WO2023101001A1 - Power storage device and method for manufacturing same - Google Patents

Power storage device and method for manufacturing same Download PDF

Info

Publication number
WO2023101001A1
WO2023101001A1 PCT/JP2022/044511 JP2022044511W WO2023101001A1 WO 2023101001 A1 WO2023101001 A1 WO 2023101001A1 JP 2022044511 W JP2022044511 W JP 2022044511W WO 2023101001 A1 WO2023101001 A1 WO 2023101001A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
thermal expansion
expansion member
capacitor
convex portion
Prior art date
Application number
PCT/JP2022/044511
Other languages
French (fr)
Japanese (ja)
Inventor
大蔵 千才
恵太 行本
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2023101001A1 publication Critical patent/WO2023101001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electricity storage device and its manufacturing method.
  • Known power storage devices include capacitors, secondary batteries, electric double layer capacitors, hybrid capacitors, redox capacitors, fuel cells, and solar cells.
  • a capacitor for example, an electrolytic capacitor is known (see Patent Document 1 below).
  • Patent Document 1 an electrolytic capacitor is known (see Patent Document 1 below).
  • the power storage device is expected to continuously receive vibrations associated with running.
  • an unexpected impact is applied to the power storage device as the vehicle travels. Therefore, the vibration stress and the like applied to the power storage device may be greater than when it is used for other purposes.
  • One aspect of the embodiment of the present invention is to improve the vibration resistance and impact resistance of the electricity storage device.
  • embodiments of the present invention are exemplified by a method of manufacturing an electricity storage device.
  • This manufacturing method includes the steps of providing a thermal expansion member between the wound element and the case, and expanding the thermal expansion member.
  • a thermal expansion member may be provided on the outer surface of the element.
  • a step of forming a convex portion protruding inward of the case for housing the element may be provided.
  • the step of forming the protrusion projecting inward of the case may be performed before the step of expanding the thermal expansion member.
  • the step of forming the projection projecting inward of the case may be performed after the step of expanding the thermal expansion member.
  • the step of providing the thermal expansion member may be a step of winding the outermost circumference of the element using the thermal expansion member.
  • the step of expanding the thermal expansion member may be a re-forming step.
  • one or more annular grooves are formed around the central axis of the case on the outer surface of the cylindrical case with a bottom. By doing so, it may be a step of protruding to the inside of the case.
  • the step of forming the convex portion protruding inward of the case the step of forming one or a plurality of recesses on the outer surface of the cylindrical case with a bottom so as to protrude inward of the case.
  • an electricity storage device includes a wound element and a thermal expansion member provided between the inner surface of the case and the outer surface of the element, and the thermal expansion member is a thermal expansion member expanded by heat treatment. It may also be characterized by:
  • the case has a convex portion protruding toward the inside of the case, and the thermal expansion member is positioned between the convex portion and an outer surface of the element facing the convex portion. It may be characterized by intervening in.
  • This power storage device and its manufacturing method can improve vibration resistance and impact resistance.
  • FIG. 1 is an exploded perspective view illustrating the structure of an aluminum electrolytic capacitor of a comparative example.
  • FIG. 2 is an enlarged view illustrating a connecting portion between a lead and an aluminum foil.
  • 3A and 3B are diagrams for explaining a phenomenon in which the connection portion of the lead is broken due to vibration or impact caused by an external force in the Y-axis direction.
  • FIG. 4A is a diagram illustrating the element 12 and case 11 included in the capacitor according to the first embodiment.
  • 4B is a diagram illustrating the structure of the capacitor according to the first embodiment;
  • FIG. FIG. 5 is a diagram illustrating cross-sectional structures of a case and an element.
  • FIG. 6A is a diagram illustrating a manufacturing process of a capacitor;
  • FIG. 6A is a diagram illustrating a manufacturing process of a capacitor;
  • FIG. 6B is a diagram illustrating the manufacturing process of the capacitor.
  • FIG. 6C is a diagram illustrating the manufacturing process of the capacitor.
  • FIG. 7A is an enlarged view of the vicinity of the convex portion in FIG. 6B.
  • FIG. 7B is an enlarged view of the vicinity of the convex portion in FIG. 6C.
  • FIG. 8A is a diagram illustrating the structure of a capacitor and a manufacturing method thereof according to the second embodiment.
  • FIG. 8B is a diagram illustrating the structure of a capacitor according to the second embodiment and a manufacturing method thereof.
  • FIG. 9A is a diagram illustrating the structure of a capacitor and a manufacturing method thereof according to a third embodiment; FIG.
  • FIG. 9B is a diagram illustrating the structure of a capacitor according to the third embodiment and a manufacturing method thereof.
  • FIG. 10A is a diagram illustrating a capacitor according to a modification;
  • FIG. 10B is a diagram illustrating a capacitor according to a modification;
  • FIG. 10C is a diagram illustrating a capacitor according to a modification;
  • FIG. 11 is a conceptual cross-sectional view illustrating another modified capacitor.
  • capacitors As electric storage devices, capacitors, secondary batteries, electric double layer capacitors, hybrid capacitors, redox capacitors, fuel cells, solar cells, etc. are known. Description will be made using an electrolytic capacitor.
  • FIG. 1 is an exploded perspective view illustrating the structure of an electrolytic capacitor (hereinafter referred to as capacitor 301) of a comparative example.
  • the capacitor 301 has an electrolytic capacitor element 312 , an electrolytic solution (not shown), and a case 311 for housing the element 312 .
  • Element 312 has anode foil 121A sandwiched between electrolytic papers 122A and 122B, and cathode foil 121B provided sandwiching electrolytic paper 122B with respect to anode foil 121A.
  • Electrolytic paper 122A and electrolytic paper 122B are made of insulating paper such as manila paper or kraft paper, non-woven fabric, or mixed paper thereof.
  • Element 312 has a columnar structure in which anode foil 121A, electrolytic paper 122A, cathode foil 121B, and electrolytic paper 122B are stacked and wound.
  • the anode foil 121A and the cathode foil 121B are foils using aluminum, which is a valve metal.
  • the surface of anode foil 121A is formed with an etching layer subjected to surface enlarging treatment, and then subjected to chemical conversion treatment to form a dielectric oxide film made of aluminum oxide. This dielectric oxide film becomes the dielectric of capacitor 301 .
  • the cathode foil 121B is formed with an etching layer and optionally with a chemical conversion coating.
  • a lead 313 is connected to each of the anode foil 121A and the cathode foil 121B.
  • the element 312 is formed by winding the anode foil to which the lead 313 is connected, the cathode foil, and the electrolytic paper.
  • the element 312 is housed in the case 311 together with the electrolyte.
  • the case 311 is, for example, metal such as aluminum. Case 311 has a bottomed cylindrical structure with one end having an open end for housing columnar element 312 .
  • a sealing rubber 314 made of elastic rubber or the like is arranged at the open end of the case 311 in which the element 312 is housed.
  • the sealing rubber 314 has through holes through which the two leads 313 are inserted.
  • the electrolytic capacitor is sealed by curling the open end of the case. At this time, the element 312 and the leads 313 are fixed to the case 311 together with the sealing rubber 314 .
  • the direction in which the two leads 313 are arranged is defined as the X-axis direction.
  • the direction in which the two leads 313 extend from the element 312 is defined as the Z-axis direction.
  • the Y-axis direction is a direction orthogonal to the X-axis direction in which the two leads 313 are arranged and the Z-axis direction in which the terminals of the leads 313 extend from the element 312 .
  • FIG. 2 illustrates an enlarged connection portion between the lead 313 and the aluminum foil.
  • the aluminum foil in FIG. 2 corresponds to both the anode foil 121A and the cathode foil 121B.
  • the anode foil 121A and the cathode foil 121B are also collectively referred to as electrode foils throughout the present embodiment.
  • the lead 313 includes a metal wire 13M, a round bar portion 132 connected to the metal wire 13M by welding or the like, and a flat portion formed by extending the round bar portion 132 so as to gradually become thin.
  • Flat portion 133 is connected to anode foil 121A or cathode foil 121B by stitch 134 .
  • the stitch 134 is formed by stacking the flat portion 133 on the anode foil 121A or the cathode foil 121B, and piercing the flat portion 133 with a stitch needle from the side of the flat portion 133, and pressing the burrs of the flat portion 133 generated at this time. It is formed.
  • anode foil 121A and cathode foil 121B and flat portion 133 may be connected using cold pressure welding by the cold weld method.
  • vibration refers to periodic shaking throughout the present embodiment.
  • a strong shaking that exceeds a non-periodic or transient acceleration that exceeds a certain limit is defined as an impact. Breakage such as that described with reference to FIG. 2 may similarly occur when the capacitor 301 is subjected to shock as well as when vibration is applied to the capacitor 301 . 2 can also occur when the electrode foil and flat portion 133 are connected by other connection methods such as the cold weld method.
  • FIG. 3 is a diagram for explaining a phenomenon in which the boundary portion 135 of the lead 313 breaks due to vibration or impact caused by an external force in the Y-axis direction.
  • a double arrow i in FIG. 3 indicates the vibration direction of the element, and a double arrow ii indicates the vibration direction of the case.
  • the vibration direction ii of the main body (case 311) of the capacitor 301 and the vibration direction i of the element 312 shown in FIG. That is, there is a case where the moving direction of the case 311 and the moving direction of the element 312 deviate from each other by 180 degrees, causing the capacitor 301 to vibrate in the opposite phase.
  • the element 312 is fixed to the case 311 only by the round bar portion 132 with a sealing rubber 314 .
  • FIG. 4A is a diagram illustrating the element 12 and the case 11 included in the capacitor 1 according to the first embodiment.
  • the capacitor 1 has an element 12 and a case 11 that houses the element 12 .
  • the case 11 is a bottomed cylindrical structure made of metal such as aluminum. Case 11 has an internal space for housing element 12 therein. This internal space is formed by a cylindrical side surface erected on the bottom surface of the cylinder. One end of the case 11 has an open end into which the element 12 can be inserted.
  • a protrusion 111 is formed that protrudes from the outside of the case to the inside of the case by press working or the like.
  • the convex portion 111 is an annular groove formed around the center axis of the bottomed tubular case 11 on the outer surface of the bottomed tubular case 11 . That is, the annular groove forms a convex portion 111 protruding from the inner surface of the case 11 toward the inside of the case 11 inside the case 11 (on the side of the internal space).
  • the number of protrusions 111 is not limited to one. Two or more protrusions 111 may be provided.
  • the convex portion 111 has an arcuate shape in the cross section perpendicular to the central axis of the case 11, but may have other shapes such as a triangle, a semicircle, and a semiellipse. It is desirable that the step of forming the projecting portion 111 protruding inward of the case 11 be performed before housing the element 12 in the case 11 . Therefore, FIG. 4A exemplifies that the step of forming the projecting portion 111 protruding inward of the case 11 in the case 11 for housing the element 12 is performed before housing the element 12 in the case 11.
  • FIG. 4B is a diagram illustrating the structure of the capacitor 1 according to the first embodiment.
  • the element 12 is housed in the case 11 together with the electrolytic solution, sealed with sealing rubber, and then heated in a heat treatment process to manufacture the capacitor 1 shown in FIG. 4B.
  • the capacitor 1 in FIG. 4B is illustrated as a conceptual cross-sectional view in which parts other than the element 12 are cut on the XZ plane. Also, in this conceptual cross-sectional view, the cross-section of the element 12 is omitted.
  • the capacitor 1 has a case 11 illustrated in cross section, an element 12 housed in the case 11, leads 13 connected to electrode foils of the element 12, and a sealing rubber 14.
  • the structure of the element 12 is the same as the structure of the element 312 of the comparative example described in FIGS. That is, the element 12 has a columnar structure in which an anode foil 121A, an electrolytic paper 122A, a cathode foil 121B, and an electrolytic paper 122B are stacked and wound, similarly to the element 312 of the comparative example.
  • a columnar shape is an example of a columnar shape.
  • the configurations of the leads 13 and the sealing rubber 14 are also the same as the configurations of the leads 313 and the sealing rubber 314 described with reference to FIGS. Therefore, in this embodiment, descriptions of the element 12, the leads 13, and the sealing rubber 14 are omitted.
  • the lead 13 has a flattened portion 133 at the connection portion of the lead 13 with the electrode foil, similarly to the capacitor 301 of the comparative example.
  • the metal wire 13M of the lead 13 is connected to one end side of the round bar portion 132 by welding or the like. Further, the other end side of the round bar portion 132 has a flattened flat portion 133 as in FIG.
  • a feature of the capacitor 1 of the present embodiment is that the heat generated between the inner surface of the case 11 on which the convex portion 111A is formed and the outer surface, which is the cylindrical side surface of the element 12 housed in the case 11, is generated.
  • the point is that it has an expansion member 19 .
  • thermal expansion member 19 fills the space between the inner surface of case 11 and the outer surface of element 12 . That is, the thermal expansion member 19 expanded by heat contacts or abuts the inner surface of the case 11 on which the convex portion 111A is formed. Furthermore, the thermal expansion member 19 expanded by heat also contacts or contacts the cylindrical side surface of the element 12 .
  • the thermal expansion member 19 is interposed between the case 11 and the element 12 and arranged in a state of being expanded by heat. Therefore, even if vibration or impact is applied to the capacitor 1, the fixing accuracy of fixing the element 12 in the case having the convex portion 111A is improved by the thermal expansion member 19, and the case 11 and the element 12 are integrated. Stress concentration on the stitches 134 and the boundary points 135 can be suppressed, and good vibration resistance or impact resistance can be obtained.
  • the thermal expansion member 19 is an expansion member that expands by heat treatment. By applying heat to the thermal expansion member 19, the thickness of the thermal expansion member 19 may increase before and after the heat is applied.
  • the thermal expansion member 19 is desirably made of a material that can irreversibly maintain the state after thermal expansion.
  • the thermal expansion member 19 may be an organic substance or an inorganic substance as long as it has thermal expansion properties.
  • the thickness of the thermal expansion member 19 may be increased by 1.5 to 35 times the thickness before the heat is applied to the thermal expansion member 19 by applying heat. A more preferable range of change in thickness by applying heat is 2 to 25 times, more preferably 2.5 to 15 times.
  • the thermal expansion member 19 expands to a thickness that allows the capacitor to be vibration or impact resistant and expands without affecting the electrical characteristics of the capacitor. Furthermore, if the thermal expansion member 19 is in the range of 2.5 times to 15 times, the thermal expansion member 19 will expand to a thickness suitable for the capacitor to obtain vibration resistance or impact resistance, and will have a mechanical effect that affects the electrical characteristics of the capacitor.
  • the thermal expansion member 19 can expand while suppressing the occurrence of thermal stress. Even if the change in state due to the expansion of the thermal expansion member 19 when heat is applied only to the thermal expansion member 19 is greater than that between the case 11 and the element 12, the case 11 is kept within a range that does not affect the electrical characteristics of the capacitor. and the element 12 may be used as the thermal expansion member 19 . Further, in the present embodiment, the thickness of the thermal expansion member 19 refers to the width of the thermal expansion member 19 in the direction from the central axis of the case toward the side surface of the case.
  • thermally expandable organic substances examples include polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyamide, polyurethane, polyvinyl chloride, acrylic resin, butyl resin, and polyvinylidene fluoride.
  • the thermally expandable organic substance may contain a foaming agent as needed. Any material may be used as the foaming agent as long as it foams when heat is applied in the step of expanding the thermal expansion member 19 and can irreversibly maintain the expanded state of the thermal expansion member 19 . good. Considering the influence on the characteristics of the capacitor, materials other than polyvinyl chloride containing chlorine are desirable. Thermally expandable graphite can be exemplified as an inorganic material having thermal expandability.
  • the capacitor 1 shown in FIG. 4B has a tape-shaped thermal expansion member 19 (hereinafter referred to as a thermal expansion tape 19A) wound around the outer surface of the wound columnar element 12 . Then, the element 12 wrapped with the thermal expansion tape 19A is housed in the case 11. As shown in FIG.
  • the element 12 is impregnated with an electrolytic solution.
  • the element 12 may be impregnated with the electrolytic solution before the element 12 is accommodated in the case 11 . Further, the element 12 may be impregnated with the electrolytic solution after the element 12 is accommodated in the case 11 .
  • a sealing rubber 14 is arranged at the open end of the case 11 .
  • the sealing rubber 14 is fixed to the open end of the case 11 by sealing the open end on the one end side of the case 11, for example. Thereby, the open end of the case 11 is sealed.
  • a heat treatment process is performed on the capacitor 1 with the open end of the case 11 sealed.
  • the temperatures of the case 11 and the element 12 are maintained at a temperature at which the thermally expandable tape 19A expands for a predetermined time.
  • the temperature and time at which the case 11 and the element 12 are maintained in the heat treatment process are determined by the material of the thermal expansion tape 19A.
  • FIG. 5 is a diagram illustrating cross-sectional structures of the case 11 and the element 12 illustrated in FIG. 4B.
  • the outer surface portion of the convex portion 111 will be called a concave portion 111B.
  • the portion protruded inward from the inner surface of the case 11 by the protrusion 111 will be referred to as a protrusion 111A.
  • the outer surface (bottomed cylindrical side surface) of the case 11 is at a distance R10 from the central axis of the case 11, for example.
  • the convex portion 111A is located at a distance R11 from the central axis of the case 11, for example.
  • the outer surface (columnar side surface) of the element 12 is at a distance R12 from the central axis of the case 11, for example.
  • the distance R11 from the central axis of the case 11 to the convex portion 111A is longer than the distance R12 from the central axis of the case 11 to the outer surface of the element 12 . Therefore, a gap is formed between the outer surface of the element 12 and the convex portion 111A.
  • the thermal expansion member 19 thermally expanded from the thermal expansion tape 19A is embedded in the internal space of the case 11 including this gap.
  • the gap between the outer surface of the element 12 and the convex portion 111A is preferably in the range of 0 mm to 3 mm, more preferably in the range of 0.05 mm to 1 mm. If the thickness is in the range of 0.05 mm to 1 mm, the element can be easily inserted, and good vibration resistance or impact resistance can be obtained when the thermal expansion member is expanded.
  • FIG. 6A to 6C are diagrams illustrating the manufacturing process of the capacitor 1.
  • FIG. 6A the element 12 is enclosed in the case 11 having the convex portion 111 (S1).
  • the element 12 is wrapped with a thermal expansion tape 19A.
  • the sealing rubber 14 is curled to form a curled portion 112 (S2).
  • S2 can be called a sealing step.
  • the thermal expansion tape 19A is thermally expanded (S3).
  • the method of impregnating the element 12 with the electrolytic solution includes the method of impregnating the element 12 with the electrolytic solution and the method of putting the electrolytic solution into the case 11 to enclose the element 12 .
  • the method for impregnating the element 12 with the electrolytic solution is not limited, and any method may be used.
  • the thermally expandable tape 19A may be used in place of the element-fixing tape. That is, the element 12 is formed by stacking and winding an anode foil 121A, an electrolytic paper 122A, a cathode foil 121B, and an electrolytic paper 122B, similarly to the element 312 of the comparative example.
  • the outermost periphery of the wound element 12 may be fixed by winding with a thermal expansion tape 19A to maintain the wound state.
  • the wound state may be maintained by a non-thermally expansive element-fixing tape, and a thermally expandable tape may be further applied on the element-fixing tape.
  • a separate thermal expansion member 19 may be provided thereon.
  • the element fixing tape a resin tape such as polyphenylene sulfide, polyethylene terephthalate, polypropylene, ethylene propylene terpolymer, polyethylene naphthalate, or a rubber tape may be used.
  • the timing for executing the thermal expansion step (S3) may be the time of heat addition during re-forming (re-forming step). That is, in the manufacture of the capacitor 1, the anode foil 121A, the electrolytic paper 122A, the cathode foil 121B, and the electrolytic paper 122B illustrated in the comparative example are superimposed and wound, and the anode foil 121A is cut. Defects may occur in the formed dielectric oxide film. Therefore, after the element 12 is sealed in the case 11, re-formation (aging) is performed. In the re-formation process, defects in the dielectric oxide film are repaired by applying a voltage to the capacitor 1 heated to a predetermined temperature. That is, the thermal expansion step (S3) can be performed in the re-formation step. However, a thermal expansion step (S3) may be provided separately from the re-chemical conversion step.
  • element 12 has a structure in which electrode foil 121 and electrolytic paper 122 are laminated. Moreover, the outer surface of the element 12 is wrapped with a thermal expansion tape 19A.
  • the convex portion 111A and the element A gap SP1 which is an internal space, is formed between the opposing surfaces of 12 and the vicinity thereof (sealing step S2). Then, in the thermal expansion step (S3), the thermal expansion tape 19A thermally expands as shown in FIG. It is filled with the thermal expansion member 19 .
  • the case 11 has an internal space for housing the element 12, and the inside of the case (inside the internal space) It has a convex portion 111A protruding toward it.
  • a thermal expansion member 19 is embedded between the inner surface of the case 11 including the convex portion 111A and the outer surface of the element 12 . Therefore, even when vibration or shock is applied as an external force to the capacitor 1, the thermal expansion member 19 causes the case 11 and the element 12 to vibrate in opposite phases or out of phase. Alternatively, movement is suppressed.
  • the convex portion 111 is processed while the element 12 is housed in the case 11, high processing accuracy is required so as not to apply mechanical stress to the anode foil 121A and the cathode foil 121B of the element 12. It is assumed that However, in the capacitor 1 , the convex portion 111 is formed before the element 12 is housed in the case 11 . Therefore, there is no processing step for forming the convex portion 111 that may apply mechanical stress while the case 11 includes the element 12 . Further, the thermal expansion member 19 expands so as to come into surface contact with the element 12 along the side surface of the element 12 at the time of expansion, and the thermal expansion member 19 is embedded. Therefore, local application of mechanical stress can be suppressed.
  • the thermal expansion member 19 gradually comes into contact with the case 11 along the convex portion 111A. Therefore, the reaction in the direction of the element 12 received by the thermal expansion member 19 from the case 11 during thermal expansion can be dispersed. After the thermal expansion, the thermal expansion member 19 is more stable than between the case 11 and the element facing the surface on which the convex portion 111A is not formed, between the convex portion 111A and the element facing the convex portion 111A. , the space is densely filled, and the contact area between the convex portion 111A and the element 12 is increased. Therefore, the vibration resistance and shock resistance of the capacitor 1 can be improved.
  • [Second embodiment] 8A and 8B are diagrams illustrating the structure of a capacitor 1A and a manufacturing method thereof according to the second embodiment.
  • the first embodiment exemplifies the capacitor 1 in which the thermal expansion member 19 is embedded between the inner surface of the case 11 and the outer surface of the element 12 .
  • This embodiment exemplifies a capacitor 1A in which the thermal expansion member 19 is embedded only in the vicinity of a protrusion 111A protruding toward the inside of the case 11 into the internal space. Except for the structure of the thermal expansion member 19, the structure, configuration and action of the capacitor 1A are the same as those of the capacitor 1 of the first embodiment. Therefore, among the configurations of the capacitor 1A, the same configurations as those of the capacitor 1 of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • FIGS. 8A and 8B are conceptual cross-sectional views of the capacitor 1A taken along a plane passing through the respective centers of the leads 13-1 and 13-2 of the capacitor 1A. Similar to FIG. 4B, FIGS. 8A and 8B also omit the cross section of the element 12 .
  • the capacitor 1A includes a case 11 illustrated in cross section, an element 12 housed in the case 11, leads 13-1 and 13-2 connected to electrode foils of the element 12, It has a sealing rubber 14 .
  • the leads 13-1 and 13-2 are simply referred to as the leads 13 when collectively referred to.
  • a feature of the capacitor 1A of the second embodiment is that before the heat treatment process, the thermal expansion tape 19A is limited to the vicinity of the outer surface of the element 12 facing the convex portion 111A projecting toward the inside of the case 11. at the marked point (Fig. 8A). Therefore, the thermal expansion member 19, which is heated in the heat treatment process and formed by thermal expansion, is embedded only in the portion sandwiched between the convex portion 111A and the outer surface of the element 12 in the vicinity facing the convex portion 111A. That is, as shown in FIG. 8B, the thermal expansion member 19 is interposed in a part of the internal space of the case 11. As shown in FIG.
  • Such a configuration also suppresses displacement of the element 12 and the body of the capacitor 1A (the case 11, the sealing rubber 14, etc.) in different directions due to external forces such as vibration or impact. That is, it is suppressed that the phases of the vibrations of the element 12 and the body of the capacitor 1A are shifted or reversed.
  • the internal space of the case 11 that does not include the thermal expansion member 19 is expanded as compared with the capacitor 1 of the first embodiment. That is, the capacitor 1A can have a higher void ratio than the capacitor 1 of the first embodiment.
  • the capacitor 1A of FIG. 8B can improve the vibration resistance and impact resistance and mitigate the influence of gas generation on the case 11.
  • FIGS. 9A and 9B are diagrams illustrating the structure of a capacitor 1B according to the third embodiment and a manufacturing method thereof.
  • the first embodiment exemplifies the capacitor 1 in which the thermal expansion member 19 is embedded between the inner surface of the case 11 and the outer surface of the element 12 .
  • the capacitor 1 ⁇ /b>B in which the thermal expansion member 19 is embedded only in the vicinity of the projection 111 ⁇ /b>A protruding toward the inside of the case 11 into the internal space is exemplified.
  • This embodiment exemplifies a capacitor 1B in which the thermal expansion member 19 extends to the gap (space) SP2 between the end face 12B of the element 12 arranged on the bottom side of the case and the bottom face 11B of the case 11.
  • the structure, configuration, and action of the capacitor 1B are the same as those of the capacitor 1 of the first embodiment and the capacitor 1A of the second embodiment. Therefore, among the configurations of the capacitor 1B, the same configurations as those of the capacitor 1 of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • FIGS. 9A and 9B are conceptual cross-sectional views taken along planes passing through the centers of the leads 13-1 and 13-2 of the capacitor 1B.
  • FIGS. 9A and 9B also omit the cross section of the element 12 as in FIG. 4B or FIGS. 8A and 8B.
  • the direction in which the two leads 13-1 and 13-2 are arranged is the X-axis direction.
  • the direction in which the terminals of the two leads 13-1 and 13-2 extend from the element 12 is defined as the Z-axis direction.
  • the Y-axis direction is a direction orthogonal to the X-axis direction in which the two leads 13-1 and 13-2 are arranged and the Z-axis direction in which the terminals of the leads 13 extend from the element 12.
  • the capacitor 1B includes a case 11 illustrated in cross section, an element 12 housed in the case 11, leads 13-1 connected to the electrode foils of the element 12, and a lead 13-1 connected to the electrode foil of the element 12. 13-2 and a sealing rubber 14.
  • a feature of the capacitor 1B of the third embodiment is that, before the heat treatment process, the thermal expansion tape 19A forms a cylindrical outer surface sandwiched between the cylindrical side surfaces of the element 12 (the case opening end side and the case bottom side). ) and is attached around the end face 12B arranged on the bottom side of the cylindrical case of the element 12 (FIG. 9A). Therefore, when heated in the heat treatment process, the thermal expansion tape 19A extends not only to the gap SP1 between the inner side surface of the case 11 and the side surface of the element 12, but also to the gap SP2 on the side of the bottom surface of the case of the element 12. exists and is embedded. That is, as shown in FIG. 9B, at least part of the gap SP2 between the end surface 12B arranged on the bottom side of the case, which is one end surface of the columnar element 12, and the bottom surface 11B inside the case 11 is heated. An inflatable member 19 is embedded and intervening.
  • the capacitor 1B of this embodiment has the thermal expansion member 19 expanded also on the bottom surface side of the element 12 .
  • the vibration or impact can be softened, and the vibration resistance and impact resistance can be further improved.
  • the Z-axis direction is the direction in which the terminals of the two leads 13-1 and 13-2 extend from the element 12.
  • the capacitor 1B may have an expanded thermal expansion member 19 on the end face arranged on the case opening end side of the element 12 in addition to the case bottom side of the element 12 . That is, the thermally expandable tape 19A may be embedded in the gap between the end face of the element 12 located on the side of the opening of the case and the sealing rubber 14, and thermally expanded. Therefore, the thermal expansion member 19 is interposed between the side surface of the columnar element 12 and the inner side surface of the bottomed cylindrical case 11 and at least between one end surface of the columnar element 12 and the bottom surface of the case 11. It may extend to the middle.
  • FIGS. 10A to 10C are diagrams illustrating capacitors 1C to 1E according to modifications.
  • a capacitor 1C in FIG. 10A has a plurality of protrusions 111-1 and 111-2 on the case 11.
  • the convex portions 111-1 and 111-2 are formed on the outer surface of the bottomed cylindrical case 11 around the central axis of the bottomed cylindrical case 11. is an annular groove.
  • the number of protrusions 111 is not limited to two, and may be three or more.
  • the normal to the surface formed by the ring may be inclined with respect to the Z-axis.
  • an annular groove may be formed along the outer periphery of a cross section obtained by obliquely cutting the bottomed cylindrical case 11 .
  • the inner space of the case 11 has protrusions 111A (FIGS. 4A, 4B, 7A, 7B) projecting inward from the inner surface of the case 11. reference) are formed. Therefore, in the capacitor 1C, the contact points between the thermal expansion member 19 and the case 11 can be increased. Therefore, the capacitor 1C can stably maintain the thermal expansion member 19 as compared with the case where the convex portion is single. As a result, the capacitor 1C can further improve vibration resistance and shock resistance.
  • a concave lens-shaped It has one or more isolated depressions 111C.
  • isolated means that it is not a continuous annular groove like the capacitor 1C.
  • one, two, or three or more depressions 111C are formed on the outer surface of the case 11 around the central axis of the bottomed cylindrical case 11 . This depression 111C is also called a dimple.
  • the cross-sectional shape of the depression 111C is not limited, and may be, for example, a part of a spherical surface or a parabola obtained by rotating a parabola. Also, the cross-sectional shape of the depression 111C may be a curved line that is more than a quadratic curve. Also, the cross-sectional shape of the recess 111C does not have to be a rotated line and does not have to be symmetrical with respect to the center of the recess 111C.
  • the surface with which the thermal expansion member 19 contacts during expansion is a spherical surface, a quadratic surface, or another surface that changes smoothly. can improve sexuality.
  • the thermal expansion member 19 since the thermal expansion member 19 is in contact with the isolated protruding portion, the occurrence of mechanical stress generated when the thermal expansion member 19 expands is limited to a specific portion. Impact resistance can be improved.
  • the condenser 1E of FIG. 10C has a concave lens-like depression 111C which is placed on the outer surface of the cylindrical case 11 with a bottom at a position other than one circumference around the central axis of the cylindrical case 11 with a bottom. It is set in That is, the condenser 1E has concave lens-like depressions 111C isolated at various positions on the outer surface of the case 11.
  • the surface with which the thermal expansion member 19 contacts during expansion is a spherical surface, a quadratic surface, or any other surface that changes smoothly, thereby suppressing application of excessive mechanical stress to the element.
  • the capacitor 1E can obtain higher vibration resistance and impact resistance against vibrations and impacts applied from various angles.
  • the number and positions of the recesses 111C are not limited to those of the capacitor 1E in FIG.
  • FIG. 11 is a conceptual cross-sectional view illustrating another modified capacitor 1F.
  • the cross section of the element 12 is omitted.
  • Case 11 of capacitor 1F does not have protrusion 111 of capacitor 1 in FIGS. 4A and 4B and recess 111C of capacitors 1D and 1E in FIGS. 10B and 10C.
  • a feature of the capacitor 1F is that the convex portion 111D protruding from the inner surface is formed in the internal space for housing the element 12 without deforming the external appearance of the case 11.
  • the convex portion 111D is formed at a position near the bottom surface 11B of the case 11 so as to overlap or contact with a part of the bottom surface 11B.
  • the convex portion 111D may be formed at a position spaced apart from the bottom surface 11B of the case 11 .
  • a gap may be provided between the convex portion 111D and the cylindrical side surface of the element 12 .
  • a convex portion 111D having a similar shape may be formed.
  • the capacitor 1F has the same effect as the capacitors 1 to 1E by forming the protrusions 111D by drawing or embossing the case 11 without crimping or forming dimples.
  • the convex portion 111D of the capacitor 1F may be formed by inserting a ring-shaped member into the inner space of the case 11 while being pressed against it.
  • the protrusion 111 is an annular groove formed around the central axis of the bottomed cylindrical case 11 on the outer surface of the bottomed cylindrical case 11 . It has become.
  • the convex portion 111 (and the convex portion 111A) is not limited to such a shape. That is, as another modification, a convex portion may be provided on the inner surface of the case 11 in a direction perpendicular to the direction in which the two leads 13-1 and 13-2 are arranged (the X-axis direction in FIG. 4B, etc.). .
  • a protrusion may be provided on the inner surface of the case 11 by a groove extending in the Z-axis direction in FIG.
  • the groove portion may be formed over the entire length of the case 11 in the axial direction, or may be formed in a limited range in the axial direction of the case 11 .
  • the convex portion 111D in FIG. may be formed by In this case, by narrowing the width of the protrusion (groove) on the center side, which is closer to the intermediate position sandwiched between both end surfaces of the case 11 than on the bottom surface 11B side of the case 11, when the thermal expansion member 19 expands, It is possible to prevent the device from being subjected to sudden mechanical stress.
  • the element 12 has a columnar structure in which the anode foil 121A, the electrolytic paper 122A, the cathode foil 121B, and the electrolytic paper 122B are superimposed and wound, like the element 312 in FIG. 1 of the comparative example.
  • the capacitors 1 to 1F are not limited to such a structure of the element 12.
  • the element 12 may have a structure in which an electrolytic paper 122A, an anode foil 121A, an electrolytic paper 122B, and a cathode foil 121B are stacked.
  • the element 12 need not be cylindrical.
  • it may have a prismatic, rectangular parallelepiped, or cubic shape. Therefore, a prismatic shape, a rectangular parallelepiped, or a cube is also an example of a columnar shape.
  • the thermal expansion tape 19A is used as the thermal expansion member 19, but a film or sheet-like thermal expansion member 19 may be arranged between the case 11 and the element 12. Also, the thermal expansion member 19 may be attached to the inner surface of the case 11 or arranged so as to be in contact therewith.
  • the step of providing the convex portion 111 to the case 11 was performed before the element 12 was housed in the case 11.
  • the thermal expansion member 19 may be expanded to fill the gap between the outer surface of the element 12 and the case 11 with the thermal expansion member 19 .
  • the step of providing the convex portion 111 is a step of providing the convex portion 111 that does not come into contact with the element 12 between the inner surface of the case 11 and the outer surface of the element 12 after the element 12 is housed in the case 11.
  • the thermal expansion member 19 may be expanded after providing a convex portion that does not contact the element 12 on the case 11 to fill the gap between the element 12 and the convex portion 111 with the thermal expansion member 19 .
  • the thermal expansion member 19 may be provided between the case 11 and the element 12 that do not have the protrusions 111 , and the protrusions 111 may be provided on the case 11 after the thermal expansion member 19 is expanded.
  • the capacitors 1 to 1F were made using an electrolyte (not shown), but the electrolyte is not limited to this. That is, it may be a solid electrolytic capacitor using a conductive polymer instead of the electrolytic solution. Moreover, you may provide a conductive polymer with electrolyte solution. Furthermore, in each of the above embodiments, an electrolytic capacitor was used, but each of the above embodiments may be applied to secondary batteries, electric double layer capacitors, hybrid capacitors, redox capacitors, fuel cells, and solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention improves the vibration resistance and impact resistance of a power storage device. This method has: a step for providing a thermal expansion member between a case and an element which is formed by winding an electrode foil and electrolytic paper; and a step for expanding the thermal expansion member.

Description

蓄電デバイスおよびその製造方法Electricity storage device and manufacturing method thereof
 本発明は、蓄電デバイスおよびその製造方法に関するものである。 The present invention relates to an electricity storage device and its manufacturing method.
 蓄電デバイスとして、コンデンサ、二次電池、電気二重層キャパシタ、ハイブリッドキャパシタ、レドックスキャパシタ、燃料電池、太陽電池などが知られている。コンデンサとして、例えば、電解コンデンサが知られている(下記特許文献1参照)。近年、蓄電デバイスが車載用途に使用される傾向が見られる。車載用途では、蓄電デバイスは、走行に伴う振動を継続的に受けることが想定される。また、走行に伴い、蓄電デバイスには、予期しない衝撃が加わることが想定される。したがって、蓄電デバイスに加わる振動ストレス等が他の用途で使用されるよりも大きいことがあり得る。また、今後、さらに厳しい条件が発生する用途での利用のため、蓄電デバイスの耐振性および耐衝撃性の向上が求められている。 Known power storage devices include capacitors, secondary batteries, electric double layer capacitors, hybrid capacitors, redox capacitors, fuel cells, and solar cells. As a capacitor, for example, an electrolytic capacitor is known (see Patent Document 1 below). In recent years, there has been a tendency for power storage devices to be used for in-vehicle applications. For in-vehicle use, the power storage device is expected to continuously receive vibrations associated with running. In addition, it is assumed that an unexpected impact is applied to the power storage device as the vehicle travels. Therefore, the vibration stress and the like applied to the power storage device may be greater than when it is used for other purposes. Further, in the future, there is a demand for improved vibration resistance and impact resistance of power storage devices for use in applications where even more severe conditions occur.
実開昭64-26830号公報Japanese Utility Model Laid-Open No. 64-26830
 本発明の実施の形態の一側面は、蓄電デバイスの耐振性および耐衝撃性を向上することにある。 One aspect of the embodiment of the present invention is to improve the vibration resistance and impact resistance of the electricity storage device.
 第1の側面では、本発明の実施の形態は、蓄電デバイスの製造方法によって例示される。この製造方法は、巻回した素子とケースの間に熱膨張部材を設ける工程と、前記熱膨張部材を膨張させる工程と、を有する。 In a first aspect, embodiments of the present invention are exemplified by a method of manufacturing an electricity storage device. This manufacturing method includes the steps of providing a thermal expansion member between the wound element and the case, and expanding the thermal expansion member.
 第2の側面では、前記素子の外面に熱膨張部材を設けてもよい。 In a second aspect, a thermal expansion member may be provided on the outer surface of the element.
 第3の側面では、前記素子を収納するためのケースに、ケース内側へ突出した凸部を形成する工程を有してもよい。 In the third aspect, a step of forming a convex portion protruding inward of the case for housing the element may be provided.
 第4の側面では、前記ケース内側へ突出した凸部を形成する工程が、前記熱膨張部材を膨張させる工程より前に行われてもよい。 According to the fourth aspect, the step of forming the protrusion projecting inward of the case may be performed before the step of expanding the thermal expansion member.
 第5の側面では、前記ケース内側へ突出した凸部を形成する工程が、前記熱膨張部材を膨張させる工程より後に行われてもよい。 According to the fifth aspect, the step of forming the projection projecting inward of the case may be performed after the step of expanding the thermal expansion member.
 第6の側面では、前記熱膨張部材を設ける工程が、前記熱膨張部材を用いて前記素子の最外周を巻き止める工程であってもよい。 In the sixth aspect, the step of providing the thermal expansion member may be a step of winding the outermost circumference of the element using the thermal expansion member.
 第7の側面では、前記熱膨張部材を膨張させる工程が、再化成工程であってもよい。 In the seventh aspect, the step of expanding the thermal expansion member may be a re-forming step.
 第8の側面では、前記ケース内側へ突出した凸部を形成する工程において、有底筒状の前記ケースの外側面上で前記ケースの中心軸周りに、1または複数の環状の溝部を形成することによって、ケース内側に突出させる工程であってもよい。 In the eighth aspect, in the step of forming the projections protruding inward of the case, one or more annular grooves are formed around the central axis of the case on the outer surface of the cylindrical case with a bottom. By doing so, it may be a step of protruding to the inside of the case.
 第9の側面では、前記ケース内側へ突出した凸部を形成する工程において、有底筒状の前記ケースの外側面上に1または複数の窪みを形成することによってケース内側に突出させる工程であってもよい。 In the ninth aspect, in the step of forming the convex portion protruding inward of the case, the step of forming one or a plurality of recesses on the outer surface of the cylindrical case with a bottom so as to protrude inward of the case. may
 第10の側面では、本発明の実施の形態は、蓄電デバイスによって例示される。この蓄電デバイスは、巻回した素子と、前記ケースの内側面と前記素子の外面との間に設けられた熱膨張部材と、を備え、前記熱膨張部材は加熱処理によって膨張した熱膨張部材であることを特徴とするものでもよい。 In a tenth aspect, embodiments of the present invention are exemplified by an electricity storage device. This power storage device includes a wound element and a thermal expansion member provided between the inner surface of the case and the outer surface of the element, and the thermal expansion member is a thermal expansion member expanded by heat treatment. It may also be characterized by:
 第11の側面では、この蓄電デバイスにおいて、前記ケースはケース内側に向かって突出した凸部を有し、前記熱膨張部材は、前記凸部と前記凸部に対向する前記素子の外面との間に介在することを特徴とするものでもよい。 According to the eleventh aspect, in this electricity storage device, the case has a convex portion protruding toward the inside of the case, and the thermal expansion member is positioned between the convex portion and an outer surface of the element facing the convex portion. It may be characterized by intervening in.
 本蓄電デバイスおよびその製造方法は、耐振性および耐衝撃性を向上することができる。 This power storage device and its manufacturing method can improve vibration resistance and impact resistance.
図1は、比較例のアルミ電解コンデンサの構造を例示する分解斜視図である。FIG. 1 is an exploded perspective view illustrating the structure of an aluminum electrolytic capacitor of a comparative example. 図2は、リードとアルミニウム箔との接続部分を拡大して例示する図である。FIG. 2 is an enlarged view illustrating a connecting portion between a lead and an aluminum foil. 図3は、Y軸方向の外力による振動または衝撃でリードの接続部分が破断する現象を説明する図である。3A and 3B are diagrams for explaining a phenomenon in which the connection portion of the lead is broken due to vibration or impact caused by an external force in the Y-axis direction. 図4Aは、第1の実施形態に係るコンデンサに含まれる素子12およびケース11を例示する図である。FIG. 4A is a diagram illustrating the element 12 and case 11 included in the capacitor according to the first embodiment. 図4Bは、第1の実施形態に係るコンデンサの構造を例示する図である。4B is a diagram illustrating the structure of the capacitor according to the first embodiment; FIG. 図5は、ケースおよび素子の断面構造を例示する図である。FIG. 5 is a diagram illustrating cross-sectional structures of a case and an element. 図6Aは、コンデンサの製造工程を例示する図である。FIG. 6A is a diagram illustrating a manufacturing process of a capacitor; 図6Bは、コンデンサの製造工程を例示する図である。FIG. 6B is a diagram illustrating the manufacturing process of the capacitor. 図6Cは、コンデンサの製造工程を例示する図である。FIG. 6C is a diagram illustrating the manufacturing process of the capacitor. 図7Aは、図6Bの凸部の近傍を拡大した図である。FIG. 7A is an enlarged view of the vicinity of the convex portion in FIG. 6B. 図7Bは、図6Cの凸部の近傍を拡大した図である。FIG. 7B is an enlarged view of the vicinity of the convex portion in FIG. 6C. 図8Aは、第2の実施形態に係るコンデンサの構造と、その製造方法を例示する図である。FIG. 8A is a diagram illustrating the structure of a capacitor and a manufacturing method thereof according to the second embodiment. 図8Bは、第2の実施形態に係るコンデンサの構造と、その製造方法を例示する図である。FIG. 8B is a diagram illustrating the structure of a capacitor according to the second embodiment and a manufacturing method thereof. 図9Aは、第3の実施形態に係るコンデンサの構造と、その製造方法を例示する図である。FIG. 9A is a diagram illustrating the structure of a capacitor and a manufacturing method thereof according to a third embodiment; 図9Bは、第3の実施形態に係るコンデンサの構造と、その製造方法を例示する図である。FIG. 9B is a diagram illustrating the structure of a capacitor according to the third embodiment and a manufacturing method thereof. 図10Aは、変形例に係るコンデンサを例示する図である。FIG. 10A is a diagram illustrating a capacitor according to a modification; 図10Bは、変形例に係るコンデンサを例示する図である。FIG. 10B is a diagram illustrating a capacitor according to a modification; 図10Cは、変形例に係るコンデンサを例示する図である。FIG. 10C is a diagram illustrating a capacitor according to a modification; 図11は、他の変形例のコンデンサを例示する概念的な断面図である。FIG. 11 is a conceptual cross-sectional view illustrating another modified capacitor.
 蓄電デバイスとしてコンデンサ、二次電池、電気二重層キャパシタ、ハイブリッドキャパシタ、レドックスキャパシタ、燃料電池、太陽電池などが知られているが、以下、図面を参照して、本発明を実施するための形態として電解コンデンサを用いて説明する。 As electric storage devices, capacitors, secondary batteries, electric double layer capacitors, hybrid capacitors, redox capacitors, fuel cells, solar cells, etc. are known. Description will be made using an electrolytic capacitor.
 [比較例]
 まず、図1乃至図3を参照して、比較例の電解コンデンサを説明する。図1は、比較例の電解コンデンサ(以下、コンデンサ301)の構造を例示する分解斜視図である。
[Comparative example]
First, an electrolytic capacitor of a comparative example will be described with reference to FIGS. 1 to 3. FIG. FIG. 1 is an exploded perspective view illustrating the structure of an electrolytic capacitor (hereinafter referred to as capacitor 301) of a comparative example.
 コンデンサ301は、電解コンデンサの素子312と、図示しない電解液と、素子312を収納するためのケース311とを有する。素子312は、電解紙122A、122Bに挟まれた陽極箔121Aと、陽極箔121Aに対して電解紙122Bを挟んで設けられる陰極箔121Bとを有する。電解紙122A、および、電解紙122Bはマニラ紙やクラフト紙などの絶縁紙、不織布またはそれらの混抄紙からなる。素子312は、陽極箔121A、電解紙122A、陰極箔121B、および電解紙122Bを重畳し、巻回した円柱状の構造を有する。 The capacitor 301 has an electrolytic capacitor element 312 , an electrolytic solution (not shown), and a case 311 for housing the element 312 . Element 312 has anode foil 121A sandwiched between electrolytic papers 122A and 122B, and cathode foil 121B provided sandwiching electrolytic paper 122B with respect to anode foil 121A. Electrolytic paper 122A and electrolytic paper 122B are made of insulating paper such as manila paper or kraft paper, non-woven fabric, or mixed paper thereof. Element 312 has a columnar structure in which anode foil 121A, electrolytic paper 122A, cathode foil 121B, and electrolytic paper 122B are stacked and wound.
 陽極箔121Aおよび陰極箔121Bは弁金属であるアルミニウムを用いた箔である。陽極箔121Aの表面は、拡面化処理が施されたエッチング層が形成され、その後に化成処理が施され、酸化アルミニウムからなる誘電体酸化皮膜が形成されている。この誘電体酸化皮膜がコンデンサ301の誘電体となる。また、陰極箔121Bは、エッチング層が形成されており、任意に化成皮膜が形成される。 The anode foil 121A and the cathode foil 121B are foils using aluminum, which is a valve metal. The surface of anode foil 121A is formed with an etching layer subjected to surface enlarging treatment, and then subjected to chemical conversion treatment to form a dielectric oxide film made of aluminum oxide. This dielectric oxide film becomes the dielectric of capacitor 301 . Also, the cathode foil 121B is formed with an etching layer and optionally with a chemical conversion coating.
 陽極箔121Aおよび陰極箔121Bには、それぞれ、リード313が接続される。リード313が接続された陽極箔と陰極箔と電解紙とを巻回して素子312が形成される。素子312は、電解液と共にケース311に収納される。ケース311は、例えば、アルミニウム等の金属である。ケース311は、円柱状の素子312を収納するための開口端が一方端側に形成された有底筒状の構造を有する。 A lead 313 is connected to each of the anode foil 121A and the cathode foil 121B. The element 312 is formed by winding the anode foil to which the lead 313 is connected, the cathode foil, and the electrolytic paper. The element 312 is housed in the case 311 together with the electrolyte. The case 311 is, for example, metal such as aluminum. Case 311 has a bottomed cylindrical structure with one end having an open end for housing columnar element 312 .
 素子312が収納されたケース311の開口端に弾性ゴムなどからなる封口ゴム314が配置される。封口ゴム314は、2本のリード313が挿通する貫通孔を有している。電解コンデンサはケースの開口端をカーリング処理などすることにより封止される。このとき、封口ゴム314と一体となって素子312およびリード313がケース311に固定される。 A sealing rubber 314 made of elastic rubber or the like is arranged at the open end of the case 311 in which the element 312 is housed. The sealing rubber 314 has through holes through which the two leads 313 are inserted. The electrolytic capacitor is sealed by curling the open end of the case. At this time, the element 312 and the leads 313 are fixed to the case 311 together with the sealing rubber 314 .
 以下、本比較例および本実施の形態では、2本のリード313が並ぶ方向をX軸方向とする。また、2本のリード313が素子312から延びる方向をZ軸方向とする。Y軸方向は、2つのリード313が配列する方向であるX軸方向およびリード313の端子の素子312からの延伸方向であるZ軸に直交する方向である。 Hereinafter, in this comparative example and this embodiment, the direction in which the two leads 313 are arranged is defined as the X-axis direction. Also, the direction in which the two leads 313 extend from the element 312 is defined as the Z-axis direction. The Y-axis direction is a direction orthogonal to the X-axis direction in which the two leads 313 are arranged and the Z-axis direction in which the terminals of the leads 313 extend from the element 312 .
 図2には、リード313とアルミニウム箔との接続部分が拡大して例示されている。ここで、図2のアルミニウム箔は、陽極箔121Aまたは陰極箔121Bのいずれにも該当する。なお、本実施の形態全体を通じて、陽極箔121Aおよび陰極箔121Bを総称して電極箔ともいう。 FIG. 2 illustrates an enlarged connection portion between the lead 313 and the aluminum foil. Here, the aluminum foil in FIG. 2 corresponds to both the anode foil 121A and the cathode foil 121B. Note that the anode foil 121A and the cathode foil 121B are also collectively referred to as electrode foils throughout the present embodiment.
 図2のように、リード313は、金属線13Mと、金属線13Mに溶接等で接続される丸棒部132と、丸棒部132が暫時薄くなるように扁平に引き延ばされた扁平部133を有する。扁平部133は、陽極箔121Aまたは陰極箔121Bとステッチ134によって接続される。ステッチ134は、一例としては、陽極箔121Aまたは陰極箔121Bに扁平部133を重ねたものを扁平部133側からステッチ針を貫通させ、このときに生じる扁平部133のバリをプレス加工することで形成される。ただし、陽極箔121Aおよび陰極箔121Bと扁平部133とはコールドウェルド法による冷間圧接を用いて接続してもよい。 As shown in FIG. 2, the lead 313 includes a metal wire 13M, a round bar portion 132 connected to the metal wire 13M by welding or the like, and a flat portion formed by extending the round bar portion 132 so as to gradually become thin. 133. Flat portion 133 is connected to anode foil 121A or cathode foil 121B by stitch 134 . As an example, the stitch 134 is formed by stacking the flat portion 133 on the anode foil 121A or the cathode foil 121B, and piercing the flat portion 133 with a stitch needle from the side of the flat portion 133, and pressing the burrs of the flat portion 133 generated at this time. It is formed. However, anode foil 121A and cathode foil 121B and flat portion 133 may be connected using cold pressure welding by the cold weld method.
 Z軸方向の外力による振動または衝撃でリード313と陽極箔121Aまたは陰極箔121Bとの接続部分が破断する現象を説明する。コンデンサ301にZ軸方向の振動または衝撃が加えられた場合を想定する。このような場合、素子312がケース311の移動方向とは逆方向に移動する、または、加速度のピークがずれて振動する。このようなZ軸方向の振動では扁平部133と電極箔の接続箇所(ステッチ134)に応力が集中的に発生し、ステッチ134またはその周辺の電極箔が破断することがある。 A phenomenon in which the connecting portion between the lead 313 and the anode foil 121A or the cathode foil 121B breaks due to vibration or impact due to an external force in the Z-axis direction will be explained. Assume that the capacitor 301 is subjected to vibration or impact in the Z-axis direction. In such a case, the element 312 moves in a direction opposite to the moving direction of the case 311, or vibrates with the peak of acceleration shifted. Such vibration in the Z-axis direction concentrates stress on the connecting portion (stitch 134) between the flat portion 133 and the electrode foil, and the stitch 134 or the electrode foil around it may be broken.
 なお、本実施の形態全体を通じて、振動とは周期的な揺れをいうものとする。また、非周期的または過渡的な一定限度の加速度を超える強い揺れを衝撃ということにする。図2で説明したような破断は、コンデンサ301に振動が加えられた場合の他、コンデンサ301に衝撃が加えられた場合も同様に生じる可能性がある。また、図2のような破断は、電極箔と扁平部133とがコールドウェルド法等他の接続方法で接続された場合も同様に生じ得る。 It should be noted that the term "vibration" refers to periodic shaking throughout the present embodiment. Also, a strong shaking that exceeds a non-periodic or transient acceleration that exceeds a certain limit is defined as an impact. Breakage such as that described with reference to FIG. 2 may similarly occur when the capacitor 301 is subjected to shock as well as when vibration is applied to the capacitor 301 . 2 can also occur when the electrode foil and flat portion 133 are connected by other connection methods such as the cold weld method.
 図3は、Y軸方向の外力による振動または衝撃でリード313の境界箇所135が破断する現象を説明するための図である。図3の両矢印iは素子の振動方向を示し、両矢印iiはケースの振動方向を示す。 FIG. 3 is a diagram for explaining a phenomenon in which the boundary portion 135 of the lead 313 breaks due to vibration or impact caused by an external force in the Y-axis direction. A double arrow i in FIG. 3 indicates the vibration direction of the element, and a double arrow ii indicates the vibration direction of the case.
 コンデンサ301にY軸方向に振動または衝撃が加えられたとき、図3に示すコンデンサ301本体(ケース311)の振動方向iiと素子312の振動方向iが振動の位相がずれて振動する場合がある。すなわち、ケース311の移動方向と素子312の移動方向が180度ずれて、逆位相でコンデンサ301が振動する場合がある。素子312は、封口ゴム314によって丸棒部132のみでケース311と固定されている。そのため、Y軸方向の外力による振動または衝撃が加えられ、コンデンサ301本体(ケース311)と素子312とが逆位相の振動をすると、リード313の、特に、丸棒部132と扁平部133の漸次薄くなる境界箇所135に応力が集中する。このように応力が集中するため、境界箇所135に破断が生じ易い。なお、X軸方向の振動または衝撃が加えられた場合でも、丸棒部132と扁平部133の漸次薄くなる境界箇所135に応力が集中し、破断が生じる。 When vibration or impact is applied to the capacitor 301 in the Y-axis direction, the vibration direction ii of the main body (case 311) of the capacitor 301 and the vibration direction i of the element 312 shown in FIG. . That is, there is a case where the moving direction of the case 311 and the moving direction of the element 312 deviate from each other by 180 degrees, causing the capacitor 301 to vibrate in the opposite phase. The element 312 is fixed to the case 311 only by the round bar portion 132 with a sealing rubber 314 . Therefore, when a vibration or impact is applied by an external force in the Y-axis direction, and the main body (case 311) of the capacitor 301 (case 311) and the element 312 vibrate in opposite phases, the lead 313, especially the round bar portion 132 and the flat portion 133 gradually move. The stress concentrates at the thinning boundary point 135 . Due to such concentration of stress, the boundary portion 135 is likely to break. Even when vibration or impact is applied in the X-axis direction, stress concentrates on the gradually thinned boundary portion 135 between the round bar portion 132 and the flat portion 133, causing breakage.
 また、逆位相でない場合でも、例えば、ケース311の加速度と素子312の加速度が異なる場合に、振動の位相のずれにより、逆位相の場合と同様に、丸棒部132と扁平部133の漸次薄くなる境界箇所135に応力が集中し、破断が生じる場合がある。例えば、振動または衝撃の方向がX軸方向の場合、振動または衝撃を2つのリード313が分散して受ける。一方、振動または衝撃の方向がY軸方向の場合、振動または衝撃をリード313のそれぞれが受けることになる。以下の各実施形態では、このようなコンデンサ301における振動または衝撃による破断を低減する構造が例示される。 Even if the phases are not opposite, for example, when the acceleration of the case 311 and the acceleration of the element 312 are different, the round bar portion 132 and the flat portion 133 are gradually thinned as in the case of the opposite phase due to the phase shift of the vibration. Stress concentrates at the boundary point 135, which may cause breakage. For example, when the direction of vibration or impact is the X-axis direction, the two leads 313 receive the vibration or impact in a distributed manner. On the other hand, if the direction of vibration or impact is in the Y-axis direction, each lead 313 will receive the vibration or impact. In each of the following embodiments, a structure for reducing breakage due to vibration or shock in such a capacitor 301 is exemplified.
 [第1の実施形態]
 以下、図4A乃至図7Bを参照し、第1の実施形態に係る電解コンデンサ(以下、コンデンサ1)の構造およびその製造方法を説明する。図4Aは、第1の実施形態に係るコンデンサ1に含まれる素子12およびケース11を例示する図である。
[First Embodiment]
The structure of the electrolytic capacitor (hereinafter referred to as capacitor 1) according to the first embodiment and the manufacturing method thereof will be described below with reference to FIGS. 4A to 7B. FIG. 4A is a diagram illustrating the element 12 and the case 11 included in the capacitor 1 according to the first embodiment.
 図4Aのように、コンデンサ1は、素子12と、素子12を収納するケース11を有する。ケース11は、アルミニウム等の金属製の有底筒状の構造である。ケース11は、内部に素子12を収納するための内部空間を有する。この内部空間は、円筒の底面に立設される円筒形状の側面で形成される。ケース11の一方端側は、開口端を有し、素子12を挿入可能となっている。 As shown in FIG. 4A, the capacitor 1 has an element 12 and a case 11 that houses the element 12 . The case 11 is a bottomed cylindrical structure made of metal such as aluminum. Case 11 has an internal space for housing element 12 therein. This internal space is formed by a cylindrical side surface erected on the bottom surface of the cylinder. One end of the case 11 has an open end into which the element 12 can be inserted.
 ケース11の開口端と底面との間の円筒形状の側面には、ケース外側からプレス加工等によってケース内側へ突出する凸部111が形成されている。凸部111は、有底筒状のケース11の外側面上で有底筒状のケース11の中心軸周りに形成された環状の溝部となっている。すなわち、環状の溝部によって、ケース11の内側(内部空間側)には、ケース11の内側面からケース11の内側に向かって突出した凸部111が形成される。ただし、凸部111が1つに限定される訳ではない。凸部111が2以上設けられてもよい。また、ケース11の中心軸に垂直な断面内において凸部111の形状は弓形であるが、弓形の他にも、三角形、半円形、半楕円形などの形状をとってもよい。なお、ケース11の内側へ突出した凸部111を形成する工程が素子12をケース11に収納する前に行われることが望ましい。したがって、図4Aは、素子12を収納するためのケース11に、ケース11の内側へ突出した凸部111を形成する工程が、素子12をケース11に収納する前に行われることを例示する。 On the side surface of the cylindrical shape between the open end and the bottom surface of the case 11, a protrusion 111 is formed that protrudes from the outside of the case to the inside of the case by press working or the like. The convex portion 111 is an annular groove formed around the center axis of the bottomed tubular case 11 on the outer surface of the bottomed tubular case 11 . That is, the annular groove forms a convex portion 111 protruding from the inner surface of the case 11 toward the inside of the case 11 inside the case 11 (on the side of the internal space). However, the number of protrusions 111 is not limited to one. Two or more protrusions 111 may be provided. Further, the convex portion 111 has an arcuate shape in the cross section perpendicular to the central axis of the case 11, but may have other shapes such as a triangle, a semicircle, and a semiellipse. It is desirable that the step of forming the projecting portion 111 protruding inward of the case 11 be performed before housing the element 12 in the case 11 . Therefore, FIG. 4A exemplifies that the step of forming the projecting portion 111 protruding inward of the case 11 in the case 11 for housing the element 12 is performed before housing the element 12 in the case 11.
 図4Bは、第1の実施形態に係るコンデンサ1の構造を例示する図である。本実施形態では、素子12が、電解液と共にケース11に収納され、封口ゴムによって封止され、その後に熱処理工程で加熱され、図4Bに示すコンデンサ1が製造される。なお、図4Bのコンデンサ1は、XZ平面で素子12以外の部品を切断した概念的な断面図で例示されている。また、この概念的な断面図では、素子12の断面は省略されている。図4Bのように、コンデンサ1は、断面で例示されるケース11と、ケース11に収納された素子12と、素子12の電極箔に接続されるリード13と、封口ゴム14とを有する。 FIG. 4B is a diagram illustrating the structure of the capacitor 1 according to the first embodiment. In this embodiment, the element 12 is housed in the case 11 together with the electrolytic solution, sealed with sealing rubber, and then heated in a heat treatment process to manufacture the capacitor 1 shown in FIG. 4B. Note that the capacitor 1 in FIG. 4B is illustrated as a conceptual cross-sectional view in which parts other than the element 12 are cut on the XZ plane. Also, in this conceptual cross-sectional view, the cross-section of the element 12 is omitted. As shown in FIG. 4B, the capacitor 1 has a case 11 illustrated in cross section, an element 12 housed in the case 11, leads 13 connected to electrode foils of the element 12, and a sealing rubber 14.
 素子12の構造は、図1乃至図3で説明した比較例の素子312の構造と同様である。すなわち、素子12は、比較例の素子312と同様、陽極箔121A、電解紙122A、陰極箔121B、および電解紙122Bを重畳し、巻回した円柱状の構造を有する。円柱状は、柱状の一例である。 The structure of the element 12 is the same as the structure of the element 312 of the comparative example described in FIGS. That is, the element 12 has a columnar structure in which an anode foil 121A, an electrolytic paper 122A, a cathode foil 121B, and an electrolytic paper 122B are stacked and wound, similarly to the element 312 of the comparative example. A columnar shape is an example of a columnar shape.
 また、リード13、封口ゴム14の構成も、図1乃至図3で説明したリード313および封口ゴム314の構成と同様である。そこで、本実施形態では、素子12、リード13、封口ゴム14の説明は省略する。なお、リード13は、比較例のコンデンサ301と同様に、リード13の電極箔との接続部分において扁平に引き延ばされた扁平部133を有する。また、リード13の金属線13Mは溶接等で丸棒部132の一方端側と接続されている。また、丸棒部132の他端側には、図2と同様、扁平に引き延ばされた扁平部133を有する。 The configurations of the leads 13 and the sealing rubber 14 are also the same as the configurations of the leads 313 and the sealing rubber 314 described with reference to FIGS. Therefore, in this embodiment, descriptions of the element 12, the leads 13, and the sealing rubber 14 are omitted. The lead 13 has a flattened portion 133 at the connection portion of the lead 13 with the electrode foil, similarly to the capacitor 301 of the comparative example. Also, the metal wire 13M of the lead 13 is connected to one end side of the round bar portion 132 by welding or the like. Further, the other end side of the round bar portion 132 has a flattened flat portion 133 as in FIG.
 本実施形態のコンデンサ1の特徴は、凸部111Aが形成されたケース11の内側面と、ケース11に収納された素子12の円柱状の側面である外面との間に熱膨張した後の熱膨張部材19を有する点にある。図4Bでは、熱膨張部材19は、ケース11の内側面と素子12の外面との間を埋め尽くしている。つまり、熱により膨張した熱膨張部材19は、凸部111Aが形成されたケース11の内側面に接触または当接する。さらに、熱により膨張した熱膨張部材19は、素子12の円柱状の側面とも接触または当接する。従って、ケース11と素子12の間に熱膨張部材19は介在し、熱により膨張した状態で配置される。そのため、コンデンサ1に振動や衝撃が加わった場合でも、熱膨張部材19によって、凸部111Aを有するケース内の素子12を固定する固定精度が向上し、ケース11と素子12が一体となるため、ステッチ134や境界箇所135への応力集中を抑制でき、良好な耐振性または耐衝撃性が得られる。 A feature of the capacitor 1 of the present embodiment is that the heat generated between the inner surface of the case 11 on which the convex portion 111A is formed and the outer surface, which is the cylindrical side surface of the element 12 housed in the case 11, is generated. The point is that it has an expansion member 19 . In FIG. 4B, thermal expansion member 19 fills the space between the inner surface of case 11 and the outer surface of element 12 . That is, the thermal expansion member 19 expanded by heat contacts or abuts the inner surface of the case 11 on which the convex portion 111A is formed. Furthermore, the thermal expansion member 19 expanded by heat also contacts or contacts the cylindrical side surface of the element 12 . Therefore, the thermal expansion member 19 is interposed between the case 11 and the element 12 and arranged in a state of being expanded by heat. Therefore, even if vibration or impact is applied to the capacitor 1, the fixing accuracy of fixing the element 12 in the case having the convex portion 111A is improved by the thermal expansion member 19, and the case 11 and the element 12 are integrated. Stress concentration on the stitches 134 and the boundary points 135 can be suppressed, and good vibration resistance or impact resistance can be obtained.
 熱膨張部材19は、加熱処理により膨張する膨張部材である。熱膨張部材19は熱を加えることで、熱膨張部材19の厚さが熱を加える前後の変化において増加すればよい。熱膨張部材19は、熱により膨張した後の状態を非可逆的に維持できる材料であることが望ましい。熱膨張部材19は、熱膨張性を有すれば、有機物質であっても、無機物質であってもよい。熱膨張部材19は熱を加えることで熱膨張部材19の厚さが、熱を加える前の厚さから1.5倍から35倍の厚さになればよい。熱を加えることによる厚さのより好ましい変化の範囲は2倍から25倍であり、さらに好ましくは2.5倍から15倍である。2倍から25倍の範囲であれば、熱膨張部材19は、コンデンサが耐振性または耐衝撃性を得られる厚さに膨張し、かつコンデンサの電気的特性に影響を与えることなく膨張する。さらに2.5倍から15倍の範囲であれば熱膨張部材19は、コンデンサが耐振性または耐衝撃性を得るために適した厚さに膨張し、かつコンデンサの電気的特性に影響を与える機械的ストレスの発生を抑制しつつ熱膨張部材19が膨張することができる。なお、熱膨張部材19のみに熱を加えたときの熱膨張部材19の膨張による状態の変化がケース11と素子12の間より大きくとも、コンデンサの電気的特性に影響を与えない範囲でケース11と素子12の間を埋めることができれば熱膨張部材19として用いてもよい。また、本実施形態において、熱膨張部材19の厚さとはケースの中心軸からケース側面に向かう方向に対して熱膨張部材19が有する幅を指す。 The thermal expansion member 19 is an expansion member that expands by heat treatment. By applying heat to the thermal expansion member 19, the thickness of the thermal expansion member 19 may increase before and after the heat is applied. The thermal expansion member 19 is desirably made of a material that can irreversibly maintain the state after thermal expansion. The thermal expansion member 19 may be an organic substance or an inorganic substance as long as it has thermal expansion properties. The thickness of the thermal expansion member 19 may be increased by 1.5 to 35 times the thickness before the heat is applied to the thermal expansion member 19 by applying heat. A more preferable range of change in thickness by applying heat is 2 to 25 times, more preferably 2.5 to 15 times. Within the range of 2 to 25 times, the thermal expansion member 19 expands to a thickness that allows the capacitor to be vibration or impact resistant and expands without affecting the electrical characteristics of the capacitor. Furthermore, if the thermal expansion member 19 is in the range of 2.5 times to 15 times, the thermal expansion member 19 will expand to a thickness suitable for the capacitor to obtain vibration resistance or impact resistance, and will have a mechanical effect that affects the electrical characteristics of the capacitor. The thermal expansion member 19 can expand while suppressing the occurrence of thermal stress. Even if the change in state due to the expansion of the thermal expansion member 19 when heat is applied only to the thermal expansion member 19 is greater than that between the case 11 and the element 12, the case 11 is kept within a range that does not affect the electrical characteristics of the capacitor. and the element 12 may be used as the thermal expansion member 19 . Further, in the present embodiment, the thickness of the thermal expansion member 19 refers to the width of the thermal expansion member 19 in the direction from the central axis of the case toward the side surface of the case.
 熱膨張性を有する有機物質としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、ポリアミド、ポリウレタン、ポリ塩化ビニル、アクリル樹脂、ブチル樹脂、ポリフッ化ビニリデン等が例示できる。 Examples of thermally expandable organic substances include polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyamide, polyurethane, polyvinyl chloride, acrylic resin, butyl resin, and polyvinylidene fluoride.
 熱膨張性を有する有機物質は、必要に応じて発泡剤を含んでもよい。発泡剤は、熱膨張部材19を膨張させる工程において熱を加えたときに発泡し、熱膨張部材19が膨張した状態を非可逆的に維持できる特性が得られればどのような材料であってもよい。なお、コンデンサの特性への影響を考慮すると、塩素を含むポリ塩化ビニル以外の材料が望ましい。また、熱膨張性を有する無機物質としては熱膨張黒鉛が例示できる。 The thermally expandable organic substance may contain a foaming agent as needed. Any material may be used as the foaming agent as long as it foams when heat is applied in the step of expanding the thermal expansion member 19 and can irreversibly maintain the expanded state of the thermal expansion member 19 . good. Considering the influence on the characteristics of the capacitor, materials other than polyvinyl chloride containing chlorine are desirable. Thermally expandable graphite can be exemplified as an inorganic material having thermal expandability.
 図4Bに示すコンデンサ1は巻回した円柱状の素子12の外面に、テープ状の熱膨張部材19(以下、熱膨張テープ19A)を巻き付けている。そして、熱膨張テープ19Aが巻き付けられた素子12がケース11に収納される。なお、素子12には、電解液が含浸される。素子12への電解液の含浸は、素子12がケース11に収納される前でもよい。また、素子12への電解液の含浸は、素子12がケース11に収納された後でもよい。 The capacitor 1 shown in FIG. 4B has a tape-shaped thermal expansion member 19 (hereinafter referred to as a thermal expansion tape 19A) wound around the outer surface of the wound columnar element 12 . Then, the element 12 wrapped with the thermal expansion tape 19A is housed in the case 11. As shown in FIG. The element 12 is impregnated with an electrolytic solution. The element 12 may be impregnated with the electrolytic solution before the element 12 is accommodated in the case 11 . Further, the element 12 may be impregnated with the electrolytic solution after the element 12 is accommodated in the case 11 .
 ケース11の開口端に封口ゴム14が配置される。封口ゴム14は、例えばケース11の一方端側の開口端を封止することによってケース11の開口端に固定される。これにより、ケース11の開口端が封止される。 A sealing rubber 14 is arranged at the open end of the case 11 . The sealing rubber 14 is fixed to the open end of the case 11 by sealing the open end on the one end side of the case 11, for example. Thereby, the open end of the case 11 is sealed.
 次に、ケース11の開口端が封止されたコンデンサ1に熱処理工程が実施される。熱処理工程では、ケース11および素子12の温度が、熱膨張テープ19Aが膨張する温度で所定時間維持される。熱処理工程でケース11および素子12が維持される温度および時間は、熱膨張テープ19Aの材質により決定される。ただし、コンデンサの電気的特性を考慮すると、170度以下の温度で熱膨張部材19を膨張させることが望ましく、より好ましくは150度以下の温度で熱膨張部材19を膨張させることが望ましい。 Next, a heat treatment process is performed on the capacitor 1 with the open end of the case 11 sealed. In the heat treatment step, the temperatures of the case 11 and the element 12 are maintained at a temperature at which the thermally expandable tape 19A expands for a predetermined time. The temperature and time at which the case 11 and the element 12 are maintained in the heat treatment process are determined by the material of the thermal expansion tape 19A. However, considering the electrical characteristics of the capacitor, it is desirable to expand the thermal expansion member 19 at a temperature of 170 degrees or less, and more preferably at a temperature of 150 degrees or less.
 図5は、図4Bに例示したケース11および素子12の断面構造を例示する図である。図5の断面は、Z軸に垂直な平面で、凸部111が最もケース内側に向かって深くなる位置(例えばZ=Z1)において図4Bのコンデンサ1を切断したものである。今、凸部111の外面部分を凹部111Bと呼ぶことにする。また、凸部111によってケース11の内側面から内側に突出した部分を凸部111Aと呼ぶことにする。 FIG. 5 is a diagram illustrating cross-sectional structures of the case 11 and the element 12 illustrated in FIG. 4B. The cross section of FIG. 5 is a plane perpendicular to the Z-axis, and is obtained by cutting the capacitor 1 of FIG. 4B at a position (for example, Z=Z1) where the protrusion 111 is deepest toward the inside of the case. Now, the outer surface portion of the convex portion 111 will be called a concave portion 111B. Also, the portion protruded inward from the inner surface of the case 11 by the protrusion 111 will be referred to as a protrusion 111A.
 図5のように、ケース11の外面(有底筒状の側面)は、ケース11の中心軸から、例えば距離R10にある。また、凸部111Aは、ケース11の中心軸から、例えば距離R11にある。また、素子12の外面(円柱状の側面)は、ケース11の中心軸から、例えば距離R12にある。図5のように、ケース11の中心軸から素子12の外面までの距離R12よりも、ケース11の中心軸から凸部111Aまでの距離R11の方が長い。したがって、素子12の外面と、凸部111Aとの間に隙間が形成される。この隙間を含むケース11の内部空間に、熱膨張テープ19Aから熱膨張した熱膨張部材19が埋め込まれる。なお、素子12の外面と凸部111Aとの隙間は0mmから3mmの範囲となるようにすることが望ましく、より望ましくは0.05mmから1mmの範囲となるようにすることが好ましい。0.05mmから1mmの範囲となるようにすれば、素子を挿入しやすく、かつ、熱膨張部材を膨張させたときに良好な耐振性または耐衝撃性が得られる。 As shown in FIG. 5, the outer surface (bottomed cylindrical side surface) of the case 11 is at a distance R10 from the central axis of the case 11, for example. Moreover, the convex portion 111A is located at a distance R11 from the central axis of the case 11, for example. Further, the outer surface (columnar side surface) of the element 12 is at a distance R12 from the central axis of the case 11, for example. As shown in FIG. 5, the distance R11 from the central axis of the case 11 to the convex portion 111A is longer than the distance R12 from the central axis of the case 11 to the outer surface of the element 12 . Therefore, a gap is formed between the outer surface of the element 12 and the convex portion 111A. The thermal expansion member 19 thermally expanded from the thermal expansion tape 19A is embedded in the internal space of the case 11 including this gap. The gap between the outer surface of the element 12 and the convex portion 111A is preferably in the range of 0 mm to 3 mm, more preferably in the range of 0.05 mm to 1 mm. If the thickness is in the range of 0.05 mm to 1 mm, the element can be easily inserted, and good vibration resistance or impact resistance can be obtained when the thermal expansion member is expanded.
 図6A~6Cは、コンデンサ1の製造工程を例示する図である。この製造工程では、まず、図6Aに示すように、凸部111を有するケース11に素子12を封入する(S1)。素子12には、熱膨張テープ19Aが巻き付けられている。次に、図6Bに示すように封口ゴム14をカーリング処理により、カーリング部112を形成する(S2)。S2は封止工程ということができる。そして、図6Cに示すように熱膨張テープ19Aを熱膨張させる(S3)。 6A to 6C are diagrams illustrating the manufacturing process of the capacitor 1. FIG. In this manufacturing process, first, as shown in FIG. 6A, the element 12 is enclosed in the case 11 having the convex portion 111 (S1). The element 12 is wrapped with a thermal expansion tape 19A. Next, as shown in FIG. 6B, the sealing rubber 14 is curled to form a curled portion 112 (S2). S2 can be called a sealing step. Then, as shown in FIG. 6C, the thermal expansion tape 19A is thermally expanded (S3).
 なお、すでに述べたように、素子12への電解液の含浸方法は、電解液に含浸する方法と、ケース11に電解液を入れて素子12を封入する方法がある。本実施形態では、素子12への電解液の含浸方法に限定はなく、いずれの方法でもよい。 As already mentioned, the method of impregnating the element 12 with the electrolytic solution includes the method of impregnating the element 12 with the electrolytic solution and the method of putting the electrolytic solution into the case 11 to enclose the element 12 . In this embodiment, the method for impregnating the element 12 with the electrolytic solution is not limited, and any method may be used.
 また、熱膨張テープ19Aを素子止め用のテープの代わりに用いてもよい。すなわち、素子12は比較例の素子312と同様、陽極箔121A、電解紙122A、陰極箔121B、および電解紙122Bを重畳し、巻回して形成する。この巻回した素子12の最外周を熱膨張テープ19Aを用いて巻き止めることで固定して、巻き取り状態を維持するようにしてもよい。ただし、熱膨張性のない素子止めテープにより巻き取り状態を維持し、さらに、素子止めテープの上にさらに熱膨張テープを貼ってもよい。さらに、その上に、別途熱膨張部材19を設けてもよい。したがって、S1の工程の前に、素子12と素子止めテープを一体化させる工程が実行されることで、上記巻き取り状態が維持されるとともに、熱膨張テープ19Aを素子12に巻き付けることができる。なお、素子止めテープはポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリプロピレン、エチレンプロピレンターポリマー、ポリエチレンナフタレート等の樹脂テープやゴムテープを用いてもよい。 Also, the thermally expandable tape 19A may be used in place of the element-fixing tape. That is, the element 12 is formed by stacking and winding an anode foil 121A, an electrolytic paper 122A, a cathode foil 121B, and an electrolytic paper 122B, similarly to the element 312 of the comparative example. The outermost periphery of the wound element 12 may be fixed by winding with a thermal expansion tape 19A to maintain the wound state. However, the wound state may be maintained by a non-thermally expansive element-fixing tape, and a thermally expandable tape may be further applied on the element-fixing tape. Furthermore, a separate thermal expansion member 19 may be provided thereon. Therefore, by performing the step of integrating the element 12 and the element fixing tape before the step S1, the above-described winding state can be maintained and the thermal expansion tape 19A can be wound around the element 12. As the element fixing tape, a resin tape such as polyphenylene sulfide, polyethylene terephthalate, polypropylene, ethylene propylene terpolymer, polyethylene naphthalate, or a rubber tape may be used.
 熱膨張工程(S3)を実行するタイミングは再化成時の熱付加時(再化成工程)としてもよい。すなわち、コンデンサ1の製造では、比較例で例示した陽極箔121A、電解紙122A、陰極箔121B、および電解紙122Bを重ね合わせて巻回する工程、これらを切断する工程等で、陽極箔121Aに形成した誘電体酸化皮膜に欠損が生じることがある。そこで、素子12がケース11に封止された後、再化成(エージング)が実行される。再化成工程では、所定の温度に加熱されたコンデンサ1に電圧を印加することで、誘電体酸化皮膜の欠損が修復される。すなわち、熱膨張工程(S3)は、再化成工程で実行できる。ただし、再化成工程とは別に、熱膨張工程(S3)を設けてもよい。 The timing for executing the thermal expansion step (S3) may be the time of heat addition during re-forming (re-forming step). That is, in the manufacture of the capacitor 1, the anode foil 121A, the electrolytic paper 122A, the cathode foil 121B, and the electrolytic paper 122B illustrated in the comparative example are superimposed and wound, and the anode foil 121A is cut. Defects may occur in the formed dielectric oxide film. Therefore, after the element 12 is sealed in the case 11, re-formation (aging) is performed. In the re-formation process, defects in the dielectric oxide film are repaired by applying a voltage to the capacitor 1 heated to a predetermined temperature. That is, the thermal expansion step (S3) can be performed in the re-formation step. However, a thermal expansion step (S3) may be provided separately from the re-chemical conversion step.
 図7Aおよび図7Bは、図6B及び図6Cに示す凸部111の近傍T1及び近傍T2を拡大した図(図6B、6Cに例示される凸部111の近傍を熱膨張の前後についてそれぞれ拡大した図)である。図7Aのように、素子12は、電極箔121と電解紙122を積層した構造を有する。また、素子12の外面には、熱膨張テープ19Aが巻き付けられている。そして、ケース11の外側面の凹部111Bによってケース内側に形成される凸部111を含むケース11の内側面と、熱膨張テープ19Aが巻き付けられた素子12との間には、凸部111Aと素子12の対向する面との間およびその近傍の間には内部空間である隙間SP1が形成されている(封止工程S2)。そして、熱膨張工程(S3)により、図7Bに示すように熱膨張テープ19Aが熱膨張し、隙間SP1と隙間SP1のさらに周囲の凸部111Aと素子12との間の空間が熱膨張後の熱膨張部材19で埋め尽くされる。 7A and 7B are enlarged views of the vicinity T1 and the vicinity T2 of the convex portion 111 shown in FIGS. 6B and 6C (the vicinity of the convex portion 111 illustrated in FIGS. 6B and 6C are respectively enlarged before and after thermal expansion) Figure). As shown in FIG. 7A, element 12 has a structure in which electrode foil 121 and electrolytic paper 122 are laminated. Moreover, the outer surface of the element 12 is wrapped with a thermal expansion tape 19A. Between the inner surface of the case 11 including the convex portion 111 formed inside the case by the concave portion 111B on the outer surface of the case 11 and the element 12 around which the thermal expansion tape 19A is wound, the convex portion 111A and the element A gap SP1, which is an internal space, is formed between the opposing surfaces of 12 and the vicinity thereof (sealing step S2). Then, in the thermal expansion step (S3), the thermal expansion tape 19A thermally expands as shown in FIG. It is filled with the thermal expansion member 19 .
 (第1の実施形態の効果)
 以上述べたように、第1の実施形態の製造方法およびこの製造方法で製造されるコンデンサ1では、ケース11が素子12を収納するための内部空間を有し、ケース内側に(内部空間に)向かって突出した凸部111Aを有する。そして、凸部111Aを含むケース11の内側面と素子12の外面との間に熱膨張部材19が埋め込まれている。このため、コンデンサ1への外力として振動または衝撃が加えられたときでも、熱膨張部材19により、ケース11と素子12とが互いに逆方向に移動する位相、または、ずれた位相で振動すること、あるいは、移動することが抑制される。すなわち、コンデンサ1に外力が加えられた場合でも、ケース11と素子12とが一体となって振動し、あるいは、一体となって同一方向に移動する可能性が高められる。したがって、比較例の図2に例示したようなステッチ134あるいはコールドウェルド法による冷間圧接部に応力が集中することが抑制される。また、比較例の図3に例示したような丸棒部132と扁平部133との接続箇所に応力が集中することが抑制される。したがって、リード13と電極箔との接続部の外力による破断、丸棒部132と扁平部133との間の破断が低減される。
(Effect of the first embodiment)
As described above, in the manufacturing method of the first embodiment and the capacitor 1 manufactured by this manufacturing method, the case 11 has an internal space for housing the element 12, and the inside of the case (inside the internal space) It has a convex portion 111A protruding toward it. A thermal expansion member 19 is embedded between the inner surface of the case 11 including the convex portion 111A and the outer surface of the element 12 . Therefore, even when vibration or shock is applied as an external force to the capacitor 1, the thermal expansion member 19 causes the case 11 and the element 12 to vibrate in opposite phases or out of phase. Alternatively, movement is suppressed. That is, even when an external force is applied to the capacitor 1, the possibility that the case 11 and the element 12 vibrate together or move together in the same direction is increased. Therefore, concentration of stress on the stitch 134 or the cold welded portion by the cold weld method as illustrated in FIG. 2 of the comparative example is suppressed. In addition, concentration of stress on the connecting portion between the round bar portion 132 and the flat portion 133 as illustrated in FIG. 3 of the comparative example is suppressed. Therefore, breakage of the connecting portion between the lead 13 and the electrode foil due to external force and breakage between the round bar portion 132 and the flat portion 133 are reduced.
 また、凸部111の加工は、ケース11に素子12を収納した状態で行うと、素子12の陽極箔121Aや陰極箔121Bに機械的ストレスを与えないようにするため、高い加工精度が要求されることが想定される。しかし、コンデンサ1では、素子12をケース11に収納する前に、凸部111を形成している。そのため、ケース11が素子12を含む状態で、機械的ストレスを与える可能性のある凸部111を形成する加工工程が存在しない。さらに、熱膨張部材19は膨張時に、素子12に対して素子12の側面に沿って円周上に面で接触するように膨張し、熱膨張部材19が埋め込まれる。そのため、局所的に機械的ストレスが加わることを抑制することができる。その上、熱膨張部材19は、ケース11に対して凸部111Aに沿って徐々に接触する。そのため、熱膨張時にケース11から熱膨張部材19が受ける素子12方向への反作用を分散することができる。そして、熱膨張後の熱膨張部材19は、凸部111Aと凸部111Aの対向する素子との間において、ケース11とケース11の凸部111Aが非形成の面と対向する素子の間に比べ、密に空間を埋め尽くし、凸部111Aと素子12との接触面積を大きくしている。したがって、コンデンサ1の耐振性や耐衝撃性を向上することができる。 Further, when the convex portion 111 is processed while the element 12 is housed in the case 11, high processing accuracy is required so as not to apply mechanical stress to the anode foil 121A and the cathode foil 121B of the element 12. It is assumed that However, in the capacitor 1 , the convex portion 111 is formed before the element 12 is housed in the case 11 . Therefore, there is no processing step for forming the convex portion 111 that may apply mechanical stress while the case 11 includes the element 12 . Further, the thermal expansion member 19 expands so as to come into surface contact with the element 12 along the side surface of the element 12 at the time of expansion, and the thermal expansion member 19 is embedded. Therefore, local application of mechanical stress can be suppressed. Moreover, the thermal expansion member 19 gradually comes into contact with the case 11 along the convex portion 111A. Therefore, the reaction in the direction of the element 12 received by the thermal expansion member 19 from the case 11 during thermal expansion can be dispersed. After the thermal expansion, the thermal expansion member 19 is more stable than between the case 11 and the element facing the surface on which the convex portion 111A is not formed, between the convex portion 111A and the element facing the convex portion 111A. , the space is densely filled, and the contact area between the convex portion 111A and the element 12 is increased. Therefore, the vibration resistance and shock resistance of the capacitor 1 can be improved.
 [第2の実施形態]
 図8A、8Bは、第2の実施形態に係るコンデンサ1Aの構造と、その製造方法を例示する図である。上記第1の実施形態では、ケース11の内側面と素子12の外面との間に熱膨張部材19が埋め込まれたコンデンサ1が例示された。本実施形態では、この熱膨張部材19がケース11の内側に向かって内部空間に突出した凸部111Aの近傍に限定して埋め込まれたコンデンサ1Aが例示される。熱膨張部材19の構造以外のコンデンサ1Aの構造、構成、およびその作用は第1の実施形態のコンデンサ1と同様である。そこで、コンデンサ1Aの構成のうち、第1の実施形態のコンデンサ1と同一の構成については、同一の符号を付してその説明を省略する。
[Second embodiment]
8A and 8B are diagrams illustrating the structure of a capacitor 1A and a manufacturing method thereof according to the second embodiment. The first embodiment exemplifies the capacitor 1 in which the thermal expansion member 19 is embedded between the inner surface of the case 11 and the outer surface of the element 12 . This embodiment exemplifies a capacitor 1A in which the thermal expansion member 19 is embedded only in the vicinity of a protrusion 111A protruding toward the inside of the case 11 into the internal space. Except for the structure of the thermal expansion member 19, the structure, configuration and action of the capacitor 1A are the same as those of the capacitor 1 of the first embodiment. Therefore, among the configurations of the capacitor 1A, the same configurations as those of the capacitor 1 of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図8A、8Bは、コンデンサ1Aのリード13-1、13-2のそれぞれの中心を通る平面で切断したコンデンサ1Aの概念的な断面図である。図8A、8Bも、図4Bと同様、素子12の断面は省略されて例示されている。 FIGS. 8A and 8B are conceptual cross-sectional views of the capacitor 1A taken along a plane passing through the respective centers of the leads 13-1 and 13-2 of the capacitor 1A. Similar to FIG. 4B, FIGS. 8A and 8B also omit the cross section of the element 12 .
 図8A、8Bのように、コンデンサ1Aは、断面で例示されるケース11と、ケース11に収納された素子12と、素子12の電極箔に接続されるリード13-1、13-2と、封口ゴム14とを有する。なお、リード13-1、13-2を総称する場合には、単にリード13という。 As shown in FIGS. 8A and 8B, the capacitor 1A includes a case 11 illustrated in cross section, an element 12 housed in the case 11, leads 13-1 and 13-2 connected to electrode foils of the element 12, It has a sealing rubber 14 . The leads 13-1 and 13-2 are simply referred to as the leads 13 when collectively referred to.
 第2の実施形態のコンデンサ1Aの特徴は、熱処理工程の前、熱膨張テープ19Aが、素子12の外面のうち、ケース11の内側に向かって突出した凸部111Aに対向する付近に限定して付されている点にある(図8A)。このため、熱処理工程で加熱され、熱膨張によって形成される熱膨張部材19は、凸部111Aと凸部111Aに対向する付近の素子12の外面とによって挟まれた部分に限定して埋め込まれる。すなわち、図8Bに示すように、熱膨張部材19は、ケース11の内部空間の一部に介在している。 A feature of the capacitor 1A of the second embodiment is that before the heat treatment process, the thermal expansion tape 19A is limited to the vicinity of the outer surface of the element 12 facing the convex portion 111A projecting toward the inside of the case 11. at the marked point (Fig. 8A). Therefore, the thermal expansion member 19, which is heated in the heat treatment process and formed by thermal expansion, is embedded only in the portion sandwiched between the convex portion 111A and the outer surface of the element 12 in the vicinity facing the convex portion 111A. That is, as shown in FIG. 8B, the thermal expansion member 19 is interposed in a part of the internal space of the case 11. As shown in FIG.
 このような構成をとることでも、振動または衝撃等の外力によって、素子12とコンデンサ1Aの本体(ケース11、封口ゴム14等)が異なる方向に変位することが抑制される。すなわち、素子12とコンデンサ1Aの本体の振動の位相がずれること、または、逆になることが抑制される。同時に、図8Bの構造をとることで、コンデンサ1Aでは、ケース11の熱膨張部材19を含まない内部空間が第1の実施形態のコンデンサ1と比較して拡がる。すなわち、コンデンサ1Aは第1の実施形態のコンデンサ1よりも空間率を上げることができる。このため、例えば、ケース11内で電圧印加時に水の電気分解またはハロゲン元素の腐食によって、ガスが発生した場合でも、ケース11の膨張を防ぐことができる。すなわち、図8Bのコンデンサ1Aは、ケース11がアルミニウムを用いたケースであったとしても、耐振性や耐衝撃性を向上させつつ、ガスの発生によるケース11への影響を緩和することができる。 Such a configuration also suppresses displacement of the element 12 and the body of the capacitor 1A (the case 11, the sealing rubber 14, etc.) in different directions due to external forces such as vibration or impact. That is, it is suppressed that the phases of the vibrations of the element 12 and the body of the capacitor 1A are shifted or reversed. At the same time, by adopting the structure of FIG. 8B, in the capacitor 1A, the internal space of the case 11 that does not include the thermal expansion member 19 is expanded as compared with the capacitor 1 of the first embodiment. That is, the capacitor 1A can have a higher void ratio than the capacitor 1 of the first embodiment. Therefore, expansion of the case 11 can be prevented even if gas is generated in the case 11 by electrolysis of water or corrosion of a halogen element when a voltage is applied, for example. That is, even if the case 11 is made of aluminum, the capacitor 1A of FIG. 8B can improve the vibration resistance and impact resistance and mitigate the influence of gas generation on the case 11.
 [第3の実施形態]
 図9A、9Bは、第3の実施形態に係るコンデンサ1Bの構造と、その製造方法を例示する図である。上記第1の実施形態では、ケース11の内側面と素子12の外面との間に熱膨張部材19が埋め込まれたコンデンサ1が例示された。第2の実施形態では、この熱膨張部材19がケース11の内側に向かって内部空間に突出した凸部111Aの近傍に限定して埋め込まれたコンデンサ1Bが例示された。
[Third Embodiment]
9A and 9B are diagrams illustrating the structure of a capacitor 1B according to the third embodiment and a manufacturing method thereof. The first embodiment exemplifies the capacitor 1 in which the thermal expansion member 19 is embedded between the inner surface of the case 11 and the outer surface of the element 12 . In the second embodiment, the capacitor 1</b>B in which the thermal expansion member 19 is embedded only in the vicinity of the projection 111</b>A protruding toward the inside of the case 11 into the internal space is exemplified.
 本実施形態では、熱膨張部材19が素子12のケース底面側に配置する端面12Bとケース11の底面11Bとの間の隙間(空間)SP2にまで延在するコンデンサ1Bが例示される。このような熱膨張部材19の構造以外のコンデンサ1Bの構造、構成、およびその作用は第1の実施形態のコンデンサ1、第2の実施形態のコンデンサ1Aと同様である。そこで、コンデンサ1Bの構成のうち、第1の実施形態のコンデンサ1と同一の構成については、同一の符号を付してその説明を省略する。 This embodiment exemplifies a capacitor 1B in which the thermal expansion member 19 extends to the gap (space) SP2 between the end face 12B of the element 12 arranged on the bottom side of the case and the bottom face 11B of the case 11. Other than the structure of the thermal expansion member 19, the structure, configuration, and action of the capacitor 1B are the same as those of the capacitor 1 of the first embodiment and the capacitor 1A of the second embodiment. Therefore, among the configurations of the capacitor 1B, the same configurations as those of the capacitor 1 of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図9A、9Bは、コンデンサ1Bのリード13-1、13-2のそれぞれの中心を通る平面で切断した概念的な断面図である。ただし、図9A、9Bも、図4Bまたは図8A、8Bと同様、素子12の断面は省略されて例示されている。なお、図9A、9Bも、図2Aと同様、2本のリード13-1、13-2が並ぶ方向をX軸方向とする。また、2本のリード13-1、13-2の端子が素子12から延びる方向をZ軸方向とする。さらに、Y軸方向は、2つのリード13-1、13-2が配列する方向であるX軸方向およびリード13の端子の素子12からの延伸方向であるZ軸に直交する方向である。 9A and 9B are conceptual cross-sectional views taken along planes passing through the centers of the leads 13-1 and 13-2 of the capacitor 1B. However, FIGS. 9A and 9B also omit the cross section of the element 12 as in FIG. 4B or FIGS. 8A and 8B. In FIGS. 9A and 9B, as in FIG. 2A, the direction in which the two leads 13-1 and 13-2 are arranged is the X-axis direction. The direction in which the terminals of the two leads 13-1 and 13-2 extend from the element 12 is defined as the Z-axis direction. Furthermore, the Y-axis direction is a direction orthogonal to the X-axis direction in which the two leads 13-1 and 13-2 are arranged and the Z-axis direction in which the terminals of the leads 13 extend from the element 12. FIG.
 図9A、9Bのように、コンデンサ1Bは、図4Bと同様、断面で例示されるケース11と、ケース11に収納された素子12と、素子12の電極箔に接続されるリード13-1、13-2と、封口ゴム14とを有する。 9A and 9B, the capacitor 1B includes a case 11 illustrated in cross section, an element 12 housed in the case 11, leads 13-1 connected to the electrode foils of the element 12, and a lead 13-1 connected to the electrode foil of the element 12. 13-2 and a sealing rubber 14.
 第3の実施形態のコンデンサ1Bの特徴は、熱処理工程の前、熱膨張テープ19Aが素子12の円柱状の側面(ケース開口端側とケース底面側の2つの端面で挟まれた円柱状の外面)に加えて、素子12の円柱状のケース底面側に配置される端面12Bに回り込んで付されている点にある(図9A)。このため、熱処理工程で加熱されると、熱膨張テープ19Aがケース11の内側面と素子12の側面との間の隙間SP1に加えて、さらに、素子12のケース底面側の隙間SP2にも延在し、埋め込まれる。すなわち、図9Bに示すように、素子12の円柱状の一方の端面であるケース底面側に配置される端面12Bと、ケース11の内側の底面11Bとの間の隙間SP2の少なくとも一部に熱膨張部材19が埋め込まれて、介在する。 A feature of the capacitor 1B of the third embodiment is that, before the heat treatment process, the thermal expansion tape 19A forms a cylindrical outer surface sandwiched between the cylindrical side surfaces of the element 12 (the case opening end side and the case bottom side). ) and is attached around the end face 12B arranged on the bottom side of the cylindrical case of the element 12 (FIG. 9A). Therefore, when heated in the heat treatment process, the thermal expansion tape 19A extends not only to the gap SP1 between the inner side surface of the case 11 and the side surface of the element 12, but also to the gap SP2 on the side of the bottom surface of the case of the element 12. exists and is embedded. That is, as shown in FIG. 9B, at least part of the gap SP2 between the end surface 12B arranged on the bottom side of the case, which is one end surface of the columnar element 12, and the bottom surface 11B inside the case 11 is heated. An inflatable member 19 is embedded and intervening.
 以上のように、本実施形態のコンデンサ1Bは、素子12の底面側にも膨張した熱膨張部材19を有する。このような構造により、コンデンサ1Bに対して、Z軸方向の振動または衝撃が加わった場合でも、振動または衝撃を和らげることができ、耐振性、耐衝撃性を更に向上することができる。ここで、Z軸方向は、2本のリード13-1、13-2の端子が素子12から延びる方向である。 As described above, the capacitor 1B of this embodiment has the thermal expansion member 19 expanded also on the bottom surface side of the element 12 . With such a structure, even if vibration or impact in the Z-axis direction is applied to the capacitor 1B, the vibration or impact can be softened, and the vibration resistance and impact resistance can be further improved. Here, the Z-axis direction is the direction in which the terminals of the two leads 13-1 and 13-2 extend from the element 12. FIG.
 なお、コンデンサ1Bは、素子12のケース底面側の他、素子のケース開口端側に配置される端面に膨張した熱膨張部材19を有してもよい。すなわち、熱膨張テープ19Aを素子12のケース開口端側に配置される端面と封口ゴム14との隙間に埋め込み、熱膨張させてもよい。したがって、熱膨張部材19は、柱状の素子12の側面とケース11の有底筒状の内側面との間に介在するとともに、少なくとも、柱状の素子12の一方の端面とケース11の底面との間にまで延在しているものでもよい。 Note that the capacitor 1B may have an expanded thermal expansion member 19 on the end face arranged on the case opening end side of the element 12 in addition to the case bottom side of the element 12 . That is, the thermally expandable tape 19A may be embedded in the gap between the end face of the element 12 located on the side of the opening of the case and the sealing rubber 14, and thermally expanded. Therefore, the thermal expansion member 19 is interposed between the side surface of the columnar element 12 and the inner side surface of the bottomed cylindrical case 11 and at least between one end surface of the columnar element 12 and the bottom surface of the case 11. It may extend to the middle.
[その他の変形例]
 図10A乃至10Cは、変形例に係るコンデンサ1C乃至1Eを例示する図である。図10Aのコンデンサ1Cは、ケース11に複数の凸部111-1、111-2を有する。凸部111-1、111-2は、第1の実施形態のコンデンサ1と同様、有底筒状のケース11の外側面上で有底筒状のケース11の中心軸周りに形成された複数の環状の溝部となっている。なお、凸部111の数は、2に限定されず、3以上でもよい。また、この環状の溝部は、環が形成する面の法線がZ軸に対して傾いていてもよい。すなわち、有底筒状のケース11を斜めに切断した断面の外周に沿うように、環状の溝部が形成されてもよい。ケース11の外側面上に凸部111を複数形成することで、ケース11の内部空間には、ケース11の内側面から内側に向かって突出した凸部111A(図4A、4B、図7A、7B参照)が複数形成される。したがって、コンデンサ1Cでは、熱膨張部材19とケース11の接する箇所を増やすことができる。したがって、凸部が単一の場合と比較して、コンデンサ1Cは、熱膨張部材19を安定して維持できる。その結果、コンデンサ1Cは、耐振性、耐衝撃性を更に向上することができる。
[Other Modifications]
10A to 10C are diagrams illustrating capacitors 1C to 1E according to modifications. A capacitor 1C in FIG. 10A has a plurality of protrusions 111-1 and 111-2 on the case 11. In FIG. Like the capacitor 1 of the first embodiment, the convex portions 111-1 and 111-2 are formed on the outer surface of the bottomed cylindrical case 11 around the central axis of the bottomed cylindrical case 11. is an annular groove. Note that the number of protrusions 111 is not limited to two, and may be three or more. Also, in this annular groove, the normal to the surface formed by the ring may be inclined with respect to the Z-axis. That is, an annular groove may be formed along the outer periphery of a cross section obtained by obliquely cutting the bottomed cylindrical case 11 . By forming a plurality of protrusions 111 on the outer surface of the case 11, the inner space of the case 11 has protrusions 111A (FIGS. 4A, 4B, 7A, 7B) projecting inward from the inner surface of the case 11. reference) are formed. Therefore, in the capacitor 1C, the contact points between the thermal expansion member 19 and the case 11 can be increased. Therefore, the capacitor 1C can stably maintain the thermal expansion member 19 as compared with the case where the convex portion is single. As a result, the capacitor 1C can further improve vibration resistance and shock resistance.
 図10Bのコンデンサ1Dは、有底筒状のケース11の外側面上で有底筒状のケース11の中心軸周りに形成された環状の溝部である凸部111の代わりに、凹面レンズ状の孤立した、1または複数の窪み111Cを有する。ここで、「孤立した」とは、コンデンサ1Cのような環状の連続した溝部ではないという意味である。窪み111Cは、ケース11の外側面上で有底筒状のケース11の中心軸周りに、例えば、1個、2個または3個以上形成される。この窪み111Cはディンプルとも呼ばれる。窪み111Cの断面形状に限定はなく、例えば、球面の一部でもよいし、放物線を回転された放物面でもよい。また、窪み111Cの断面形状は、他の2次曲線以上の曲線を回転されたものでもよい。また、窪み111Cの断面形状は、線を回転されたものではなく、窪み111Cの中心に対して対称な形状でなくてもよい。 In the condenser 1D of FIG. 10B, instead of the convex portion 111, which is an annular groove formed around the central axis of the bottomed tubular case 11 on the outer surface of the bottomed tubular case 11, a concave lens-shaped It has one or more isolated depressions 111C. Here, "isolated" means that it is not a continuous annular groove like the capacitor 1C. For example, one, two, or three or more depressions 111C are formed on the outer surface of the case 11 around the central axis of the bottomed cylindrical case 11 . This depression 111C is also called a dimple. The cross-sectional shape of the depression 111C is not limited, and may be, for example, a part of a spherical surface or a parabola obtained by rotating a parabola. Also, the cross-sectional shape of the depression 111C may be a curved line that is more than a quadratic curve. Also, the cross-sectional shape of the recess 111C does not have to be a rotated line and does not have to be symmetrical with respect to the center of the recess 111C.
 コンデンサ1Dでは、熱膨張部材19が膨張時に接触する面が球面、二次曲面、その他の滑らかに変化する面であるため、素子12に余計な機械的ストレスを加えることなく、耐振性と耐衝撃性を向上できる。また、コンデンサ1Dでは、熱膨張部材19が孤立して突出する凸部と接触するため、熱膨張部材19が膨張する時に生じる機械的ストレスの発生が特定部分に限定された状態で、耐振性と耐衝撃性を向上できる。 In the capacitor 1D, the surface with which the thermal expansion member 19 contacts during expansion is a spherical surface, a quadratic surface, or another surface that changes smoothly. can improve sexuality. In the capacitor 1D, since the thermal expansion member 19 is in contact with the isolated protruding portion, the occurrence of mechanical stress generated when the thermal expansion member 19 expands is limited to a specific portion. Impact resistance can be improved.
 図10Cのコンデンサ1Eは、コンデンサ1Eが有する凹面レンズ状の窪み111Cを有底筒状のケース11の外側面上で有底筒状のケース11の中心軸周りの1つの円周上以外の位置に設けたものである。すなわち、コンデンサ1Eは、ケース11の外面上で様々な位置に孤立した凹面レンズ状の窪み111Cを有する。コンデンサ1Eにおいても、熱膨張部材19が膨張時に接触する面が球面、二次曲面、その他の滑らかに変化する面であるため、素子に余計な機械的ストレスを加えることが抑制される。さらに、コンデンサ1Eでは、様々な角度から加わる振動や衝撃に対して、より耐振動性と耐衝撃性を得ることができる。なお、窪み111Cの数や位置は図10のコンデンサ1Eに限定されるものではない。 The condenser 1E of FIG. 10C has a concave lens-like depression 111C which is placed on the outer surface of the cylindrical case 11 with a bottom at a position other than one circumference around the central axis of the cylindrical case 11 with a bottom. It is set in That is, the condenser 1E has concave lens-like depressions 111C isolated at various positions on the outer surface of the case 11. FIG. In the capacitor 1E as well, the surface with which the thermal expansion member 19 contacts during expansion is a spherical surface, a quadratic surface, or any other surface that changes smoothly, thereby suppressing application of excessive mechanical stress to the element. Furthermore, the capacitor 1E can obtain higher vibration resistance and impact resistance against vibrations and impacts applied from various angles. The number and positions of the recesses 111C are not limited to those of the capacitor 1E in FIG.
 図11は、他の変形例のコンデンサ1Fを例示する概念的な断面図である。図11では、図4B、図8A、8B等と同様、素子12の断面は省略されて例示されている。コンデンサ1Fのケース11には、図4A、4Bのコンデンサ1が有する凸部111、図10B、10Cのコンデンサ1D、1Eが有する窪み111Cがない。コンデンサ1Fの特徴は、素子12を収納する内部空間に内側面から突出する凸部111Dがケース11の外観の変形なしに形成されている点にある。図11では、凸部111Dがケース11の底面11Bに近い位置で、底面11Bの一部と重畳し、あるいは接触して形成されている。ただし、凸部111Dがケース11の底面11Bから離間した位置に形成されてもよい。また、図11では、凸部111Dと素子12の円柱状の側面との間に隙間が存在しない。しかし、凸部111Dと素子12の円柱状の側面との間に隙間が設けられてもよい。例えば、図4A、図4B、図8A、図8B、図10Aのコンデンサ1、1B、1C等のような凸部111を形成しないで、凸部111A等(図8A、8B参照)と同様の位置に同様の形状で凸部111Dが形成されてもよい。すなわち、コンデンサ1Fは、ケース11に加締めやディンプルを形成する加工なしに、絞り加工またはエンボス加工等により、凸部111Dを形成することによって上記コンデンサ1乃至1Eと同様の効果を発揮する。また、コンデンサ1Fの凸部111Dは、ケース11の内部空間にリング状の部材を圧接した状態で挿入することで形成してもよい。 FIG. 11 is a conceptual cross-sectional view illustrating another modified capacitor 1F. In FIG. 11, as in FIGS. 4B, 8A, 8B, etc., the cross section of the element 12 is omitted. Case 11 of capacitor 1F does not have protrusion 111 of capacitor 1 in FIGS. 4A and 4B and recess 111C of capacitors 1D and 1E in FIGS. 10B and 10C. A feature of the capacitor 1F is that the convex portion 111D protruding from the inner surface is formed in the internal space for housing the element 12 without deforming the external appearance of the case 11. FIG. In FIG. 11, the convex portion 111D is formed at a position near the bottom surface 11B of the case 11 so as to overlap or contact with a part of the bottom surface 11B. However, the convex portion 111D may be formed at a position spaced apart from the bottom surface 11B of the case 11 . Further, in FIG. 11, there is no gap between the convex portion 111D and the cylindrical side surface of the element 12. In FIG. However, a gap may be provided between the convex portion 111D and the cylindrical side surface of the element 12 . For example, without forming the convex portion 111 like the capacitors 1, 1B, 1C, etc. of FIGS. , a convex portion 111D having a similar shape may be formed. That is, the capacitor 1F has the same effect as the capacitors 1 to 1E by forming the protrusions 111D by drawing or embossing the case 11 without crimping or forming dimples. Also, the convex portion 111D of the capacitor 1F may be formed by inserting a ring-shaped member into the inner space of the case 11 while being pressed against it.
 上記第1の実施形態、第2の実施形態等では、凸部111は、有底筒状のケース11の外側面上で有底筒状のケース11の中心軸周りに形成された環状の溝部となっている。しかし、凸部111(および凸部111A)がこのような形状に限定される訳ではない。すなわち、他の変形例として、2つのリード13-1、13-2が配列する方向(図4B等のX軸方向)と直交する方向に、ケース11の内側面に凸部を設けてもよい。例えば、ケース11の外側面上で、図4のZ軸方向(ケース11の中心軸に平行な方向)に延伸する溝部により、ケース11の内側面に凸部を設けてもよい。溝部は、ケース11の軸方向の長さ全体に形成されてもよいし、ケース11の軸方向の一部の範囲に限定して形成されてよい。このような凸部を有することで、熱膨張部材19が膨張する時に生じる機械的ストレスの発生が特定部分に限定された状態で、Y軸方向とZ軸方向に対する耐振性と耐衝撃性を向上することができる。 In the first embodiment, the second embodiment, and the like, the protrusion 111 is an annular groove formed around the central axis of the bottomed cylindrical case 11 on the outer surface of the bottomed cylindrical case 11 . It has become. However, the convex portion 111 (and the convex portion 111A) is not limited to such a shape. That is, as another modification, a convex portion may be provided on the inner surface of the case 11 in a direction perpendicular to the direction in which the two leads 13-1 and 13-2 are arranged (the X-axis direction in FIG. 4B, etc.). . For example, a protrusion may be provided on the inner surface of the case 11 by a groove extending in the Z-axis direction in FIG. 4 (a direction parallel to the central axis of the case 11) on the outer surface of the case 11. The groove portion may be formed over the entire length of the case 11 in the axial direction, or may be formed in a limited range in the axial direction of the case 11 . By having such a convex portion, the vibration resistance and impact resistance in the Y-axis direction and the Z-axis direction are improved in a state where the mechanical stress generated when the thermal expansion member 19 expands is limited to a specific portion. can do.
 この場合に、図11の凸部111Dと同様の位置で、溝部がケース11のZ軸方向の一部の範囲に限定して、ケース11の底面11Bの近傍で底面11Bの一部と重畳して形成してもよい。この場合、ケース11の底面11B側よりも、ケース11の両端面に挟まれた中間位置に近い、中心側の凸部(溝部)の幅を細くすることで、熱膨張部材19が膨張時に、素子が急激に機械的ストレスを受けることを防ぐことができる。 In this case, at the same position as the convex portion 111D in FIG. may be formed by In this case, by narrowing the width of the protrusion (groove) on the center side, which is closer to the intermediate position sandwiched between both end surfaces of the case 11 than on the bottom surface 11B side of the case 11, when the thermal expansion member 19 expands, It is possible to prevent the device from being subjected to sudden mechanical stress.
 さらに、上記各実施形態では、素子12は、比較例の図1の素子312と同様、陽極箔121A、電解紙122A、陰極箔121B、および電解紙122Bを重畳し、巻回した円柱状の構造を有する。しかし、コンデンサ1乃至1Fがこのような素子12の構造に限定される訳ではない。すなわち、上記各実施形態で例示した熱膨張部材19を有するコンデンサ1乃至1Fにおいて、素子12の構造に限定がないことは当然である。例えば、素子12として、電解紙122A、陽極箔121A、電解紙122B、および陰極箔121Bを積み重ねた構造であってもよい。この場合に、素子12は、円柱状でなくてよい。例えば、角柱状、直方体、または立方体の形状であってもよい。したがって、角柱状、直方体、または立方体も、柱状の一例である。 Furthermore, in each of the above-described embodiments, the element 12 has a columnar structure in which the anode foil 121A, the electrolytic paper 122A, the cathode foil 121B, and the electrolytic paper 122B are superimposed and wound, like the element 312 in FIG. 1 of the comparative example. have However, the capacitors 1 to 1F are not limited to such a structure of the element 12. FIG. That is, it is natural that the structure of the element 12 is not limited in the capacitors 1 to 1F having the thermal expansion member 19 illustrated in each of the above embodiments. For example, the element 12 may have a structure in which an electrolytic paper 122A, an anode foil 121A, an electrolytic paper 122B, and a cathode foil 121B are stacked. In this case, the element 12 need not be cylindrical. For example, it may have a prismatic, rectangular parallelepiped, or cubic shape. Therefore, a prismatic shape, a rectangular parallelepiped, or a cube is also an example of a columnar shape.
 さらに、上記各実施形態では、熱膨張部材19として熱膨張テープ19Aを用いたが、フィルムやシート状の熱膨張部材19をケース11と素子12の間に配置してもよい。また、ケース11の内側面に熱膨張部材19を付着、又は、接触するように配置してもよい。 Furthermore, in each of the above embodiments, the thermal expansion tape 19A is used as the thermal expansion member 19, but a film or sheet-like thermal expansion member 19 may be arranged between the case 11 and the element 12. Also, the thermal expansion member 19 may be attached to the inner surface of the case 11 or arranged so as to be in contact therewith.
 さらに、上記各実施形態では、ケース11に凸部111を設ける工程を、素子12をケース11に収納する前に行ったが、凸部111を有さないケース11と素子12の間に熱膨張部材19を設け、封止した後に熱膨張部材19を膨張させて、素子12の外面とケース11との隙間を熱膨張部材19で埋め尽くしてもよい。また、凸部111を設ける工程が、ケース11に素子12を収納した後に、ケース11の内側面と素子12の外面との間に、素子12と接触しない凸部111を設ける工程であり、素子12と接触しない凸部をケース11に設けた後に熱膨張部材19を膨張させて、素子12と凸部111の隙間を熱膨張部材19で埋め尽くしてもよい。また、凸部111を有さないケース11と素子12の間に熱膨張部材19を設け、熱膨張部材19を膨張させた後に、凸部111をケース11に設けてもよい。なお、上記各実施形態に示すように、ケース11に素子12を収納する前に凸部111を設けることが望ましい。 Furthermore, in each of the above-described embodiments, the step of providing the convex portion 111 to the case 11 was performed before the element 12 was housed in the case 11. After the member 19 is provided and sealed, the thermal expansion member 19 may be expanded to fill the gap between the outer surface of the element 12 and the case 11 with the thermal expansion member 19 . Further, the step of providing the convex portion 111 is a step of providing the convex portion 111 that does not come into contact with the element 12 between the inner surface of the case 11 and the outer surface of the element 12 after the element 12 is housed in the case 11. The thermal expansion member 19 may be expanded after providing a convex portion that does not contact the element 12 on the case 11 to fill the gap between the element 12 and the convex portion 111 with the thermal expansion member 19 . Alternatively, the thermal expansion member 19 may be provided between the case 11 and the element 12 that do not have the protrusions 111 , and the protrusions 111 may be provided on the case 11 after the thermal expansion member 19 is expanded. In addition, as shown in each of the above embodiments, it is desirable to provide the convex portion 111 before housing the element 12 in the case 11 .
 さらに、上記各実施形態では、図示しない電解液を用いてコンデンサ1乃至1Fを作成したが、電解液に限定される訳ではない。すなわち、電解液の代わりに導電性高分子を用いた固体電解コンデンサであってもよい。また、電解液ととともに導電性高分子を備えてもよい。さらに、上記各実施形態では、電解コンデンサを用いて説明したが、以上の各実施形態を二次電池、電気二重層キャパシタ、ハイブリッドキャパシタ、レドックスキャパシタ、燃料電池、太陽電池に適用してもよい。 Furthermore, in each of the above-described embodiments, the capacitors 1 to 1F were made using an electrolyte (not shown), but the electrolyte is not limited to this. That is, it may be a solid electrolytic capacitor using a conductive polymer instead of the electrolytic solution. Moreover, you may provide a conductive polymer with electrolyte solution. Furthermore, in each of the above embodiments, an electrolytic capacitor was used, but each of the above embodiments may be applied to secondary batteries, electric double layer capacitors, hybrid capacitors, redox capacitors, fuel cells, and solar cells.
  1、301  コンデンサ
 11、311  ケース
 12、312  素子
 13、313  リード
 14、314  封口ゴム
 19  熱膨張部材
 19A 熱膨張テープ
111  凸部
111A 凸部
111B 凹部
111C 窪み
121  電極箔
122  電解紙
132  丸棒部
133  扁平部
13M  金属線
Reference Signs List 1, 301 capacitor 11, 311 case 12, 312 element 13, 313 lead 14, 314 sealing rubber 19 thermal expansion member 19A thermal expansion tape 111 convex portion 111A convex portion 111B concave portion 111C depression 121 electrode foil 122 electrolytic paper 132 round bar portion 133 Flat portion 13M Metal wire

Claims (11)

  1.  巻回した素子とケースの間に熱膨張部材を設ける工程と、
     前記熱膨張部材を膨張させる工程と、を有する蓄電デバイスの製造方法。
    providing a thermal expansion member between the wound element and the case;
    and expanding the thermal expansion member.
  2.  前記熱膨張部材を設ける工程が、前記素子の外面に前記熱膨張部材を設ける工程である請求項1に記載の蓄電デバイスの製造方法。 The method of manufacturing an electricity storage device according to claim 1, wherein the step of providing the thermal expansion member is a step of providing the thermal expansion member on the outer surface of the element.
  3.  前記ケースにケース内側へ突出した凸部を形成する工程を含む請求項1または請求項2に記載の蓄電デバイスの製造方法。 The method for manufacturing an electricity storage device according to claim 1 or claim 2, comprising the step of forming a convex portion projecting inward of the case on the case.
  4.  前記ケース内側へ突出した凸部を形成する工程が、
     前記熱膨張部材を膨張させる工程より前に行われる請求項3に記載の蓄電デバイスの製造方法。
    The step of forming a convex portion protruding to the inside of the case,
    4. The method of manufacturing an electricity storage device according to claim 3, which is performed before the step of expanding the thermal expansion member.
  5.  前記ケース内側へ突出した凸部を形成する工程が、
     前記熱膨張部材を膨張させる工程より後に行われる請求項3に記載の蓄電デバイスの製造方法。
    The step of forming a convex portion protruding to the inside of the case,
    4. The method for manufacturing an electricity storage device according to claim 3, which is performed after the step of expanding the thermal expansion member.
  6.  前記熱膨張部材を設ける工程が、前記熱膨張部材を用いて前記素子の最外周を巻き止める工程である請求項1乃至3のいずれか1項に記載の蓄電デバイスの製造方法。 The method for manufacturing an electricity storage device according to any one of claims 1 to 3, wherein the step of providing the thermal expansion member is a step of winding the outermost periphery of the element using the thermal expansion member.
  7.  前記熱膨張部材を膨張させる工程が、再化成工程である請求項1乃至6のいずれか1項に記載の蓄電デバイスの製造方法。 The method for manufacturing an electricity storage device according to any one of claims 1 to 6, wherein the step of expanding the thermal expansion member is a re-formation step.
  8.  前記ケース内側へ突出した凸部を形成する工程が、
     前記ケースの外側面上で前記ケースの中心軸周りに、1または複数の環状の溝部を形成することによって、前記ケース内側に突出させる工程である請求項3乃至5のいずれか1項に記載の蓄電デバイスの製造方法。
    The step of forming a convex portion protruding to the inside of the case,
    6. The step of forming one or a plurality of annular grooves around the central axis of the case on the outer surface of the case so as to protrude inside the case according to any one of claims 3 to 5. A method for manufacturing an electricity storage device.
  9.  前記ケース内側へ突出した凸部を形成する工程が、
     前記ケースの外側面上に1または複数の窪みを形成することによって前記ケース内側に突出させる工程である請求項3乃至5のいずれか1項に記載の蓄電デバイスの製造方法。
    The step of forming a convex portion protruding to the inside of the case,
    6. The method of manufacturing an electricity storage device according to claim 3, wherein the step of forming one or more recesses on the outer surface of the case to project inside the case.
  10.  巻回した素子と、
     ケースの内側面と前記素子の外面との間に設けられた熱膨張部材と、を備え、
    前記熱膨張部材は、加熱処理によって膨張した熱膨張部材であることを特徴とする蓄電デバイス。
    a wound element;
    a thermal expansion member provided between the inner surface of the case and the outer surface of the element,
    The electric storage device, wherein the thermal expansion member is a thermal expansion member expanded by heat treatment.
  11.  前記ケースはケース内側に向かって突出した凸部を有し、
     前記熱膨張部材は、前記凸部と前記凸部に対向する前記素子の外面との間に介在することを特徴とする請求項10に記載の蓄電デバイス。
    The case has a convex portion protruding toward the inside of the case,
    11. The electricity storage device according to claim 10, wherein the thermal expansion member is interposed between the convex portion and an outer surface of the element facing the convex portion.
PCT/JP2022/044511 2021-12-03 2022-12-02 Power storage device and method for manufacturing same WO2023101001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021196695A JP2023082779A (en) 2021-12-03 2021-12-03 Power storage device and manufacturing method for the same
JP2021-196695 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023101001A1 true WO2023101001A1 (en) 2023-06-08

Family

ID=86612384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044511 WO2023101001A1 (en) 2021-12-03 2022-12-02 Power storage device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2023082779A (en)
WO (1) WO2023101001A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485808A (en) * 1990-07-26 1992-03-18 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JPH10112424A (en) * 1996-10-04 1998-04-28 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2000124086A (en) * 1998-10-20 2000-04-28 Nippon Chemicon Corp Capacitor
WO2008129729A1 (en) * 2007-03-30 2008-10-30 Nippon Chemi-Con Corporation Electrolytic capacitor
JP2011018631A (en) * 2009-07-08 2011-01-27 Samsung Sdi Co Ltd Secondary battery, and manufacturing method of secondary battery
JP2011243553A (en) * 2010-05-20 2011-12-01 Samsung Sdi Co Ltd Secondary battery
JP2012064601A (en) * 2010-09-14 2012-03-29 Hitachi Aic Inc Aluminum electrolytic capacitor
JP2020155249A (en) * 2019-03-19 2020-09-24 株式会社Gsユアサ Power storage element and power storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485808A (en) * 1990-07-26 1992-03-18 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JPH10112424A (en) * 1996-10-04 1998-04-28 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2000124086A (en) * 1998-10-20 2000-04-28 Nippon Chemicon Corp Capacitor
WO2008129729A1 (en) * 2007-03-30 2008-10-30 Nippon Chemi-Con Corporation Electrolytic capacitor
JP2011018631A (en) * 2009-07-08 2011-01-27 Samsung Sdi Co Ltd Secondary battery, and manufacturing method of secondary battery
JP2011243553A (en) * 2010-05-20 2011-12-01 Samsung Sdi Co Ltd Secondary battery
JP2012064601A (en) * 2010-09-14 2012-03-29 Hitachi Aic Inc Aluminum electrolytic capacitor
JP2020155249A (en) * 2019-03-19 2020-09-24 株式会社Gsユアサ Power storage element and power storage device

Also Published As

Publication number Publication date
JP2023082779A (en) 2023-06-15

Similar Documents

Publication Publication Date Title
JP6246904B2 (en) Secondary battery
JP5600078B2 (en) Pouch type secondary battery and manufacturing method thereof
US8085525B2 (en) Electric double layer capacitor including current collector having a plurality of apertures therein
KR101167790B1 (en) Winding type battery and method for manufacturing winding type battery
US10998538B2 (en) Energy storage device, energy storage apparatus and method of manufacturing energy storage device
KR102062564B1 (en) Energy storage device and method of manufacturing the same
JP6432952B1 (en) Electrochemical cell
JP5918277B2 (en) Ultra capacitor package structure
WO2016174992A1 (en) Secondary battery
EP3079195B1 (en) Secondary battery
JP2012248462A (en) Storage battery
JP6577998B2 (en) Prismatic secondary battery
WO2011117971A1 (en) Method for producing battery, and battery
WO2023101001A1 (en) Power storage device and method for manufacturing same
JP2000030670A (en) Battery jar structure for battery or capacitor and manufacture of battery or capacitor
JP2018125109A (en) Secondary battery and battery pack
JP6207950B2 (en) Square secondary battery and battery pack
JP2016110787A (en) Square secondary battery
JP2020061216A (en) Power storage device
JPH1197301A (en) Cylindrical capacitor member and its manufacture
WO2024019130A1 (en) Energy storage device and state detection method for energy storage device
JP5555665B2 (en) Cylindrical secondary battery
WO2023182305A1 (en) Electricity storage device
JP6892338B2 (en) Power storage device and manufacturing method of power storage device
JP2010087286A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901431

Country of ref document: EP

Kind code of ref document: A1