40 is placed in the cylinder liner 20, one end of the crankshaft 10 is installed on the lower flange 53, and the other end of the crankshaft 10 passes through the upper flange 52, as shown in Fig. 4 and Fig. 5 .
  • the closed space surrounded by the slider 40, the limiting channel 31, the cylinder liner 20 and the upper flange 52 (or the lower flange 53) is the variable volume chamber 311, and the pump body assembly 83 has four variable volume chambers 311 in total.
  • the crankshaft 10 rotates 2 revolutions, and a single variable volume chamber 311 completes one intake and exhaust process.
  • the crankshaft 10 rotates 2 revolutions, totaling Complete 4 suction and exhaust processes.
  • the sliding block 40 rotates relative to the cylinder liner 20 while reciprocating in the limiting channel 31.
  • the sliding block 40 is clockwise from 0° to 180° During the rotation process, the variable volume chamber 311 increases.
  • the variable volume chamber 311 communicates with the suction chamber 23 of the cylinder liner 20.
  • the slider 40 rotates to 180 degrees, the variable volume chamber The volume of 311 reaches the maximum value, and at this time, the variable volume chamber 311 is separated from the suction chamber 23, thereby completing the suction operation.
  • the slider 40 continues to rotate clockwise from 180° to 360° During the process, the variable volume chamber 311 decreases, and the slider 40 compresses the gas in the variable volume chamber 311.
  • the slider 40 rotates until the variable volume chamber 311 communicates with the compression exhaust port 22, and when the variable volume chamber 311
  • the exhaust valve plate 61 of the exhaust valve assembly 60 opens, and the exhaust operation starts until the compression ends and enters the next cycle.
  • the point marked with M is used as the reference point for the relative movement of the slider 40 and the crankshaft 10
  • Figure 25 shows the process of the slider 40 rotating clockwise from 0 degrees to 180 degrees, the rotation of the slider 40 The angle is ⁇ 1, and the corresponding rotation angle of the crankshaft 10 is 2 ⁇ 1.
  • Fig. 26 shows that the slider 40 continues to rotate clockwise from 180° to 360°, and the rotation angle of the slider 40 is 180°+ ⁇ 2.
  • the crankshaft 10 rotates at an angle of 360°+2 ⁇ 2.
  • Figure 27 shows that the slider 40 continues to rotate clockwise from 180° to 360°, and the variable volume chamber 311 communicates with the compression exhaust port 22, and the slider 40 rotates
  • the angle is 180°+ ⁇ 3
  • the corresponding rotation angle of the crankshaft 10 is 360°+2 ⁇ 3, that is, the slider 40 rotates once, and the corresponding crankshaft 10 rotates twice, wherein, ⁇ 1 ⁇ 2 ⁇ 3.
  • the cylinder liner 20 has a compression intake port 21 and a compression exhaust port 22.
  • the compression intake port 21 and the The corresponding variable volume cavity 311 is in conduction; when any slider 40 is in the exhaust position, the corresponding variable volume cavity 311 is in conduction with the compression exhaust port 22 .
  • the inner wall surface of the cylinder liner 20 has an air suction chamber 23 , and the air suction chamber 23 communicates with the compressed air inlet 21 .
  • the suction chamber 23 can store a large amount of gas, so that the variable volume chamber 311 can be fully suctioned, so that the compressor can take in enough air, and when the suction is insufficient, the stored gas can be supplied in time Give the variable volume chamber 311 to ensure the compression efficiency of the compressor.
  • the suction cavity 23 is a cavity formed by radially hollowing out the inner wall of the cylinder liner 20 , and there may be one suction cavity 23 or two upper and lower ones.
  • the suction cavity 23 extends a first preset distance around the inner wall surface of the cylinder liner 20 to form an arc-shaped suction cavity 23 . In this way, it is ensured that the volume of the suction chamber 23 is large enough to store a large amount of gas.
  • FIG. 13 Figure 16 and Figure 18, there are two suction chambers 23, and the two suction chambers 23 are arranged at intervals along the axial direction of the cylinder liner 20.
  • the cylinder liner 20 also has a suction communication chamber 24, and the two suction chambers
  • the air cavities 23 communicate with the suction communication cavity 24
  • the compressed air inlet 21 communicates with the suction cavity 23 through the suction communication cavity 24 . In this way, it is beneficial to increase the volume of the suction cavity 23, thereby reducing the suction pressure pulsation.
  • the suction communication cavity 24 extends a second preset distance along the axial direction of the cylinder liner 20 , and at least one end of the suction communication cavity 24 passes through the axial end surface of the cylinder liner 20 . In this way, it is convenient to open the suction communication cavity 24 from the end surface of the cylinder liner 20 , ensuring the convenience of processing the suction communication cavity 24 .
  • an exhaust cavity 25 is opened on the outer wall of the cylinder liner 20 , and the compression exhaust port 22 is connected to the exhaust cavity 25 by the inner wall of the cylinder liner 20 .
  • the fluid machine further includes an exhaust valve assembly 60 , and the exhaust valve assembly 60 is disposed in the exhaust cavity 25 and corresponding to the compressed exhaust port 22 .
  • the exhaust cavity 25 is used to accommodate the exhaust valve assembly 60 , which effectively reduces the occupied space of the exhaust valve assembly 60 , makes the components reasonably arranged, and improves the space utilization rate of the cylinder liner 20 .
  • the exhaust valve assembly 60 is connected to the cylinder liner 20 through a fastener 90, the exhaust valve assembly 60 includes an exhaust valve plate 61 and a valve plate baffle 62, and the exhaust valve plate 61 is arranged in the exhaust cavity 25 and cover the corresponding compression exhaust port 22, the valve plate baffle 62 is overlapped on the exhaust valve plate 61.
  • the setting of the valve plate baffle 62 effectively avoids the excessive opening of the exhaust valve plate 61, thereby ensuring the exhaust performance of the cylinder liner 20.
  • fasteners 90 are screws.
  • a communication hole 26 is also provided on the axial end surface of the cylinder liner 20, and the communication hole 26 communicates with the exhaust chamber 25, and the fluid machine also includes a flange 50 on which a There is an exhaust passage 51 , and the communication hole 26 communicates with the exhaust passage 51 . In this way, the exhaust reliability of the cylinder liner 20 is ensured.
  • the exhaust cavity 25 penetrates to the outer wall of the cylinder liner 20 , and the fluid machine further includes an exhaust cover 70 , which is connected to the cylinder liner 20 and seals the exhaust cavity 25 .
  • the exhaust cover plate 70 plays a role of isolating the variable volume chamber 311 from the external space of the pump body assembly 83 .
  • variable volume chamber 311 communicates with the compression exhaust port 22
  • the exhaust valve plate 61 opens, and the compressed gas is compressed and exhausted.
  • the port 22 enters the exhaust cavity 25, passes through the communication hole 26 on the cylinder liner 20, and then discharges through the exhaust passage 51 and enters the external space of the pump body assembly 83 (that is, the cavity of the compressor), thereby completing the exhaust. process.
  • exhaust cover plate 70 is secured to cylinder liner 20 by fasteners 90 .
  • fasteners 90 are screws.
  • the outer contour of the exhaust cover 70 matches the outer contour of the exhaust cavity 25 .
  • the motor assembly 82 drives the crankshaft 10 to rotate, and the two eccentric parts 11 of the crankshaft 10 respectively drive the corresponding two sliders 40 to move.
  • the slider 40 revolves around the axis of the crankshaft 10, the slider 40 Relative to the eccentric part 11, the slider 40 reciprocates along the limiting channel 31, and drives the cross groove structure 30 to rotate in the cylinder liner 20.
  • the slider 40 reciprocates along the limiting channel 31 while revolving to form a cross slide Movement mode of the block mechanism.
  • the compressor can be used as an expander by exchanging the positions of the suction port and the exhaust port. That is, the exhaust port of the compressor is used as the suction port of the expander, and high-pressure gas is passed in, and other pushing mechanisms rotate, and the gas is discharged through the suction port of the compressor (exhaust port of the expander) after expansion.
  • the cylinder liner 20 When the fluid machine is an expander, the cylinder liner 20 has an expansion exhaust port and an expansion intake port. When any slider 40 is in the intake position, the expansion exhaust port is in communication with the corresponding variable volume chamber 311; When a slider 40 is in the exhaust position, the corresponding variable volume cavity 311 is in communication with the expansion inlet.
  • the inner wall of the cylinder liner 20 has an expansion exhaust cavity 25, and the expansion exhaust cavity 25 communicates with the expansion exhaust port.
  • the expansion exhaust cavity 25 extends a first preset distance around the inner wall surface of the cylinder liner 20 to form an arc-shaped expansion exhaust cavity 25, and the expansion exhaust cavity 25 is formed by the expansion exhaust port. Extending to the side where the expansion inlet is located, the extension direction of the expansion exhaust chamber 25 is the same as the rotation direction of the intersecting groove structure 30 .
  • the two expansion exhaust chambers 25 are arranged at intervals along the axial direction of the cylinder liner 20.
  • the cylinder liner 20 also has an expansion exhaust communication cavity, and the two expansion exhaust chambers 25 Both are in communication with the expansion exhaust communication chamber, and the expansion exhaust port communicates with the expansion exhaust communication chamber 25 through the expansion exhaust communication chamber.
  • the expansion exhaust communication cavity extends a second preset distance along the axial direction of the cylinder liner 20 , and at least one end of the expansion exhaust communication cavity passes through the axial end surface of the cylinder liner 20 .
  • the difference between this embodiment and Embodiment 1 is that the cross section of the limiting channel 31 of the intersecting groove structure 30 is a square embodiment, and the corresponding cross section of the slider 40 in its sliding direction is A square shape suitable for the limit channel.
  • Embodiment 1 air intake and exhaust method in Embodiment 1 is also applicable to this embodiment, and will not be repeated here.
  • the sliding connector 13 has two position-limiting projections protruding toward the first segment 121 and the second segment 122 respectively; the first segment 121 The end toward the side of the sliding connector 13 has a first chute structure, the end of the second section 122 toward the side of the sliding connector 13 has a second chute structure, and the two limiting protrusions are slidably arranged on the first chute structure and the second chute structure, and the extension direction of the first chute structure is perpendicular to the extension direction of the second chute structure; the first section 121 rotates so that the corresponding stop protrusion While reciprocating sliding in the structure, the first chute structure interacts with the sliding connecting piece 13, the sliding connecting piece 13 rotates and drives the limiting protrusion to reciprocate sliding in the second chute structure while driving the second segment 122 to rotate; or , the second section 122 rotates to make the corresponding stop protrusion slide back and forth in the second chute structure, and at the same time, the first section 121 rotates so that the corresponding stop protrusion While reciprocating sliding in the structure,
  • Embodiment 1 air intake and exhaust method in Embodiment 1 is also applicable to this embodiment, and will not be repeated here.
  • a fluid machine in an embodiment of the present disclosure includes a compressor, an expander, and the like.
  • the heat exchange equipment in the embodiments of the present disclosure includes air conditioners and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种流体机械、换热设备和流体机械的运行方法,流体机械包括曲轴(10)、缸套(20)、交叉槽结构(30)和滑块(40),曲轴(10)的两个偏心部(11)之间具有第一夹角A,两个偏心部(11)的偏心量不相等;曲轴(10)与缸套(20)偏心设置且偏心距离固定;交叉槽结构(30)可转动地设置在缸套(20)内,交叉槽结构(30)的两个限位通道(31)沿曲轴(10)的轴向顺次设置,限位通道(31)的延伸方向垂直于曲轴(10)的轴向,且两个限位通道(31)的延伸方向之间具有第二夹角B,第一夹角A为第二夹角B的二倍;两个偏心部(11)对应伸入两个滑块(40)的两个通孔(41)内,两个滑块(40)对应滑动设置在两个限位通道(31)内并形成变容积腔(311)。该方案改善了流体机械例如压缩机和膨胀机的能效较低、噪音较大的问题。

Description

流体机械、换热设备和流体机械的运行方法
相关申请的交叉引用
本公开是以CN申请号为202111487159.7,申请日为2021年12月7日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及换热***技术领域,尤其涉及一种流体机械、换热设备和流体机械的运行方法。
背景技术
在一些相关技术中,流体机械包括压缩机和膨胀机等。以压缩机为例,根据节能环保政策及消费者对空调舒适性要求,空调行业一直在追求高效和低噪。压缩机作为空调的心脏,对空调的能效和噪音水平有直接影响。滚动转子式压缩机作为主流的家用空调压缩机,目前已相对成熟,受结构原理限制,优化空间有限。若要取得重大突破,需从结构原理进行创新。
因此,需要提出一种具备能效高、噪音小等特点的流体机械例如压缩机和膨胀机。
发明内容
根据本公开的一个方面,提供了一种流体机械包括曲轴、缸套、交叉槽结构和滑块,其中,曲轴沿其轴向设置有两个偏心部,两个偏心部之间具有第一夹角A的相位差,两个偏心部的偏心量不相等;曲轴与缸套偏心设置且偏心距离固定;交叉槽结构可转动地设置在缸套内,交叉槽结构具有两个限位通道,两个限位通道沿曲轴的轴向顺次设置,限位通道的延伸方向垂直于曲轴的轴向,且两个限位通道的延伸方向之间具有第二夹角B的相位差,其中,第一夹角A为第二夹角B的二倍;滑块具有通孔,滑块为两个,两个偏心部对应伸入两个滑块的两个通孔内,两个滑块对应滑动设置在两个限位通道内并形成变容积腔,变容积腔位于滑块的滑动方向上,曲轴转动以带动滑块在限位通道内往复滑动的同时与交叉槽结构相互作用,使得交叉槽结构、滑块在缸套内转动。
在一些实施例中,曲轴的轴体部分包括沿其轴向连接的第一段和第二段,第一段与第二段不同轴设置并活动连接,两个偏心部分别设置在第一段和第二段上。
在一些实施例中,曲轴还包括滑动连接件,第一段通过滑动连接件与第二段活动连接,第一段转动的同时滑动连接件相对于第一段滑动,第二段转动的同时滑动连接件相对于第二段滑动。
在一些实施例中,滑动连接件具有两个限位滑槽,两个限位滑槽的延伸方向均垂直于曲轴的轴向,且两个限位滑槽的延伸方向相垂直;第一段朝向滑动连接件一侧的端部具有第一凸起结构,第二段朝向滑动连接件一侧的端部具有第二凸起结构,第一凸起结构和第二凸起结构分别滑动设置在两个限位滑槽内;第一段转动以使第一凸起结构在对应的限位滑槽内往复滑动的同时与滑动连接件相互作用,滑动连接件转动并带动第二凸起结构在对应的限位滑槽内往复滑动的同时驱动第二段转动;或,第二段转动以使第二凸起结构在对应的限位滑槽内往复滑动的同时与滑动连接件相互作用,滑动连接件转动并带动第一凸起结构在对应的限位滑槽内往复滑动的同时驱动第一段转动。
在一些实施例中,滑动连接件具有朝向第一段和第二段分别伸出的两个限位凸起;第一段朝向滑动连接件一侧的端部具有第一滑槽结构,第二段朝向滑动连接件一侧的端部具有第二滑槽结构,两个限位凸起分别滑动设置在第一滑槽结构和第二滑槽结构内,且第一滑槽结构的延伸方向与第二滑槽结构的延伸方向相垂直;第一段转动以使对应的限位凸起在第一滑槽结构内往复滑动的同时,第一滑槽结构与滑动连接件相互作用,滑动连接件转动并带动限位凸起在第二滑槽结构内往复滑动的同时驱动第二段转动;或,第二段转动以使对应的限位凸起在第二滑槽结构内往复滑动的同时,第二滑槽结构与滑动连接件相互作用,滑动连接件转动并带动限位凸起在第一滑槽结构内往复滑动的同时驱动第一段转动。
在一些实施例中,第一段与缸套的装配偏心量等于设置在第一段上的偏心部的偏心量,第二段与缸套的装配偏心量等于设置在第二段上的偏心部的偏心量。
在一些实施例中,限位通道的两端贯通至交叉槽结构的外周面。
在一些实施例中,两个滑块分别与两个偏心部同心设置,滑块绕曲轴的轴心做圆周运动,通孔的孔壁与偏心部之间具有第一转动间隙,第一转动间隙的范围为0.005mm~0.05mm。
在一些实施例中,交叉槽结构与缸套同轴设置,交叉槽结构的外周面与缸套的内壁面之间具有第二转动间隙,第二转动间隙的尺寸为0.005mm~0.1mm。
在一些实施例中,第一夹角A为160度~200度;第二夹角B为80度~100度。
在一些实施例中,流体机械还包括法兰,法兰设置在缸套的轴向的端部,曲轴与法兰同心设置。
在一些实施例中,曲轴与法兰之间具有第一装配间隙,第一装配间隙的范围为0.005mm~0.05mm。
在一些实施例中,第一装配间隙的范围为0.01mm~0.03mm。
在一些实施例中,偏心部具有圆弧面,圆弧面的圆心角大于等于180度。
在一些实施例中,偏心部为圆柱形。
在一些实施例中,偏心部的近端与曲轴的轴体部分的外圆平齐;或,偏心部的近端突出于曲轴的轴体部分的外圆;或,偏心部的近端位于曲轴的轴体部分的外圆的内侧。
在一些实施例中,滑块包括多个子滑块,多个子滑块拼接后围成通孔。
在一些实施例中,两个偏心部在曲轴的轴向上间隔设置。
在一些实施例中,交叉槽结构具有中心孔,两个限位通道通过中心孔连通,中心孔的孔径大于曲轴的轴体部分的直径。
在一些实施例中,中心孔的孔径大于偏心部的直径。
在一些实施例中,滑块在通孔的轴向的投影具有两条相对平行的直线段以及连接两条直线段的端部的弧线段。
在一些实施例中,限位通道具有与滑块滑动接触的一组相对设置的第一滑移面,滑块具有与第一滑移面配合的第二滑移面,滑块具有朝向限位通道的端部的挤压面,挤压面作为滑块的头部,两个第二滑移面通过挤压面连接,挤压面朝向变容积腔。
在一些实施例中,挤压面为弧面,弧面的弧心与通孔的中心之间的距离等于偏心部的偏心量。
在一些实施例中,弧面的曲率半径与缸套的内圆的半径相等;或,弧面的曲率半径与缸套的内圆的半径具有差值,差值的范围为-0.05mm~0.025mm。
在一些实施例中,差值的范围为-0.02mm~0.02mm。
在一些实施例中,挤压面在滑块滑动方向上的投影面积S 滑块与缸套的压缩排气口 的面积为S 之间满足:S 滑块/S 的值为8~25。
在一些实施例中,S 滑块/S 的值为12~18。
在一些实施例中,缸套具有压缩进气口和压缩排气口,在任一滑块处于进气位置的情况下,压缩进气口与对应的变容积腔导通;在任一滑块处于排气位置的情况下,对应的变容积腔与压缩排气口导通。
在一些实施例中,缸套的内壁面具有吸气腔,吸气腔与压缩进气口连通。
在一些实施例中,吸气腔绕缸套的内壁面的周向延伸第一预设距离,以构成弧形吸气腔。
在一些实施例中,吸气腔为两个,两个吸气腔沿缸套的轴向间隔设置,缸套还具有吸气连通腔,两个吸气腔均与吸气连通腔连通,且压缩进气口通过吸气连通腔与吸气腔连通。
在一些实施例中,吸气连通腔沿缸套的轴向延伸第二预设距离,吸气连通腔的至少一端贯通缸套的轴向端面。
在一些实施例中,缸套的外壁上开设有排气腔,压缩排气口由缸套的内壁连通至排气腔处,流体机械还包括排气阀组件,排气阀组件设置在排气腔内并对应压缩排气口设置。
在一些实施例中,压缩排气口为两个,两个压缩排气口沿缸套的轴向间隔设置,排气阀组件为两组,两组排气阀组件分别对应两个压缩排气口设置。
在一些实施例中,缸套的轴向端面上还设置有连通孔,连通孔与排气腔连通,流体机械还包括法兰,法兰上设置有排气通道,连通孔与排气通道连通。
在一些实施例中,排气腔贯通至缸套的外壁面,流体机械还包括排气盖板,排气盖板与缸套连接并密封排气腔。
在一些实施例中,流体机械是压缩机。
在一些实施例中,缸套具有膨胀排气口和膨胀进气口,在任一滑块处于进气位置的情况下,膨胀排气口与对应的变容积腔导通;在任一滑块处于排气位置的情况下,对应的变容积腔与膨胀进气口导通。
在一些实施例中,缸套的内壁面具有膨胀排气腔,膨胀排气腔与膨胀排气口连通。
在一些实施例中,膨胀排气腔绕缸套的内壁面的周向延伸第一预设距离,以构成弧形膨胀排气腔,且膨胀排气腔由膨胀排气口处向膨胀进气口所在一侧延伸,膨胀排 气腔的延伸方向与交叉槽结构的转动方向同向。
在一些实施例中,膨胀排气腔为两个,两个膨胀排气腔沿缸套的轴向间隔设置,缸套还具有膨胀排气连通腔,两个膨胀排气腔均与膨胀排气连通腔连通,且膨胀排气口通过膨胀排气连通腔与膨胀排气腔连通。
在一些实施例中,膨胀排气连通腔沿缸套的轴向延伸第二预设距离,膨胀排气连通腔的至少一端贯通缸套的轴向端面。
在一些实施例中,流体机械是膨胀机。
根据本公开的另一方面,提供了一种换热设备,包括流体机械,流体机械为上述的流体机械。
根据本公开的另一方面,提供了一种流体机械的运行方法,包括曲轴的第一段绕第一段的轴心O 0自转,曲轴的第二段绕第二段的轴心O′ 0自转,其中,O 0与O′ 0不重合;第一段的轴心O 0与交叉槽结构的轴心O 1偏心设置且偏心距离固定,第二段的轴心O′ 0与交叉槽结构的轴心O 1偏心设置且偏心距离固定;第一个滑块以第一段的轴心O 0为圆心做圆周运动,且第一个滑块的中心O 3与第一段的轴心O 0之间的距离等于第一段上的偏心部的偏心量,且第一段上的偏心量等于曲轴的轴心O 0与交叉槽结构的轴心O 1之间的偏心距离,曲轴转动以带动第一个滑块做圆周运动,且第一个滑块与交叉槽结构相互作用并在交叉槽结构的限位通道内往复滑动;第二个滑块以第二段的轴心O′ 0为圆心做圆周运动,且第二个滑块的中心O 4与第二段的轴心O′ 0之间的距离等于第二段上的偏心部的偏心量,且第二段上的偏心量等于第二段的轴心O′ 0与交叉槽结构的轴心O 1之间的偏心距离,曲轴转动以带动第二个滑块做圆周运动,且第二个滑块与交叉槽结构相互作用并在交叉槽结构的限位通道内往复滑动。
在一些实施例中,运行方法采用十字滑块机构原理,其中,第一段上的偏心部作为第一连杆L 1,第二段上的偏心部作为第二连杆L 2,交叉槽结构的两个限位通道分别作为第三连杆L 3和第四连杆L 4,其中,第一连杆L 1和第二连杆L 2的长度不相等。
在一些实施例中,第一连杆L 1和第二连杆L 2之间具有第一夹角A,第三连杆L 3和第四连杆L 4之间具有第二夹角B,其中,第一夹角A为第二夹角B的二倍。
在一些实施例中,第一段的轴心O 0、第二段的轴心O′ 0、交叉槽结构的轴心O 1三者之间的连线为连线O 0O′ 0O 1,第一连杆L 1与连线O 0O′ 0O 1之间具有第三夹角C,对应的第三连杆L 3与连线O 0O′ 0O 1之间具有第四夹角D,其中,第三夹角C为第四夹角D的二倍; 第二连杆L 2与连线O 0O′ 0O 1之间具有第五夹角E,对应的第四连杆L 4与连线O 0O′ 0O 1之间具有第六夹角F,其中,第五夹角E为第六夹角F的二倍;第三夹角C与第五夹角E之和是第一夹角A,第四夹角D和第六夹角F之和是第二夹角B。
在一些实施例中,运行方法还包括滑块的自转角速度与滑块的公转角速度相同;交叉槽结构的公转角速度与滑块的自转角速度相同。
在一些实施例中,在曲轴转动的过程中,曲轴转动2圈,完成4次吸排气过程。
应用本公开的技术方案,通过将交叉槽结构设置成具有两个限位通道的结构形式,并对应设置两个滑块,曲轴的两个偏心部对应伸入两个滑块的两个通孔内,同时,两个滑块对应滑动设置在两个限位通道内并形成变容积腔,由于两个偏心部之间的第一夹角A为两个限位通道的延伸方向之间的第二夹角B的二倍,这样,当两个滑块中的一个处于死点位置时,即,与处于死点位置处的滑块对应的偏心部的驱动转矩为0,处于死点位置处的滑块无法继续旋转,而此时两个偏心部中的另一个偏心部驱动对应的滑块的驱动转矩为最大值,确保具有最大驱动转矩的偏心部能够正常驱动对应的滑块旋转,从而通过该滑块来带动交叉槽结构转动,进而通过交叉槽结构带动处于死点位置处的滑块继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性。
此外,由于本公开提供的流体机械能够稳定运行,即,提高了流体机械例如压缩机和膨胀机的能效、减小了噪音,从而确保换热设备的工作可靠性。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的一些实施例提供的压缩机运行的机构原理示意图;
图2示出了图1中的压缩机运行的机构原理示意图;
图3示出了根据本公开的实施例一的压缩机的内部结构示意图;
图4示出了图3中的压缩机的泵体组件的结构示意图;
图5示出了图4中的泵体组件的分解结构示意图;
图6示出了图5中的曲轴、交叉槽结构、滑块的装配结构示意图;
图7示出了图6中的曲轴、交叉槽结构、滑块的剖视结构示意图;
图8示出了图5中的曲轴的第一段的结构示意图;
图9示出了图8中的第一段和位于第一段上的偏心部的偏心量的结构示意图;
图10示出了图5中的曲轴的第二段的结构示意图;
图11示出了图10中的第二段和位于第二段上的偏心部的偏心量的结构示意图;
图12示出了图4中的曲轴和缸套之间的偏心量的结构示意图;
图13示出了图5中的缸套和下法兰处于分解状态时的结构示意图;
图14示出了图13中的缸套和下法兰之间的偏心量的结构示意图;
图15示出了图5中的滑块在通孔轴向上的结构示意图;
图16示出了图13中的缸套的结构示意图;
图17示出了图16中的缸套的第一视角的结构示意图;
图18示出了图16中的缸套剖视结构示意图;
图19示出了图16中的缸套的第二视角的剖视结构示意图;
图20示出了图19中的Y向视角的结构示意图;
图21示出了图4中的上法兰和缸套的剖视结构示意图,该图中,示出了泵体组件的排气路径;
图22示出了图5中的缸套和排气盖板处于分解状态时的结构示意图;
图23示出了图3中的压缩机处于吸气开始时的状态结构示意图;
图24示出了图3中的压缩机处于吸气过程中的状态结构示意图;
图25示出了图3中的压缩机处于吸气结束时的状态结构示意图;
图26示出了图3中的压缩机处于压缩气体时的状态结构示意图;
图27示出了图3中的压缩机处于排气过程中的状态结构示意图;
图28示出了图3中的压缩机处于排气结束时的状态结构示意图;
图29示出了根据本公开的实施例二的压缩机的泵体组件的分解结构示意图;
图30示出了图29中的曲轴、交叉槽结构、滑块的装配结构示意图;
图31示出了根据本公开的实施例三的压缩机的内部结构示意图;
图32示出了图31中的压缩机的泵体组件的结构示意图;
图33示出了图32中的曲轴、交叉槽结构、滑块的装配结构示意图;
图34示出了图33中的曲轴、交叉槽结构、滑块的剖视结构示意图;
图35示出了图33中的曲轴的结构示意图;
图36示出了图35中的曲轴的分解结构示意图;
图37示出了图36中的第一段和位于第一段上的偏心部的偏心量的结构示意图;
图38示出了图36中的第二段和位于第二段上的偏心部的偏心量的结构示意图;
图39示出了一些相关技术中的压缩机运行的机构原理示意图;
图40示出了一些相关技术中改进后的压缩机运行的机构原理示意图;
图41示出了图40中的压缩机运行的机构原理示意图,该图中,示出了驱动轴驱动滑块旋转的力臂;
图42示出了图40中的压缩机运行的机构原理示意图,该图中,限位槽结构的中心和偏心部的中心重合。
具体实施方式
下面将结合本公开实施例中的附图1至42,对实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
本公开的一些实施例提供了一种流体机械、换热设备和流体机械的运行方法,以改善了流体机械例如压缩机和膨胀机能效低、噪音大的问题。
在一些相关技术中,如图39所示,基于十字滑块机构提出了一种压缩机运行机构原理,即,以点O 1作为气缸中心、点O 2作为驱动轴中心、点O 3作为滑块中心,气缸与驱动轴偏心设置,其中,滑块中心O 3在直径等于线段O 1O 2长度的圆上作圆周运动。
上述的运行机构原理中,气缸中心O 1和驱动轴中心O 2作为运动机构的两个旋转中心,同时,线段O 1O 2的中点O 0作为滑块中心O 3的虚拟中心,使得滑块相对于气缸作往复运动的同时,滑块还相对于驱动轴作往复运动。
由于线段O 1O 2的中点O 0为虚拟中心,无法设置平衡***,导致压缩机高频振动特性恶化的问题,在上述运行机构原理的基础上,如图40所示,提出了一种以O 0作为驱动轴中心的运动机构,即,气缸中心O 1和驱动轴中心O 0作为运动机构的两个旋转中心,驱动轴具有偏心部,滑块与偏心部同轴设置,驱动轴与气缸的装配偏心量等于偏心部的偏心量,使得滑块中心O 3以驱动轴中心O 0为圆心并以O 1O 0为半径做圆周运动。
对应的提出了一套运行机构,包括气缸、限位槽结构、滑块和驱动轴,其中,限位槽结构可转动地设置在气缸内,且气缸与限位槽结构同轴设置,即,气缸中心O 1也是限位槽结构的中心,滑块相对于限位槽结构往复运动,滑块与驱动轴的偏心部同轴装配,滑块绕驱动轴的轴体部分做圆周运动,具体地运动过程为:驱动轴转动,带动滑块绕驱动轴的轴体部分的中心公转,滑块同时相对于偏心部自转,且滑块在限位槽结构的限位槽内往复运动,并推动限位槽结构旋转。
但是,如图41所示,驱动轴驱动滑块旋转的力臂L的长度为L=2e×cosθ×cosθ,其中,e为偏心部的偏心量,θ为O 1O 0连线与滑块在限位槽内滑动方向之间的夹角。
如图42所示,当气缸中心O 1(即,限位槽结构的中心)和偏心部的中心重合时,驱动轴的驱动力的合力经过限位槽结构的中心,即,施加在限位槽结构上的转矩为零,限位槽结构无法转动,此时的运动机构处于死点位置,无法驱动滑块旋转。
基于此,本公开提出了一种具备两个限位通道的交叉槽结构和双滑块的机构原理,并基于该原理构建了一种流体机械例如压缩机和膨胀机,该流体机械具备能效高、噪音小的特点,下面以压缩机为例,具体介绍基于具备两个限位通道的交叉槽结构和双滑块的压缩机。
为了改善相关技术中的流体机械的能效较低、噪音较大的问题,本公开提供了一种流体机械、换热设备和流体机械的运行方法,其中,换热设备包括下述的流体机械,而流体机械采用下述的运行方法运行。
参考图5,本公开的流体机械包括曲轴10、缸套20、交叉槽结构30和滑块40,其中,曲轴10沿其轴向设置有两个偏心部11,两个偏心部11之间具有第一夹角A的相位差(参考图1),两个偏心部11的偏心量不相等;曲轴10与缸套20偏心设置且偏心距离固定;交叉槽结构30可转动地设置在缸套20内,交叉槽结构30具有两个限位通道31,两个限位通道31沿曲轴10的轴向顺次设置,限位通道31的延伸方向 垂直于曲轴10的轴向,且两个限位通道31的延伸方向之间具有第二夹角B(参考图1)的相位差,其中,第一夹角A为第二夹角B的二倍;滑块40具有通孔41,滑块40为两个,两个偏心部11对应伸入两个滑块40的两个通孔41内,两个滑块40对应滑动设置在两个限位通道31内并形成变容积腔311(参考图24和图26),变容积腔311位于滑块40的滑动方向上,曲轴10转动以带动滑块40在限位通道31内往复滑动的同时与交叉槽结构30相互作用,使得交叉槽结构30、滑块40在缸套20内转动。
通过将交叉槽结构30设置成具有两个限位通道31的结构形式,并对应设置两个滑块40,曲轴10的两个偏心部11对应伸入两个滑块40的两个通孔41内,同时,两个滑块40对应滑动设置在两个限位通道31内并形成变容积腔311,由于两个偏心部11之间的第一夹角A为两个限位通道31的延伸方向之间的第二夹角B的二倍,这样,当两个滑块40中的一个处于死点位置时,即,与处于死点位置处的滑块40对应的偏心部11的驱动转矩为0,处于死点位置处的滑块40无法继续旋转,而此时两个偏心部11中的另一个偏心部11驱动对应的滑块40的驱动转矩为最大值,确保具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性。
此外,由于本公开提供的流体机械能够稳定运行,即,确保了流体机械例如压缩机和膨胀机的能效较高、噪音较小,从而确保换热设备的工作可靠性。
需要说明的是,在本公开中,第一夹角A和第二夹角B均不为零。
如图1和图2所示,当上述的流体机械运行时,流体机械的运行方法包括曲轴10的第一段121绕第一段121的轴心O 0自转,曲轴10的第二段122绕第二段122的轴心O′ 0自转,其中,O 0与O′ 0不重合;第一段121的轴心O 0与交叉槽结构30的轴心O 1偏心设置且偏心距离固定,第二段122的轴心O′ 0与交叉槽结构30的轴心O 1偏心设置且偏心距离固定;第一个滑块40以第一段121的轴心O 0为圆心做圆周运动,且第一个滑块40的中心O 3与第一段121的轴心O 0之间的距离等于第一段121上的偏心部11的偏心量,且第一段121上的偏心量等于曲轴10的轴心O 0与交叉槽结构30的轴心O 1之间的偏心距离,曲轴10转动以带动第一个滑块40做圆周运动,且第一个滑块40与交叉槽结构30相互作用并在交叉槽结构30的限位通道31内往复滑动;第二个滑块 40以第二段122的轴心O′ 0为圆心做圆周运动,且第二个滑块40的中心O 4与第二段122的轴心O′ 0之间的距离等于第二段122上的偏心部11的偏心量,且第二段122上的偏心量等于第二段122的轴心O′ 0与交叉槽结构30的轴心O 1之间的偏心距离,曲轴10转动以带动第二个滑块40做圆周运动,且第二个滑块40与交叉槽结构30相互作用并在交叉槽结构30的限位通道31内往复滑动。
如上述方法运行的流体机械,构成了十字滑块机构,该运行方法采用十字滑块40机构原理,其中,第一段121上的偏心部11作为第一连杆L 1,第二段122上的偏心部11作为第二连杆L 2,交叉槽结构30的两个限位通道31分别作为第三连杆L 3和第四连杆L 4,其中,第一连杆L 1和第二连杆L 2的长度不相等。
如图1所示,第一连杆L 1和第二连杆L 2之间具有第一夹角A,第三连杆L 3和第四连杆L 4之间具有第二夹角B,其中,第一夹角A为第二夹角B的二倍。
如图2所示,第一段121的轴心O 0、第二段122的轴心O′ 0、交叉槽结构30的轴心O 1三者之间的连线为连线O 0O′ 0O 1,第一连杆L 1与连线O 0O′ 0O 1之间具有第三夹角C,对应的第三连杆L 3与连线O 0O′ 0O 1之间具有第四夹角D,其中,第三夹角C为第四夹角D的二倍;第二连杆L 2与连线O 0O′ 0O 1之间具有第五夹角E,对应的第四连杆L 4与连线O 0O′ 0O 1之间具有第六夹角F,其中,第五夹角E为第六夹角F的二倍;第三夹角C与第五夹角E之和是第一夹角A,第四夹角D和第六夹角F之和是第二夹角B。
在一些实施例中,运行方法还包括滑块40的自转角速度与滑块40的公转角速度相同;交叉槽结构30的公转角速度与滑块40的自转角速度相同。
具体而言,第一段121的轴心O 0相当于第一连杆L 1的旋转中心,第二段122的轴心O′ 0相当于第二连杆L 2的旋转中心,交叉槽结构30的轴心O 1相当于第三连杆L 3和第四连杆L 4的旋转中心;曲轴10的两个偏心部11分别作为第一连杆L 1和第二连杆L 2,交叉槽结构30的两个限位通道31分别作为第三连杆L 3和第四连杆L 4,且第一连杆L 1和第二连杆L 2的长度不相等,这样,第一段121转动的同时,第一段121上的偏心部11带动对应的滑块40绕第一段121的轴心O 0公转,同时该滑块40相对于该偏心部11能够自转,且二者的相对转动速度相同,由于第一个滑块40和第二个滑块40分别在两个对应的限位通道31内往复运动,并带动交叉槽结构30做圆周运动,受交叉槽结构30的两个限位通道31的限位,两个滑块40的运动方向始终具有第二夹角B的相位差,当第一段121上的偏心部11处于死点位置时,第二段122上的偏心部11具 有最大的驱动转矩,具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性;或者,当第二段122上的偏心部11处于死点位置时,第一段121上的偏心部11具有最大的驱动转矩,具有最大驱动转矩的偏心部11能够正常驱动对应的滑块40旋转,从而通过该滑块40来带动交叉槽结构30转动,进而通过交叉槽结构30带动处于死点位置处的滑块40继续旋转,实现了流体机械的稳定运行,避开了运动机构的死点位置,提升了流体机械的运动可靠性,从而确保换热设备的工作可靠性。
需要说明的是,在本公开中,偏心部11的驱动转矩的最大力臂为2e。
在该运动方法下,各滑块40的运行轨迹均为圆,其中一个圆以第一段121的轴心O 0为圆心以连线O 0O 1为半径,另一个圆以第二段122的轴心O′ 0为圆心以连线O′ 0O 1为半径。
需要说明的是,在本公开中,在曲轴10转动的过程中,曲轴10转动2圈,完成4次吸排气过程。
下面将给出三个可选的实施方式,以对流体机械的结构进行详细的介绍,以便能够通过结构特征更好地阐述流体机械的运行方法。
实施例一
如图3至图28所示,曲轴10的轴体部分12包括沿其轴向连接的第一段121和第二段122,第一段121与第二段122不同轴设置并活动连接,两个偏心部11分别设置在第一段121和第二段122上。这样,通过将曲轴10的轴体部分12设置成沿其轴向连接的第一段121和第二段122,同时,第一段121与第二段122不同轴设置并活动连接,确保第一段121上的偏心部11和第二段122上的偏心部11的偏心量不相等的同时,还能够确保第一段121与第二段122的转动可靠性。
如图5所示,曲轴10还包括滑动连接件13,第一段121通过滑动连接件13与第二段122活动连接,第一段121转动的同时滑动连接件13相对于第一段121滑动,第二段122转动的同时滑动连接件13相对于第二段122滑动。这样,通过滑动连接件13来确保第一段121与第二段122不同轴的同时,还能够确保第一段121与第二段122之间的转动可靠性。
如图5所示,滑动连接件13具有两个限位滑槽131,两个限位滑槽131的延伸方向均垂直于曲轴10的轴向,且两个限位滑槽131的延伸方向相垂直;第一段121朝向滑动连接件13一侧的端部具有第一凸起结构1211,第二段122朝向滑动连接件13一侧的端部具有第二凸起结构1221,第一凸起结构1211和第二凸起结构1221分别滑动设置在两个限位滑槽131内;第一段121转动以使第一凸起结构1211在对应的限位滑槽131内往复滑动的同时与滑动连接件13相互作用,滑动连接件13转动并带动第二凸起结构1221在对应的限位滑槽131内往复滑动的同时驱动第二段122转动;或,第二段122转动以使第二凸起结构1221在对应的限位滑槽131内往复滑动的同时与滑动连接件13相互作用,滑动连接件13转动并带动第一凸起结构1211在对应的限位滑槽131内往复滑动的同时驱动第一段121转动。这样,确保第一段121与第二段122的连接可靠性的同时,还能够确保两者之间的转动平稳性。
如图9、图11、图12和图14所示,第一段121与缸套20的装配偏心量等于设置在第一段121上的偏心部11的偏心量,第二段122与缸套20的装配偏心量等于设置在第二段122上的偏心部11的偏心量。这样,图9中,第一段121上的偏心部11的偏心量为e1,图14中第一段121与缸套20的装配偏心量也为e1,同时,图11中的第二段122上的偏心部11的偏心量为e2,图14中第二段122与缸套20的装配偏心量也为e2,确保图1和图2中构建的运动机构的运动可靠性。
如图12所示,标号H1表示第一段121的轴线,标号H2表示第二段122的轴线,标号I表示缸套20的内圈的轴线。
如图5所示,限位通道31的两端贯通至交叉槽结构30的外周面。这样,有利于降低交叉槽结构30的加工制造难度。
在一些实施例中,两个滑块40分别与两个偏心部11同心设置,滑块40绕曲轴10的轴心做圆周运动,通孔41的孔壁与偏心部11之间具有第一转动间隙,第一转动间隙的范围为0.005mm~0.05mm。
在一些实施例中,交叉槽结构30与缸套20同轴设置,交叉槽结构30的外周面与缸套20的内壁面之间具有第二转动间隙,第二转动间隙的尺寸为0.005mm~0.1mm。
需要说明的是,在本公开中,第一夹角A为160度~200度;第二夹角B为80度~100度。只要满足第一夹角A是第二夹角B的二倍的关系即可。
在一些实施例中,第一夹角A为160度,第二夹角B为80度。
在一些实施例中,第一夹角A为165度,第二夹角B为82.5度。
在一些实施例中,第一夹角A为170度,第二夹角B为85度。
在一些实施例中,第一夹角A为175度,第二夹角B为87.5度。
在一些实施例中,第一夹角A为180度,第二夹角B为90度。
在一些实施例中,第一夹角A为185度,第二夹角B为92.5度。
在一些实施例中,第一夹角A为190度,第二夹角B为95度。
在一些实施例中,第一夹角A为195度,第二夹角B为97.5度。
如图4、图5和图12所示,流体机械还包括法兰50,法兰50设置在缸套20的轴向的端部,曲轴10与法兰50同心设置,交叉槽结构30与缸套20同轴设置,曲轴10与交叉槽结构30的装配偏心量由法兰50和缸套20相对位置关系确定,其中,法兰50通过紧固件90固定在缸套20上,法兰50的轴心与缸套20内圈的轴心的相对位置通过法兰50调心控制,法兰50的轴心与缸套20内圈的轴心的相对位置决定了曲轴10的轴心和交叉槽结构30的轴心的相对位置,通过法兰50调心的本质就是使得偏心部11的偏心量等于曲轴10与缸套20的装配偏心量。
在一些实施例中,曲轴10与法兰50之间具有第一装配间隙,第一装配间隙的范围为0.005mm~0.05mm。
在一些实施例中,第一装配间隙的范围为0.01mm~0.03mm。
需要说明的是,在本公开中,偏心部11具有圆弧面,圆弧面的圆心角大于等于180度。这样,确保偏心部11的圆弧面能够对滑块40施加有效驱动力的作用,从而确保滑块40的运动可靠性。
如图4至图12所示,偏心部11为圆柱形。
在一些实施例中,偏心部11的近端与曲轴10的轴体部分12的外圆平齐。
在一些实施例中,偏心部11的近端突出于曲轴10的轴体部分12的外圆。
在一些实施例中,偏心部11的近端位于曲轴10的轴体部分12的外圆的内侧。
需要说明的是,在本公开一个未图示的实施例中,滑块40包括多个子滑块,多个子滑块拼接后围成通孔41。
如图4至图12所示,两个偏心部11在曲轴10的轴向上间隔设置。这样,在装配曲轴10、缸套20和两个滑块40的过程中,确保两个偏心部11之间的间隔距离能够为缸套20提供装配空间,以确保装配便捷性。
如图5所示,交叉槽结构30具有中心孔32,两个限位通道31通过中心孔32连通,中心孔32的孔径大于曲轴10的轴体部分12的直径。这样,确保曲轴10能够顺利地穿过中心孔32。
在一些实施例中,中心孔32的孔径大于偏心部11的直径。这样,确保曲轴10的偏心部11能够顺利地穿过中心孔32。
如图15所示,滑块40在通孔41的轴向的投影具有两条相对平行的直线段以及连接两条直线段的端部的弧线段。限位通道31具有与滑块40滑动接触的一组相对设置的第一滑移面,滑块40具有与第一滑移面配合的第二滑移面,滑块40具有朝向限位通道31的端部的挤压面42,挤压面42作为滑块40的头部,两个第二滑移面通过挤压面42连接,挤压面42朝向变容积腔311。这样,滑块40的第二滑移面在其通孔41的轴向的投影为直线段,同时,滑块40的挤压面42在其通孔41的轴向的投影为弧线段。
具体地,挤压面42为弧面,弧面的弧心与通孔41的中心之间的距离等于偏心部11的偏心量。图15中,滑块40的通孔41中心为O 滑块,两个弧面的弧心与通孔41的中心之间的距离均为e,即,偏心部11的偏心量,图15中的X虚线表示两个弧面的弧心所在的圆。
在一些实施例中,弧面的曲率半径与缸套20的内圆的半径相等;或,弧面的曲率半径与缸套20的内圆的半径具有差值,差值的范围为-0.05mm~0.025mm。
在一些实施例中,差值的范围为-0.02mm~0.02mm。
在一些实施例中,挤压面42在滑块40滑动方向上的投影面积S 滑块与缸套20的压缩排气口的面积为S 之间满足:S 滑块/S 的值为8~25。
在一些实施例中,S 滑块/S 的值为12~18。
需要说明的是,本实施例示出的流体机械为压缩机,如图3所示,压缩机包括分液器部件80、壳体组件81、电机组件82、泵体组件83、上盖组件84和下盖组件85,其中,分液器部件80设置在壳体组件81的外部,上盖组件84装配在壳体组件81的上端,下盖组件85装配在壳体组件81的下端,电机组件82和泵体组件83均位于壳体组件81的内部,其中,电机组件82位于泵体组件83的上方,或者,电机组件82位于泵体组件83的下方。压缩机的泵体组件83包括上述的曲轴10、缸套20、交叉槽结构30、滑块40、上法兰52和下法兰53。
在一些实施例中,上述各部件通过焊接、热套、或冷压的方式连接。
整个泵体组件83的装配过程如下:下法兰53固定在缸套20上,两个滑块40分别置于对应的两个限位通道31内,将第一段121、第二段122和滑动连接件13组装成曲轴10后,曲轴10的两个偏心部11分别伸入对应的两个滑块40的两个通孔41内,再将组装好的曲轴10、交叉槽结构30和两个滑块40置于缸套20内,曲轴10的一端安装在下法兰53上,曲轴10的另一端穿过上法兰52设置,具体可参见图4和图5。
需要说明的是,在本实施例中,滑块40、限位通道31、缸套20和上法兰52(或下法兰53)围成的封闭空间即为变容积腔311,泵体组件83共具有4个变容积腔311,在曲轴10转动的过程中,曲轴10转动2圈,单个变容积腔311完成1次吸排气过程,对压缩机而言,曲轴10转动2圈,共计完成4次吸排气过程。
如图23至图28所示,滑块40在限位通道31内往复运动的过程中,同时相对于缸套20旋转,图23至图25中,滑块40顺时针从0度向180度转动的过程中,变容积腔311增大,在变容积腔311增大的过程中,变容积腔311与缸套20的吸气腔23连通,滑块40转动至180度时,变容积腔311的容积达到最大值,此时的变容积腔311与吸气腔23脱离,由此完成吸气作业,图26至图28中,滑块40继续沿顺时针方向从180度向360度转动的过程中,变容积腔311减小,滑块40对变容积腔311内的气体进行压缩,当滑块40转动至该变容积腔311与压缩排气口22连通,且当变容积腔311内的气体达到排气压力时,排气阀组件60的排气阀片61开启,开始排气作业,直至压缩结束后进入下一个周期。
如图23至图28所示,以M标记的点作为滑块40与曲轴10相对运动的参考点,图25表示滑块40顺时针从0度向180度转动的过程,滑块40转动的角度为θ1,对应的曲轴10转动的角度为2θ1,图26中表示滑块40继续沿顺时针方向从180度向360度转动的过程,滑块40转动的角度为180°+θ2,对应的曲轴10转动的角度为360°+2θ2,图27中表示滑块40继续沿顺时针方向从180度向360度转动的过程,且变容积腔311与压缩排气口22连通,滑块40转动的角度为180°+θ3,对应的曲轴10转动的角度为360°+2θ3,即,滑块40转1圈,对应的曲轴10转2圈,其中,θ1<θ2<θ3。
具体而言,如图13、图16至图28所示,缸套20具有压缩进气口21和压缩排气 口22,当任一滑块40处于进气位置时,压缩进气口21与对应的变容积腔311导通;当任一滑块40处于排气位置时,对应的变容积腔311与压缩排气口22导通。
如图13、图16至图28所示,缸套20的内壁面具有吸气腔23,吸气腔23与压缩进气口21连通。这样,确保吸气腔23能够蓄存有大量的气体,以使的变容积腔311能够饱满吸气,从而使得压缩机能够足量吸气,并在吸气不足时,能够及时供给蓄存气体给变容积腔311,以保证压缩机的压缩效率。
在一些实施例中,吸气腔23为在缸套20的内壁面沿径向挖空形成的腔体,吸气腔23可以是1个,也可以是上下2个。
具体而言,吸气腔23绕缸套20的内壁面的周向延伸第一预设距离,以构成弧形吸气腔23。这样,确保吸气腔23的容积足够大,以蓄存大量的气体。
如图13、图16和图18所示,吸气腔23为两个,两个吸气腔23沿缸套20的轴向间隔设置,缸套20还具有吸气连通腔24,两个吸气腔23均与吸气连通腔24连通,且压缩进气口21通过吸气连通腔24与吸气腔23连通。这样,有利于增大吸气腔23的容积,从而减小吸气压力脉动。
在一些实施例中,吸气连通腔24沿缸套20的轴向延伸第二预设距离,吸气连通腔24的至少一端贯通缸套20的轴向端面。这样,便于从缸套20的端面上开设吸气连通腔24,确保吸气连通腔24的加工便捷性。
如图13、图16和图18所示,缸套20的外壁上开设有排气腔25,压缩排气口22由缸套20的内壁连通至排气腔25处。如图19所示,流体机械还包括排气阀组件60,排气阀组件60设置在排气腔25内并对应压缩排气口22设置。这样,排气腔25用于容纳排气阀组件60,有效减少了排气阀组件60的占用空间,使得部件合理布置,提高了缸套20的空间利用率。
如图18至图21所示,压缩排气口22为两个,两个压缩排气口22沿缸套20的轴向间隔设置,排气阀组件60为两组,两组排气阀组件60分别对应两个压缩排气口22设置。这样,由于两个压缩排气口22分别设置有两组排气阀组件60,有效避免变容积腔311内的气体大量泄漏,保证了变容积腔311的压缩效率。
如图19所示,排气阀组件60通过紧固件90与缸套20连接,排气阀组件60包括排气阀片61和阀片挡板62,排气阀片61设置在排气腔25内并遮挡对应的压缩排气口22,阀片挡板62重叠设置在排气阀片61上。这样,阀片挡板62的设置,有效 避免了排气阀片61过渡开启,从而保证了缸套20的排气性能。
在一些实施例中,紧固件90为螺钉。
如图13、图16和图21所示,缸套20的轴向端面上还设置有连通孔26,连通孔26与排气腔25连通,流体机械还包括法兰50,法兰50上设置有排气通道51,连通孔26与排气通道51连通。这样,确保缸套20的排气可靠性。
如图22所示,排气腔25贯通至缸套20的外壁面,流体机械还包括排气盖板70,排气盖板70与缸套20连接并密封排气腔25。这样,排气盖板70起到将变容积腔311与泵体组件83的外部空间隔开的作用。
需要说明的是,在本公开中,当变容积腔311与压缩排气口22连通后,变容积腔311的压力达到排气压力时,排气阀片61打开,压缩的气体经过压缩排气口22进入排气腔25内,并经过缸套20上的连通孔26,再经排气通道51排出并进入泵体组件83的外部空间(即压缩机的腔体),由此完成排气过程。
在一些实施例中,排气盖板70通过紧固件90固定在缸套20上。
在一些实施例中,紧固件90为螺钉。
在一些实施例中,排气盖板70的外轮廓与排气腔25的外轮廓相适配。
下面对压缩机的运行进行具体介绍:
如图3所示,电机组件82带动曲轴10转动,曲轴10的两个偏心部11分别驱动对应的两个滑块40运动,滑块40绕曲轴10的轴心做公转的同时,滑块40相对于偏心部11自转,且滑块40沿限位通道31往复运动,并带动交叉槽结构30在缸套20内转动,滑块40公转的同时沿限位通道31进行往复运动而构成十字滑块机构运动方式。
其他使用场合:该压缩机将吸、排气***换位置,可以作为膨胀机使用。即,将压缩机的排气口作为膨胀机吸气口,通入高压气体,其他推动机构转动,膨胀后通过压缩机吸气口(膨胀机排气口)排出气体。
当流体机械为膨胀机时,缸套20具有膨胀排气口和膨胀进气口,当任一滑块40处于进气位置时,膨胀排气口与对应的变容积腔311导通;当任一滑块40处于排气位置时,对应的变容积腔311与膨胀进气口导通。
在一些实施例中,缸套20的内壁面具有膨胀排气腔25,膨胀排气腔25与膨胀排气口连通。
在一些实施例中,膨胀排气腔25绕缸套20的内壁面的周向延伸第一预设距离, 以构成弧形膨胀排气腔25,且膨胀排气腔25由膨胀排气口处向膨胀进气口所在一侧延伸,膨胀排气腔25的延伸方向与交叉槽结构30的转动方向同向。
在一些实施例中,膨胀排气腔25为两个,两个膨胀排气腔25沿缸套20的轴向间隔设置,缸套20还具有膨胀排气连通腔,两个膨胀排气腔25均与膨胀排气连通腔连通,且膨胀排气口通过膨胀排气连通腔与膨胀排气腔25连通。
在一些实施例中,膨胀排气连通腔沿缸套20的轴向延伸第二预设距离,膨胀排气连通腔的至少一端贯通缸套20的轴向端面。
实施例二
如图29和图30所示,本实施例与实施例一的区别在于,交叉槽结构30的限位通道31的截面为方形的实施例,对应的滑块40在其滑动方向上的截面为与限位通道相适配的方形。
需要说明的是,实施例一的吸排气方式同样适用于本实施例,此处不再赘述。
实施例三
如图31至图38所示,本实施例与实施例一的区别在于,滑动连接件13具有朝向第一段121和第二段122分别伸出的两个限位凸起;第一段121朝向滑动连接件13一侧的端部具有第一滑槽结构,第二段122朝向滑动连接件13一侧的端部具有第二滑槽结构,两个限位凸起分别滑动设置在第一滑槽结构和第二滑槽结构内,且第一滑槽结构的延伸方向与第二滑槽结构的延伸方向相垂直;第一段121转动以使对应的限位凸起在第一滑槽结构内往复滑动的同时,第一滑槽结构与滑动连接件13相互作用,滑动连接件13转动并带动限位凸起在第二滑槽结构内往复滑动的同时驱动第二段122转动;或,第二段122转动以使对应的限位凸起在第二滑槽结构内往复滑动的同时,第二滑槽结构与滑动连接件13相互作用,滑动连接件13转动并带动限位凸起在第一滑槽结构内往复滑动的同时驱动第一段121转动。这样,确保第一段121与第二段122的连接可靠性的同时,还能够确保两者之间的转动平稳性。
需要说明的是,实施例一的吸排气方式同样适用于本实施例,此处不再赘述。
本公开实施例中的流体机械包括压缩机和膨胀机等。
本公开实施例中的换热设备包括空调等。
在本公开的描述中,需要理解的是,使用“第一”、“第二”、“第三”等词语来限定零部件,仅仅是为了便于对上述零部件进行区别,如没有另行声明,上述词语 并没有特殊含义,因此不能理解为对本公开保护范围的限制。
另外,在没有明确否定的情况下,其中一个实施例的技术特征可以有益地与其他一个或多个实施例相互结合。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (50)

  1. 一种流体机械,包括:
    曲轴(10),所述曲轴(10)沿其轴向设置有两个偏心部(11),两个所述偏心部(11)之间具有第一夹角A的相位差,两个所述偏心部(11)的偏心量不相等;
    缸套(20),所述曲轴(10)与所述缸套(20)偏心设置且偏心距离固定;
    交叉槽结构(30),所述交叉槽结构(30)可转动地设置在所述缸套(20)内,所述交叉槽结构(30)具有两个限位通道(31),两个所述限位通道(31)沿所述曲轴(10)的轴向顺次设置,所述限位通道(31)的延伸方向垂直于所述曲轴(10)的轴向,且两个所述限位通道(31)的延伸方向之间具有第二夹角B的相位差,其中,所述第一夹角A为所述第二夹角B的二倍;以及
    两个滑块(40),所述滑块(40)具有通孔(41),两个所述偏心部(11)对应伸入两个所述滑块(40)的两个所述通孔(41)内,两个所述滑块(40)对应滑动设置在两个所述限位通道(31)内并形成变容积腔(311),所述变容积腔(311)位于所述滑块(40)的滑动方向上,所述曲轴(10)转动以带动所述滑块(40)在所述限位通道(31)内往复滑动的同时与所述交叉槽结构(30)相互作用,使得所述交叉槽结构(30)、所述滑块(40)在所述缸套(20)内转动。
  2. 根据权利要求1所述的流体机械,其中所述曲轴(10)的轴体部分(12)包括沿其轴向连接的第一段(121)和第二段(122),所述第一段(121)与所述第二段(122)不同轴设置并活动连接,两个所述偏心部(11)分别设置在所述第一段(121)和所述第二段(122)上。
  3. 根据权利要求2所述的流体机械,其中所述曲轴(10)还包括滑动连接件(13),所述第一段(121)通过所述滑动连接件(13)与所述第二段(122)活动连接,所述第一段(121)转动的同时所述滑动连接件(13)相对于所述第一段(121)滑动,所述第二段(122)转动的同时所述滑动连接件(13)相对于所述第二段(122)滑动。
  4. 根据权利要求3所述的流体机械,其中
    所述滑动连接件(13)具有两个限位滑槽(131),两个所述限位滑槽(131)的延伸方向均垂直于所述曲轴(10)的轴向,且两个所述限位滑槽(131)的延伸方向相垂直;
    所述第一段(121)朝向所述滑动连接件(13)一侧的端部具有第一凸起结构(1211),所述第二段(122)朝向所述滑动连接件(13)一侧的端部具有第二凸起结构(1221),所述第一凸起结构(1211)和所述第二凸起结构(1221)分别滑动设置在两个限位滑槽(131)内;
    所述第一段(121)转动以使所述第一凸起结构(1211)在对应的所述限位滑槽(131)内往复滑动的同时与所述滑动连接件(13)相互作用,所述滑动连接件(13)转动并带动所述第二凸起结构(1221)在对应的所述限位滑槽(131)内往复滑动的同时驱动所述第二段(122)转动;或,
    所述第二段(122)转动以使所述第二凸起结构(1221)在对应的所述限位滑槽(131)内往复滑动的同时与所述滑动连接件(13)相互作用,所述滑动连接件(13)转动并带动所述第一凸起结构(1211)在对应的所述限位滑槽(131)内往复滑动的同时驱动所述第一段(121)转动。
  5. 根据权利要求3或4所述的流体机械,其中
    所述滑动连接件(13)具有朝向所述第一段(121)和所述第二段(122)分别伸出的两个限位凸起;
    所述第一段(121)朝向所述滑动连接件(13)一侧的端部具有第一滑槽结构,所述第二段(122)朝向所述滑动连接件(13)一侧的端部具有第二滑槽结构,两个所述限位凸起分别滑动设置在所述第一滑槽结构和所述第二滑槽结构内,且所述第一滑槽结构的延伸方向与所述第二滑槽结构的延伸方向相垂直;
    所述第一段(121)转动以使对应的所述限位凸起在所述第一滑槽结构内往复滑动的同时,所述第一滑槽结构与所述滑动连接件(13)相互作用,所述滑动连接件(13)转动并带动所述限位凸起在所述第二滑槽结构内往复滑动的同时驱动所述第二段(122)转动;或,
    所述第二段(122)转动以使对应的所述限位凸起在所述第二滑槽结构内往复滑动的同时,所述第二滑槽结构与所述滑动连接件(13)相互作用,所述滑动连接件(13)转动并带动所述限位凸起在所述第一滑槽结构内往复滑动的同时驱动所述第一段(121)转动。
  6. 根据权利要求2至5任一项所述的流体机械,其中所述第一段(121)与所述缸套(20)的装配偏心量等于设置在所述第一段(121)上的偏心部(11)的偏心量, 所述第二段(122)与所述缸套(20)的装配偏心量等于设置在所述第二段(122)上的偏心部(11)的偏心量。
  7. 根据权利要求1至6任一项所述的流体机械,其中所述限位通道(31)的两端贯通至所述交叉槽结构(30)的外周面。
  8. 根据权利要求1至7任一项所述的流体机械,其中两个所述滑块(40)分别与两个所述偏心部(11)同心设置,所述滑块(40)绕所述曲轴(10)的轴心做圆周运动,所述通孔(41)的孔壁与所述偏心部(11)之间具有第一转动间隙,所述第一转动间隙的范围为0.005mm~0.05mm。
  9. 根据权利要求1至8任一项所述的流体机械,其中所述交叉槽结构(30)与所述缸套(20)同轴设置,所述交叉槽结构(30)的外周面与所述缸套(20)的内壁面之间具有第二转动间隙,所述第二转动间隙的范围为0.005mm~0.1mm。
  10. 根据权利要求1至9任一项所述的流体机械,其中所述第一夹角A的范围为160度~200度;所述第二夹角B的范围为80度~100度。
  11. 根据权利要求1至10任一项所述的流体机械,其中所述流体机械还包括法兰(50),所述法兰(50)设置在所述缸套(20)的轴向的端部,所述曲轴(10)与所述法兰(50)同心设置。
  12. 根据权利要求11所述的流体机械,其中所述曲轴(10)与所述法兰(50)之间具有第一装配间隙,所述第一装配间隙的范围为0.005mm~0.05mm。
  13. 根据权利要求12所述的流体机械,其中所述第一装配间隙的范围为0.01mm~0.03mm。
  14. 根据权利要求1至13任一项所述的流体机械,其中所述偏心部(11)具有圆弧面,所述圆弧面的圆心角大于等于180度。
  15. 根据权利要求1至14任一项所述的流体机械,其中所述偏心部(11)为圆柱形。
  16. 根据权利要求1至15任一项所述的流体机械,其中所述偏心部(11)的近端被布置为以下之一:
    所述偏心部(11)的近端与所述曲轴(10)的轴体部分(12)的外圆平齐;
    所述偏心部(11)的近端突出于所述曲轴(10)的轴体部分(12)的外圆;
    所述偏心部(11)的近端位于所述曲轴(10)的轴体部分(12)的外圆的内侧。
  17. 根据权利要求1至16任一项所述的流体机械,其中所述滑块(40)包括多个子滑块,多个所述子滑块拼接后围成所述通孔(41)。
  18. 根据权利要求1至17任一项所述的流体机械,其中两个所述偏心部(11)在所述曲轴(10)的轴向上间隔设置。
  19. 根据权利要求1至18任一项所述的流体机械,其中所述交叉槽结构(30)具有中心孔(32),两个所述限位通道(31)通过所述中心孔(32)连通,所述中心孔(32)的孔径大于所述曲轴(10)的轴体部分(12)的直径。
  20. 根据权利要求19所述的流体机械,其中所述中心孔(32)的孔径大于所述偏心部(11)的直径。
  21. 根据权利要求1至20任一项所述的流体机械,其中所述滑块(40)在所述通孔(41)的轴向的投影具有两条相对平行的直线段以及连接两条所述直线段的端部的弧线段。
  22. 根据权利要求1至21任一项所述的流体机械,其中所述限位通道(31)具有与所述滑块(40)滑动接触的一组相对设置的第一滑移面,所述滑块(40)具有与所述第一滑移面配合的第二滑移面,所述滑块(40)具有朝向所述限位通道(31)的端部的挤压面(42),所述挤压面(42)作为所述滑块(40)的头部,两个所述第二滑移面通过所述挤压面(42)连接,所述挤压面(42)朝向所述变容积腔(311)。
  23. 根据权利要求22所述的流体机械,其中所述挤压面(42)为弧面,所述弧面的弧心与所述通孔(41)的中心之间的距离等于所述偏心部(11)的偏心量。
  24. 根据权利要求23所述的流体机械,其中
    所述弧面的曲率半径与所述缸套(20)的内圆的半径相等;或,
    所述弧面的曲率半径与所述缸套(20)的内圆的半径具有差值,所述差值的范围为-0.05mm~0.025mm。
  25. 根据权利要求24所述的流体机械,其中所述差值的范围为-0.02mm~0.02mm。
  26. 根据权利要求22至25任一项所述的流体机械,其中所述挤压面(42)在所述滑块(40)滑动方向上的投影面积S 滑块与所述缸套(20)的压缩排气口的面积为S 之间的比值S 滑块/S 的范围为8~25。
  27. 根据权利要求26所述的流体机械,其中比值S 滑块/S 的范围为12~18。
  28. 根据权利要求1至27任一项所述的流体机械,其中所述缸套(20)具有压缩进气口(21)和压缩排气口(22),
    在任一所述滑块(40)处于进气位置的情况下,所述压缩进气口(21)与对应的所述变容积腔(311)导通;
    在任一所述滑块(40)处于排气位置的情况下,对应的所述变容积腔(311)与所述压缩排气口(22)导通。
  29. 根据权利要求28所述的流体机械,其中所述缸套(20)的内壁面具有吸气腔(23),所述吸气腔(23)与所述压缩进气口(21)连通。
  30. 根据权利要求29所述的流体机械,其中所述吸气腔(23)绕所述缸套(20)的内壁面的周向延伸第一预设距离,以构成弧形吸气腔(23)。
  31. 根据权利要求29或30所述的流体机械,其中两个所述吸气腔(23)沿所述缸套(20)的轴向间隔设置,所述缸套(20)还具有吸气连通腔(24),两个所述吸气腔(23)均与所述吸气连通腔(24)连通,且所述压缩进气口(21)通过所述吸气连通腔(24)与所述吸气腔(23)连通。
  32. 根据权利要求31所述的流体机械,其中所述吸气连通腔(24)沿所述缸套(20)的轴向延伸第二预设距离,所述吸气连通腔(24)的至少一端贯通所述缸套(20)的轴向端面。
  33. 根据权利要求28至32任一项所述的流体机械,其中所述缸套(20)的外壁上开设有排气腔(25),所述压缩排气口(22)由所述缸套(20)的内壁连通至所述排气腔(25)处,所述流体机械还包括排气阀组件(60),所述排气阀组件(60)设置在所述排气腔(25)内并对应所述压缩排气口(22)设置。
  34. 根据权利要求33所述的流体机械,其中所述压缩排气口(22)为两个,两个所述压缩排气口(22)沿所述缸套(20)的轴向间隔设置,所述排气阀组件(60)为两组,两组所述排气阀组件(60)分别对应两个所述压缩排气口(22)设置。
  35. 根据权利要求34所述的流体机械,其中所述缸套(20)的轴向端面上还设置有连通孔(26),所述连通孔(26)与所述排气腔(25)连通,所述流体机械还包括法兰(50),所述法兰(50)上设置有排气通道(51),所述连通孔(26)与所述排气通道(51)连通。
  36. 根据权利要求33至35任一项所述的流体机械,其中所述排气腔(25)贯通至所述缸套(20)的外壁面,所述流体机械还包括排气盖板(70),所述排气盖板(70)与所述缸套(20)连接并密封所述排气腔(25)。
  37. 根据权利要求28至36中任一项所述的流体机械,其中所述流体机械是压缩机。
  38. 根据权利要求1至27任一项所述的流体机械,其中所述缸套(20)具有膨胀排气口和膨胀进气口,
    在任一所述滑块(40)处于进气位置的情况下,所述膨胀排气口与对应的所述变容积腔(311)导通;
    在任一所述滑块(40)处于排气位置的情况下,对应的所述变容积腔(311)与所述膨胀进气口导通。
  39. 根据权利要求38所述的流体机械,其中所述缸套(20)的内壁面具有膨胀排气腔,所述膨胀排气腔与所述膨胀排气口连通。
  40. 根据权利要求39所述的流体机械,其中所述膨胀排气腔绕所述缸套(20)的内壁面的周向延伸第一预设距离,以构成弧形膨胀排气腔,且所述膨胀排气腔由所述膨胀排气口处向所述膨胀进气口所在一侧延伸,所述膨胀排气腔的延伸方向与所述交叉槽结构(30)的转动方向同向。
  41. 根据权利要求40所述的流体机械,其中所述膨胀排气腔为两个,两个所述膨胀排气腔沿所述缸套(20)的轴向间隔设置,所述缸套(20)还具有膨胀排气连通腔,两个所述膨胀排气腔均与所述膨胀排气连通腔连通,且所述膨胀排气口通过所述膨胀排气连通腔与所述膨胀排气腔连通。
  42. 根据权利要求41所述的流体机械,其中所述膨胀排气连通腔沿所述缸套(20)的轴向延伸第二预设距离,所述膨胀排气连通腔的至少一端贯通所述缸套(20)的轴向端面。
  43. 根据权利要求38至42中任一项所述的流体机械,其中所述流体机械是膨胀机。
  44. 一种换热设备,包括根据权利要求1至43中任一项所述的流体机械。
  45. 一种流体机械的运行方法,包括:
    曲轴(10)的第一段(121)绕所述第一段(121)的轴心O 0自转,所述曲轴(10) 的第二段(122)绕所述第二段(122)的轴心O′ 0自转,其中,O 0与O′ 0不重合;
    所述第一段(121)的轴心O 0与交叉槽结构(30)的轴心O 1偏心设置且偏心距离固定,所述第二段(122)的轴心O′ 0与所述交叉槽结构(30)的轴心O 1偏心设置且偏心距离固定;
    第一个滑块(40)以所述第一段(121)的轴心O 0为圆心做圆周运动,且第一个所述滑块(40)的中心O 3与所述第一段(121)的轴心O 0之间的距离等于所述第一段(121)上的偏心部(11)的偏心量,且所述第一段(121)上的偏心量等于所述曲轴(10)的轴心O 0与所述交叉槽结构(30)的轴心O 1之间的偏心距离,所述曲轴(10)转动以带动第一个所述滑块(40)做圆周运动,且第一个所述滑块(40)与所述交叉槽结构(30)相互作用并在所述交叉槽结构(30)的限位通道(31)内往复滑动;
    第二个滑块(40)以所述第二段(122)的轴心O′ 0为圆心做圆周运动,且第二个所述滑块(40)的中心O 4与所述第二段(122)的轴心O′ 0之间的距离等于所述第二段(122)上的偏心部(11)的偏心量,且所述第二段(122)上的偏心量等于所述第二段(122)的轴心O′ 0与所述交叉槽结构(30)的轴心O 1之间的偏心距离,所述曲轴(10)转动以带动第二个所述滑块(40)做圆周运动,且第二个所述滑块(40)与所述交叉槽结构(30)相互作用并在所述交叉槽结构(30)的限位通道(31)内往复滑动。
  46. 根据权利要求45所述的运行方法,其中所述第一段(121)上的偏心部(11)作为第一连杆L 1,所述第二段(122)上的偏心部(11)作为第二连杆L 2,所述交叉槽结构(30)的两个限位通道(31)分别作为第三连杆L 3和第四连杆L 4,其中,所述第一连杆L 1和所述第二连杆L 2的长度不相等。
  47. 根据权利要求46所述的运行方法,其中所述第一连杆L 1和所述第二连杆L 2之间具有第一夹角A,所述第三连杆L 3和所述第四连杆L 4之间具有第二夹角B,其中,所述第一夹角A为所述第二夹角B的二倍。
  48. 根据权利要求47所述的运行方法,其中所述第一段(121)的轴心O 0、所述第二段(122)的轴心O′ 0、所述交叉槽结构(30)的轴心O 1三者之间的连线为连线O 0O′ 0O 1
    所述第一连杆L 1与所述连线O 0O′ 0O 1之间具有第三夹角C,对应的所述第三连杆L 3与所述连线O 0O′ 0O 1之间具有第四夹角D,其中,所述第三夹角C为所述第四夹角D的二倍;
    所述第二连杆L 2与所述连线O 0O′ 0O 1之间具有第五夹角E,对应的所述第四连杆L4与所述连线O 0O′ 0O 1之间具有第六夹角F,其中,所述第五夹角E为所述第六夹角F的二倍;
    所述第三夹角C与所述第五夹角E之和是所述第一夹角A,所述第四夹角D和所述第六夹角F之和是所述第二夹角B。
  49. 根据权利要求45至48任一项所述的运行方法,其中所述运行方法还包括:
    所述滑块(40)的自转角速度与所述滑块(40)的公转角速度相同;
    所述交叉槽结构(30)的公转角速度与所述滑块(40)的自转角速度相同。
  50. 根据权利要求45至49任一项所述的运行方法,其中在所述曲轴(10)转动的过程中,所述曲轴(10)转动2圈,完成4次吸排气过程。
PCT/CN2022/135779 2021-12-07 2022-12-01 流体机械、换热设备和流体机械的运行方法 WO2023103863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111487159.7 2021-12-07
CN202111487159.7A CN116241465A (zh) 2021-12-07 2021-12-07 流体机械、换热设备和流体机械的运行方法

Publications (1)

Publication Number Publication Date
WO2023103863A1 true WO2023103863A1 (zh) 2023-06-15

Family

ID=86624660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135779 WO2023103863A1 (zh) 2021-12-07 2022-12-01 流体机械、换热设备和流体机械的运行方法

Country Status (2)

Country Link
CN (1) CN116241465A (zh)
WO (1) WO2023103863A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1446286A (en) * 1973-02-21 1976-08-18 Nissei Plastics Ind Co Hydraulic motor
JPH09195956A (ja) * 1997-03-07 1997-07-29 Mitsubishi Electric Corp スクロール圧縮機
JP2005139976A (ja) * 2003-11-05 2005-06-02 Hitachi Ltd スクロール式流体機械
CN101644325A (zh) * 2009-08-26 2010-02-10 北京中清能发动机技术有限公司 圆滑块(组)、曲柄圆滑块机构、机械设备、制造方法
CN204877938U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN208816337U (zh) * 2018-09-18 2019-05-03 珠海凌达压缩机有限公司 一种曲轴滚子结构、压缩机及空调器
CN113202761A (zh) * 2021-05-06 2021-08-03 珠海格力电器股份有限公司 一种膨胀机的吸气结构、膨胀机和空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1446286A (en) * 1973-02-21 1976-08-18 Nissei Plastics Ind Co Hydraulic motor
JPH09195956A (ja) * 1997-03-07 1997-07-29 Mitsubishi Electric Corp スクロール圧縮機
JP2005139976A (ja) * 2003-11-05 2005-06-02 Hitachi Ltd スクロール式流体機械
CN101644325A (zh) * 2009-08-26 2010-02-10 北京中清能发动机技术有限公司 圆滑块(组)、曲柄圆滑块机构、机械设备、制造方法
CN204877938U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN208816337U (zh) * 2018-09-18 2019-05-03 珠海凌达压缩机有限公司 一种曲轴滚子结构、压缩机及空调器
CN113202761A (zh) * 2021-05-06 2021-08-03 珠海格力电器股份有限公司 一种膨胀机的吸气结构、膨胀机和空调器

Also Published As

Publication number Publication date
CN116241465A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN106704182B (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024867A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024866A1 (zh) 压缩机、换热设备和压缩机的运行方法
CN106704183B (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024868A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2023103874A1 (zh) 流体机械、换热设备、流体机械的运行方法
WO2021098312A1 (zh) 泵体组件、流体机械和换热设备
WO2021098314A1 (zh) 泵体组件、换热设备、流体机械及其运转方法
WO2023103863A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN108194358A (zh) 一种双偏心滚柱压缩机
WO2023103876A1 (zh) 流体机械和换热设备
WO2023103871A1 (zh) 流体机械和换热设备
WO2023103872A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2023226414A1 (zh) 流体机械和换热设备
WO2023226415A1 (zh) 流体机械和换热设备
CN110678655A (zh) 旋转式压缩机
WO2023226413A1 (zh) 流体机械和换热设备
KR0127833B1 (ko) 회전실린더 압축기장치
WO2023226409A1 (zh) 流体机械和换热设备
WO2023226411A1 (zh) 流体机械和换热设备
WO2023226407A1 (zh) 流体机械和换热设备
CN117145765A (zh) 流体机械和换热设备
CN117145769A (zh) 流体机械和换热设备
KR100531271B1 (ko) 이중용량 로터리 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022903285

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022903285

Country of ref document: EP

Effective date: 20240708