WO2023103388A1 - 一种接触式光谱共焦装置 - Google Patents

一种接触式光谱共焦装置 Download PDF

Info

Publication number
WO2023103388A1
WO2023103388A1 PCT/CN2022/106610 CN2022106610W WO2023103388A1 WO 2023103388 A1 WO2023103388 A1 WO 2023103388A1 CN 2022106610 W CN2022106610 W CN 2022106610W WO 2023103388 A1 WO2023103388 A1 WO 2023103388A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
light
reflective surface
dispersion
spectral confocal
Prior art date
Application number
PCT/CN2022/106610
Other languages
English (en)
French (fr)
Inventor
刘杰波
Original Assignee
深圳立仪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳立仪科技有限公司 filed Critical 深圳立仪科技有限公司
Publication of WO2023103388A1 publication Critical patent/WO2023103388A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Definitions

  • the invention relates to the field of optical measurement, in particular to a contact type spectral confocal device.
  • Spectral confocal is an optical non-contact measurement method for measuring displacement. It uses broadband light dispersion to form different wavelengths. Different wavelengths are focused to different points. The focus of each wavelength corresponds to a distance value. According to the reflection wavelength to determine the displacement.
  • the spectral confocal sensors on the market can only measure the displacement without contact, but for some special occasions, such as the occasions with oil, water, and dust, it will be because the surface of the oil, water, and dust is measured instead of body, resulting in inaccurate measurement results. Moreover, oil, water, and dust will pollute the optical dispersion element and make the measurement invalid.
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a contact-type spectral confocal device to realize contact-type measurement.
  • a contact spectral confocal device comprising: an optical aperture, a dispersion part, a reflective surface and a contact part;
  • the optical aperture is used to pass the broadband light emitted from the light source, or to pass the measurement light reflected from the reflective surface to the light measurement part, or to have the above two functions at the same time;
  • the dispersion part is used to disperse the light from the optical aperture, so that the dispersed light of different wavelengths is imaged at different positions;
  • the reflective surface receives part of the dispersed light and returns the light focused on the reflective surface to the dispersion part;
  • the contact part is used to contact the object to be measured or the driver to be expressed;
  • the light source emits multiple wavelengths of light from the optical aperture to the dispersion part.
  • the dispersion part disperses the light so that the dispersed light of different wavelengths is focused on different points, and the reflective surface reflects the light of the wavelength focused on it back.
  • the light reflected by the reflective surface is measured or characterized, and the displacement to be measured or characterized drives at least one of the reflective surface or the dispersive part to move through the contact part, so that the reflective surface and the dispersive light generate relative motion, and realize spectral confocal dispersive light measurement or Characterizes the amount of contact displacement.
  • the contact-type spectral confocal device further includes a relative movement part, the movement of the contact part drives the movement of the relative movement part, and the relative movement part drives the movement of the reflecting surface.
  • the contact part moves vertically to drive the reflective surface to move up and down relative to the dispersion part.
  • the contact part drives the reflective surface to move up and down relative to the dispersion part in a swinging manner.
  • the contact part rotates to drive the reflective surface to move up and down relative to the dispersion part.
  • the contact part drives the reflective surface to move up and down relative to the dispersion part in a manner of horizontal movement.
  • the contact-type spectral confocal device further includes a casing and a sealing part, the reflective surface is located in the casing, and the sealing part seals the casing.
  • the contact-type spectral confocal device further includes a guide part, and the guide part constrains the direction or range of movement of the relative moving part.
  • the contact-type spectral confocal device further includes a connection part, the connection part connects the relative movement part and the contact part, and the connection part is detachably connected with the contact part or the relative movement part.
  • the spectrally confocal dispersive light is irradiated on the reflective surface, the contact part contacts the object to be measured, and the reflective surface is driven by the contact part to move, so that relative motion occurs between the reflective surface and the dispersive light, and the spectral confocal dispersive light measurement or Characterizes the amount of contact displacement.
  • This device realizes the conversion of contact displacement into non-contact displacement and is measured by spectral confocal. It can measure or characterize the measured displacement in contact, effectively reduce the interference of oil, water, dust, etc., and solve the pain points of the industry.
  • the principle of spectral confocal measurement is extended to more application fields and occasions, which has great value and economic efficiency.
  • Fig. 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Fig. 2 is a schematic structural diagram of Embodiment 2 of the present invention.
  • Fig. 3 is a schematic structural diagram of Embodiment 3 of the present invention.
  • Fig. 4 is a schematic structural diagram of Embodiment 4 of the present invention.
  • the present invention provides a contact spectral confocal device, including: an optical aperture, a dispersion part, a reflective surface, a contact part and a relative movement part.
  • the optical aperture is used to pass the broadband light emitted from the light source, or to pass the measurement light reflected from the reflective surface to the light measurement part, or to have the above two functions at the same time.
  • the dispersion part is used to disperse the light from the optical aperture, so that the dispersed light with different wavelengths is imaged at different positions.
  • the reflective surface is located below the dispersion part, and the reflective surface receives part of the dispersed light and returns the light focused on the reflective surface to the dispersion part.
  • the contact portion is used for contacting an object to be measured or an actuator to be expressed.
  • the relative movement part connects the contact part and the reflection surface, the movement of the contact part drives the movement of the relative movement part, and the relative movement part drives the reflection surface and the dispersion part to generate relative movement.
  • the relative motion part can drive the reflective surface to move, and can also drive the dispersion part to move, as long as the relative motion between the reflective surface and the dispersion part is ensured.
  • a corresponding relationship is established between the wavelength characteristic of the light reflected by the reflective surface and the contact displacement, and the relationship is used to subsequently calculate the contact displacement by using the wavelength of the light reflected by the reflective surface.
  • the light source emits multiple wavelengths of light from the optical aperture to the dispersion part.
  • the dispersion part disperses the light so that the dispersed light of different wavelengths is focused on different points. Some of the dispersed light is focused on the reflective surface, and the reflective surface will be focused on the reflective surface.
  • the light of the wavelength is reflected back, and the reflected light passes through the optical aperture to the light measurement part, and the light measurement part receives the light reflected by the reflective surface for measurement or characterization.
  • the displacement to be measured or characterized drives at least one of the reflective surface or the dispersive part to move through the contact part, so that the reflective surface and the dispersive light generate relative motion, realizing spectral confocal dispersive light measurement or characterization of contact displacement.
  • the contact type spectral confocal device of the present embodiment 1 comprises: housing 116, optical aperture 101, dispersion part 102, reflective surface 104, contact part 108 and relative movement part 105, and described contact part 108 is with vertical The linear movement drives the reflective surface 104 to move up and down relative to the dispersion part 102 .
  • the reflective surface 104 is located directly below the dispersion part 102, the light of different wavelengths dispersed by the dispersion part 102 is focused on different positions along the up and down direction, the relative movement part 105 connects the reflective surface 104 and the contact part 108, and the contact part 108 moves up and down to drive
  • the relative movement part 105 and the reflective surface 104 move up and down, so that the reflective surface 104 and the dispersed light 103 produce a relative displacement along the up and down direction, and the light of the wavelength focused on the reflective surface 104 is the measurement light, and the reflective surface 104 passes the measurement light through the light
  • Aperture 101 is reflected back to the light measurement part to realize the conversion of contact displacement (the contact part 108 is in direct contact with the measured object) into non-contact displacement (the reflective surface 104 that reflects the scattered light is not in direct contact with the measured object) and is detected by the spectrum confocal measurements.
  • the upper and lower openings of the casing 116 are hollow inside, and the dispersion part 102 is arranged on the top of the casing 116 and seals the top of the casing 116.
  • the dispersion part 102 is connected to the casing by a thread 117 116 top.
  • the relative moving part 105 is located in the middle of the housing, the contact part 108 is located at the bottom of the housing 116 and exposed outside the housing 116 , and the reflecting surface 104 is located on the relative moving part 105 .
  • a guide part 109 is provided between the relative movement part 105 and the housing 116 , and the guide part 109 is used to constrain the direction of movement and the range of up and down movement of the relative movement part 105 .
  • the relative movement part 105 is provided with a movement part guide groove 110 toward the guide 109, and the movement part guide groove 110 further constrains the direction or range of the relative movement part 105 to further improve the precision. It is also possible not to set the movement part guide groove 110 Yes, but in addition to moving up and down, the relative moving part 105 will have additional rotation or shaking, which will bring additional errors.
  • the guide part 109 is provided with a guide part guide groove 113 inside, and the guide part guide groove 113 further restricts the direction or range of movement of the relative moving part.
  • a rolling body cage 111 is arranged in the guide groove 113 of the guide part, and a plurality of rolling bodies 112 are arranged on the rolling body cage 111 , and the relative moving part 105 moves up and down along the rolling body 112 .
  • the rolling element cage 111 is used to fix the rolling elements 112 and keep the rolling elements 112 in a proper relative position.
  • the rolling elements 112 reduce the frictional force of the movement, so that the relative movement part 105 moves up and down more smoothly, and improves the service life.
  • An elastic part 114 is provided between the dispersion part 102 and the relative movement part 105, and the elastic part 114 makes the relative movement part 105 in a proper initial position and provides a proper force measurement.
  • the elastic portion 114 may be a spring.
  • connection part 107 is provided between the relative movement part 105 and the contact part 108, which can be screwed to facilitate replacement of the contact part 108 as required.
  • the bottom end of the connecting portion 107 is exposed outside the casing 116 .
  • a sealing part A106 is provided between the connecting part 107 and the housing 116.
  • the sealing part A106 is used to prevent dust, oil, water, etc.
  • the part A106 does not hinder the movement of the relative movement part 105 .
  • a sealing part B115 is provided between the dispersion part 102 and the housing 116 , and the sealing part B115 is used to prevent dust, oil, water, etc. from entering the housing 116 from the top of the housing.
  • the contact type spectral confocal device of the present embodiment 2 comprises: housing 216, optical aperture 201, dispersion part 202, reflective surface 204, contact part 208 and relative movement part 205, and described contact part 208 is with swing Drive the reflective surface 204 to move up and down relative to the dispersion part 202 in a manner.
  • the reflective surface 204 is located directly below the dispersion part 202, and the light of different wavelengths dispersed by the dispersion part 202 is focused on different positions along the up and down direction, and the relative movement part 205 connects the reflective surface 204 and the contact part 208, and the contact part 208 swings up and down to drive
  • the relative movement part 205 and the reflective surface 204 swing up and down, so that the reflective surface 204 and the dispersed light 203 generate a relative displacement along the vertical direction.
  • the light of the wavelength focused on the reflective surface 204 is the measurement light, and the reflective surface 204 reflects the measurement light back to the light measurement part through the optical aperture 201, so as to convert the contact displacement (the contact part 208 is in direct contact with the measured object) into non-contact displacement.
  • Contact displacement (the reflective surface 204 reflecting the dispersive light is not in direct contact with the measured object) is measured spectrally confocally.
  • the top opening and the bottom end of the housing 216 are sealed, and the interior is hollow.
  • the dispersion part 202 is arranged on the top of the housing 216 and seals the top of the housing 216.
  • the dispersion part 202 is threaded. 217 is connected to the top of housing 216.
  • the relative movement part 205 is located in the middle of the housing 210
  • the reflective surface 204 is located on the relative movement part 205
  • the contact part 208 is located on a side of the housing 216 and exposed outside the housing 216 .
  • a guide part 209 is provided between the relative movement part 205 and the housing 210.
  • the guide part 209 is circular and is used to constrain the direction of movement of the relative movement part 205 and the range of up and down swings.
  • An elastic part 214 is provided between the dispersion part 202 and the relative movement part 205, between the relative movement part 205 and the bottom surface of the housing 216, and the elastic part 214 makes the relative movement part 205 in a suitable initial position and provides a suitable dynamometer.
  • the elastic portion 214 may be a spring.
  • connection portion 207 is provided between the guide portion 209 and the contact portion 208, which can be screwed to facilitate replacement of the contact portion 208 as required.
  • the connecting portion 207 is exposed outside the casing 216 .
  • a sealing part A206 is provided between the connecting part 207 and the housing 210.
  • the sealing part A206 is used to prevent dust, oil, water, etc.
  • the sealing part A206 does not hinder the movement of the relative movement part 205 .
  • a sealing part B215 is provided between the dispersion part 202 and the housing 210 , and the sealing part B215 is used to prevent dust, oil, water, etc. from entering the housing 210 from the top of the housing 210 .
  • the contact type spectral confocal device of the present embodiment 3 comprises: housing 316, optical aperture 301, dispersive part 302, reflective surface 304, contact part 308 and relative movement part 305, and described contact part 308 rotates Drive the reflective surface 304 to move up and down relative to the dispersion part 302 in a manner.
  • the reflective surface 304 is located directly below the dispersing part 302, the light of different wavelengths dispersed by the dispersing part 302 is focused on different positions along the up and down direction, the relative moving part 305 connects the reflecting surface 304 and the contact part 308, and the contact part 308 rotates to drive
  • the moving part 305 and the reflective surface 304 move up and down, so that the reflective surface 304 and the dispersed light 303 generate a relative displacement along the up-down direction.
  • the light of the wavelength focused on the reflective surface 304 is the measurement light
  • the reflective surface 304 reflects the measurement light back to the light measurement part through the optical aperture 304, so as to convert the contact displacement (the contact part 308 is in direct contact with the measured object) into non-contact displacement.
  • Contact displacement (the reflective surface 304 reflecting the dispersive light is not in direct contact with the measured object) is measured spectrally confocally.
  • the upper and lower openings of the housing 316 are hollow inside, and the dispersion part 302 is arranged on the top of the housing 316 and seals the top of the housing 316.
  • the dispersion part 302 is connected to the housing by a thread 317.
  • the relative movement part 305 is located in the middle of the housing 316
  • the reflective surface 304 is located on the relative movement part 305
  • the contact part 308 is located on a side of the housing 316 and exposed outside the housing 316 .
  • a spiral portion 310 is provided between the contact portion 308 and the relative movement portion 305 , and the spiral portion 310 converts the rotational motion of the contact portion 308 into a linear motion.
  • the housing 316 is provided with internal threads, and the spiral portion 310 is a screw rod with external threads.
  • the contact part 308 and the helical part 310 may be a cam structure, which converts the rotational motion of the contact part 308 into the linear motion of the helical part.
  • a guide part 309 is provided between the relative movement part 305 and the housing 316 to constrain the direction of movement of the relative movement part 305 and the range of up and down movement.
  • An elastic part 314 is provided between the dispersion part 308 and the relative movement part 305, and the elastic part 314 makes the relative movement part 305 in a proper initial position and provides a proper force measurement.
  • the elastic part 314 may be a spring.
  • a connecting portion 307 is provided between the guide portion 309 and the contacting portion 308, which can be screwed to facilitate replacement of the contacting portion 308 as required.
  • the connecting portion 307 is exposed outside the casing 316 .
  • a sealing portion A306 is provided between the connecting portion 307 and the housing 316.
  • the sealing portion A306 is used to prevent dust, oil, water, etc. from entering the housing 316 from the bottom of the housing 316, and to ensure that the sealing portion A306 does not hinder relative movement Section 305 moves.
  • a sealing portion B315 is provided between the dispersion portion 302 and the housing 306 , and the sealing portion B305 is used to prevent dust, oil, water, etc. from entering the housing 316 from the top of the housing 316 .
  • the contact type spectral confocal device of the present embodiment 4 comprises: housing 416, optical aperture 401, dispersion part 402, reflective surface 404, contact part 408 and relative movement part 405, and described contact part 408 is horizontal
  • the way of moving drives the reflective surface 404 to move up and down relative to the dispersion part 402 .
  • the reflective surface 404 is located below the dispersion part 402, the light of different wavelengths dispersed by the dispersion part 402 is focused on different positions along the up and down direction, the relative movement part 405 connects the reflective surface 404 and the contact part 408, and the contact part 408 moves horizontally to drive the relative The moving part 405 and the reflective surface 404 move horizontally, and make the reflective surface 404 and the dispersed light 403 produce relative displacements along the vertical direction.
  • the light of the wavelength focused on the reflective surface 404 is the measurement light, and the reflective surface 404 reflects the measurement light back to the light measurement part through the optical aperture 401, so as to convert the contact displacement (the contact part 408 is in direct contact with the measured object) into non-contact displacement.
  • Contact displacement (the reflective surface 404 reflecting the dispersive light is not in direct contact with the measured object) is measured spectrally confocally.
  • the upper and lower openings of the casing 416 are hollow inside, and the dispersion part 402 is arranged on the top of the casing 416 and seals the top of the casing 416.
  • the dispersion part 402 is connected to the casing by a thread 417.
  • the relative movement part 405 is located in the middle of the housing 416
  • the reflective surface 404 is located on the relative movement part 405
  • the contact part 408 is located on the side of the housing 416 and exposed outside the housing 416 .
  • a guide part 409 is provided between the relative movement part 405 and the housing 416 to constrain the direction of movement of the relative movement part 405 and the range of left and right movement.
  • the guide part 409 may be a linear guide rail, and the relative movement part 405 moves along the guide part.
  • the side of the reflective surface 404 facing the dispersion part 402 is inclined, so when the reflective surface 404 moves horizontally, the dispersed light 403 with different wavelengths will focus on different points of the reflective surface 404 .
  • connection portion is provided between the guide portion 409 and the contact portion 408, which can be screwed to facilitate replacement of the contact portion 408 as required.
  • the connecting portion is exposed outside the housing 416 .
  • a sealing part B415 is provided between the dispersion part 402 and the housing 416 , and the sealing part B415 is used to prevent dust, oil, water, etc. from entering the housing 416 from the top of the housing.
  • the spectrally confocal dispersive light irradiates the reflective surface, the contact part contacts the object to be measured, and the reflective surface is driven by the contact part to move, so that there is relative motion between the reflective surface and the dispersive light, and the spectral confocal dispersive light measurement is realized. Or characterize the contact displacement.
  • This device realizes the conversion of contact displacement into non-contact displacement and is measured by spectral confocal. It can measure or characterize the measured displacement in contact, effectively reduce the interference of oil, water, dust, etc., and solve the pain points of the industry.
  • the principle of spectral confocal measurement is extended to more application fields and occasions, which has great value and economic efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明公开一种接触式光谱共焦装置,包括:光孔径、色散部、反射表面以及接触部,光源发出多个波长的光从光孔径通向色散部,色散部将光色散使得不同波长的色散光聚焦在不同的点,反射表面将聚焦到其上的波长的光反射回去,光测量部接收反射表面反射的光进行测量或表征,待测量或表征的位移量通过接触部带动反射表面或色散部中的至少一个运动,使得反射表面和色散光产生相对运动,实现光谱共焦色散光测量或表征接触位移量。本装置实现将接触式位移转换成非接触位移并被光谱共焦测量到,可以接触式地测量或表征被测位移,减少油、水、粉尘等的干扰,解决了业界痛点问题,能将光谱共焦测量原理扩展到更多应用领域和场合,具有巨大的价值和经济效率。

Description

一种接触式光谱共焦装置 技术领域
本发明涉及光学测量领域,尤其涉及一种接触式光谱共焦装置。
背景技术
光谱共焦是一种光学非接触测量位移量的测量方法,其采用宽带光色散后形成不同的波长,不同的波长聚焦到不同的点,每一个波长的焦点都对应一个距离值,根据反射的波长来确定位移量。
目前市面上的光谱共焦传感器通常只能非接触测量位移量,但是对于一些特殊的场合,比如有油、水、粉尘的场合,会因为测到的是其油、水、粉尘的表面而不是本体,而导致测量结果不准确。而且油、水、粉尘还会污染光学色散元件使其测量失效。
因此,现有技术存在缺陷,需要改进。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种接触式光谱共焦装置,实现接触式的测量。
本发明的技术方案如下:一种接触式光谱共焦装置,包括:光孔径、色散部、反射表面以及接触部;
所述光孔径用于供从光源发射的宽带光通过,或供从所述反射表面反射回来的测量光通向光测量部,或同时具有上述两种功能;
所述色散部用于将来自光孔径的光色散,使得不同波长的色散光在不同位置成像;
所述反射表面接收部分色散光并将聚焦到反射表面的光线返回所述色散部;
所述接触部用于接触需要测量的物体或需要表达的驱动物;
光源发出多个波长的光从光孔径通向色散部,色散部将光色散使得不同波长的色散光聚焦在不同的点,反射表面将聚焦到其上的波长的光反射回去,光测量部接收反射表面反射的光进行测量或表征,待测量或表征的位移量通过接 触部带动反射表面或色散部中的至少一个运动,使得反射表面和色散光产生相对运动,实现光谱共焦色散光测量或表征接触位移量。
进一步地,所述反射表面反射光的波长特征和接触位移之间建立对应关系,所述关系用于后续利用反射表面反射光的波长计算接触位移。
进一步地,本接触式光谱共焦装置还包括相对运动部,所述接触部运动带动所述相对运动部运动,所述相对运动部带动所述反射表面运动。
进一步地,所述接触部以竖直移动的方式带动所述反射表面相对于所述色散部上下移动。
进一步地,所述接触部以摆动的方式带动所述反射表面相对于所述色散部上下移动。
进一步地,所述接触部以旋转的方式带动所述反射表面相对于所述色散部上下移动。
进一步地,所述接触部以水平移动的方式带动所述反射表面相对于所述色散部上下移动。
进一步地,本接触式光谱共焦装置还包括壳体以及密封部,所述反射表面位于所述壳体内,所述密封部将壳体密封。
进一步地,本接触式光谱共焦装置还包括导向部,所述导向部约束所述相对运动部运动的方向或范围。
进一步地,本接触式光谱共焦装置还包括连接部,所述连接部连接所述相对运动部与接触部,所述连接部与所述接触部或相对运动部可拆卸连接。
采用上述方案,光谱共焦的色散光照射到反射表面,接触部接触被测物体,反射表面由接触部带动运动,使得反射表面与色散光之间产生相对运动,实现光谱共焦色散光测量或表征接触位移量。本装置实现将接触式位移转换成非接触位移并被光谱共焦测量到,可以接触式地测量或表征被测位移,有效减少油、水、粉尘等的干扰,解决了业界痛点问题,能将光谱共焦测量原理扩展到更多应用领域和场合,具有巨大的价值和经济效率。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方 式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以从这些附图获得其他的附图。
图1为本发明的实施例一结构示意图。
图2为本发明实施例二的结构示意图。
图3为本发明实施例三的结构示意图。
图4为本发明实施例四的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种接触式光谱共焦装置,包括:光孔径、色散部、反射表面、接触部以及相对运动部。
所述光孔径用于供从光源发射的宽带光通过,或供从所述反射表面反射回来的测量光通向光测量部,或同时具有上述两种功能。
所述色散部用于将来自光孔径的光进行色散,使得不同波长的色散光在不同位置成像。
所述反射表面位于色散部的下方,反射表面接收部分色散光并将聚焦到反射表面的光线返回所述色散部。
所述接触部用于接触需要测量的物体或需要表达的驱动物。
所述相对运动部连接着所述接触部与反射表面,所述接触部运动带动所述相对运动部运动,所述相对运动部带动所述反射表面与色散部产生相对运动。相对运动部可以带动反射表面运动,也可以带动色散部运动,只要保证反射表面与色散部产生相对运动即可。
所述反射表面反射光的波长特征和接触位移之间建立对应关系,所述关系用于后续利用反射表面反射光的波长计算接触位移。
光源发出多个波长的光从光孔径通向色散部,色散部将光色散使得不同波长的色散光聚焦在不同的点,有的色散光聚焦到反射表面上,反射表面将聚焦到反射表面上波长的光反射回去,反射光从光孔径穿过通向光测量部,光测量 部接收反射表面反射的光进行测量或表征。待测量或表征的位移量通过接触部带动反射表面或色散部中的至少一个运动,使得反射表面和色散光产生相对运动,实现光谱共焦色散光测量或表征接触位移量。
以下通过四个实施例对本接触式光谱共焦装置进行具体说明。
实施例一:
请参阅图1,本实施例一的接触式光谱共焦装置包括:壳体116、光孔径101、色散部102、反射表面104、接触部108以及相对运动部105,所述接触部108以竖直移动的方式带动所述反射表面104相对于所述色散部102上下移动。
所述反射表面104位于色散部102的正下方,经色散部102色散的不同波长的光沿上下方向聚焦在不同位置,相对运动部105连接反射表面104与接触部108,接触部108上下移动带动相对运动部105以及反射表面104上下移动,从而使得反射表面104和色散光103沿上下方向产生相对位移,聚焦在反射表面104的波长的光即为测量光,反射表面104将该测量光通过光孔径101反射回光测量部,实现将接触式位移(接触部108与被测物体直接接触)转换成非接触式移位(反射色散光的反射表面104与被测物体未直接接触)并被光谱共焦测量到。
所述壳体116的上下开口内部中空,所述色散部102设于所述壳体116的顶部且将壳体116的顶部密封,在本实施例中,色散部102通过螺纹117连接在壳体116的顶部。所述相对运动部105位于壳体的中间,所述接触部108位于壳体116的底端且露出于壳体116外,所述反射表面104位于相对运动部105上。
所述相对运动部105与壳体116之间设有导向部109,所述导向部109用于约束相对运动部105运动的方向和上下移动的范围。所述相对运动部105朝向导向109部设有运动部导向槽110,所述运动部导向槽110进一步地约束相对运动部105的方向或范围,进一步提高精度,不设置运动部导向槽110也是可以的,但这样相对运动部105除了上下移动外还会有额外的旋转运动或晃动,会带来额外的误差。所述导向部109内设有导向部导向槽113,所述导向部导向槽113进一步约束相对运动部运动的方向或范围。所述导向部导向槽113内设有滚动体保持架111,所述滚动体保持架111上设有若干滚动体112,所述相对运动部105沿着所述滚动体112进行上下运动。所述滚动体保持架111用于固定滚动 体112,并使得滚动体112之间保持在合适的相对位置。所述滚动体112降低运动的摩擦力,使得相对运动部105上下移动得更为顺畅,提高使用寿命。
所述色散部102与相对运动部105之间设有弹性部114,所述弹性部114使得相对运动部105处于合适的初始位置,并提供合适的测力。所述弹性部114可以为弹簧。
所述相对运动部105与接触部108之间设有连接部107,可以通过螺纹连接,以方便根据需要更换接触部108。连接部107的底端露出于壳体116外。
所述连接部107与壳体116之间设有密封部A106,密封部A106用于防止灰尘、油、水等从壳体底部进入至壳体116内,且密封部A106具有伸缩功能,保证密封部A106不妨碍相对运动部105移动。
所述色散部102与壳体116之间设有密封部B115,所述密封部B115用于防止灰尘、油、水等从壳体顶部进入至壳体116内。
实施例二:
请参阅图2,本实施例二的接触式光谱共焦装置包括:壳体216、光孔径201、色散部202、反射表面204、接触部208以及相对运动部205,所述接触部208以摆动的方式带动所述反射表面204相对于所述色散部202上下移动。
所述反射表面204位于色散部202的正下方,经色散部202色散的不同波长的光沿上下方向聚焦在不同位置,相对运动部205连接反射表面204与接触部208,接触部208上下摆动带动相对运动部205以及反射表面204上下摆动,从而使得反射表面204和色散光203沿上下方向产生相对位移。聚焦在反射表面204的波长的光即为测量光,反射表面204将该测量光通过光孔径201反射回光测量部,实现将接触式位移(接触部208与被测物体直接接触)转换成非接触式移位(反射色散光的反射表面204与被测物体未直接接触)并被光谱共焦测量到。
所述壳体216的顶端开口底端密封,且内部中空,所述色散部202设于所述壳体216的顶部且将壳体216的顶部密封,在本实施例中,色散部202通过螺纹217连接在壳体216的顶部。所述相对运动部205位于壳体210的中间,所述反射表面204位于相对运动部205上,所述接触部208位于壳体216的侧面且露出于壳体216外。
所述相对运动部205与壳体210之间设有导向部209,所述导向部209为圆 形,用于约束相对运动部205运动的方向和上下摆动的范围。
所述色散部202与相对运动部205之间、相对运动部205与壳体216底面之间设有弹性部214,所述弹性部214使得相对运动部205处于合适的初始位置,并提供合适的测力。所述弹性部214可以为弹簧。
所述导向部209与接触部208之间设有连接部207,可以通过螺纹连接,以方便根据需要更换接触部208。连接部207露出于壳体216外。
所述连接部207与壳体210之间设有密封部A206,密封部A206用于防止灰尘、油、水等从壳体210底部进入至壳体210内,且密封部A206具有伸缩功能,保证密封部A206不妨碍相对运动部205移动。
所述色散部202与壳体210之间设有密封部B215,所述密封部B215用于防止灰尘、油、水等从壳体210顶部进入至壳体210内。
实施例三:
请参阅图3,本实施例三的接触式光谱共焦装置包括:壳体316、光孔径301、色散部302、反射表面304、接触部308以及相对运动部305,所述接触部308以旋转的方式带动所述反射表面304相对于所述色散部302上下移动。
所述反射表面304位于色散部302的正下方,经色散部302色散的不同波长的光沿上下方向聚焦在不同位置,相对运动部305连接反射表面304与接触部308,接触部308旋转带动相对运动部305以及反射表面304上下移动,从而使得反射表面304和色散光303沿上下方向产生相对位移。聚焦在反射表面304的波长的光即为测量光,反射表面304将该测量光通过光孔径304反射回光测量部,实现将接触式位移(接触部308与被测物体直接接触)转换成非接触式移位(反射色散光的反射表面304与被测物体未直接接触)并被光谱共焦测量到。
所述壳体316的上下端开口内部中空,所述色散部302设于所述壳体316的顶部且将壳体316的顶部密封,在本实施例中,色散部302通过螺纹317连接在壳体316的顶部。所述相对运动部305位于壳体316的中间,所述反射表面304位于相对运动部305上,所述接触部308位于壳体316的侧面且露出于壳体316外。
所述接触部308与相对运动部305之间设有螺旋部310,螺旋部310将接触部308的旋转运动转变为直线运动。具体地,所述壳体316的内部设有内螺纹, 所述螺旋部310为带有外螺纹的丝杆。或者,接触部308与螺旋部310可以为凸轮结构,将接触部308的旋转运动转变为螺旋部的直线运动。
所述相对运动部305与壳体316之间设有导向部309,用于约束相对运动部305运动的方向和上下移动的范围。
所述色散部308与相对运动部305之间设有弹性部314,所述弹性部314使得相对运动部305处于合适的初始位置,并提供合适的测力。所述弹性部314可以为弹簧。
所述导向部309与接触部308之间设有连接部307,可以通过螺纹连接,以方便根据需要更换接触部308。连接部307露出于壳体316外。
所述连接部307与壳体316之间设有密封部A306,密封部A306用于防止灰尘、油、水等从壳体316底部进入至壳体316内,且保证密封部A306不妨碍相对运动部305移动。
所述色散部302与壳体306之间设有密封部B315,所述密封部B305用于防止灰尘、油、水等从壳体316顶部进入至壳体316内。
实施例四:
请参阅图4,本实施例四的接触式光谱共焦装置包括:壳体416、光孔径401、色散部402、反射表面404、接触部408以及相对运动部405,所述接触部408以水平移动的方式带动所述反射表面404相对于所述色散部402上下移动。
所述反射表面404位于色散部402的下方,经色散部402色散的不同波长的光沿上下方向聚焦在不同位置,相对运动部405连接反射表面404与接触部408,接触部408水平移动带动相对运动部405以及反射表面404水平移动,并使得反射表面404和色散光403沿上下方向产生相对位移。聚焦在反射表面404的波长的光即为测量光,反射表面404将该测量光通过光孔径401反射回光测量部,实现将接触式位移(接触部408与被测物体直接接触)转换成非接触式移位(反射色散光的反射表面404与被测物体未直接接触)并被光谱共焦测量到。
所述壳体416的上下端开口内部中空,所述色散部402设于所述壳体416的顶部且将壳体416的顶部密封,在本实施例中,色散部402通过螺纹417连接在壳体416的顶部。所述相对运动部405位于壳体416的中间,所述反射表面404位于相对运动部405上,所述接触部408位于壳体416的侧面且露出于 壳体416外。
所述相对运动部405与壳体416之间设有导向部409,用于约束相对运动部405运动的方向和左右移动的范围。所述导向部409可以为直线导轨,所述相对运动部405沿着导向部移动。
所述反射表面404朝向色散部402的一面为斜面,因此当反射表面404进行水平移动时,不同波长的色散光403会聚焦到反射表面404的不同点上。
所述导向部409与接触部408之间设有连接部,可以通过螺纹连接,以方便根据需要更换接触部408。连接部露出于壳体416外。
所述色散部402与壳体416之间设有密封部B415,所述密封部B415用于防止灰尘、油、水等从壳体顶部进入至壳体416内。
综上所述,光谱共焦的色散光照射到反射表面,接触部接触被测物体,反射表面由接触部带动运动,使得反射表面与色散光之间产生相对运动,实现光谱共焦色散光测量或表征接触位移量。本装置实现将接触式位移转换成非接触位移并被光谱共焦测量到,可以接触式地测量或表征被测位移,有效减少油、水、粉尘等的干扰,解决了业界痛点问题,能将光谱共焦测量原理扩展到更多应用领域和场合,具有巨大的价值和经济效率。

Claims (11)

  1. 一种接触式光谱共焦装置,其特征在于,包括:光孔径、色散部、反射表面以及接触部;
    所述光孔径用于供从光源发射的宽带光通过,或供从所述反射表面反射回来的测量光通向光测量部,或同时具有上述两种功能;
    所述色散部用于将来自光孔径的光色散,使得不同波长的色散光在不同位置成像;
    所述反射表面接收部分色散光并将聚焦到反射表面的光线返回所述色散部;
    所述接触部用于接触需要测量的物体或需要表达的驱动物;
    光源发出多个波长的光从光孔径通向色散部,色散部将光色散使得不同波长的色散光聚焦在不同的点,反射表面将聚焦到其上的波长的光反射回去,光测量部接收反射表面反射的光进行测量或表征,待测量或表征的位移量通过接触部带动反射表面或色散部中的至少一个运动,使得反射表面和色散光产生相对运动,实现光谱共焦色散光测量或表征接触位移量。
  2. 根据权利要求1所述的接触式光谱共焦装置,其特征在于,所述反射表面反射光的波长特征和接触位移之间建立对应关系,所述关系用于后续利用反射表面反射光的波长计算接触位移。
  3. 根据权利要求1所述的接触式光谱共焦装置,其特征在于,还包括相对运动部,所述接触部运动带动所述相对运动部运动,所述相对运动部带动所述反射表面运动。
  4. 根据权利要求3所述的接触式光谱共焦装置,其特征在于,所述接触部以竖直移动的方式带动所述反射表面相对于所述色散部上下移动。
  5. 根据权利要求3所述的接触式光谱共焦装置,其特征在于,所述接触部以摆动的方式带动所述反射表面相对于所述色散部上下移动。
  6. 根据权利要求3所述的接触式光谱共焦装置,其特征在于,所述接触部以旋转的方式带动所述反射表面相对于所述色散部上下移动。
  7. 根据权利要求3所述的接触式光谱共焦装置,其特征在于,所述接触部以水平移动的方式带动所述反射表面相对于所述色散部上下移动。
  8. 根据权利要求1-7任一项所述的接触式光谱共焦装置,其特征在于,还 包括壳体以及密封部,所述反射表面位于所述壳体内,所述密封部将壳体密封。
  9. 根据权利要求3-7任一项所述的接触式光谱共焦装置,其特征在于,还包括导向部,所述导向部约束所述相对运动部运动的方向或范围。
  10. 根据权利要求4-6任一项所述的接触式光谱共焦装置,其特征在于,还包括连接部,所述连接部连接所述相对运动部与接触部,所述连接部与所述接触部或相对运动部可拆卸连接。
  11. 一种接触式光谱共焦装置,其特征在于,包括:光孔径、色散部、反射表面以及接触部;
    所述光孔径用于供从光源发射的宽带光通过,或供从所述反射表面反射回来的测量光通向光测量部,或同时具有上述两种功能;
    所述色散部用于将来自光孔径的光色散,使得不同波长的色散光在不同位置成像;
    所述反射表面接收部分色散光并将聚焦到反射表面的光线返回所述色散部;
    所述接触部用于接触需要测量的物体或需要表达的驱动物;
    光源发出多个波长的光从光孔径通向色散部,色散部将光色散使得不同波长的色散光聚焦在不同的点,反射表面将聚焦到其上的波长的光反射回去,光测量部接收反射表面反射的光进行测量或表征,待测量或表征的位移量通过接触部带动反射表面或色散部中的至少一个运动,使得反射表面和色散光产生相对运动,实现光谱共焦色散光测量或表征接触位移量;
    所述反射表面反射光的波长特征和接触位移之间建立对应关系,所述关系用于后续利用反射表面反射光的波长计算接触位移;
    还包括相对运动部,所述接触部运动带动所述相对运动部运动,所述相对运动部带动所述反射表面运动;
    所述接触部以竖直移动的方式带动所述反射表面相对于所述色散部上下移动;
    或者,所述接触部以摆动的方式带动所述反射表面相对于所述色散部上下移动;
    或者,所述接触部以旋转的方式带动所述反射表面相对于所述色散部上下移动;
    或者,所述接触部以水平移动的方式带动所述反射表面相对于所述色散部上下移动;
    还包括壳体以及密封部,所述反射表面位于所述壳体内,所述密封部将壳体密封;
    还包括导向部,所述导向部约束所述相对运动部运动的方向或范围;
    还包括连接部,所述连接部连接所述相对运动部与接触部,所述连接部与所述接触部或相对运动部可拆卸连接。
PCT/CN2022/106610 2021-12-10 2022-07-20 一种接触式光谱共焦装置 WO2023103388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111508881.4A CN114199137A (zh) 2021-12-10 2021-12-10 一种接触式光谱共焦装置
CN202111508881.4 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023103388A1 true WO2023103388A1 (zh) 2023-06-15

Family

ID=80652280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106610 WO2023103388A1 (zh) 2021-12-10 2022-07-20 一种接触式光谱共焦装置

Country Status (2)

Country Link
CN (1) CN114199137A (zh)
WO (1) WO2023103388A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199137A (zh) * 2021-12-10 2022-03-18 深圳立仪科技有限公司 一种接触式光谱共焦装置
CN115682952B (zh) * 2022-10-25 2024-01-30 浙江大学 一种基于光谱共焦原理的几何量精密测量装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015006699U1 (de) * 2015-09-24 2016-01-18 Fionec Gmbh Vorrichtung zur indirekten optischen Messung von Abständen
CN105937877A (zh) * 2015-03-04 2016-09-14 株式会社三丰 包含高灵敏度测量模式的色谱测距传感器
CN106030237A (zh) * 2013-12-06 2016-10-12 沃思测量技术股份有限公司 用于测量工件的装置和方法
CN109059762A (zh) * 2018-08-07 2018-12-21 西安交通大学 一种菲涅尔波带片光谱共焦测量方法
CN113137931A (zh) * 2021-04-27 2021-07-20 珠海横琴美加澳光电技术有限公司 一种光谱共焦可测量面型或厚度的装置及方法
CN114199137A (zh) * 2021-12-10 2022-03-18 深圳立仪科技有限公司 一种接触式光谱共焦装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030237A (zh) * 2013-12-06 2016-10-12 沃思测量技术股份有限公司 用于测量工件的装置和方法
CN105937877A (zh) * 2015-03-04 2016-09-14 株式会社三丰 包含高灵敏度测量模式的色谱测距传感器
DE202015006699U1 (de) * 2015-09-24 2016-01-18 Fionec Gmbh Vorrichtung zur indirekten optischen Messung von Abständen
CN109059762A (zh) * 2018-08-07 2018-12-21 西安交通大学 一种菲涅尔波带片光谱共焦测量方法
CN113137931A (zh) * 2021-04-27 2021-07-20 珠海横琴美加澳光电技术有限公司 一种光谱共焦可测量面型或厚度的装置及方法
CN114199137A (zh) * 2021-12-10 2022-03-18 深圳立仪科技有限公司 一种接触式光谱共焦装置

Also Published As

Publication number Publication date
CN114199137A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023103388A1 (zh) 一种接触式光谱共焦装置
US10156434B2 (en) Optical coherence tomography imaging systems and methods
CN107607059B (zh) 一种一键式3d轮廓测量设备及其测量计算方法
US20160223319A1 (en) Optical three dimensional scanners and methods of use thereof
WO2021164202A1 (zh) 一种双视场光相干断层扫描成像***及材料厚度检测法
CN102359818B (zh) 红外光谱干涉仪和采用该干涉仪的红外光谱仪
CN110186371A (zh) 一种平面度超差连续测量装置及其测量方法
CN208125613U (zh) 一种反射率测定装置
JP4677603B2 (ja) ねじ軸径測定装置
CN112832958A (zh) 一种基于光色散的风机塔筒倾斜监测装置及方法
CN109931874B (zh) 球型惯性元件配合间隙激光差动共焦精密测量方法
FI128037B (fi) Sovitelma refraktometrin mittaikkunan yhteydessä ja refraktometri
CN206223647U (zh) 空间气体的扫描装置
JP5913143B2 (ja) 測色計
CN214366548U (zh) 一种基于光色散的风机塔筒倾斜监测装置
CN106872033B (zh) 用于便携式拉曼光谱仪的夹具
CN112033386B (zh) 一种带有标记功能的建筑建设检测用垂直检测装置
CN110672561A (zh) 一种移动式逆反射系数测试仪
CN110160494B (zh) 空间角度测量装置
CN110507290B (zh) 皮肤光滑度检测装置
CN105300996B (zh) 一种警用线性痕迹激光检测***
JPS6042341Y2 (ja) 遠紫外線用の分光分析器
RU2807464C1 (ru) Лазерное устройство для формирования 3D изображения
CN209606295U (zh) 一种静摩擦系数测量设备
CN113108769B (zh) 一种工程造价用测绘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902823

Country of ref document: EP

Kind code of ref document: A1