WO2023101011A1 - 樹脂接合体製造方法 - Google Patents

樹脂接合体製造方法 Download PDF

Info

Publication number
WO2023101011A1
WO2023101011A1 PCT/JP2022/044573 JP2022044573W WO2023101011A1 WO 2023101011 A1 WO2023101011 A1 WO 2023101011A1 JP 2022044573 W JP2022044573 W JP 2022044573W WO 2023101011 A1 WO2023101011 A1 WO 2023101011A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
valve
manufacturing
bonded body
diaphragm
Prior art date
Application number
PCT/JP2022/044573
Other languages
English (en)
French (fr)
Inventor
博士 末永
浩幸 松下
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to CN202280073739.8A priority Critical patent/CN118201761A/zh
Publication of WO2023101011A1 publication Critical patent/WO2023101011A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/02Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm

Definitions

  • the present invention relates to a resin bonded body manufacturing method for manufacturing a resin bonded body in which two resin molded bodies formed from different fluororesin materials are bonded.
  • a valve body portion supported at the center of a diaphragm portion that separates a flow path or valve chamber through which the chemical solution flows from a driving portion and a diaphragm portion is provided.
  • Diaphragm valves are often used, which have diaphragms that are fitted.
  • the flow rate is controlled by repeatedly elastically deforming the diaphragm portion to bring the valve body portion into and out of contact with the valve seat.
  • Such a diaphragm portion is required to have chemical resistance because it is in contact with a chemical solution, and is required to have bending durability because it repeatedly undergoes elastic deformation.
  • the diaphragm is generally made of polytetrafluoroethylene (PTFE), which has high bending durability. Since injection molding cannot be applied to PTFE, the diaphragm is produced by cutting a sintered block after compression molding powdery PTFE. However, when the diaphragm is made of PTFE, particles are likely to be generated from the valve body portion of the diaphragm that repeatedly contacts and separates from the valve seat, since PTFE tends to generate dust. In semiconductor manufacturing, when particles are mixed into a chemical solution, the yield of semiconductor manufacturing is greatly affected. Therefore, it is preferable to suppress the generation of dust from the valve body portion of the diaphragm that is in contact with the chemical solution.
  • PTFE polytetrafluoroethylene
  • valve body As one method of suppressing dust generation from the valve body, it is conceivable to form the valve body from perfluoroalkoxyalkane (PFA), which is a fluororesin material that does not easily generate dust.
  • PFA perfluoroalkoxyalkane
  • PFA has low bending durability, it is not suitable for diaphragms that undergo repeated elastic deformation. Therefore, it has been proposed to join a valve body portion made of PFA to a diaphragm portion made of PTFE.
  • PTFE perfluoroalkoxyalkane
  • a diaphragm membrane and a rod-shaped portion provided in the center of the diaphragm membrane are formed from PTFE, which is a first fluorine-based resin material, and an outer peripheral uneven surface is provided on the outer periphery of a part of the rod-shaped portion.
  • the diaphragm member (that is, the diaphragm portion) is formed from PTFE, which is the first fluorine-based resin material, and the valve seat bearing is formed from PFA, which is the second injection-moldable fluorine-based resin material.
  • a valve seat contact member (that is, a valve body portion) having a contact surface and a recess provided on the opposite side is formed, and the outer peripheral uneven surface formed on the outer periphery of the rod-shaped portion of the diaphragm member and the valve seat contact member Discloses a fluid control valve in which a diaphragm member and a valve seat abutting member are joined by fitting a rod-shaped portion into the recess so that the inner peripheral uneven surface formed on the inner periphery of the recess is closely engaged with each other. ing.
  • Patent Document 1 after an insert molding step of injection molding a second round bar from a second fluororesin material with a first round bar formed from a first fluororesin material inserted, discloses a method of manufacturing a fluid control valve in which a first round bar is cut into the shape of the above-described diaphragm member, and a second round bar is cut into the shape of the above-described valve seat contact member.
  • the valve body is composed of a combined body of a body member and a seat member that abuts against the valve seat, and the seat member material that is the material of the seat member and the body member material that is the material of the body member are used.
  • Disclosed is a method of manufacturing a fluid control device in which a combined body is produced by cutting out the contact surface of the material combined body which is melted by irradiation of an infrared beam or a hot plate and welded.
  • an object of the present invention is to solve the problems existing in the prior art by combining two resins formed from different fluororesin materials without mechanical bonding and without reducing the strength of the joint surface.
  • the purpose of the present invention is to join compacts.
  • the present invention provides a resin bonded body manufacturing method for manufacturing a resin bonded body by bonding two resin molded bodies formed from different fluorine-based resin materials, wherein the resin bonded body does not gel even at the melting point or higher.
  • a cup-shaped first resin assembly having a cylindrical housing from a first fluororesin material capable of maintaining its shape; a step of accommodating a second resin aggregate made of the fluorine-based resin material of No. 2 in the accommodating portion; After heating above the melting points of the resin material and the second fluorine-based resin material, the first resin assembly is converted into a first resin molding, and the second resin assembly is converted into a second resin molding.
  • a method of manufacturing a resin bonded body is provided, which includes the steps of changing into a resin molded body and bonding the first resin molded body and the second resin molded body.
  • the second resin assembly made of the second fluorine-based resin material is placed in the cylindrical accommodating portion of the cup-shaped first resin assembly made of the first fluorine-based resin material.
  • the second fluororesin material can be easily held in the first resin assembly regardless of its form.
  • the first resin assembly is made of the first fluorine-based resin material that can maintain its shape by gelling (that is, becoming gel-like) even when melted above the melting point
  • the melting point of the first fluorine-based resin material and the second fluorine-based resin material that is, the temperature higher than the melting point of the first fluorine-based resin material and the second fluorine-based resin material
  • the second resin assembly made of the second fluorine-based resin material melts and becomes liquid, the first resin assembly can be maintained in the accommodating portion. Further, when the first resin assembly containing the second resin assembly in the containing portion is heated, both the first resin assembly and the second resin assembly are heated as a whole to the melting point or higher.
  • the first fluororesin material forming the first resin aggregate and the second fluororesin material forming the second resin aggregate are integrated.
  • the first resin molded body formed from the first fluorine-based resin material and the second resin molded body formed from the second fluorine-based resin material are integrated and molded (hereinafter referred to as described as "integrally melt-molded"), and integrally bonded joints can be manufactured.
  • integrally melt-molded since the first resin molded body and the second resin molded body are integrally melt-molded after being heated as a whole, the occurrence of thermal strain can be suppressed.
  • the first resin aggregate is formed in a cup shape having a concave portion at the end.
  • the first resin assembly may include a cylindrical tubular body, and the interior of the tubular body may serve as the accommodating portion.
  • the first resin assembly is composed of a cylindrical tubular body and a solid rod-shaped body or plate-shaped body arranged adjacent to the lower portion of the tubular body.
  • the first resin assembly may be a round bar or plate formed by molding the first fluororesin material, or a product obtained by cutting this. It may be cold pressed or preformed.
  • the second resin assembly may be formed by molding a second fluororesin material so as to have a shape and size that can be accommodated in the accommodating portion.
  • the second resin aggregate may be obtained by cold compression molding or preforming the second fluorine-based resin material so as to have a shape and size that can be accommodated in the accommodating portion.
  • the second resin aggregate may be made of powder or pellets of the second fluororesin material. Since the second fluororesin material is accommodated and held in the accommodating portion of the first resin aggregate, it can be made into various forms even if it is a material that melts and becomes liquid when the temperature exceeds the melting point. can.
  • the first fluororesin material is polytetrafluoroethylene (PTFE) and the second fluororesin material is perfluoroalkoxyalkane (PFA).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • the method for manufacturing a resin bonded body includes a diaphragm portion and a valve body portion supported at the center of the diaphragm portion so as to be in contact with and separate from a valve seat from the resin bonded body.
  • the method further includes a diaphragm manufacturing step of manufacturing a diaphragm for a diaphragm valve, wherein the diaphragm manufacturing step includes manufacturing a resin bonded body in which the first resin molded body and the second resin molded body are bonded together; a step of cutting a portion of the bonded body constituted by the second resin molded body to form at least a portion of the valve body portion that abuts on the valve seat; and cutting the portion formed by the molded body to form the remaining portions of the diaphragm portion and the valve body portion.
  • the diaphragm portion that undergoes repeated deformation can be formed from PTFE with high bending durability, and at least the portion of the valve body portion that contacts the valve seat can be formed from PFA with low dust generation properties. Therefore, it is possible to suppress the generation of particles due to contact and separation between the valve body portion and the valve seat while ensuring the bending durability of the diaphragm portion.
  • the method for manufacturing a resin bonded body includes a valve chamber in which a first flow path, a second flow path, and the first flow path and the second flow path communicate from the resin bonded body. and a diaphragm having a diaphragm portion and a valve body portion supported by the central portion of the diaphragm portion. a step of cutting the resin bonded body to form the first flow path and the second flow path so that the valve seat is formed in at least the second resin molded body of the resin bonded body; A step of forming the valve chamber from the resin bonded body may be included.
  • the valve seat which is likely to generate particles by coming into contact with and separating from the valve body portion, can be manufactured from the second resin molded body formed of PFA with low dust generation. It is possible to suppress the generation of particles due to contact and separation with the valve seat.
  • the remaining portion of the valve body of the diaphragm valve can be made of PTFE, which is cheaper than PFA, the diaphragm valve (specifically, the valve body) is more durable than the case where the entire valve body is made of PFA. It is possible to reduce raw material costs by reducing the amount of PFA used.
  • both the first resin assembly and the second resin assembly it is heated to a temperature higher than the melting points of the first fluorine-based resin material and the second fluorine-based resin material to form the first fluorine-based resin material and the second resin assembly that form the first resin assembly.
  • Both of the second fluororesin materials are melted and integrated.
  • the first resin aggregate gels and maintains its shape, the second resin aggregate melted and liquefied is held in the accommodating portion that maintains the cylindrical shape of the first resin aggregate. , integrated with the first resin assembly.
  • the first resin molded body formed from the first fluororesin material and the second resin molded body formed from the second fluororesin material are integrally melt-molded and integrated. Bonded conjugates can be produced. It is possible to manufacture a joined body by integrally joining moldings formed from different fluororesin materials by integral fusion molding. It is possible to prevent the formation of a gap between the joint surfaces of the two resin moldings. In addition, since the two resin aggregates are heated at the same time, it is possible to suppress the occurrence of thermal strain and prevent a decrease in the strength of the joint surface between the first resin molded body and the second resin molded body. Become.
  • FIG. 1 is a cross-sectional view showing the overall configuration of one embodiment of a diaphragm valve including a valve main body and a diaphragm made from a resin bonded body manufactured by the resin bonded body manufacturing method of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an explanatory diagram for explaining a first embodiment of a resin bonded body manufacturing method according to the present invention
  • 1 is a cross-sectional view showing a resin bonded body manufactured by a resin bonded body manufacturing method according to the present invention
  • FIG. FIG. 5 is an explanatory diagram for explaining a second embodiment of the method for manufacturing a resin bonded body according to the present invention.
  • FIG. 10 is an explanatory diagram for explaining a third embodiment of the method for manufacturing a resin bonded body according to the present invention.
  • FIG. 10 is a cross-sectional view of a resin bonded body
  • FIG. 7 is a cross-sectional view showing a diaphragm produced by cutting from the resin bonded body shown in FIG. 6
  • FIG. 4 is a cross-sectional view showing a modified form of a diaphragm produced by cutting from the resin bonded body shown in FIG. 3;
  • FIG. 2 is a cross-sectional view of a resin bonded body.
  • FIG. 10 is a cross-sectional view showing a valve body produced by cutting from the resin bonded body shown in FIG. 9;
  • FIG. 3 is a cross-sectional view showing a first modification of a resin bonded body manufactured by the resin bonded body manufacturing method of the present invention;
  • FIG. 12 is a cross-sectional view showing a first modification of a valve body produced by cutting from the resin bonded body of the first modification shown in FIG. 11;
  • FIG. 5 is a cross-sectional view showing a second modification of the resin bonded body manufactured by the resin bonded body manufacturing method of the present invention;
  • FIG. 10 is a cross-sectional view showing a valve body produced by cutting from the resin bonded body shown in FIG. 9;
  • FIG. 3 is a cross-sectional view showing a first modification of a resin bonded body manufactured by the resin bonded body manufacturing method of the present invention;
  • FIG. 12 is a cross-section
  • FIG. 14 is a cross-sectional view showing a second modified form of a valve body produced by cutting from the resin bonded body of the second modified form shown in FIG. 13 ;
  • 4 is a cross-sectional view showing another modified form of a diaphragm produced by cutting from the resin bonded body shown in FIG. 3;
  • FIG. FIG. 5 is a cross-sectional view showing a third modification of the resin bonded body manufactured by the resin bonded body manufacturing method of the present invention;
  • 17 is a cross-sectional view showing a third modified form of a valve body produced by cutting from the resin bonded body of the third modified form shown in FIG. 16;
  • FIG. 3 is a cross-sectional view showing a wafer transfer box produced by cutting a resin bonded body manufactured by the resin bonded body manufacturing method of the present invention
  • FIG. 3 is a cross-sectional view showing a tank produced by cutting from the resin bonded body manufactured by the resin bonded body manufacturing method of the present invention
  • the diaphragm valve 11 includes a valve body 13 , a diaphragm 15 , and a driving portion 17 that drives the diaphragm 15 , and the driving portion 17 is attached to the upper portion of the valve body 13 .
  • a valve chamber 19 is formed in the center of the upper portion of the valve body 13, and a first channel and a second channel communicating with the valve chamber 19 are formed.
  • an annular valve seat 21 is formed around the opening from the first flow path to the valve chamber 19, with which the diaphragm 15 contacts and separates.
  • the first flow path is an inlet flow path 25 extending from an inlet 23 formed in one of the opposing side surfaces of the valve body 13 and opening at the center of the bottom of the valve chamber 19 .
  • an outlet flow path 29 extending from an outflow port 27 formed in the other of the opposite side surfaces of the valve body 13 and opening to the side surface of the valve chamber 19 is formed.
  • An annular valve seat 21 is formed around the opening from passage 25 to valve chamber 19 .
  • the drive unit 17 is connected to a drive unit housing 31 attached to the upper portion of the valve body 13 and having a mechanism housing space formed therein, a lid member 33 attached to the upper portion of the drive unit housing 31, and the diaphragm 15. and a drive mechanism that is housed in the mechanism housing space and drives the stem 35 .
  • a cylinder portion is formed as a mechanism accommodation space within the drive unit housing 31, and the drive mechanism is composed of a piston 37 accommodated in the cylinder portion and a coil spring 39 as an urging member. It is
  • the piston 37 has a piston body 37a slidably accommodated in the cylinder portion of the drive unit housing 31, and a guide shaft 37b extending upward from the piston body 37a.
  • a stem 35 is connected to the piston body 37a so as to extend.
  • the stem 35 is slidably inserted into a through-hole provided through the bottom of the drive unit housing 31, and its tip is connected to the diaphragm 15 (more specifically, the valve body 15c, which will be described later).
  • the outer peripheral surface of the piston body 37a is in contact with the inner peripheral surface of the cylinder portion so as to be slidable in the vertical direction.
  • the guide shaft 37b is slidably inserted into a through hole provided through the cover member 33, and guides the vertical movement of the piston 37. As shown in FIG.
  • the lid member 33 is formed with a vent 45 communicating with the cylinder section that defines the upper space 41 , so that ventilation can be performed between the upper space 41 and the outside through the vent 45 .
  • a working fluid supply port 47 communicating with the bottom of the cylinder portion defining the lower space 43 is formed in the side portion of the drive unit housing 31 , and the working fluid flows into the lower space 43 from the working fluid supply port 47 . can be supplied.
  • a coil spring 39 is arranged in a compressed state between the lower surface of the lid member 33 (the ceiling surface of the cylinder portion) and the upper surface of the piston body 37a.
  • the diaphragm 15 includes a diaphragm portion 15b having a base portion 15a projecting downward at the center thereof, and a valve body portion 15c joined to the base portion 15a.
  • the diaphragm portion 15b is formed so as to extend radially outward from the outer peripheral portion of the upper end portion of the base portion 15a, and the outer periphery of the diaphragm portion 15b has a substantially circular shape. Further, the outer peripheral edge of the diaphragm portion 15b is sandwiched between the upper surface of the peripheral region of the upper opening of the valve chamber 19 of the valve body 13 and the bottom surface of the drive unit housing 31. As shown in FIG.
  • the valve body portion 15 c has a shape in which a truncated cone is connected to a cylinder, and is arranged so that the bottom surface (valve seat contact surface) faces the valve seat 21 .
  • the base portion 15a is joined to the valve body portion 15c so that its peripheral surface is smoothly connected to the side surface of the truncated cone portion of the valve body portion 15c. In this manner, the diaphragm 15 partitions the valve chamber 19 and the driving portion 17 while supporting the valve body portion 15c above the valve chamber 19 via the diaphragm portion 15b.
  • a connecting hole 49 extending through the base portion 15a of the diaphragm 15 and extending to the valve body portion 15c is provided. Further, the connecting hole 49 includes a small diameter hole portion 49a positioned closer to the driving portion 17 and a large diameter hole portion 49b provided at the lower end portion of the connecting hole 49 positioned within the valve body portion 15c.
  • the distal end (lower end) of the stem 35 is provided with a locking portion 35a that is larger than the intermediate portion. 15 and a stem 35 are connected so that the diaphragm 15 (specifically, its valve body portion 15c) can come into contact with and separate from the valve seat 21 via the stem 35 as the piston 37 moves up and down.
  • the stem 35 is connected to the valve body portion 15c as described above, separation from the diaphragm 15 can be prevented even if the base portion 15a and the valve body portion 15c are separated.
  • the stem 35 is connected to the valve body portion 15c. It may be connected only to the base portion 15a joined to the valve body portion 15c, or may have another configuration.
  • the valve body 13 includes a first valve body portion 13a in which the valve chamber 19 is formed, and a second valve body portion 13b which is the remaining portion.
  • the first valve body portion 13a is made of low dust-generating perfluoroalkoxyalkane (PFA)
  • the second valve body portion 13b is made of polytetrafluoroethylene (PTFE), which is less expensive than PFA and has high bending durability.
  • PFA perfluoroalkoxyalkane
  • PTFE polytetrafluoroethylene
  • the second valve body portion 13b is made of PTFE, which is cheaper than PFA, the raw material cost of the valve body 13 can be reduced while suppressing the generation of particles compared to the case where the entire valve body 13 is made of PFA. can be reduced.
  • the diaphragm portion 15b in particular is a portion that undergoes repeated bending, the diaphragm portion 15 is made of PTFE having high bending durability for the base portion 15a and the diaphragm portion 15b. It is made of PFA, which has a low dust-generating property, because it tends to generate particles when it comes into contact with the valve seat 21 .
  • PTFE and PFA forming the valve body 13 and the diaphragm 15 those chemically modified or those crosslinked by ionizing radiation may be used.
  • PTFE is preferably chemically modified.
  • the drive unit housing 31, lid member 33, stem 35, and piston 37 of the drive unit 17 can be made of appropriate materials such as polyvinylidene fluoride (PVDF), PTFE, PFA, and polychlorotrifluoroethylene (PCTFE). .
  • the valve body 13 and the diaphragm 15 include portions formed from different fluororesin materials, PTFE and PFA.
  • the two parts made of different materials are mechanically joined as described in US Pat. It was spliced together.
  • a portion, such as the diaphragm 15 (especially the valve body portion 15c), which contacts and separates from the valve seat 21 and receives the impact may deform due to the impact, for example, the base portion 15a and the valve body portion 15c.
  • particles are likely to be generated due to deterioration of the material due to the liquid in the valve chamber 19 entering this gap.
  • the first resin assembly 51 having the cylindrical housing portion 51a is made of PTFE
  • the second resin assembly 51 is made of PFA in the housing portion 51a of the first resin assembly 51.
  • a first resin assembly formed from PTFE by heating the resin aggregate 53 containing the PTFE and PFA to a temperature higher than the melting point of PTFE and PFA (that is, a temperature higher than the higher one of the melting point of PTFE and the melting point of PFA).
  • 51 and a second resin assembly 53 made of PFA are melted and integrated to be molded (hereinafter referred to as “integral melt molding”) to form a resin bonded body that is integrally bonded.
  • valve body 13 and the diaphragm 15 including the portion formed from PTFE and the portion formed from PFA as described above are manufactured by cutting the resin bonded body thus manufactured. It is not necessary to heat the first resin assembly 51 and the second resin assembly 53 (that is, the PTFE and PFA constituting them) to the melting point or higher under pressure. is not performed).
  • integral melt molding means to melt and integrate two objects in their entirety to integrally join them. It is used as a concept different from these, excluding “welding” to join and “insert molding” to melt only one side.
  • resin aggregate as used herein means a powdered or pelletized resin material formed into a predetermined shape. or by cutting a plate or rod made of resin material by compression molding or injection molding into a predetermined shape, or by filling a mold or the like with powdered or pelletized resin material and whether or not it is in solid form.
  • the "resin assembly” does not have to be integrally constructed, and may be constructed by assembling a plurality of individual parts.
  • a first resin molded body formed from a first fluororesin material and a second resin molded body formed from a second fluororesin material will be described below.
  • a first embodiment of a resin bonded body manufacturing method for manufacturing a bonded resin bonded body will be described in detail.
  • PTFE is used as the first fluororesin material
  • PFA is used as the second fluororesin material.
  • PTFE and PFA those chemically modified or those crosslinked by ionizing radiation may be used.
  • PTFE is preferably chemically modified.
  • a first resin assembly 51 having a cylindrical accommodating portion 51a is produced from PTFE, which is a first fluororesin material.
  • PTFE which is a first fluororesin material.
  • a cup-shaped first resin assembly 51 having a concave portion functioning as a housing portion 51a at the upper end portion is produced.
  • the first resin assembly 51 may be produced by providing a recess by cutting the upper end of a bar or plate that is compression-molded from PTFE using a mold by a free baking method, a hot molding method, or the like.
  • a cup-shaped bar or plate having a concave portion at the upper end may be compression-molded from PTFE using a mold by a free baking method, a hot molding method, or the like.
  • the first resin assembly 51 does not need to be constructed integrally. ) may be combined with.
  • the tubular body and the rod-shaped body or the plate-shaped body may be connected by screwing or engagement of protrusions and recesses.
  • the tubular body and the rod-shaped body or plate-shaped body may be joined by welding after they are manufactured separately. Welding can be performed by, for example, laser welding, hot plate welding, hot air welding, or firing.
  • the first resin assembly 51 is made of a PTFE rod
  • the PTFE rod may be made by extrusion molding.
  • the second resin assembly 53 is preferably a rod-shaped body having an outer peripheral shape complementary to the inner peripheral surface of the cylindrical accommodating portion 51a.
  • the second resin assembly is heated to a melting point or higher and melted, it is liquefied and has a shape complementary to the inner peripheral surface of the housing portion 51a. It's fine.
  • the height of the second resin assembly may be substantially equal to the depth of the storage portion 51a unless the second resin assembly overflows the storage portion 51a when heated to the melting point or higher and liquefied. It may be shorter than the depth of the accommodating portion 51a.
  • the second resin aggregate can be directly produced from PFA, for example, by extrusion molding or injection molding using a mold.
  • the first resin assembly 51 with the second resin assembly 53 accommodated in the accommodation portion 51a is heated and baked in a baking furnace. Since the first resin assembly 51 is made of PTFE, it gels and can maintain its cup shape even if it is heated above its melting point and melted. On the other hand, since the second resin assembly 53 is made of PFA, it liquefies when heated above its melting point and melted. However, since the second resin aggregate 53 is accommodated in the accommodation portion 51a of the first resin aggregate 51, which can maintain its cup shape by gelling even when melted above the melting point, Even if it is heated above its melting point and melted into a liquid state, it can maintain the state held in the housing portion 51a.
  • the first resin assembly 51 and the second resin assembly 53 have a melting point higher than the melting point of PTFE as the first fluorine-based resin material and PFA as the second fluorine-based resin material (that is, the melting point of PTFE and PFA are melted by being heated to a temperature equal to or higher than the higher one of the melting points of ), and are integrally joined to each other. Moreover, the heating of the first resin assembly 51 and the second resin assembly 53 does not have to be performed under pressure, and can be performed in a pressureless state (a state in which no particular pressure is applied). . By integrally melting and molding the first resin assembly 51 and the second resin assembly 53 by heating in a pressureless state, the occurrence of distortion and residual stress can be suppressed unlike other methods. can.
  • the first resin aggregate 51 and the second resin aggregate 53 are placed in a sintering furnace while the second resin aggregate 53 is accommodated in the accommodation portion 51a (recess) of the first resin aggregate 51.
  • the first resin assembly 51 becomes a first resin molding 55 and the second resin assembly 53 is accommodated, as shown in FIG.
  • a second resin molded body 57 having a shape substantially complementary to the portion 51a (recess) is formed, and as a whole, the first resin molded body 55 and the second resin molded body 57 are integrally formed over the entire contact surface.
  • a bonded resin bonded body 59 is obtained.
  • the first resin molded body 55 and the second resin molded body 57 are integrated and bonded over the entire contact surface, so that an external force is applied to the resin bonded body 59. Even if it acts, no gap is generated between the first resin molded body 55 and the second resin molded body 57 .
  • the first resin molded body 55 and the second resin molded body 57 are entirely heated and melted, thermal strain does not occur, and the first resin molded body 55 and the second resin molded body 57 are separated from each other by the occurrence of thermal strain. The strength of the joint surface with the resin molding 57 does not decrease.
  • a resin bonded body 59 obtained by bonding a first resin molded body 55 formed from a first fluorine-based resin material and a second resin molded body 57 formed from a second fluorine-based resin material.
  • the first resin aggregate 51 having the accommodating portion 51a is produced from the first fluororesin material, and the accommodating portion 51a (recessed portion) of the first resin aggregate 51 is formed.
  • the second resin assembly 53 made of the second fluorine-based resin material, and gelled when heated to the melting points of the first fluorine-based resin material and the second fluorine-based resin material or higher.
  • the resin bonded body manufacturing method for manufacturing the resin bonded body 59 in which the first resin molded body 55 made of PTFE and the second resin molded body 57 made of PFA are bonded together is the first method. It is not limited to the embodiment.
  • the first resin assembly 51 is filled in the accommodation portion 51a (recess).
  • the second resin aggregate 53 may be PFA powder or pellets. Since the first resin aggregate 51 is formed in a cup shape, even if the second resin aggregate is composed of PFA powder or pellets, it can be held in the accommodating portion 51a. Further, when the powder or pellets of PFA, which is the second fluorine-based resin material, is heated to the melting point or higher in the firing furnace, the second resin assembly 53 in the method for manufacturing a resin bonded body according to the first embodiment.
  • the first resin molded body 55 formed from the first resin assembly 51 and the second resin assembly 55 are formed without using a mold, as in the resin bonded body manufacturing method of the first embodiment. It is possible to manufacture a resin bonded body 59 in which the second resin molded body 57 formed from the resin assembly 53 is integrally bonded. Moreover, the resin bonded body 59 manufactured by such a method can have the same characteristics as the resin bonded body 59 manufactured by the resin bonded body manufacturing method of the first embodiment.
  • the resin of the first embodiment is used.
  • a cup-shaped cup having a cylindrical accommodating portion 51a (concave portion) is formed by cold compression molding from PTFE powder as the first resin. It is used as the assembly 51, and instead of the molded body produced from the PFA powder in the resin bonded body manufacturing method of the first embodiment, the shape and The second resin assembly 53 may be formed by cold compression molding from PFA powder so as to have a certain size. As in the first embodiment, the first resin assembly 51 does not have to be integrally formed.
  • a rod-shaped body or a plate-shaped body may be cold-compressed separately and combined with each other. Further, when the tubular body and the rod-shaped body or plate-shaped body (including the sheet-shaped body) are configured integrally, they may be joined by welding after they are manufactured separately. Welding can be performed by, for example, laser welding, hot plate welding, hot air welding, or firing.
  • the first resin assembly 51 formed in a cup shape having a cylindrical housing portion 51a (recess) at the upper end by cold compression molding is also extruded or injection molded when heated to a melting point or higher in a firing furnace.
  • a molding method such as the above
  • it can be melted and gelled to maintain the cup shape.
  • the second resin aggregate 53 formed by cold compression molding is also heated to a melting point or higher in a firing furnace, it can be compared with the second resin aggregate 53 formed by a molding method such as extrusion molding or injection molding. Similarly, it melts and liquefies.
  • PFA which is the second fluorine-based resin material
  • PFA is in contact with the bottom surface and the peripheral surface of the housing portion 51a of the first resin assembly 51 without gaps, and is integrated with the gelled PTFE of the first resin assembly 51.
  • the first resin molded body 55 formed from the first resin assembly 51 and the second resin assembly 55 are formed without using a mold, as in the resin bonded body manufacturing method of the first embodiment. It is possible to manufacture a resin bonded body 59 in which the second resin molded body 57 formed from the resin assembly 53 is integrally bonded by integral melting molding. Moreover, the resin bonded body 59 manufactured by such a method can have the same characteristics as the resin bonded body 59 manufactured by the resin bonded body manufacturing method according to the first embodiment.
  • PFA filled in the accommodating portion 51a (concave portion) of the first resin assembly 51 is used.
  • PFA which is the second fluororesin material, can delay the time until it melts if it is in the form of pellets rather than in the form of powder.
  • the resin bonded body manufacturing method of the first embodiment is described.
  • a cup-shaped body having a concave portion functioning as the housing portion 51a is used as the first resin assembly 51 by preforming from the PTFE powder
  • PFA is used so as to have a shape and size that can be accommodated in the accommodating portion 51 a of the first resin assembly 51 .
  • the second resin assembly 53 may be preformed from the powder of (1), and the resin bonded body 59 may be manufactured by hot molding.
  • the first resin aggregate 51 with the second resin aggregate 53 accommodated in the accommodating portion 51a is arranged in the mold 61 and heated.
  • the first resin assembly 51 does not have to be integrally formed.
  • a rod-shaped body or a plate-shaped body (including a sheet-shaped body) may be separately preformed and combined with each other to produce.
  • the first resin assembly 51 which is preformed into a cup shape having a concave portion functioning as a housing portion 51a at the upper end thereof, is also formed into a cup shape by a molding method such as extrusion molding or injection molding when heated above the melting point. Similar to the formed first resin assembly 51, it can be melted and gelled to maintain its cup shape. Further, when the second resin assembly 53 formed by preforming is heated to the melting point or higher, it melts similarly to the second resin assembly 53 formed by a molding method such as extrusion molding or injection molding. liquefy.
  • PFA which is the second fluorine-based resin material
  • PFA is in contact with the bottom surface and the peripheral surface of the housing portion 51a of the first resin assembly 51 without gaps, and is integrated with the gelled PTFE of the first resin assembly 51.
  • a first resin molded body 55 formed from the first resin assembly 51 and a second resin assembly 53 are formed in the same manner as in the resin bonded body manufacturing method of the first embodiment. It is possible to manufacture a resin bonded body 59 in which the molded second resin molded body 57 is integrally bonded by integral melting molding.
  • the resin bonded body 59 manufactured by such a method can also have the same characteristics as the resin bonded body 59 manufactured by the first resin bonded body manufacturing method.
  • the periphery of the portion of the mold 61 where the second resin assembly 53 is arranged is heated by the first band heater 65, and the lower portion is heated by the second band heater 67 It is preferable to heat by
  • the heating temperature of the first band heater 65 which heats the portion where the second resin assembly 53 made of PFA with a relatively low melting point is arranged, can be set relatively to the melting point.
  • the heating temperature can be set lower than the heating temperature of the second band heater 67 that heats only the portion where only the first resin assembly 51 made of PTFE with a high T is arranged.
  • the PTFE forming the first resin assembly 51 and the PFA forming the second resin assembly 53 can be melted almost simultaneously.
  • the first band heater 65 and the second band heater 67 only need to be able to heat the mold, and other heating devices such as bar heaters may be used instead.
  • PFA powder filled in the accommodating portion 51a (concave portion) of the first resin assembly 51 is used instead of the second resin assembly 53 prepared by preforming.
  • a body or pellets may be used as the second resin aggregate 53 .
  • PFA can delay the time until it melts more in the form of pellets than in the form of powder.
  • the resin bonded body 59 produced in this way can be used as an intermediate material for various parts.
  • a method for manufacturing a component of the diaphragm valve 11 from the resin bonded body 59 will be described below as an example.
  • FIG. 6 shows a method of manufacturing the diaphragm 15 from the resin bonded body 59.
  • FIG. The diaphragm 15 as shown in FIG. 7 can be produced by cutting the resin bonded body 59 as indicated by the dashed line in FIG.
  • the diaphragm 15 shown in FIG. 7 is that used in the diaphragm valve 11 shown in FIG.
  • the diaphragm portion 15b having the base portion 15a in the central portion is made of the first resin molded body 55 formed of the first fluororesin material in the resin bonded body 59, that is, It is made of PTFE with high bending durability.
  • the valve body portion 15c of the diaphragm 15 is made of the second resin molding 57 made of the second fluororesin material in the resin bonded body 59, that is, made of PFA with low dust generation. ing. Since the first resin molded body 55 and the second resin molded body 57 of the resin bonded body 59 are integrally bonded by integral melting molding, the boundary surface between the base portion 15a of the diaphragm 15 and the valve body portion 15c (Joint surface) is also integrally joined. Therefore, even if the valve body portion 15c comes into contact with the valve seat 21 when the valve is closed and is deformed by impact, no gap is formed at the interface between the base portion 15a and the valve body portion 15c.
  • the connecting hole 49 is provided only in the base portion 15a.
  • the first resin molded body 55 and the second resin molded body 57 of the resin bonded body 59 are integrally melt-molded, and the base portion 15a and the valve body portion 15c produced from these are integrally formed.
  • the valve body portion 15c is interlocked via the base portion 15a and can be brought into contact with and separated from the valve seat 21. As shown in FIG.
  • FIG. 9 shows a method of manufacturing the valve body 13 from the resin bonded body 59.
  • FIG. The valve body 13 as shown in FIG. 10 can be produced by cutting the resin bonded body 59 as indicated by the dashed line in FIG.
  • the valve body 13 shown in FIG. 10 is used in the diaphragm valve 11 shown in FIG.
  • the first valve body portion 13a in which the valve chamber 19 is formed is made from the second resin molded body 57 formed from the second fluororesin material in the resin bonded body 59. That is, it is made of PFA with low dust generation.
  • the second valve body portion 13b in which the inflow port 23 and the outflow port 27 of the valve body 13 are formed is formed from the first resin molded body 55 formed from the first fluororesin material in the resin bonded body 59. It is made of PTFE, which is cheap compared to PFA.
  • the inlet channel 25 and the outlet channel 29 are provided so as to straddle the first valve body portion 13a and the second valve body portion 13b so as to extend from the inflow port 23 and the outflow port 27 to the valve chamber 19. .
  • the valve seat 21 provided in the first valve body portion 13a is made of PFA with low dust generation.
  • the first valve body portion 13a is made of the second resin molding 57 made of relatively expensive PFA, and the second valve body portion 13b of the valve body 13 is relatively inexpensive. It is made from a first resin molding 55 made of PTFE. Therefore, compared to the case where both the first valve body portion 13a and the second valve body portion 13b of the valve body 13 are made of PFA, particles are generated due to the contact of the valve body portion 15c with the valve seat 21. can be reduced while suppressing the raw material cost of the valve body 13 .
  • a third resin aggregate made of a third fluorine-based resin material is further arranged on the second resin aggregate 53 arranged in the accommodating portion 51a (recess) of the first resin aggregate 51.
  • a resin bonded body 59' is integrally joined by integral melting molding with a second resin molded body formed of a second fluorine-based resin material sandwiched between the third resin molded bodies 69. It can also be produced. If PTFE is adopted as the first fluorine-based resin material and the third fluorine-based resin material, and PFA is adopted as the second fluorine-based resin material, cutting is performed as indicated by the dashed line in FIG. A valve body 13' can be made as shown in FIG.
  • the valve body 13' comprises a second valve body portion 13b made of a first resin molded body 55 made of a first fluororesin material, and a second valve body portion 13b made of a second fluororesin material.
  • the third valve body portion 13c made from the third resin molded body 69 made from the third fluororesin material contains.
  • the valve chamber 19 is made across the first valve body portion 13a and the third valve body portion 13c so that the valve seat 21 is made of the second resin molding 57 .
  • the inlet 23 and the outlet 27 of the valve body 13 are provided in the second valve body portion 13b made from the first resin molding 55, and the inlet channel 25 and the outlet channel 29 are provided in the inlet 23. and the second valve body portion 13b made of the first resin molded body 55 of the resin bonded body 59 and the first valve body made of the second resin molded body 57 extending from the outflow port 27 to the valve chamber 19. It is provided so as to straddle the valve body portion 13a.
  • PFA which has low dust generation but is relatively expensive.
  • a second resin aggregate 53 having a smaller volume than the volume of the accommodating portion 51a is arranged in the accommodating portion 51a (concave portion) of the first resin aggregate 51 as the first fluororesin material and By heating to a temperature equal to or higher than the melting point of the second fluororesin material (that is, a temperature equal to or higher than the higher one of the melting points of the first fluororesin material and the second fluororesin material) and then cooling, As shown in FIG. 13, only a portion of the housing portion 51a is filled with a second resin molded body made of a second fluororesin material and integrally joined to each other by integral fusion molding. It is also possible to produce a resin bonded body 59′′.
  • valve body 13'' Adopting PTFE as the first fluorine-based resin material and PFA as the second fluorine-based resin material, cutting is performed as indicated by broken lines in FIG. , a valve body 13'' as shown in FIG. 14 can be produced.
  • the valve body 13'' only the portion forming the valve seat 21 of the valve chamber 19 is the first valve body portion 13a made of the second resin molded body 57 made of the second fluororesin material. , and the remaining portion is the second valve body portion 13b made of the first resin molded body 55 made of the first fluorine-based resin material. Only a part of the valve chamber 19 that forms the seat 21 is made of PFA, which has a low dust generation but is relatively expensive.
  • the material cost can be reduced more than the valve body 13 shown in Fig. 12. Further, the space portion of the valve chamber 19 is the second Since it overlaps with the portion that is not used as the resin molding, it is possible to reduce the amount of useless cutting, and it is possible to suppress the cost of raw materials.
  • the operation of the diaphragm valve 11 will be described with reference to FIG.
  • the piston 37 of the driving part 17 is pushed downward by the coil spring 39.
  • the valve body portion 15c moves toward the valve seat 21 via the stem 35 and is pressed against the valve seat 21, thereby closing the diaphragm valve 11 as shown in FIG.
  • the diaphragm portion 15 b supporting the valve body portion 15 c via the base portion 15 a is also deformed in a direction away from the driving portion 17 .
  • the valve body portion 15c repeatedly contacts and separates from the valve seat 21, and particularly when the valve body portion 15c contacts the valve seat 21, particles are likely to be generated due to the impact.
  • the valve body portion 15c that abuts the valve seat 21 is made of PFA with low dust emission, so the generation of particles from the valve body portion 15c can be suppressed.
  • the first valve body portion 13a of the valve body 13 in which the valve chamber 19 is formed is also made of PFA with low dust emission, the generation of particles from the valve seat 21 can be suppressed.
  • the intermediate material of the diaphragm 15 heats and melts both the first resin molded body 55 made of PTFE and the second resin molded body 57 made of PFA, and the first resin A molded body 55 and a second resin molded body 57 are integrally joined together by integral melting molding to form a resin bonded body 59 . Therefore, even if the valve body portion 15c comes into contact with the valve seat 21 and receives an impact and is deformed, no gap is generated between the valve body portion 15c and the base portion 15a, and no thermal strain occurs. Both the valve body 13 and the diaphragm 15 can be prevented from being reduced in strength due to heating.
  • the entire valve body 13 is made of PFA.
  • An increase in the manufacturing cost of the valve body 13 can also be suppressed as compared with the case of manufacturing from a blank.
  • Such an effect can be achieved by a constant pressure valve or a flow control valve having a valve body having a valve seat with which the base portion, the valve body portion, and the valve body portion come into contact with each other, in addition to the on-off valve such as the diaphragm valve 11 described above. can be similarly obtained even when the resin bonded body according to the present invention is applied to .
  • the resin bonded body manufacturing method according to the present invention As described above, with reference to the illustrated embodiments, the resin bonded body manufacturing method according to the present invention, the resin bonded body 59 manufactured by this resin bonded body manufacturing method, the diaphragm 15 for a diaphragm valve, and the diaphragm 15 using this diaphragm 15 have been described. Although a manufacturing method for manufacturing diaphragm valve 11 has been described, the invention is not limited to the illustrated embodiments.
  • PTFE is exemplified as the first fluororesin material
  • PFA is exemplified as the second fluororesin material.
  • the first fluororesin material and the second fluororesin material The resin material is not limited to PTFE or PFA.
  • PTFE ethylenetetrafluoroethylene copolymer
  • FEP perfluoroethylenepropene copolymer
  • PVDF polyvinylidene fluoride
  • a concave portion functioning as a housing portion 51a is formed by placing the cylindrical first resin assembly 51 on a mold and closing the bottom portion of the internal space of the cylindrical first resin assembly 51 with the mold. of the resin assembly 53 may be accommodated. In this case, it is preferred that the mold be shaped like a tub or dish.
  • the valve body portion 15c of the diaphragm 15 or 15' can be changed like the diaphragm 15 shown in FIG.
  • the diaphragm shown in FIG. 15 ′′ only a part of the valve seat contact surface of the diaphragm 15 ′′ may be made of the second resin molding 57 .
  • a resin bonded body 59 may be manufactured by changing the volume of 53 .
  • three housing portions 51a are formed in the first resin assembly 51, and PTFE is adopted as the first fluororesin material and PFA is adopted as the second fluororesin material, as shown in FIG.
  • Resin bonding in which second resin molded bodies 157A, 157B, and 157C made of a second fluororesin material are formed at separated positions in a first resin molded body 155 made of a first fluororesin material.
  • a body 159 is manufactured.
  • valve body 113 By cutting the resin bonded body 159 as indicated by broken lines in FIG. 16, the valve body 113 as shown in FIG. 17 can be manufactured.
  • the valve main body 113 only the portion forming the valve seat 21 of the valve chamber 19, the inlet joint portion formed with the inlet 23 connected to the inlet channel 25, and the outlet 27 connected to the outlet channel 29 are formed.
  • the outlet joint portion formed with is the first valve body portion 13a made from the second resin molded body 57 formed from the second fluorine-based resin material, and the remaining portion is the first fluorine-based
  • the second valve body portion 13b is made from the first resin molded body 55 made of a resin material.
  • the parts manufactured from the resin bonded body 59 manufactured according to the present invention are:
  • the components are not limited to diaphragm valve components, but may be other types of valve components or other types of parts.
  • the shape of the second resin molded body 57 is changed, PTFE is used as the first fluororesin material, and PFA is used as the second fluororesin material.
  • a wafer transfer box (a so-called hoop ) 201 can be made.
  • the A tank 301 can be made having an inner layer 303 made of PFA and an outer layer 305 located on the outer side and made of PTFE.
  • a pump, a nozzle, a pressure sensor, etc. can be produced from the resin bonded body 59 produced by the present invention.
  • valve body 13 diaphragm valve 13 valve body 13' valve body 13'' valve body 13a first valve body portion 13b second valve body portion 13c third valve body portion 15 diaphragm 15' diaphragm 15'' diaphragm 15a base portion 15b diaphragm portion 15c valve body portion 19 valve chamber 21 valve seat 25 inlet channel 29 outlet channel 51 first resin aggregate 51a accommodating portion 53 second resin aggregate 55 first resin molded body 57 second resin molded body 59 Resin bonded body 59' Resin bonded body 59'' Resin bonded body 113 Valve body 155 First resin molded body 157A Second resin molded body 157B Second resin molded body 157C Second resin molded body 159 Resin bonded body 201 Wafer Transport Box 203 First Part 205 Second Part 301 Tank 303 Inner Layer 305 Outer Layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

フッ素系樹脂材料から形成される成形体を接合した接合体を製造する樹脂接合体製造方法は、融点以上となってもゲル化して形状を維持することができる第1のフッ素系樹脂材料から、収容部(51a)を有した形状の第1の樹脂集合体(51)を形成するステップと、融点以上になると溶融して液状になる第2のフッ素系樹脂材料からなる第2の樹脂集合体(53)を収容部(51a)内に収容するステップと、収容部(51a)に第2の樹脂集合体(53)を配置した第1の樹脂集合体(51)を第1のフッ素系樹脂材料及び第2のフッ素系樹脂材料の融点以上に加熱した後に冷却して、第1の樹脂集合体(51)を第1の樹脂成形体に、第2の樹脂集合体(53)を第2の樹脂成形体に変化させると共に、第1の樹脂成形体と第2の樹脂成形体とを接合させるステップとを含む。

Description

樹脂接合体製造方法
 本発明は、異なるフッ素系樹脂材料から形成される二つの樹脂成形体を接合した樹脂接合体を製造する樹脂接合体製造方法に関する。
 例えば、半導体製造装置に用いられる薬液の流量を制御する際には、薬液が流れる流路又は弁室と駆動部とを区画する隔膜部と隔膜部の中央に支持された弁体部とを有したダイヤフラムを備えるダイヤフラム弁が用いられることが多い。ダイヤフラム弁では、隔膜部が弾性変形を繰り返し行って弁体部を弁座に接離させることによって、流量の制御を行う。このような隔膜部は、薬液に接することから耐薬品性を求められると共に、弾性変形を繰り返すことから屈曲耐久性を求められる。このため、ダイヤフラムは屈曲耐久性の高いポリテトラフルオロエチレン(PTFE)から形成されることが一般的である。PTFEには射出成形を適用することができないので、ダイヤフラムは、粉体状のPTFEを圧縮成形した後に焼成したブロック体を切削加工して作製される。しかしながら、ダイヤフラムをPTFEから形成している場合、PTFEは発塵しやすいことから、弁座に繰り返し接離するダイヤフラムの弁体部からパーティクルを発生させる恐れがある。半導体製造では、パーティクルが薬液に混入すると、半導体製造の歩留まりに大きな影響を与える。したがって、薬液に接するダイヤフラムの弁体部からの発塵は抑制することが好ましい。
 弁体部からの発塵を抑制する一つの方法として、発塵を生じにくいフッ素系樹脂材料であるパーフルオロアルコキシアルカン(PFA)から弁体部を形成することが考えられる。一方、PFAは屈曲耐久性が低いので、弾性変形を繰り返す隔膜部には適していない。そこで、PTFEから形成した隔膜部にPFAから形成した弁体部を接合することが提案されてきた。このように、異なるフッ素系樹脂材料からなる成形体を接合する要求が存在し、このような要求の解決策も提案されている。
 例えば、特許文献1は、第1のフッ素系樹脂材料であるPTFEから、ダイヤフラム膜とダイヤフラム膜の中央に設けられた棒状部とを備え且つ棒状部の一部の外周に外周周凹凸面を設けたダイヤフラム部材(すなわち隔膜部)を形成し、このダイヤフラム部材を第1のフッ素系樹脂材料であるPTFEから形成すると共に、射出成形可能な第2のフッ素系樹脂材料であるPFAから、弁座当接面とこれと反対側に設けられた凹部とを有した弁座当接部材(すなわち弁体部)を形成し、ダイヤフラム部材の棒状部の外周に形成した外周凹凸面と弁座当接部材の凹部の内周に形成された内周凹凸面とを互いに密着係合させるように棒状部を凹部に嵌合させてダイヤフラム部材と弁座当接部材とを接合させた流体制御弁を開示している。さらに、特許文献1は、第1のフッ素系樹脂材料から形成された第1の丸棒をインサートした状態で第2のフッ素系樹脂材料から第2の丸棒を射出成形するインサート成形工程の後に、第1の丸棒を上述のダイヤフラム部材の形状に、第2の丸棒を上述の弁座当接部材の形状に切削加工をする流体制御弁製造方法を開示している。また、第2の特許文献は、本体部材と弁座に当接する着座部材との結合体によって弁体を構成し、着座部材の材料である着座部材材料と本体部材の材料である本体部材材料との接触面を赤外線ビームの照射や熱板により溶融させて溶着した材料結合体から削り出すことによって、結合体を作製するようにした流体制御機器の製造方法を開示している。
特許第6873991号公報 特開2020-200840号公報
 特許文献1に開示の技術のように、凹凸面同士の係合(機械的結合)によって異なるフッ素系樹脂材料から形成された二つの樹脂成形体を接合している場合、例えば弁閉時の弁体と弁座との当接のように樹脂接合体に衝撃が加わると、材料の硬度の違いから、凹凸面同士の間に微細な隙間が生じることがある。また、流体の温度変化によっても、接合体は膨張収縮して凹凸面の間に微細な隙間を生じることがある。特に弁のような流体機器では、このような隙間に液体が侵入して溜まると、弁体部の劣化を招き、パーティクルが経時的に増加してしまう問題が生じる。
 さらに、特許文献1に開示の技術のように、インサート成形によって接合体を形成する場合でも、インサートとなる成形体と射出成形した樹脂材料の温度差が大きくなり、凹凸面に熱ひずみが発生して結合面の強度が低下するという問題も生じることがある。同様に、特許文献2に開示の技術のように、赤外線ビームや熱板により二つの樹脂成形体を接合面で溶着する場合でも、溶融した接合面と溶融されていない部分の温度差が大きくなるので、熱ひずみが発生して接合面の強度が低下する問題が生じることがある。
 よって、本発明の目的は、従来技術に存する問題を解決するために、機械的結合によらず且つ接合面の強度の低下を生じないように、異なるフッ素系樹脂材料から形成される二つの樹脂成形体を接合することにある。
 上記目的に鑑み、本発明は、異なるフッ素系樹脂材料から形成される二つの樹脂成形体を接合した樹脂接合体を製造する樹脂接合体製造方法であって、融点以上になってもゲル化して形状を維持することができる第1のフッ素系樹脂材料から、筒状の収容部を有したカップ形状の第1の樹脂集合体を形成するステップと、融点以上になると溶融して液状になる第2のフッ素系樹脂材料からなる第2の樹脂集合体を前記収容部内に収容するステップと、前記収容部内に前記第2の樹脂集合体を収容した第1の樹脂集合体を前記第1のフッ素系樹脂材料及び前記第2のフッ素系樹脂材料の融点以上に加熱した後に冷却して、前記第1の樹脂集合体を第1の樹脂成形体に、前記第2の樹脂集合体を第2の樹脂成形体に変化させると共に、前記第1の樹脂成形体と前記第2の樹脂成形体とを接合させるステップとを含む樹脂接合体製造方法を提供する。
 上記樹脂接合体製造方法では、第1のフッ素系樹脂材料から形成されたカップ形状の第1の樹脂集合体の筒状の収容部内に第2のフッ素系樹脂材料からなる第2の樹脂集合体を収容するので、形態にかかわらず第2のフッ素系樹脂材料を第1の樹脂集合体内に容易に保持することができる。また、第1の樹脂集合体は、融点以上になって溶融してもゲル化して(すなわち、ゲル状になって)形状を維持できる第1のフッ素系樹脂材料から形成されているので、第1のフッ素系樹脂材料及び第2のフッ素系樹脂材料の融点以上(すなわち、第1のフッ素系樹脂材料の融点と第2のフッ素系樹脂材料の融点のうちの高い方以上の温度)になり、第2のフッ素系樹脂材料からなる第2の樹脂集合体が溶融して液状になっても、第1の樹脂集合体の収容部内に保持された状態を維持することができる。さらに、収容部内に第2の樹脂集合体を収容した第1の樹脂集合体を加熱すると、第1の樹脂集合体と第2の樹脂集合体の両方が全体的に加熱されて融点以上になって溶融し、第1の樹脂集合体を構成する第1のフッ素系樹脂材料と第2の樹脂集合体を構成する第2のフッ素系樹脂材料が一体化される。これを冷却すると、第1のフッ素系樹脂材料から形成される第1の樹脂成形体と第2のフッ素系樹脂材料から形成される第2の樹脂成形体とが一体化されて成形(以下、「一体溶融成形」と記載する。)され、一体的に接合された接合体を製造することができる。また、第1の樹脂成形体と第2の樹脂成形体は全体を加熱された後に一体溶融成形されるので、熱ひずみの発生を抑制することができる。
 上記樹脂接合体製造方法では、前記第1の樹脂集合体は、端部に凹部を有したカップ形状に形成されることが好ましい。
 前記第1の樹脂集合体は筒形状の管状体を含み、該管状体の内部が前記収容部となるようにしてもよい。この場合、前記第1の樹脂集合体は、筒形状の管状体と該管状体の下部に隣接して配置される中実棒状体又は板状体とから構成されることが好ましい。
 上記樹脂接合体製造方法では、前記第1の樹脂集合体は、前記第1のフッ素樹脂材料を成形した丸棒又はプレート若しくはこれを切削加工したものとしてもよく、前記第1のフッ素樹脂材料を冷間圧縮成形又は予備成形したものとしてもよい。
 また、前記樹脂接合体製造方法では、前記第2の樹脂集合体は、前記収容部内に収容可能な形状及び大きさを有するように第2のフッ素系樹脂材料を成形したものであってもよい。この場合、前記第2の樹脂集合体は、前記収容部内に収容可能な形状及び大きさを有するように前記第2のフッ素系樹脂材料を冷間圧縮成形又は予備成形したものとすることも可能である。さらに、前記第2の樹脂集合体は、前記第2のフッ素系樹脂材料の粉体又はペレットからなっていてもよい。第2のフッ素系樹脂材料は、第1の樹脂集合体の収容部内に収容されて保持されるので、融点以上になると溶融して液状になる材料であっても、様々な形態とすることができる。
 前記第1のフッ素系樹脂材料がポリテトラフルオロエチレン(PTFE)であり、前記第2のフッ素系樹脂材料がパーフルオロアルコキシアルカン(PFA)であることが好ましい。
 また、一つの実施形態として、上記樹脂接合体製造方法は、前記樹脂接合体から、隔膜部と、弁座に接離するように前記隔膜部の中央に支持された弁体部とを有したダイヤフラム弁用のダイヤフラムを製造するダイヤフラム製造ステップをさらに含み、該ダイヤフラム製造ステップが、第1の樹脂成形体と前記第2の樹脂成形体とを接合した樹脂接合体を製造するステップと、前記樹脂接合体の前記第2の樹脂成形体によって構成される部分を切削加工して、少なくとも前記弁座に当接する前記弁体部の部分を形成するステップと、前記樹脂接合体の前記第1の樹脂成形体によって構成される部分を切削加工して、前記隔膜部及び前記弁体部の残余の部分を形成するステップとを含むようにすることができる。
 上記ダイヤフラム製造ステップでは、繰り返しの変形を行う隔膜部を屈曲耐久性の高いPTFEから形成すると共に、少なくとも弁座と当接する弁体部の部分を発塵性が低いPFAから形成することができる。したがって、隔膜部の屈曲耐久性を確保しながら、弁体部と弁座との接離によるパーティクルの発生を抑制することができる。
 他の実施形態として、上記樹脂接合体製造方法は、前記樹脂接合体から、第1の流路と第2の流路と前記第1の流路及び前記第2の流路が連通する弁室とが形成された弁本体と、隔膜部と該隔膜部の中央部に支持された弁体部とを有したダイヤフラムとを備えるダイヤフラム弁を製造するダイヤフラム弁製造ステップをさらに含み、該ダイヤフラム弁製造ステップが、少なくとも前記樹脂接合体の前記第2の樹脂成形体に前記弁座が形成されるように、前記樹脂接合体を切削加工して前記第1の流路と前記第2の流路と前記弁室を前記樹脂接合体から形成するステップを含むようにすることができる。
 上記ダイヤラム弁製造ステップでは、弁体部と接離してパーティクルを発生しやすい弁座が発塵性が低いPFAによって形成された第2の樹脂成形体から作製することが可能となり、弁体部と弁座との接離によるパーティクルの発生を抑制することができる。また、ダイヤフラム弁の弁本体の残余の部分がPFAよりも安価なPTFEから作製することができるので、弁本体全体をPFAから形成する場合と比較して、ダイヤフラム弁(詳細には弁本体)のPFAの使用量を減らして原材料費用を減少させることが可能となる。
 本発明によれば、筒状の収容部内に第2の樹脂集合体を収容した第1の樹脂集合体を加熱すると、第1の樹脂集合体と第2の樹脂集合体の両方が全体的に加熱されて第1のフッ素系樹脂材料及び第2のフッ素系樹脂材料の融点以上になり、第1の樹脂集合体を構成する第1のフッ素系樹脂材料と第2の樹脂集合体を構成する第2のフッ素系樹脂材料の両方が溶融して一体化される。このとき、第1の樹脂集合体はゲル化して形状を維持するので、溶融して液状になった第2の樹脂集合体は第1の樹脂集合体の筒状を維持した収容部内に保持され、第1の樹脂集合体と一体化される。これを冷却すると、第1のフッ素系樹脂材料から形成される第1の樹脂成形体と第2のフッ素系樹脂材料から形成される第2の樹脂成形体とが一体溶融成形され、一体的に接合された接合体を製造することができる。異なるフッ素系樹脂材料から形成される成形体を一体溶融成形により一体的に接合した接合体を製造することができるので、接合体からダイヤフラムを製造する場合でも、弁閉時の衝撃を受けても二つの樹脂成形体の接合面に隙間が生じることを防ぐことができる。また、二つの樹脂集合体を同時に加熱するので、熱ひずみの発生を抑制することができ、第1の樹脂成形体と第2の樹脂成形体との接合面の強度低下を防ぐことが可能となる。
本発明の樹脂接合体製造方法により製造した樹脂接合体から作製した弁本体及びダイヤフラムを備えるダイヤフラム弁の一つの実施形態の全体構成を示す断面図である。 本発明による樹脂接合体製造方法の第1の実施形態を説明するための説明図である。 本発明による樹脂接合体製造方法により製造された樹脂接合体を示す断面図である。 本発明による樹脂接合体製造方法の第2の実施形態を説明するための説明図である。 本発明による樹脂接合体製造方法の第3の実施形態を説明するための説明図である。 図3に示されている樹脂接合体から切削加工により図1に示されているダイヤフラム弁のダイヤフラムを製造する工程を説明するために、樹脂接合体に重ねて切削後の形状を破線で示した樹脂接合体の断面図である。 図6に示されている樹脂接合体から切削加工により作製されたダイヤフラムを示す断面図である。 図3に示されている樹脂接合体から切削加工により作製されたダイヤフラムの変形形態を示す断面図である。 図3に示されている樹脂接合体から切削加工により図1に示されているダイヤフラム弁の弁本体を製造する工程を説明するために、樹脂接合体に重ねて切削後の形状を破線で示した樹脂接合体の断面図である。 図9に示されている樹脂接合体から切削加工により作製された弁本体を示す断面図である。 本発明の樹脂接合体製造方法により製造された樹脂接合体の第1の変形形態を示す断面図である。 図11に示されている第1の変形形態の樹脂接合体から切削加工により作製された弁本体の第1の変形形態を示す断面図である。 本発明の樹脂接合体製造方法により製造された樹脂接合体の第2の変形形態を示す断面図である。 図13に示されている第2の変形形態の樹脂接合体から切削加工により作製された弁本体の第2の変形形態を示す断面図である。 図3に示されている樹脂接合体から切削加工により作製されたダイヤフラムの他の変形形態を示す断面図である。 本発明の樹脂接合体製造方法により製造された樹脂接合体の第3の変形形態を示す断面図である。 図16に示されている第3の変形形態の樹脂接合体から切削加工により作製された弁本体の第3の変形形態を示す断面図である。 本発明の樹脂接合体製造方法により製造された樹脂接合体から切削加工により作製されたウエハ搬送ボックスを示す断面図である。 本発明の樹脂接合体製造方法により製造された樹脂接合体から切削加工により作製されたタンクを示す断面図である。
 以下、図面を参照して、本発明による樹脂接合体製造方法の実施の形態を説明する。
 最初に、図1を参照して、本発明による樹脂接合体製造方法により製造した樹脂接合体から作製したダイヤフラム及び弁本体を用いたダイヤフラム弁の一つの実施形態の全体構成を説明する。ダイヤフラム弁11は、弁本体13と、ダイヤフラム15と、ダイヤフラム15を駆動する駆動部17とを備え、駆動部17は弁本体13の上部に取り付けられている。
 弁本体13には、上部中央に弁室19が形成されていると共に、弁室19に連通する第1の流路及び第2の流路が形成されている。弁室19には、第1の流路から弁室19への開口の周囲に、ダイヤフラム15が接離する環状の弁座21が形成されている。図示されている実施形態では、第1の流路として、弁本体13の対向する側面の一方に形成された流入口23から延び且つ弁室19の底部中央に開口する入口流路25が形成されていると共に、第2の流路として、弁本体13の対向する側面の他方に形成された流出口27から延び且つ弁室19の側面に開口する出口流路29が形成されており、入口流路25から弁室19への開口の周囲に環状の弁座21が形成されている。
 駆動部17は、弁本体13の上部に取り付けられ且つ内部に機構収容空間が形成されている駆動部筐体31と、駆動部筐体31の上部に取り付けられる蓋部材33と、ダイヤフラム15に連結されているステム35と、機構収容空間に収容され且つステム35を駆動する駆動機構とを備えている。本実施形態では、駆動部筐体31内に機構収容空間としてシリンダ部が形成されており、駆動機構は、シリンダ部内に収容されているピストン37と、付勢部材としてのコイルばね39とによって構成されている。
 ピストン37は、駆動部筐体31のシリンダ部内に摺動可能に収容されるピストン本体37aと、ピストン本体37aから上方に延びる案内軸37bとを有しており、ピストン本体37aから下方に向かって延びるようにステム35がピストン本体37aに連結されている。ステム35は、駆動部筐体31の底部を貫通して設けられた貫通孔に摺動可能に挿入されて、その先端がダイヤフラム15(詳細には、後述する弁体部15c)に接続されている。ピストン本体37aは、外周面がシリンダ部の内周面に上下方向に摺動可能に接触しており、シリンダ部の内部空間を、ピストン本体37aの上面とシリンダ部の内周壁とシリンダ部の天井面(すなわち蓋部材33の下面)によって囲まれた上部空間41と、ピストン本体37aの下面とシリンダ部の内周壁とシリンダ部の底面(すなわち駆動部筐体31の底部)とによって囲まれた下部空間43とに区画している。案内軸37bは、蓋部材33を貫通して設けられた貫通孔に摺動可能に挿入されており、ピストン37の上下動を案内するようになっている。
 蓋部材33には、上部空間41を区画するシリンダ部に連通する通気口45が形成されており、通気口45を通して上部空間41と外部との間で通気を行うことができるようになっている。また、駆動部筐体31の側部には、下部空間43を区画するシリンダ部の底部に連通する作動流体供給口47が形成されており、作動流体供給口47から下部空間43内へ作動流体を供給できるようになっている。さらに、蓋部材33の下面(シリンダ部の天井面)とピストン本体37aの上面との間にコイルばね39が圧縮状態で配置されている。
 ダイヤフラム15は、下方に向かって突出する基台部15aを中央部に有した隔膜部15bと、基台部15aに接合された弁体部15cとを含んでいる。隔膜部15bは、基台部15aの上端部の外周部から半径方向外方に延びるように形成され、隔膜部15bの外周は概略円形状を有している。また、隔膜部15bの外周縁部は、弁本体13の弁室19の上部開口の周囲領域の上面と駆動部筐体31の底面との間に挟持されている。弁体部15cは、円柱上に円錐台が連結されたような形状を有しており、底面(弁座当接面)が弁座21に対向するように配置されている。基台部15aは、その周面が弁体部15cの円錐台部の側面と滑らかに接続されるように、弁体部15cに接合されている。このように、ダイヤフラム15は、隔膜部15bを介して弁室19の上方に弁体部15cを支持した状態で、弁室19と駆動部17との間を区画している。
 図示されている実施形態では、ダイヤフラム15の基台部15aを貫通して弁体部15cまで延びる連結孔49が設けられている。また、連結孔49は、駆動部17に近い側に位置する小径孔部49aと弁体部15c内に位置する連結孔49の下端部に設けられた大径孔部49bとを含んでいる。ステム35の先端部(下端部)には中間部よりも拡大された係止部35aが設けられており、係止部35aを小径孔部49aを通して大径孔部49bまで圧入することによって、ダイヤフラム15とステム35とが接続され、ピストン37の上下動に伴って、ステム35を介してダイヤフラム15(詳細には、その弁体部15c)が弁座21に接離できるようになっている。ステム35が上述のように弁体部15cに連結されていれば、基台部15aと弁体部15cとが万一剥離しても、ダイヤフラム15から離脱することを防ぐことができる。図示されている実施形態では、ステム35が弁体部15cに接続されているが、ステム35を介してピストン37の上下動により弁体部15cが弁座21に接離できれば、例えばステム35は弁体部15cに接合された基台部15aのみに連結されていてもよく、他の構成を有していてもよい。
 また、図示されている実施形態では、弁本体13は、弁室19が形成される第1の弁本体部分13aと、残余の部分である第2の弁本体部分13bとを含んでおり、第1の弁本体部分13aが低発塵性のパーフルオロアルコキシアルカン(PFA)から形成され、第2の弁本体部分13bがPFAよりも安価で屈曲耐久性の高いポリテトラフルオロエチレン(PTFE)から形成されている。このように弁体部15cと接離する弁座21を含む弁室19がPFAから形成されているので、弁体部15cと弁座21との当接によるパーティクルの発生を抑制することができる。また。第2の弁本体部分13bがPFAよりも安価なPTFEから形成されているので、弁本体13の全体をPFAから形成する場合と比較して、パーティクルの発生を抑制しながら弁本体13の原材料費を低減させることが可能となる。また、ダイヤフラム15は、特に隔膜部15bが繰り返しの曲げを伴う部分となることから、基台部15a及び隔膜部15bが高い屈曲耐久性を有するPTFEから形成される一方、弁体部15cが、弁座21に当接してパーティクルを発生しやすいことから、発塵性が低いPFAから形成されている。弁本体13やダイヤフラム15を形成するPTFEやPFAとして、化学的に変性させたものや、電離性放射線により架橋したものを使用してもよい。特にPTFEは化学的に変性させたものであることが好ましい。駆動部17の駆動部筐体31、蓋部材33、ステム35、ピストン37は、ポリフッ化ビニリデン(PVDF)、PTFE、PFA、ポリクロロトリフルオロエチレン(PCTFE)など適宜の材料から形成することができる。
 上述したように、図示されている実施形態では、弁本体13及びダイヤフラム15がPTFEとPFAという異なるフッ素系樹脂材料から形成される部分を含んでいる。このような場合、従来は、異なる材料から形成される二つの部分を、特許文献1に記載のように機械的に結合したり、特許文献2に記載のように溶着したり、接着剤を用いて接合したりしていた。しかしながら、機械的結合の場合には、ダイヤフラム15(特にその弁体部15c)のように弁座21に接離して衝撃を受ける部分では、衝撃による変形で例えば基台部15aと弁体部15cとの結合面に隙間が生じ、この隙間に弁室19内の液体が侵入したことによる材料の劣化でパーティクルが発生しやすくなることがある。また、溶着の場合には、例えば基台部15aと弁体部15cとの結合境界面のみを赤外線ビームなどにより加熱して溶融させるので、溶融された部分と溶融されなかった部分との温度差に起因して熱ひずみが生じ、結合境界面の強度が低下する問題が生じる。さらに、接着剤を使用する場合、特に基台部15aと弁体部15cは弁室19内に配置されるので、基台部15aと弁体部15cとの間の結合境界面から接着剤の成分が溶け出して弁室19内の液体に混入する恐れがある。
 そこで、本発明では、筒状の収容部51aを有した第1の樹脂集合体51をPTFEからから作製し、第1の樹脂集合体51の収容部51a内にPFAによって構成される第2の樹脂集合体53を収容したものをPTFE及びPFAの融点以上(すなわち、PTFEの融点とPFAの融点のうちの高い方以上の温度)まで加熱して、PTFEから形成される第1の樹脂集合体51とPFAから形成される第2の樹脂集合体53とを溶融させて一体化させて成形すること(以下、「一体溶融成形」と記載する。)により一体的に接合させた樹脂接合体を作製し、作製した樹脂接合体に切削加工を行うことによって、上述のようにPTFEから形成される部分とPFAから形成される部分とを含む弁本体13及びダイヤフラム15を製造するようにしている。第1の樹脂集合体51と第2の樹脂集合体53(すなわち、それを構成するPTFE及びPFA)の融点以上までの加熱は、特に加圧下で行う必要はなく、無圧の状態(加圧を特に行わない状態)で行うことができる。
 なお、本明細書において、「一体溶融成形」とは、二つの物体の全体を溶融し一体化させて一体的に接合することを意味し、固形化された物体の接合面のみを溶融させて接合する「溶着」や一方のみを溶融させる「インサート成形」などを除外した、これらと異なる概念として用いている。さらに、本明細書における「樹脂集合体」とは、粉体状又はペレット状の樹脂材料を所定形状となるようにしたものを意味し、樹脂材料の粉体を例えば冷間圧縮成形又は予備成形したり、圧縮成形や射出成形により樹脂材料を成形したプレートや棒状体に切削加工を行ったりして所定形状にしたものや、金型等に粉体状又はペレット状の樹脂材料を充填したものを含むものとし、固形状になっているか否かを問わないものとする。また、「樹脂集合体」は、一体的に構成されている必要はなく、個別の複数の部品を組み立てて構成されていてもよい。
 以下に、図2及び図3を参照して、第1のフッ素系樹脂材料から形成される第1の樹脂成形体と第2のフッ素系樹脂材料から形成される第2の樹脂成形体とを接合した樹脂接合体を製造するための樹脂接合体製造方法の第1の実施形態を詳細に説明する。以下では、第1のフッ素系樹脂材料としてPTFEを、第2のフッ素系樹脂材料としてPFAを使用したものを例示する。PTFEやPFAとして、化学的に変性させたものや、電離性放射線により架橋したものを使用してもよい。特にPTFEは化学的に変性させたものであることが好ましい。
 最初に、第1のフッ素系樹脂材料であるPTFEから、筒状の収容部51aを有した第1の樹脂集合体51を作製する。第1の実施形態では、図2に示されているような、上端部に収容部51aとして機能する凹部を有したカップ形状の第1の樹脂集合体51を作製する。第1の樹脂集合体51は、フリーベーキング法やホットモールディング法などによって金型を用いてPTFEから圧縮成形された棒状体又はプレートの上端部に切削加工により凹部を設けることにより作製してもよく、同様にフリーベーキング法やホットモールディング法などによって金型を用いてPTFEから上端部に凹部を有したカップ形状の棒状体又はプレートを圧縮成形することによって作製してもよい。また、第1の樹脂集合体51は、一体的に構成されている必要はなく、例えば筒状の管状体とこれの下部に隣接して配置される中実棒状体又は板状体(シート状のものを含む。)とを組み合わせて作製してもよい。この場合、管状体と棒状体又は板状体とは螺合や凹凸の嵌合により結合されていてもよい。さらに、管状体と棒状体又は板状体(シート状のものを含む。)とを一体的に構成する場合は、個別に作製された後に溶着により接合されてもよい。溶着は、例えば、レーザ溶着、熱板溶着、熱風溶着、焼成などによって行うことができる。第1の樹脂集合体51をPTFEの棒状体から作製する場合には、PTFEの棒状体を押出成形により作製してもよい。さらに、第2のフッ素系樹脂材料であるPFAから、図2に示されているような、第1の樹脂集合体51の収容部51a(凹部)内に収容可能な形状及び大きさを有した第2の樹脂集合体53を作製する。第2の樹脂集合体53は、外周形状が筒状の収容部51aの内周面と相補的形状となっている棒状体であることが好ましい。しかしながら、第2の樹脂集合体は、融点以上まで加熱されて溶融することによって液状化して、収容部51aの内周面と相補的形状となるので、収容部51a内に収容可能な形状及び大きさであればよい。また、第2の樹脂集合体の高さは、第2の樹脂集合体が融点以上まで加熱されて液状化したときに収容部51aからあふれでなければ、収容部51aの深さと概略等しくてもよく、収容部51aの深さよりも短くてもよい。第2の樹脂集合体は、例えば、PFAから、押出成形や金型を用いた射出成形などにより直接作製することができる。
 次に、第1の樹脂集合体51の収容部51a(凹部)内に第2の樹脂集合体53を収容したものを焼成炉内で加熱して焼成する。第1の樹脂集合体51は、PTFEから形成されているので、融点以上に加熱されて溶融しても、ゲル化してカップ形状を維持することができる。一方、第2の樹脂集合体53は、PFAから形成されているので、融点以上に加熱されて溶融すると、液状化する。しかしながら、第2の樹脂集合体53は、融点以上になって溶融してもゲル化してカップ形状を維持することができる第1の樹脂集合体51の収容部51a内に収容されているので、融点以上に加熱されて溶融して液状になっても収容部51a内に保持された状態を維持することができる。したがって、PFAが液状化してもPTFEに接触した状態を維持するための金型が必要ではなくなり、製造コストを低減することが可能となる。第1の樹脂集合体51と第2の樹脂集合体53とは、第1のフッ素系樹脂材料であるPTFEと第2のフッ素系樹脂材料であるPFAの融点以上(すなわち、PTFEの融点とPFAの融点のうちの高い方以上の温度)まで加熱されて溶融することにより一体溶融成形され、互いと一体的に接合される。また、第1の樹脂集合体51と第2の樹脂集合体53の加熱は、特に加圧下で行う必要はなく、無圧の状態(加圧を特に行わない状態)で行うことが可能である。無圧の状態で加熱を行って第1の樹脂集合体51と第2の樹脂集合体53とを一体溶融成形することにより、他の方法と異なり、ひずみや残留応力の発生を抑制することができる。
 第1の樹脂集合体51の収容部51a(凹部)内に第2の樹脂集合体53を収容した状態で、焼結炉内で第1の樹脂集合体51及び第2の樹脂集合体53をPTFE及びPFAの融点以上まで加熱した後に冷却すると、図3に示されているように、第1の樹脂集合体51は第1の樹脂成形体55となると共に第2の樹脂集合体53は収容部51a(凹部)と概略相補的形状の第2の樹脂成形体57となって、全体として、第1の樹脂成形体55と第2の樹脂成形体57とがその接触面全体にわたって一体的に接合された樹脂接合体59となる。
 このように製造された樹脂接合体59では、第1の樹脂成形体55と第2の樹脂成形体57は接触面の全体にわたって一体化されて接合しているので、樹脂接合体59に外力が作用しても第1の樹脂成形体55と第2の樹脂成形体57との間に隙間が生じることがない。また、第1の樹脂成形体55と第2の樹脂成形体57は全体を加熱されて溶融されるので、熱ひずみが発生せず、熱ひずみの発生により第1の樹脂成形体55と第2の樹脂成形体57との接合面の強度が低下することもない。なお、上述のような方法により作製した樹脂接合体59からなる棒状のテストピースを用いて引張試験を行ったところ、第1の樹脂成形体55と第2の樹脂成形体57との接合部よりも先に他の箇所が破断し、接合部が剥離することがないほどの接合強度を樹脂接合体59が有することが確認された。
 本発明による、第1のフッ素系樹脂材料から形成される第1の樹脂成形体55と第2のフッ素系樹脂材料から形成される第2の樹脂成形体57とを接合した樹脂接合体59を製造するための樹脂接合体製造方法では、第1のフッ素系樹脂材料から収容部51aを有した第1の樹脂集合体51を作製して、第1の樹脂集合体51の収容部51a(凹部)内に第2のフッ素系樹脂材料からなる第2の樹脂集合体53を収容し、第1のフッ素系樹脂材料及び第2のフッ素系樹脂材料の融点以上まで加熱したときにゲル化した第1の樹脂集合体51の収容部51a内に液状化した第2の樹脂集合体53の第2のフッ素系樹脂材料を保持できればよい。したがって、PTFEから形成される第1の樹脂成形体55とPFAから形成される第2の樹脂成形体57とを接合した樹脂接合体59を製造するための樹脂接合体製造方法は、第1の実施形態に限定されるものではない。
 第1の実施形態において、PFAから押出成形や射出成形のような成形方法により作製した第2の樹脂集合体53に代えて、第1の樹脂集合体51の収容部51a(凹部)内に充填したPFAの粉体又はペレットを第2の樹脂集合体53としてもよい。第1の樹脂集合体51はカップ形状に形成されていることから、第2の樹脂集合体がPFAの粉体又はペレットによって構成されていても、収容部51a内に保持することができる。また、第2のフッ素系樹脂材料であるPFAの粉体又はペレットは、焼成炉内で融点以上に加熱されると、第1の実施形態による樹脂接合体製造方法における第2の樹脂集合体53と同様に、ゲル化しても形状を維持できる第1の樹脂集合体51の収容部51a内で溶融して液状化する。したがって、第2のフッ素系樹脂材料であるPFAは、第1の樹脂集合体51の収容部51aの底面及び周面と隙間なく接して、ゲル化した第1の樹脂集合体51のPTFEと一体化する。これを冷却することにより、第1の実施形態の樹脂接合体製造方法と同様に、金型を用いることなく、第1の樹脂集合体51から形成された第1の樹脂成形体55と第2の樹脂集合体53から形成された第2の樹脂成形体57とが一体的に接合された樹脂接合体59を製造することができる。また、このような方法で製造された樹脂接合体59は、第1の実施形態の樹脂接合体製造方法により製造された樹脂接合体59と同様の特徴を有することができる。
 また、第1の樹脂成形体55と第2の樹脂成形体57とを接合した樹脂接合体59を製造するための樹脂接合体製造方法の第2の実施形態として、第1の実施形態の樹脂接合体製造方法におけるPTFEの粉体から作製する成形体に代えて、PTFEの粉体から冷間圧縮成形により筒状の収容部51a(凹部)を有するカップ形状に形成したものを第1の樹脂集合体51として使用し、第1の実施形態の樹脂接合体製造方法におけるPFAの粉体から作製する成形体に代えて、第1の樹脂集合体51の収容部51a内に収容可能な形状及び大きさを有するようにPFAの粉体から冷間圧縮成形により形成したものを第2の樹脂集合体53として使用してもよい。なお、第1の実施形態と同様に、第1の樹脂集合体51は、一体的に構成されている必要はなく、例えば筒状の管状体とこれの下部に隣接して配置される中実棒状体又は板状体(シート状のものを含む。)とを別個に冷間圧縮成形したものを互いと組み合わせて作製してもよい。また、管状体と棒状体又は板状体(シート状のものを含む。)とを一体的に構成する場合は、個別に作製された後に溶着により接合されてもよい。溶着は、例えば、レーザ溶着、熱板溶着、熱風溶着、焼成などによって行うことができる。
 冷間圧縮成形により上端部に筒状の収容部51a(凹部)を有したカップ形状に形成された第1の樹脂集合体51も、焼成炉内で融点以上に加熱すると、押出成形や射出成形などの成形方法によりカップ形状に形成された第1の樹脂集合体51と同様に、溶融してもゲル化してカップ形状を維持することができる。また、冷間圧縮成形により形成された第2の樹脂集合体53も、焼成炉内で融点以上に加熱すると、押出成形や射出成形などの成形方法により形成された第2の樹脂集合体53と同様に、溶融して液状化する。したがって、第2のフッ素系樹脂材料であるPFAは、第1の樹脂集合体51の収容部51aの底面及び周面と隙間なく接して、ゲル化した第1の樹脂集合体51のPTFEと一体化される。これを冷却することにより、第1の実施形態の樹脂接合体製造方法と同様に、金型を用いることなく、第1の樹脂集合体51から形成された第1の樹脂成形体55と第2の樹脂集合体53から形成された第2の樹脂成形体57とが一体溶融成形により一体的に接合された樹脂接合体59を製造することができる。また、このような方法で製造された樹脂接合体59は、第1の実施形態による樹脂接合体製造方法により製造された樹脂接合体59と同様の特徴を有することができる。
 第2の実施形態の樹脂接合体製造方法では、図4に示されているように、収容部51a(凹部)内に第2の樹脂集合体53を収容した状態の第1の樹脂集合体51を金型61内に配置すると共に金型61において第2の樹脂集合体53が配置されている側を断熱材63によって覆った状態で、焼結炉内で金型61を加熱することが好ましい。融点が低いPFAからなる第2の樹脂集合体53が配置された側を断熱材63で覆うことにより、焼成炉の熱が第2の樹脂集合体53に伝達しにくくして、第1の樹脂集合体51を形成するPTFEと第2の樹脂集合体53を形成するPFAをほぼ同時に溶融させることが可能となる。
 第2の実施形態の樹脂接合体製造方法でも、冷間圧縮成形により作製した第2の樹脂集合体53に代えて、第1の樹脂集合体51の収容部51a(凹部)内に充填したPFAの粉体又はペレットを第2の樹脂集合体53とすることができる。第2のフッ素系樹脂材料であるPFAは粉体状のものよりもペレット状のものを採用した方が溶融するまでの時間を遅らせることができる。
 さらに、第1の樹脂成形体55と第2の樹脂成形体57とを接合した樹脂接合体59の樹脂接合体製造方法の第3の実施形態として、第1の実施形態の樹脂接合体製造方法におけるPTFEの粉体から作製した成形体に代えて、PTFEの粉体から予備成形により収容部51aとして機能する凹部を有したカップ形状に形成したものを第1の樹脂集合体51として使用し、第1の実施形態の樹脂接合体製造方法におけるPFAの粉体から作製した成形体に代えて、第1の樹脂集合体51の収容部51a内に収容可能な形状及び大きさを有するようにPFAの粉体から予備成形により形成したものを第2の樹脂集合体53として使用し、ホットモールディングにより樹脂接合体59の作製を行うこともできる。この場合には、収容部51a内に第2の樹脂集合体53を収容した第1の樹脂集合体51を金型61内に配置して加熱を行う。なお、第1の実施形態と同様に、第1の樹脂集合体51は、一体的に構成されている必要はなく、例えば筒状の管状体とこれの下部に隣接して配置される中実棒状体又は板状体(シート状のものを含む。)とを別個に予備成形したものを互いと組み合わせて作製してもよい。
 予備成形により上端部に収容部51aとして機能する凹部を有したカップ形状に形成された第1の樹脂集合体51も、融点以上に加熱すると、押出成形や射出成形などの成形方法によりカップ形状に形成された第1の樹脂集合体51と同様に、溶融してもゲル化して、カップ形状を維持することができる。また、予備成形により形成された第2の樹脂集合体53も、融点以上に加熱すると、押出成形や射出成形などの成形方法により形成された第2の樹脂集合体53と同様に、溶融して液状化する。したがって、第2のフッ素系樹脂材料であるPFAは、第1の樹脂集合体51の収容部51aの底面及び周面と隙間なく接して、ゲル化した第1の樹脂集合体51のPTFEと一体化される。これを冷却することにより、第1の実施形態の樹脂接合体製造方法と同様に、第1の樹脂集合体51から形成された第1の樹脂成形体55と第2の樹脂集合体53から形成された第2の樹脂成形体57とが一体溶融成形により一体的に接合された樹脂接合体59を製造することができる。このような方法で製造された樹脂接合体59も、第1の樹脂接合体の製造方法により製造された樹脂接合体59と同様の特徴を有することができる。
 第3の実施形態の樹脂接合体製造方法では、図5に示されているように、収容部51a(凹部)内に第2の樹脂集合体53を収容した状態の第1の樹脂集合体51を金型61内に配置し、金型61において第2の樹脂集合体53が配置されている部分の周囲を第1のバンドヒータ65により加熱すると共に、その下方部分を第2のバンドヒータ67により加熱することが好ましい。異なるバンドヒータ65,67を用いることによって、相対的に融点が低いPFAからなる第2の樹脂集合体53が配置された部分を加熱する第1のバンドヒータ65の加熱温度を、相対的に融点が高いPTFEからなる第1の樹脂集合体51のみが配置された部分を加熱する第2のバンドヒータ67の加熱温度よりも低く設定することができるようになる。これにより、第1の樹脂集合体51を形成するPTFEと第2の樹脂集合体53のPFAをほぼ同時に溶融させることが可能となる。なお、第1のバンドヒータ65及び第2のバンドヒータ67は金型を加熱できればよく、これに代えて棒ヒータなど他の加熱機器を用いてもよい。
 第3の実施形態の樹脂接合体製造方法でも、予備成形により作製した第2の樹脂集合体53に代えて、第1の樹脂集合体51の収容部51a(凹部)内に充填したPFAの粉体又はペレットを第2の樹脂集合体53としてもよい。PFAは、粉体状のものよりもペレット状のものの方が溶融するまでの時間を遅らせることができる。
 このように作製した樹脂接合体59は様々な部品の中間材料として使用することができる。以下では、樹脂接合体59からダイヤフラム弁11の部品を製造する方法を例示として説明する。
 図6は、樹脂接合体59からダイヤフラム15を作製する方法を示している。図6に破線で示されているように樹脂接合体59を切削加工することにより、図7に示されているようなダイヤフラム15を作製することができる。図7に示されているダイヤフラム15は、図1に示されているダイヤフラム弁11において使用されているものである。ダイヤフラム15において、基台部15aを中央部に有した隔膜部15bは、樹脂接合体59において第1のフッ素系樹脂樹材料から形成される第1の樹脂成形体55から作製されている、すなわち屈曲耐久性の高いPTFEから形成されている。また、ダイヤフラム15の弁体部15cは、樹脂接合体59において第2のフッ素系樹脂材料から形成される第2の樹脂成形体57から作製されている、すなわち発塵性の低いPFAから形成されている。樹脂接合体59の第1の樹脂成形体55と第2の樹脂成形体57は一体溶融成形により一体的に接合されているので、ダイヤフラム15の基台部15aと弁体部15cとの境界面(接合面)も一体的に接合されている。したがって、弁閉時に弁体部15cが弁座21に当接して衝撃を受けて変形しても基台部15aと弁体部15cとの境界面に隙間が生じることがなく、弁室19内の液体が隙間に侵入したことによる強度の低下も防止することができる。また、第1の樹脂集合体51と第2の樹脂集合体53とは共に全体的に加熱された後に冷却されているので、熱ひずみの発生が抑制され、熱ひずみによる強度の低下も抑制することができる。
 また、図6において切削する位置を変えることにより、例えば図8に示されているダイヤフラム15’のように、弁座21に当接する弁座当接面の近傍のみを樹脂接合体59の第2の樹脂成形体57から作製し、弁座21に対する当接面の近傍のみを発塵性の低いPFAから形成されることも可能である。この場合、連結孔49は、基台部15aのみに設けられることになる。樹脂接合体59の第1の樹脂成形体55と第2の樹脂成形体57とは一体溶融成形されており、これらから作製される基台部15aと弁体部15cとは一体的に形成されているので、ステム35の上下動に伴って基台部15aを介して弁体部15cが連動し、弁座21に接離することができる。
 図9は、樹脂接合体59から弁本体13を作製する方法を示している。図9に破線で示されているように樹脂接合体59を切削加工することにより、図10に示されているような弁本体13を作製することができる。図10に示されている弁本体13は、図1に示されているダイヤフラム弁11において使用されているものである。弁本体13では、弁室19が形成される第1の弁本体部分13aが、樹脂接合体59において第2のフッ素系樹脂材料から形成される第2の樹脂成形体57から作製されている、すなわち発塵性の低いPFAによって形成されている。また、弁本体13の流入口23及び流出口27が形成される第2の弁本体部分13bが、樹脂接合体59において第1のフッ素系樹脂材料から形成される第1の樹脂成形体55から作製されている、すなわちPFAと比較して安価なPTFEによって形成されている。入口流路25及び出口流路29は、流入口23及び流出口27から弁室19まで延びるように第1の弁本体部分13aと第2の弁本体部分13bとに跨るように設けられている。第1の弁本体部分13aに設けられた弁座21が発塵性の低いPFAによって形成されている。したがって、弁の開閉時に弁体部15cが弁座21に当接してもパーティクルの発生を抑制でき、発生したパーティクルによる弁室19内の液体の汚染を低減させることができる。また、第1の弁本体部分13aが相対的に高価なPFAから形成される第2の樹脂成形体57から作製されていると共に、弁本体13の第2の弁本体部分13bが相対的に安価なPTFEから形成される第1の樹脂成形体55から作製される。したがって、弁本体13の第1の弁本体部分13a及び第2の弁本体部分13bの両方をPFAから作製する場合と比較して、弁体部15cが弁座21に当接することによるパーティクルの発生を抑制しつつ、弁本体13の原材料費を低減させることができる。
 また、第1の樹脂集合体51の収容部51a(凹部)内に配置された第2の樹脂集合体53の上にさらに第3のフッ素系樹脂材料からなる第3の樹脂集合体を配置したものを融点以上に加熱した後に冷却することによって、図11に示されているように、第1のフッ素系樹脂材料から形成される第1の樹脂成形体と第3のフッ素系樹脂材料から形成される第3の樹脂成形体69の間に第2のフッ素系樹脂材料から形成される第2の樹脂成形体を挟んだ状態で一体溶融成形により一体的に接合された樹脂接合体59’を作製することもできる。第1のフッ素系樹脂材料及び第3のフッ素系樹脂材料としてPTFEを、第2のフッ素系樹脂材料としてPFAを採用して、図11に破線で示されているように切削加工を行えば、図12に示されているような弁本体13’を作製することができる。
 弁本体13’は、第1のフッ素系樹脂材料から形成される第1の樹脂成形体55から作製される第2の弁本体部分13bと、第2のフッ素系樹脂材料から形成される第2の樹脂成形体57から作製される第1の弁本体部分13aとに加えて、第3のフッ素系樹脂材料から形成される第3の樹脂成形体69から作製される第3の弁本体部分13cを含んでいる。弁座21が第2の樹脂成形体57から作製されるように、弁室19が第1の弁本体部分13a及び第3の弁本体部分13cに跨って作製される。また、弁本体13の流入口23及び流出口27は第1の樹脂成形体55から作製された第2の弁本体部分13bに設けられ、入口流路25及び出口流路29は、流入口23及び流出口27から弁室19まで延びるように樹脂接合体59の第1の樹脂成形体55から作製された第2の弁本体部分13b及び第2の樹脂成形体57から作製された第1の弁本体部分13aに跨るように設けられている。このような弁本体13’では、弁の開閉時に弁体部15cが接離する弁座21を含む弁室19の一部のみが低発塵性だが相対的に高価なPFAから形成されており、弁閉時の弁体部15cが弁座21に当接したときの衝撃によるパーティクルの発生を抑制できる一方で、図10に示されているような弁本体13よりもさらに原材料費を低減させることができる。
 さらに、第1の樹脂集合体51の収容部51a(凹部)内に収容部51aの容積と比較して小さい体積の第2の樹脂集合体53を配置したものを第1のフッ素系樹脂材料及び第2のフッ素系樹脂材料の融点以上(すなわち、第1のフッ素系樹脂材料の融点と第2のフッ素系樹脂材料の融点のうちの高い方以上の温度)に加熱した後に冷却することによって、図13に示されているように、収容部51aの一部のみが第2のフッ素系樹脂材料から形成される第2の樹脂成形体で充填されて一体溶融成形により互いに一体的に接合された樹脂接合体59”を作製することもできる。第1のフッ素系樹脂材料としてPTFEを、第2のフッ素系樹脂材料としてPFAを採用して、図13に破線で示されているように切削加工を行えば、図14に示されているような弁本体13”を作製することができる。弁本体13”では、弁室19のうち弁座21を形成する部分のみが第2のフッ素系樹脂材料から形成される第2の樹脂成形体57から作製される第1の弁本体部分13aとなり、残余の部分が第1のフッ素系樹脂材料から形成される第1の樹脂成形体55から作製される第2の弁本体部分13bとなる。弁の開閉時に弁体部15cが接離する弁座21を形成する弁室19の一部のみが発塵性が低いが相対的に高価なPFAから形成されており、弁閉時の弁体部15cが弁座21に当接したときの衝撃によるパーティクルの発生を抑制できる一方で、図12に示されているような弁本体13よりもさらに原材料費を低減させることができる。また、弁室19の空間部分が収容部51aにおいて第2の樹脂成形体として使用されていない部分と重なるので、無駄に切削する量を減らすことができ、原材料費を抑制することができる。
 上記では、本発明の樹脂接合体製造方法により作製した樹脂接合体59,59’,59”からダイヤフラム弁11のダイヤフラム15,15’や弁本体13,13,13”を作製する方法について説明している。しかしながら、本発明の樹脂接合体製造方法により作製した樹脂接合体から、定圧弁や流量調整弁など他のタイプの弁の弁体部や弁本体を作製しても、上述のように作製したダイヤフラム弁11のダイヤフラム15,15’や弁本体13,13,13”と同様の効果を奏することができる。
 次に、図1を参照して、ダイヤフラム弁11の動作を説明する。図1に示されているように、作動流体供給口47から駆動部17に作動流体が供給されていない通常時は、駆動部17のピストン37がコイルばね39によって下方に付勢されて押し下げられる。この結果、弁体部15cがステム35を介して弁座21に接近する方向に移動して弁座21に圧接されて、ダイヤフラム弁11が図1に示されているように閉状態となる。これに伴って、基台部15aを介して弁体部15cを支持する隔膜部15bも駆動部17から離れる方向に変形する。この状態から、駆動部17の作動流体供給口47に作動流体を供給すると、シリンダ部の下部空間43に流入した作動流体の流体圧がピストン本体37aに上向きに作用し、ピストン37がコイルばね39の付勢力に抗して押し上げられる。このとき、上部空間41内の空気は通気口45から外部に放出される。この結果、弁体部15cがステム35を介して弁座21から離間する方向に移動させられ、ダイヤフラム弁11が開状態となる。これに伴って隔膜部15bも駆動部17へ接近する方向に変形する。作動流体供給口47への作動流体の供給が停止されると、コイルばね39により、再びピストン37が下方に付勢されて押し下げられ、弁体部15cが弁座21に圧接して、再び閉状態となる。
 上述したように、ダイヤフラム弁11では、弁体部15cが弁座21への接離を繰り返し、特に弁体部15cが弁座21に当接したときに、衝撃でパーティクルを発生しやすい。しかしながら、ダイヤフラム弁11では、弁座21に当接する弁体部15cが発塵性の低いPFAから形成されているので、弁体部15cからのパーティクルの発生を抑制することができる。同様に、弁室19が形成される弁本体13の第1の弁本体部分13aも発塵性の低いPFAから形成されているので、弁座21からのパーティクルの発生を抑止することができる。また、ダイヤフラム15の中間材料は、PTFEから形成される第1の樹脂成形体55とPFAから形成される第2の樹脂成形体57の両方を全体的に加熱して溶融させ、第1の樹脂成形体55と第2の樹脂成形体57とが一体溶融成形により互いに一体的に接合された樹脂接合体59として作製される。したがって、弁体部15cが弁座21に当接して衝撃を受けて変形しても、弁体部15cと基台部15aとの間に隙間が生じることはなく、熱ひずみの発生もないので弁本体13でもダイヤフラム15でも加熱による強度の低下を防止することができる。さらに、弁体部15cとの接離を繰り返す第1の弁本体部分13a以外の第2の弁本体部分13bはPFAよりも材料が安価なPTFEから形成されているので、弁本体13全体をPFAから製造する場合と比較して、弁本体13の製造コストの増加も抑制することができる。このような効果は、上述したダイヤフラム弁11のような開閉弁以外に、基台部及び弁体部と弁体部が接離する弁座を有した弁本体とを備える定圧弁や流量調整弁に本発明による樹脂接合体を適用した場合でも、同様に得ることができる。
 以上、図示される実施形態を参照して、本発明による樹脂接合体製造方法、並びに、この樹脂接合体製造方法により作製した樹脂接合体59からダイヤフラム弁用のダイヤフラム15及びこのダイヤフラム15を用いたダイヤフラム弁11を製造する製造方法を説明したが、本発明は図示されている実施形態に限定されるものではない。例えば、上記説明では、第1のフッ素系樹脂材料としてPTFE、第2のフッ素系樹脂材料としてPFAを例示しているが、第1のフッ素系樹脂材料は融点以上に加熱されたときに溶融してもゲル化して形状を維持することができ、第2のフッ素系樹脂材料は融点以上に加熱されたときに溶融して液体化すれば、第1のフッ素系樹脂材料及び第2のフッ素系樹脂材料はPTFEやPFAに限定されるものではない。例えば、第2のフッ素系樹脂材料として、PTFEに代えて、エチレンテトラフルオロエチレンコポリマ(ETFE)、パーフルオロエチレンプロペンコポリマ(FEP)、ポリビニリデンフルオライド(PVDF)などを使用してもよい。また、本発明による樹脂接合体製造方法では、収容部51aに第2の樹脂集合体53を収容できるようになっていればよく、筒状に形成した第1の樹脂集合体51の底部を金型上に載置して、筒状の第1の樹脂集合体51の内部空間の底部を金型で塞ぐことによって収容部51aとして機能する凹部を形成し、こうして形成された凹部内に第2の樹脂集合体53を収容するようにしてもよい。この場合、金型を桶形状又は皿状にすることが好ましい。
 さらに、樹脂接合体59から作製する部品も適宜の位置から切り出すことによって、部品のどの範囲を異なるフッ素系樹脂材料から形成するかを変えることができる。例えば、樹脂接合体59から切り出す位置を変えることによって、図7に示されているダイヤフラム15や図8に示されているようにダイヤフラム15’のように、ダイヤフラム15又は15’の弁体部15cにおいて弁座21に当接する弁座当接面全体が発塵性の低いPFAから形成される第2の樹脂成形体57から作製されるようにするのではなく、図15に示されているダイヤフラム15”のように、ダイヤフラム15”の弁座当接面の一部のみが第2の樹脂成形体57から作製されるようにすることもできる。
 また、異なるフッ素系樹脂材料から形成することを所望する部位の配置に応じて、第1の樹脂集合体51の収容部51aの数や、各収容部51a内に配置する第2の樹脂集合体53の体積を変えて、樹脂接合体59を製造してもよい。例えば、第1の樹脂集合体51に三つの収容部51aを形成すると共に、第1のフッ素樹脂材料としてPTFEを、第2のフッ素樹脂材料としてPFAを採用して、図16に示されているように第1のフッ素樹脂系材料からなる第1の樹脂成形体155内の離れた位置に第2のフッ素樹脂系材料からなる第2の樹脂成形体157A,157B,157Cが形成された樹脂接合体159を製造する。この樹脂接合体159に対して図16に破線で示されているように切削加工を行うことによって、図17に示されているような弁本体113を作製することができる。弁本体113では、弁室19のうちの弁座21を形成する部分のみと、入口流路25に接続する流入口23が形成された入口継手部と、出口流路29に接続する流出口27が形成された出口継手部とが、第2のフッ素系樹脂材料から形成される第2の樹脂成形体57から作製される第1の弁本体部分13aとなり、残余の部分が第1のフッ素系樹脂材料から形成される第1の樹脂成形体55から作製される第2の弁本体部分13bとなる。弁の開閉時に弁体部15cが接離する弁座21を形成する弁室19の一部のみと、チューブが接続される継手部を発塵性が低く耐摩耗性が高いが相対的に高価なPFAから形成することによって、弁閉時に弁体部15cが弁座に当接したときの衝撃によるパーティクルの発生を抑制できると共に、チューブの接続時の継手の摩耗を抑制することができる。
 加えて、上述の説明では、本発明により製造した樹脂接合体59からダイヤフラム弁11の構成部品を作製することを例示しているが、本発明により製造した樹脂接合体59から作製する部品は、ダイヤフラム弁の構成部品に限定されるものではなく、他の種類の弁の構成部品や、他の種類の部品とすることも可能である。例えば、図18に示されているように、第2の樹脂成形体57の形状を変え、第1のフッ素樹脂材料としてPTFEを、第2のフッ素樹脂材料としてPFAを採用して樹脂接合体59を製造することによって、内面側に位置し且つPFAによって形成された第1の部分203と、外面側に位置し且つPTFEによって形成された第2の部分205とを有したウエハ搬送ボックス(いわゆるフープ)201を作製することができる。ウエハ搬送ボックス201では、ウエハと接触する内面側が耐摩耗性が高いPFAから形成されているので、摩耗を抑制することができる。また、図19に示されているように、第1のフッ素樹脂材料としてPTFEを、第2のフッ素樹脂材料としてPFAを採用して樹脂接合体59を製造することによって、内面側に位置し且つPFAによって形成された内層303と、外面側に位置し且つPTFEによって形成された外層305とを有したタンク301を作製することができる。その他にも、本発明により製造した樹脂接合体59から、ポンプ、ノズル、圧力センサ等を作製することが可能である。
 11  ダイヤフラム弁
 13  弁本体
 13’  弁本体
 13”  弁本体
 13a  第1の弁本体部分
 13b  第2の弁本体部分
 13c  第3の弁本体部分
 15  ダイヤフラム
 15’  ダイヤフラム
 15”  ダイヤフラム
 15a  基台部
 15b  隔膜部
 15c  弁体部
 19  弁室
 21  弁座
 25  入口流路
 29  出口流路
 51  第1の樹脂集合体
 51a  収容部
 53  第2の樹脂集合体
 55  第1の樹脂成形体
 57  第2の樹脂成形体
 59  樹脂接合体
 59’  樹脂接合体
 59”  樹脂接合体
 113  弁本体
 155  第1の樹脂成形体
 157A  第2の樹脂成形体
 157B  第2の樹脂成形体
 157C  第2の樹脂成形体
 159  樹脂接合体
 201  ウエハ搬送ボックス
 203  第1の部分
 205  第2の部分
 301  タンク
 303  内層
 305  外層

Claims (15)

  1.  異なるフッ素系樹脂材料から形成される二つの樹脂成形体を接合した樹脂接合体を製造する樹脂接合体製造方法であって、
     融点以上になってもゲル化して形状を維持することができる第1のフッ素系樹脂材料から、筒状の収容部を有した第1の樹脂集合体を形成するステップと、
     融点以上になると溶融して液状になる第2のフッ素系樹脂材料からなる第2の樹脂集合体を前記収容部内に収容するステップと、
     前記収容部内に前記第2の樹脂集合体を収容した第1の樹脂集合体を前記第1のフッ素系樹脂材料及び前記第2のフッ素系樹脂材料の融点以上に加熱した後に冷却して、前記第1の樹脂集合体を第1の樹脂成形体に、前記第2の樹脂集合体を第2の樹脂成形体に変化させると共に、前記第1の樹脂成形体と前記第2の樹脂成形体とを接合させるステップと、
     を含むことを特徴とする樹脂接合体製造方法。
  2.  前記第1の樹脂集合体は、端部に凹部を有したカップ形状に形成される、請求項1に記載の樹脂接合体製造方法。
  3.  前記第1の樹脂集合体は筒形状の管状体を含み、該管状体の内部が前記収容部となる、請求項1に記載の樹脂接合体製造方法。
  4.  前記第1の樹脂集合体は、筒形状の管状体と該管状体の下部に隣接して配置される中実棒状体又は板状体とから構成される、請求項3に記載の樹脂接合体製造方法。
  5.  前記第1の樹脂集合体は、前記第1のフッ素系樹脂材料を成形した丸棒又はプレート若しくはこれを切削加工したものである、請求項1に記載の樹脂接合体製造方法。
  6.  前記第1の樹脂集合体は、前記第1のフッ素系樹脂材料を冷間圧縮成形又は予備成形したものである、請求項1に記載の樹脂接合体製造方法。
  7.  前記第2の樹脂集合体は、前記収容部内に収容可能な形状及び大きさを有するように第2のフッ素系樹脂材料を成形したものである、請求項5に記載の樹脂接合体製造方法。
  8.  前記第2の樹脂集合体は、前記収容部内に収容可能な形状及び大きさを有するように第2のフッ素系樹脂材料を成形したものである、請求項6に記載の樹脂接合体製造方法。
  9.  前記第2の樹脂集合体は、前記収容部内に収容可能な形状及び大きさを有するように前記第2のフッ素系樹脂材料を冷間圧縮成形又は予備成形したものである、請求項7に記載の樹脂接合体製造方法。
  10.  前記第2の樹脂集合体は、前記収容部内に収容可能な形状及び大きさを有するように前記第2のフッ素系樹脂材料を冷間圧縮成形又は予備成形したものである、請求項8に記載の樹脂接合体製造方法。
  11.  前記第2の樹脂集合体は、前記第2のフッ素系樹脂材料の粉体又はペレットからなる、請求項5に記載の樹脂接合体製造方法。
  12.  前記第2の樹脂集合体は、前記第2のフッ素系樹脂材料の粉体又はペレットからなる、請求項6に記載の樹脂接合体製造方法。
  13.  前記樹脂接合体から、隔膜部と、弁座に接離するように前記隔膜部の中央に支持された弁体部とを有したダイヤフラム弁用のダイヤフラムを製造するダイヤフラム製造ステップをさらに含み、
    前記ダイヤフラム製造ステップが、
     前記樹脂接合体の前記第2の樹脂成形体によって構成される部分を切削加工して、少なくとも前記弁座に当接する前記弁体部の部分を形成するステップと、
     前記樹脂接合体の前記第1の樹脂成形体によって構成される部分を切削加工して、前記隔膜部及び前記弁体部の残余の部分を形成するステップと、
     を含む、請求項1に記載の樹脂接合体製造方法。
  14.  前記樹脂接合体から、第1の流路と第2の流路と前記第1の流路及び前記第2の流路が連通する弁室とが形成された弁本体と、隔膜部と該隔膜部の中央部に支持された弁体部とを有したダイヤフラムとを備えるダイヤフラム弁を製造するダイヤフラム弁製造ステップをさらに含み、
     該ダイヤフラム弁製造ステップが、少なくとも前記樹脂接合体の前記第2の樹脂成形体に前記弁座が形成されるように、前記樹脂接合体を切削加工して前記第1の流路と前記第2の流路と前記弁室を前記樹脂接合体から形成するステップを含む、請求項1に記載の樹脂接合体製造方法。
  15.  前記第1のフッ素系樹脂材料がポリテトラフルオロエチレン(PTFE)であり、前記第2のフッ素系樹脂材料がパーフルオロアルコキシアルカン(PFA)である、請求項1から請求項14の何れか一項に記載の樹脂接合体製造方法。
PCT/JP2022/044573 2021-12-03 2022-12-02 樹脂接合体製造方法 WO2023101011A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280073739.8A CN118201761A (zh) 2021-12-03 2022-12-02 树脂接合体制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-197375 2021-12-03
JP2021197375 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023101011A1 true WO2023101011A1 (ja) 2023-06-08

Family

ID=86612400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044573 WO2023101011A1 (ja) 2021-12-03 2022-12-02 樹脂接合体製造方法

Country Status (3)

Country Link
CN (1) CN118201761A (ja)
TW (1) TW202330234A (ja)
WO (1) WO2023101011A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410378A (en) * 1977-06-23 1979-01-25 Daikin Ind Ltd Joining of pipe to pipe or pipe to rod made of polythtrafluoroethylene
JPH10138346A (ja) * 1996-11-12 1998-05-26 Furoueru:Kk フッ素樹脂製チューブの継手用抜け止めリングの溶着方法
JP2011226610A (ja) * 2010-04-22 2011-11-10 Nippon Pillar Packing Co Ltd 溶着継手及びその溶着方法
JP2016065560A (ja) * 2014-09-24 2016-04-28 アドバンス電気工業株式会社 ダイヤフラム弁並びにその環状弁座形成方法及び弁体形成方法
JP2016211618A (ja) * 2015-04-30 2016-12-15 Ckd株式会社 ダイアフラム、流体制御装置、及びダイアフラムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410378A (en) * 1977-06-23 1979-01-25 Daikin Ind Ltd Joining of pipe to pipe or pipe to rod made of polythtrafluoroethylene
JPH10138346A (ja) * 1996-11-12 1998-05-26 Furoueru:Kk フッ素樹脂製チューブの継手用抜け止めリングの溶着方法
JP2011226610A (ja) * 2010-04-22 2011-11-10 Nippon Pillar Packing Co Ltd 溶着継手及びその溶着方法
JP2016065560A (ja) * 2014-09-24 2016-04-28 アドバンス電気工業株式会社 ダイヤフラム弁並びにその環状弁座形成方法及び弁体形成方法
JP2016211618A (ja) * 2015-04-30 2016-12-15 Ckd株式会社 ダイアフラム、流体制御装置、及びダイアフラムの製造方法

Also Published As

Publication number Publication date
TW202330234A (zh) 2023-08-01
CN118201761A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
TWI741344B (zh) 隔膜構件及使用所述隔膜構件的隔膜閥
KR102581769B1 (ko) 유체 제어 기기의 제조 방법
WO2023101011A1 (ja) 樹脂接合体製造方法
JP7148182B2 (ja) ダイヤフラム部材
CN103775789B (zh) 具有两个由塑料制成的壳体部分的壳体
JP6961232B2 (ja) パワーエレメントおよびそれを有する膨張弁
US20230062647A1 (en) Flow rate control valve and producing method of flow rate control valve
JP2023006388A (ja) ダイヤフラム弁及びその製造方法
JP2023083160A (ja) ダイヤフラム弁
JP6598656B2 (ja) ダイヤフラムバルブおよびその製造方法
JP3219318U (ja) ダイヤフラム式背圧弁
US11820059B2 (en) Ultrasonic device for a polymer injector apparatus
US11584043B2 (en) Ultrasonic device for a polymer extruder machine
US20230349469A1 (en) Constant-pressure valve
JP2024011233A (ja) 有機溶剤用流体制御弁及び有機溶剤用流体制御弁の製造方法
JP5412674B2 (ja) 光学素子成形方法および光学素子成形装置
JP2020056466A (ja) ダイヤフラム式制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023565108

Country of ref document: JP

Kind code of ref document: A