WO2023101113A1 - 배터리 진단 방법 및 그 장치 - Google Patents

배터리 진단 방법 및 그 장치 Download PDF

Info

Publication number
WO2023101113A1
WO2023101113A1 PCT/KR2022/006616 KR2022006616W WO2023101113A1 WO 2023101113 A1 WO2023101113 A1 WO 2023101113A1 KR 2022006616 W KR2022006616 W KR 2022006616W WO 2023101113 A1 WO2023101113 A1 WO 2023101113A1
Authority
WO
WIPO (PCT)
Prior art keywords
profile
voltage
battery
prediction model
voltage profile
Prior art date
Application number
PCT/KR2022/006616
Other languages
English (en)
French (fr)
Inventor
송창희
Original Assignee
모나 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모나 주식회사 filed Critical 모나 주식회사
Priority to CN202280061896.7A priority Critical patent/CN118119856A/zh
Publication of WO2023101113A1 publication Critical patent/WO2023101113A1/ko
Priority to US18/599,235 priority patent/US20240210482A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a method and device for diagnosing a battery, and more particularly, to a method and device for diagnosing a deterioration state of a battery based on a partial voltage waveform of the battery.
  • Secondary batteries that can be recharged and used repeatedly are used in various fields such as electric vehicles and energy storage systems (ESS).
  • ESS electric vehicles and energy storage systems
  • SOH state of health
  • a technical problem to be achieved by embodiments of the present invention is to provide a method and apparatus for accurately diagnosing a deterioration state of a battery based on some voltage waveforms of the battery.
  • An example of a battery diagnosis method for achieving the above technical problem is a voltage of a predefined section based on a partial voltage waveform during charging or discharging of a battery using a profile prediction model. creating a profile; and predicting a deterioration state of the battery based on the voltage profile using a state prediction model, wherein the profile prediction model is learned to predict a voltage profile of a predefined section based on some voltage waveforms.
  • the state prediction model is characterized in that it is a state prediction model learned to predict a deterioration state of a battery based on a voltage profile.
  • an example of a battery increasing device uses a generator of a generative adversarial network (GAN) learned to generate a voltage profile of a predefined section of the battery.
  • GAN generative adversarial network
  • a profile generator for generating a voltage profile based on a portion of the voltage waveform during charging or discharging; and a prediction unit that predicts a deterioration state of the battery based on the voltage profile using a state prediction model learned to predict a battery state.
  • this embodiment can be efficiently applied not only to diagnosis of the deterioration state of a battery in use but also to diagnosis of the deterioration state for recycling of a waste battery.
  • FIG. 1 is a diagram showing an example of an overall system structure for battery diagnosis according to an embodiment of the present invention
  • FIG. 2 is a diagram showing an example of a profile prediction model according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a state prediction model according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a voltage profile according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an experimental example of a state prediction model according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an example of a method for diagnosing a battery according to an embodiment of the present invention
  • FIG. 7 is a diagram showing an example of implementing a profile prediction model as a generative adversarial network (GAN) according to an embodiment of the present invention.
  • GAN generative adversarial network
  • GAN generative adversarial network
  • GAN generative adversarial network
  • FIG. 10 is a diagram showing the configuration of an example of a battery diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of an overall system structure for battery diagnosis according to an embodiment of the present invention.
  • the battery diagnosis apparatus 100 includes a profile prediction model 110 and a state prediction model 120 .
  • the battery diagnosis device 100 uses the profile prediction model 110 to generate a voltage waveform (hereinafter referred to as 'voltage profile') of a predetermined section, and
  • the deterioration state 140 eg, State of Charge (SOC), etc.
  • SOC State of Charge
  • the voltage waveform 130 is information representing the amount of change in voltage obtained by measuring a real battery for a certain period of time.
  • the voltage waveform 130 may be defined in various forms, and an example thereof is shown in FIG. 4 .
  • a partial voltage waveform among the entire voltage waveform of a battery is referred to as a 'voltage waveform'
  • a voltage waveform of a certain section into which a state prediction model is input is referred to as a 'voltage profile'. That is, a partial section of the voltage profile is a voltage waveform.
  • Both the profile prediction model 110 and the state prediction model 120 are artificial intelligence models created using machine learning or deep learning. More specifically, the profile prediction model 110 is an artificial intelligence model that predicts and outputs a voltage profile when receiving some voltage waveforms as shown in FIG. 2 . The profile prediction model 110 will be reviewed again in FIG. 2 .
  • the state prediction model 120 is an artificial intelligence model that predicts and outputs a deterioration state of a battery based on the received voltage profile.
  • the state prediction model 120 will be reviewed again in FIG. 3 .
  • FIG. 2 is a diagram showing an example of a profile prediction model according to an embodiment of the present invention.
  • the profile prediction model 110 is an artificial intelligence model trained to predict the voltage profile 210 based on voltage waveforms 200 , 202 , and 204 of a partial section.
  • the voltage waveforms 200 , 202 , and 204 of some sections are values obtained by measuring voltage changes during charging or discharging of the battery. This embodiment shows voltage waveforms 200, 202, and 204 measured when the battery is discharged.
  • the battery voltage In order to grasp the voltage waveform of the entire section during charging or discharging of the battery, the battery voltage must be measured while the battery is charged to 100% and then discharged, or the battery voltage must be measured while charging after fully discharging the battery.
  • the charging time of a battery is 1 hour, it takes 1 hour to obtain a voltage waveform of one battery, and if it takes 100 hours to obtain voltage waveforms of 100 batteries.
  • this embodiment uses the profile prediction model 110 that generates voltage waveforms (ie, voltage profiles) of the entire section of the battery only with voltage waveforms of a certain section in the current state of the battery without charging or discharging the battery to 100%. .
  • the battery measurement time for obtaining the voltage waveforms 200, 202, and 204 may be variously set according to the type or capacity of the battery, such as several to several tens of minutes. For example, if the total time required from discharging to charging or the total time required from charging to discharging is 1 hour, the voltage of the battery during charging or discharging is measured for 10 minutes and the voltage waveform (200, 202, 204 ) can be obtained.
  • the voltage waveform When the voltage waveform is measured while charging or discharging the current battery as it is, it is unknown which section of the voltage profile 210 corresponds to the measured section.
  • the voltage waveform 200 measured from the first battery corresponds to the front part of the voltage profile
  • the voltage waveform 202 measured from the second battery corresponds to the middle part of the voltage profile.
  • the voltage waveform 204 measured from the battery corresponds to the last part of the voltage profile, but it is not known which part of the voltage profile the voltage waveform corresponds to with only the measured voltage waveforms 200, 202, and 204 themselves.
  • the present embodiment shows the voltage waveforms 200, 202, and 204 overlapped with the voltage profile for ease of understanding, but some section voltage waveforms 200, 202, and 204 obtained by measuring a certain battery at the present time for a certain period of time are the voltage profile 210. ) is not known to which part.
  • the profile prediction model 110 can be learned and used using learning data including a plurality of voltage profiles and a voltage waveform generated by extracting a part of the voltage profile.
  • the profile prediction model 110 receives learning data including the voltage waveforms 200, 202, and 204 and the voltage profile 210, generates a predicted voltage profile based on the voltage waveforms 9200, 202, and 204, and generates the predicted voltage profile. It can be generated through a learning process of comparing whether it is the same as the voltage profile, which is the correct answer existing in the learning data. For example, in the example of FIG. 2 , when all three voltage waveforms 200 , 202 , and 204 are measured in the same battery but the measurement intervals are different, the profile prediction model 110 can predict all the same voltage profiles 210 .
  • the profile prediction model 110 may be implemented with various conventional networks such as a Convolutional Neural Network (CNN).
  • CNN Convolutional Neural Network
  • the profile prediction model ( 110) may be implemented as a domain transfer network. That is, the profile prediction model 110 may be trained using a transfer learning method. Since the domain transition network itself is a well-known configuration, a detailed description thereof will be omitted.
  • the voltage profile 210 of a predefined section must be accurately predicted based on the voltage waveforms 200, 202, and 204 of some section to accurately diagnose the deterioration state of the battery.
  • GAN Generative Adversarial Network
  • FIG. 3 is a diagram showing an example of a state prediction model according to an embodiment of the present invention.
  • the state prediction model 120 is an artificial intelligence model trained to predict a deterioration state 310 of a battery based on a voltage profile 300 .
  • the state prediction model 120 may be generated by a supervized learning method based on learning data including voltage profiles of a plurality of batteries and deterioration states of the batteries.
  • the value of the deterioration state predicted by the state prediction model 120 may be various values indicating the state of deterioration of the battery, such as charge amount (SOC, etc.) or discharge capacity, which may vary depending on the type of learning data of the state prediction model 120.
  • SOC charge amount
  • discharge capacity which may vary depending on the type of learning data of the state prediction model 120.
  • the state prediction model 120 is trained based on the learning data including the charge amount of the battery (eg, charge capacity at 100% charge, etc.) and the voltage profile 300
  • the trained state prediction model ( 120) may receive the voltage profile 300 of a certain battery, predict and output the amount of charge of the corresponding battery.
  • the state prediction model 120 predicts the deterioration state of the battery using the voltage profile 300, an accurate voltage profile 300 of the battery is required to accurately determine the deterioration state of the battery.
  • the voltage profile is not generated by measuring the voltage of the entire section of the battery in the state prediction model 120, but by using the profile prediction model 110 of FIG. The time required to determine the deterioration state of the battery can be drastically reduced.
  • FIG. 4 is a diagram showing an example of a voltage profile according to an embodiment of the present invention.
  • FIG. 4 a voltage profile according to the number of charge/reverse cycles of the battery is shown.
  • the bar graph on the right shows the number of charge/discharge cycles of the battery. It can be seen that the voltage profile changes when the number of charge/reverse cycles increases and the battery deteriorates.
  • the voltage profile is shown as a graph of the relationship between voltage and discharge capacity (discharging capacity [Ah]), but this is only an example. can be figured out
  • the voltage profile may be a value obtained in the form of a graph between voltage and discharge capacity in FIG. 4 as well as a relationship between voltage and various physical quantities (eg, charge capacity, current, time, etc.).
  • the voltage profile may be in the form of a continuous value such as a graph or in the form of a discontinuous value that is periodically identified.
  • FIG. 5 is a diagram showing an experimental example of a state prediction model according to an embodiment of the present invention.
  • a result of comparing a value predicted by the state prediction model 120 to a battery discharge capacity based on a voltage profile and an actual battery discharge capacity is shown as a graph.
  • the horizontal axis represents the number of charge/discharge times of the battery, and the horizontal axis represents the battery discharge capacity according to the number of charge/reverse cycles of the battery. Looking at the graph, it can be seen that the predicted value of the battery discharge capacity of the state prediction model 120 and the actual battery discharge capacity almost coincide with each other.
  • FIG. 6 is a flowchart illustrating an example of a method for diagnosing a battery according to an embodiment of the present invention.
  • the battery diagnosis apparatus 100 generates a voltage profile for some voltage waveforms using the profile prediction model 110 (S600).
  • the battery diagnosis device 100 may acquire a voltage profile of a predefined section by inputting a voltage waveform of a section obtained by actually measuring a battery for a certain period of time to the profile prediction model 110 . there is.
  • the battery diagnosis apparatus 100 inputs the voltage profile to the state prediction model 120 to determine the deterioration state of the battery (S610).
  • An example of the state prediction model 120 is shown in FIG. 3 .
  • FIG. 7 is a diagram showing an example in which a profile prediction model according to an embodiment of the present invention is implemented as a generative adversarial network (GAN).
  • GAN generative adversarial network
  • a generative adversarial network largely includes a generator 700 and a discriminator 710 .
  • the generator 700 is an artificial intelligence model that predicts a voltage profile based on the input of the voltage waveform 720 . After completion of learning of the generative adversarial network (GAN), the generator 700 can be used as the profile prediction model 110 of this embodiment.
  • the delimiter 710 receives the voltage profile generated by the generator 700 (ie, the fake data 730) and the actual voltage profile (ie, the real data 740), and then the fake data 730 is converted into the real data 740. ) and outputs the result 750.
  • a generator 700 and a classifier 710 have a competitive relationship with each other and learning takes place.
  • the delimiter 710 is learned to distinguish between real data 740 and imitation data 730, and the generator 700 generates imitation data 730 similar to the real data 740 so that the discriminator 710 can be easily deceived. learned to create If this is expressed as a cost function of a generative adversarial network (GAN), the following equation 1 is obtained.
  • D represents the delimiter 710 and G represents the generator 700.
  • D(x) is a probability value (0 to 1) in which the delimiter 710 recognizes the imitation data 730 as the real data 740, and the closer to 1, the closer it is to the real data.
  • D(G(z)) is a probability value (0 to 1) indicating that the imitation data 730 does not match the real data 740, and the closer to 0, the more it means that it is not the real data 740.
  • the delimiter (D) 710 is learned so that the right term of Equation 1 above is maximized. That is, since the delimiter (D) 710 is maximized when D(x) ⁇ 1 and D(G(z)) ⁇ 0, learning is performed so that D(x) ⁇ 1 and D(G(z)) ⁇ 0. It is done. Conversely, the generator (G) 700 is trained so that the right term of Equation 1 is minimized. That is, when the delimiter 710 determines that D(G(z)) ⁇ 1, the right term becomes the minimum, so the generator 700 learns to be D(G(z)) ⁇ 1.
  • the battery diagnosis apparatus 100 trains a generator 700 and a classifier 710 of a generative adversarial network (GAN) using a plurality of voltage profiles and learning data including at least one voltage waveform extracted from each voltage profile. can make it For example, the battery diagnosis apparatus 100 inputs the voltage waveform 720 present in the learning data to the generator 700 to generate the simulated data 730 including the predicted voltage profile.
  • the real data 740 including the actual voltage profile for the voltage waveform 720 input to the generator 700 and the simulated data 730 generated by the generator 700 are input to the separator 710, and the separator 710 ) determines whether the fake data 730 corresponds to the reform of the real data 740.
  • the generator 700 regenerates the predicted voltage profile for the voltage waveform 720 based on the result of determining whether the identifier 710 is imitation. That is, after regenerating the predicted voltage profile so that the discriminator 710 can be easily deceived, it is input to the discriminator 710, and the discriminator 710 performs a process of identifying that the fake data 730 corresponds to the real data 740. While repeatedly performing, the generator 700 and the discriminator 710 are learned respectively.
  • a method for competitively learning the generator 700 and the discriminator 710 of the generative adversarial network (GAN) itself is a known technology, so a detailed description thereof will be omitted.
  • GAN generative adversarial network
  • the predicted voltage profile predicted by the generator 700 should not only conform to the general voltage profile of the battery, but also should be a voltage profile for some voltage waveforms. For example, a voltage waveform 720 between parts measured from a battery that has deteriorated a lot with more than 200 charge/reverse cycles is input to the generator 700, and the predicted voltage profile output by the generator 700 is the voltage in FIG. It is possible to deceive the identifier by conforming to the shape of the profile (that is, it is determined that it matches the shape of the real data 740), but the predicted voltage profile generated by the generator 700 is the voltage profile of a battery that has deteriorated more than 200 times.
  • the present embodiment uses the shape of the simulated data 730 and the real data 740 input to the separator 710 as a value obtained by combining a voltage profile and a voltage waveform. An example of this is shown in FIG. 8 .
  • GAN generative adversarial network
  • the simulated data 730 input to the delimiter 710 is the voltage profile predicted by the generator 700 (hereinafter, the predicted voltage profile) 800 and the input to the generator 700. It is a form in which the voltage waveform 720 is combined (760). That is, the simulated data 730 may be expressed in the form of a vector obtained by concatenating a predicted voltage profile and a voltage waveform.
  • the actual data 740 input to the separator 710 includes the voltage waveform 720 used as an input of the generator 700 and the actual voltage profile 810 for the voltage waveform 720. That is, the real data 740 may be expressed in a vector form in which the actual voltage profile 810 and the voltage waveform 720 are combined.
  • the actual data 740 obtained by combining the actual voltage profile 810 and the voltage waveform 720 is labeled as 1, and the simulated data 730 obtained by combining the predicted voltage profile 800 and the voltage waveform 720. ) is labeled as 0 and used.
  • the voltage waveform 720 of the real data 740 and the imitation data 730 are the same data.
  • the delimiter 710 Since the delimiter 710 is learned with not only the voltage profile but also the imitation data 730 and the real data 740 in which the voltage waveforms are combined, the delimiter 710 is the remodeling of the predicted voltage profile 800 of the imitation data 730. In addition to checking whether the voltage profile 810 of the actual data corresponds to the shape of FIG. 4 , it is determined whether the predicted voltage profile 800 is a waveform corresponding to the voltage waveform 720 . Therefore, as learning is repeated, the generator 700 can predict a voltage profile suitable for an input voltage waveform as well as output a predicted voltage profile that matches the shape of the actual voltage profile as shown in FIG. 4 .
  • Equation 2 The final goal of the generative adversarial network (GAN) is shown in Equation 2.
  • L GAN (G, D) can be considered as an objective function for a typical GAN
  • L const (G) is the voltage profile generated by the generator (700) (predicted voltage profile (800)) and the actual voltage profile (810). It is defined through the difference of (L1-norm between the two profiles). L const serves to allow the generator 700 to restore the predicted voltage profile 800 similarly to the actual voltage profile 810, and expresses the relative importance of L GAN and L const through the parameter ⁇ .
  • the overall cost function is represented by G in Equation 2, and the GAN cost function L GAN (G, D) and construction expressed as the difference between the predicted voltage profile 800 and the actual target pre-arm profile 810 It appears as the sum of loss, L const (G).
  • L GAN (G,D) and L const (G) corresponds to a hyperparameter controlled by ⁇ in Equation 2.
  • G and D in Equation 2 mean weights of the generator 700 and the separator 710, respectively.
  • Equation 3 represents a specific L GAN (G, D).
  • x means any information input to the generator 700, and corresponds to the voltage waveform 720 in this embodiment. Therefore, G(x) means the predicted voltage profile 800 generated by the generator 700.
  • D(G(x)) is expressed as a probabilistic output value inferred by the delimiter 710 receiving the predicted voltage profile 800 as an input.
  • y means the actual voltage profile 810 and D(y) means a stochastic output value inferred by the delimiter 710 receiving the actual voltage profile 810.
  • D(y) means a stochastic output value inferred by the delimiter 710 receiving the actual voltage profile 810.
  • the generator 700 learns in the direction of lowering L GAN (G, D) and at the same time learns in the direction of increasing L GAN (G, D) in the case of the classifier 710, so that the two networks in a mutually competitive environment learning takes place
  • Equation 4 represents the construction loss and is expressed through a difference (L1-norm) between the predicted voltage profile 800 generated through the generator 710 and the actual voltage profile 810 corresponding to the voltage waveform 720.
  • the generator 700 optimizes weights so that construction loss is minimized through learning.
  • GAN generative adversarial network
  • the generator 700 that has been trained through the generative adversarial network (GAN) of FIG. 7 generates a predicted voltage profile using a voltage waveform of a partial section. Looking at the graph, it can be seen that the predicted voltage profile of the generator 700 and the actual voltage profile are almost identical.
  • GAN generative adversarial network
  • FIG. 10 is a diagram showing the configuration of an example of a battery diagnosis apparatus according to an embodiment of the present invention.
  • the battery diagnosis device 100 includes a learning unit 1000, a profile prediction model 1010, a state prediction model 1020, a profile generator 1030, and a prediction unit 1040.
  • the battery diagnosis apparatus 100 may use the profile prediction model 1010 and state prediction model 1020 that have been learned, and in this case, the learning unit 1000 may be omitted.
  • the battery diagnosis device 100 may be implemented as a computing device including a memory, a processor, and an input/output device. In this case, each component may be implemented as software, loaded into a memory, and then driven by a processor.
  • the learning unit 1000 trains and generates a profile prediction model 1010 and a state prediction model 1020 using predefined learning data.
  • the learning unit 1000 may train and generate a profile prediction model 1010 composed of a transfer learning network.
  • the learning unit 1000 trains the generative adversarial network (GAN) of FIG. 7 including the generator that generates the voltage profile, and then provides the generator that has been trained in the GAN to the profile prediction model 1010 of this embodiment.
  • GAN generative adversarial network
  • the profile generator 1030 generates a voltage profile from voltage waveforms of a partial section using the learned profile prediction model 1010 .
  • An example of generating a voltage profile from a voltage waveform using the profile prediction model 1010 is shown in FIG. 2 .
  • the prediction unit 1040 predicts and outputs the deterioration state of the battery from the voltage profile using the learned state prediction model 1020 .
  • the prediction unit 1040 receives the voltage profile generated by the profile generation unit 1030 through the profile prediction model 1010 and predicts a battery deterioration state. That is, the battery diagnosis apparatus 100 can accurately predict the deterioration state of the battery using only the voltage waveform of a certain section of the battery.
  • Each embodiment of the present invention can also be implemented as computer readable codes on a computer readable recording medium.
  • a computer-readable recording medium includes all types of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, SSD, and optical data storage devices.
  • the computer-readable recording medium may be distributed to computer systems connected through a network to store and execute computer-readable codes in a distributed manner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

배터리 진단 방법 및 그 장치가 개시된다. 배터리진단장치는 프로파일예측모델을 이용하여 배터리의 충전 또는 방전시의 일부분의 전압파형을 기반으로 기 정의된 구간의 전압프로파일을 생성하고, 상태예측모델을 이용하여 상기 전압프로파일을 기반으로 배터리의 열화상태를 예측한다.

Description

배터리 진단 방법 및 그 장치
본 발명의 실시 예는 배터리 진단 방법 및 그 장치에 관한 것으로, 보다 상세하게는 배터리의 일부 전압파형을 기반으로 배터리의 열화 상태를 진단할 수 있는 방법 및 그 장치에 관한 것이다.
충전하여 반복 사용할 수 있는 2차 전지(이하, '배터리'라 함)는 전기차, 에너지저장장치(ESS, Energy Storage System) 등 다양한 분야에서 사용되고 있다. 배터리는 충방전 횟수가 반복되면 충전용량이나 방전용량의 성능이 열화되므로 일정 이상 사용 후 교체가 필요하다. 배터리의 열화상태는 일반적으로 SOH(state of Health)를 측정하여 이루어진다. 그러나 SOH를 측정하기 위해서는 배터리를 충전 또는 방전시키는 과정을 수행하여야 하므로 SOH 측정에 많은 시간이 소요되는 단점이 존재한다.
본 발명의 실시 예가 이루고자 하는 기술적 과제는, 배터리의 일부 전압파형을 기반으로 배터리의 열화상태를 정확하게 진단할 수 있는 방법 및 그 장치를 제공하는 데 있다.
상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 배터리 진단 방법의 일 예는, 프로파일예측모델을 이용하여 배터리의 충전 또는 방전시의 일부분의 전압파형을 기반으로 기 정의된 구간의 전압프로파일을 생성하는 단계; 및 상태예측모델을 이용하여 상기 전압프로파일을 기반으로 배터리의 열화상태를 예측하는 단계;를 포함하고, 상기 프로파일예측모델은 일부의 전압파형을 기반으로 기 정의된 구간의 전압프로파일을 예측하도록 학습된 인공지능모델이고, 상기 상태예측모델은 전압프로파일을 기반으로 배터리의 열화상태를 예측하도록 학습된 상태예측모델인 것을 특징으로 한다.
상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 배터리진다장치의 일 예는, 기 정의된 구간의 전압프로파일을 생성하도록 학습된 생성적대립신경망(GAN)의 생성자를 이용하여 배터리의 충전 또는 방전시의 일부분의 전압파형을 기반으로 전압프로파일을 생성하는 프로파일생성부; 및 배터리 상태를 예측하도록 학습된 상태예측모델을 이용하여 상기 전압프로파일을 기반으로 배터리 열화상태를 예측하는 예측부;를 포함한다.
본 발명의 실시 예에 따르면, 배터리의 충전 또는 방전시 나타내는 일부 전압파형을 기반으로 배터리의 충전용량 등 열화상태를 정확하게 파악할 수 있어 배터리 진단에 소요되는 시간을 단축할 수 있다. 또한 본 실시 예는 사용 중인 배터리의 열화상태의 진단 뿐만 아니라 폐배터리의 재활용을 위한 열화상태를 진단하는데에도 효율적으로 적용될 수 있다.
도 1은 본 발명의 실시 예에 따른 배터리진단을 위한 전반적인 시스템 구조의 일 예를 도시한 도면,
도 2는 본 발명의 실시 예에 따른 프로파일예측모델의 일 예를 도시한 도면,
도 3은 본 발명의 실시 예에 따른 상태예측모델의 일 예를 도시한 도면,
도 4는 본 발명의 실시 예에 따른 전압프로파일의 일 예를 도시한 도면,
도 5는 본 발명의 실시 예에 따른 상태예측모델의 실험 예를 도시한 도면,
도 6은 본 발명의 실시 예에 따른 배터리 진단 방법의 일 예를 도시한 흐름도,
도 7은 본 발명의 실시 예에 따른 프로파일예측모델을 생성적대립신경망(GAN)으로 구현한 일 예를 도시한 도면,
도 8은 본 발명의 실시 예에 따른 생성적대립신경망(GAN)에서 구분자에 입력되는 데이터의 예를 도시한 도면,
도 9는 본 발명의 실시 예에 따른 생성적대립신경망(GAN)의 생성자의 성능을 비교한 실험 예를 도시한 도면,
도 10은 본 발명의 실시 예에 따른 배터리진단장치의 일 예의 구성을 도시한 도면이다.
이하에서, 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 배터리 진단 방법 및 그 장치에 대해 상세히 설명한다.
도 1은 본 발명의 실시 예에 따른 배터리진단을 위한 전반적인 시스템 구조의 일 예를 도시한 도면이다.
도 1을 참조하면, 배터리진단장치(100)는 프로파일예측모델(110)과 상태예측모델(120)을 포함한다. 배터리진단장치(100)는 배터리의 일부 전압파형(130)을 입력받으면 프로파일예측모델(110)을 이용하여 기 정의된 일정 구간의 전압파형(이하, '전압프로파일'이라 함)을 생성하고, 전압프로파일을 이용하여 상태예측모델(120)에 입력하여 배터리의 열화상태(140)(예를 들어, SOC(State of Charge) 등)을 파악한다.
전압파형(130)은 실제 배터리에서 일정 시간 동안 측정하여 얻은 전압의 변화량을 나타내는 정보이다. 전압파형(130)은 다양한 형태로 정의될 수 있으며 이에 대한 일 예가 도 4에 도시되어 있다. 이하에서는 설명의 편의를 위하여 배터리의 전체 전압파형 중의 일부분의 전압파형을 '전압파형'이라고 하고, 상태예측모델이 입력되는 일정 구간의 전압파형을 '전압프로파일'이라고 한다. 즉, 전압프로파일의 일부 구간이 전압파형이다.
프로파일예측모델(110)과 상태예측모델(120)은 모두 머신러닝(machine learning)이나 딥러닝(deep learning) 등을 이용하여 생성한 인공지능모델이다. 보다 구체적으로, 프로파일예측모델(110)은 도 2와 같이 일부의 전압파형을 입력받으면 전압프로파일을 예측하여 출력하는 인공지능모델이다. 프로파일예측모델(110)에 대해서는 도 2에서 다시 살펴본다.
상태예측모델(120)은 전압프로파일을 입력받으면 이를 기초로 배터리의 열화상태를 예측하여 출력하는 인공지능모델이다. 상태예측모델(120)에 대해서는 도 3에서 다시 살펴본다.
도 2는 본 발명의 실시 예에 따른 프로파일예측모델의 일 예를 도시한 도면이다.
도 2를 참조하면, 프로파일예측모델(110)은 일부 구간의 전압파형(200,202,204)을 기초로 전압프로파일(210)을 예측하도록 훈련된 인공지능모델이다. 일부 구간의 전압파형(200,202,204)은 배터리의 충전시 또는 방전시의 전압의 변화량을 측정한 값이다. 본 실시 예는 배터리의 방전시에 측정된 전압파형(200,202,204)을 도시하고 있다.
배터리의 충전 또는 방전시의 전체 구간의 전압파형을 파악하기 위해서는 배터리를 100% 충전시킨 후 방전시키면서 배터리 전압을 측정하거나 배터리를 완전 방전시킨후 충전하면서 배터리 전압을 측정하여야 있다. 그러나 이 경우 배터리의 전압파형을 측정하는데 상당 시간이 소요되는 단점이 있다. 예를 들어, 배터리의 충전 시간이 1시간이면, 하나의 배터리의 전압파형을 얻기 위하여 1시간이 소요되며, 만약 100개의 배터리의 전압파형을 얻기 위해서는 100시간이 소요된다.
이에 본 실시 예는 배터리를 100% 충전이나 방전을 시키지 않고 배터리의 현 상태서 일정 구간의 전압파형만으로 배터리의 전체 구간의 전압파형(즉, 전압프로파일)을 생성하는 프로파일예측모델(110)을 사용한다.
전압파형(200,202,204)을 얻기 위한 배터리 측정 시간은 수~수십 분 등 배터리의 종류나 용량 등에 따라 다양하게 설정될 수 있다. 예를 들어, 배터리가 방전에서 충전될 때까지의 총 소요시간 또는 충전에서 방전될 때 까지의 총 소요시간이 1시간이라고 할 때, 충전 또는 방전시의 배터리 전압을 10분간 측정하여 전압파형(200,202,204)을 얻을 수 있다.
현 상태의 배터리를 그대로 충전 또는 방전하면서 전압파형을 측정할 때 측정되는 구간이 전압프로파일(210)에서 어느 구간에 해당하는지 알 수 없다. 예를 들어, 도 2와 같이 제1 배터리에서 측정한 전압파형(200)은 전압프로파일의 앞부분에 해당하고, 제2 배터리에서 측정한 전압파형(202)은 전압프로파일의 중간부분에 해당하고, 제3 배터리에서 측정한 전압파형(204)은 전압프로파일의 마지막부분에 해당하지만 측정된 전압파형(200,202,204) 그 자체만으로 해당 전압파형이 전압프로파일의 어느 부분에 해당하는지는 알 수 없다. 다시 말해, 본 실시 예는 이해를 돕기 위하여 전압프로파일과 중첩하여 전압파형(200,202,204)을 도시하고 있으나, 임의의 배터리를 현 시점에서 일정 시간 측정하여 얻은 일부 구간 전압파형(200,202,204)은 전압프로파일(210)의 어느 부분에 해당하는 것인지 알 수 없다.
이에 본 실시 예는 복수의 전압프로파일과 그 전압프로파일의 일부를 추출하여 생성한 전압파형을 포함하는 학습데이터를 이용하여 프로파일예측모델(110)을 학습시켜 사용할 수 있다. 예를 들어, 프로파일예측모델(110)은 전압파형(200,202,204)과 전압프로파일(210)을 포함하는 학습데이터를 입력받은 후 전압파형9200,202,204)을 기초로 예측 전압프로파일을 생성하고, 예측 전압프로파일이 학습데이터에 존재하는 정답지인 전압프로파일과 동일한지 비교하는 학습과정을 통해 생성될 수 있다. 예를 들어, 도 2의 예에서 세 개의 전압파형(200,202,204)이 모두 동일한 배터리에서 측정되었으나 그 측정 구간이 서로 다른 경우에, 프로파일예측모델(110)은 모두 동일한 전압프로파일(210)을 예측할 수 있다.
프로파일예측모델(110)은 CNN(Convolutional Neural Network) 등 종래의 다양한 네트워크로 구현될 수 있다. 일 실시 예로, 전압프로파일의 생성은 일부 구간의 전압파형(200,202,204)이 존재하는 제1 도메인에서 전체 구간의 전압파형인 전압프로파일(210)이 존재하는 제2 도메인으로의 변환이므로, 프로파일예측모델(110)은 도메인 전이 네트워크(domain transfer network)로 구현될 수 있다. 즉, 프로파일예측모델(110)은 전이학습(transfer learning) 방법으로 훈련될 수 있다. 도메인 전이 네트워크 그 자체는 이미 널리 알려진 구성이므로 이에 대한 상세한 설명은 생략한다.
다른 실시 예로, 일부 구간의 전압파형(200,202,204)을 기초로 기 정의된 구간의 전압프로파일(210)을 정확하게 예측하여야 배터리의 열화상태의 정확한 진단이 가능하므로 프로파일예측모델(110)을 생성적대립신경망(GAN, Generative Adversarial Network)으로 구현할 수 있다. 생성적대립신경망(GAN)을 통해 프로파일예측모델(110)을 생성하는 방법에 대해서는 도 7에서 다시 살펴본다.
도 3은 본 발명의 실시 예에 따른 상태예측모델의 일 예를 도시한 도면이다.
도 3을 참조하면, 상태예측모델(120)은 전압프로파일(300)을 기초로 배터리의 열화상태(310)를 예측하도록 훈련된 인공지능모델이다. 상태예측모델(120)은 복수의 배터리에 대한 전압프로파일과 배터리의 열화상태를 포함하는 학습데이터를 기초로 지도학습(supervized learning) 방법으로 생성될 수 있다.
상태예측모델(120)이 예측한 열화상태의 값은 충전량(SOC 등)이나 방전용량 등 배터리의 열화상태를 알려주는 다양한 값일 수 있으며 이는 상태예측모델(120)의 학습데이터의 종류에 따라 다양하게 구현될 수 있다. 예를 들어, 배터리의 충전량(예를 들어, 100% 충전시 충전용량 등)과 전압프로파일(300)을 포함하는 학습데이터를 기반으로 상태예측모델(120)을 훈련시키면, 훈련 완료된 상태예측모델(120)은 어떤 배터리의 전압프로파일(300)을 입력받아 해당 배터리의 충전량을 예측하여 출력할 수 있다.
상태예측모델(120)은 전압프로파일(300)을 이용하여 배터리의 열화상태를 예측하므로, 배터리의 열화상태를 정확하게 파악하기 위해서는 배터리의 정확한 전압프로파일(300)이 필요하다. 본 실시 예는 상태예측모델(120)에 배터리의 전체 구간의 전압을 측정하여 전압프로파일을 생성하는 것이 아니라 도 2의 프로파일예측모델(110)을 이용하여 일부 구간의 전압파형으로 전압프로파일을 생성하므로 배터리 열화상태를 파악하는데 소요되는 시간을 획기적으로 단축시킬 수 있다.
도 4는 본 발명의 실시 예에 따른 전압프로파일의 일 예를 도시한 도면이다.
도 4를 참조하면, 배터리의 충반전횟수에 따른 전압프로파일을 도시하고 있다. 오르쪽의 막대 그래프는 배터리의 충방전 횟수를 나타낸다. 충반전횟수가 증가하여 배터리가 열화되면 전압프로파일의 변화하는 것을 알 수 있다.
본 실시 예는, 전압프로파일을 전압과 방전용량(discharging capacity[Ah])사이의 관계 그래프로 도시하고 있으나 이는 하나의 예일 뿐 배터리의 충전 또는 방전시에 변화하는 전압의 파형은 다양한 형태로 측정되거나 파악될 수 있다. 예를 들어, 전압프로파일은 도 4의 전압과 방전용량 사이의 그래프 형태 뿐만 아니라 전압과 다양한 물리량(예를 들어, 충전용량, 전류, 시간 등) 사이의 관계로 파악된 값일 수 있다. 실시 예에 따라 전압프로파일은 그래프와 같은 연속적인 값의 형태이거나 주기적으로 파악되는 불연속적인 값의 형태일 수 잇다.
도 5는 본 발명의 실시 예에 따른 상태예측모델의 실험 예를 도시한 도면이다.
도 5를 참조하면, 상태예측모델(120)이 전압프로파일을 기초로 배터리 방전용량을 예측한 값과 실제 배터리 방전용량을 비교한 결과가 그래프로 도시되어 있다. 가로축은 배터리의 충방전횟수를 나타내고 가로축은 배터리의 충반전횟수에 따른 배터리 방전용량을 나타낸다. 그래프를 살펴보면, 상태예측모델(120)의 배터리 방전용량의 예측값과 실제 배터리 방전용량이 값이 거의 일치함을 알 수 있다.
도 6은 본 발명의 실시 예에 따른 배터리 진단 방법의 일 예를 도시한 흐름도이다.
도 1 및 도 6을 함께 참조하면, 배터리진단장치(100)는 프로파일예측모델(110)을 이용하여 일부 전압파형에 대한 전압프로파일을 생성한다(S600). 예를 들어, 배터리진단장치(100)는 도 2와 같이 배터리를 일정 시간 동안 실제 측정하여 얻은 일부 구간의 전압파형을 프로파일예측모델(110)에 입력하여 기 정의된 구간의 전압프로파일을 획득할 수 있다.
배터리진단장치(100)는 전압프로파일을 상태예측모델(120)에 입력하여 배터리의 열화상태를 파악한다(S610). 상태예측모델(120)의 일 예가 도 3에 도시되어 있다.
도 7은 본 발명의 실시 예에 따른 프로파일예측모델을 생성적대립신경망(GAN)으로 구현한 일 예를 도시한 도면이다.
도 7을 참조하면, 생성적대립신경망(GAN)은 크게 생성자(generator)(700) 및 구분자(discriminator)(710)를 포함한다. 생성자(700)는 전압파형(720)을 입력받으면 이를 기초로 전압프로파일을 예측하는 인공지능모델이다. 생성적대립신경망(GAN)의 학습 완료 후 생성자(700)는 본 실시 예의 프로파일예측모델(110)로 사용될 수 있다. 구분자(710)는 생성자(700)가 생성한 전압프로파일(즉, 모조데이터(730))와 실제 전압프로파일(즉, 실데이터(740))를 입력받은 후 모조데이터(730)가 실데이터(740)에 부합하는지 파악하여 그 결과(750)를 출력한다.
생성적대립신경망(GAN)에서 생성자(700)와 구분자(710)는 서로 경쟁적인 관계를 가지고 학습이 이루어진다. 구분자(710)는 실데이터(740)와 모조데이터(730)를 잘 구분하도록 학습되며, 생성자(700)는 구분자(710)를 잘 속일 수 있도록 실데이터(740)와 유사한 모조데이터(730)를 생성하도록 학습된다. 이를 생성적대립신경망(GAN)의 비용함수로 표현하면 다음 수하식 1과 같다.
Figure PCTKR2022006616-appb-img-000001
여기서, D는 구분자(710), G는 생성자(700)를 나타낸다. D(x)는 구분자(710)가 모조데이터(730)를 실데이터(740)로 파악하는 확률값(0~1)으로 1에 가까울수록 실데이터에 부합함을 의미한다. D(G(z))는 모조데이터(730)가 실데이터(740)에 부합하지 않음을 나타내는 확률값(0~1)으로 0에 가까울수록 실데이터(740)가 아님을 의미한다.
구분자(D)(710)는 위 수학식 1의 우측항이 최대가 되도록 학습이 이루어진다. 즉, 구분자(D)(710)는 D(x)~1, D(G(z))~0 일때 최대가 되므로 D(x)~1, D(G(z))~0 이 되도록 학습이 이루어진다. 생성자(G)(700)는 반대로 수식식 1의 우측항이 최소가 되도록 학습이 이루어진다. 즉, 구분자(710)가 D(G(z))~1로 판별할 때 우측항이 최소가 되므로 생성자(700)는 D(G(z))~1이 되도록 학습이 이루어진다.
배터리진단장치(100)는 복수의 전압프로파일과 각 전압프로파일에서 추출한 적어도 하나 이상이 전압파형을 포함하는 학습데이터를 이용하여 생성적대립신경망(GAN)의 생성자(700) 및 구분자(710)를 훈련시킬 수 있다. 예를 들어, 배터리진단장치(100)는 학습데이터에 존재하는 전압파형(720)을 생성자(700)에 입력하여 예측 전압프로파일을 포함하는 모조데이터(730)를 생성한다. 생성자(700)에 입력된 전압파형(720)에 대한 실제 전압프로파일을 포함하는 실데이터(740)와 생성자(700)가 생성한 모조데이터(730)는 구분자(710)에 입력되고, 구분자(710)는 모조데이터(730)가 실데이터(740)의 개형에 해당하는지 파악한다. 생성자(700)는 구분자(710)의 모조 여부 판단 결과를 기초로 전압파형(720)에 대한 예측 전압프로파일을 다시 생성한다. 즉, 구분자(710)를 잘 속일 수 있도록 예측 전압프로파일을 다시 생성한 후 이를 구분자(710)에 입력하고 구분자(710)는 모조데이터(730)가 실데이터(740)에 해당하는 파악하는 과정을 반복 수행하면서 생성자(700)와 구분자(710)는 각각 학습된다. 생성적대립신경망(GAN)의 생성자(700)와 구분자(710)가 경쟁적으로 학습하는 방법 그 자체는 이미 알려진 기술이므로 이에 대한 구체적인 설명은 생략한다.
생성자(700)가 예측한 예측 전압프로파일은 배터리의 일반적인 전압프로파일에 부합하여야 할 뿐만 아니라 일부 전압파형에 대한 전압프로파일이어야 한다. 예를 들어, 충반전 횟수가 200번 이상으로 열화가 많이 된 배터리에서 측정한 일부 간의 전압파형(720)을 생성자(700)에 입력하였는데 생성자(700)가 출력하는 예측 전압프로파일이 도 4의 전압프로파일의 개형에 부합하여 구분자를 속일 수 있으나(즉, 실데이터(740)의 개형에 부합한다고 파악), 생성자(700)가 생성한 예측 전압프로파일은 200번 이상의 열화가 많이 된 배터리의 전압프로파일이 아니라 10번 정도의 충반전 횟수로 열화가 거의 이루어지지 않은 배터리의 전압프로파일일 수 있다. 이 경우 정확한 배터리 열화상태의 진단이 불가능하다. 이를 해결하기 위한 방법으로 본 실시 예는 구분자(710)에 입력하는 모조데이터(730)와 실데이터(740)의 형태를 전압프로파일과 전압파형을 결합한 값으로 사용한다. 이에 대한 예가 도 8에 도시되어 있다.
도 8은 본 발명의 실시 예에 따른 생성적대립신경망(GAN)에서 구분자에 입력되는 데이터의 예를 도시한 도면이다.
도 7 및 도 8을 함께 참조하면, 구분자(710)에 입력되는 모조데이터(730)는 생성자(700)가 예측한 전압프로파일(이하, 예측 전압프로파일)(800)과 생성자(700)에 입력한 전압파형(720)을 결합(760)한 형태이다. 즉, 모조데이터(730)는 예측 전압프로파일과 전압파형을 결합(concatenation)한 벡터 형태로 표현될 수 있다.
구분자(710)에 입력되는 실데이터(740)는 생성자(700)의 입력으로 사용된 전압파형(720)과 그 전압파형(720)에 대한 실제 전압프로파일(810)을 포함한다. 즉, 실데이터(740)는 실제 전압프로파일(810)과 전압파형(720)을 결합한 벡터 형태로 표현될 수 있다. 구분자(710)의 학습시 실제 전압프로파일(810)과 전압파형(720)이 합쳐진 실데이터(740)가 1로 레이블링되고, 예측 전압프로파일(800)과 전압파형(720)이 합쳐진 모조데이터(730)가 0으로 레이블되어 사용된다. 실데이터(740)와 모조데이터(730)의 전압파형(720)은 동일한 데이터이다.
구분자(710)는 전압프로파일뿐만 아니라 전압파형이 합쳐진 모조데이터(730)와 실데이터(740)로 학습이 이루어지므로, 구분자(710)는 모조데이터(730)의 예측 전압프로파일(800)의 개형이 도 4와 같은 실데이터의 전압프로파일(810)의 개형에 부합하는지 확인할 뿐만 아니라 예측 전압프로파일(800)이 전압파형(720)에 대응되는 파형인지 여부를 판단하게 된다. 따라서 학습이 반복될수록 생성자(700)는 도 4와 같은 실제의 전압프로파일의 개형에 맞는 예측 전압프로파일을 출력할 뿐만 아니라 입력받은 전압파형에 맞는 전압프로파일을 예측할 수 있다.
생성적대립신경망(GAN)의 최종목표는 수학식 2와 같다.
Figure PCTKR2022006616-appb-img-000002
Figure PCTKR2022006616-appb-img-000003
Figure PCTKR2022006616-appb-img-000004
LGAN(G,D)은 전형적인 GAN에 대한 목적함수로 간주될 수 있으며, Lconst(G)는 생성자(700)에서 생성된 전압프로파일(예측 전압프로파일(800))과 실제 전압프로파일(810)의 차이(두 프로파일간 L1-norm)를 통해 정의된다. Lconst는 생성자(700)가 실제 전압프로파일(810)과 유사하게 예측 전압프로파일(800)을 복원하도록 하는 역할을 하며 파라미터 γ을 통해 LGAN과 Lconst의 상대적인 중요도를 표현하게 된다.
보다 구체적으로 살펴보면, 전체의 비용함수는 수학식 2의 G로 표기되며, GAN 비용함수 LGAN(G,D)와 예측 전압프로파일(800)과 실제 목표 전암프로파일(810)의 차이로 표현되는 construction loss, Lconst(G)의 합으로 나타난다. LGAN(G,D)와 Lconst(G) 상대적인 중요도는 수식 2의 γ로 조절이 이루어지는 하이퍼파라미터에 해당한다. 또한 수학식 2의 G,D는 각각 생성자(700)와 구분자(710)의 가중치(weights)를 의미한다.
수학식 3은 구체적인 LGAN(G,D)를 나타낸다. 수학식 3에서 x는 생성자(700)에 입력되는 임의의 정보를 의미하며, 본 실시 예에서는 전압파형(720)에 해당한다. 따라서 G(x)는 생성자(700)가 생성한 예측 전압프로파일(800)을 의미한다. D(G(x))는 구분자(710)가 예측 전압프로파일(800)을 입력받아 추론한 확률적 출력값으로 표현된다.
y는 실제 전압프로파일(810)을 의미하고 D(y)는 구분자(710)가 실제 전압프로파일(810)을 입력받아 추론한 확률적 출력값을 의미한다. 구분자(710)의 예측 성능이 좋아질수록 LGAN(G,D)는 크기는 커지고 생성자(700)의 생성 능력이 좋아질수록 LGAN(G,D)의 크기는 작아지게 된다(실제 데이터가 1, 가까데이터가 0으로 레이블링 된 경우).
따라서 생성자(700)는 LGAN(G,D)을 낮추는 방향으로 학습이 이루어지는 동시에 구분자(710)의 경우에 LGAN(G,D)를 높이는 방향으로 학습이 이루어지므로 상호 경쟁적인 환경에서 두 네트워크이 학습이 이루어진다.
수학식 4는 construction loss를 나타내며 생성자(710)를 통해 생성된 예측 전압프로파일(800)과 전압파형(720)에 해당하는 실제 전압프로파일(810)의 차이(L1-norm)를 통해 표현된다. 생성자(700)는 학습을 통해 construction loss가 최소가 되도록 가중치(weight)를 최적화하게 된다.
도 9는 본 발명의 실시 예에 따른 생성적대립신경망(GAN)의 생성자의 성능을 비교한 실험 예를 도시한 도면이다.
도 9를 참조하면, 도 7의 생성적대립신경망(GAN)을 통해 학습 완료된 생성자(700)는 일부 구간의 전압파형을 이용하여 예측 전압프로파일을 생성한다. 그래프를 살펴보면, 생성자(700)의 예측 전압프로파일과 실제 전압프로파일이 거의 일치함을 알 수 있다.
도 10은 본 발명의 실시 예에 따른 배터리진단장치의 일 예의 구성을 도시한 도면이다.
도 10을 참조하면, 배터리진단장치(100)는 학습부(1000), 프로파일예측모델(1010), 상태예측모델(1020), 프로파일생성부(1030) 및 예측부(1040)를 포함한다. 일 실시 예로, 배터리진단장치(100)는 학습 완료된 프로파일예측모델(1010)과 상태예측모델(1020)을 사용할 수 있으며 이 경우 학습부(1000)는 생략가능하다. 다른 실시 예로, 배터리진단장치(100)는 메모리, 프로세서 및 입출력장치를 포함하는 컴퓨팅 장치로 구현될 수 있으며, 이 경우 각 구성은 소프트웨어로 구현되어 메모리에 탑재된 후 프로세서에 의해 구동될 수 있다.
학습부(1000)는 기 정의된 학습데이터를 이용하여 프로파일예측모델(1010) 및 상태예측모델(1020)을 훈련시켜 생성한다. 예를 들어, 학습부(1000)는 전이 학습 네트워크로 구성된 프로파일예측모델(1010)을 훈련시켜 생성할 수 있다. 다른 예로, 학습부(1000)는 전압프로파일을 생성하는 생성자를 포함하는 도 7의 생성적대립신경망(GAN)을 훈려시킨 후 GAN에서 학습 완료된 생성자를 본 실시 예의 프로파일예측모델(1010)로 제공할 수 있다.
프로파일생성부(1030)는 학습완료된 프로파일예측모델(1010)을 이용하여 일부 구간의 전압파형으로부터 전압프로파일을 생성한다. 프로파일예측모델(1010)을 이용하여 전압파형으로부터 전압프로파일을 생성하는 예가 도 2에 도시되어 있다.
예측부(1040)는 학습완료된 상태예측모델(1020)을 이용하여 전압프로파일로부터 배터리의 열화상태를 예측하여 출력한다. 예측부(1040)는 프로파일생성부(1030)가 프로파일예측모델(1010)을 통해 생성한 전압프로파일을 입력받아 배터리 열화상태를 예측한다. 즉, 배터리진단장치(100)는 배터리의 일정 구간의 전압파형만을 이용하여 배터리의 열화상태를 정확하게 예측할 수 있다.
본 발명의 각 실시 예는 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, SSD, 광데이터 저장장치 등이 있다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (6)

  1. 프로파일예측모델을 이용하여 배터리의 충전 또는 방전시의 일부분의 전압파형을 기반으로 기 정의된 구간의 전압프로파일을 생성하는 단계; 및
    상태예측모델을 이용하여 상기 전압프로파일을 기반으로 배터리의 열화상태를 예측하는 단계;를 포함하고,
    상기 프로파일예측모델은 일부의 전압파형을 기반으로 기 정의된 구간의 전압프로파일을 예측하도록 학습된 인공지능모델이고,
    상기 상태예측모델은 전압프로파일을 기반으로 배터리의 열화상태를 예측하도록 학습된 상태예측모델인 것을 특징으로 하는 배터리 진단 방법.
  2. 제 1항에 있어서, 상기 프로파일예측모델은,
    제1 도메인의 전압파형을 입력받아 제2 도메인의 전압프로파일을 생성하는 도메인 전이 네트워크로 구성되는 것을 특징으로 하는 배터리 진단 방법.
  3. 제 1항에 있어서,
    상기 프로파일예측모델은 생성적대립신경망(GAN)의 생성자로 구성되고,
    상기 생성적대립신경망은,
    학습용 전압프로파일의 일부분으로 구성된 학습용 전압파형을 입력받아 예측 전압프로파일을 출력하는 상기 생성자; 및
    상기 학습용 전압프로파일 및 상기 예측 전압프로파일을 포함하는 모조데이터와, 상기 학습용 전압프로파일과 상기 학습용 전압파형을 포함하는 실데이터를 비교하여 구분하는 구분자;를 포함하는 것을 특징으로 하는 배터리 진단 방법.
  4. 제 1항에 있어서, 상기 상태예측모델은,
    전압프로파일과 배터리 충전용량을 포함하는 학습데이터를 이용하여 전압프로파일에 대한 배터리 충전용량을 예측하도록 지도학습 방법으로 생성되는 것을 특징으로 하는 배터리 진단 방법.
  5. 기 정의된 구간의 전압프로파일을 생성하도록 학습된 생성적대립신경망(GAN)의 생성자를 이용하여 배터리의 충전 또는 방전시의 일부분의 전압파형을 기반으로 전압프로파일을 생성하는 프로파일생성부; 및
    배터리 상태를 예측하도록 학습된 상태예측모델을 이용하여 상기 전압프로파일을 기반으로 배터리 열화상태를 예측하는 예측부;를 포함하는 것을 특징으로 하는 배터리진단장치.
  6. 제 1항에 기재된 방법을 수행하기 위한 컴퓨터 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
PCT/KR2022/006616 2021-11-30 2022-05-10 배터리 진단 방법 및 그 장치 WO2023101113A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280061896.7A CN118119856A (zh) 2021-11-30 2022-05-10 电池诊断方法及其装置
US18/599,235 US20240210482A1 (en) 2021-11-30 2024-03-08 Battery diagnosis method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0168032 2021-11-30
KR1020210168032A KR102395182B1 (ko) 2021-11-30 2021-11-30 배터리 진단 방법 및 그 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/599,235 Continuation US20240210482A1 (en) 2021-11-30 2024-03-08 Battery diagnosis method and device therefor

Publications (1)

Publication Number Publication Date
WO2023101113A1 true WO2023101113A1 (ko) 2023-06-08

Family

ID=81591515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006616 WO2023101113A1 (ko) 2021-11-30 2022-05-10 배터리 진단 방법 및 그 장치

Country Status (4)

Country Link
US (1) US20240210482A1 (ko)
KR (1) KR102395182B1 (ko)
CN (1) CN118119856A (ko)
WO (1) WO2023101113A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150049860A (ko) * 2013-10-31 2015-05-08 현대모비스 주식회사 차량용 배터리의 가용 용량 연산 방법 및 컴퓨터 판독 가능한 기록 매체
KR20160067510A (ko) * 2014-12-04 2016-06-14 삼성전자주식회사 배터리의 상태를 추정하는 방법 및 장치
KR20200119383A (ko) * 2019-03-26 2020-10-20 서강대학교산학협력단 인공 지능에 기반하여 배터리의 상태를 추정하는 장치 및 방법
KR20210041511A (ko) * 2019-10-07 2021-04-15 삼성에스디아이 주식회사 배터리의 건강 상태를 추정하는 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487495B1 (ko) * 2012-06-13 2015-01-29 주식회사 엘지화학 혼합 양극재를 포함하는 이차 전지의 충전 상태 추정 장치 및 방법
JP6761638B2 (ja) * 2015-02-04 2020-09-30 株式会社半導体エネルギー研究所 二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150049860A (ko) * 2013-10-31 2015-05-08 현대모비스 주식회사 차량용 배터리의 가용 용량 연산 방법 및 컴퓨터 판독 가능한 기록 매체
KR20160067510A (ko) * 2014-12-04 2016-06-14 삼성전자주식회사 배터리의 상태를 추정하는 방법 및 장치
KR20200119383A (ko) * 2019-03-26 2020-10-20 서강대학교산학협력단 인공 지능에 기반하여 배터리의 상태를 추정하는 장치 및 방법
KR20210041511A (ko) * 2019-10-07 2021-04-15 삼성에스디아이 주식회사 배터리의 건강 상태를 추정하는 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAAZ FALAK, HERLE ANIRUDDH, CHANNEGOWDA JANAMEJAYA, RAJ ADITYA, LAKSHMINARAYANAN MEENAKSHI: "A generative adversarial network‐based synthetic data augmentation technique for battery condition evaluation", INTERNATIONAL JOURNAL OF ENERGY RESEARCH, WILEY, CHICHESTER, GB, vol. 45, no. 13, 25 October 2021 (2021-10-25), GB , pages 19120 - 19135, XP093070161, ISSN: 0363-907X, DOI: 10.1002/er.7013 *

Also Published As

Publication number Publication date
KR102395182B1 (ko) 2022-05-10
CN118119856A (zh) 2024-05-31
US20240210482A1 (en) 2024-06-27
KR102395182B9 (ko) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2022034983A1 (ko) 신경망 기반의 배터리 셀 불량 및 화재 사전 진단 방법 및 장치
JP6768100B2 (ja) 蓄電池診断装置および蓄電池診断方法、並びに蓄電池制御システム
CN106249152B (zh) 用于估计电池状态的方法和设备
JP4038788B2 (ja) バッテリの残存容量判定方法と、その装置
KR20200140093A (ko) 배터리의 충방전 사이클에 따른 용량 변화 예측방법 및 예측시스템
CN111680848A (zh) 基于预测模型融合的电池寿命预测方法及存储介质
WO2021107422A1 (ko) 에너지 사용량 데이터의 비지도 학습 기반 부하 모니터링 방법
WO2022103185A1 (ko) 전지의 용량 측정 장치 및 방법, 및 상기 장치를 포함하는 전지 제어 시스템
WO2021040236A1 (ko) Ess 배터리의 상태진단 및 수명예측을 위한 장치 및 방법
WO2023075415A1 (ko) 배터리 수명 예측 방법 및 이러한 방법을 수행하는 장치
WO2012060597A2 (ko) 배터리의 교환 시기 통보 장치 및 방법
WO2021141255A1 (ko) 시뮬레이션 시스템 및 데이터 분산 방법
JPWO2019202752A1 (ja) 蓄電池診断装置および蓄電池診断方法、並びに蓄電池制御システム
WO2019050279A1 (ko) 배터리 재사용 수명 진단 방법
CN111191824A (zh) 一种动力电池容量衰减预测方法及***
JP2021083208A (ja) 評価装置、コンピュータプログラム及び評価方法
EP4341710A1 (en) Method and electronic device for evaluating remaining useful life (rul) of battery
WO2023101113A1 (ko) 배터리 진단 방법 및 그 장치
KR20230080112A (ko) 배터리 현재 상태 예측을 위한 배터리 진단 장치
KR20220156254A (ko) 특징 벡터 라벨링을 이용한 배터리 수명 예측 시스템 및 방법
CN115856641A (zh) 一种电池剩余充电时间预测方法、装置及电子设备
CN102590749B (zh) 一种电池荷电状态预测内核设计方法
WO2021040396A1 (ko) 온도 추정 모델 결정 방법 및 장치, 온도 추정 모델이 적용된 배터리 관리 시스템
WO2024144014A1 (ko) 임피던스 기반의 커패시티 추정 장치 및 시스템, 그리고 그 방법
CN114662704A (zh) 一种储能电池热失控诊断方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901476

Country of ref document: EP

Kind code of ref document: A1